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Abstract

Nonresponse is a major source of estimation error in sample surveys. The
response rate is widely used to measure the quality of a sample survey associated with
nonresponse. It is, however, inadequate as an indicator because of its limited relation
with nonresponse bias. Schouten et al. (2009) proposed an alternative indicator, which
they refer to as an indicator of representativeness or R-indicator. This indicator
measures the variability of the probabilities of response for units in the population.
This paper develops methods for the estimation of this R-indicator assuming that
values of a set of auxiliary variables are observed for both respondents and
nonrespondents. In particular, we consider the bias of point estimators proposed by
Schouten et al. (2009) and propose bias adjustments and linearization variance
estimators. The proposed procedures are evaluated in a simulation study and their use

is illustrated in an application to two business surveys at Statistics Netherlands.
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1. Introduction

One of the most important sources of estimation error in surveys is nonresponse.
Survey organisations need indicators of such error for a variety of purposes, for example to
compare different surveys, to monitor changes in a repeated survey over time or to monitor
changes during the fieldwork of a single survey, perhaps to inform decisions such as when to
end fieldwork. An indicator which is widely used for such purposes is the response rate,
where a higher response rate is taken to indicate higher quality. However, there has been
much recent empirical research (see e.g. Groves (2006), Groves and Peytcheva (2008),
Heerwegh, Abts and Loosveldt (2007) and references therein) which concludes that the
response rate is insufficient as an indicator to measure the potential error arising from
nonresponse. Since sample sizes are usually large in surveys, the key feature of such error is
typically nonresponse bias. However, the empirical evidence suggests that the response rate is
only a weak predictor of nonresponse bias. There is therefore much interest in survey
organisations in the development of alternative indicators (Groves et al., 2008).

In this paper, we consider an indicator proposed by Schouten et al. (2009). The basic
idea is that nonresponse bias depends critically on the contrast between the characteristics of
respondents and nonrespondents. This contrast can be assessed in terms of the probability of a
unit responding to the survey. If all units in the population share the same probability of
responding then no nonresponse bias will result and the response mechanism may be viewed
as ‘representative’. The indicator proposed by Schouten, Cobben and Bethlehem (2009),
termed the R-indicator (‘R’ for representativeness), measures the extent to which the response
probabilities vary. An advantage of this indicator (shared by the response rate) for various
practical applications is that it provides a single measure for the whole survey. It should be
recognized that nonresponse bias is defined in relation to a specific population parameter (and
hence one or more survey variables). Thus, for any one (multipurpose) survey there may be a

very large number of nonresponse biases. It would be feasible to construct indicators which



are parameter-specific (Groves et al., 2008, Wagner, 2008), but here we suppose the
requirement is for a single indicator for the whole survey.

Further discussion of the rationale and applications of the R-indicator is provided by
Cobben and Schouten (2007), Schouten and Cobben (2007) and Schouten et al. (2009). The
purpose of this paper is to consider in more detail some of the estimation issues associated
with the R-indicator. In particular, we consider the bias of point estimators proposed by
Schouten et al. (2009) and propose bias adjustments and linearization variance estimators. We
evaluate these proposed procedures in a simulation study and demonstrate the application of
these procedures in real business surveys.

We introduce the theoretical framework and define response propensities in Section 2.
The R-indicator is defined at the population level in Section 3. The relation of the R-indicator
to non-response bias is discussed in Section 4. Point estimation of the R-indicator using
sample data is considered in Section 5. The bias of the point estimator and bias adjustment,
variance estimation and confidence intervals are considered in Section 6. A simulation study
and results of that study are described in Section 7 and results from real datasets are

demonstrated in Section 8. Finally, we conclude and discuss future work in Section 9.

2. Preliminaries and Response Propensities

We suppose that a sample survey is undertaken, where a sample s is selected
from a finite population U . The units in U are labelled i =1,2,...,N, with the sizes
of s and U denoted n and N , respectively. A probability sampling design is

employed, where s is selected with probability p(s). The first order inclusion

probability of unit i is denoted z; and d, =z;" is the design weight.
The survey is subject to unit nonresponse, with the set of responding units
denoted r, so r c scU . We denote summation over the respondents, sample and

population by =, , £, and £, , respectively. Let R be the response indicator

r



variable so that R =1 if unit i responds and R =0 , otherwise. Hence,
r={ies;R =1}.

