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METHODS OF FREQUENCY TUNING VIBRATION BASED MICRO-

GENERATOR 
 

by Dibin Zhu 

 
A vibration based micro-generator is an energy harvesting device that couples a certain 

transduction mechanism to the ambient vibration and converts mechanical energy to electrical 

energy. In order to maximize available power, micro-generators are typically inertial devices that 

operate at a single resonant frequency. The maximum output power is generated when the 

resonant frequency of the generator matches the ambient vibration frequency. The output power 

drops significantly if these two frequencies do not match due to the high Q-factor of the generator. 

This thesis addresses possible methods to overcome this limit of vibration based micro-generators, 

in particular, method of tuning the resonant frequency of the generator to match the ambient 

vibration frequency. 

 

This thesis highlights mechanical and electrical methods of resonant frequency tuning of a 

vibration based micro-generator. The mechanical frequency tuning is realized by applying an axial 

tensile force to strain the cantilever structure of the generator. A tunable micro-generator with a 

tuning range from 67.6 Hz to 98Hz and a maximum output power of 156.6µW at a constant low 

vibration acceleration level of 0.59m·s-2 was designed and tested. The tuning mechanism was 

found not to affect the damping of the generator. A closed loop frequency tuning system as well as 

the frequency searching algorithms has been developed to realize automatic frequency tuning 

using the proposed mechanical tuning method. The model of duty cycle of the system was 

established and it was proved theoretically that a reasonable duty cycle can be achieved if the 

generator and tuning system is designed properly.  

 

The electrical tuning method is realized by changing the load capacitance of the generator. Models 

of piezoelectric and electromagnetic generators using electrical tuning methods were derived. The 

model of the electromagnetic generator has also been experimentally verified. The electrically 

tunable generator tested has a maximum 3dB bandwidth of 4.2Hz. 

 

In conclusion, resonant frequency tuning using mechanical methods presented in the thesis have 

larger tuning range than that using electrical methods. However, frequency tuning using electrical 

tuning methods consumes less power than that using mechanical methods for the same amount of 

tuning range. 
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Nomenclature 

 
a Vibration acceleration 
B Magnetic flux density 
b Damping coefficient 
be Electrically induced damping coefficient 
bm Mechanically induced damping (parasitic damping) coefficient 
D Electrical displacement (charge density) 
d Piezoelectric strain coefficient 
E Electric field density 
e.m.f. Electro-motive force 
Fb Buckling force 
Fe Damping force 
fr Resonant frequency 
g Standard gravity (1g = 9.8 m·s-2) 
J Current density 
k Spring constant 
Lc Coil inductance 
m Proof mass 
mc Mass of the cantilever 
m.m.f Magnetomotive force 
N Number of turns of the coil 
P Power 
Pe Maximum electrical energy extracted by the transduction mechanism 
PL Power delivered to the resistive load 
Pm Mechanical loss 
Q Quality (Q)-factor 
Qe Q-factor at optimum load 
QOC Open circuit Q-factor 
Rc Coil resistance 
RL Load resistance 



 xx

R Reluctance 
Y Young’s modulus of the material 
y Movement of vibration 
z Displacement of the proof mass 
Z Maximum displacement of the proof mass 
δ Mechanical strain 
ε Dielectric constant of the piezoelectric material 
φ Transformation factor 
ηa Efficiency of the actuator 
ηg Efficiency of the generator 
Κ Electromagnetic coupling factor 
µ Permeability 

Mechanical stress σ 
Conductivity 

ωr Resonant angular frequency 
Ψ Magnetic flux 
ζe Electrically induced damping factor 
ζm Mechanically induced damping factor 
ζΤ Total damping factor of the system 
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Chapter 1 
 

 

Introduction 

 

 
1.1 Research Objectives 
Vibration-based micro-generators, as a new source of energy conversion, have been 

studied for many years. Academic Institutions around the world have developed a 

number of vibration-based micro-generators that produce useful power levels of 

hundreds of microwatts to several milliwatts [1]. Furthermore, some companies, e.g. 

Perpetuum Ltd [2], Mide Technology Corporation [3] and EnOcean GmbH [4] have 

commercialized this technology. However, the disadvantages of the vibration-based 

micro-generator are as obvious as its advantages. The working environment of the 

existing vibration-based micro-generator is quite limited. Almost all of the existing 

vibration-based micro-generators are designed to work in one particular environment. 

Their performance largely depends on the frequency of the ambient vibration. To 

make generators produce more energy, all resonant generators are designed to have 

very high Q-factor. Therefore, if the resonant frequency of the generator does not 

match the ambient vibration frequency, the output power level will decrease 
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dramatically. This drawback severely restricts the development of the vibration-based 

micro-generator. 

 

To date, there are generally two possible solutions to this problem. The first is to tune 

the resonant frequency of a single generator periodically so that it matches the 

frequency of ambient vibration at all times. The second solution is to widen the 

bandwidth of the generator. This research is focused on finding suitable methods to 

tune the resonant frequency of the vibration-based micro-generator to match the 

ambient vibration frequency. Resonant frequency tuning will be studied by means of 

two methods. The first is to tune the resonant frequency of the vibration-based micro-

generator using an intermittent and mechanical tuning method, in particular, changing 

mechanical strain of the structure. The second is to tune the resonant frequency by 

adjusting the electrical load of the vibration-based micro-generator. 

 

1.2 Novelty in the Thesis 
Novelties in this thesis include: 

♦ Theoretically and experimentally proving the feasibility of resonant frequency 

tuning by applying an axial tensile force to the cantilever of the vibration 

based micro-generator; 

♦ Design and fabrication of a tunable vibration based micro-generator; 

♦ Development of a closed loop resonant frequency tuning system and two 

frequency searching algorithms; 

♦ Establishment of models of frequency tuning piezoelectric and 

electromagnetic generators using electrical tuning methods; 

♦ Experimental verification of the model of the electrically tunable 

electromagnetic generator. 

 

1.3 Declaration 
Most research work presented in this thesis was done by the author except: 

♦ Part of the derivation of model of electrical tuning for electromagnetic 

generators (Equations (7.21) to (7.26) in Chapter 7), which was derived by Dr 

Stephen Roberts from Perpetuum Ltd.; 
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♦ Design and fabrication of the electrically tunable electromagnetic generator 

presented in Section 7.5.1. The generator was designed by Mr Thomas 

Mouille from Perpetuum Ltd and fabricated by Perpetuum Ltd. 

 

1.4 Document Structure 
In Chapter 2, the background of this research including transduction methods of 

vibration-based micro-generators are introduced followed by analysis of 

electromagnetic vibration-based micro-generators. Chapter 3 summarizes the existing 

strategies for increasing the operating bandwidth of vibration energy harvesters. In 

Chapter 4, the principle of the frequency tuning using mechanical methods is 

introduced. A preliminary test testifying the theory is then described. In Chapter 5, 

simulation and optimization of a tunable vibration-based electromagnetic micro-

generator are presented followed by experimental characterization of this generator. A 

closed-loop automatic frequency tuning system has been developed. Details of the 

system together with analysis of the duty cycle of the system are given in Chapter 6. 

In Chapter 7, resonant frequency tuning using electrical methods is detailed. The 

principle as well as modeling of the method is presented. Two prototypes of 

electrically tunable electromagnetic generators have been tested, compared and 

discussed. The mathematical model has also been verified. Chapter 8 concludes 

details of this project and outlines future development in this area.  

 

1.5 Publications 
Publications during my PhD study have been restricted by Perpetuum Ltd for 

commercial reasons. An agreement has been signed by the author with Perpetuum Ltd 

to confirm that every publication regarding resonant frequency tuning using 

mechanical and electrical methods has to be approved by Perpetuum Ltd for five 

years from 2006. Any publication is not allowed before some key techniques are 

patented by Perpetuum Ltd. The first application of patent was submitted in January 

2008. Therefore, there is no paper published before then. That is why only one paper 

has been published so far. However, there are some more papers having been 

submitted or being revised. Here is a list of papers related to my PhD study. 
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1) D. Zhu, S. Roberts, M. J. Tudor and S. Beeby 2008 Closed loop frequency tuning 

of a vibration-based micro-generator, The 8th International Workshop on Micro 

and Nanotechnology for Power Generation and Energy Conversion Applications, 

November 9-12, 2008, Sendai, Japan. 

2) D. Zhu, M. J. Tudor and S. Beeby, Strategies for increasing the operating 

bandwidth of vibration energy harvesters: a review (submitted to Measurement  

Science and Technology). 

3) D. Zhu, S. Roberts, M. J. Tudor and S. Beeby, Design and experimental 

characterization of a tunable vibration-based electromagnetic micro-generator  

(submitted to Sensors and Actuators). 

4) D. Zhu, S. Roberts, M. J. Tudor and S. Beeby, Closed loop frequency tuning of an 

electromagnetic micro-generator (being revised). 
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Chapter 2 
 

 

Fundamentals 

 

 
2.1 Power supply strategies for Wireless Sensor 

 Network 
In the last decade, wireless communication has become more and more important and 

its application more widespread. Many standards and protocols have emerged to meet 

requirements for all kinds of wireless communication, e.g. infra-red for short range 

point-to-point (P2P) communication, IEEE 802.11 for Wireless Local Area Network 

(WLAN),  IEEE 802.15 and Bluetooth for wireless Personal Area Network (PAN). 

Wireless systems offer a number of advantages over wired systems: they are flexible, 

easy to deploy and they can be placed in locations inaccessible to wired systems. 

Furthermore, the layout of nodes in the wireless system can be easily changed without 

considering or re-routing cabling. One of the most promising applications of wireless 

system is Wireless Sensor Networks (WSN).  
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WSN have been deployed in a wide variety of applications in recent years for the 

monitoring of the environment, machines, structural health and by the military for 

surveillance and security [5, 6]. Since each node in WSN has no physical connection 

to the outside world, it must have its own power supply. At present, the default power 

source for WSN is a battery. However, a battery has some disadvantages: it is quite 

bulky, has a finite amount of energy so may need periodic replacement and contains 

potentially hazardous chemicals. In some applications, WSN are deployed in harsh 

environments which may be difficult to access to replace the batteries. Therefore, it is 

preferred to make WSN ‘self-powered’ essentially scavenging their power from the 

surrounding environment. Recent advances in low-power sensor technology and 

wireless links have reduced their power requirements to only a few milliwatts [7, 8], 

which makes self-powered WSN feasible. 

 

Some possible energy sources [9, 10] for WSN include photonic energy [11], thermal 

energy [12] and mechanical energy [1]. These sources can be used to replace or 

recharge the battery and increase the lifetime and capacity of WSN. Among these 

sources, photonic energy has already been widely used and solar cells provide 

excellent power density. However, solar cells are obviously not suitable in low light or 

dirty conditions, or in embedded applications. Thermal energy can be converted to 

electrical energy by the Seebeck effect but the working environment for thermo-

powered sensors is restricted. Mechanical energy can be found almost anywhere that 

WSN may potentially be deployed which makes converting mechanical energy from 

ambient vibration into electrical energy an attractive approach for powering wireless 

sensors. The source of mechanical energy can be a moving human body or a vibrating 

structure. The frequency of the mechanical excitation depends on the source: less than 

10Hz for human movements and over 30Hz for machinery vibrations [13]. Such 

devices are termed as vibration-based micro-generators. The research covered in this 

thesis is based on a vibration-based micro-generator. 

 

In Section 2.2, classification of vibration-based micro-generators and principle of 

each transducer are described. A wide range of reported vibration-based micro-

generators are summarized in Tables 2.1, 2.2 and 2.3 according to their transduction 

priciples. These tables are produced based on lists in [1] with some updated 

generators since its publication. Advantages and disadvantages of each transducer 
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have been listed and compared. In Section 2.3, issues regarding vibration-based 

micro-generators, especially electromagnetic generators, are analyzed. In addition, the 

effect of mechanical damping on the optimum resistive load and the maximum output 

power has been studied in Section 2.3.2. In Section 2.4, limitations of existing 

vibration-based micro-generators have been discussed, which introduces the objective 

of this project. 

 

2.2 Vibration-based Micro-generator 
In vibration energy harvesting, a particular transduction mechanism such as 

electromagnetic [14], electrostatic [15] and piezoelectric [16] is used to extract 

electrical energy from motion. The generator also requires a mechanical system to 

couple environmental displacements to the transduction mechanism. This mechanical 

system has to be designed to maximize the coupling between the mechanical energy 

source and the transduction mechanism. Most vibration-based micro-generators are 

single degree of freedom second order spring-mass system consisting of an inertial 

frame that transmits the vibration to a suspended inertial mass to produce a relative 

displacement or cause mechanical strain. The transduction mechanism can then 

generate electrical energy by exploiting the relative displacement or strain.  

 

2.2.1 Electromagnetic (EM) Generators 
Electromagnetic induction was discovered by Michael Faraday in 1831. Faraday's law 

of electromagnetic induction states that an electrical current will be induced in any 

closed circuit when the magnetic flux through a surface bounded by the conductor 

changes. This applies whether the field itself changes in strength or the conductor is 

moved through it. In an electromagnetic generator, permanent magnets are used to 

produce strong magnetic field and coil is used as the conductor. Either the permanent 

magnet or the coil is fixed to the frame while the other is attached to the inertial mass. 

The relative displacement caused by the vibration makes the transduction mechanism 

work and generate electrical energy. The induced voltage, also known as 

electromotive force (e.m.f), across the coil is proportional to the strength of the 

magnetic field, the velocity of the relative motion and the number of turns of the coil. 

An electromagnetic generator has high output current level at the expense of low 

voltages.  
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Figure 2.1 shows two commonly seen examples of electromagnetic generators.  

 

 
(a)                                                          (b) 

Figure 2.1. Electromagnetic generators. 

 

For the case in Figure 2.1a, the magnetic field is uniform. The magnetic field cut by 

the coil varies with the relative displacement between magnets and the coil. In this 

case, the induced electromotive force is given by: 

 

dt
dzBlNfme ⋅⋅⋅−=...                                              (2.1) 

 

 where N is the number of turns of the coil, l is the effective length of the coil, B is the 

flux density going through the coil and 
dt
dz  is the relative velocity between the 

magnets and the coil.  

 

For the case in Figure 2.1b, the magnetic field varies with the distance apart from the 

magnet. The induced electromotive force is given by: 

 

dt
dz

dz
dBSNfme ⋅⋅⋅−=...                                           (2.2) 

 

where S is the effective area of the coil and 
dz
dB  is the gradient of the magnetic flux 

density along the direction of relative motion between magnets and the coil.  
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In both cases, the induced e.m.f. is a function of velocity of relative movement z(t). 

Therefore, both expressions can be expressed by: 

 

dt
dzfme ⋅Κ=...                                                  (2.3) 

 

where Κ is the electromagnetic coupling factor. Κ equals BlN ⋅⋅−  and 
dz
dBSN ⋅⋅−  

in both cases, respectively. It represents the change in coupled flux per unit 

displacement.  

 

Figure 2.2 shows a circuit representation of an electromagnetic generator with a 

resistive load, RL. The relation between the current through the load and the induced 

e.m.f  is given by: 

 

( ) 0... =++⋅+
dt
diLRRifme ccL                                    (2.4) 

 

where Rc and Lc are the resistance and inductance of the coil, respectively. 

 

 
Figure 2.2. Circuit representation of an electromagnetic generator. 

 

Electromagnetic generators perform better in macro scale than in micro scale [17]. 

Particularly, generators integrated with MEMS with electroplated coils and magnets 

may not be able to produce useful power levels. Table 2.1 lists some reported 

electromagnetic generators with their main characteristics. 
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Table 2.1. Summary of electromagnetic generators. 

Reference f 
(Hz) 

Excitation
level 

(m·s-2) 

Mass 
(g) 

Volume 
(mm3) 

P 
(µW) 

Power 
Density 

(µW·mm-3) 

Structure
Material

Williams  
[18] (2001) 4400 382 0.0023 5.4 0.3 0.0556 GaAs 

Polyimide
Ching  

[19] (2002) 110 95.5 N/A 1000 830 0.83 Copper 

Glynne-Jones 
[20] (2004) 322 2.7 N/A 840 180 0.214 Steel 

Koukharenko 
[21] (2006) 1615 3.92 N/A 100 0.104 0.00104 Silicon 

Saha 
 [22] (2006) 84 7.8 25 800a 3500 4.375 Copper 

Beeby  
[23] (2007) 52 0.589 0.66 150 46 0.307 BeCu 

Wang 
[24] (2007) 121.25 14.7 0.0312 10a 60mVpp

OC N/A Copper 

Külahand  
[25] (2008) 25 N/A 15.6a 2000a 3.97 0.00199 Styrene 

a Estimated or Extrapolated from data in reference  OC: Open Circuit 

 

2.2.2 Electrostatic (ES) Generators 
The basis of electrostatic generator is the variable capacitor. The variable capacitance 

structure is driven by mechanical vibrations. The capacitance varies between 

maximum and minimum value. If the charge on the capacitor is constrained, charge 

will move from the capacitor to a storage device or to the load as the capacitance 

decreases. Thus, mechanical energy is converted to electrical energy. Electrostatic 

generators can be classified into three types, i.e. In-Plane Overlap (Figure 2.3a) which 

varies the overlap area between electrode fingers, In-Plane Gap Closing (Figure 2.3b) 

which varies the gap between electrode fingers and Out-of-Plane Gap Closing (Figure 

2.3c) which varies the gap between two large electrode plates [15].  

 

A simplified circuit for an electrostatic generator using charge constrained conversion 

is shown in Figure 2.4. Vin is a pre-charged reservoir, which could be a capacitor or a 

rechargeable battery. Cv is a variable capacitor, which is one of the three types 

mentioned above. Cpar is the parasitic capacitance associated with the variable 

capacitor structure and any interconnections, which limits the maximum voltage. CL is 

the storage capacitor or any kind of load. 
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(a) In-Plane Overlap                             (b)In-Plane Gap Closing 

 
(c) Out-of-Plane Gap Closing 

Figure 2.3. Electrostatic generators. 

 

 
Figure 2.4. Circuit representation for an electrostatic generator. 

 

The maximum voltage across the load is given by: 

 

in
par

par V
CC
CC

V ⋅
+

+
=

min

max
max                                           (2.5) 
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And the maximum energy converted from mechanical domain to electrical domain is: 

 

( ) inVVCCE ⋅⋅−= maxminmaxmax 2
1                                  (2.6) 

 

An electrostatic generator can be easily realized in MEMS version. Since the 

fabrication process of electrostatic generators is similar to that of VLSI, electrostatic 

generators can be assembled with VLSI without difficulties. Unfortunately, 

electrostatic generators require an initial polarizing voltage or pre-charged electrets. 

Therefore, they can hardly become a separate power source. However, they can be 

used to charge a battery. Table 2.2 lists some reported electrostatic generators with 

their main characteristics. 

 

Table 2.2. Summary of electrostatic generators. 

Reference f 
(Hz) 

Excitation
level 

(m·s-2) 

Mass 
(g) 

Volume 
(mm3) 

P 
(µW) 

Power 
Density 

(µW·mm-3) 
Type 

Meninger 
[26] (2001) 2520 N/A N/A 75 8 0.11 IPO 

Tashiro 
[27] (2002) 6 1 780 N/A 36 N/A OP 

Mitcheson 
[28] (2003) 30 50 0.1 750 3.7 0.0049 N/A 

Arakawa 
[29] (2004) 10 3.9 N/A 800 6 0.0075 IPO 

Despesse 
[30] (2005) 50 8.8 104 1800 1052 0.584 IPGC 

Kuehne 
[31] (2006) 1000 1.96 N/A N/A 4.28 0.079 IPO 

Yen 
[32] (2006) 1560 82.32 N/A N/A 1.8 N/A OP 

Sterken 
[33] (2007) 500 9.8 N/A N/A 5 N/A OP 

Lo 
[34] (2008) 50 576.6 54 50000 17.98 0.00036 OP 

IPO: In-Plane Overlap IPGC: In-Plane Gap Closing  OP: Out-of-plane 
 

2.2.3 Piezoelectric (PZ) generators 
The piezoelectric effect was discovered by Pierre and Jacques Curie in 1880. It is the 

ability of some materials (notably crystals and certain ceramics) to generate an 

electric potential in response to applied mechanical stress. The electrical polarization 
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is proportional to the applied strain. This is the piezoelectric effect used for 

mechanical to electrical energy conversion. Commonly used materials for 

piezoelectric power generation are PZT, PVDF [35] and Macro-Fiber Composite 

(MFC) [36]. 

 

Piezoelectric micro-generators typically work in either d33 mode (Figure 2.5a) or d31 

mode (Figure 2.5b). In the d33 mode, a force is applied in the same direction as the 

poling direction, such as the compression of a piezoelectric block that is poled on its 

top and bottom surfaces. In the d31 mode, a force is applied in the direction 

perpendicular to the poling direction, an example of which is a bending beam that is 

poled on its top and bottom surfaces.  Generally, the d31 mode has been the most 

commonly used coupling mode although the d31 mode yields a lower coupling 

coefficient than the d33 mode [35]. This is because that the typically used structures 

working in the d31 mode are a cantilever or a double-clamped beam. When such 

structures bend, it produces much more stress than compressing a structure working in 

the d33 mode. 

 

 
(a)                                                                             (b) 

Figure 2.5. Piezoelectric generators (a) d33 mode (b) d31 mode. 

 

The constitutive equations for a piezoelectric material are given by: 

 

Ed
Y

⋅+=
σδ                                                   (2.7) 

 σε ⋅+⋅= dED                                                (2.8) 
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where δ is mechanical strain, σ is mechanical stress, Y is the Young’s modulus of the 

material, d is the piezoelectric strain coefficient, E is the electric field, D is the 

electrical displacement (charge density) and ε is the dielectric constant of the 

piezoelectric material. 

 

 
Figure 2.6. Circuit representation of a piezoelectric generator. 

 

Figure 2.6 shows a circuit representation of a piezoelectric generator with a resistive 

load, RL. C is the capacitance between two electrodes and Rs is the resistance of the 

piezoelectric material. The voltage source, VOC, is the open circuit voltage resulting 

from Equation (2.8) when the electrical displacement is zero. It is given by: 

 

σ
ε

⋅
⋅

−=
tdVOC                                                (2.9) 

 

where t is the thickness of the piezoelectric material. 

 

Piezoelectric generators have the simplest structure among the three transducers and 

they can produce appropriate voltages for electronic devices. However, the 

mechanical properties of the piezoelectric material may limit overall performance and 

lifespan of the generator. Although piezoelectric thin films can be integrated into a 

MEMS fabrication process, the piezoelectric coupling is greatly reduced. Therefore, 

the potential for integration with microelectronics is less than that for electrostatic 

micro-generators. Table 2.3 lists some reported piezoelectric generators with their 

main characteristics. 
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Table 2.3. Summary of piezoelectric generators. 

Reference f 
 (Hz)

Excitation 
level 

(m·s-2) 

Mass 
 (g) 

Volume 
(mm3) 

P 
 (µW)

Power 
Density 

(µW·mm-3) 
Material

White  
[37] (2001) 80 2.3 0.8 125 2.1 0.0168 

Screen 
printed 

PZT 
Roundy 

[13] (2003) 120 2.5 9.2 1000 375 0.375 PZT 

Lu  
[38] (2004) 7000 N/A N/A N/A 1600 N/A PZT-

PIC255 
Jeon  

[39] (2005) 13.9 106 N/A 0.027a 1 37.04 PZT 

Fang  
[40] (2006) 608 9.8 0.0016a 0.6a 2.16 3.6 PZT 

Marzencki 
[41] (2007) 1500 3.92 0.0009a 5 0.03 0.006 AlN 

Jeong 
 [42] (2008) 120 0.98 N/A N/A 500 22 PMNZT 

Kok 
 [43] (2008) 230 9.8 N/A N/A 0.27 N/A PZT 
a Extrapolated from data in reference 

 

2.2.4 Other Transduction Mechanisms 
Magnetostrictive materials are also used to extract electrical energy from ambient 

vibration. These materials deform when placed in a magnetic field and it can induce 

changes in magnetic field when it is strained. Magnetostrictive materials are generally 

used in piezoelectric-magnetostrictive composites. Such composites were originally 

used in magnetic field sensors and have recently been adopted in energy harvesting  

 

Huang et al [44] reported two energy harvesting devices based on a Terfenol-D/PZT/ 

Terfenol-D composite. Their device produced 1.2mW of power when excited at 5m·s-2 

at 30Hz. Recently, Wang et al [45] reported a new vibration energy harvester based on 

magnetostrictive material, Metglas 2605SC with electromagnetic pickup. 

Experimentally, the maximum output power and power density on the load resistor 

can reach 200µW and 900µW·cm-3, respectively, at a low frequency of 58Hz. For a 

working prototype under a vibration with resonance frequency of 1.1kHz and peak 

acceleration of 8.06m·s-2, the average power and power density during charging the 

ultracapacitor can achieve 576µW and 606µW·cm-3, respectively, 
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2.2.5 Comparisons of Transduction Mechanisms 
The main advantages and disadvantages of each type of transduction mechanism are 

summarized in Table 2.4. 

 

Table 2.4. Comparisons of different transduction mechanisms of vibration-based    

                   micro-generators. 

Type Advantages Disadvantages 

Electromagnetic 

♦ No external voltage source 

♦ No mechanical constraints 

needed 

♦ High output current 

♦ Difficult to integrate with MEMS 

    fabrication process 

♦ Poor performance in micro scale 

♦ Low output voltage 

Electrostatic 

♦ Easy to integrate with MEMS 

    fabrication process 

♦ High output voltage 

♦ Mechanical constraints needed 

♦ External voltage source or      

   pre-charged electret needed 

♦ Low output current 

Piezoelectric 

♦ Simple structure 

♦  No external voltage source 

♦ Compatible with MEMS 

♦ High output voltage 

♦ No mechanical constraints  

Needed 

♦ Thin films have poor coupling 

♦ Poor mechanical properties 

♦ High output impedance 

♦ Charge leakage 

♦ Low output current 

Magnetostrictive 
♦ Ultra-high coupling coefficient 

♦ High flexibility 

♦ Nonlinear effect 

♦ May need bias magnets 

♦ Difficult to integrate with MEMS

    fabrication process 

 

Since electrostatic and piezoelectric transducers are compatible with MEMS, they are 

more suitable to be deployed in micro or nano-scale systems while electromagnetic 

and magnetostrictive transducers are suitable for macro-scale systems. Roundy et al 

[46] calculated the theoretical maximum energy density of the first three transducers. 

It was concluded that piezoelectric and electromagnetic transducers have similar 

energy density which is about ten times of that of electrostatic transducers.  
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Table 2.5 lists some commercially available vibration-based micro-generators. To the 

date, only generators with electromagnetic and piezoelectric transducers can be found 

on the market, which indicates that these two transducers are more feasible in practice. 

This consideration agrees with Roundy’s calculation.  

 

Table 2.5. Summary of vibration-based micro-generators available on the market. 

Model f 
(Hz) 

Excitation
level 

(m·s-2) 

Total 
Mass 

(g) 
Volume (mm3) P 

(mW) Transducer

Mide Technology Corporation 
Volture 

PEH20w 
[47] 

80-175a 13.7 85.14 39963 (Total device) 
388.55 (Piezo wafer) 2-24 PZ 

Volture 
PEH25w 

[48] 
50-140a 13.7 85.14 40543 (Total device) 

194.27 (Piezo wafer) 2.5-24 PZ 

Perpetuum Ltd 
PMG-17 

[49] 100/120 9.8 655 522682 (Total device) 45 EM 

PMG-27 
[50] 17.2 0.49 400 467711 (Total device) 4 EM 

a Tunable by changing the length of the cantilever manually 

PZ: Piezoeletric EM: Electromagnetic. 

 

2.3 Analysis of Vibration-based Micro- 

 generators 
Vibration-based micro-generators, as a new source of energy, have received 

increasing levels of attention in the last decade. Since vibration can be found almost 

anywhere that WSN may potentially be deployed, electrical energy converted from 

mechanical energy in ambient vibrations is often an attractive approach for powering 

wireless sensors. Extracting energy from vibration requires a transduction mechanism 

to generate electrical energy from motion as mentioned earlier in this chapter. 

Vibration energy is best suitable for inertial generators with the mechanical 

component attached to an inertial frame which acts as the fixed reference. The inertial 

frame transmits the vibrations to a suspended inertial mass producing a relative 

displacement between them or change in mechanical strain. Therefore, the majority of 

generators are based upon a spring-mass system with a characteristic resonant 
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frequency.  

 

The generic model of vibration-based micro-generators was first developed by 

Williams and Yates [51]. This model has been experimentally found to represent the 

vibration-based micro-generators accurately, especially electromagnetic generators. 

Details of this model will be given in Appendix A. Some key characterizations of this 

model regarding to this research and some more derivations are presented in this 

section. 

 

2.3.1 Output Power of Electromagnetic Micro-generators 
The average power dissipated within the damper, i.e. the sum of the power generated 

by the electromagnetic transducer and the power wasted in the parasitic damping, is as 

follows [51]: 
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where m is the mass, ζT is the total damping, Y is the tip displacement of the mass and 

ωr is the resonant frequency.  

 

When the generator is at resonance, i.e. ω = ωr, the power dissipation reaches 

maximum. The maximum dissipated power is: 
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where ζe and ζm are electrical damping and mechanical damping, respectively. 

