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Abstract 
 

Nonresponse is a major source of estimation error in sample surveys. The 

response rate is widely used to measure the quality of a sample survey associated with 

nonresponse. It is, however, inadequate as an indicator because of its limited relation 

with nonresponse bias. Schouten et al. (2009) proposed an alternative indicator, which 

they refer to as an indicator of representativeness or R-indicator. This indicator 

measures the variability of the probabilities of response for units in the population. 

This paper develops methods for the estimation of this R-indicator assuming that 

values of a set of auxiliary variables are observed for both respondents and 

nonrespondents.  In particular, we consider the bias of point estimators proposed by 

Schouten et al. (2009) and propose bias adjustments and linearization variance 

estimators. The proposed procedures are evaluated in a simulation study and their use 

is illustrated in an application to two business surveys at Statistics Netherlands. 
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1. Introduction  

 
One of the most important sources of estimation error in surveys is nonresponse. 

Survey organisations need indicators of such error for a variety of purposes, for example to 

compare different surveys, to monitor changes in a repeated survey over time or to monitor 

changes during the fieldwork of a single survey, perhaps to inform decisions such as when to 

end fieldwork.  An indicator which is widely used for such purposes is the response rate, 

where a higher response rate is taken to indicate higher quality.   However, there has been 

much recent empirical research (see e.g. Groves (2006), Groves and Peytcheva (2008), 

Heerwegh, Abts and Loosveldt (2007) and references therein) which concludes that the 

response rate is insufficient as an indicator to measure the potential error arising from 

nonresponse. Since sample sizes are usually large in surveys, the key feature of such error is 

typically nonresponse bias. However, the empirical evidence suggests that the response rate is 

only a weak predictor of nonresponse bias. There is therefore much interest in survey 

organisations in the development of alternative indicators (Groves et al., 2008).  

In this paper, we consider an indicator proposed by Schouten et al. (2009). The basic 

idea is that nonresponse bias depends critically on the contrast between the characteristics of 

respondents and nonrespondents. This contrast can be assessed in terms of the probability of a 

unit responding to the survey. If all units in the population share the same probability of 

responding then no nonresponse bias will result and the response mechanism may be viewed 

as ‘representative’.  The indicator proposed by Schouten, Cobben and Bethlehem (2009), 

termed the R-indicator (‘R’ for representativeness), measures the extent to which the response 

probabilities vary.  An advantage of this indicator (shared by the response rate) for various 

practical applications is that it provides a single measure for the whole survey. It should be 

recognized that nonresponse bias is defined in relation to a specific population parameter (and 

hence one or more survey variables). Thus, for any one (multipurpose) survey there may be a 

very large number of nonresponse biases. It would be feasible to construct indicators which 
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are parameter-specific (Groves et al., 2008, Wagner, 2008), but here we suppose the 

requirement is for a single indicator for the whole survey.  

 Further discussion of the rationale and applications of the R-indicator is provided by 

Cobben and Schouten (2007), Schouten and Cobben (2007) and Schouten et al. (2009). The 

purpose of this paper is to consider in more detail some of the estimation issues associated 

with the R-indicator. In particular, we consider the bias of point estimators proposed by 

Schouten et al. (2009) and propose bias adjustments and linearization variance estimators. We 

evaluate these proposed procedures in a simulation study and demonstrate the application of 

these procedures in real business surveys. 

 We introduce the theoretical framework and define response propensities in Section 2. 

The R-indicator is defined at the population level in Section 3. The relation of the R-indicator 

to non-response bias is discussed in Section 4. Point estimation of the R-indicator using 

sample data is considered in Section 5. The bias of the point estimator and bias adjustment, 

variance estimation and confidence intervals are considered in Section 6.  A simulation study 

and results of that study are described in Section 7 and results from real datasets are 

demonstrated in Section 8. Finally, we conclude and discuss future work in Section 9. 

 

2. Preliminaries and Response Propensities 

We suppose that a sample survey is undertaken, where a sample s  is selected 

from a finite population U . The units in  are labelled U 1,2, ,i N  , with the sizes 

of  and  denoted  and , respectively.  A probability sampling design is 

employed, where s  is selected with probability . The first order inclusion 

probability of unit  is denoted 

s U n N

( )p s

i i  and  is the design weight.   1
id i

The survey is subject to unit nonresponse, with the set of responding units 

denoted r , so r s . We denote summation over the respondents,  sample and 

population by ,  and , respectively.  Let  

U 

r s U iR  be the response indicator 
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variable so that  if unit responds and 1iR  i 0iR  , otherwise. Hence, 

.  { ; 1ir i s R   }

We define the response propensity i  as the conditional expectation (under a 

model) of iR  given the values of specified variables and survey conditions (Little, 

1986, 1988). If it is necessary to clarify the conditioning, we write   

( )i X i ( )r i|i ix E R xX     to denote the conditional expectation of iR  given that 

the vector of variables iX  for unit takes the value i ix . Here  denotes 

expectation with respect to model underlying the response mechanism. We assume 

that 

(.)rE

iR  is defined for each population unit i U , so that nonresponse is what 

Rubin (1987) refers to as ‘stable’, and  i  is also defined for all i U .  We also 

assume that the iR  for different units are independent, conditional on the specified 

variables and survey conditions.  We shall further assume that the sampling design 

and the nonresponse process are ‘unconfounded’ (Rubin, 1987) so that the probability 

of selecting  remains , whatever the values of the s (p s) ,iR i U . Thus, it is assumed 

that nonresponse does not depend on the configuration of the sample.  