We define the response propensity p, as the conditional expectation (under a
model) of R given the values of specified variables and survey conditions (Little,
1986, 1988). If it is necessary to clarify the conditioning, we write
o =py (%)=E, (R | X, =x) to denote the conditional expectation of R given that
the vector of variables X, for unit i takes the value x, . Here E (.) denotes

expectation with respect to model underlying the response mechanism. We assume

that R, is defined for each population unit i € U , so that nonresponse is what
Rubin (1987) refers to as ‘stable’, and p, is also defined forall i € U . We also
assume that the R for different units are independent, conditional on the specified

variables and survey conditions. We shall further assume that the sampling design
and the nonresponse process are ‘unconfounded’ (Rubin, 1987) so that the probability

of selecting s remains p(s), whatever the values of the R.,i €U . Thus, it is assumed

that nonresponse does not depend on the configuration of the sample.

3. Representativeness Indicator

The variation in the response propensities may be viewed as reflecting the
‘representativeness’ of the nonresponse. Schouten et al. (2009) define response to be
(strongly) representative if the response propensities are the same for all units in the
population, corresponding to the notion of missing completely at random (MCAR)

given the variables which are conditioned upon when defining p,. They define a

representativeness indicator, termed the R-indicator and denoted R, in terms of the



population standard deviation of the response propensities:

S, =\/(N -0y, (p-py)? . where g, =Y p/N . In order facilitate the
interpretation of the indicator, they define it in terms of S  as follows:

R,=1-2S, (3.1)
where this transformation of S, ensures that 0<R_ <1 since it may be shown that
S,<\{p,(l-p,) <05. Thevalue R, =1 indicates the most representative response,
where the p, display no variation, and the value O indicates the least representative

response, where the p. display maximum variation.

4. Relation of Indicator to Non-response Bias

The R-indicator, R, may also be motivated in terms of nonresponse bias.
Suppose that the target of inference is a population mean € = N‘lzu y, of a survey
variable, taking value y, for unit i and observed only for ier. A standard design-

weighted estimator of 4 is ¢9A=stiRi y; /Y d;R . The bias of 6 as an estimator of

€ may be evaluated by taking expectations with respect to both the random sampling

mechanism and the conditional distribution of R given the specified variables and
conditions used to define p,. These expectations are denoted E, and E, respectively.
We assume, for now, that the specified variables include y; so that it may be treated

as fixed. We then have:

ErEs(é): ErEs[zdiRiyi /ZdiRijzzpiyi 1> (4.1)

ies ies ieU ieU



where the approximation is for large samples and we have used the assumption that
the sampling and response mechanisms are unconfounded. Hence the bias depends on

nonresponse only via p, . It follows that

Bias(9) ~ Y. p,(y, -0)/ Y. p,

ieU ieU

=corr, S S, /p,, (4.2)

Py p

where corr, =(N-1)™> (p, -, )(y, —60)/S,S, and S; =(N-1)7"> (y, - 6)*.

ieU ieU
Expression (4.2) is also obtained in Bethlehem (1988) and Sé&rndal and
Lundstrom (2005). An upper bound for the absolute bias can thus be expressed in

terms of the R-indicator by

. A _ (-R)S,
| Bias(0) <SS,/ p, =——F=— (4.3)
2p,
A standardized measure, which is free of y is given by:
1-R
B= ( — ) (4.4)
2py