 

The power dissipation is the sum of maximum electrical energy extracted by the 

transduction mechanism, Pe, and mechanical loss, Pm. Pe and Pm are as follows: 
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Maximum power conversion from mechanical domain to electrical domain occurs 

when ζe = ζm, i.e. damping arising from the electrical domain equals to mechanical 

losses. Therefore, the maximum electrical power that can be extracted by the micro-

generator, Pe, is given by: 
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Since the peak acceleration of the base, a, is given by a = Yω2, Equation (2.15) can be 

rewritten as: 
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As the open circuit Q-factor, 
m

OCQ
ζ2
1

= , Equation (2.16) can be written as: 
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The power delivered to the resistive load, PL, is a function of the coil and load 

resistance, which is given by: 
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It is found via Equation (2.18) and (2.19) that the maximum power delivered to the 

electrical domain is inversely proportional to damping factor, i.e. proportional to the 

Q-factor. Hence, when designing a vibration-based micro-generator to achieve 

maximum power output, it is important to design the generator to have a high Q-

factor (i.e. low damping factor) and that the generator is excited at its resonant 

frequency. Figure 2.7 shows an example of the power spectrum of a vibration-based 

micro-generator of resonant frequency 50Hz with various Q-factors and damping 

factors. It can be seen that, for generators with a high Q-factor (i.e. low damping 

factor), the output power drops significantly if the frequency of operation is away 

from the generator’s resonance. When the Q-factor is lower (i.e. damping factor is 

higher), the peak output power decreases while the bandwidth of the generator 

increases and the devices becomes less sensitive to frequency shifts at the expense of 

lower maximum generated power. 

 

 
Figure 2.7. Power spectrum of a generator with various Q-factors. 
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2.3.2 Optimum Resistive Load 
When load resistance is much larger than coil resistance, almost 100% of the 

extracted electrical power is delivered to the load. Increasing the load resistance 

results in a decrease in electrically induced damping, which also increases the output 

voltage. However, the output power does not always increase with the increase of the 

load resistance. If the resistive load is selected properly, maximum generated power as 

well as the most efficient power transfer to the load can be achieved at the same time. 

 

For electromagnetic generator, the electrically induced damping factor, ζe, is: 
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where Κ is the electromagnetic coupling factor as defined in Section 2.2.1.  

   

 Substituting Equation (2.20) into Equation (2.13) and considering a = Yω2 give 

another expression of maximum electrical energy extracted by the transduction 

mechanism as follows: 
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Therefore, the power delivered to the resistive load is given by: 
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Figure 2.8 shows an example of electrical power delivered to the load resistor versus 

load resistance. The maximum power delivered to the resistive load occurs at an 

optimum load resistance.  
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Figure 2.8. Electrical power delivered to the load resistor vs. load resistance. 

 

The maximum power delivered to the resistive load, the optimum load resistance and 

the transfer efficiency depends on the mechanical damping factor. When the 

mechanical damping factor is zero, the output power is totally dependent on the 

electrical loads. 

 

2.4 Limitation of Vibration-based Generators 
The mathematical analysis described in Section 2.3 shows that maximum power is 

generated when the resonant frequency of the generator matches the frequency of the 

ambient vibration. As generators are usually designed to have a high Q-factor for 

better performance, the generated power drops dramatically if these two frequencies 

don’t match. Most reported generators are designed to work only at one particular 

frequency [1]. For applications such as moving vehicles, human movement and wind 

induced vibration where the frequency of ambient vibration changes periodically, the 

efficiency of generators with one fixed resonant frequency is significantly reduced 

since the generator will not always be at resonance. This limitation must be overcome 

if vibration-based micro-generators are to be widely applicable in powering wireless 

systems. Solutions to this problem include tuning the resonant frequency of the micro-

generator as well as widening the bandwidth of the generators. Details of both 

solutions will be presented in the next chapter.  
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2.5 Conclusions 
Several power supply strategies for wireless sensor networks have been introduced in 

this chapter. Attention has been paid especially to vibration-based micro-generators.  

A particular transduction mechanism is used to extract electrical energy from motion.  

The main transduction mechanisms are electromagnetic, electrostatic, piezoelectric 

and magnetostrictive.  

 

Equation (2.10) gives a good guideline in designing vibration-based micro-generators. 

It is found that the maximum power converted from the mechanical domain to the 

electrical domain is proportional to the mass and vibration acceleration and inversely 

proportional to resonant frequency as well as mechanical (electrical) damping factor. 

This means that more power can be extracted if the inertial mass is increased or the 

generator can work in the environment where the vibration level is high. For a fixed 

resonant frequency, the generator has to be designed to make the mechanical damping 

as small as possible. For a generator with constant mechanical damping, the generated 

electrical power drops with an increase of the resonant frequency.  

 

Furthermore, if the micro-generator is connected to the optimum resistive load, both 

maximum power extracted by the transduction mechanism and the most efficient 

power delivery from generator to resistive load can be realized. The maximum power 

delivered to the resistive load, the optimum load resistance as well as the transfer 

efficiency depends on the mechanical damping factor. If the mechanical damping 

factor is zero, i.e. no mechanical damping, the output power is totally dependent on 

the electrical loads. Therefore, it is highly important to minimize the mechanical 

damping in designing the micro-generator. 

 

A limitation of the vibration-based micro-generators is their narrow operating 

frequency range. Solutions to this problem include tuning the resonant frequency of 

the micro-generator and widening the bandwidth of the generator. Details will be 

given in Chapter 3. 
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Chapter 3 
 

 

Strategies for Increasing the 

Operating Frequency Range of 

Vibration-based Micro-generators 

 

 
3.1 Introduction 
Mathematical analysis presented in Chapter 2 showed that maximum power is 

generated when the resonant frequency of the generator matches the frequency of the 

ambient vibration. As generators are usually designed to have a high Q-factor for 

better performance, the generated power drops dramatically if these two frequencies 

don’t match. Most reported generators are designed to work only at one particular 

frequency [1]. For applications such as moving vehicles, human movement and wind 

induced vibration where the frequency of ambient vibration changes periodically the 

efficiency of generators with one fixed resonant frequency is significantly reduced 
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since the generator will not always be at resonance. This limitation must be overcome 

if vibration-based micro-generators are to be widely applicable in powering wireless 

systems. To date, there are, in general, two approaches to solving this problem.  

 

The first is to adjust, or tune, the resonant frequency of a single generator so that it 

matches the frequency of the ambient vibration at all times. This can be achieved by 

changing the mechanical characteristics of the structure or electrical load of the 

generator. Changing the mechanical characteristics of a generator has previously been 

called passive or active tuning depending on the approach [52]. Passive tuning is 

defined as a tuning mechanism that operates periodically. This approach only 

consumes power during the tuning operation and uses negligible energy once the 

generator is matched to the frequency of the ambient vibrations. Active tuning is 

defined as a tuning mechanism that is continuously applied even if the resonant 

frequency equals the ambient vibration frequency.  Since both of these approaches 

involve some form of active process, a more precise classification scheme defining 

tuning mechanisms as either intermittent (previously called passive) or continuous 

(previously called active) is used throughout this thesis. 

 

The second approach is to widen the bandwidth of the generator. This can be achieved 

by, for example, employing:  

♦ An array of structures each with a different resonant frequency;  

♦ An amplitude limiter;  

♦ Non-linear (e.g. magnetic) springs;  

♦ Bi-stable structures;  

♦ A large inertial mass (large device size) with a high degree of damping. 

 

This chapter reviews vibration powered generators that demonstrate these approaches 

as well as those reported frequency tuning strategies for other resonant devices that 

are potentially applicable for tuning vibration-based micro-generators. The following 

Section describes the theory behind tuning strategies, compares the power 

consumption for continuous and intermittent tuning mechanisms and suggests criteria 

for evaluating tuning mechanisms. Section 3.3 introduces the potential mechanical 

parameters that can be adjusted to achieve frequency tuning and reviews the 
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approaches presented in the literature to date. Section 3.4 discusses the theory of 

electrical tuning for piezoelectric generators and presents example devices. Section 

3.5 contains examples of wide bandwidth generators that demonstrate the principles 

introduced above. Section 3.6 gives a tabulated summary of devices presented to date 

categorised into three approaches: continuous tuning, intermittent tuning and 

generator arrays. Section 3.7 compares tuning strategies and presents theoretical 

power output versus frequency graphs for a large size wide bandwidth device, a 

generator array and a single tunable generator. This analysis considers four scenarios 

enabling a broad comparison between approaches. 

 

3.2 Strategies to Tune Resonant Frequency  
3.2.1 Intermittent versus Continuous Tuning 
As described in the introduction of this chapter, continuous tuning is applied 

constantly to the generator and therefore consumes more energy than intermittent 

tuning. It was concluded by Roundy [52] that generators using a continuous tuning 

mechanism can never produce a net increase in power output as the power required to 

tune the resonant frequency will always exceed the increase in output power resulting 

from the frequency tuning. However, the derivation presented was not correct as is 

shown below in Equations (3.11) to (3.15). For clarity, the derivation in [52] is 

reproduced here in Equations (3.1) to (3.10). 

 

The analysis covers resonant frequency tuning achieved by providing an additional 

force proportional to the generator’s displacement (i.e. altering stiffness) or 

acceleration (i.e. altering mass) using a tuning actuator [52]. 

  

The power required by the tuning actuator, Pa(t), is: 
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where ka is the actuator stiffness, z(t) is the displacement of the proof mass and ma is 

the mass of the actuator. The untuned resonant frequency, ω1, and the new resonant 

frequency, ω2, are given by: 
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The actuator stiffness, ka, can be represented as: 
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Hence, Equation (3.1) can be written as: 
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As the maximum displacement of the proof mass, Z, can be expressed as: 
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where a is the excitation acceleration and ζΤ is the total damping factor, the magnitude 

of the power needed for actuation becomes: 
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There will be a net increase in power output only if the power generated at the new 

frequency, ω2, after deducting the actuation power (Pout2(ω2)) is larger than the power 

output without tuning at ω2 (Pout1(ω2)), (shown in Figure 3.1) i.e. the following 

inequality is true. 

 

( ) ( )2122 ωω outaout PPP ≥−                                    (3.8) 
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Figure 3.1. Power spectrum of untuned and tuned generator. 

 

Pout2(ω2) is the maximum power the generator outputs at the new resonance given by: 
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Pout1(ω2) is the output power at ω2 when the generator has the original resonant 

frequency, ω1, given by: 
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where r = ω2 /ω1. 

  

Hence, it was found in [52] that, based on Equations (3.7), (3.9) and (3.10), inequality 

(3.8) will never be true, which drew the conclusion that a net increase in power output 

can never be produced using an active tuning mechanism. This is the end of the 

derivation in [52].  

 

However, the average power of a time-varying signal within a period, T, cannot 

simply be represented by its maximum value as was stated in Equation (3.7). It is 

given by: 
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The displacement of the proof mass in single degree of freedom second order spring-

mass systems, z(t), is given by [53]: 
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The power available within the generator is: 
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Substituting Equation (3.12) into Equation (3.13) leads to the time-varying expression 

of power available within the generator as: 
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Using Equation (3.11), the expression of power available within the generator can be 

derived in the same way as Equation (2.10).  

 

Based on Roundy’s equations, substitution of Equation (3.5) into Equation (3.11) 

leads to the average power of the actuation as:  
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In practice, actuation power can never be zero if the tuning mechanism is activated. 

Roundy et al used the maximum power rather than the average power of actuation in 

their derivation and drew the conclusion that the active tuning can never produce a net 

increase of output power. In addition, only the situation where the tuning force is 

proportional to the generator’s displacement or acceleration was studied in [52]. For 

most cases, tuning force is not linked to the generator’s movement and methods of 

calculating actuation power may vary according to the way in which tuning force is 

applied. Therefore, the analysis in [52] does not apply to all situations.  

 

However, it is apparent that intermittent tuning has an advantage over a continuous 

tuning mechanism because it is switched off once the device is at resonance and 

therefore consumes less energy than continuous mechanisms.  

 

3.2.2 Evaluating Tuning Approaches 
The suitability of different tuning approaches will depend upon the application but in 

general terms the key factors for evaluating a tuning mechanism for adjusting the 

resonant frequency of vibration-based micro-generators are: 

♦ The energy consumed by the tuning mechanism should be as small as possible 

and must not exceed the energy produced by the generator; 

♦ The mechanism should achieve a sufficient operational frequency range; 

♦ The tuning mechanism should achieve a suitable degree of frequency 

resolution; 

♦ The generator should have as high as possible Q-factor to achieve maximum 

power output and the strategy applied should not increase the damping, i.e. 

decrease Q-factor, over the entire operational frequency range. 

 

A generator’s resonant frequency can be tuned by both mechanical and electrical 

methods. Mechanical tuning alters the resonant frequency by changing the mechanical 

properties of the structure. Electrical tuning alters the resonant frequency by adjusting 

the electrical load. The principles of both methods as well as existing approaches to 
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realize them are described in the following Sections.  

 

3.3 Mechanical Tuning Methods 
As most reported vibration energy harvesting devices are based on a cantilever [1], 

this structure will be used in the following theoretical analyses of mechanical tuning. 

The principles demonstrated are, however, generally applicable to all mechanical 

resonator structures. This Section covers mechanisms that achieve tuning by: 

♦ Changing dimensions; 

♦ Moving the centre of gravity of proof mass; 

♦ Variable spring stiffness; 

♦ Straining the structure. 

 

A comprehensive review of each mechanical tuning mechanism reported in the 

literature to date is presented after a brief analysis of the theory.  

 

The resonant frequency of a spring-mass structure is given by:  

 

m
kfr π2

1
=                                                        (3.16) 

 

where k is the spring constant and m is the inertial mass. When tuning the resonant 

frequency of the generator, one can change either the spring constant or the mass.  

 

 
Figure 3.2. Cantilever with mass. 

 

The spring constant of a resonator depends on its materials and dimensions. For a 

cantilever with a mass at the free end (Figure 3.2), the resonant frequency is given by 

[54]: 
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where Y is Young’s modulus of the cantilever material, w, h and l are the width, 

thickness and length of the cantilever, respectively and mc is the mass of the cantilever. 

The resonant frequency can be tuned by adjusting all these parameters. Each 

parameter in Equation (3.17) is discussed in the following Sections.  

 

In addition, it is important to mention that if actuators are involved in changing the 

mechanical properties of the resonant structure, the tuning mechanisms can be 

operated by a control system to automatically tune the generator. 

  

3.3.1 Changing Dimensions 
In practice, it is difficult to change the width, w, and thickness, h, of a cantilever while 

changing the length, l, is feasible. Furthermore, modifying l is suitable for intermittent 

tuning. The approach requires that the cantilever base clamp be released and re-

clamped in a new location along the length of the beam thereby changing the effective 

length (and hence frequency). There is no power required to maintain the new 

resonant frequency. Furthermore, as the resonant frequency is inversely proportional 

to l3/2 thus modifying l can significantly change fr.  

 

Suppose l is the original length of the cantilever and l’ is the modified length of the 

cantilever, l’ = l + ∆, where ∆ is the difference between them. The mass of cantilever 

is then changed to mc’ = whl’ρ, where ρ is the density of the cantilever material while 

the original mass of cantilever is mc = whlρ. Then, the new resonant frequency 

becomes: 
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And the ratio of the tuned frequency to the original frequency called the normalised 

resonant frequency is: 
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Figure 3.3 shows the normalized resonant frequency with the variation of cantilever 

length where a negative ∆/l means the new cantilever beam is shorter than its original 

length and thus has a higher resonant frequency. A positive ∆/l means the cantilever 

beam has been lengthened giving a lower resonant frequency. Figure 3.3 shows it is 

more effective to tune the resonant frequency by shortening the cantilever beam. 

 

 
Figure 3.3. Normalized resonant frequency with variation of cantilever lengths. 

 

An example of this approach is described in a patent by Gieras et al [55]. Figure 3.4 

shows the side view of the proposed device. The electromagnetic generator consists of 

a cantilever with a set of magnets fixed to its free end. The cantilever is clamped to a 

base using screws. A coil is placed between the magnets to pick up output power. A 

slider is connected to a linear actuator which moves the slider back and forth to adjust 

the effective length of the cantilever, L and hence the resonant frequency of the 

generator.  
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Figure 3.4. Side view of a proposed self-adjustable energy harvesting system. 

 

3.3.2 Moving Centre of Gravity of Proof Mass 
It is difficult to add or remove mass after a generator has been fabricated. However, 

the resonant frequency of a cantilever structure can be adjusted by moving the centre 

of gravity of the inertial mass. Figure 3.5 shows the side view of a cantilever with a 

mass on the free end. 

 

 
Figure 3.5. Side view of a cantilever structure. 

 

The length of the cantilever without the mass is l and the proof mass on its free end is 

m. The centre of gravity of the proof mass is located at c and the distance between c 

and the end of the cantilever is x. The tuned resonant frequency of this structure can 

be approximated as [56]: 
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where w and h are the width and thickness of the cantilever, respectively and 
l
xr = .  

 

The resonant frequency of such a generator, considering that the mass of the 

cantilever beam is negligible compared to the proof mass, Equation (3.17) can be 
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rewritten as: 
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Hence, the ratio of the tuned frequency to the original frequency is 
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Figure 3.6 shows the normalized resonant frequency with variation of the position of 

the centre of gravity of the proof mass. The further the centre of gravity of the proof 

mass is from the end of the cantilever, the lower the resonant frequency. 

 

 
Figure 3.6. Normalized resonant frequency with variation of centre of gravity 

positions. 

 

Wu et al [57] reported a piezoelectric generator using this principle as shown in 

Figure 3.7. The proof mass of this device consisted of two parts: a fixed mass was 

attached to the cantilever and the other part was a movable screw. The position of the 

centre of gravity of the proof mass could be adjusted by changing the position of the 

movable screw. A fastening stud was used to fix the screw when tuning was finished.  

The size of the fixed mass is 10mm × 12mm × 38mm and the movable mass is an M6 
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screw of length of 30mm. The resonant frequency of the device was tuned from 

180Hz to 130Hz by moving the screw from one end to the other end (Figure 3.8). The 

output voltage dropped with increasing resonant frequency. 

 

 
Figure 3.7. Picture of the piezoelectric cantilever prototype with movable mass [56]. 

 

 
Figure 3.8. Experimental result of frequency adjustment [57]. 

 

This approach is suitable for fine frequency tuning of the generator before installation 

if the vibration frequency in the working environment is not time-varying.  

 

3.3.3 Variable Spring Stiffness  
One commonly used method is to soften the spring stiffness. The principle is to apply 

a ‘negative’ spring in parallel to the mechanical spring. Therefore, the effective spring 

constant of such device, keff, becomes: 

 

ameff kkk +=                                              (3.23) 
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where km is the mechanical spring constant and ka is an additional ‘negative’ spring 

stiffness (Figure 3.9). The modified frequency becomes:  
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Figure 3.9. Model of devices with softened spring stiffness. 

 

The negative spring ka can be applied electrostatically, piezoelectrically, magnetically 

or thermally. Examples of these approaches are described below. Most of these 

examples are tunable resonators and not energy harvesters but the principles are 

identical. It is important to note, however, that the additional inertial mass present in 

an energy harvester (as opposed to the purely resonant structures) will reduce the 

tuning effectiveness and increase the power required to tune compared to the values 

quoted. It should also be noted that the following variable spring stiffness devices are 

all continuously operated except the one on which the negative spring is applied 

magnetically. 

 

3.3.3.1 Electrostatic 

Scheibner [58,59] reported a vibration detector consisting of an array of eight comb 

resonators each with a different base resonant frequency. A single resonator is shown 

in Figure 3.10. Each resonator comb is tuned by electrostatically softening the 

structure by applying a tuning voltage to the electrodes marked ‘VTun’. The device was 

designed so that the resonator array had overlapping tuning ranges which allowed 

continuous measurements in the frequency range of the device from 1kHz to 10kHz. 

Figure 3.11 shows the tuning range of each resonator. The tuning voltage varied from 

0V to 35V. The total size of the sensor chip is 7mm × 10mm.  
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Figure 3.10. Resonance tuning by electrostatic-softening [59]. 

 

 
Figure 3.11. Resonance tuning of the array [59]. 

 

Adam [60] realized a tuning range from 7.7% to 146% of the central frequency of 

25kHz of a resonator with a single comb structure (Figure 3.12). The driving voltage 

ranged from 0V to 50V (Figure 3.13).  The total size was not mentioned in the paper 

but is estimated from the SEM scale to be no larger than 500µm × 500µm.  

 

 
Figure 3.12. Schematic diagram of a single comb structure (after [60]). 
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Figure 3.13. Resonance tuning of a single comb structure [60]. 

 

Lee et al [61] presented a frequency tunable comb resonator with curved comb fingers 

(Figure 3.14). Fingers of the tuning comb were designed to be curved shape to 

generate a constant electrostatic stiffness or linear electrostatic force that is 

independent of the displacement of the resonator under a control voltage. 

Experimentally, the resonant frequency of a laterally driven comb resonator with 186 

pairs of curved contour fingers was reduced by 55% from the initial frequency of 19 

kHz under a bias voltage of 150V (Figure 3.15). The corresponding effective stiffness 

was decreased by 80% from the initial value of 2.64N/m. The total size of the 

resonator is 460µm × 840µm. It was concluded that the closed-form approach of the 

comb-finger profile can be applied to other comb shaped actuators for frequency 

control whilst achieving linear electrostatic stiffness with respect to displacement.  

 

 
Figure 3.14. Schematic diagram of a comb resonator with curved tuning fingers (after 

[61]). 
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Figure 3.15. Resonance tuning of a comb resonator with curved tuning fingers [61]. 

 

Piazza et al [62] developed a micromachined, piezoelectrically actuated and sensed, 

high-Q single-crystal silicon (SCS) resonator with voltage-tunable centre frequency 

(Figure 3.16). Piezoelectric transduction was integrated with capacitive fine-tuning of 

the resonator centre frequency to compensate for any process variations. The resonant 

frequency could be tuned by 6kHz based on an untuned resonant frequency of 

719kHz by applying an electrostatic force beneath the cantilever (Figure 3.17). The 

driving voltage varied from 0 to 20V.  The dimensions of this resonator are 200µm × 

20µm × 4.2µm.  

 

 
Figure 3.16. Voltage-tunable, piezoelectrically-transduced SCS resonators: Q-

enhanced configuration (after [62]). 

 



Chapter 3 Strategies for Increasing the Operating Bandwidth of Vibration-based Micro-generators  41                                    

 

 

 
Figure 3.17. Electrostatic fine-tuning characteristic for a 719kHz piezo-resonator [62]. 

 

Yao et al [63] compared frequency tuning by applying either axial force (discussed 

further in Section 3.4) or transverse force on the resonator electrostatically as shown 

in Figure 3.18. Frequency tuning by applying transverse force was tested 

experimentally. It was found that the resonant frequency may increase or decrease 

with the applied tuning voltage depending on where the tuning electrode is placed 

with respect to the excitation electrode and the resonating rod. When the tuning 

electrode was placed on the same side of the excitation electrode as indicated in 

Figure 3.18(b), the resonant frequency decreased with the increase of applied voltage. 

When the tuning electrode was placed on the opposite side of the excitation electrode 

as indicated in Figure 3.18(c), the resonant frequency increased with the increase of 

applied voltage.  

 

 A micromachined resonator having an out-of-plane natural resonant frequency of 

0.96MHz and a Q-factor of 4370 had a linear tuning range (with respect to the 

transverse tuning force) of 60kHz with a maximum required DC tuning voltage of 

35V (Figure 3.19). Another resonator with untuned resonant frequency of 149.5kHz 

was tuned to 139.5kHz by applying a DC tuning voltage of 30V (Figure 3.20). The 

actual dimensions of these devices were not mentioned. The idea was later patented 

by Thiesen and O’Brian in 2006 [64]. 
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Figure 3.18. Schematic drawing of a simple resonator showing axial loading (a), and 

transverse loading with the excitation and the tuning electrode on the same side (b) 

and on the opposite side (c) of the resonating rod. [63] 

 

 
Figure 3.19. Measured resonant frequency vs. the tuning dc voltage with an untuned 

resonant frequency of 0.96MHz (tuning mechanism as in Figure 3.18b) [63]. 
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Figure 3.20. Measured resonant frequency vs. the tuning dc voltage with an untuned 

resonant frequency of 1495.5kHz (tuning mechanism as in Figure 3.18b) [63]. 

 

3.3.3.2 Piezoelectric 

Peters et al [65] reported a tunable resonator, shown in Figure 3.21a, potentially 

suitable as a resonator structure for vibration energy harvesting. The adjustment of the 

resonant frequency was provided by mechanical stiffening of the structure using 

piezoelectric actuators. A piezoelectric actuator was used because piezoelectric 

materials can generate large forces with low power consumption. Two actuators, one 

clamped and one free, are connected together. The free actuator can oscillate around 

the axis of rotation if a suitable excitation is applied to the clamp. The stiffness of the 

structure was increased by applying an electrical potential to both actuators which 

changes the shape of the structure as shown in Figure 3.21c. Thus, the natural 

frequency of the rotational mass-spring system increased. The tuning voltage was 

chosen to be ±5V leading to a measured resonance shift of ±15% around the initial 

resonant frequency of 78Hz, i.e. the tuning range was from 66Hz to 89Hz (Figure 

3.22).  
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Figure 3.21. (a) Schematic of the resonator (b) cross-Section without applied voltage 

and (c) with applied voltage [65]. 

 

 
Figure 3.22. Measured resonant frequency vs. applied tuning voltage [65]. 

 

3.3.3.3 Magnetic 

Challa et al [66] reported an intermittently tuned piezoelectric micro-generator, 50cm3 

in volume, with a frequency range of 22 to 32Hz based on an original resonant 

frequency of 26Hz. The tuning was realized by manually applying a magnetic force 

perpendicularly to the cantilever generator as shown in Figure 3.23. By varying the 

distance between the two sets of tuning magnets on the beam and the stationary 

magnets, the resonant frequency of the generator can be altered. The maximum tuning 

distance was 3cm. The proposed generator produced 240 to 280µW power at 0.8m⋅s-2 

acceleration but the tuning mechanism had the unwanted side effect of varying 

damping over the frequency range as shown in Figure 3.24. The device was made of 

discrete components. The dimension of the piezoelectric cantilever is 34mm × 20mm 

× 0.92mm and the effective mass is 45.8g. 
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Figure 3.23. Schematic of a tunable piezoelectric generator [66]. 

 

 
(a)                                                                 (b) 

Figure 3.24. Output power (a) and damping (b) vs. resonant frequency [66]. 

 

3.3.3.4 Thermal 

Remtema and Lin [67] used a resistive heater to generate a thermal stress on a 

straight-beam spring (Figure 3.25), which caused up to 6.5% frequency change based 

on a resonant frequency of 31kHz with a maximum temperature at 255°C. The power 

consumption during the process was 25mW. Figure 3.26 shows the percentage change 

of resonant frequency with variation of power consumed in tuning. The size of the 

device is estimated to be less than 500µm × 700µm from the author’s description. The 

thermal approach is unlikely to be practical for energy harvesting since it is inherently 

high power and is a continuous tuning mechanism. 
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Figure 3.25. Schematic diagram of a comb-shape micro resonator with a straight-

beam for active frequency tuning via localized stressing effects (after [67]). 

 

 
Figure 3.26. Measured frequency change vs. tuning power [67]. 

 

Syms et al [68] reported frequency tuning by applying constrained thermal expansion 

on a simple unfolded resonator (Figure 3.27). The tuning range was from -25% to 

+50% with power consumption from 1.5 to 10mW (Figure 3.28). The tuning 

sensitivity obtained with this tuning method was 33% per mW. It is estimated from 

the annotation in Figure 3.27 that the device is no larger than 3000µm × 3000µm.  
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Figure 3.27. Layout and connection of laterally resonant comb-drive actuator used for 

tuning experiments [68]. 

 

 
(a)                                                                    (b) 

Figure 3.28. Variation of resonant frequencies with tuning power (a) at different 

electrostatic drive voltage (b) gas pressure [68]. 

 

3.3.4 Straining the Structure 
The effective stiffness of the structure can be varied by applying a stress and therefore 

placing it under strain. The following theoretical analyses focus on straining a 

cantilever and a clamped-clamped beam. The resonant frequency of a cantilever 

structure can be tuned by applying an axial load. In vibration energy harvesting, most 

devices are based on cantilever structures especially the clamped-free (Figure 3.29) 

and clamped-clamped (Figure 3.30) cantilever. An axial tensile load applied to a 

cantilever (Figure 3.29a, 3.30a) increases the resonant frequency of the cantilever 

while an axial compressive load applied to a cantilever (Figure 3.29b, 3.30b) 

decreases the resonant frequency of the cantilever. 
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Figure 3.29. Axial tensile (a) and compressive (b) load on a clamped-free cantilever. 

 

 
Figure 3.30. Axial tensile (a) and compressive (b) load on a clamped-clamped beam. 

 

An approximate formula for the resonant frequency of a uniform cantilever in mode i 

with an axial load, fri’, is given by [69]: 

 

2
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Fff
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λ

⋅+⋅=                                             (3.25) 

 

where fri is the resonant frequency in mode i without load, F is the axial load and Fb is 

the axial load required to buckle the beam, i.e. to make the fundamental resonant 

frequency zero. F is positive for a tensile load and negative in the compressive case. 

Variable λi is a dimensionless load parameter which is a function of the beam 

boundary conditions applied to the cantilever for the ith mode of the beam. It is given 

by the ith positive solution of Equation (3.26) for a cantilever and of Equation (3.27) 

for a clamped-clamped beam [70]. 

  

01coshcos =+⋅ λλ                                              (3.26) 

01coshcos =−⋅ λλ                                              (3.27) 
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The majority of cantilever based micro-generators operate in the fundamental flexural 

mode (mode 1); the resonant frequency of a uniform cantilever in mode 1 with an 

axial load, fr1’, is given by: 

 

b
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Fff +⋅= 1' 11                                               (3.28) 

 

The ratio of the tuned frequency to the original frequency is: 
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The buckling load Fb of a cantilever and a clamped-clamped beam are given by 

Equations (3.30) and (3.31), respectively [71]: 
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where E is the Young’s modulus of the material of the cantilever and w, h and l are the 

width, thickness and length of the cantilever, respectively. 

 

Figure 3.31 shows the change in resonant frequency of a cantilever with axial load. It 

shows that a compressive load is more efficient in frequency tuning than a tensile load. 