 

3. Representativeness Indicator 

The variation in the response propensities may be viewed as reflecting the 

‘representativeness’ of the nonresponse. Schouten et al. (2009) define response to be 

(strongly) representative if the response propensities are the same for all units in the 

population, corresponding to the notion of missing completely at random (MCAR) 

given the variables which are conditioned upon when defining i . They define a 

representativeness indicator, termed the R-indicator and denoted R , in terms of the 

 4



population standard deviation of the response propensities: 

1 2( 1) ( )i UU
S N     , where /U iU

N   . In order facilitate the 

interpretation of the indicator, they define it in terms of S  as follows: 

   1 2R S          (3.1) 

where this transformation of S  ensures that 0 1R   since it may be shown that 

(1 ) 0.5U US     .  The value 1R   indicates the most representative response, 

where the i  display no variation, and the value 0 indicates the least representative 

response, where the i  display maximum variation. 

 

4. Relation of Indicator to Non-response Bias 

The R-indicator, R , may also be motivated in terms of nonresponse bias. 

Suppose that the target of inference is a population mean 1
iU

N  y  of a survey 

variable, taking value iy  for unit  and observed only for ii r . A standard design-

weighted estimator of   is . The bias of ˆ /i i i i is s
d R y d R    ̂  as an estimator of 

  may be evaluated by taking expectations with respect to both the random sampling 

mechanism and the conditional distribution of  iR   given the specified variables and 

conditions used to define i . These expectations are denoted sE rE

i

 and  respectively. 

We assume, for now, that the specified variables include y  so that it may be treated 

as fixed. We then have: 

 

ˆ( ) / /r s r s i i i i i i i
i s i s i U i U

E E E E d R y d R y i 
  

   
 
   


 ,         (4.1) 
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where the approximation is for large samples and we have used the assumption that 

the sampling and response mechanisms are unconfounded. Hence the bias depends on 

nonresponse only via i . It follows  that  

 

ˆ( ) ( ) /i i i
i U i U

Bias y  
 

    

       /y y Ucorr S S   ,      (4.2) 

 

where 1( 1) ( )( ) /y i U i y
2 1( 1) ( )y i

i U

S N y
i U

r N y S S   


    2cor  and 


   .  

Expression (4.2) is also obtained in Bethlehem (1988) and Särndal and 

Lundström (2005). An upper bound for the absolute bias can thus be expressed in 

terms of the R-indicator by 

(1 )ˆ| ( ) | /
2

y
y U

U

R S
Bias S S 

 



                 (4.3) 

A standardized measure, which is free of y  is given by: 

(1 )

2 U

R
B 




         (4.4) 

 

5. Estimation of R-indicator 

We suppose that the data available for estimation purposes consists first of the 

values { ; }iy i r  of the survey variable (or, more generally, a vector of survey 

variables), observed only for respondents. Secondly, we suppose that information is 

available on the values  of a vector T
iKiii xxxx ),,,( ,,2,1  iX of auxiliary variables for 

all sample units, i.e. for both respondents and non-respondents. We refer to this as 

sample-based auxiliary information. This is a key assumption and is natural if, for 
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example, the variables making up ix  are available on a register. Other possible 

assumptions about the availability of auxiliary information are discussed in section 9. 

 Since iy  is only observed for respondents, the response propensity conditional 

on iy  is generally inestimable without further assumptions.  Instead, we propose to 

take i  in the definition of R  in (3.1) as conditional on ix , i.e. to set 

( ) ( | )r i i ii X ix E R X x    .   

Nonresponse is missing at random, denoted MAR (Little and Rubin, 2002), if 

iR  is conditionally independent of iy  given ix . In this case, we have 

 and ( | , ) ( | )r i i i r i iE R y x E R x (i X )i ( ,YX i )ix y x     and so iy  may implicitly be 

included in the conditioning set.  Hence the argument used to obtain the bias bound in 

(4.3) still applies if MAR holds. The bias bound and the R-indicator itself may, 

however, be too conservative.  If MAR holds then  ( ) [ ( ) | ]X i iY i ry E x y   and: 

var( ) var[ ( )] var{ [ ) | ]} {var[ ( ) | ]}i X i X i i X i( ix E x y E x y  

(X

      

           var[ ( )] {var[ ) | ]}Y i i iy E x y        (5.1) 

 

The first term on the right hand side of (5.1) represents the variation of the 

conditional probabilities ( )Y iy , which we should ideally like to use in the R-indicator. 

The second term represents additional variation which is unrelated to non-response 

bias and may be viewed as redundant variability, i.e. noise, in the i  relative to what 

we are interested in.  

One special case occurs when nonresponse is missing completely at random 

(MCAR) so that it is independent of both ix  and iy . In this case, both ( )X ix  

and ( )Y iy  are constant so that both terms on the right hand side of (5.1) are zero. 
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Hence, there is no variability in the i  and this does, albeit in a degenerate way, 

capture the fact that there is nothing in the nonresponse process that will lead to 

nonresponse bias for estimation related to iy . 