5. Estimation of R-indicator

We suppose that the data available for estimation purposes consists first of the
values {y,;ier} of the survey variable (or, more generally, a vector of survey
variables), observed only for respondents. Secondly, we suppose that information is
available on the values x; = (x,;,%,;,...,X¢,;)" Of a vector X,of auxiliary variables for

all sample units, i.e. for both respondents and non-respondents. We refer to this as

sample-based auxiliary information. This is a key assumption and is natural if, for



example, the variables making up x, are available on a register. Other possible
assumptions about the availability of auxiliary information are discussed in section 9.
Since y, is only observed for respondents, the response propensity conditional
on y; is generally inestimable without further assumptions. Instead, we propose to
take p, in the definition of R in (3.1) as conditional on x , ie. to set
P = px (%) =E(R | X, =%).
Nonresponse is missing at random, denoted MAR (Little and Rubin, 2002), if

R is conditionally independent of vy, given x. . In this case, we have

E,(R1Y.,x)=E (R|x) and p, = p, (X)=pn (y;, %) and soy, may implicitly be

included in the conditioning set. Hence the argument used to obtain the bias bound in

(4.3) still applies if MAR holds. The bias bound and the R-indicator itself may,

however, be too conservative. If MAR holds then p, (y.) =E.[p, (X)]Y;] and:
var(p,) = var[py (x)]=var{E[p, (x) | y;1}+ E{var[ox (x) | y;1}

=var[p, (y;)]+ E{var[py (x) | y,I} (5.1)

The first term on the right hand side of (5.1) represents the variation of the

conditional probabilities p, (y;) , which we should ideally like to use in the R-indicator.

The second term represents additional variation which is unrelated to non-response
bias and may be viewed as redundant variability, i.e. noise, in the p. relative to what
we are interested in.

One special case occurs when nonresponse is missing completely at random

(MCAR) so that it is independent of both x, andy,. In this case, both p, (X)

and p, (y;) are constant so that both terms on the right hand side of (5.1) are zero.



Hence, there is no variability in the p, and this does, albeit in a degenerate way,
capture the fact that there is nothing in the nonresponse process that will lead to
nonresponse bias for estimation related to ;.

If nonresponse is not MAR then (5.1) no longer holds. Instead, p, = p, (X;) will
represent a smoothed version of p,, (y;,%) and it is not necessarily the case that
var(p,) will be at least as large as var[p, (y,)]. Thus, we may fail to capture relevant
features of the nonresponse process in the p.. In particular, if R is conditionally
independent of x; given vy, then var[p, (y;)] will necessarily be at least as large
asvar(p,), i.e. var[p, (x)] (following a parallel argument to the MAR case). It may
be argued therefore that it is desirable to select the auxiliary variables constituting x;
in such a way that the MAR assumption holds as closely as possible. In any case, it
must be emphasized that our definition of p. = p, (x.) relates to a specific choice of
auxiliary variables x, . A different choice would generally result in a different p..

We noted in section 2 that we define the response propensity conditional on the
survey conditions that apply when the data are collected. We do not make this
conditioning explicit in our notation, but it is crucial to recognize this conditioning
since, as we noted in Section 1, one of the objectives of constructing R-indicators is to
be able to compare the representativeness of different surveys and such comparisons
becomes challenging when the definition of the response propensity for any one
survey is dependent on the conditions with which that survey has been implemented,
for example upon the modes of data collection, the choice of interviewers, the way
these interviewers were trained and work and the contact strategy. Even for a single
survey repeated at different points in time, such conditions may well not remain

constant.



5.2 Nonresponse models
In order to estimate the R-indicator, we first estimate the response
propensities, p, =E(R;|x) . To do this, we assume that p, depends on x in a
parametric way via:
9(p)=%"8, (5.2)
where g(.) is a specified link function, g is a vector of unknown parameters and X,

may involve the transformation of the original auxiliary variables for the purpose of
model specification. In particular, we shall consider the logit link function

g(p) =log[p/(1- p)] leading to the logistic regression model.
We propose to estimate £ by maximum pseudo likelihood (Skinner, 1989) i.e.

[ is estimated by ,3 , Which solves:
sti[Ri - gil(xi Iﬁ)]xi =0 (5.3)
where g~*(.) is the inverse of the link function. One reason for using the design

weights here is because the objective is to estimate an R-indicator which provides a

descriptive measure for the population.