If the compressive force is larger than the buckling load, the cantilever beam will 

buckle and no longer oscillate in mode 1. If a very large tensile force is axially 

applied to the cantilever, i.e. much greater than the buckling load, the resonant 

frequency will approach that of a straight tensioned cable as the force associated with 

the tension in the cantilever becomes much greater than the beam stiffness. 
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Figure 3.31. Normalized resonant frequency with variation of axial loads. 

 

The following Sections give examples of clamped-clamped beam and cantilever beam 

structures. 

 

3.3.4.1 Clamped-clamped Beam Structures 

Cabuz et al [72] realized resonant frequency tuning by an applying an axial force on a 

micromachined resonant beam electrostatically as shown in Figure 3.32. One end of 

the resonator was clamped on a fixed support while the other end was connected to a 

movable support. The moveable support could rotate around a torsion bar as a voltage 

was applied across two tuning electrodes. The torsion bar converted the vertical 

tuning motion into an axial force along the resonator. Upward rotation induces a 

compressive stress in the resonator while downward rotation induces a tensile stress. 

The tuning range was 16Hz based on a centre frequency of 518Hz (Figure 3.33) with 

driving voltage from 0 to 16V. The dimensions of the resonator are 1000µm × 200µm 

× 3µm and the dimensions of the movable support are 12.5mm2 × 0.3mm. This is an 

example of continuous tuning. 
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Figure 3.32. Structure for fine resonance frequency tuning at device level by an 

electrostatically induced axial force [72] 

 

 
Figure 3.33. Resonant frequency change vs. applied voltage [72]. 

 

Leland and Wright [73] successfully tuned the resonant frequency of a vibration-

based piezoelectric generator by manually applying an axial compressive preload 

directly on the cantilever using a micrometer (Figures 3.34 and 3.35). The tuning 

range was from 200 to 250Hz. This device generated 300 to 400µW of power at an 

acceleration of 9.8m⋅s-2. It was determined that a compressive axial preload could 

reduce the resonance frequency of a vibration energy scavenger by up to 24% but it 

also increased the total damping (Figure 3.36). The piezoelectric bimorph has 

dimensions of 31.7mm × 12.7mm × 0.509mm and the weight of the proof mass is 

7.1g. This is an example of intermittent tuning, but it is not automated and has to be 

done manually. 
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Figure 3.34. Schematic of a simply supported piezoelectric bimorph vibration energy 

scavenger [73]. 

 

 
Figure 3.35. Experimental apparatus [73]. 

 

 
Figure 3.36. Resonance frequency and damping vs. preload [73]. 

 

3.3.4.2 Cantilever Structures 

Mukherjee [74] patented the idea of applying axial force to a vibrating cantilever 

beam sensing element using electrostatic force. The resonator consisted of two sets of 

comb-like structures (Figure 3.37). The set closer to the anchor was used for sensing 
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while the other set was used for frequency tuning. The two tuning electrodes provided 

a voltage across the structure at the free end and the two electrodes which applied an 

axial tensile or compressive end load to the cantilever. The resonant frequency of the 

beam was approximately 15.5kHz. This is an example of continuous tuning which 

achieved a tuning range of -0.6% to 3.3% of its untuned resonant frequency, i.e. about 

600Hz. The cantilever buckled when 50VDC was applied to provide a compressive 

force. This is an example of continuous tuning. 

 

 
Figure 3.37. Resonator with actuator at the free end (after [74]). 

 

Hu et al [75] theoretically investigated an axial preloading technique to adjust the 

behaviour of a piezoelectric bimorph. Computational results show that resonance 

occurred when the natural frequency of the bimorph was adjusted to be adjacent to the 

external driving frequency by preloading. The mechanism for an axial preload to 

improve the bimorph performance at varying-frequency vibrations was examined in 

detail. A method for applying an axial preload to a piezoelectric bimorph was 

suggested and is shown in Figure 3.38. It comprises a mechanical bolt running 

through the central metal layer and fixed at the left-hand side edge wall. A capped 

stiff metal plate was attached to the bolt at the free end of the cantilever. A clockwise 

torsion of the bolt can produce a compressive preload to the bimorph, and conversely, 

an anticlockwise torsion of the bolt produces a force to pull the capping plate to move 

towards the right-hand side, which can generate a tensile preload to the bimorph. This 

is an example of manual intermittent tuning. 
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Figure 3.38. A method to apply axial preload to a piezoelectric bimorph [75]. 

 

This principle was demonstrated by Eichhorn et al [76]. Figure 3.39 shows a 

schematic diagram of the test device. The piezoelectric generator consisted of a piezo-

polymer-composite cantilever beam with arms on both sides to enable the application 

of an axial force to the free end of the beam. The arms were connected to the base 

with two wings. These wings were used to transmit the force to the arms, which in 

turn apply the load to the free end of the beam. The tuning force was applied by a 

screw and a steel spring. The axial load depends linearly on the deflection of the 

spring, which in turn was proportional to the number of revolutions of the screw. The 

spring pushes the whole generator base against two blocks of which the counter 

pressure generates the pre-stress in the arms and the stabilizing wings. The screw, 

spring and generator were all mounted on the same aluminium frame. This is another 

example of manual intermittent tuning. 

 

 
Figure 3.39. Schematic diagram of the test device [76]. 

 

In tests only a compressive load was applied. Figure 3.40 shows the test results of this 

generator under vibration level of 63.7m·s-2. It was found that with the increase of 

compressive load, the resonant frequency, output voltage and the Q-factor reduced. 
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By cutting notches on the wings the tuning efficiency was increased. With notches in 

the wings, a resonant frequency shift of more than 20% was achieved with a total 

force of 22.75N (Figure 3.41). The tuning range was from 290Hz to 380Hz with 

compressive load up to 22.75N. The dimensions of the cantilever are 20mm × 5mm × 

0.44mm and the overall width of the device including arms is 13mm. 

  

 
Figure 3.40. Test results under vibration of 63.7 m·s-2 [76]. 

 

 
Figure 3.41. Comparison of tuning efficiency of wings with and without notches [76]. 

 

Another method of applying axial load to a cantilever based micro-generator is 

reported by Zhu et al [77] who presented a tunable electromagnetic vibration-based 

micro-generator with closed loop frequency tuning. Frequency tuning was realized by 

applying an axial tensile magnetic force to the micro-generator. Details of this method 

will be presented in this thesis. 
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3.4 Electrical Tuning Methods 
All the frequency tuning methods mentioned above are based on mechanical methods. 

The following Sections describe methods to tune the resonant frequency of a 

vibration-based micro-generator electrically. 

 

3.4.1 Principle 
The basic principle of electrical tuning is to change the electrical damping by 

adjusting the load, which causes the power spectrum of the generator to shift. As 

resistive loads reduce the efficiency of power transfer and load inductances are 

difficult to be varied, it is most feasible to adjust capacitive loads to realize electrical 

tuning. Detailed models of electrical tuning for both piezoelectric and electromagnetic 

micro-generators will be given in Chapter 7. 

 

3.4.2 Examples of Electrically Tunable Micro-generators 
Charnegie [78] presented a piezoelectric micro-generator based on a bimorph 

structure and adjusted its load capacitance. Again, one piezoelectric layer was 

designed for energy harvesting while the other is used for frequency tuning (Figure 

3.42). 

 
Figure 3.42. Piezoelectric bimorph used for electrical frequency tuning. 

 

The test results showed that if only one layer was used for frequency tuning (Figure 

3.43a), the resonant frequency can be tuned an average of 4Hz with respect to the 

untuned frequency of 350Hz, i.e. 1.14% tuning by adjusting the load capacitance from 

0 to 10mF (Figure 3.44a). If both layers were used for frequency tuning (Figure 

3.43b), the tuning range was an average of 6.5Hz, i.e. 1.86% of tuning by adjusting 

the same amount of the load capacitance (Figure 3.45a). It was found that if one layer 

was used for tuning and the other for energy harvesting (Figure 3.43a), the output 
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power did not reduce with the increase of the load capacitance (Figure 3.44b). 

However, if both frequency tuning and energy harvesting were achieved using the 

same layer (Figure 3.43b), the output power decreased when the load capacitance 

became larger (Figure 3.45b).  

 
                                        (a)                                                                 (b) 

Figure 3.43. Frequency tuning and energy harvesting using (a) the same layer (b) 

different layer. 

 
(a)                                                                     (b) 

Figure 3.44. Resonant frequency (a) and output power (b) vs. load capacitance while 

tuning and energy harvesting in different layers [78]. 

 
(a)                                                                     (b) 

Figure 3.45. Resonant frequency (a) and output power (b) vs. load capacitance while 

tuning and energy harvesting in same layers [78]. 
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Wu et al [79] also used this method to tune the resonant frequency of a generator 

composed of a piezoelectric bimorph cantilever. The upper piezoelectric layer was 

used for frequency tuning while the lower layer was used for energy harvesting. The 

tunable bandwidth of this generator was 3Hz between 91.5Hz and 94.5Hz. The 

charging time of the generator was compared with and without the tuning system. 

Experimentally, it was found that, when the device was excited under random 

frequencies from 80Hz to 115Hz, the average harvesting output power of the 

generator with tuning was about 27.4% higher than that without tuning and the 

charging time was shortened by using tuning system. These results showed a 

significant improvement of average harvested power output by using an electrical 

tuning method.  

 

3.5 Strategies to Widen Bandwidth  
The other commonly used solution to increase the operational frequency range of a 

vibration energy harvesting generator is to widen the bandwidth. To date, strategies to 

widen the bandwidth include using a generator array consisting of small generators 

with different resonant frequencies, introducing an amplitude limiter to the device, 

employing non-linear and bi-stable structures and designing a large generator with a 

large inertial mass and high degree of damping. In this Section, details of generator 

array, amplitude limiter and nonlinear and bi-stable structures will be covered. The 

strategy of employing a single large generator will not be detailed as it can be simply 

described using Equation (2.10) while it will be considered in the comparison of 

different strategies later in this chapter. 

 

3.5.1 Generator Array 
In this method, the bandwidth is widened by designing a generator consisting of an 

array of small generators, each of which has different dimensions and mass and hence 

different resonant frequencies (Figure 3.46). Thus, the assembled generator has a wide 

operational frequency range whilst the Q-factor does not decrease. Figure 3.47 shows 

the power spectrum of a generator array which is a combination of the power spectra 

of each small generator. The frequency band of the generator is thus essentially 

increased.  The drawback of this approach is the added complexity of fabricating an 

array of generators and the increased total volume of the device depending upon the 
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number of devices in the array. Furthermore, only one small generator in the array 

works at a certain frequency, which is not volume efficient. 

 

 
Figure 3.46. A mechanical band-pass filter with a set of cantilever beams. 

 
Figure 3.47. Power spectrum of a generator array. 

 

Shahruz [80] developed a device which consisted of a set of cantilever beams with 

proof masses at their tips. The dimensions of each beam and mass were different and 

were chosen appropriately to make the whole device work as a band-pass filter. Each 

beam is an individual generator. Since these beams had different resonant frequencies, 

the filter could automatically ‘select’ one beam to resonate at one particular frequency 

based on the driving vibration frequency. A generator based on such a filter will work 

at various frequencies, i.e. effectively widening the operational frequency range. 

 

Xue et al [81] presented an approach for designing broadband piezoelectric harvesters 

by integrating multiple piezoelectric bimorphs with different aspect ratios into a 

system, primarily with different thicknesses of piezoelectric layers, h. Figure 3.48 

shows a schematic diagram of the array. 
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Figure 3.48. Schematic illustration of a piezoelectric bimorphs harvesting system [80]. 

 

The effect of connecting piezoelectric bimorphs in series and in parallel on improving 

energy harvesting performance was discussed. It was found that the bandwidth of a 

generator can be widened by connecting multiple piezoelectric bimorphs with 

different aspect ratios in series. In addition, the bandwidth of the generator can be 

shifted to the dominant frequency domain of the ambient vibrations by increasing or 

decreasing the number of piezoelectric bimorphs in parallel. Numerical results 

showed that the bandwidth of the piezoelectric energy harvesting devices can be 

tailored by the connection patterns (i.e., in series and in parallel) among piezoelectric 

bimorphs (Figure 3.49 and 3.50).  

 

 
Figure 3.49. Comparison of power spectrum for a single piezoelectric bimorph and 

ten piezoelectric bimorphs in series with various thicknesses of piezoelectric layer, h 

[81]. 
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Figure 3.50. Effect of piezoelectric bimorphs in parallel on harvester performance 

[81]. 

 

Feng et al [82] presented a micromachined piezoelectric generator with a wide 

vibration bandwidth. The device was designed to achieve an optimal Figure of Merit 

(FOM) which is defined as (Bandwidth)2 × (the maximum displacement of cantilever 

structures under a given acceleration under static conditions).  The dimensions of the 

generator are 3mm × 3mm × 5mm and it consisted of four cantilever structures 

connected in parallel, which were fabricated to achieve a flexible membrane with 

minimum residual stress capable of a large displacement. Each cantilever had 

different mass or centre of gravity and so a different resonant frequency (Figure 3.51). 

The designed generator was targeted at producing microwatts to milliwatts in a wide 

mechanical vibration range from 300 to 800Hz (Figure 3.52) but no test results were 

reported to date.  
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Figure 3.51. Conceptual diagram of the piezoelectric wide-bandwidth microgenerator 

[82]. 

 

 
Figure 3.52. Estimated power generation with the power range of µW to mW in a 

wide bandwidth [82]. 

 

A multifrequency piezoelectric generator intended for powering autonomous sensors 

from background vibrations was presented by Ferrari et al [83]. The generator 

consisted of multiple bimorph cantilevers with different natural frequencies of which 

the rectified outputs were fed to a single storage capacitor. A generator with three 

commercially available piezoelectric bimorph cantilevers was examined. Each 

cantilever has the same dimensions of 15mm × 1.5mm × 0.6mm and different masses, 

1.4g, 0.7g and 0.6g, respectively. The generator was used to power a battery-less 
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sensor module that intermittently read the signal from a passive sensor and sent the 

measurement information via RF transmission, forming an autonomous sensor system. 

It was found that the sensor module could be sufficiently powered, thereby triggering 

the transmission, even for an excitation frequency that was off resonance for all of the 

cantilevers. At resonance none of the cantilevers used alone was able to provide 

enough energy to operate the sensor module. Experimentally, it showed that a 

generator array operating with wideband frequency vibrations provides improved 

overall energy conversion over a single generator at the expense of larger volume. 

 

Sari et al [84] reported a micromachined electromagnetic generator with a wide 

bandwidth. The generator consists of a series of cantilevers with various lengths and 

hence resonant frequencies (Figure 3.53). These cantilevers are distributed in a 

12.5mm × 14mm area. The length of the cantilevers increased gradually so that the 

cantilevers have overlapping frequency spectra with the peak powers at similar but 

different frequencies. This resulted in a widened bandwidth as well as an increase in 

the overall output power. 

 

 
Figure 3.53. Photograph of a wide band electromagnetic generator [84]. 

 

The generator used an electromagnetic transducer to transduce power. A large magnet 

was fixed in the middle of the cantilever array and coils were fabricated by sputtering 

and patterning metal on top of the cantilevers. The coils moved with ambient 

vibration relative to the static magnet and the coils were connected in series. 

Experimentally, the device generated 0.5µW continuous power at 20mV voltage 

between 3.3 and 3.6kHz of ambient vibration. Figure 3.54 shows the power spectrum 

of this generator. 
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Figure 3.54. Power spectrum of Sari’s generator [84]. 

 

3.5.2 Amplitude Limiter 
Another method of increasing the bandwidth of a vibration-based micro-generator 

was reported by Soliman et al [85]. The bandwidth of the device was increased by 

using a mechanical stopper (amplitude limiter) to limit the amplitude of the resonator 

(Figure 3.55, 3.56). The theory behind this method is complex and details can be 

found in [85]. It was found that this method increases the bandwidth of the generator 

during an up-sweep, i.e. when the excitation frequency was gradually increased. The 

bandwidth remained the same in a down-sweep, i.e. when excitation frequency was 

gradually reduced. This phenomenon is caused mainly because of the non-linearity of 

the device, which will be discussed in Section 3.53. Experimental measurements 

showed that the up-sweep bandwidth was 240% wider than that of the architecture 

without a stopper at the half-power level but the maximum output voltage was 30% 

less (Figure 3.57). The dimensions of the cantilever are 45.3mm × 10mm × 1.02mm 

and the mass is extrapolated to be 2.92g. 

 

 
Figure 3.55. Top and side view of the device [85]. 
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Figure 3.56. Increase the bandwidth using a stopper [85]. 

 

 
Figure 3.57. Voltage on load vs. excitation frequency [85]. 

 

3.5.3 Non-linear Generators 
The theory of vibration energy harvesting using non-linear generators was 

investigated by Ramlan et al [86]. Instead of using conventional second order model 

as Equation (2.10), non-linear generators were modelled using Duffing’s Equation as 

follows: 

 

                   [ ] 2

2
3

2

2 )()()()()(
dt

tydmtzktkz
dt

tdzb
dt

tzdm n −=+++                    (3.32) 

 

where the spring force is the combination of linear force, kz(t) and non-linear force, 

kn[z(t)]3. Solving Equation (3.32) gives the frequency-amplitude relationship as: 
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where Ωa and Ωb are frequencies, α is proportional to the non-linear spring factor, kn,  

Z is the amplitude of the proof mass, ζ is the damping factor and a is the normalized 

excitation acceleration. 

 

Such devices have a hardening or softening spring which has the effect of shifting the 

resonant frequency upwards or downwards. Numerical and analytical studies showed 

that a device with a hardening spring has a larger bandwidth over which power can be 

harvested due to the shift in the resonance frequency. Their analysis also showed that 

the bandwidth of the hardening system depends on the damping ratio, the nonlinearity 

and the input acceleration (Figure 3.58). Ideally, the maximum amount of power 

harvested by a system with a hardening stiffness is the same as the maximum power 

harvested by a linear system, irrespective of the nonlinearity, although this possibly 

occurs at a different frequency depending on the nonlinearity. It should be pointed out 

that the output power and bandwidth of the non-linear generators depends on the 

direction of approach of the vibration frequency to the resonant frequency. For a hard 

non-linearity, this approach will only produce an improvement when approaching the 

device resonant frequency from a lower frequency. For a soft non-linearity, this 

approach will only produce an improvement when approaching the device resonant 

frequency from a higher frequency. It is unlikely that these conditions can be 

guaranteed in real application. 
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(a) Various damping ratio 

 

 
(b) Various non-linearity 
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(c) Various input acceleration 

Figure 3.58. Power spectrum of non-linear generators. 

 

Non-linear generators can be conveniently realized by using a magnetic spring instead 

of a conventional spring. Spreemann et al [87] reported a tunable electromagnetic 

vibration energy harvester with a magnetic spring, which combined a tuning 

mechanism with the non-linear structure. Instead of using a linear suspension, this 

device was implemented using a rotary suspension (Figure 3.59). The use of magnetic 

spring magnets resulted in a nonlinear restoring force. The nonlinear restoring force 

provides low resonance frequencies within a small generator volume and small 

changes in the spring magnet's position cause a significant change in the spring 

characteristic. As shown experimentally in Figure 3.60, the resonant frequency shifted 

by about 30Hz for a displacement of 1.5mm of each spring magnet. The maximum 

output decreased with the increase of the magnet spacing, i.e. as the resonant 

frequency decreased, which accords with the conclusion drawn from Equation (2.16). 

Also the bandwidth of the device increased as the space between magnets became 

smaller, i.e. non-linearity increased. This agrees with the analysis result shown in 

Figure 3.57. The generator has a volume of approximately 2.5cm3. 
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Figure 3.59. Half-Section of the device [87]. 

 

 
Figure 3.60. Measured output power [87]. 

 

In addition, the design and analysis of an energy harvesting device with magnetic 

restoring forces to levitate an oscillating centre magnet was presented by Mann et al 

[88]. Figure 3.61 shows the schematic diagram of the device. The device used two 

outer magnets that were mechanically attached to a threaded support. A centre magnet 

was placed between the two outer magnets and the magnetic poles were oriented to 

repel the centre magnet, thus suspending the centre magnet with a nonlinear restoring 

force. The nonlinearity allows the linear resonance to be tuned by simply changing the 

spacing between outer and centre magnets (Figure 3.62).  
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Figure 3.61. Schematic diagram of magnetically levitated generator [88]. 

 

 
Figure 3.62. Change in the linear resonances as a function of the magnet spacing [88]. 

 

The mathematical model for the energy harvesting device was derived by Mann et al 

and examined for the case of harmonic base excitation. It was found theoretically and 

experimentally that the response for both linear and nonlinear systems scales almost 

linearly within some regimes of excitation amplitudes (Figure 3.63a). However, once 

the nonlinearities have been sufficiently engaged, as shown in Figure 3.63b, the peak 

response of the nonlinear system no longer scales linearly and is relocated away from 

linear resonance. Thus, the ability to tune the restoring forces is an essential 

consideration for applications with a fixed frequency harmonic excitation so that the 

best performance can be obtained. Additionally, in the frequency response for the 

nonlinear system, relatively large amplitudes persist over a much larger range of 

frequencies, which could prove beneficial for applications with either fixed or varying 

excitation inputs. Furthermore, the maximum output power of such devices is 

delivered to the electrical load at a frequency away from linear resonance. 
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Figure 3.63. Experimental velocity response amplitudes from forward (dots) and 

reverse frequency sweeps (circles) are compared with theory. Theoretical predictions 

are separated into stable solutions (solid line) and unstable solutions (dashed line). (a) 

excitation level of  2.1m·s-2 (b) excitation level of 8.4m·s-2 [88]. 

 

Burrows et al [89, 90] reported another non-linear generator. It consisted of a linear 

spring with the non-linearity caused by the addition of magnetic reluctance forces. 

Figure 3.64 shows the schematic diagram of the non-linear generator. The flux 

concentrator guides the magnetic flux through the coil. The vibration of the magnets 

causes a change in direction of the magnetic flux, which induces a voltage across the 

coil. The reluctance force between the magnets and the flux concentrator resulted in 

the non-linearity. Theoretically, it was found that, for given displacement and mass, 

there is more energy stored in a non-linear system than a linear system as the force on 

the spring at a given peak displacement will be higher than in the linear case and the 

mass velocity will be higher when it passes zero displacement. In addition, the 

generator experimentally showed a wider bandwidth during an up-sweep, i.e. when 

the excitation frequency was gradually increased while the bandwidth was much 

narrower during a down-sweep, i.e. when the excitation frequency was gradually 

decreased.  
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Figure 3.64. Schematic diagram of a non-linear generator (after [90]). 

 

3.5.4 Bi-stable Structures for Vibration Energy Harvesting 
Ramlan et al [86] studied a bi-stable structure for energy harvesting (also termed the 

snap-through mechanism). These structures employ a negative stiffness which has the 

effect of steepening the displacement response of the resonator as a function of time 

resulting in a higher velocity for a given input excitation. Their analysis revealed that 

the amount of power harvested by a nonlinear device is 4/π greater than that of the 

tuned linear device provided the device produces a square wave output for a given 

sinusoidal input. Numerical results also showed that more power is harvested by the 

mechanism if the excitation frequency is much less than the generator’s resonant 

frequency. Although the bi-stable mechanism cannot produce a square wave like 

response under all operating conditions, it offers better performance than the linear 

mechanism at lower frequencies than the resonant frequency of the linear device. Bi-

stable devices also have the potential to cope with mismatch between resonant 

frequency and vibration frequency.  

 

Dogheche et al [91] have reported a piezoelectric Micro-machined Ultrasonic 

Transducer (pMUT) used as a mechanical to electrical energy scavenger. The 

resonator was a silicon membrane of which the thickness varied from 1 to 5µm and of 

four different diameters, 132, 200, 400 and 600µm. Different pMUT devices have 

been tested using a hand shaking excitation ranging from 4.9 to 19.6m·s-2. The 

experimental results showed that the pMUT device can generate power in both linear 

(elastic) and non-linear (bi-stable) mechanical behaviours.  

 

 



Chapter 3 Strategies for Increasing the Operating Bandwidth of Vibration-based Micro-generators  73                                    

 

 

3.6 Summary  
Tables 3.1 and 3.2 summarize continuous and intermittent tuning methods. The 

continuous tuning devices relate to resonator devices and have not yet been applied to 

vibration energy harvesting. The intermittent tuning summary table contains 

information from actual vibration energy harvesters. Table 3.3 summarizes generator 

arrays. 

 

Table 3.1. Summary of continuous tuning methods. 

Reference Untuned resonant 
frequency (Hz) 

Tuning range 

(Hz) 
Size Tuning voltage 

(V) 

Sensitivity

(Hz/V) 
Scheibner 

[59] Multiple 1 – 10k 7 × 10mm2 0 - 35 257 

Adams [60] 25 k 1.9 - 36.5k 500 × 10µm2 0 - 50 692 
Lee [61] 19 k 5.55 – 19k 460 × 840µm2 0 - 150 89.67 

Piazza [62] 719 k 713 – 716k 200 × 20 × 4.2µm3 0 - 20 300 
Yao [63] 960 k 900 – 960k N/A 0 - 35 1714 
Yao [63] 149.5 k 139.5 - 149.5k N/A 0 - 30 333 

Peters [64] 78 66 - 89 N/A -5 - +5 2.3 
Remtema [67] 31 k 31 – 33k 500 × 700µm2 0 – 25mW 80Hz/mW

Syms [68] N/A -25% - 50% 3000 × 5000µm2 1.5 - 10mW 8.8%/mW
Cabuz [72] 518 518 - 534 1000 × 200× 3µm3 0 - 16 1 
Mukherjee 

[74] 15.5 k 15.4 - 16 N/A 0 - 50 12 
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Table 3.2. Summary of intermittent tuning methods used in vibration energy harvesting. 

Reference 

Untuned 
resonant 

frequency 
(Hz) 

Tuning 
range 
(Hz) 

Mass 
(g) Size (mm3) 

Tuning 
force 

(N) 

Excitation 
level 

(m·s-2) 

Output 

power 

(µW) 

sensitivity 
Affect 

on 
damping

Wu [57] N/A 130 - 180 N/A 10 × 12 × 38 a N/A b 1.96 5 – 11Voc 1.67Hz/mm N/A 
Challa [66] 26 22 - 32 45.8 34 × 20 × 0.92 N/A c 0.8 240 – 280 0.33Hz/mm ↑ e 

Leland [73] 250 200 - 250 7.1 31.7 × 12.7 × 
0.509 0 - 60 9.8 300 – 400 0.83Hz/N ↑ e 

Eichhorn 
[76] 380 290 - 380 N/A 20 × 5 × 0.44 0 - 

22.75 63.7 3 - 4.5Voc 3.96Hz/N ↑ e 

Zhu [77] 45 67.6 - 98 N/A N/A N/A d 0.588 61.6 - 
156.6 8Hz/mm -- f 

a Size of the mass 
b Change in position of centre of gravity: 30mm 
c Tuning distance: 30mm 
d Tuning distance: 3.8mm 
e Damping increased with tuning mechanism 
f Damping stayed constant for most of the tuning range and increased when tuning force became 
large 
 

Table 3.3. Summary of generator array. 

Reference Tuning range (Hz) Number of 
cantilever Power level (µW) 

Xue [81] 92 - 110 10 > 30 a 
Feng [82] 300 - 800 4 > 2 a 
Sari [84] 3300 - 3600 40 > 0.5 

a Simulation results 

 

3.7 Comparisons of Different Strategies 
It has been proven theoretically and demonstrated experimentally that both tuning 

resonant frequency and widening the bandwidth of vibration-based micro-generators 

can increase their operational frequency range.  

 

To compare the performance of a single generator with a wide bandwidth, a generator 

array and a single tunable generator with constant damping, typical specifications of 

these three types of generators have been chosen. G1, G2 and G3, listed in Table 3.4, 

represent a single generator with a wide bandwidth, a generator array and a single 

tunable generator with constant damping, respectively. Figure 3.65 shows the 

comparison of power spectra of these three types of generator.  
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Table 3.4. List of specifications in Figure 3.65. 

Figure 
Operational 
frequency 

range 

Q-factor 
of G1 

Q-factor 
of G2 

Number of 
individual 

generator in 
G2, n 

Resonant frequencies 
of individual 

generators in G2 

Q-
factor 
of G3 

Mass ratio 
(G1:G2:G3) 

3.65a 94 % - 106 
% 10 100 9 91.5 % + n * 1.8 % 200 30:15:1 

3.65b 94 % - 106 
% 10 200 12 92.5 % + n * 1.2 % 200 30:10:1 

3.65c 55 % - 183 
% 1 10 31 47 % + n * 5 % 200 200:100:1 

3.65d 55 % - 183 
% 1 100 45 47 % + n * 3 % 200 200:90:1 

 

 
(a) Curve 1 and 3 are both single generators. Curve 2 consists of a generator array 

of 9 generators of Q-factor of 100. 

 

 
(b) Curve 1 and 3 are identical to Figure 3.65(a). Curve 2 now consists of a 

generator array of 12 generators of Q-factor of 200. 
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(c) For curve 1, the Q-factor has been reduced to 1. Curve 2 shows a generator 

array of 31 generators of Q-factor of 10. Curve 3 has the same Q-factor as in 

Figure 3.65(a) and (b) but with higher mass.  

 

 
(d) Curves 1 and 3 are identical to Figure 3.65(c). Curve 2 now consists of a 

generator array of 45 generators of Q-factor of 100. 

Figure 3.65. Comparison of a single generator with a wide bandwidth, a generator 

array and a single tunable generator with constant damping.  

 

When the Q-factor of a single generator decreases, its bandwidth increases. To 

generate the same output power level as those within the original bandwidth, a single 

generator has to be larger as the bandwidth increases.  

 

If a generator array is used to widen the operational frequency range, one can design a 

few larger individual generators with low Q-factor with large resonant frequency gap 

between generators or many smaller individual generators with high Q-factor but 
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small resonant frequency gap between generators. By contrast, it is much easier to 

design small tunable generators with constant damping to cover the same amount of 

operational frequency range at the cost of extra energy to power the frequency tuning 

mechanisms. 