If nonresponse is not MAR then (5.1) no longer holds. Instead, ( )i X ix   will 

represent a smoothed version of ( ,i )iy xYX  and it is not necessarily the case that 

var( )i  will be at least as large as va )ir[ (Y y ] . Thus, we may fail to capture relevant 

features of the nonresponse process in the i . In particular, if iR  is conditionally 

independent of ix  given iy  then va ]r[ ( )Y iy  will necessarily be at least as large 

as var( i ) , i.e. var[ (X i )]x  (following a parallel argument to the MAR case).  It may 

be argued therefore that it is desirable to select the auxiliary variables constituting ix  

in such a way that the MAR assumption holds as closely as possible.  In any case, it 

must be emphasized that our definition of  ( )i X ix    relates to a specific choice of 

auxiliary variables ix . A different choice would generally result in a different i . 

We noted in section 2 that we define the response propensity conditional on the 

survey conditions that apply when the data are collected. We do not make this 

conditioning explicit in our notation, but it is crucial to recognize this conditioning 

since, as we noted in Section 1, one of the objectives of constructing R-indicators is to 

be able to compare the representativeness of different surveys and such comparisons 

becomes challenging when the definition of the response propensity for any one 

survey is dependent on the conditions with which that survey has been implemented, 

for example upon the modes of data collection, the choice of interviewers, the way 

these interviewers were trained and work and  the contact strategy. Even for a single 

survey repeated at different points in time, such conditions may well not remain 

constant.  
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5.2  Nonresponse models 

In order to estimate the R-indicator, we first estimate the response 

propensities, ( | )i iE R xi  . To do this, we assume that i  depends on ix  in a 

parametric way via:  

g( ) 'i ix  ,       (5.2) 

where g(  is a specified link function, .)   is a vector of unknown parameters and ix  

may involve the transformation of the original auxiliary variables for the purpose of 

model specification.  In particular, we shall consider the logit link function 

( ) /(1 )]g log[    leading to the logistic regression model. 

We propose to estimate   by maximum pseudo likelihood (Skinner, 1989) i.e. 

  is estimated by ̂ , which solves: 

 

1[ ( ' )]i i i is
d R g x x 0       (5.3) 

   

where is the inverse of the link function. One reason for using the design 

weights here is because the objective is to estimate an R-indicator which provides a 

descriptive measure for the population.   

1(.)g 

The response propensity i  is then estimated by: 

 

1 ˆˆ ( ' )i ig x  .       (5.4) 

 

5.3 Estimation of R-indicator 

As in Schouten et al. (2009), we propose to estimate R  by: 
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 ˆˆ 1 2R S                                    ,                                (5.5) 

 

here 2 1 2
i

ˆ ˆˆ( 1) ( )i i Us
S N d     , ̂  is defined in (5.4), ˆ ˆ( )U i is

d N  w /  and 

if it is 

6. Bias and Confidence Intervals 
 

6.1 Bias and Bias Adjustment  
We now consider the bias properties of the estimator 

N  may be replaced by un own.  

       

is
d  kn

 

R̂  defined in (5.5).  We 

shall assume that the vector of auxiliary variables ix  is given so that no bias can arise 

from specifying the ‘wrong’ set of auxiliary variables. We note, nevertheless, that the 

choice of auxiliary variables is a critical decision in practice and we shall illustrate 

empirically in section 7 how the R-indicator can depend on this choice.  

Even if the vector of auxiliary variables is given, bias can arise from 

misspecification of the nonresponse model in (5.2).  We first consider defining the 

bias with respect to the sampling mechanism, holding the iR  fixed. Under this source 

of random variation, the pseudo MLE ̂  is approximately unbiased for the ‘census’ 

parameter U which solves  

 

   0      (6.1) 

 

kinner, 2003). The approximation here is with respect to an asymptotic framework, 

1[ ( ' )]i i iU
R g x x 

(S

with a sequence of samples and populations with n  and N  increasing. This census 

parameter implies a corresponding response propensity 1( ' )iU i Ug x   and R-
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indicator UR , defined in terms of  these propensities. We )then have ˆ(s URE R  . 

The difference UR R   may be viewed as the bias arising 

misspecification.  

Instead of de

from model 

ation we could also fining the bias with respect to just sampling vari

consider the response mechanism.  In a parallel way, we may write 0
ˆ( )r s UE E R R  , 

where 0UR  is the R-indicator defined in terms of the response propensities 

0 0' )iU U
1( ig x   and 0U
   is the solution of: 

 

0 .      6.2) 

 

where

1[ ( ' )]i i ig x x   0U


( | )i ix

(

 0i rE R ix    is the true response propensity given and we suppose that 

0( )ig  is not necessarily linear in ix , as in (5.2), i.e. the latter model may be 

ified. See Annex 1 for further iscussion. Thus, 0Umisspec  d R R   may be viewed as 

the bias (with respect to both sampling variation and the r echanism) arising 

from model misspecification. We may expect that 0.5
0 ( )U U pR R O N 

   so that 

there will usually be negligible difference in practic easures 

U

esp e m

 bet n 

ons

weee the two m

R R   or 0UR R   of bias. 

princ  might coIn ple nsider ways of assessing either of these m

bias, 

i , one easures of 

perhaps by comparing the results of using the parametric model in (5.2) with 

those for some kind of non-parametric regression. We do not pursue this approach 

further here, however. Instead we consider the finite sample bias ˆ( ) UE R R  , treating 

UR  as the parameter of interest, which is equivalent to that the  assuming 

nonresponse model in (5.2) is correctly specified. We might anticipate that the finite 
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sample bias of R̂  will be non-negligible, since R̂  is defined via the variance of 

the i̂ and we might expect sampling variation in these quantities to inflate this 

variance.  