The response propensity p. is then estimated by:

lai = 971(Xi IIB) . (5.4)

5.3 Estimation of R-indicator

As in Schouten et al. (2009), we propose to estimate R by:



R,=1-25, , (5.5)

where S$2=(N-1)7Y d.(5-p,)*, 5 is defined in (5.4), p, =(3.d;3)/N and

N may be replaced by >’ d; if it is unknown.

6. Bias and Confidence Intervals

6.1 Bias and Bias Adjustment
We now consider the bias properties of the estimator R defined in (5.5). We

shall assume that the vector of auxiliary variables x; is given so that no bias can arise

from specifying the ‘wrong’ set of auxiliary variables. We note, nevertheless, that the
choice of auxiliary variables is a critical decision in practice and we shall illustrate
empirically in section 7 how the R-indicator can depend on this choice.

Even if the vector of auxiliary variables is given, bias can arise from
misspecification of the nonresponse model in (5.2). We first consider defining the

bias with respect to the sampling mechanism, holding the R fixed. Under this source

of random variation, the pseudo MLE ,5’ is approximately unbiased for the ‘census’

parameter £, which solves

ZU [Ri - gil(xi Iﬂ)]xi =0 (6-1)
(Skinner, 2003). The approximation here is with respect to an asymptotic framework,
with a sequence of samples and populations with n and N increasing. This census

parameter implies a corresponding response propensity p, =g (x'A3,) and R-

10



indicator R, , defined in terms of these propensities. We then have Es(ﬁp)z Ru-
The difference R,, —R, may be viewed as the bias arising from model

misspecification.

Instead of defining the bias with respect to just sampling variation we could also

consider the response mechanism. In a parallel way, we may write E, Es(ﬁp) ~R 0,

where R is the R-indicator defined in terms of the response propensities

pU 0

Pue=097"(%"B,,) and A,, is the solution of:

2ulpe—9704"B)Ix =0. (6.2)

where p,, = E, (R |X) is the true response propensity given x, and we suppose that
g(p,,) i1s not necessarily linear in X, , as in (5.2), i.e. the latter model may be
misspecified. See Annex 1 for further discussion. Thus, R ,,, —R, may be viewed as
the bias (with respect to both sampling variation and the response mechanism) arising
from model misspecification. We may expect that R,, —R :Op(N‘°'5) so that
there will usually be negligible difference in practice between the two measures
Ry, —R,or R,,—R, ofbias.

In principle, one might consider ways of assessing either of these measures of

bias, perhaps by comparing the results of using the parametric model in (5.2) with

those for some kind of non-parametric regression. We do not pursue this approach

further here, however. Instead we consider the finite sample bias E(ﬁp) —-R, , treating

R, as the parameter of interest, which is equivalent to assuming that the

U

nonresponse model in (5.2) is correctly specified. We might anticipate that the finite

11



sample bias of FAQp will be non-negligible, since Iip is defined via the variance of

the p, and we might expect sampling variation in these quantities to inflate this
variance.

We approximate this finite sample bias of FAQP by first considering the bias of §£.

We derive in Annex 2 the following approximation:

EpEr(SE)zS;Jr/21+/12

er]ere 21 ::EES{Pd71:E:S(L\/r(/5i)} 1 ﬂ? ::__\/ars(}ss)'+ 2'“-4j5b CO\/(PQS’EES) 1 IQs :::E:sch af]d

P, =N d.p sothat A +4, represents the approximate bias of §j.

We then propose a bias-corrected estimator of R :

R =1-2S . (6.3)

where S~§ = §§ —/il—/iz and ﬂl and }ALZ are estimators of 4 and A, respectively.
An estimator of 4 is 4, =Ny dV.(5), Where V.(5,) is an estimator of
V.(p) and N may be replaced by NS if it is unknown. We propose to use the

estimator \7r(,5i) given in Annex 1. In the case of constant weights d, = N/n this

gives:

A=Y Vh(x ' B2 T Vh(x, ' B)x;x, T,

ies jes

12



where Vh(x ' 3) =exp(x' B) [[L+exp(x ' B).