 

Table 3.5 compares the advantages and disadvantage of different strategies to increase 

operational frequency range of vibration-based micro-generators. 

 

Table 3.5. Comparisons of different strategies. 

Strategies Advantages Disadvantages 

Mechanical tuning ● High efficiency 

○ Extra system and energy are 
required 

○ Responds to only one 
frequency at a time 

○ Slow response to change in 
vibration frequency 

  ♦ Change dimension ● Does not affect damping 

○ Difficult to implement 

○ Not suitable for tuning in 
situ1 

  ♦ Change centre of 
gravity ● Does not affect damping ○ Not suitable for tuning in 

situ 
  ♦ Change spring 
stiffness continuously ● Suitable for in situ tuning  ○ Consumes energy when  

generators work at resonance 

  ♦ Apply axial load     
(Change spring stiffness    
intermittently) 

● Easy to implement  

● Suitable for in situ tuning  

● No energy is required when  
generators work at resonance 

● Damping is not affected 
when tensile load is applied 

○ Increased damping when 
compressive load is applied 

Electrical tuning 

● Easy to implement  

● No energy is required when  
generators work at resonance 

● Suitable for in situ tuning  

○ Low efficiency 

  

                                                        
1 Tuning while the generator is mounted on the vibration source and working 
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Strategies Advantages Disadvantages 

Widen bandwidth 

● No tuning mechanism 
required 

● Respond to different 
frequencies at the same time 

● Immediate response to 
change in vibration frequency 

○ Complexity in design 

  ♦ Generator array ● Damping is not affected 
○ Complexity in design 

○ Low volume efficiency  

  ♦ Use mechanical 
stopper ● Easy to implement 

○ Fatigue problem 

○ Decrease in maximum 
output power 

  ♦ Non-linear generators 
● Better performance at 
excitation frequencies higher 
than resonant frequency 

○ Complexity in design 

○ Hysteresis 

  ♦ Bi-stable structure 
● Better performance at 
excitation frequencies much 
lower than resonant frequency

○ Complexity in design 

 

3.8 Conclusions 
As most practical applications for vibration-based micro-generators exhibit frequency 

variations over time, it is not possible to guarantee that fixed frequency generators 

will always work at resonance and produce maximum output power. Mechanisms 

have to be employed to increase the operational frequency range of vibration-based 

micro-generators. There are two possible solutions, i.e. tuning the resonant frequency 

of a single generator and widening the bandwidth of the generator. Practical 

realizations of each solution and their characteristics are summarized in this Section.  

 

3.8.1 Tuning the Resonant Frequency of a Single Generator 
The first solution, i.e. tuning the resonant frequency of a single generator, requires a 

certain mechanism to periodically adjust the resonant frequency so that it matches the 

frequency of ambient vibration at all times, maximum power can then be generated at 

various frequencies without reducing the Q-factor and with high efficiency per unit 

volume. Intermittent tuning has advantages over continuous tuning as it is more 

efficient because the tuning mechanism is turned off when the generator is at the right 
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frequency thereby consuming negligible energy, which makes producing a net output 

power more probable.  

 

Among mechanical methods of frequency tuning, changing the dimensions of the 

structure and the position of the centre of gravity are potentially suitable for 

intermittent tuning. However, they are less suitable for continuous tuning since it is 

problematic to change and maintain the new dimensions of the structure or the centre 

of gravity of the proof mass during operation. The most suitable approach to changing 

the dimensions of the structure is to change its length. This requires the structure 

clamp is removed, the length adjusted and then the structure re-clamped. It is 

important that in each tuning procedure that the structure is clamped properly, 

otherwise the performance of the generator will be severely affected by introducing 

damping effects through the supports. Therefore, these two methods are not suitable 

for in situ tuning (tuning while the generator is mounted on the vibration source and 

working) or tuning with automatic control. 

 

Alternatively the frequency can be tuned by changing the spring stiffness 

intermittently or continuously. They are both suitable for in situ tuning but 

intermittently changing the spring stiffness is always preferred for efficiency reasons. 

However, extra systems and energy are required to realize tuning using mechanical 

methods. 

 

It is important to mention that the efficiency of mechanical tuning methods also 

depends on the size of the structure. The smaller the resonator, the higher the 

efficiency of the tuning mechanism. 

 

Resonant frequency tuning by adjusting the electrical load has been practically shown 

to be feasible. This method consumes little energy as it does not involve any change 

in mechanical properties. The only energy consumed is in the electronic switches and 

control unit, which is typically far less than that consumed in mechanical tuning 

methods. In addition, it is much easier to implement than mechanical methods. 

However, the tuning efficiency to date is quite low and this method cannot achieve a 

large tuning range. An extra closed loop system also has to be introduced to control 
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the tuning process. 

 

3.8.2 Widening the Bandwidth of the Generator 
For the second solution, i.e. to widen the bandwidth, an obvious problem is that there 

is a trade-off between the system bandwidth and the Q-factor. Wider bandwidth means, 

for a single resonator, a lower Q-factor, which reduces the maximum output power. 

Bandwidth can also be effectively widened by designing a generator consisting of an 

array of small generators, each of which works at a different frequency. Thus, the 

assembled generator has a wide operational frequency range whilst the Q-factor does 

not decrease. However, this assembled generator must be carefully designed so that 

each individual generator does not affect the others. This makes it more complex to 

design and fabricate. Additionally, at a particular source frequency, only a single or a 

few individual generators contribute to power output so the approach is volume 

inefficient.  

 

Another method used to increase the bandwidth is to use an amplitude limiter to limit 

the amplitude of the resonator. The drawbacks are that this method causes the 

maximum output power to drop by limiting vibration amplitude and the repeating 

mechanical contact between the cantilever and the mechanical stopper may result in 

earlier fatigue induced failure in the cantilever beam.  

 

Furthermore, non-linear generators and generators with bi-stable structures are two 

further potential solutions to increase the operational frequency range of vibration-

based micro-generators. They can improve performance of the generator at higher and 

lower frequency bands relative to its resonant frequency, respectively. However, the 

mathematical modelling of these generators is more complicated than that of linear 

generators, which increases the complexity in design and implementation. Besides, 

there is hysteresis in non-linear generators. Performance during down-sweep (or up-

sweep) can be worse than that during up-sweep (or down-sweep) or worse than the 

linear region depending on sweep direction as explained in Section 3.5.3. 

 

In conclusion, for vibration energy harvesting, possible strategies to increase the 

operation frequency range include: 
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♦ Changing spring stiffness intermittently (preferred) or continuously; 

♦ Straining the structure intermittently (preferred) or continuously; 

♦ Adjusting the capacitive load; 

♦ Using a generator array; 

♦ Employing non-linear and bi-stable structures. 

 

To realize these strategies properly, the following issues have to be considered. For 

intermittent mechanical tuning, the tuning system has to be designed to consume as 

little energy as possible and not to affect the damping so as to make the generator 

harvest maximum power. In addition, currently commercially available linear 

actuators are still large in size compared to the mm scale micro-generator. To keep 

tunable generators of reasonable size, it is important to use miniature actuators. 

Generators using electrical tuning must be well designed in order to achieve sufficient 

coupling between the mechanical and electrical domains to enable larger tuning 

ranges. Moreover, non-linear generators and generators with bi-stable structures have 

not been sufficiently developed and further attention should be paid to practically 

implement them. 

 

In the next four chapters, detailed analysis and practical effort to tune the resonant 

frequency of electromagnetic vibration-based micro-generators using mechanical and 

electrical tuning methods to match the ambient vibration frequency will be presented.  
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Chapter 4 
 

 

Resonant Frequency Tuning  

using Mechanical Methods 

 

 
4.1 Introduction 
In this chapter, mechanical methods used to tune the resonant frequency of vibration-

based micro-generators based on a cantilever structure, particularly applying an axial 

force to the cantilever, is presented. As strain in the cantilever changes, its resonant 

frequency is tuned. The principle of this method is presented in Section 4.2. To 

minimize unwanted effects on the cantilever vibrations, a contactless magnetic force 

provided by two tuning magnets is used to apply the axial force. A numerical method 

of calculating the magnetic force between two magnets is given afterwards. A 

preliminary test that has been done to prove this method will be demonstrated in 

Section 4.3. The test gives a good guidance to optimizing this method and designing a 

tunable electromagnetic vibration-based micro-generator. 
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4.2 Principle 
The principle of this method has been briefly introduced in Section 3.3.4.2 and it will 

be detailed here. 

 

4.2.1 Model of the Mechanical Tuning Mechanism 
An axial tensile load applied to a cantilever (Figure 4.1a) increases the resonant 

frequency of the cantilever while an axial compressive load applied to a cantilever 

(Figure 4.1b) decreases the resonant frequency of the cantilever. 

 
 

Figure 4.1. Axial tensile (a) and compressive (b) load on a clamped-free cantilever. 

 

 An approximate formula for the resonant frequency of a uniform cantilever in 

mode i with an axial load, fri’, is given by [69]: 

 

2

2
11'
ib

ri F
Fff

ri λ
λ

⋅+⋅=                                            (4.1) 

 

where fri is the resonant frequency in mode i without load. F is the axial load. F is 

positive if the load is tensile and F is negative if the load is compressive. Fb is the 

axial load required to buckle the beam, i.e. to make the fundamental resonant 

frequency zero. λ1 is a dimensionless load parameter which is a function of the beam 

boundary conditions applied to the cantilever for mode 1 of the beam and λi is the 

same parameter for mode i. λi is given by the ith positive solution of Equation (4.2) 

[70]: 

  

01coshcos =+⋅ λλ                                            (4.2) 
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Since most micro-generators with a cantilever structure work at a resonance of mode 

1, the resonant frequency of a uniform cantilever in mode 1 with an axial load, fr1’, is 

given by: 

 

b
rr F

Fff +⋅= 1' 11                                               (4.3) 

 

The buckling load Fb is given by: 
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⋅⋅
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π                                                    (4.4) 

 

where Y is the Young’s modulus of the material of the cantilever, l is the span of the 

cantilever and I is the area moment of inertia which is, for this structure, give by: 
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Thus, the buckling load can be rewritten as: 
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2
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π                                               (4.6) 

 

Figure 4.2 shows the change in resonant frequency of a cantilever with axial load. It 

shows that a compressive load is more efficient in frequency tuning than a tensile load. 

Effects of both tensile load and compressive load on parasitic damping in the 

generator have been investigated in a preliminary test which will be presented 

separately in Section 4.3.6 and Section 4.3.8. If a very large tensile force is axially 

applied to the cantilever, the resonant frequency will approach that of a straight 

tensioned cable as the force associated with the tension in the cantilever becomes 

much greater than the beam stiffness. 
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Figure 4.2. Change in resonant frequency with axial load. 

 

4.2.2 Method of Applying Axial Force 
Figure 4.3 shows the schematic diagram of the tuning mechanism. The resonant 

frequency tuning is realized by applying axial force to the cantilever. The tuning force 

is provided by the repelling (Figure 4.3a) or attractive (Figure 4.3b) force between 

two tuning magnets with similar or opposite poles facing each other. One magnet is 

fixed at the free end of a cantilever while the other is placed axially in line with the 

cantilever and is moveable along the span of the cantilever. As the distance between 

the two tuning magnets is adjusted, the axial load on the cantilever changes, and 

hence the resonant frequency of the cantilever is tuned. The areas where the two 

magnets face each other are curved to maintain a constant gap between them over the 

amplitude range of the generator.  

 

 
(a)                                                                      (b) 

Figure 4.3. Schematic diagram of tuning mechanism (a) compressive force (b) tensile 

force. 
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4.2.3 Calculation of Magnetic Force 
The calculation of magnetic force between simple shape magnets can be performed 

numerically. Only final equation is given here. A detailed description of this 

calculation can be found in [92]. 

 

Figure 4.4 shows two cubic magnets whose centres are o and o’, respectively.  

 

 
Figure 4.4. Magnet configuration 1. 

 

Their sides are respectively parallel and they are separated by α, β and γ in x, y and z 

direction (centre to centre), respectively. The dimensions of the lower magnet are 2a × 

2b × 2c and that of the upper one is 2A × 2B × 2C. The magnetisations of the two 

magnets, J and J’ are uniform. Their poles are in the z-axis. The magnetic force 

between these two permanent magnets can be calculated using the following 

equations: 
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For the situation that two cubic magnets share the same central line along the 

thickness and the area where these two magnets face each other overlaps perfectly 

(shown in Figure 4.5), i.e. α = β = 0 and γ = d +  (c + C)/2. Therefore, Fx and Fy are 

negligible and Fz is the force between two magnets. Equation (4.7) and (4.10) gives a 

method of calculation of magnetic force between cubic magnets. 
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Figure 4.5. Magnetic configuration 2. 

 

In this particular application, although the areas where the two magnets face each 

other are curved to maintain a constant gap between them over the amplitude range of 

the generator, they can be regarded as two rectangular parallelepipedic magnets since 

the curvatures are small. Therefore, as an approximation, Equation (4.7) and (4.10) 

can still be applied. 

 

4.3 Preliminary Tests 
4.3.1 Realization of Tuning Mechanism 
Realization of the proposed tuning mechanism is shown in Figure 4.6. The micro-

generator and the tuning mechanism are mounted on the same housing so that there is 

no relative displacement between them. The movable tuning magnet is attached to a 

linear actuator and the distance between the two tuning magnets, hence the tuning 

force is adjusted by the linear actuator. 

 

 
Figure 4.6. Realization of the tuning mechanism. 
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4.3.2 Generator tested in the Preliminary Test 
The generator tested in the preliminary test is shown in Figure 4.7. It was modified 

from a generator previously developed in our group. The beam has been redesigned to 

accommodate the tuning magnet. A resonator consisting of magnets and a cantilever 

beam is clamped to a base where a coil is fixed. 

 
Figure 4.7. Generator tested in the preliminary test. 

 

Figure 4.8 gives the dimensions of the cantilever. It is 0.3 mm thick and made of 

Beryllium Copper (BeCu) [93], a material possessing good mechanical properties, 

especially excellent fatigue characteristics. The Young’s modulus and Poisson’s ratio 

of BeCu are 117GPa and 0.34, respectively, which will be used throughout the future 

simulation. 

 
Figure 4.8. Dimension of the cantilever. 

 

The magnetic circuit of this generator is shown in Figure 4.9. Two mild steel keepers 

were used to couple the magnetic flux between top and bottom magnets, which 
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ensures a uniform magnetic field within the air gap. The coil is attached to the base of 

the generator. The four-magnet structure is fixed to a cantilever beam and vibrates 

with the ambient vibration. The magnets move with respect to the static coil so that 

the induced current is generated within the coil according to the Faraday’s law. Both 

tuning magnet and magnets for generating power are made of Neodymium Iron Boron 

(NdFeB) [94], a high energy density rare earth magnet.  

 

 
Figure 4.9. Cross section of the four-magnet arrangement. 

 

Each magnet has the dimension of 5mm × 4mm (a) × 5mm and the dimensions of the 

keeper are 10mm × 5mm × 0.7mm, where (a) indicates the polarization direction. This 

gives this generator the total mass of 12.4g and its estimated untuned resonant 

frequency is 27.19Hz according to Equation (3.16). 

 

The outer and inner diameter of the coil is 10mm and 4mm, respectively. The coil 

thickness is 4mm. The measured coil resistance is 337Ω. Thus, the estimated number 

of turns is 2540 with a fill factor of 0.6. 

 

4.3.3 Test setup 
The generator was tested on a shaker (Labworks ET-126 [95]) with a programmable 

resistance box and a PC with LabVIEW software [96] collecting the data (Figure 

4.10).  
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Figure 4.10. Block diagram of test platform. 

 

The frequency and acceleration of the vibration is first set in the PC via a LabVIEW 

application. The signal generator outputs a sinusoid signal with the preset frequency 

and a certain peak voltage. This control signal is fed into a shaker to produce the 

target vibration. An accelerometer is used to detect the acceleration of the vibration 

produced by the shaker and a specially designed pulse counting circuit is used to 

detect the frequency of the vibration. The PC monitors the output of these sensors and 

adjusts the control signal to ensure the vibration is exactly what is wanted. The micro-

generator to be tested is riveted securely on the shaker to minimize the loss in 

mechanical coupling. Additionally, the load resistance of the generator can be 

adjusted in the PC as well and the output voltage across the load is recorded by the PC 

via LabVIEW. This system is suitable for fully characterizing the generator over a 

wide range of acceleration levels, load resistances and frequencies. In this test, the 

vibration acceleration was set to be 0.49m·s-2, i.e. 50mg (1g = 9.8m·s-2) as a 

simulation of the vibration level of a commercially available pump. 

 

The test platform of the system is shown in Figure 4.11. Tuning magnets (5) is 

attached to the free end of the cantilever resonator on the generator (4). The other 

tuning magnet (3) is fixed on a slider (2) which is able to slide along a track. The 

movement of the slider is controlled by the linear actuator (1). The linear actuator 

used here is Haydon® 21000 Series Size 8 linear actuator, E21H4(AC)-5 [97]. Its 

operation voltage is 5V and power consumption is 2.45W. The resolution of the 
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actuator is 0.01mm/step. It is controlled by the microcontroller via two H-bridge 

circuits (Figure 4.12).  All components in the test were powered by an external power 

source. In this application, half stepping is used. Table 4.1 lists the stepping sequence 

of the stepper motor. In intermittent tuning, the new resonant frequency should be 

maintained with little energy being consumed. For the stepper motor, it must keep the 

position of the tuning magnet when the tuning is finished. In other word, the magnetic 

force between two tuning magnets cannot exceed the static holding force of the 

stepper motor.  

 

 
Figure 4.11. Test platform in the preliminary test  

(1. Linear actuator; 2. Slider; 3. Tuning magnet 1; 4. Micro-generator; 5. Tuning 

magnet 2). 
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Figure 4.12. Control circuit of the stepper motor. 

 
Table 4.1. Half-stepping sequence 

Step Q2-Q3 Q1-Q4 Q6-Q7 Q5-Q8 

1 ON OFF ON OFF 

2 OFF OFF ON OFF 

3 OFF ON ON OFF 

4 OFF ON OFF OFF 

5 OFF ON OFF ON 

6 OFF OFF OFF ON 

7 ON OFF OFF ON 

8 ON OFF OFF OFF 

1 ON OFF ON OFF 

 

Figure 4.13 shows the static holding force of this stepper motor. In this application, 

the speed of the stepper motor was set to be 400step/sec. Therefore, the maximum 

static holding force is about 26N. 

 
Figure 4.13. Performance curves-21000 Series Size 8 Linear actuator [95]. 
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4.3.4 Tuning Magnet and Tuning Force 
Figure 4.14 shows the dimensions of the two tuning magnets. As mentioned above, 

since the curvatures of the curved surfaces are small, as an approximation, they can be 

regarded as two parallelepipedic magnets so that Equation (4.7) to (4.10) can be 

applied. Table 4.2 lists the dimensions of the two magnets corresponding to the 

variables in Equation (4.7) and (4.10). 

 
Figure 4.14. Dimension of the tuning magnets. 

 

Table 4.2. Dimensions of the two magnets corresponding to the variables in Equation 

(4.10) and (4.13). 

axis x y z 

Magnet 1 2a = 13 mm 2b = 11 mm 2c = 10 mm 

Magnet 2 2A = 13 mm 2B = 11 mm 2C = 4 mm 

 

These two magnets are made of NdFeB (N38H). A typical value of its magnetisation 

is 1.22T [98]. Figure 4.15 shows the numerical calculation of the tuning force versus 

distance between two tuning magnets. The compressive force and tensile force are the 

same in value for the same set of magnets but opposite in direction. The buckling 

force for this structure is 9.08N according to Equation (4.6). Therefore, the minimum 

distance between the two tuning magnets is 8.9mm when compressive force is applied. 
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Figure 4.15. Numerical calculation of tuning force vs. distance between two tuning 

magnets. 

 

It is found that when tensile force is applied and the two tuning magnets were less 

than 5 mm apart, the linear actuator holding the movable tuning magnet cannot keep 

the position of the slider because the attractive force is larger than the static holding 

force of the actuator. The movable tuning magnet is pulled by the attractive force 

towards the generator and the two magnets finally stick to each other. Since this 

causes the failure of the system, the distance between two tuning magnets has to be 

more than 5mm at all times in this application. 

 

This result agrees with numerical calculation, which proves the accuracy of the model 

mentioned in Section 4.2.3. As it is difficult to measure the force between the two 

tuning magnets directly, the values of tuning force in this test are all obtained via 

numerical calculation. 

 

4.3.5 Resonant Frequency under Tensile Loads 
Figure 4.16 and 4.17 show the resonant frequency of the micro-generator with 

variation of tensile tuning forces and distances between the two tuning magnets, 

respectively. Test results have been compared with the simulation results in ANSYS 

Workbench [99] and found to be in reasonable agreement with the simulation. Note 

that only the axial load was applied in the simulation and loads on other directions 

were not taken into account. The resonant frequency has been tuned from 35Hz to 

68Hz by varying the distance between the two tuning magnets from 4.8mm to 18mm. 
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Figure 4.16. Resonant frequency with variation of tensile tuning forces. 

 
Figure 4.17. Resonant frequency vs. distances between tuning magnets when tensile 

force is applied. 

 

It is found in Figure 4.16 that when the tuning force became large, the resonant 

frequency was lower than expected. The reason for this is that when a tensile load 

much greater than the buckling force is applied to a beam, the resonant frequency 

approaches that of a straight tensioned cable and does not increase any more because 

the force associated with the tension in the beam becomes much greater than the beam 

stiffness. 



Chapter 4 Resonant Frequency Tuning using Mechanical Method                                               97                                    

4.3.6 Power Output under Tensile Loads 
Figure 4.18 shows test results of the power spectra of the generator with various 

resonant frequencies under tensile loads. It is found that the Q-factor of the generator 

with tensile loads became higher than that of the generator without any tuning. As 

predicted in Equation (2.17), the output power reduces with the increase of the 

resonant frequency. Additionally, when the resonant frequency approached the upper 

boundary of the tuning range, i.e. when the tuning force was large, the output power 

of the generator dropped lower than constant damping situation, which means that the 

total damping increased as the tuning force becomes large. 

 
Figure 4.18. Power spectra of the generator with various resonant frequencies under 

tensile loads. 

 

4.3.7 Resonant Frequency under Compressive Loads 
Figure 4.19 shows the resonant frequency of the micro-generator with variation of 

compressive tuning forces and distance between two tuning magnets, respectively. 

Similarly, test results have been compared with the simulation results in ANSYS 

Workbench. The resonant frequency has been tuned from 18Hz to 1.2Hz by varying 

the distance between the two tuning magnets from 18mm to 15mm. 
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Figure 4.19. Resonant frequency vs. distance between tuning magnets when 

compressive force is applied. 

 

The test results did not match the simulation results. Experimentally, the resonant 

frequency of the generator decreased more than expected under compressive loads. 

The reason for this is that in the practical situation, the cantilever was bent due to the 

compressive loads and the mass had an initial displacement when it was static. As the 

generator started vibrating, the mass had a larger displacement in one direction than 

that in the other one. When the compressive load became large, the inertial 

displacement of the mass was so large that it hardly vibrated. However, in the 

simulation, only the axial load was applied while the initial displacement of the proof 

mass and loads on other directions were not taken into account. 

 

4.3.8 Power Output under Compressive Loads 
Figure 4.20 shows test results of the power spectra of the generator with various 

resonant frequencies under compressive loads. It is found that the Q-factor of the 

generator decreased significantly when compressive loads were applied. As discussed 

in Chapter 2, the generator must have a high Q-factor to produce more output power. 

Although tuning by applying compressive force is more sensitive than tuning by 

tensile loads, this characteristic makes frequency tuning by applying compressive 

loads less useful than tuning by applying tensile loads. 
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Figure 4.20. Power spectra of the generator with various resonant frequencies under 

compressive loads. 

 

4.4 Conclusions 
This chapter detailed the realization of resonant frequency tuning of a vibration-based 

generator by applying axial loads to the cantilever structure. The axial loads are 

provided by the interacting force between two tuning magnets. Theoretically, it has 

been proved that both axial tensile and compressive loads can change the resonant 

frequency of a cantilever structure. An axial tensile load can increase the resonant 

frequency while an axial compressive load can decrease the resonant frequency. The 

theoretical analysis also showed that the resonant frequency of a cantilever structure is 

more sensitive to compressive load than tensile load, i.e. resonant frequency changes 

more by applying the compressive load than by applying the same amount of tensile 

load. 

 

A prototype of a generator has been tested. The generator consisted of a cantilever, an 

electromagnetic transducer and a tuning magnet attached to the free end of the 

cantilever. The untuned resonant frequency of the generator is 27Hz. The other tuning 

magnet is fixed on a slider which can move axially alone the cantilever span. The 

distance between two magnets can be manually adjusted and thus the tuning force. 
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Experimentally, it was proved that the resonant frequency of the generator could be 

tuned by applying axial load. Under tensile loads, the resonant frequency has been 

tuned from 35Hz to 68Hz by varying the distance between the two tuning magnets 

from 4.8mm to 18mm. It is found that, when the tuning force became large, the 

resonant frequency was lower than expected because, when a tensile load much 

greater than the buckling force is applied to a beam, the resonant frequency 

approaches that of a straight tensioned cable and does not increase any more because 

the force associated with the tension in the beam becomes much greater than the beam 

stiffness. Furthermore, the Q-factor of the generator with tensile loads became higher 

than that of the generator without any tuning and the output power reduces with the 

increase of the resonant frequency as predicted. As long as the tensile load is applied, 

the Q-factor stayed constant for most of the tuning range. However, the Q-factor 

decreased when the tensile load became large. 

 

Under compressive loads, the resonant frequency has been tuned from 18Hz to 1.2Hz 

by varying the distance between the two tuning magnets from 18mm to 15mm. The 

resonant frequency decreased significantly for a small tuning force. It showed a larger 

decrease than the simulation results suggested. Furthermore, the Q-factor of the 

generator dropped a lot as the resonant frequency decreased, i.e. the compressive load 

increased, which is a fatal drawback for this method as a useful tuning mechanism. 

 

It is concluded that applying axial tensile loads to a cantilever is the better method to 

tune the resonant frequency of the vibration-based micro-generator with a cantilever 

structure compared to applying axial compressive loads because an axial tensile load 

increases the Q-factor of the generator while an axial compressive load decreases the 

Q-factor. In the next two chapters, more details will be given on designing a miniature 

tunable micro-generator using this tuning method and making the frequency tuning 

completely automatic, i.e. to make the tunable micro-generator work at its resonant 

frequency matching ambient vibration frequency at all times. 
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Chapter 5 
 

 

Simulation, Optimization and 

Performance of a Tunable 

Electromagnetic Generator 

 

 
5.1 Introduction 
In Chapter 4, a preliminary test of resonant frequency tuning on an electromagnetic 

generator using a mechanical method has been presented. These test results verify the 

feasibility of tuning the resonant frequency of a vibration-based micro-generator with 

a cantilever structure by applying an axial force. As frequency tuning by applying 

tensile force has more advantages over frequency tuning by applying compressive 

force, in the following research, only frequency tuning by applying tensile loads are 

investigated. In this chapter, design of a miniature tunable electromagnetic generator 

tuned by applying a tensile force is detailed. The overview of the generator is first 
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addressed in Section 5.2. After that, methods of optimizing the magnetic field, 

including magnetic circuit theory, magnetic field theory and computer assisted 

simulation, are introduced in Section 5.3 to 5.6. All dimensions have been optimized 

so that the generator outputs the maximum power and has the maximum tuning 

efficiency using these methods. The target of this design is to build a tunable micro-

generator smaller than 2 cm3 in volume with the generator capable of producing 5Vpp 

output voltage when the generator is shaken at 0.59m·s-2 (60mg, 1g = 9.8m·s-2) with a 

tuning range of 70 to 100Hz. Performance of the optimized generator including tuning 

range, output power, Q-factor and the efficiency of the generator is given in Section 

5.7. 

 

5.2 Overview of Design 
The electromagnetic micro-generator presented in this paper was designed by the 

author and has the similar electromagnetic layout as a generator previously developed 

as part of an EU funded research project ‘VIBES’ [23]. Compared to VIBES generator, 

this generator is slightly bigger and a tuning magnet is fixed to the free end of the 

cantilever so that mechanical tuning method can be applied. Figure 5.1 shows the 

overall design of the tunable vibration-based electromagnetic micro-generator. In 

Figure 5.1(c), a DIP-16 socket is placed next to the generator as a reference of its 

dimensions.  

 

 
(a) Model 
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(b) Photo 

 

 
(c) Generator with indication of its dimensions 

Figure 5.1. Tunable electromagnetic micro-generator. 

 

5.2.1 Electromagnetic transducer 
The magnetic circuit of this generator is shown in Figure 5.2. Two mild steel keepers 

were used to couple the magnetic flux between the top and bottom magnets, which 

ensured a uniform magnetic field within the air gap. Detailed analysis of the magnetic 

field will be given in Section 5.5. The coil was attached to the housing of the 

generator. The four-magnet structure was fixed to a cantilever beam and vibrated with 

the ambient vibration. The magnets moved with respect to the static coil so that the 

induced current was generated within the coil according to the Faraday’s law. 
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Figure 5.2. Cross section of the four-magnet arrangement. 

 

5.2.2 Tuning mechanism 
The schematic diagram of the tuning mechanism has been shown in Figure 4.61. The 

generator and the tuning mechanism were mounted on the same housing so that there 

was no relative displacement between them. The tuning force was provided by the 

attractive force between two tuning magnets with opposite poles facing each other. 

One magnet was fixed at the free end of a cantilever while the other was attached to 

an actuator and placed axially in line with the cantilever. The tuning magnet attached 

to the actuator was larger than the one on the generator along the vibration direction 

so that they always overlap perfectly during operation. The distance between the two 

tuning magnets was adjusted by the linear actuator. Thus, the axial load on the 

cantilever was changed. 