We approximate this finite sample bias of R̂  by first considering the bias of 2Ŝ . 

We derive in A  2 the following approximation: nnex

 

2 2
1 2

ˆ( )p rE E S S       

 

iwhere 1
1

ˆ{ (s i rs
E N d V )}   ,  122

ˆvar ( ) cov( , )s U sN Ns s    ,  ˆ
s is

N d   and 

1
s i is

N d    so that 1 2    represents the approximate bias of 2Ŝ . 

W R : e then propose a bias-corrected estimator of 

 

1 2R S    .        (6.3) 

 

ˆwhere 2 2
1 2S S 

ˆ ̂  1̂  and 2̂  are estimators of 1  and 2  respectively.     and

 is 1
1̂

ˆ ˆ( )i r is
N d V   , where ˆ ˆ( )r iV   is an estimator of An estimator of  1

ˆˆ( )V sN  r i  and y be replaced by  N  ma if it is unknown. We propose to use the 

estimator ˆ ˆ( )Vr i  given in nn of consta ghts /d N n  this 

 

 A ex 1. In the case nt wei i

gives: 

1 2
1̂

ˆ ˆ( ' ) '[ ( ' ) ']i i j j j
i s j s

x x h x x x   

 
  1

 

ix , n h 
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where ˆ 2ˆ ˆ( ' ) exp( ' ) /[1 exp( ' )]i i ih x x x     .  

The second term 2  may, in general, be estimated using design-based variance 

ion methods. In the case of constant weights the term ˆ
sN  is constant so 2  estimat

reduces to 2 var ( )s s   . Under simple random sampling, we may write 

1 1 2
2 ( )n N S     . It follows that a bias corrected estimator o 2Sf   in the case of 

simple rando

1 2 

m sampling is: 

 

i . (6.4) 

 

6.2 Standard Errors and Confidence Intervals 

A linearization variance estimator for 

2 2 1 1 2 1 2 1ˆ ˆ ˆ ˆ ˆ ˆ(1 ) ( ' ) '[ ( ' ) ']i i j j j
i s j s

S S n N S n h x x h x x x x      

 
         

R̂  is derived in Annex 3 in terms of a 

variance estimator 2ˆ( )v S  of 2Ŝ , assuming that a logistic regression model is fitted 

and holds. A confidence interval for R  with level 1   is given by   

2 2
/ 2

ˆ1 2 ( )S z v S   

 

0 . .5

7. Simulation Study of the Properties of the estimated R-indicators  
 
 7.1 Design of Simulation Study 
 

In this section, we carry out a simulation study to assess the sampling properties 

f the   estimation procedures described in section 6. The study is based on repeated 

mples drawn from a file (representing itself a 20% sample) from the 1995 Israel 

Census. The file contains 753,711 individuals aged 15 and over in 322,411 

households. The samples are drawn using designs intended to be similar to some 

o

sa
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standard household and individual surveys carried out at national statistics institutes. 

We use the following sample designs in the simulations:   

 Household Survey  – similar to a Labour Force Survey where the sample units 

he sample units are 

ne response 

proba

les used to generate the response probabilities are the 

follow

ehold Survey – Type of locality  (3 categories),   number of persons in 

household (1,2,3,4,5,6+),  children in the household indicator (yes, no).  

are households and all persons over the age of 15 in the sampled households are 

interviewed. Typically a proxy questionnaire is used and therefore there is no 

individual non-response within the household. In addition, we assume that every 

household has an equal probability to be included in the sample.  

 Individual Survey -  similar to a Social Survey where t

individuals over the age of 15. We assume  equal inclusion probabilities.  

For each type of survey, we carried out a two-step design to defi

bilities in the census file. In the first step, we determined probabilities of 

response based on explanatory variables that typically lead to differential non- 

response based on our experiences of working with survey data collection. A response 

indicator was then generated for each unit in the population file. In the second step, 

we fit a logistic regression model and generate a ‘true’ response propensity for each 

unit in the population as predicted by the model. The dependent variable for the 

logistic model is the response indicator and the independent variables of the model the 

explanatory variables used in the first step (described below). This two-step design 

ensures that we have a known model generating the response propensities in the 

population and therefore can assess model misspecification besides the sampling 

properties of the indicators.   

The explanatory variab

ing:  

 Hous
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 Individual Survey – Type of locality (3 categories),    number of persons in 

household (1,2,3,4,5,6+),  children in the household indicator (yes, no), income group 

h sample drawn, a sample 

respo en

imulation means of 

(15 groups), sex (male, female)  and age group (9 groups).  

Samples of size n  were drawn from the Census population of size N at 

different sampling fractions 1:50, 1:100, and 1:200. For eac

nse indicator was g erated from the ‘true’ population response probability. The 

overall response rate was 82% for the household survey and 78% for the individual 

survey. Response propensities and the R-indicator were then estimated from the 

sample. Two choices of auxiliary variables were considered, first the ‘true’ variables 

employed to generate the response propensities and, second, a simpler set of variables, 

intended to represent a possible misspecified model.  

 

7.2 Results 

R̂ , defined in (5.5), and its bias corrected version R
S , 

defined in (6.3), obtained from repeated samples drawn from a Household Survey at 

differ d 

[PLACE TABLE 2 HERE] 

 

for the ‘true’ ownward bias in 

ent sampling rates an for two different models are reported in Table 1. 

Corresponding results for the Individual Survey are presented in Table 2. The results  

 

[PLACE TABLE 1 HERE] 

R̂model provide evidence of d , with the (absolute) 

ze of the bias increasing as the sample size decreases. This is as expected. Sampling si

error tends to lead to overestimation of the variability of the estimated response 

propensities and this leads to underestimation of the R-indicator.  We observe that the 
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bias correction reduces the (absolute) bias of R̂  when the true model holds (although 

there is some evidence of over-correction in Table 2 which does not disappear as the 

sample size increases).  The bias correction decreases (in absolute value) with the 

increase in sample sizes and tends to stabilize R̂ .  

Using a less complex logistic model to estimate response probabilities results in 

a ‘smoothing’ of the probabilities and henc an e increase in the value of the R-

indicator. We include in Tables 1 and 2 values of 0UR , which is the R-indicator for 

the logistic model for the reduced set of auxiliary variables which best fits the 

response propensities generated by the ‘true’ model (for the full set of auxiliary 

variables) in the population. Treating  0UR  as the parameter of interest, we observe 

that the bias adjustment does reduce the (absolute) bias for the household survey but 

not necessarily for the individual survey, where the bias correction can lead to 

overestimation.  

 Simulation means of the linearization variance estimator (see section 6.2) are 

compared in Tables 3 and 4 with the sim lation variances (calculated across the 

replic

u

ated samples) of R̂  for the household and individual surveys, respectively. 

[PLACE TABLE 3 HERE] 

[PLACE TABLE 4 HERE] 

The linearizati n  approximately unbiased across the 

range of condi l

on variance estimator is see to b

es.  

e

tions represented in these tab

Figures 1 and 2 present box plots comparing  R̂  and its bias adjusted version 

R
  for the Household and Individual Survey simu ectively when fitting the  

‘true’ logistic regression model. The gains from the bias adjustment are evident. 

 

lation resp
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[PLACE FIGURE 1 HERE] 

[PLACE FIGURE 2 HERE] 

 

8.   Application to Real Surveys 

 
We dem siness surveys undertaken for the 2007 

Dutch Short Term Statistics (STS) for retail and industry. Table 5 provides a brief 

description of the two surveys.  

[PLACE TABLE 5 HERE] 

 

In the table, the survey response rates are given for 15, 30, 45 and 60 days of 

fieldwork. After 30 days STS needs to provide data for monthly statistics.  We 

examine both a small set of auxiliary variables consisting of business size class (based 

on number of employees) and business sub-type. For the full auxiliary set we added 

VAT 2006 as collected by the Tax Board.  Table 6 provides the results of the bias 

adjusted R-indicators, 95% confidence intervals and the standardized maximal bias 

(obtained by plugging estimated response propensities into (4.4)) after 15, 30, 45 and 

60 days of fieldwork for each of the business surveys. Figures 3 and 4 provide plots of 

the bias-adjusted R-indicators against the response rates at each of the reporting times 

for the STS Industry and STS Retail respectively.  

 

[PLACE TABLE 6 HERE] 

[PLACE FIGURE 3 HERE] 

[PLACE FIGURE 4 HERE] 

 

onstrate R-indicators on bu
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The samples for the business surveys are large and hence the confidence 

intervals are sm  and 1.5%. The R-indicator for STS retail 

after 30 days fieldwork drops almost 7% when VAT is added to the auxiliary 

information. For STS industry the decrease is much smaller. Apparently, the size of 

AT in the previous year does not relate to response very strongly. Without the VAT 

inform

methods for its estimation using sample data, 

including methods of bias adjustment and variance estimation. The approximate validity of 

all with widths between 1%

V

ation the retail respondents have a higher R-indicator than the industry 

respondents. When VAT is added this picture changes and the retail respondents score 

worse. STS retail shows a reduction in the R-indicator as the response rates increase 

for the small set of auxiliary variables. The main survey item of the STS surveys is 

monthly turnover (subdivided over different activities). As VAT in a previous year 

can be expected to correlate strongly to turnover in the running year, it is important 

that representativeness is good with respect to VAT. The main conclusion is that for 

Industry, the R-indicator goes up after 30 days, suggesting response 

representativeness is still improving and one would ideally wait longer than 30 days 

before producing statistics. For Retail, the R-indicator is lower, suggesting that 

response is less representative than for Industry, but there is very little change when 

data collection is prolonged. Hence, it does not pay off to wait longer 

than 30 days considering the composition of the response. The only reason to do so 

would be that the risk of nonresponse bias as reflected by the maximal bias is still 

decreasing as  responses are coming in. 