 

5.2.3 Micro-generator design 
Each component of the generator was fabricated separately using conventional 

manufacturing processes. All magnets, mild steel keepers and additional tungsten 

mass were glued to the cantilever beam with cyanoacrylate with the aid of an 
                                                        
1 Only the tensile force is applied in this case. 
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alignment jig. This assembly was then clamped onto the base using an M1 sized nut 

and a copper washer. The coil was bonded to the coil support pre-machined on the 

base. Table 5.1 summarizes materials for each component and the reasons for 

selection.  

 

Table 5.1. Material of each component. 

Component Material Reason for selection 

Magnet NdFeB High energy density 

Keeper Mild steel Ferromagnetic material 

Additional mass Tungsten alloy High density 

Beam BeCu Excellent fatigue characteristics 

Base Tecatron GF40 High rigidity, non ferromagnetic 

 

5.3 Q-factor under tuning force 
As mentioned in Section 3.2.2, a tuning mechanism should not reduce the Q-factor of 

the generator. In this section, the effect of the tuning force on the Q-factor of the 

generator is studied. 

  

Figure 5.3 shows the forces on the resonator along the z axis. To make this figure easy 

to understand, the transducer is omitted as the tuning force is only applied on the 

tuning magnet 1 and it is assumed that the tuning magnet 1 has the overall mass of the 

generator. In addition, the resonator is assumed to travel only along the z axis to make 

the analysis simpler. Therefore, only forces along the z axis have to be studied. 

Additionally, it is assumed that the tuning forces on other directions than z direction 

do not affect the total damping. 
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Figure 5.3. Forces on the resonator. 

 

The dynamic model in this situation is given by: 
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where m, b, k, z(t) are mass, damping coefficient spring constant and relative motion 

of the mass with respect to the housing, respectively. FT_z[z(t)] is the z component of 

the magnetic force introduced by two tuning magnets, which can be calculated using 

Equation (4.7) with:  
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and Fi(t) is the inertial force on the mass, which is give by: 
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                   2
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where zh(t) is the displacement of the vibration source.  

 

The Q-factor of the generator is given by: 

 

hZ
ZQ =                                                          (5.3) 

 

where Z and Zh are the maximum values of  z(t) and zh(t), respectively. 

  

As it is difficult to analytically solve the differential Equation (5.1), numerical 

methods can be used to obtain a numerical solution. In this case, the fourth-order 

Runge–Kutta method was adopted [100]. Figure 5.4 shows an example of the 

numerical solution to Equation (5.1). The waveform after the solution being 

converged was treated as an approximation to the actual solution. 

 

 
(a)  
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(b) 

 
(c) 

Figure 5.4. Numerical solution of differential Equation (5.1) (a) overall waveform (b) 

detailed waveform (comparison of amplitude) (c) detailed waveform (comparison of 

phase). 

 

Figure 5.5 shows the numerical results of the Q-factor with various distances between 

the two tuning magnets and acceleration levels. It was found that as the excitation 

level became higher, the distance between two tuning magnets at which Q-factor of 

the generator started reducing significantly became smaller. In other words, when the 

excitation level becomes small, the tuning force capable of increasing total damping 

also becomes small. For a fixed distance between the two tuning magnets (tuning 

force), the higher the excitation level, the higher the Q-factor. For a fixed Q-factor, the 

higher the excitation level, the closer the two tuning magnets. 



Chapter 5 Simulation, Optimization and Performance of a Tunable Electromagnetic Generator       109     

 
Figure 5.5. Q-factor with various distances between two tuning magnets and 

acceleration levels. 

 

5.4 Cantilever Beam 
5.4.1 Material Selection 
Common materials used as beam materials include Single-Crystal Silicon (SCS) 

[101,102], Stainless Steel 320 Full Hard (SS320FH) [102,103] and Beryllium Copper 

(BeCu) [23] because of the cyclical stressing of the beam during operation.  

 

Single crystal silicon is elastic to fracture and therefore will not change its material 

properties or dimensions as a result of being cyclically stressed. Silicon also does not 

suffer from fatigue failure. Silicon beams can be fabricated by DRIE etching through 

the thickness of a wafer. However, the Single-Crystal Silicon beams have been found 

to be too brittle to handle during assembly [23].  

 

Both Stainless Steel 320 FH and BeCu have excellent elastic properties and fatigue 

characteristics without the brittleness of silicon. The metal beams are fabricated by a 

combination of photolithography and spray etching, which involves coating both sides 

of the metal sheet with a UV sensitive photoresist and using contact lithography to 

define the beam shape. The resist is developed after exposure, which leaves regions of 



Chapter 5 Simulation, Optimization and Performance of a Tunable Electromagnetic Generator       110     

the metal sheet exposed to a Ferric Chloride etchant which is sprayed simultaneously 

to both sides. This etches through the exposed metal leaving the desired beam 

geometry. This is a straightforward batch fabrication process that enables numerous 

structures to be fabricated simultaneously on each metal sheet. 

 

In this application, BeCu was selected as beam material for its excellent mechanical 

properties, in particular excellent fatigue characteristics. 

 

5.4.2 Thickness 
The resonant frequency of the generator depends on the dimensions of the beam and 

the inertial mass. For given inertial mass of 2.4g and a beam length of 13mm and 

width of 5mm, the untuned resonant frequency and tuning range when the tuning 

force changes from 1N to 6.67N as a function of beam thicknesses are shown in 

Figure 5.6. These results were obtained from a prestressed ANSYS modal analysis. It 

was found that the thinner the beam, i.e. the lower the spring constant of the cantilever, 

the lower the untuned resonant frequency and the larger tuning range. For this 

generator, a 120µm thick beam was chosen to give a predicted untuned resonant 

frequency of 45.2Hz and a tuning range from 66.4Hz to 108.8Hz. 

 

 
Figure 5.6. Base resonant frequency and tuning range with variation of beam 

thicknesses. 
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5.5 Analysis of the Magnetic Field in the Air Gap 
The purpose of this analysis is to optimize the dimensions of the magnets and length 

of the air gap to maximize the magnetic flux density within the air gap. Three 

approaches have been used to conduct the magnetic field analysis: (1) magnetic 

circuit approach (2) analysis based on magnetic field theory and (3) computer assisted 

simulation. The first two approaches have been used to optimize the design and the 

last was used to verify the optimization. 

 

5.5.1 Magnet Material Selection 
Due to the limitation of the volume of the micro-generators, a magnetic material 

having a strong energy density is inevitable to achieve a high output power density. 

Most commonly used permanent magnet materials include Alnico magnet, Ceramic 

(ferrite) magnet and rare earth magnets such as samarium-cobalt (SmCo) and 

neodymium-iron-boron (NdFeB).  

 

Alnico permanent magnets are made primarily from aluminum, nickel, cobalt, copper, 

iron and sometimes titanium. As it is mechanically strong, they can be either cast or 

sintered. It can be used in very high temperature, up to 524 to 549℃ . Ceramic 

permanent magnets are composed of strontium carbonate and iron oxide. They are the 

least expensive material of the four but tooling is quite expensive. Due to its 

brittleness and manufacturing process, the shapes of magnets made of ceramic 

magnets have to be simple. Ceramic magnets have lower service temperature than 

alnico but higher than rare earth magnets. Permanent Samarium Cobalt magnets 

(SmCo) are composed of samarium, cobalt and iron. They are extremely strong for 

their small size, metallic in appearance and found in simple shapes such as rings, 

blocks and discs. They have good temperature stability and can be used in high 

temperature up to 250℃. However, SmCo is very expensive. As another rare earth 

magnet, Neodymium-iron-boron (NdFeB) materials have the similar mechanical 

properties as SmCo. They are the most powerful magnets in the world. Their working 

temperature is up to 120℃ and they are much cheaper than SmCo. The drawback is 

that NdFeB corrodes and they must be coated for long term maximum energy output 

[104].  
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NdFeB is therefore most suitable for this application. The remanence flux density (Br) 

and the relative permeability (µr) of NdFeB magnets are 1.23T and 1.1, respectively 

and its density is 7,500kg·m-3. 

 

5.5.2 Magnetic Circuit Theory 
Most magnetic devices such as motors and generators consist of ferromagnetic 

materials that have a high relative permeability. Magnetic flux lines are continuous 

and form closed paths, which is similar to electric current and electric circuits. 

Therefore, concepts in electric circuits can be applied to solve their analogous 

magnetic circuit. Table 5.2 lists the analogy between electric and magnetic circuits. 

Table 5.3 and Table 5.4 list equations and laws for them, respectively [105, 106]. 

 

Table 5.2. Analogy between electric and magnetic circuits. 

Electric Magnetic 

Conductivity, σ (Ω-1·m-1) Permeability, µ (Η·m-1) 

Electric field density, E (V·m-1) Magnetic field intensity, H (A·m-1) 

Current density, J (A·m-2) Flux density, B (T, Wb·m-2) 

Current, I (A) Magnetic flux, Ψ (Wb) 

Electromotive force (emf) (voltage), V (V) Magnetomotive force (mmf), F (A) 

Resistance, R (Ω) Reluctance, R  (A·Wb-1) 

 

Table 5.3. Equations for electric and magnetic circuits. 

Electric Magnetic 

∫ ⋅== dLEIRemf  ∫ ⋅=Ψ= dLHRmmf  

∫ ⋅=
s

dSJI  ∫ ⋅=Ψ
s

dSB  

Potential ∫ ⋅= dLEφ  Potential ∫ ⋅=Ω dLH  

φ−∇=E  Ω−∇=H  

EJ σ=  HB µ=  

L: Length of the medium. 

S: Cross-sectional area of the medium. 
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Table 5.4. Laws for electric and magnetic circuits. 

 Electric Magnetic 

Ohm’s Law S
L

I
VR

σ
==  

IRELV ==  

R 
S

Lmmf
µ

=
Ψ

=  

== HLmmf ΨR NI=  

Kirchhoff’s Law 
0=ΣI  

0=Σ−Σ RIV  

0=ΣΨ  

Σ−Σmmf ΨR 0=  

N: Number of turns of the coil. 

I: Electric current in the coil. 

 

As Kirchhoff’s current and voltage laws can be applied in magnetic circuit, the rules 

for adding voltages and for combining series and parallel resistances also hold for 

mmfs and reluctance.  

 

Thus, for n magnetic circuit elements in series 

 

nΨ==Ψ=Ψ=Ψ L321                                          (5.4) 

 

and 

 

F  = F1 + F2 + F3 + ⋅ ⋅ ⋅ + Fn                                    (5.5) 

 

Thus, for n magnetic circuit elements in parallel 

 

nΨ++Ψ+Ψ+Ψ=Ψ L321                                    (5.6) 

 

and 

 

F1 = F2 = F3 = ⋅ ⋅ ⋅ = Fn                                        (5.7) 

 

However, there are still some differences between electric and magnetic circuits. 

Firstly, magnetic flux does not flow as current does. Also, permeability, µ, varies with 
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flux density, B, in a magnetic circuit because there are normally ferromagnetic 

(nonlinear) materials used in magnetic devices while conductivity, σ, is independent 

of current density, J, in an electric circuit. Due to these differences, the magnetic 

circuit approach can only be an approximation in magnetic field analysis. 

 

Recalling the magnetic circuit of this generator shown in Figure 5.2, its perspective 

view is shown in Figure 5.7 which can be represented as shown in Figure 5.8. F1, F2, 

F3 and F4 represent four identical magnets. Rm1, Rm2, Rm3 and Rm4 are their 

respective reluctance. Rk1 and Rk2 are reluctance of two keepers while Rg1 and Rg2 

are reluctance of two air gaps.  

 

 
Figure 5.7. Perspective view of the magnetic circuit of the generator. 
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Figure 5.8. Magnetic circuit of the generator. 

 

Magnetomotive forces of these magnets are given by: 

 

F1 = F2 = F3 = F4 = 
0µµ ⋅

⋅
=⋅

m

mr
mc

LBLH                          (5.8) 

 

where Hc and Br are magnetic coercivity and magnetic retentivity. Lm is the length of 

the magnet along the polarization direction. µm and µ0 are relative permeability of the 

magnet material and the permeability of vacuum, respectively. Reluctances of these 

magnets are as follows: 

 

Rm1 = Rm2 = Rm3 = Rm4 = 
mm

m

S
L

⋅⋅ 0µµ
                         (5.9) 

 

where Sm is the cross section area of the pole area. 

 

Reluctances of the two keepers are given by: 

 

Rk1 = Rk2 = 
kk

k

S
L

⋅⋅ 0µµ
                                      (5.10) 
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where Lk is the length of the keeper. µk are relative permeability of the keeper material 

and Sk is the cross sectional area of the keeper. 

 

Reluctances of air gaps are given by: 

 

Rg1 = Rg2 = 
gS

h
⋅0µ

                                      (5.11) 

 

where h is the length of the air gap. Sg is the effective cross sectional area of the air 

gap. Due to the flux fringing in the air gap, the effective cross sectional area of the air 

gap is a function of the length of the air gap (Figure 5.9).  

 

 
Figure 5.9. Effect of flux fringing on reluctance of the air gap. 

 

Therefore, the magnetic flux, Ψ, in this magnetic circuit is given by: 

 

              Ψ =                                                                                                             (5.12) 

 

The magnetic field flux density in the air gap is: 

 

gS
B Ψ

=                                                      (5.13) 

 

 

Rm1 + Rm2 + Rm3 + Rm4 

F1 + F2 + F3 + F4 
+ Rk1 + Rk2 + Rg1 + Rg2
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5.5.3 Magnetic Field Theory 
A bar magnet or a small current loop is usually referred to as a magnetic dipole. The 

magnetic field B
v

 at an observation point P(r, θ, φ) due to a circular loop carrying 

current I
v

 as in Figure 5.10 is determined using the following method.  

 

 
Figure 5.10. Magnetic field at P due to a current loop. 

 

The magnetic vector potential at P is:  

 

∫=Ω
r
IdI
rr

v

π
µ
4

0                                               (5.14) 

 

At far-field where r >> a, the loop appears small at the observation point. Ω
v

 has only 

a φ-component given by: 

 

φπ
θπµ e

r
aI rv

⋅
⋅

⋅
=Ω 2

2
0

4
sin                                       (5.15) 
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or                                                     

 

2
0

4 r
em r

⋅
×

=Ω
π

µ rvv
                                                (5.16) 

 

where zeaIm rr 2π=  is the magnetic moment of the loop and φθ eee rz
rrr

⋅=× sin . The 

magnetic flux density B
v

 can be determined by: 
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          (5.17) 

 

There are alternative corresponding forms of B
v

, which are given by: 

 

( ) ( )
⎥⎦
⎤

⎢⎣
⎡ −

⋅
= 35

0 3
4 r

m
r

rrmrB
rrrr

rr

π
µ                                          (5.18) 

 

and 

 

( ) zyx e
r

rzme
r
yzme

r
xzmzyxB rrrr

5

22
0

5
0

5
0 3

444
,, −

++=
π

µ
π

µ
π

µ               (5.19) 

 

The magnetic field strength can be expressed as: 

 

( ) zyx e
r

rzme
r
yzme

r
xzmzyxH rrrr

5

22

55
3

444
,, −

⋅+⋅+⋅=
πππ

              (5.20) 

 

For a short permanent magnetic bar, the B
v

 lines are similar to those due to a small 

current loop (Figure 5.11). It can also be regarded as a magnetic dipole. 
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                                 (a)                                                            (b) 

Figure 5.11. The B lines due to magnetic dipoles: (a) a small current loop and (b) a 

bar magnet. 

 

The dipole moment of a bar magnet is given by: 

 

lQm m

rr
=                                                   (5.21) 

 

where Qm = MpSm  is an isolated magnetic charge (pole strength) and l
v

 is the length 

of the bar. Mp is the magnetization. 

 

In this situation, four magnets can be treated as four sets of magnetic dipole as shown 

in Figure 5.12. P is a random point within the air gap. 

 

 
Figure 5.12. Four sets of magnetic dipole. 
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The total magnetic flux density at P, PB
v

, is the sum of the magnetic flux density 

caused by four dipoles, i.e.: 

 

4321 mmmmP BBBBB
vvvvv

+++=                                 (5.22) 

 

where 1mB
v

, 2mB
v

, 3mB
v

 and 4mB
v

 are the magnetic flux density caused by magnet m1, 

m2, m3 and m4, respectively. 

 

In this particular case, only the magnetic flux density along the z axis is of interest. 

Therefore, the magnetic flux at P along the z axis, BPz is given by: 

 

zmzmzmzmPz BBBBB 4321 +++=                                 (5.23) 

 

where zmB 1 , zmB 2 , zmB 3  and zmB 4  are the z components of 1mB
v

, 2mB
v

, 3mB
v

 and 4mB
v

, 

respectively. According to Equation (5.19), Equation (5.23) can be rewritten as: 

 

∑
−

=
4

5

22
0 3

4 i i

ii
Pz r

rzmB
π

µ                                       (5.24) 

 

where ri is the distance between P to the centre of the ith dipole and zi is the 

projection of ri on the z axis. The coordinate of the four dipoles are:  

 

  ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +− 2,0,21 hLhm mm , 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
2,0,22 hLhm mm , 

  ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +− 2,0,23 hLhm mm , 

and                                        ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−− 2,0,24 hLhm mm  

 

where hm is the height of the magnet (dimension along x axis). 
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Hence zi and ri are as follows: 
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The average magnetic flux within the upper air gap (when x ≥ 0), Bgap_u, is given by: 

 

( )
( )

gap

h w

w

hL

hL Pz

ugap V

dzdydzB
B
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+
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=

0
2

2

2

2
_                           (5.29) 

 

where wm is the width of the magnet (dimension along y axis). As the device is 

symmetric with respect to plane yz, the average magnetic flux within the lower air gap 

(when x ≤ 0), Bgap_l, is identical to Bgap_u. 

 

5.5.4 Computer Assisted Simulation 
Compared to the two approaches discussed above, computer assisted simulation is the 

easiest and most straightforward method to analyze the magnetic field. There are 
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various software packages capable of such simulations, for example Ansoft Maxwell 

3D [107], NISA EMAG [108], ANSYS Emag [109], INTEGRATED's CAE software 

[110], etc. For this application, Ansoft Maxwell 3D has been used to conduct the 

magnetic field simulation because of its availability, functionality and simpleness. 

 

5.5.5 Optimization of Magnetic Field 
Table 5.5 gives the magnetic constants used in the analysis. The magnet and keeper 

material used in the simulation is NdFeB 35 and steel, respectively. 
 
Table 5.5. Magnetism constants. 

Constant Value Constant Value 

Hc 8.9 ×105A·m-1 Br 1.23T 

µr 1.1 µ0 4π × 10-7N·A-2 

µk 4000   

 

The analytical results using both magnetic circuit and magnetic field theory agree 

with each other and have been verified in the Ansoft Maxwell 3D, which leads to the 

optimized dimensions of the magnets as shown in Table 5.6. After the optimization, 

the magnetic field within the air gap reached maximum under the restrictions of the 

total size and the resonant frequency of the generator. The simulation results in the 

Ansoft Maxwell 3D are shown in Figure 5.13.  

 

Table 5.6. Optimized dimensions. 

Variable Value Variable Value 

Lm 1.55mm Sm 16.5mm2 

Lk 6.14mm Sk 5.5mm2 

h 1.9mm Sg 25.5mm2 
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Figure 5.13. Simulation of magnetic field with optimal magnets dimension. 

 

5.5.6 Effect of Tuning Magnets on the Magnetic  Flux within the Air 

 Gap 
Compared to a previously designed generator, the main difference of this generator is 

the existence of the two tuning magnets. The effect these tuning magnets on the 

magnetic circuit of the four-magnet arrangement was simulated using Ansoft Maxwell 

3D magnetic finite element (FE) software. Figure 5.14 compares the magnetic field of 

the generator with and without tuning magnets. It shows that magnetic flux within the 

air gap is barely affected by the tuning magnets. The simulation results indicate that 

the maximum flux density within the air gap is 0.45T. 

 

 
(a)                                                                     (b) 

Figure 5.14. Modelling of magnetic field (a) no tuning magnets (b) with tuning 

magnets. 
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5.6 Coil and Air Gap 
5.6.1 Equations of coils 
The number of the turns of a cylinder coil as shown in Figure 5.15 can be calculated 

by: 

 

( )
2

4
d

tRRFN ioc

⋅
⋅−⋅

=
π

                                            (5.30) 

 

where Fc is the coil fill factor that is the ratio of the volume of conductor to the 

volume of the coil. Ro and Ri are the outer and inner radius of the coil, respectively. t 

is the total length of the coil and d is the diameter of the coil wire. 

 

 
Figure 5.15. A Cylinder coil. 

 

The coil resistance, Rc, is given by: 

 

A
LR c

c ρ=                                                   (5.31) 

 

where ρ is the electrical resistivity of the wire material, Lc is the total length of the 

coil wire and A is the cross area of the wire. The total wire length is: 

 

( )
2

224
d

tRRFL ioc
c

⋅−⋅
=                                         (5.32) 

 

The cross section area of the wire is: 
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4

2dA ⋅
=

π                                                   (5.33) 

 

Substitution of Equation (5.32) and (5.33) into Equation (5.31) yields the formula of 

coil resistance can be rewritten as: 

 

( )
4

2216
d

tRRFR ioc
c ⋅

⋅−⋅
⋅=

π
ρ                                      (5.34) 

 

5.6.2 Optimization of Coil and Air Gap 
According to Faraday’s law, the induced voltage within the coil is given by: 

 

dt
dNV Φ

−=                                                  (5.35) 

 

where N is the number of turns of the coil given by Equation (5.8) and 
dt
dΦ  is the 

magnetic flux time gradient through the coil.  

 

In order to maximize the induced voltage, the coil must have more turns while the 

magnetic flux gradient should be maximized. Given the limitation of generator space 

and winding tooling, the outer and inner radii of the coil are fixed. The wire diameter 

of 16 µm was chosen to give the coil more turns whilst still allowing winding. The fill 

factor is a function of the winding process and is typically 0.5 to 0.6. Therefore, the 

only parameter that can be changed to increase the number of turns is the coil 

thickness. Increasing the air gap can linearly increase the number of turns as shown in 

Figure 5.16. As the gap between the coil and the magnets is constant, the number of 

turns of the coil is also linear to the coil thickness. However, making the coil thicker 

means that the air gap between magnets has to be increased to avoid collision between 

the magnets and coil. Based on magnetic circuit theory, a larger air gap reduces the 

magnetic flux within the magnetic circuit as shown in Figure 5.18. Hence, there is a 

thus a tradeoff between coil thickness and magnetic flux through the coil. For a 
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constant gap between coil and magnets of 0.3mm, the simulation result shows that the 

optimum air gap and coil thickness are 1.9mm and 1.3mm, respectively. The 

maximum flux density within the air gap is 0.45T, which agrees with the simulation 

results in Ansoft Maxwell 3D discussed in Section 5.5.6. The estimated number of 

turns is 6950 when the fill factor is 0.5 and a voltage output of 8.1V as shown in 

Figure 5.18. 

 
Figure 5.16. Coil turns with variation of air gap. 

 

 
Figure 5.17. Magnetic flux density with variation of air gap. 
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Figure 5.18. Maximum induced coil voltage with variation of air gap. 

 

5.7 Performance of the Tunable Electromagnetic 

 Generator 
5.7.1 Test Setup 
The test setup here is similar to the one in the preliminary test which has been detailed 

in Section 4.3.3. Briefly speaking, the generator was tested on a shaker with a 

programmable resistance box and a PC with LabVIEW collecting the data. The test 

platform of the system is shown in Figure 5.19. Tuning magnets (5) is attached to the 

free end of the cantilever resonator on the generator (4). The other tuning magnet (3) 

is fixed on a slider (2) which is able to slide along a track. The movement of the slider 

is controlled by the linear actuator (1). The linear actuator used here is a Haydon® 

21000 Series Size 8 linear actuator, E21H4(AC)-5, which is the same one used earlier 

in the preliminary test discussed in Chapter 4.  

 



Chapter 5 Simulation, Optimization and Performance of a Tunable Electromagnetic Generator       128     

 
Figure 5.19. Test setup of the mechanically tunable electromagnetic generator. 

(1. Linear actuator; 2. Slider; 3. Tuning magnet 1; 4. Tuning magnet 2; 5 Micro-

generator.) 

 

5.7.2 Resonant Frequency 
The variation of the resonant frequency of the generator with the distance between the 

two tuning magnets is shown in Figure 5.20. The resonant frequency increases as the 

distance between the two tuning magnets is decreased, i.e. when the tuning force is 

increased as in Figure 5.21. The tuning range of the generator was from 67.6 to 98Hz 

when the distance between two tuning magnets was changed from 5 to 1.2mm. The 

test results followed the simulation results until the distance between two tuning 

magnets is less than 3mm. When this distance was less than 3mm, i.e. tuning force 

was larger than 2.87N, the resonant frequency increases less than indicated from 

simulation and approaches a limit. The reason for this is that when a tensile load much 

greater than the buckling force is applied to a beam, the resonant frequency 

approaches that of a straight tensioned cable and does not increase any more because 
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the force associated with the tension in the beam becomes much greater than the beam 

stiffness. The practical result agrees with this theoretical analysis. 

 

 
Figure 5.20. Resonant frequency with variation of distances between tuning magnets. 

 

 
Figure 5.21. Resonant frequency with variation of tuning force. 

 

5.7.3 Power Output 
The maximum power at optimum resistive load at different resonant frequencies when 
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the micro-generator was excited at a vibration of 0.59m·s-2 is shown in Figure 5.22. It 

was found that the maximum output power dropped with the increase of the resonant 

frequency as predicted from Equation (2.16). However, when the two tuning magnets 

were less than 3 mm apart, i.e. when the resonant frequency was higher than 85Hz, 

the output power decreased more than expected. This result agreed with the test 

results of resonant frequency discussed in Section 4.1, which further proved that when 

the tuning force becomes too large, the total damping will increase and output power 

will reduce as predicted in Section 2.4.  

 

 
Figure 5.22. Output RMS power at optimum loads with variation of tuned resonant 

frequencies of the generator (excited at 0.59m⋅s-2) 

 
Figure 5.23 shows the power spectra of the generator at optimum loads with variation 

of excitation level and resonant frequencies. It is found that the non-linearity of the 

generator became more and more apparent when the excitation level increased 

gradually. It is indicated from Figure 5.23 that the direction of the non-linearity2 

depends on the resonant frequency.  
                                                        
2 Softening spring makes the spectrum lean to the left and hardening spring makes the spectrum lean to 
the right. 
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(a) 45Hz 

 
 (b) 67Hz 
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(c) 85Hz 

 
 (d) 98Hz 

 Figure 5.23. Output RMS power at optimum loads with variation of excitation levels.  

 

Figure 5.24 shows the maximum output RMS power at different excitation levels over 

the tuning range. It was found that the output power dropped by more than predicted 
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by the constant damping model at lower frequency if the excitation level was lower. 

In other words, the Q-factor drops at higher frequency if the excitation level is high, 

which agrees with the theoretical analysis in Section 5.3. 

 

 
Figure 5.24. Maximum output RMS power at different excitation levels. 

 

5.7.4 Output Voltage 
Figure 5.25 shows the RMS voltage across the optimum load with the variation of 

vibration levels and resonant frequencies. The output voltage increased with the 

increase of excitation level and the decrease of resonant frequency. 

 
Figure 5.25. RMS voltage across optimum load with variation of vibration levels and 

resonant frequencies. 
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Figure 5.26 to 5.29 show the RMS open circuit output voltage of the generator and 

RMS voltage across the optimum resistive load at various resonant frequencies and 

excitation levels. It is found that the generator is able to output more than 2.5VRMS at 

all resonant frequencies when open circuit. The voltage spectra become flat over a 

frequency band close to the resonant frequency under large excitations. The reason is 

that the displacement of the proof mass is so large that it hits the housing of the 

generator and thus the output voltage stops increasing.  

 
(a) Open circuit 

 
 (b) Optimum load 

Figure 5.26. RMS output voltage (45Hz). 
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(a) Open circuit 

 

 
(b) Optimum load 

Figure 5.27. RMS output voltage (67Hz). 
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(a) Open circuit 

 

 
(b) Optimum load 

Figure 5.28. RMS output voltage (85Hz). 
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(a) Open circuit 

 

 
(b) Optimum load 

Figure 5.29. RMS output voltage (98Hz). 
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5.7.5 Q-factor 
The Q-factor of the generator is measured by observing the decay in the output 

voltage. Details of this method are given in Appendix B. Q-factor can be calculated 

from Equation (5.36) where f0 is the frequency, V1 and V2 are the voltage amplitudes 

at a time interval ∆t apart: 
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V
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tfQ π                                                 (5.36) 

 

The total Q-factor, QT, is the Q-factor measured when the generator is connected to 

the optimum load. The relationship between QT and the electrical and parasitic 

(mechanical) damping factors is given by (as Equation A.16): 

 

EOCT QQQ
111

+=                                             (5.37) 

 

where QOC is the open circuit Q-factor. 

 

Figure 5.30 shows the Q-factors of the generator with various resonant frequencies 

under an excitation 0.59m⋅s-2. It is found that the Q-factor reduces with the increase of 

the resonant frequency, i.e. the increase of the axial tensile force. This result agrees 

with the analysis in Section 5.3. However, the simulation results of the Q-factor in 

Section 5.3 are smaller than the Q-factors shown in the test. The reason is as follows. 

In the analysis in Section 5.3, the resonator is assumed to travel only along the 

vertical axis to make the analysis simple. This assumption means that the tuning 

magnet fixed to the free end of the cantilever is always in parallel with the movable 

tuning magnet. However, in practice, there is a small varying angle between these two 

magnets based on the position of the resonator during vibration. The magnetic force 

between two magnets is maximum when these two magnets are in parallel. Therefore, 

the actual magnetic force is smaller than predicted using the assumption above and 

the measured Q-factors are higher than predicted in the model described in Section 

5.3. 