 

9. Discussion 

In this paper we have considered a new indicator, called the R-indicator, designed to 

reflect the potential estimation error arising from nonresponse. The indicator is defined at the 

population level and we have developed 
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these methods has been demonstrated via simulation. We have also demonstrated how the 

 used in real business surveys. 

ggregate information on the population totals 

of aux

This research was undertaken as part of the RISQ (Representativity Indicators for 

Survey Quality) project, funded by the European 7th Framework Programme (FP7),  

al institutes of Norway, the Netherlands and 

Slovenia and the Universities of Leuven and Southampton. We should like to thank 

i-Chun Zhang, Jelke Bethlehem, Mattijn Morren and Ana Marujo for their 

 

indicator may be

The indicator has been defined with respect to a set of auxiliary variables. A key 

assumption has been that these variables are measured on both respondents and 

nonrespondents. This assumption may be reasonable in some survey settings. For example, 

rich auxiliary information is available at Statistics Netherlands from a population register. 

However, in other survey settings, the availability of unit-level auxiliary information on 

nonrespondents may be very limited. Instead, a

iliary variables may be available. We are addressing the estimation of R-indicators 

using such information in subsequent work. 
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 Annex 1. Variance of ˆ
i  for logistic regression model 

 

For the logistic regression model, write 1( ) ( ) exp( ) /[1 exp( )]h g     

0

. The 

estimating equations in (5.3) may then be expressed as: 

[ ( ' )]i i i is
d R h x x  .          (A1.1) 

Let ̂  solve (A1.1). Then in large samples we may approximate the distribution of ̂  

with respect to the sampling design (c.f. Skinner, 1989) by the distribution of : 

1ˆ ( ) [ ( )U U i i i Us
]iI d R h x x       ,        (A1.2) 

where U  is defined in (6.1), ( ) ( ' ) 'i i is iI d h x x x    is the information matrix 

and ( ) ( ) / ( )[1h h h ( )]h        . In particular, the variance of ̂  with respect 

to the sampling design is in large samples 

1 1ˆ( ) ( ) { [ ( )] } ( )s U s i i i U is
V I V d R h x x I      U        (A1.3) 

and, since  ˆˆ ( ' )i ih x   from (5.4), we have  

2 2 1ˆˆ( ) ( ) ( ) ( ) ( ) { [ ( )] } ( ) 1
s i i U i s i i U i U s j j j U j U

j s

V h x xV x h x x I V d R h x x I       



         ix

              (A1.4) 

This expression treats the response indicators jR  as fixed. To account for the 

response mechanism also, we may write 0 )i r i x( |E R i   and 

ˆ ˆvar( ) [ ( )] [ ( )]i r s i r s iE V V E ˆ           (A.1.5) 

In large samples, we may write ˆ( ) ( ' )s i iE h x U  . Assuming 0 ( | )i r iE R xi  , we 

may write  and . The first term in (A.1.5) is 

generally of  and so the second term may be treated as negligible if the 

sampling fraction  may be treated as negligible. In this case an expression for 

0.5
0 (U U pO N   

1( )O N 

/n N

) ˆ[ ( )]r s iV E O  1( )N 

ˆvar( )i  may be obtained by replacing U  in (A1.4) by 0U . 
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 Annex 2. Derivation of Bias adjustment 

We consider the bias of 2Ŝ  defined below (5.5). We use the decomposition: 

ˆ ˆˆ ˆ( ) ( ) ( ) ( )i U i i i U U s s U                   

where 1
s i is

N d    and use the approximation ˆ( )r iE i   to obtain ˆ( )r U sE    

and: 

2 2 2

2 2

ˆ ˆˆ ˆ[( ) ] ( ) ( ) ( ) ( )

ˆˆ2 ( , ) 2( )( )

ˆˆ( ) ( ) ( ) 2( )(

r i U r i i U s U r U

i U i U s Ur

i U r i U s U i U s U

E V V

Cov

V

       

     

)        

      

   

         

 

It follows that  

2 1 2

2

ˆ ˆˆ( ) ( 1) { ( ) ( )

ˆ ˆ( ) 2( )( )}

r i i U i r i Us s

s s U s U s s U

E S N d d V

N N

    

     

    

    

 
N

   

where ˆ
s is

N d  .  

Taking expectation also with respect to the sampling design, we obtain: 

2 2
1

ˆ( )s rE E S S A A    2        (A2.1) 

where         1
1

ˆˆ{( 1) ( )}s i r is
A E N d V     U       

1 2
2

ˆ ˆ{( 1) [ ( ) 2( )( )]}s s U s U s s UA E N N N N            

Both  and are terms of  and, following standard linearization arguments, 

we simplify these expressions by removing terms of lower order. First,  is 

asymptotically equivalent to: 

1A 2A (1/ )O n

1A

1
1

ˆ{ (s i rs
E N d V )}i   . 