Chapter 5 Simulation, Optimization and Performance of a Tunable Electromagnetic Generator       139     

 
Figure 5.30. Q-factors of the generator with various resonant frequencies (0.59 m⋅s-2). 

 

5.7.6 Efficiency of the Generator 

The efficiency of the generator, ηg, is the ratio of the power output in the optimum 

load, PL, to the maximum dissipated power within the damper, P, i.e. 

 

P
PL

g =η                                                       (5.38) 

 

Based on Equation (A.20), the maximum dissipated power within the damper can be 

written as: 
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Recalling the equation of the maximum power delivered to the resistive load, 

Equation (2.17) as: 
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Substitution of Equation (5.39) and (5.40) into Equation (5.38) gives the expression of 
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the efficiency of the generator: 
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Figure 5.31 plots the input power, predicted and measured output power with 

variation of resonant frequency when the generator is excited at 0.59m⋅s-2. It shows 

that the generator is converting about 44% of the total power dissipated in the 

generator to electrical power delivered to the load. 

 

 
Figure 5.31. Comparison of theoretical and measured output power. 

 

5.8 Conclusions 
In this chapter, a tunable vibration-based electromagnetic micro-generator has been 

presented. Its resonant frequency can be tuned by applying an axial tensile load using 

a pair of tuning magnets. The design of the generator was optimized using magnetic 

circuit theory analysis, magnetic field analysis theory and computer assisted 

simulation in Ansoft Maxwell 3D. 

 

The resonant frequency of the micro-generator can be tuned from 67.6 to 98Hz by 

changing the distance between two tuning magnets from 5 to 1.2mm, respectively. 
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The generator has an efficiency of 44% and delivered a power of 61.6 to 156.6µW to 

the electrical load over the tuning range when it was excited at a constant low 

vibration acceleration level of 0.59m⋅s-2. The generator is able to output more than 

2.5VRMS at all resonant frequencies when open circuit. 

  

It is found that when the tensile force became much greater than the buckling force, 

the resonant frequency increased less than predicted from simulation and approached 

a finite value. This is because that the force associated with the tension in the beam 

becomes much greater than the beam stiffness and the resonant frequency approaches 

that of a straight tensioned cable.  

  

Importantly, it was found that the tuning mechanism does not affect the damping of 

the micro-generator over most of the tuning range. The maximum output power 

dropped with the increase of the resonant frequency as predicted. However, when the 

tuning force became larger than the inertial force caused by vibration, total damping 

was increased and the output power is less than that in the constant damping situation. 

In addition, it was found that an output power drops more than a constant damping 

model indicated occurred at a lower tuning force and hence, a lower frequency if the 

excitation level is lower. The reason is that when the excitation level becomes small, 

the tuning force capable of increasing total damping also becomes small. For a fixed 

tuning force, the higher the excitation level, the higher the Q-factor. 

  

A closed loop control system developed to automatically tune the resonant frequency 

of this micro-generator according to ambient vibration will be presented in the next 

chapter.  
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Chapter 6 
 

 

Closed-loop Resonant Frequency 

Tuning System 

 

 
6.1 Introduction 
In Chapter 5, a tunable electromagnetic micro-generator has been developed and 

tested. The generator was tuned by applying an axial tensile force. All the previous 

tests were based on manual tuning. In practical application where the frequency of 

ambient vibration changes occasionally, the tuning mechanism has to be automatic so 

that the resonant frequency of the micro-generator matches the ambient vibration 

frequency at all times. In Section 6.2, a closed loop frequency tuning system will be 

presented. It is able to detect the change in vibration frequency and take appropriate 

action to tune the resonant frequency of the micro-generator to match the new 

resonant frequency. Two tuning algorithms have been studied and compared. The duty 

cycle of the tuning system has also been analyzed. Finally, some guidelines to reduce 
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the duty cycle of the closed loop tuning system are discussed in Section 6.3.   

 

6.2 Closed-loop Resonant Frequency Tuning  

 System 
6.2.1 System Description 
The purpose of this system is to realize automatic frequency tuning. It can 

automatically detect the ambient vibration frequency and adjust the resonant 

frequency of the generator so that these two frequencies can match to make the 

generator produce maximum power. The tuning system can be switched between 

manual and automatic mode. 

 

The tuning process is controlled by a microcontroller, schematically shown in Figure 

6.1. The microcontroller detects the output voltage of the generator periodically and 

gives instructions to drive a linear actuator to adjust the distance between two tuning 

magnets and hence the tuning force. Thus, the resonant frequency of the micro-

generator is changed. The microcontroller and linear actuator will ultimately be 

powered by the micro-generator itself. In this research, they were powered by a 

separate power supply to initially evaluate tuning principles and algorithms. 

 

 
Figure 6.1. Block diagram of the closed loop tuning system. 

 

6.2.2 Components in the System 
As discussed earlier, the tuning system must consume as little power as possible. 

Although all components in this test were powered by an external power source, 

consuming less power is vital for future application. The system was aimed to be 
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designed as similar to the real situation as possible. Therefore, all components in the 

system have to be carefully selected to meet this requirement. The two main 

components in this tuning system are a microcontroller and a linear actuator. 

 

Microcontroller PIC16F684 [111] of Microchip® is selected as the MCU. PIC16F684 

is an 8-bit CMOS microcontroller with nanoWatt technology. It has an internal 

oscillator that has a wide range of software selectable frequency from 125kHz to 

8MHz. A low frequency of 125kHz is selected in this application as lower internal 

oscillator frequency consumes less power. Its operating voltage is from 2V to 5.5V. As 

nanoWatt technology is involved in this microcontroller, it consumes very little power 

when it is in standby mode [112], which is important in this power limited application. 

Additionally, it integrates 8 channels of 10-bit ADC. The analogue output voltage 

from the generator can be injected to the microcontroller directly as feedback.  

 

The linear actuator used in this system is the same one as used in the preliminary test, 

Haydon® 21000 Series Size 8 linear actuator, E21H4(AC)-5. The main specifications 

of this linear actuator are listed in Table 6.1. 

 

Table 6.1. Main specifications of linear actuator E21H4(AC)-5. 

Operating voltage 5V 

Power 2.45W 

Resolution 0.01mm/step 

Speed 400step/second, i.e. 4 mm/second 

Maximum static holding force 26N 

 

6.2.3 Frequency Tuning Algorithm 
As the designed generator has a high Q-factor and its spectrum is symmetrical with 

respect to the resonant frequency, when the ambient vibration frequency changes, it is 

important to know if the new frequency is higher or lower than the resonant frequency 

of the generator. Therefore, two algorithms have been developed and studied, i.e. 

voltage-only feedback and voltage-frequency feedback. The common idea behind the 

two algorithms is that they both consider the generator as working at resonance when 

the output voltage is maximum. The difference is that the second algorithm can also 
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detect change in vibration frequency to know if the vibration frequency is increased or 

decreased to save power consumed in tuning. Details and comparisons of these two 

algorithms are given below. 

 

6.2.3.1 Voltage-only feedback 

Figure 6.2 shows the flow chart of the voltage-only feedback algorithm. When the 

output voltage reaches maximum, the microcontroller assumes the micro-generator is 

working at resonance and stops the tuning mechanism.  It switches to sleep mode to 

save power. The microcontroller then wakes up every duty cycle to monitor the output 

voltage and make a decision of whether it is necessary to trigger the tuning 

mechanism. If it is not necessary, the microcontroller reverts to sleep mode again. 

 
Figure 6.2. Flow chart of the voltage-only feedback algorithm. 

 
As the desired generator has a high Q-factor and its spectrum is symmetrical with 

respect to the resonant frequency, when the ambient vibration frequency changes, it 

cannot know if the new frequency is higher or lower than the resonant frequency of 

the generator. Therefore, in this algorithm, the entire tuning range is traversed to find 

the one that matches the vibration frequency. A more detailed flow chart of this 

algorithm is shown in Figure 6.3. 
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Figure 6.3. Detailed flow chart of the voltage-only feedback algorithm. 
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A start point and an end point are set first. The linear actuator is able to move the 

tuning magnet between the start and end points to cover the entire tuning range. The 

start point can be either the lower boundary or the higher boundary of the tuning 

range. Correspondingly, the end point is either the high boundary or the lower 

boundary of the tuning range. In this application, the start and end point means the 

lower and higher boundary of the tuning range, respectively.  

 

Every time the system is reset, the program starts searching for the current vibration 

frequency from the start point. When the system starts running, the linear actuator 

gradually reduces the distance between the two tuning magnets, i.e. increasing the 

magnetic force and thus the resonant frequency of the generator. In the meantime, the 

microcontroller detects the output voltage at each resonant frequency and compares it 

to a preset threshold voltage, Vthreshold. When the output voltage of the generator is 

higher than Vthreshold, the microcontroller starts comparing the current output voltage 

to the previous output voltage. When the output voltage reaches maximum, i.e. the 

current output voltage is lower than the previous one and the previous one is higher 

than the second previous one, the generator is considered to work at its resonance, i.e. 

the resonant frequency matches the ambient vibration frequency. Then, the 

microcontroller stops the linear actuator and remembers the current position A. 

Meanwhile, it detects the output voltage every duty cycle. When the output voltage 

drops below Vthreshold, it assumes the vibration frequency has changed and the 

microcontroller starts moving the tuning magnet towards the start point. If the stepper 

motor reaches the start point without finding the new resonant frequency, the new 

vibration frequency must be higher than the previous one. The linear actuator then 

quickly moves the tuning magnet to position A and searches for the new vibration 

frequency towards the end point. If the microcontroller cannot find the vibration 

frequency, it is most likely that the new vibration frequency is not within the 

designated tuning range. The linear actuator will wait for a duty cycle and search 

again towards the start point. 

 

Briefly, the principle of this algorithm is that once the system is activated, it starts 

searching for the matched resonant frequency condition upwards. Any further 

attempts of frequency tuning start searching downwards. If there is no resonant 

frequency matching the vibration frequency, searches are conducted upwards again. In 
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principle, this algorithm sweeps the entire tuning range to find the matching resonant 

frequency in almost every tuning attempt. Therefore, it can also be called the 

frequency traversal algorithm. The drawback of this algorithm is that it is not able to 

distinguish changes in vibration frequency from changes in vibration acceleration 

when the output voltage drops, which may cause the mis-activation of the tuning 

system when only vibration acceleration is changed. 
 
6.2.3.2 Voltage-frequency feedback 

Figure 6.4 shows the flow chart of the voltage-frequency feedback algorithm. Its 

difference with the voltage-only feedback is that when the generator works at its 

resonance, it detects changes in frequency of the output voltage. If any increase or 

decrease in output frequency is detected, the system will increase or decrease the 

resonant frequency of the generator accordingly. If a change in vibration frequency 

has been detected but the system cannot tell if it is increased or decreased, the system 

will decrease the resonant frequency of the generator as default. A more detailed flow 

chart of this algorithm is shown in Figure 6.5. 

 

 
Figure 6.4. Flow chart of the voltage-frequency feedback algorithm. 
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Figure 6.5. Detailed flow chart of the voltage-frequency feedback algorithm. 
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Detection of changes in frequency is based on the attenuation of the output voltage 

when the vibration frequency is moved away from the resonant frequency of the 

generator (as shown in Figure 6.6). As the frequency of the output voltage does not 

change as long as vibration frequency stays unchanged (Figure 6.7), this algorithm 

can avoid mis-activation of the tuning system due to change in vibration acceleration. 

However, when the vibration frequency changes away from the resonant frequency of 

the generator, the output voltage attenuates very quickly. The system may sometimes 

misjudge the change in vibration frequency and tune the resonant frequency on the 

opposite direction thus increasing the energy consumption. 

 
(a)                                                                (b) 

Figure 6.6. Attenuation of output voltage due to change in vibration frequency (a) 

frequency increased (b) frequency decreased. 

 
Figure 6.7. Waveform of output voltage due to change in vibration amplitude only. 

 

6.2.4 Characterization of the System 
The varying resonant frequency of the generator with distance between the two tuning 

magnets is shown in Figure 6.8. The resonant frequency increases as the distance 
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between the two tuning magnets is decreased, i.e. when the tuning force is increased. 

This figure is reproduced from Figure 5.21 to make description in this chapter clearer. 

 
Figure 6.8. Resonant frequency with variation of distances between two tuning 

magnets. 

 

Table 6.2 compares experimentally the resonant frequency of the generator when the 

tuning was finished with the vibration frequency as it varied using both algorithms, 

which shows that the closed loop frequency tuning system is successful in tracing the 

ambient vibration frequency. It is found that both algorithms have the same accuracy 

to tune the resonant frequency of the generator to match the ambient vibration 

frequency. The system was tested under vibration with various frequencies and 

constant acceleration. 

 

Table 6.2. Resonant frequency after tuning. 

Resonant frequency of the micro-generator after tuning 

(Hz) 
Ambient vibration 

frequency (Hz) 
Voltage-only feedback Voltage-frequency feedback 

70 70.2 70.2 

75 75.1 75.0 

80 79.9 80.1 

85 84.8 84.9 

90 90.0 90.1 

95 95.1 95.0 

98 98.0 98.1 



Chapter 6 Closed-loop Resonant Frequency Tuning System                                                         152            

 

6.3 Duty Cycle of the Tuning System 
6.3.1 Definition of Duty Cycle 
The period in which the system accumulates enough energy to perform tuning is 

called the duty cycle. It is important to shorten the duty cycle in practical application. 

The duty cycle of the closed loop frequency tuning system is given by: 
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==                (6.1) 

 

where W is the effective work done by the actuator within one duty cycle. ηa and ηg 

are the efficiency of the actuator and the generator, respectively. Pg is the power 

produced by the generator. W/ηa is the actual energy consumed by the actuator 

including loss within the actuator and Pg·ηg is the effective power delivered to the 

electrical load. The duty cycle of the closed loop frequency tuning system is 

proportional to the effective work done by the actuator and is inversely proportional 

to the power generated by the generator and the efficiencies of the actuator and the 

generator.  

  

Suppose that a varying magnetic force, F, is a function of distance between two 

tuning magnets, x, i.e. F = f(x) (see Figure 6.9). If one of the magnets is fixed, the 

work required to move the other magnet from A to B is given by 

 

dxFW B
A∫=                                                    (6.2) 

 

The work is shown as the shaded area in Figure 6.9. 

 
Figure 6.9. Work required to move one magnet from A to B. 
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6.3.2 Energy Consumed in Tuning Mechanism 
Figure 6.10 shows the theoretical average energy consumed in one tuning attempt 

with different tuning and frequency ranges using different algorithms. One tuning 

attempt is defined as the entire process from a change of vibration frequency being 

detected until the generator is at the new resonant frequency. Marks in this figure 

indicate the lowest and highest frequencies in each case. It is found that the larger the 

tuning range, the more work the actuator must do to finish one tuning attempt. 

Additionally, for the same tuning range, more work has to be done if the frequency 

range covered is higher because tuning forces within that range become larger. As the 

voltage-frequency feedback algorithm is able to detect changes in vibration frequency, 

system using this algorithm consumes less energy in one tuning attempt than voltage-

only feedback algorithm. 

 
(a) 

 
(b) 

Figure 6.10. Average energy consumed in one tuning attempt with various tuning 

range and start frequencies (a) voltage-only feedback (b) voltage-frequency feedback. 
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6.3.3 Comparison of Duty Cycle using Different Algorithms 
The proposed vibration-based generator, with a closed-loop frequency tuning system, 

generates an average of 120µW of power over the entire tuning range. Assuming 

typical efficiency of 60% for the actuator and the designed generator having an 

efficiency of 44%, the tuning duty cycles with different tuning ranges are shown in 

Figure 6.11. Marks in this figure indicate the lowest and highest frequencies in each 

case. It is found that the larger the tuning range, the longer the duty cycle. 

Furthermore, the duty cycle is shorter if the frequency covered is lower for the same 

tuning range. Since energy consumed in the system using voltage-frequency feedback 

algorithm is less than that consumed in the system using voltage-only feedback 

algorithm, the duty cycle of the voltage-frequency feedback system is shorter. 

 
(a) 

 
(b) 

Figure 6.11. Duty cycle of the system with various tuning range and start frequencies 

(a) voltage-only feedback (b) voltage-frequency feedback. 
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Figure 6.12 shows the theoretical average duty cycle with variation of tuning range 

(assuming the typical average power generated by the generator is 120µW). It is 

found that the duty cycle increases linearly with the increase of the tuning range. The 

duty cycle of the system using voltage-frequency feedback algorithm is about 55% of 

the duty cycle of the one using voltage-only feedback algorithm with the same tuning 

range. 

 

 
Figure 6.12. Comparisons of average duty cycle with variation of tuning range using 

two different algorithms. 

 

Figure 6.13 to 6.17 show the duty cycles of the system using voltage-only feedback 

algorithm with different tuning ranges with variation of the efficiencies of actuator 

and generator assuming the average power generated by the generator is 120µW. The 

duty cycle drops significantly when either or both of the actuator and generator have 

high efficiency. 
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Figure 6.13. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-only feedback, Tuning range: 30Hz). 

 
Figure 6.14. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-only feedback, Tuning range: 20Hz). 

 
Figure 6.15. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-only feedback, Tuning range: 15Hz). 
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Figure 6.16. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-only feedback, Tuning range: 10Hz). 

 
Figure 6.17. Duty cycle with variation of efficiency of the generator and actuator 

(Voltage-only feedback, Tuning range: 5Hz). 

 

Figure 6.18 to 6.22 show the duty cycles of the system using voltage-frequency 

feedback algorithm with different tuning ranges with variation of the efficiencies of 

actuator and generator assuming the average power generated by the generator is 

120µW. The duty cycle using this algorithm is much shorter than using the previous 

algorithm. Similarly, the duty cycle drops significantly when either or both of the 

actuator and generator have high efficiency. 
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Figure 6.18. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-frequency feedback, Tuning range: 30Hz). 

 
Figure 6.19. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-frequency feedback, Tuning range: 20Hz). 

 
Figure 6.20. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-frequency feedback, Tuning range: 15Hz). 
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Figure 6.21. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-frequency feedback, Tuning range: 10Hz). 

 
Figure 6.22. Duty cycle with variation of efficiencies of generator and actuator 

(Voltage-frequency feedback, Tuning range: 5Hz). 

 

The duty cycles of the closed loop frequency tuning system using voltage-only 

feedback and voltage-frequency feedback algorithm when the tuning range is 30Hz 

(from 67.6 Hz to 98Hz) are shown in Figure 6.23 and Figure 6.24, respectively. For 

the voltage-only feedback algorithm, the average duty cycle of the tuning system is 

2.6 minutes, i.e. about 156 seconds. Table 6.3 gives the relation between duty cycle 

and power level using this algorithm. If the generator generates a higher power level, 

the duty cycle can be reduced considerably. For the voltage-frequency feedback 

algorithm, the average duty cycle of the tuning system is 1.5 minutes, i.e. about 90 

seconds. Table 6.4 lists the relation between duty cycle and power level using this 

algorithm.  
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Figure 6.23. Duty cycle with variation of generated power by the micro-generator 

(Voltage-only feedback). 
 

 
Figure 6.24. Duty cycle with variation of generated power by the micro-generator 

(Voltage-frequency feedback). 

 

Table 6.3. Duty cycle Vs different power levels (Voltage-only feedback). 

Power generated Duty cycle 

< 10µW > 30 minutes 

> 60µW < 5 minutes 

> 320µW < 1 minute 

> 630µW < 30 seconds 
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Table 6.4. Duty cycle Vs different power levels (Voltage-frequency feedback). 

Power generated Duty cycle 

< 6µW > 30 minutes 

> 35µW < 5 minutes 

> 180µW < 1 minute 

> 360µW < 30 seconds 

    

6.4 Conclusions 
In this chapter, a closed loop tuning system developed to tune the resonant frequency 

to match the ambient vibration frequency has been detailed. A microcontroller was 

used to detect the output voltage of the micro-generator and control a linear actuator 

to adjust the distance between the two tuning magnets and hence the tuning force to 

realize the frequency tuning. In the test, all parts in the closed loop tuning system, 

including the microcontroller and linear actuator, were powered by a separate power 

supply to initially evaluate tuning principles and algorithms. The system was tested 

under vibration with various frequencies and constant acceleration.  

 

Two tuning algorithms, i.e. voltage-only feedback and voltage-frequency feedback, 

have been tested and compared. The experimental results showed that the closed loop 

frequency tuning system using both algorithms successfully traced the ambient 

vibration frequency and tuned the resonant frequency of the micro-generator from 

67.6 to 98 Hz by changing the distance between two tuning magnets from 5 to 1.2 mm, 

respectively. 

 

For the voltage-only feedback algorithm, the microcontroller assumes the micro-

generator is working at resonance when the output voltage reaches a maximum. It 

switches to sleep mode to save power when tuning is not necessary. The 

microcontroller then wakes up every duty cycle to monitor the output voltage and 

make a decision of whether it is necessary to trigger the tuning mechanism. If it is not 

necessary, the microcontroller reverts to sleep mode again. If a significant decrease in 

output voltage is detected, the microcontroller by default tunes and reduces the 

resonant frequency. If no resonant frequency is found matching the vibration 
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frequency, it then increases the resonant frequency to search for the vibration 

frequency again. 

 

For the voltage-frequency feedback algorithm, the microcontroller also assumes the 

micro-generator is working at resonance when the output voltage reaches maximum 

and switches to sleep mode if tuning is not necessary. The difference of this algorithm 

from the voltage-only feedback is that the voltage-frequency feedback algorithm is 

able to detect change in frequency via attenuation of output voltage. By investigating 

the waveform of the output voltage, the microcontroller can tell if the vibration 

frequency is increased or decreased. Hence, it controls the linear actuator to tune the 

resonant frequency of the generator accordingly. On average, this algorithm consumes 

less energy in tuning than the previous one. The analysis of duty cycle proved this 

conclusion. 

  

The duty cycle is defined as the period of time in which the system accumulates 

enough energy to perform tuning. It is proportional to the effective work done by the 

actuator and is inversely proportional to the power generated by the generator and the 

efficiencies of the actuator and the generator. It is found that the average duty cycle 

increases linearly with the increase of the tuning range for both algorithms. 

Furthermore, the duty cycle is shorter if the start frequency is lower than the target 

frequency for the same tuning range. The generator produces an average power of 

120µW when excited at 0.59m·s-2 with a tuning range of 30Hz (from 67.6Hz to 98Hz), 

assuming that the actuator has the efficiency of 60% and the generator designed in 

this research has the efficiency 44%, respectively. The duty cycle of the proposed 

closed loop frequency tuning system is 2.6 minutes, i.e. about 156 seconds for system 

using voltage-only feedback algorithm and is 1.5 minutes, i.e. about 90 seconds for 

voltage-frequency feedback algorithm. It is concluded that the duty cycle can be 

shortened by (a) increasing the output power from the micro-generator (b) increasing 

the efficiency of the generator, i.e. using more efficient power conditioning circuitry 

(c) selecting actuators that are more efficient in transferring energy from electrical 

domain to mechanical domain (d) reducing the work done by the actuator, i.e. to 

decrease the tuning range as well the starting frequency. Furthermore, the duty cycle 

of a closed loop tuning system using voltage-frequency feedback algorithm is 
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approximately half (55%) of that of the same tuning system using voltage-only 

feedback algorithm. However, due to the small signal of the attenuation of output 

voltage during the transition between the old and the new vibration frequencies, the 

system using voltage-frequency feedback algorithm can sometimes misjudge the 

change in vibration frequency and cause unnecessary consumption of energy in 

frequency tuning. 

  

In addition, the tuning system using voltage-only feedback algorithm is only able to 

detect the change in frequency of ambient vibration. If the amplitude and phase of the 

vibration change, the system may potentially be triggered by mistake. The tuning 

system using voltage-frequency feedback algorithm can overcome this drawback. If 

only amplitude of the vibration changes, the frequency feedback mechanism will 

avoid mis-trigger of the tuning system which could happen in system using voltage-

only feedback algorithm.  
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Chapter 7 
 

 

Resonant Frequency Tuning using  

Electrical Methods 

 

 
7.1 Introduction 
In Chapter 4, 5 and 6, resonant frequency tuning of an electromagnetic generator 

using mechanical methods has been detailed. A closed loop tuning system has been 

successfully developed to realize automatic tuning. However, one major drawback of 

frequency tuning using mechanical methods is that the tuning system consumes lots of 

energy as it changes the mechanical properties of the generator. Even when 

intermittent tuning is adopted, a significant amount of energy compared to the amount 

of energy produced by the generator is consumed in frequency tuning. Hence, an 

alternative more efficient power saving tuning method will be studied in this chapter. 

This is electrical tuning, which realizes frequency tuning by varying the electrical 

load of the generator. The principles of this method in both piezoelectric and 
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electromagnetic generators will be given in Section 7.2. The focus of this research is 

on the frequency tuning of electromagnetic generators using an electrical method. 

Some guidelines in designing an electrically tunable electromagnetic generator will be 

given in Section 7.3. One micro scale and one macro scale electromagnetic generator 

have been tested and the results are compared with the simulation results to verify the 

theory in Section 7.4 to 7.6. 

 

7.2 Principle 
The basic principle of electrical tuning is to change the electrical damping by 

adjusting the load, which causes the power spectrum of the generator to shift. Change 

of resistive load away from the optimum value could reduce the efficiency of power 

transferred to the electrical domain and load inductances are difficult to vary. It is 

therefore most feasible to adjust capacitive loads to realize electrical tuning. The 

principle of frequency tuning using electrical method in both piezoelectric and 

electromagnetic generators is now presented. 

 

7.2.1 Electrical Tuning in Piezoelectric Generators 
Figure 7.1 shows a schematic diagram of a bimorph piezoelectric generator with a 

mass, m on the tip. lb and lm are the effective length of the cantilever and mass, 

respectively. w is the width of the cantilever. tp and ts are the thickness of the 

piezoelectric layer and substrate layer, respectively and tg is the distance from the 

centre of the substrate layer to the centre of the piezoelectric layer. The electrodes of 

the generator have been omitted in Figure 7.1. 

 

 
Figure 7.1. Piezoelectric bimorph generator. 
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Such generators can be represented using an equivalent circuit as shown in Figure 7.2. 

Lm, Rm and Cm represent the mass, damping, and spring in the mechanical part, 

respectively. Cp is the capacitance of the piezoelectric layer, CL and RL are the 

capacitive and resistive load, respectively. V is the voltage across the resistive load. 

 

 
Figure 7.2. Equivalent circuit of piezoelectric generator with capacitive and resistive 

loads. 

 

The transformer relates the mechanical domain to the electrical domain according to 

the model of the piezoelectric effect. Specifically, it relates stress (σ) to electric field 

(E) at zero strain, or electrical displacement (D) to strain (δ) at zero electric field. The 

equations for the piezoelectric effect are: 

 

dE
Yp

+=
σδ                                                     (7.1) 

σε dED +=                                                    (7.2) 

 

where d is the piezoelectric strain coefficient, which is d31 for a piezoelectric bimorph 

as it works in 31 mode, ε is the dielectric constant of the piezoelectric material and Yp 

is the Young’s modulus of the piezoelectric material. Rewriting Equation (7.1) and 

Equation (7.2) leads to the equations for the transformer as: 

 

δpYdD 31−=                                                  (7.3) 

 

Hence, the transform ratio N is given by: 
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YdN 31−=                                                    (7.4) 

 

Equation (7.5) can be derived to present the mechanical dynamics of the system with 

electrical coupling. Detailed derivation of this model can be found in [113]. 
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where ∆ is Laplace transform of strain, δ, Ain is the vibration acceleration, ζ is the 

damping factor, ωn is the untuned resonant frequency, a = 1 if the two piezoelectric 

layers are connected in series and a = 2 if they are connected in parallel and s is the 

Laplace variable. b* is given by: 
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where le is the length of the electrodes. 

  

Furthermore, analysis in the electrical domain gives the following equation: 
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where CpL = Cp + CL and Σ = - a·d31·Yc·le·w. le is the length of the electrodes.  

 

Combining Equation (7.5) and (7.7) gives the transfer function of the system as: 
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which leads to the expression of the voltage across the resistive load given by: 
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The power in the resistive load is given by:  
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(7.10) 

 

It is known that f(x,y) = x2 + y2 ≥ 2xy and that f(x,y) becomes a minimum only if x = y  

(i.e. ( )yxf ,
1  is maximum only if x = y). Therefore, Equation (7.10) reaches maximum 

when: 
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Rearranging Equation (7.11) leads to a cubic function of the form: 

 

023 =+++ ZYX ωωω                                      (7.12) 

 

where: 
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The real solution of (7.12) gives the function of resonant frequency with respect to the 

load capacitance as: 
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where: 

 

 3810836 XZXY −−=Ω  

 ZXZXYZYXY 32223 128154312 ++−−=Ψ  

 

Figure 7.3 compares the resonant frequencies and power output of electrically tunable 

piezoelectric generators of different piezoelectric materials with the variation of load 

capacitance. These generators are identical except for the piezoelectric material. The 

coefficients used in the simulation are listed in Table 7.1. 
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(a) Resonant frequency 

 
(b) Output power 
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(c) Output power vs. resonant frequency 

Figure 7.3. Performance of a piezoelectric generator with different piezoelectric 

materials. 

 

Table 7.1. Coefficients of common piezoelectric materials [1, 114] 

 PZT-5H PZT-5A BaTiO3 PVDF 

d31 (×10-12 C·N-1) -274 -171 78 23 

Young’s modulus (GPa) 50 50 67 2 

Relative permittivity (ε/ε0) 3400 1700 1700 12 

 

The resonant frequency as well as the output power reduces with increasing load 

capacitance. It was demonstrated from Figure 7.3 that PZT-5H is the best of these four 

piezoelectric materials for an electrically tunable piezoelectric generator.  