Using the results in Annex 1 and assuming the nonresponse model is true, we may 

write : 

1 2
1

ˆ{ ( ' ) ' var( ) }s i i is iE N d h x x x     . 
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Turning to the term , we may write  2A

2 2ˆ ˆ ˆ ˆ( ) 2( )( ) { 2 }( ) 2( )( )s s U s U s s U s s U s s UN N N N N N N U                     

and, ignoring terms of lower order,  is asymptotically equivalent to  2A

2 1
2

ˆ{( ) } 2 {( 1)( )}s s U U s s s UE E N N            

     1 ˆvar ( ) 2 cov ( , )s s U s sN N s     . 

Replacing  and  in (A2.1) by 1A 2A 1  and 2  respectively, we obtain the 

approximation: 

2 2
1 2

ˆ( )p rE E S S      . 

 

   Annex 3. Variance of Estimated R-indicator ˆ( )R ρ  and Variance Estimation 

From (5.5) and using linearization we have 

2 ˆˆvar[ ] var( )2R S S 
   .     (A3.1.) 

To approximate 2ˆvar( )S  we shall decompose the distribution of 2Ŝ  into the part 

induced by the sampling design for a fixed value of ̂  and the part induced by the 

distribution of ̂ .  We take the latter to be , where:  ),(ˆ   N

1( ) var{ [ ( ' )] } ( )i i i is
J d R h x x J 1           (A3.2) 

and ( ) { ( )}J E I   is the expected information rather than the observed information 

in (A1.3). These two choices of information are asymptotically equivalent (to first 

order) but the expected information has the advantage that   does not depend on . s

We write 

2 2
ˆ ˆ

ˆ ˆvar( ) [var ( )] var [ ( )]sS E S E S  
  2ˆ

s  ,    (A3.3) 
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where the subscript ̂  denotes the distribution induced by , which may 

be interpreted as arising from the response process. Following usual linearization 

arguments we obtain: 

),(ˆ   N

2 1 2

ˆ

ˆvar ( ) var [ ( ) ]s s i i U
i s

S N d
 

 

 

   

and, given the consistency of ̂  for   (and for standard kinds of sampling designs), 

we have approximately: 

2 1
ˆ

ˆ[var ( )] var [ ( ) ]s s i i
i s

E S N d
 


  2

U .    (A3.4) 

Turning to the second component in (A3.3), we may write: 

2 1 2

ˆ

ˆ( ) ( )s i
i U

E S N U
 

 

 

  . 

As a linear approximation we have )
~ˆ(ˆ   iii z  where ( ' )i i iz h x x   . 

Hence 

)()
~ˆ()

~ˆ()(

)
~ˆ())((2)()( 2

ˆ

2

Ui
Ui

Ui

Ui
UiUi

Ui
Ui

Ui
Ui

zzzz

zz
















  

where 1
U iU

z N z  . 

In large samples, we assume that ̂  is normally distributed so that ˆ( )    is 

uncorrelated with ˆ ˆ( )( ) '     

ˆ

. Hence, we have 

2
ˆ ˆ

ˆ ˆvar [ ( )] 4 var { [ ( )( ) ]}sE S A A tr B 
          ,       (A3.5) 

where 1 ( )( )i U i U
i U

N z 


   z ,  1 ( )( )i U i U

i U

A 'B N z z z z


   and  is defined in 

(A3.2). The second term involves the fourth moments of 



̂  which may also be 

expressed in terms of   since ̂  is assumed normally distributed. 

 23



The variance of 2Ŝ  may be estimated by the sum of the estimated components of 

(A3.3). The first of these appears in (A3.4) and may be estimated by a standard 

design-based estimator of 2var [ ( ) ]s i i U
i s

d  


 , where this is treated as the variance 

of a linear statistic var [ ]s i
i s

u

  and  is replaced by iu 2ˆˆ(i i Ud )   in the expression for 

the variance estimator. The second component of the variance appears in (A3.5). To 

estimate this term requires estimating A , B  and  . First,  may be estimated by iz

ˆˆ ( ' )i i iz h x x  . Then A  may be estimated by 1ˆ ˆ ˆˆ ˆ( )( )i i U i Uz z 


  

i s

dA N , B  

may be estimated by 1ˆ ˆˆ ˆ ˆ
U( )( )U i

i s

'i iB N  d z z z z


   , where 1ˆ ˆU s
z N d z  i i , and   

may be estimated by a standard estimator of the covariance matrix of ̂ . 