 

Important considerations relating to the tunability of the piezoelectric generator are: 

♦ The material of the substrate layer and mass does not affect the tenability; 

♦ A piezoelectric material with higher Young’s modulus, strain coefficient and 

smaller permittivity provides a larger tuning range; 

♦ The ratio of the thickness of the piezoelectric layer to the thickness of the 

substrate layer should be small to increase the tuning range; 

♦ The capacitance of the piezoelectric layer should be minimized to increase the 

tuning range; 
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♦ If both piezoelectric layers are used for tuning, connection of these two layers 

in parallel gives a larger tuning range than connection in series; 

♦ The total damping should be kept low to increase the tuning range. 

 

7.2.2 Electrical Tuning in Electromagnetic Generators 
The differential equation of model of vibration-based generator (as Equation A.1) is:  
 
 

                   2
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2

2 )()()()(
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tydmtzk
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tdzb
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tzdm s −=++                             (7.14) 

 

where m is the mass, b is the damping coefficient ks is the spring constant, y(t) is the 

displacement of the generator housing and z(t) is the relative motion of the mass with 

respect to the housing. 

 

An equivalent electrical circuit for this system can be found by taking the Laplace 

transform of Equation (7.14), which, when rearranged, gives: 
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Equation (7.15) can be rewritten as: 

 

⎟
⎠
⎞

⎜
⎝
⎛ ++=−

sLR
sCsEsI 11)()(                                      (7.16) 

 

where 
ee k
amsYs

k
mI ⋅

== )(2 , )()( ssZksE e= , 2
ek

mC = , 
b
kR e

2
= , 

s

e

k
kL

2
=  and ke is 

electrical transduction constant. Based on Equation (7.16), an equivalent electrical 

circuit can be found (Figure 7.4). 
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Figure 7.4. Equivalent circuit of an electromagnetic generator (mechanical domain). 

 

Figure 7.5 shows the equivalent circuit model of an electromagnetic generator with 

capacitive load. Rc is the coil resistance, Lc is the coil inductance, RL is the load 

resistance and CL is the load capacitance. 

 
Figure 7.5. Equivalent circuit model of electromagnetic generators with capacitive 

load. 

 

The existence of the coil inductance increases the complexity of the circuit and the 

analysis. A capacitor in series with the coil inductance, Cs, can be used to cancel the 

effect of the coil inductance (Figure 7.6).  
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Figure 7.6. Equivalent circuit model of electromagnetic generators with capacitor 

connected to the coil in series. 

 

Thus, the combined impedance of the coil inductance and the capacitor in series, Zs, 

should be: 

 

0=cZ                                                      (7.17) 

 

Since  
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Thus,  

 

01 2 =− LCω                                                (7.19) 

 

The value of the capacitor in series with the coil inductance is: 

 

L
C 2

1
ω

=                                                     (7.20) 

 

Equation (7.20) shows that the higher the resonant frequency and the value of the coil 
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inductance, the smaller the capacitor is needed to compensate the effect of the coil 

inductance. When the impedance of the coil inductance is negligible compared to the 

coil resistance, the effect of the coil inductance on the model can be ignored and no 

capacitor is needed for compensation. 

 

Therefore, the equivalent circuit model of an electromagnetic generator with 

capacitive load can then be simplified as shown in Figure 7.7. The following analyses 

are based on the simplified mode. 

 

 
Figure 7.7. Simplified equivalent circuit model of electromagnetic generators with 

capacitive load. 

 

The total impedance of this circuit, ZT, is: 
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Therefore, the voltage across the capacitive load is: 
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The generated power is given by:  
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Finally, Equation (7.26) can be obtained by rearranging Equation (7.25) as: 
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P(ω) reaches maximum, when 
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Thus, the frequency at which the generator produces maximum power, i.e. the new 

resonant frequency, ωr, is given by: 
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where ( )21 r+=θ  
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The new resonant frequency, ωr, is a function of the load capacitance, CL. Therefore, 

the resonant frequency can be tuned by adjusting the load capacitance.  

 

Substitution of Equation (7.29) to Equation (7.26) yields the maximum power from 

the generator as follows: 
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where Φ and Ω are the same as those in Equation (7.26). As mentioned before, it is 

important to keep the output power constant while tuning. Two hypotheses have been 

made to analyse this as these hypotheses are true in most cases. 

 

Hypothesis 1 

In the equivalent circuit shown in Figure 7.7, the load resistor represents a 

rectification circuit. The value of load resistance is very high compared to the coil 

resistance as this is often the case, i.e. RL >> Rc and r is very large. Therefore, it can 

be assumed that 
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Then, 
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Therefore, Equation (7.26) can be simplified as: 
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Equation (7.35) shows that the maximum power is a function of the resonant 

frequency. When the resonant frequency increases, the maximum power decreases. 

For a self-tuned generator, the power level must not change much while the resonant 

frequency is changing. 

 

Hypothesis 2 

As long as hypothesis 1 stands, there comes the second hypothesis: 
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If Inequality (7.36) is satisfied, then: 
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Therefore, the maximum power is: 
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which is independent of the resonant frequency.  

 

Based on the above analysis, resonant frequency tuning for generators using electrical 

method is feasible. The power spectrum of the generator can be shifted by adjusting 

the load capacitance. The tunability1 of an electromagnetic generator is independent 

of the mass, Q-factor and coil resistance of the generator and the acceleration of the 

vibration. However, the value of the coil resistance determines the value of load 

capacitance that is needed to achieve the tuning (Figure 7.8). The larger the coil 

resistance, the smaller the load capacitances that are needed to achieve tuning. The 

tunability depends mostly on Κ and the ratio of load resistance to coil resistance, r. 

Figure 7.9 and Figure 7.10 shows the effect of Κ and r on the tunability of the 

electromagnetic generator using electrical tuning method, respectively. It is found that 

Κ must be high and r has to be small to achieve maximum tunability. Κ is defined as 

the coupling factor and will be studied in the following section. 

 

 

 

 

                                                        
1 Tunability of an electromagnetic generator using electrical tuning is defined as the tuning range across 
which the generator can maintain the same output power level as an untuned generator (given by 
Equation 7.38). The higher this tuning range, the better the tunability. 
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(a) Resonant frequency 

 
(b) Output power 

 
(c) Output power vs. resonant frequency 

Figure 7.8. Tunability of electromagnetic generator with various coil resistances 

(Κ = 1000, r = 1). 
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(a) Resonant frequency 

 
(b) Output power 

 
(c) Output power vs. resonant frequency 

Figure 7.9. Tunability of electromagnetic generator with various Κ 

(r = 1). 
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(a) Resonant frequency 

 
(b) Output power 

 
(c) Output power vs. resonant frequency 

Figure 7.10. Tunability of electromagnetic generator with various r 

(Κ = 1000). 
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7.3 Analysis of Electromagnetic Coupling 

 Factor,  Κ 
In this research, attention has been particularly paid to frequency tuning in 

electromagnetic generators. Therefore, in the following parts, only details relevant to 

electromagnetic generators are studied.  

 

The electromagnetic coupling factor Κ is given by: 
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where 
v
Vke =  and Rc is the coil resistance, V is the induced voltage within the coil 

and v is the moving velocity of the mass. 

 

According to Faraday’s law of induction, the induced voltage within the inductor coil 

is: 
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where N is the number of turns of the coil and 
dt
dφ  is the time-rate of change of 

magnetic flux φ. 

 

Therefore, the electromagnetic coupling factor Κ can be rewritten as: 
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The parameters N and Rc are only dependent on the coil geometry and dimensions, so 

the coil coefficient, γ, is define as: 

 

cR
N 2

=γ                                                      (7.42) 

 

Κ becomes: 
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γ                                    (7.43) 

 

Equation 7.43 can be simplified as: 

 

2

⎟
⎠
⎞

⎜
⎝
⎛⋅=Κ

dz
dφγ                                                (7.44) 

 

To increase electromagnetic coupling factor Κ, the coil coefficient must be increased 

as well as magnetic flux within the core of the coil and also the velocity of the mass 

must be decreased. Also, changes in magnetic flux within unit displacement of the 

mass have to be increased to achieve high electromagnetic coupling factor. 

 

7.3.1 Relationship between the Coil and Κ 
From Equation (7.43), it is easy to find out that the larger the coil coefficient, the 

higher the Κ. In the following section, methods of increasing the coil coefficient will 

be discussed. 

 

The number of the turns of the coil can be calculated by: 

 

( )
2

4
d

tRRFN ioc

⋅
⋅−⋅

=
π

                                        (7.45) 
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where Fc is the coil fill factor that is the ratio of the volume of conductor to the 

volume of the coil, Ro and Ri are the outer and inner radius of the coil, respectively. t 

is the total thickness of the coil and d is the diameter of the coil wire. 

 

The coil resistance is given by: 

 

A
LR c

c ρ=                                                  (7.46) 

 

where ρ is the electrical resistivity of the wire material, Lc is the total length of the 

coil wire and A is the cross area of the wire. The total wire length is: 

 

( )
2

224
d

tRRFL ioc
c

⋅−⋅
=                                         (7.47) 

 

The cross section area of the wire is: 

 

4

2dA ⋅
=

π                                                  (7.48) 

 

Substitution of Equation (7.47) and (7.48) into Equation (7.46) yields the formula of 

coil resistance can be rewritten as: 

 

( )
4

2216
d

tRRFR ioc
c ⋅

⋅−⋅
⋅=

π
ρ                                    (7.49) 

 

Hence, the coil coefficient can be rewritten as: 

 

( )
( )io

ioc

RR
tRRF

+⋅⋅
⋅−⋅

=
πρ

γ                                         (7.50) 

 

7.3.2 Relationship between the Magnetic Field and Κ 
Assume that the resonator makes a sinusoidal movement. This movement can be 
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described as 

 

( )tZtz ωsin)( =                                              (7.51) 

 

where Z is the maximum displacement of the mass and ω is the vibration frequency. 

 

Since the magnets are part of the mass, the magnetic field within the generator 

changes sinusoidally. Assuming that the displacement of the mass and change in 

magnetic field are always in phase, the magnetic field is given by: 

 

( )tt ωφ sin)( Φ=                                             (7.52) 

 

where Φ is the maximum flux linkage. Therefore,  

 

( )t
dt

td ωωφ cos)(
Φ=                                          (7.53) 

 

Hence, Κ can be written as: 

 

( )( )
( )( )2

2

cos
cos

tZ
t

ωω
ωωγ Φ

⋅=Κ                                        (7.54) 

 

2

2

Z
Φ

⋅=Κ γ                                                 (7.55) 

 

Κ is proportional to the square of the maximum magnetic flux linkage and inverse-

proportional to the square of the maximum displacement of the mass (magnets). 

Therefore, the layout of the magnets must be carefully designed so that a large 

magnetic field strength can be achieved within the small travel range of the magnets. 
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7.3.3 Key Points in Designing Electromagnetic Generators Capable of 

Electrical Tuning 
Based on analysis above, some key points in designing electromagnetic generators 

with high tunability are summarized as follows: 

♦ The coupling factor, Κ, has to be as large as possible; 

♦ The bigger the generator, the higher Κ is needed to keep the output power of 

the generator unchanged; 

♦ The ratio of load resistance to coil resistance should be kept low; 

♦ To achieve large Κ, the coil coefficient must be large, i.e. the coil must have 

higher filling factor and larger thickness; 

♦ The layout of magnets must be well designed so that the maximum change in 

flux linkage can be achieved within the minimum displacement of the magnets; 

♦ Mass, Q-factor and coil resistance do not affect the tunability of the 

electromagnetic generator; 

♦ With large Κ and r, the mass of the generator must be large to ensure high 

output power; 

♦ The larger the coil resistance, the smaller the load capacitances are needed to 

achieve frequency tuning. 

 

7.4 Micro Scale Electromagnetic Generator 

 with Electrical Frequency Tuning 
7.4.1 Overview of the Generator, G_et1 
Figure 7.11 shows the overall design of the electromagnetic micro-generator for 

frequency tuning using the electrical method. In Figure 7.11(b), a DIP-16 socket is 

placed next to the generator as a reference of its dimensions. This generator is called 

‘G_et1’1 in the rest of this section. 

                                                        
1  ‘G’ stands for ‘Generator’ and ‘et’ stands for Electrical Tuning. The name ‘G_et1’ means ‘the 
generator for electrical tuning, No. 1’. 
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(a) Model 

 

 
(b) Photo 

Figure 7.11. Overview of G_et1. 

 

G_et1 has a fixed coil and a resonator consists of two magnets and a set of magnetic 

flux guide. Figure 7.12 and 7.13 show the exterior and interior of the resonator, 

respectively. Figure 7.14 presents the cross-sectional view of the resonator of the A-

A’ plane in the Figure 7.13.  
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Figure 7.12. Exterior of the resonator of G_et1. 

 
Figure 7.13. Interior of the resonator of G_et1. 

 

 
Figure 7.14. Cross-sectional view of the resonator of G_et1. 
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The identical poles of the two magnets are facing each other so that there forms the 

four magnetic flux paths. The magnet material is NdFeB, a strong permanent magnet. 

The magnetic flux guide is made of mild steel that has very high permeability. One 

piece of 1 mm thick mild steel washer is placed between two magnets to (a) reduce 

the compelling force between them to make it easy to assemble the generator and (b) 

divert the magnetic flux to the side magnetic flux guide. The beam is made of BeCu, 

which has good mechanical properties as mentioned in Section 5.4.1. All components 

are then glued together using cyanoacrylate. An inertial mass is glued to the free end 

of the cantilever. Figure 7.15 and Table 7.2 show the dimensions of this generator. 

The total volume of the generator is 11 cm3 including the base. 

 
(a) Top view 

 

 
(b) Side view 

Figure 7.15. Dimensions of the resonator of G_et1. 
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Table 7.2. Dimensions of the resonator. 

x y bw bl bt tmt 

6 7 8 19 0.2 2 

(Unit: mm) 

 

The cylinder coil is fixed by two coil supports that are attached to both sides of the 

generator. Two pieces of BeCu foil connect the two coil supports and hold the coil so 

that the coil sits around the magnets. The outer and inner diameters of the coil are 

5mm and 4mm, respectively. The height of the coil is 2.5mm. The coil wire diameter 

is 25µm. The coil resistance is measured as 697Ω. The number of coil turns is around 

1430 and the fill factor is 0.56. In addition, the coil inductance is measured as 0.3mH. 

The coil supports and foils are screwed together using M2 screw. Figure 7.16 shows 

the overall structure of the generator, G_et1.  

 

 
Figure 7.16. Structure of the generator, G_et1. 

 

Figure 7.17 shows the cross sectional view of the A-A’ plane in the Figure 7.16. When 

the resonator vibrates, the magnets together with the magnetic flux guide move up and 

down relative to the fixed coil. The coil cuts the magnetic flux thus inducing voltage 

across the coil. 
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Figure 7.17. Cross-sectional view of the generator, G_et1. 

 

7.4.2 Performance of the Generator, G_et1 
The total mass of the generator is 5g and, for the dimensions mentioned in the 

previous section, the generator has a resonant frequency of 70.05Hz experimentally. 

The Q-factor of the generator is measured as 120 and the optimum load resistance is 

3700Ω. The electromagnetic coupling factor, Κ, is calculated to be 0.0035 according 

to Equation (7.41). 

 

Figure 7.18 shows the maximum power at the optimum resistive load and the open 

circuit voltage of the untuned generator when the generator was excited at various 

excitation levels, respectively. The maximum RMS output power is 18.4µW when the 

generator is excited at 30mg. 

 

The largest excitation the generator can work at is 30mg. When the excitation level is 

beyond 30mg, the resonator would collide with the coil holder and the coil. To avoid 

the collision and protect the generator, all future tests on this generator were based on 

an excitation level of 30mg.  
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(a) Output RMS power at the optimum load 

 
(b) Open circuit output RMS voltage 

Figure 7.18. Performance of the untuned generator, G_et1. 

 

 



Chapter 7 Resonant Frequency Tuning using Electrical Method                                                  195 

Figure 7.19 compares test results and theoretical analysis of the resonant frequency of 

the generator with variations of load capacitance. The theoretical curve is drawn 

according to Equation (7.29). Note that, in this test, no capacitor is connected in series 

with the coil to cancel the coil inductance. The reason is as follows. As the coil 

inductance is 0.3mH and given the resonant frequency of 70.5Hz, the impedance of 

the coil inductance is only 0.132Ω which is much smaller than the coil resistance of 

697Ω. Therefore, the effect of the coil inductance on the performance of the generator 

in this case can be ignored. Figure 7.20 compares test results and theoretical analysis 

of the maximum output power of the generator with variation of load capacitances. 

The theoretical curve is drawn according to Equation (7.30). Combining Figure 7.19 

and 7.20 leads to Figure 7.21 which shows the maximum output power at various 

resonant frequencies. It is found through Figure 7.19 to 7.21 that the experimental 

resonant frequencies of the generator agree with the theory while the maximum output 

power at various resonant frequencies are less than the theory suggests. The overall 

tuning range is 0.2Hz. The operational frequency range over which the output power 

is reduced by less than 3dB of the untuned generator is 0.13Hz. 

 

 
Figure 7.19. Resonant frequency of G_et1 with variations of load capacitances. 
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Figure 7.20. Maximum output power of G_et1 with variations of load capacitances. 

 

 
Figure 7.21. Maximum output power at various resonant frequencies of G_et1. 
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7.5 Macro Scale Electromagnetic Generator 

 with Electrical Frequency Tuning 
7.5.1 Overview of the Generator, G_et2 
The macro scale electrically tunable electromagnetic generator described in this 

section was designed and built by Mr Thomas Mouille from Perpetuum Ltd. Tests 

have been done on this generator to further verify the mathematical model mentioned 

earlier in this chapter. This generator is called ‘G_et2’1 in the rest of this section. 

 

The generator is a cylinder whose diameter is 7cm and height is 7.5cm as shown in 

Figure 7.22. The total volume of the generator is 289cm3. Figure 7.23 shows the 

schematic cross sectional view of the generator along the centre axis. The generator 

consists of a stator (as shown in Figure 7.24) and a resonator (as shown in Figure 

7.25). Note that in Figure 7.23, the centre rod is not part of the resonator. It is where 

the two springs are fixed.  

 

 
Figure 7.22. Photo of electrically tunable macro generator, G_et2 (Courtesy of 

Perpetuum Ltd.). 
                                                        
1  ‘G’ stands for ‘Generator’ and ‘et’ stands for Electrical Tuning. The name ‘G_et2’ means ‘the 
generator for electrical tuning, No. 2’. 
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Figure 7.23. Schematic cross sectional view of G_et2. 

 

 
Figure 7.24. The stator of G_et2. 
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Figure 7.25. The resonator of G_et2. 

 

The stator consists of a centre rod, a centre magnetic flux guide, two coils and a ring 

magnet magnetized radially. The centre magnetic flux guide is screwed and fixed on 

the centre rod and coils and the ring magnet are then fixed by plastic holders around 

the centre magnetic flux guide. The resonator consists of two springs which are 

screwed and fixed on both sides of the centre rod and the outer magnetic flux guide is 

fixed between the two springs. The outer magnetic flux guide also acts as the inertial 

mass.  

 

During operation, the generator is fixed by attaching the centre rod to the vibration 

source. The little air gap between the centre magnetic flux guide and the outer 

magnetic flux guide, g1 and g2, vary with the movement of the resonator, which 

changes magnetic filed flux going through the two coils and thus induces voltage 

across the coils. The air gaps, g1 and g2, are both 0.2mm long when the generator is 

static. Therefore, the maximum displacement of the resonator should never exceed 

0.2mm or the generator may be damaged. 
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The magnet and the magnetic flux guide are made of hard and soft ferrite, respectively. 

The spring is made of stainless steel. Magnet and coil holders are made of plastic and 

the coil is wound using copper wire. 

 

The total mass of the generator is 830g. The electromagnetic coupling factor, Κ, is 

calculated to be 552.25 according to Equation (7.41). The coil resistance and 

inductance is measured as 99.5Ω and 4H, respectively. 

 

7.5.2 Performance of the Generator, G_et2 
The generator has been tested under the excitation level of 10mg and 25mg for 

comparison. The resonant frequencies of the generator are 95.1Hz and 95.5Hz when 

excited at 10mg and 25mg, respectively. The Q-factor of the generator is measured as 

1350 when excited at 10mg and 1250 when excited at 25mg. 

 

As the coil inductance is 4H and given the resonant frequency of 95.1Hz and 95.5Hz, 

the impedance of the coil inductance is 2390Ω and 2400Ω when excited at 10mg and 

25mg, respectively. They are much bigger than the coil resistance of 99.5Ω. Therefore, 

a capacitor of 680nF (according to Equation (7.20)) was connected in series with the 

coil to cancel the effect of the coil inductance on the performance of the generator in 

the tests described in this section.  

 

Figure 7.26 shows the output RMS power and output RMS voltage at the designated 

resistive load of the untuned generator when the generator was excited at various 

excitation levels, respectively. The designated resistances are 10kΩ and 4kΩ when the 

generator is excited at 10mg and 25mg, respectively. The purpose of using designated 

resistances rather than the optimum load resistance is to verify the generalization of 

the theory. The output RMS powers are 1.1mW at 10kΩ when excited at 10mg and 

2.8mW at 4kΩ when excited at 25mg. 
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(a) Output RMS power at designated load resistance 

 
(b) Output RMS voltage at designated load resistance 

Figure 7.26. Performance of the untuned generator, G_et2. 

 

Figure 7.27 shows the power spectrum of the generator with a resistive load of 10kΩ 

and various capacitances ranging from 0 to 1400nF when excited at 10mg. Figure 

7.28 and 7.29 compare test results and theoretical analysis of the resonant frequency 

and the maximum output power of the generator with variation of load capacitances, 
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respectively. The theoretical curves are drawn according to Equation (7.29) for 

resonant frequency and Equation (7.30) for output power. Combining Figure 7.28 and 

7.29 leads to Figure 7.30 which shows the maximum output power at various resonant 

frequencies. It is found the resonant frequency together with the maximum output 

power reduces with the increase of the load capacitance as expected. The 

experimental results agree with the theory. The operational frequency range of the 

generator over which the output power is reduced by less than 3dB of the untuned 

generator is 2.2Hz. 

 

 
Figure 7.27. Power spectrum of G_et2 with variations of load capacitances when 

excited at 10mg (load resistance is 10kΩ). 
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Figure 7.28. Resonant frequency of G_et2 with variations of load capacitances 

(excited at 10mg). 

 

 
Figure 7.29. Maximum output power of G_et2 with variations of load capacitances 

(excited at 10mg). 
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Figure 7.30. Maximum output power at various resonant frequencies of G_et2  

(excited at 10mg). 

 

Figure 7.31 shows the power spectrum of the generator with a resistive load of 4kΩ 

and various capacitances ranging from 0 to 1600nF when excited at 25mg.  

 

 
Figure 7.31. Power spectrum of G_et2 with variations of load capacitances when 

excited at 25mg (load resistance is 4kΩ). 
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Comparisons of test results and theoretical analysis of the resonant frequency and the 

maximum output power of the generator with variations of load capacitances are 

shown in Figure 7.32 and 7.33, respectively. The theoretical curves are drawn 

according to Equation (7.29) for resonant frequency and Equation (7.30) for output 

power. Combining Figure 7.32 and 7.33 results in Figure 7.34 which shows the 

maximum output power at various resonant frequencies.  

 

 

 
Figure 7.32. Resonant frequency of G_et2 with variations of load capacitances 

(excited at 25mg). 
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Figure 7.33. Maximum output power of G_et2 with variations of load capacitances 

(excited at 25mg). 

 

 
Figure 7.34. Maximum output power at various resonant frequencies of G_et2 

(excited at 25mg). 
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It is found the resonant frequency reduced with the increase of the load capacitance as 

expected. When the load capacitance was small, the maximum power output remained 

unchanged while the resonant frequency reduced. Then the maximum power output 

started decreasing as the load capacitance increased. The experimental results of the 

resonant frequency agree with the theory while the experimental results of the 

maximum output power are bigger than the theory suggests. The reason is that there  

are hard cores inside the two coils, the coil inductance varies according to the change 

in magnetic flux within the hard core and also the movement of the resonator. The coil 

inductance changes with the vibration level of the generator. The coil inductance of 

4H was measured when the generator is static. When the vibration level is small (e.g. 

10mg), the coil inductance does not change much. Thus the value of the capacitor 

needed to be connected in series with the coil is close to the calculation based on the 

static situation. This is why the experimental results and theoretical analysis agree 

with each other in the case when the excitation level is 10mg. As the vibration level 

increases, the value of the capacitor needed to be connected in series with the coil is 

different from the calculation based on the static situation. The effect of the coil 

inductance on the performance of the generator becomes apparent and therefore 

causes the mismatch between the experimental results and the theoretical analysis. 

The operational frequency range of the generator over which the output power is 

reduced by less than 3dB of the untuned generator is 4.2Hz. 

 

7.6 Comparisons of the Two Electrically 

 Tunable Generators 
Table 7.3 summarizes the performance of the two generators presented in Section 7.4 

and 7.5. It is found that the macro generator, G_et2 has better performance regarding 

frequency tuning than the micro generator, G_et1. The volume and mass of the 

generator G_et2 are 166 and 26 times larger than those of the generator G_et1, 

respectively. However, the electromagnetic coupling factor, Κ, of G_et2 is over 

150,000 times higher than that of G_et1. By comparing the magnetic circuits of these 

two generators, the reason for the huge difference in tunability of them can be 

unveiled.  
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Table 7.3. Comparisons of performance of G_et1 and G_et2. 

 Mass 
(g) 

Volume 
(cm3) 

Κ 
(T·m) 

Vibration 
(mg) 

Untuned 
resonant 

frequency 
(Hz) 

Q 

3dB 
frequency 

rangea 
(Hz) 

Tuning 
efficiencyb 

(%) 

Maximum 
load 

capacitancec 

(nF) 
G_et1 5 11 0.0035 30 70.05 120 0.13 0.19 1000 

10 95.1 1350 2.2 2.3 700 
G_et2 830 289 552.25 

25 95.5 1250 4.2 4.4 1400 
a The frequency range of the generator over which the output power is reduced by less than 3dB 
b The ratio of the 3dB frequency range to the untuned resonant frequency 
c The maximum load capacitance that the generator is connected to keep the resonant frequency within  

   the 3dB frequency range 

 

Figure 7.35 shows the magnetic circuit of these two generators. Rci
1 and Rai represent 

the reluctances of the magnetic flux guide and the air gap, respectively. The 

components in the dashed line boxes are magnets. Fi represents the magnetomotive 

forces of the magnets and Rmi are the reluctances of the magnets. 

 

 
(a) G_et1 

                                                        
1 i represents the integral. 
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(b) G_et2 

Figure 7.35. Magnetic circuits of the two electrical tunable generators. 

 

As the structures of both generators are symmetric with the centre axis, the following 

equations apply when the generators are in operation.  

 

For the micro generator, G_et1, 

 

Rc1 = Rc2 = Rc5 = Rc6                                      (7.56)   

Rc3 = Rc8                                                (7.57)   

Rc4 = Rc7                                                (7.58)   

Rc9 = Rc10 = Rc11 = Rc12                                           (7.59)   

Ra1 = Ra2 = Ra                                           (7.60)   

Rm1 = Rm2 = Rm                                          (7.61)   

F1 = F2 = F                                              (7.62) 

 

For the macro generator, G_et2, 

 

Rc1 = Rc2 = Rc5 = Rc6                                      (7.63)   

Rc3 = Rc8                                                (7.64)   
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Rc4 = Rc7                                                (7.65)   

Ra1 = Ra2 = Ra’                                            (7.66)   

                  Rm1 = Rm2 = Rm                                           (7.67)   

F1 = F2 = F                                                (7.68) 

 

Based on Equation (7.56) to (7.66), magnetic flux in both magnetic circuits can be 

estimated. For G_et1, the magnetic flux passing through the coil, Ψ1 and Ψ2 are given 

by: 

 

              ΨG_et1a = Ψ1 =                                                                                (7.69) 

 

              ΨG_et1b = Ψ2 =                                                                                (7.70) 

 

For G_et2, the magnetic flux passing through the coil, Ψ1 and Ψ2 are given by: 

 

               ΨG_et2a = Ψ1 =                                                                                 (7.71) 

 

               ΨG_et2b = Ψ2 =                                                                                (7.72) 

 

When G_et1 is working, the reluctances of magnetic flux guide, Rc7 and Rc8 vary 

with the movement of the resonator. They are given by: 

 

Rc7 = 
cc S

yL
⋅⋅

∆+

0

1

µµ
                                           (7.73) 

Rc8 = 
cc S

yL
⋅⋅

∆−

0

1

µµ
                                           (7.74) 

 

where L is the original length of the magnetic flux guide, µc is the relative 

permeability of the magnetic flux guide material, µ0 is the permeability of free space 

and Sc is the cross section area of the magnetic flux guide. ∆y1 is the displacement of 

the resonator relative to the static part. 

F
Rm aR++ +c1R0.5 c8R0.5 c9R0.5 +

F
Rm aR++ +c6R0.5 c7R0.5 c9R0.5 +

F
Rm a1R++ +c1R0.5 c8R0.5 + a3R+c9R

F
Rm a1R++ +c6R0.5 c7R0.5 + a4R+c10R
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When G_et2 is working, the reluctances of the air gaps, Ra3 and Ra4 vary with the 

movement of the resonator. They are given by: 

 

Ra3 = 
aS
yg

⋅
∆+

0

21
µ

                                            (7.75) 

Ra4 = 
aS
yg

⋅
∆−

0

22
µ

                                            (7.76) 

 

where g1, g2 are the air gap between the resonator and the stator as shown in Figure 

7.23. Sc is the cross sectional area of the air gap. ∆y2 is the displacement of the 

resonator relative to the stator. As the magnetic flux guides are made of ferromagnetic 

material, their permeability is much higher than that of air. Any small changes in the 

dimensions of air gaps will results in huge change in their reluctances while any small 

changes in the dimensions of the magnetic flux guides results in much less change in 

their reluctances. Furthermore, as reluctances of air gaps are much larger than those of 

magnetic flux guides, reluctances of air gaps dominate the total reluctance in the 

magnetic circuit. Small changes in reluctance of magnetic flux guide have little effect 

on the magnetic flux in the circuit while small changes in reluctance of air gap can 

change the magnetic flux significantly.  