Finally, the variance of R̂  may be estimated by plugging the estimated 

variance of  2Ŝ  into (A3.1) and replacing 2S  by 2Ŝ . 
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Table 1:  Household Survey  -  Simulation Means   of R̂   and  its bias-corrected 

version, R
  (across 500 simulated samples)       

 
‘True’ Logistic Model 
(Number of Persons, 
Locality Type, Child 
Indicator) 0.8780R   

Less Complex Logistic 
Model (Number of 
Persons)  

0 0.8842UR   

Sampling 
Fraction 
(sample size) 
  

R̂  R
  R̂  R

  

1:200 
(n=1,612) 

0.8700 0.8813 0.8755 0.8830 

1:100 
(n=3,224) 

0.8735 0.8786 0.8801 0.8834 

1:50 
(n=6,448) 

0.8749 0.8765 0.8807 0.8814 

 
 
 
 

Table 2:  Individual Survey - Simulation Means of R̂   and its bias-corrected version, 

R
  (across 500 simulated samples) 

      
‘True’ Logistic Model 
(Number of Persons, Sex,  
Age Groups, Income 
Groups, Locality Type, 
Child Indicator) 

 0.8767R 

Less Complex Logistic 
Model (Number of 
Persons, Sex and Age 
Groups)  
 

0 0.9023UR   

Sampling 
Fraction 

R̂  R
  R̂  R

  

1:200 
(n=3,769) 

 0.8587 0.8809 0.8941 0.9073 

1:100 
(n=7,537) 

0.8686 0.8796 0.9008 0.9072 

1:50 
(n=15,074) 

0.8748 0.8795 0.9029 0.9054 
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Table 3:  Household Survey  - Simulation mean of linearization estimator of variance 

of  R̂   and simulation variance (across  500 simulated samples)  (10-3)        

 
‘True’ Logistic Model 
(Number of Persons, 
Locality Type, Child 
Indicator) 

Less Complex Logistic 
Model (Number of 
Persons) 

Sampling 
Fraction 
  

Simulation 
mean of 

linearization 
estimator 

Simulation 
Variance 

Simulation 
mean of 

linearization 
estimator 

Simulation 
Variance 

1:200 
(n=1,612) 

0.40 0.43 0.40 0.45 

1:100 
(n=3,224) 

0.20 0.19 0.20 0.20 

1:50 
(n=6,448) 

0.10 0.10 0.10 0.11 

 
 
 
 
Table 4:  Individual  Survey  - Simulation mean of linearization estimator of variance 

of  R̂   and simulation variance (across  500 simulated samples) (10-3)      

 
‘True’ Logistic Model 
 (Number of Persons, Sex,  
Age Groups, Income 
Groups, Locality Type, 
Child Indicator) 

Less Complex Logistic 
Model (Number of 
Persons, Sex and Age 
Groups) 

Sampling 
Fraction 
  

Simulation 
mean of 

linearization 
estimator 

Simulation 
Variance 

Simulation 
mean of 

linearization 
estimator 

Simulation 
Variance 

1:200 
(n=3,769) 

0.21 0.23 0.19 0.19 

1:100 
(n=7,537) 

0.10 0.11 0.09 0.11 

1:50 
(n=15,074) 

0.05 0.05 0.04 0.05 
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Table 5: Description of 2007 Dutch Business Surveys  

STS retail 2007 STS industry 2007 

n=93,799 n=64,413 

Response=49.5% (15days) 

Response=78.0% (30days) 

Response=85.8% (45days) 

Response=88.2% (60days) 

Response=48.8% (15days) 

Response=78.7% (30days) 

Response=85.7% (45days) 

Response=88.3% (60days) 

All businesses retail All businesses industry 

Stratified design on size class 

and business type  

Stratified design on size class 

and business type  

unequal design weights unequal design weights 

Fieldwork 90 days Fieldwork 90 days 

Paper + web Paper + web 

 

Table 6: Bias-adjusted R-indicators, 95% Confidence Intervals and Standardized 
Maximal Bias for Dutch Business Surveys using Small and Full Sets of Auxiliary 
Variables   
 

Small Set Full Set  

Survey 

 

15d 30d 45d 60d 15d 30d 45d 60d 

R 92.1% 93.3% 94.0% 94.2% 90.5% 91.8% 93.1% 93.3% 

CI 91.3-

92.8 

92.7-

94.0 

93.5-

94.4 

93.8-

94.6 

89.7-

91.3 

91.3-

92.2 

92.6-

93.5 

92.8-

93.8 

 

 

Industry 

B 16.2% 8.5% 7.0% 6.6% 19.5% 10.4% 8.1% 7.6% 

R 96.1% 94.6% 94.0% 94.1% 88.1% 87.9% 88.3% 89.0% 

CI 95.4-

96.7 

94.0-

95.2 

93.5-

94.5 

93.6-

94.6 

87.3-

88.8 

87.3-

88.6 

87.6-

88.9 

88.3-

89.6 

 

 

Retail 

B 7.9% 6.9% 7.0% 6.7% 24.0% 15.5% 13.6% 12.5% 
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Figure 1:  Household Survey Box plots for R̂   and its Bias-Corrected Version, R
  

for 500 simulated samples with 1:200, 1:100 and 1:50 sampling fractions  -  ‘True’ R-
Indicator = 0.8780 
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Figure 2:  Individual Survey Box plots for R̂   and  its Bias-Corrected Version, R
  

for 500 simulated samples with 1:200, 1:100 and 1:50 sampling fractions  -    ‘True’ 
R-Indicator = 0.8767 
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Figure 3:  Plot of Response Rates against  Bias Adjusted R-indicators  at 15, 30, 45 
and 60 Days of Fieldwork for the 2007 Dutch STS Industry survey 
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Figure 4:  Plot of Response Rates against  Bias Adjusted R-indicators  at 15, 30, 45 
and 60 Days of Fieldwork for the 2007 Dutch STS Retail survey  
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