 

In the micro generator G_et1, the magnetic flux does not change while the mass is 

vibrating. Only the magnetic flux cutting the coil is changed due to the change in 

reluctances of the magnetic flux guides. In the macro generator G_et2, the magnetic 

flux is changed by varying the reluctances of the air gaps. Due to the space limit, the 

maximum displacements of both generators are similar (around 0.2mm). Apparently, 

magnetic flux change per unit displacement in G_et2 is much larger than that in G_et1. 

This is the reason why the electromagnetic coupling factor, Κ, in G_et2 is much 

higher than that in G_et1 and the macro generator G_et2 has larger tuning range than 

the micro generator G_et1. 

 

7.7 Conclusions 
In this chapter, frequency tuning by varying the electrical load, particularly, the 

capacitive load has been presented. The theoretical analysis of piezoelectric generator 
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suggests that the material of the substrate layer and mass does not affect the tunability. 

If a piezoelectric material with higher Young’s modulus, strain coefficient and smaller 

permittivity is used, the generator can have a larger tuning range. The ratio of the 

thickness of the piezoelectric layer to the thickness of the substrate layer should be 

small to increase the tuning range. The capacitance of the piezoelectric layer should 

be minimized to increase the tuning range. If both piezoelectric layers are used for 

tuning, connection of these two layers in parallel gives a larger tuning range than 

connection in series. The total damping should be kept low to increase the tuning 

range. 

 

For the electromagnetic generator, it was found, based on theoretical analysis, that a 

high electromagnetic coupling factor, Κ, must be achieved to realize the generators 

with large tuning range. Increasing the coil resistance results in using small load 

capacitances to achieve a large tuning range. For bigger generators, Κ must be higher 

to keep the output power of the generator unchanged. To achieve a large Κ, the coil 

must have a higher fill factor and larger thickness. Furthermore, the layout of magnets 

must be well designed so that the maximum change in magnetic field strength can be 

achieved within the minimum displacement of the magnets. It was also found that the 

mass, Q-factor and coil resistance do not affect the tunability of the electromagnetic 

generator. The mass of the generator must be large to ensure high output power if Κ is 

high. 

 

Resonant frequencies of a micro electromagnetic generator as well a macro 

electromagnetic generator have been tuned by varying their capacitive load. The 

micro generator named G_et1 has an untuned resonant frequency of 70.05Hz. The 

electromagnetic coupling factor of G_et1 is 0.0035. It has been tuned by 0.13Hz while 

changing its capacitive load from 0 to 1000nF when excited at 30mg. The macro 

generator named G_et2 has untuned resonant frequencies of 95.1Hz and 95.5Hz when 

excited at 10mg and 25mg, respectively. The electromagnetic coupling factor of 

G_et1 is 552.25. It has been tuned by 2.2Hz by changing its capacitive load from 0 to 

700nF when excited at 10mg. When the generator was excited at 25mg, its resonant 

frequency has been tuned by 4.2Hz by changing its capacitive load from 0 to 1400nF. 

Most results were found to agree with the theoretical analysis. It needs to be pointed 
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out that due to the existence of the coil inductance; a capacitor is needed to be 

connected to the coil in series to cancel the effect of the coil inductance. The value of 

this capacitor varies with the vibration frequency. Some disagreement between 

experimental results and theoretical analysis is caused by inaccurately choosing the 

value of this capacitor. If this method is to be designed as an automatic process, the 

value of this capacitor together with the capacitive load should both be adjusted 

according to the vibration frequency. 

 

The macro generator G_et2 has a larger tuning range than the micro generator G_et1. 

The reason for that is in the micro generator G_et1, the magnetic flux does not change 

while the mass is vibrating and only the magnetic flux cutting the coil is changed due 

to the change in reluctances of the magnetic flux guides while in the macro generator 

G_et2, the magnetic flux is changed by varying the reluctances of the air gaps. As 

reluctances of air gaps are much larger than those of magnetic flux guides, reluctances 

of air gaps dominate the total reluctance in the magnetic circuit. Small changes in 

reluctance of magnetic flux guide have little effect on the magnetic flux in the circuit 

while small changes in reluctance of air gap can change the magnetic flux 

significantly. Since the maximum displacements of both generators are similar, 

magnetic flux change per unit displacement in G_et2 is much larger than that in G_et1. 

Therefore, the macro generator G_et2 has much higher electromagnetic coupling 

factor, Κ than G_et1 and thus larger tuning range. This also agrees with the key points 

concluded in Section 7.33 for designing electromagnetic generators capable of 

frequency tuning using electrical method. 

 

The problem with building a generator like G_et2 is that if the magnet is strong and 

the magnetic flux guide has very high permeability, there will be strong magnetic 

force in the small air gap between the resonator an the stator, which will cause non 

linearity of the generator. If this force is too big, the movement of the resonator can be 

seriously restricted. This has to be taken into consideration when designing such 

generators.   

 



214 

 

 

Chapter 8 
 

 

Conclusions and Future 

Work 
 

 
8.1 Summary of Work 
A vibration based micro-generator is an energy harvesting device that couples a 

certain transduction mechanism to the ambient vibration and converts mechanical 

energy to electrical energy. Once installed, it can provide electrical energy persistently 

with little maintenance need. Therefore, it has been considered one of the most 

promising energy sources to replace batteries in some applications where maintenance 

is difficult or complex, such as wireless sensor networks. Theoretical analysis 

suggests that the maximum output power is generated when the resonant frequency of 

the generator matches the ambient vibration frequency. Once these two frequencies do 

not match, the output power drops significantly due to high Q-factor of the generator. 
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This thesis has addressed some possible methods to overcome this limit of the 

vibration based micro-generator, in particular, the methods of tuning the resonant 

frequency of the generator to match the ambient vibration frequency.  

 

Chapter 2 introduced some transduction mechanisms that have been commonly used 

in vibration energy harvesting, such as electromagnetic, electrostatic, piezoelectric 

and magnetostrictive. A wide variety of studies regarding these mechanisms were 

reviewed and summarized. The theory behind the vibration based micro-generator 

was reviewed. It was found that if the mechanical damping factor approaches zero, i.e. 

no mechanical damping, the output power is totally dependent on the electrical loads. 

Therefore, it is highly important to minimize the mechanical damping in designing the 

micro-generator. The limitation of the vibration-based micro-generators, i.e. their 

narrow operational bandwidth, was highlighted. Solutions to this problem include 

widening the bandwidth and tuning the resonant frequency of the micro-generator. 

 

Chapter 3 reviewed a wide range of studies reported so far about tuning resonant 

frequency of resonators and widening the bandwidth of the resonator and their 

applications in vibration based micro-generator.  

 

The methods of tuning the resonant frequency include mechanical and electrical. The 

mechanical tuning method requires a certain mechanism to change the mechanical 

property of the structure of the generator to tune the resonant frequency. Possible 

mechanical tuning methods include: 

♦ Changing dimensions; 

♦ Moving the centre of gravity of proof mass; 

♦ Varying spring stiffness; 

♦ Straining the structure. 

 

Mechanical tuning method can be classified as continuous tuning, i.e. the tuning 

mechanism is always on even when the two frequencies match, and intermittent 

tuning, i.e. the tuning mechanism is on only when frequency tuning is required. 

Intermittent tuning has advantages over continuous tuning as it is more efficient 

because the tuning mechanism is turned off when the generator is at the right 
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frequency thereby consuming negligible energy, which makes producing a net output 

power more probable.  

 

The electrical tuning method realizes resonant frequency tuning by adjusting the 

electrical load, in particular the capacitive load. This method consumes little energy as 

it does not involve any change in mechanical properties. By comparison, it is much 

easier to implement than mechanical methods.  

 

The suitability of different tuning approaches will depend upon the application but in 

general terms, the key factors for evaluating a tuning mechanism for adjusting the 

resonant frequency of vibration-based micro-generators are: 

♦ Energy consumed by the tuning mechanism should be as small as possible and 

must not exceed the energy produced by the generator; 

♦ The mechanism should achieve a sufficient operational frequency range; 

♦ The tuning mechanism should achieve a suitable degree of frequency 

resolution; 

♦ The generator should have as high as possible Q-factor to achieve maximum 

power output and the strategy applied should not increase the damping, i.e. 

decrease Q-factor, over the entire operational frequency range. 

 

The method of widening the bandwidth of the generator can be achieved by, for 

example, employing:  

♦ An array of structures each with a different resonant frequency; 

♦ An amplitude limiter;   

♦ Non-linear (e.g. magnetic) springs; 

♦ Bi-stable structures;  

♦ A large inertial mass (large device size) with a high degree of damping. 

 

It was concluded that, for vibration energy harvesting, possible strategies to increase 

the operation frequency range include: 

♦ Changing spring stiffness intermittently (preferred) or continuously; 

♦ Straining the structure; 

♦ Adjusting capacitive load; 
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♦ Using generator array; 

♦ Employing non-linear and bi-stable structures. 

 

In this thesis, frequency tuning methods by changing spring stiffness intermittently 

and adjusting capacitive load were studied. 

 

Chapter 4 detailed the realization of resonant frequency tuning of a vibration-based 

generator by applying axial loads to the cantilever structure. The axial loads are 

provided by the interacting force between two tuning magnets. An axial tensile load 

can increase the resonant frequency while an axial compressive load can decrease the 

resonant frequency. A prototype of generator has been tested to compare to the 

theoretical analysis. Under the tensile loads, it is found that, when the tuning force 

became large, the resonant frequency was lower than expected because, when a 

tensile load much greater than the buckling force is applied to a beam, the resonant 

frequency approaches that of a straight tensioned cable and does not increase any 

more because the force associated with the tension in the beam becomes much greater 

than the beam stiffness. Furthermore, the Q-factor of the generator with tensile loads 

became higher than that of the generator without any tuning and the output power 

reduces with the increase of the resonant frequency as predicted. However, the Q-

factor decreased when the tensile load became large. Under compressive loads, the 

resonant frequency decreased significantly for a small tuning force. Furthermore, the 

Q-factor of the generator dropped a lot as the resonant frequency decreased, i.e. the 

compressive load increased, which is a fatal drawback for this method as a useful 

tuning mechanism. Therefore, it was concluded that applying axial tensile loads to a 

cantilever is the better method to tune the resonant frequency of the vibration-based 

micro-generator with a cantilever structure compared to applying axial compressive 

loads. 

 

Chapter 5 presented a tunable vibration-based electromagnetic micro-generator 

designed for this project. Its resonant frequency can be tuned by applying an axial 

tensile load using a pair of tuning magnets. The resonant frequency of the micro-

generator can be tuned from 67.6 to 98Hz by changing the distance between two 

tuning magnets from 5 to 1.2mm, respectively. The generator has an efficiency of 44  
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and delivered a power of 61.6 to 156.6µW to the electrical load over the tuning range 

when it was excited at a constant low vibration acceleration level of 0.59m⋅s-2. The 

tuning performance of this generator was similar to that of the one investigated in 

Chapter 4. Importantly, it was found that the tuning mechanism does not affect the 

damping of the micro-generator over most of the tuning range. Only when the tuning 

force became larger than the inertial force caused by vibration, was total damping 

increased and the output power less than that in the constant damping situation.   

 

Chapter 6 investigated a closed loop tuning system developed to tune the resonant 

frequency of the generator introduced in Chapter 5 to match the ambient vibration 

frequency. A microcontroller was used to detect the output voltage of the micro-

generator and control a linear actuator to adjust the distance between the two tuning 

magnets and hence the tuning force to realize frequency tuning. In the test, all parts in 

the closed loop tuning system, including microcontroller and linear actuator, were 

powered by a separate power supply to initially evaluate tuning principles and 

algorithms. Two tuning algorithms, i.e. voltage-only feedback and voltage-frequency 

feedback, were tested and compared. The voltage-only feedback algorithm judged 

whether the resonant frequency matches the vibration frequency based only on the 

amplitude of the output voltage of the generator while the voltage-frequency feedback 

algorithm judged whether the resonant frequency matches the vibration frequency 

based on both the amplitude and frequency of the output voltage of the generator. The 

experimental results showed that the closed loop frequency tuning system using both 

algorithms successfully traced the ambient vibration frequency. 

 

The duty cycle, defined as the period of time in which the system accumulates enough 

energy to perform tuning, of systems using these two algorithms was studied. It is 

found that the average duty cycle increases linearly with the increase of the tuning 

range for both algorithms. It was concluded that the duty cycle can be shortened by  

♦ Increasing the output power from the micro-generator;  

♦ Increasing the efficiency of the generator, i.e. using more efficient power 

conditioning circuitry; 

♦ Selecting actuators that are more efficient in transferring energy from the 

electrical domain to the mechanical domain; 
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♦ Reducing the work done by the actuator, i.e. decrease the tuning range as well 

as the starting frequency. 

 

It was concluded that the duty cycle of a closed loop tuning system using voltage-

frequency feedback algorithm is approximately half (55%) of that of the same tuning 

system using voltage-only feedback algorithm. Additionally, the tuning system using 

voltage-only feedback algorithm is only able to detect the change in frequency of 

ambient vibration while the tuning system using voltage-frequency feedback 

algorithm can detect not only the change in resonant frequency but also the change in 

amplitude and phase.  

 

Chapter 7 investigated the method of frequency tuning by varying the electrical load, 

particularly, the capacitive load. Models of frequency tuning of both piezoelectric and 

electromagnetic using electrical method were studied. Focus was on the 

electromagnetic generator. The theoretical analysis of piezoelectric generator suggests 

that some important considerations relating to the tunability of the piezoelectric 

generator include: 

♦ The material of the substrate layer and mass does not affect the tenability; 

♦ A piezoelectric material with higher Young’s modulus, strain coefficient and 

smaller permittivity provides a larger tuning range; 

♦ The ratio of the thickness of the piezoelectric layer to the thickness of the 

substrate layer should be small to increase the tuning range; 

♦ The capacitance of the piezoelectric layer should be minimized to increase the 

tuning range; 

♦ If both piezoelectric layers are used for tuning, connection of these two layers 

in parallel gives a larger tuning range than connection in series; 

♦ The total damping should be kept low to increase the tuning range. 

 

From theoretical analysis, some key points in designing electromagnetic generators 

with high tunability include: 

♦ The coupling factor, Κ, has to be as large as possible; 

♦ The bigger the generator, the higher Κ is needed to keep the output power of 

the generator unchanged; 
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♦ The ratio of load resistance to coil resistance should be kept low; 

♦ To achieve large Κ, the coil coefficient must be large, i.e. the coil must have 

higher fill factor and larger thickness; 

♦ The layout of magnets must be well designed so that the maximum change in 

magnetic field strength can be achieved within the minimum displacement of 

the magnets; 

♦ Mass, Q-factor and coil resistance do not affect the tunability of the 

electromagnetic generator; 

♦ With large Κ and r, the mass of the generator must to be large to ensure high 

output power; 

♦ The larger the coil resistance, the smaller the load capacitances are needed to 

achieve frequency tuning. 

 

Two electrically tunable electromagnetic generators were tested and the experimental 

results were compared with theoretical analysis. Most results were found to agree 

with the theoretical analysis. Due to the existence of the coil inductance, a small 

capacitor is needed to be connected to the coil in series to cancel the effect of the coil 

inductance. However, the value of this capacitor varies with the vibration frequency. 

Disagreements between experimental results and theoretical analysis were caused by 

inaccurately choosing the value of this capacitor. If this method is to be designed as 

automatic process, the value of this capacitor together with the capacitive load should 

both be adjusted according to the vibration frequency. If the coil inductance is so 

small that the impedance of the coil inductance is neglectable compared to the coil 

resistance, the effect of the coil inductance on the model can be ignored and no 

capacitor is needed for compensation. 

 

In conclusion, this thesis has highlighted mechanical and electrical methods of 

resonant frequency tuning of a vibration based micro-generator. The mechanical 

method involves applying an axial tensile force to strain the cantilever structure of the 

generator. The electrical tuning method is realized by changing the load capacitance 

of the generator. Although resonant frequency methods discussed in this thesis are 

based on electromagnetic generators, they can also be applied to generators using 

other transduction mechanism such as piezoelectric and electrostatic. Additionally, a 
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closed loop frequency tuning system as well as the frequency searching algorithms 

has been developed to realize automatic frequency tuning using the mechanical tuning 

method presented in this thesis. The duty cycle of the system was investigated and it 

was proved theoretically that there could be a reasonable duty cycle if the generator 

and tuning system is designed properly. Furthermore, models of piezoelectric and 

electromagnetic generators using electrical tuning methods have been established. The 

model of the electromagnetic generator has also been experimentally verified. It is 

concluded that frequency tuning using mechanical methods presented in the thesis has 

a larger tuning range than that using electrical methods. However, frequency tuning 

using electrical tuning methods consumes less power than that using mechanical 

methods for the same amount of tuning range. This is because that electrical tuning 

method does not need to change mechanical properties of the generator. All energy 

consumed in electrical tuning method is by electronic components while in 

mechanical tuning methods, an actuator that consumes much more energy than 

electronic components is always necessary. 

 

8.2 Future Work 
The research that has been undertaken for this thesis has successfully met the research 

objectives proposed in Section 1.1. However, there are still many more additional 

investigations that could be done in the research area of increasing operating 

frequency range of vibration based micro-generators. Some of these potential research 

areas are as follows. 

 

8.2.1 Optimization of Closed Loop Frequency Tuning System for 

 Mechanical Tuning Methods 
Although the closed loop frequency tuning system described in this thesis has 

successfully tuned the resonant frequency of the generator according to the ambient 

vibration, all components in this system, including the microcontroller, actuator and 

control circuit, were powered by an external power source, not by the generator itself. 

Furthermore, none of these components were optimized to minimize the power 

consumption in frequency tuning. The component that consumes most of the power is 

the actuator. Power consumptions of most currently commercially available actuators 

are very high compared to the power generated by most micro-generators developed 
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so far. How to reduce the gap between power consumption in the actuator and power 

generated by the micro-generator is the key to make self-powered automatically 

tunable vibration based micro-generator practical. In addition, most currently 

commercially available linear actuators are still large in size compared to mm scale 

micro-generator. To keep tunable generators of reasonable size, it is important to 

minimize the dimensions of the actuators. 

 

The ideal self-powered automatically tunable vibration based micro-generator should 

be that the generator can not only power its main clients, such as sensors and 

transceivers, but also accumulate enough power to tune the resonant frequency 

according to the vibration frequency within a reasonable period of time. Additionally, 

it should be of a reasonable size compared to the generator without the frequency 

tuning system. 

 

8.2.2 Electrically Tunable Micro-Generator with Large Tuning Range 
The electrically tunable micro-generator, G_et1, built for this project has small 3dB 

frequency range of 0.13Hz. Its tuning efficiency is only 0.19%. Although the 

electrically tunable macro-generator, G_et2, built by Perpetuum Ltd has a larger 3dB 

frequency range of 4.2 Hz and tuning efficiency of 4.4 %, its dimensions are well over 

the standard of ‘micro’.  Potential future research could be to minimize the size of the 

electrically tunable generator while the tunability of the generator, i.e. 3dB frequency 

range and tuning efficiency, exceeds or at least remains the same level as its macro 

scale counterpart. The challenge is to design the magnetic circuit properly so that not 

only the magnetic flux can change significantly with small displacement of the 

resonator but also that the strong electromagnetic coupling does not affect the 

dynamics of the resonator. Furthermore, a closed loop control system must be 

developed so that the load capacitance and thus the resonant frequency of the 

generator can be adjusted according to the vibration frequency just like the one 

developed in this project for the mechanical tuning method. 

 

8.2.3 Other Strategies 
It has been detailed in Chapter 3 that there are two possible methods to increase the 

operating frequency range of vibration based micro-generators. Only the method of 
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tuning the resonant frequency was studied in this thesis. There are many potential 

investigations about the other methods, i.e. widening the bandwidth of the micro-

generator. As analyzed in Chapter 3, possible strategies to increase the operating 

frequency range by widening the bandwidth of the micro-generator include: 

♦      Using generator array; 

♦      Employing non-linear and bi-stable structures. 

 

When designing generator arrays, the key point is to find a balance between the total 

size of the generator array and its operating frequency range. If the same amount of 

output power is produced, the wider the operating frequency range to be achieved, the 

more individual generators are needed and thus the larger the generator array will be.  

 

For non-linear micro-generators, a crucial problem is the complexity in modeling and 

design. As discussed in Section 3.5.3, the output power and bandwidth of the non-

linear generators depends on the direction of approach of the vibration frequency to 

the resonant frequency. For a hard non-linearity, this approach will only produce an 

improvement when approaching the device resonant frequency from a lower 

frequency. For a soft non-linearity, this approach will only produce an improvement 

when approaching the device resonant frequency from a higher frequency. So far, 

there is no reported method to estimate whether a non-linear device has a hard or soft 

non-linearity before actually building and testing one. More investigations in non-

linear devices must be conducted before applying this technique to micro-generators 

to increase their operating frequency range. 

 

The merit of the micro-generators with bi-stable structures is that the output power of 

the generator is independent of the vibration frequency. They can basically work at 

any frequency as long as the vibration can provide enough force to make the mobile 

part travel between two stable positions. So far, little work has been reported in this 

area. A comprehensive theory of bi-stable structures must be established to lay the 

foundation for its practical applications.  
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Appendix A 

 

 

Model of Vibration Based Micro-

Generator 

 

 
 

Figure A.1 shows a generic model of such a generator, which consists of a seismic 

mass, m and a spring with the spring constant of k. When the generator vibrates, the 

mass moves out of phase with the generator housing. There is a relative movement 

between the mass and the housing. This displacement is sinusoidal in amplitude and 

can drive a suitable transducer to generate electrical energy. b is the damping 

coefficient that consists of mechanically induced damping (parasitic damping) 

coefficient bm and electrically induced damping coefficient be, i.e. b = bm + be. y(t) is 

the displacement of the generator housing and z(t) is the relative motion of the mass 

with respect to the housing. For a sinusoidal excitation, y(t) can be written as y(t) = 

Y·sinωt, where Y is the amplitude of vibration and ω is the angular frequency of 

vibration. 
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Figure A.1. Generic model of vibration-driven generator. 

 

The transduction mechanism itself can generate electricity by exploiting the 

mechanical strain or relative displacement occurring within the system. The strain 

effect utilizes the deformation within the mechanical system and typically employs 

active materials (e.g. piezoelectric). In the case of relative displacement, either the 

velocity or position can be coupled to a transduction mechanism. Velocity is typically 

associated with electromagnetic transduction whist relative position is associated with 

electrostatic transduction. Each transduction mechanism exhibits different damping 

characteristics and this should be taken into consideration while modeling the 

generators. Thermechanical system can be increased in complexity, for example, by 

including a hydraulic system to magnify amplitudes or forces, or couple linear 

displacements into rotary generators. 

 

A.1 Transfer Function 
For the analysis, it is assumed that the mass of the vibration source is much greater 

than the mass of seismic mass in the generator and the vibration source is unaffected 

by the movement of the generator. Then the differential equation of the movement of 

the mass with respect to the generator housing from the dynamic forces on the mass 

can be derived as follows: 
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which can be written in the form after the Laplace Transform as: 
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where a(s) is the Laplace expression of the acceleration of the vibration, a(t), which is 

given by: 
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Thus, the transfer function of a vibration-based micro-generator is: 
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where 
b
kmQ =  is the quality factor and 

m
k

r =ω  is the resonant frequency. 

 

A.2 Equivalent Circuit 
An equivalent electrical circuit for a vibration-based micro-generator can be found 

from Equation (A.4), which, when rearranged, gives: 
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where ( )samsI ⋅=)( , )()( sZssE ⋅= , mC = , 
b

R 1
= , 

k
L 1

= . Based on Equation 

(A.6), an equivalent electrical circuit can be built shown in Figure A.2. 

 

 
FigureA.2. Equivalent circuit of a vibration-based micro-generator.  

 

A.3 Damping in EM Micro-generators 
For electromagnetic generators, the voltage, u, and current, i, generated can be 

described by the following equations, respectively: 

 

                      ( )cc LjRi
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tdzu ω+−Κ=
)(                                      (A.7) 

 

                               
Κ

= eFi                                                       (A.8) 

 

where Fe is the damping force generated by the electromechanical coupling, Rc and Lc 

are the resistance and inductance of the coil, respectively. Κ is the electromagnetic 

coupling factor and can be expressed as: 

   

                                                              Κ = N·B·l                                                    (A.9) 

 

where N is the number of turns, B is the average flux density through the coil and l is 

the effective length of the coil. 

 

Assume that the micro-generator is connected to a resistive load RL, the damping 

force Fe becomes: 
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The electrically induced damping coefficient, be, is as follows: 
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For a micro-generator that works at low resonant frequencies, the inductive 

impedance of the coil is much lower than its resistive impedance. Hence, the 

inductive impedance can be ignored in this case. Thus, the electrically induced 

damping coefficient, be, can be simplified to: 

 

cL
e RR

b
+

Κ
=

2
                                                (A.12) 

 

The electrically induced damping factor, ζe, is: 
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The overall damping factor of the system, ζΤ, is given by: 
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where 
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=  is the mechanically induced damping factor. 

 

Quality factor (Q-factor) is a function of damping factor. The total Q-factor is given 

by: 
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It is the Q-factor when the generator is connected to the optimum load. The 

relationship between total quality factor and the electrical and mechanical damping is 

given by: 
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where QOC is the open circuit Q-factor, i.e. 
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A.4 Output Power of EM Micro-generators 
Assume that the input is a sinusoid excitation, i.e. y(t) = sinωt. The solution to 

Equation (A.3) is given by: 
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where ϕ is the phase angle given by: 
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The average power dissipated within the damper, i.e. the sum of the power extracted 

by the transduction mechanism and the power lost in mechanical damping is given by: 
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Equation (A.18) and (A.20) provide us with the average power dissipated within the 

damper as follows: 
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When the generator is at resonance, i.e. ω = ωr, the power dissipation reaches 

maximum. The maximum dissipated power is: 
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Appendix B 

 

 

Measurement of Damping 

 

 
In this appendix, the method of measuring damping as well as the Q-factor of the 

generator will be introduced.  

 

Figure B.1 shows the attenuation plot of a resonator when the vibration suddenly 

disappears. It is found that the peak value of the impulse response in one cycle of 

vibration attenuates gradually.  

 
Figure B.1. Example of an underdamped system response 
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This curve can be expressed as: 
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where m is the mass, F is the magnitude of the excitation. ζ  is the damping factor and 

ωr and ωd are the resonant frequency and the frequency of damped oscillation, 

respectively. ωd is given by: 
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The term tre ζω−  causes the attenuation in magnitude. More specifically, it is the 

existence of the damper that results in the drop of the magnitude. Therefore, the 

damping factor can be measured by observing peak value in each cycle of vibration. 

 

According to Equation (B.1),  
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where t2 = t1+T, 
d

T
ω
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=  is the period of damped oscillation. Their ratio is: 
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If t2 is replaced by t1,  
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When natural logarithm are taken on both sides in Equation (B.6), the damping factor 

can be written as: 
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Substitution of Equation (B.2) into Equation (B.7) leads to: 
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Thus, the damping factor is given by: 
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where α is defined as 
2

1ln
z
z

=α . Therefore, if peak values in the first two cycles of 

vibration can be measured, the damping factor can be determined. 

 

The damping factor can be more accurately determined by measuring the 

displacements at two times separated by a given number of periods for the reason that 

these two peak values cover longer time period, which gives a clearer view of the 

attenuation. Suppose that the two sampling times are separated by n periods and z1 

and zn+1 are the peak displacements corresponding to the times t1 and tn+1 = t1 + nT, so: 

 

( )
n

nT

n

n

n

d
r

r ee
x
x

x
x

x
x

z
z

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==⋅=

++

ω
πζω

ζω
2

13

2

2

1

1

1 L                (B.10) 

 



Appendix B Measurement of Damping                                                                                           234 

Substituting Equation (B.2) into (B.10) results in: 

 

21
2

1

1 ζ
πζ

−

+

=
n

n
e

z
z                                             (B.11) 

  

From Equation (B.11), the logarithmic decrement is given by: 

 

1

1
2

ln1

1

2

+

=
−

=
nz
z

nζ

πζα                                       (B.12) 

 

which can be inserted in Equation (B.9) to obtain the more accurate damping factor. 

 

Although determination of damping factor based on two peak values separated by 

several period is more accurate than that based on two consecutive peak values, it can 

still cause some errors, especially when measuring small damping. Basically, there are 

two methods to improve the accuracy. The first step of these two methods is both to 

measure peak values in every cycle and then calculate α set of a as well as a set of ζ. 

Method one takes the mean value of the set of ζ, ζ and ζ  is regarded as the accurate 

value of damping factor. Method two uses error-minimizing approach to find the 

accurate ζ. The basic idea is to find a value ζ~  that makes the accumulative error 

( )2~
∑ −=

i
ie ζζ  minimum. ζ~  is the damping factor. The calculation of ζ~ can be done 

using following equations. 

 

Suppose X=[x1, x2, …, xn] is a set of peak amplitudes of the attenuation. A straight line 

to fit the set of points that represents the natural logarithm of the measurements X has 

to be found. The equation of the straight line in the discrete form is given by: 

 

bayz ii +=                                                 (B.13) 

 

Note that zi corresponds to lnxi, a to –α, yi to i-1 and b to lnx1. The error is: 
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To minimize the error, the following equations must be satisfied. 
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Solving Equation (B.16), α and the damping factor can be obtained by Equation (B.9). 

 

By comparison, values obtained using these two methods are of little difference. 

Therefore, either method can be adopted. 

 

The Quality (Q) factor of the system is given by: 

 

ζ2
1

=Q                                                     (B.17) 

 

where ζ is the damping factor of the system. Therefore, measurement of quality factor 

is in fact measurement of damping factor. 
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