The second term A, may, in general, be estimated using design-based variance
estimation methods. In the case of constant weights the term NS is constant so 4,
reduces to A, =-var(p,) . Under simple random sampling, we may write
A, =—(n"=N™)s2. It follows that a bias corrected estimator of S’ in the case of
simple random sampling is:

§2=82- A, =1+n"=NT)S2-n"Y Vh(x ' B)’x T Vh(x,' B)x;X; T . (6.4)

ies jes

6.2 Standard Errors and Confidence Intervals

A linearization variance estimator for Fip is derived in Annex 3 in terms of a

variance estimator v(§§) of §§, assuming that a logistic regression model is fitted

and holds. A confidence interval for R, with level 1-« is given by

1- 2\/§j +2,,9(52)" .

7. Simulation Study of the Properties of the estimated R-indicators
7.1 Design of Simulation Study

In this section, we carry out a simulation study to assess the sampling properties
of the estimation procedures described in section 6. The study is based on repeated
samples drawn from a file (representing itself a 20% sample) from the 1995 Israel
Census. The file contains 753,711 individuals aged 15 and over in 322,411

households. The samples are drawn using designs intended to be similar to some

13



standard household and individual surveys carried out at national statistics institutes.
We use the following sample designs in the simulations:

e Household Survey - similar to a Labour Force Survey where the sample units
are households and all persons over the age of 15 in the sampled households are
interviewed. Typically a proxy questionnaire is used and therefore there is no
individual non-response within the household. In addition, we assume that every
household has an equal probability to be included in the sample.

e Individual Survey - similar to a Social Survey where the sample units are
individuals over the age of 15. We assume equal inclusion probabilities.

For each type of survey, we carried out a two-step design to define response
probabilities in the census file. In the first step, we determined probabilities of
response based on explanatory variables that typically lead to differential non-
response based on our experiences of working with survey data collection. A response
indicator was then generated for each unit in the population file. In the second step,
we fit a logistic regression model and generate a ‘true’ response propensity for each
unit in the population as predicted by the model. The dependent variable for the
logistic model is the response indicator and the independent variables of the model the
explanatory variables used in the first step (described below). This two-step design
ensures that we have a known model generating the response propensities in the
population and therefore can assess model misspecification besides the sampling
properties of the indicators.

The explanatory variables used to generate the response probabilities are the
following:

e Household Survey — Type of locality (3 categories), number of persons in

household (1,2,3,4,5,6+), children in the household indicator (yes, no).

14



e Individual Survey — Type of locality (3 categories), number of persons in
household (1,2,3,4,5,6+), children in the household indicator (yes, no), income group
(15 groups), sex (male, female) and age group (9 groups).

Samples of size n were drawn from the Census population of size N at
different sampling fractions 1:50, 1:100, and 1:200. For each sample drawn, a sample
response indicator was generated from the “true’ population response probability. The
overall response rate was 82% for the household survey and 78% for the individual
survey. Response propensities and the R-indicator were then estimated from the
sample. Two choices of auxiliary variables were considered, first the ‘true’ variables
employed to generate the response propensities and, second, a simpler set of variables,

intended to represent a possible misspecified model.

7.2 Results
Simulation means of Iip, defined in (5.5), and its bias corrected version Iip,

defined in (6.3), obtained from repeated samples drawn from a Household Survey at
different sampling rates and for two different models are reported in Table 1.

Corresponding results for the Individual Survey are presented in Table 2. The results

[PLACE TABLE 1 HERE]

[PLACE TABLE 2 HERE]

for the ‘true’ model provide evidence of downward bias in Iip, with the (absolute)

size of the bias increasing as the sample size decreases. This is as expected. Sampling
error tends to lead to overestimation of the variability of the estimated response

propensities and this leads to underestimation of the R-indicator. We observe that the

15



bias correction reduces the (absolute) bias of Iip when the true model holds (although

there is some evidence of over-correction in Table 2 which does not disappear as the

sample size increases). The bias correction decreases (in absolute value) with the
increase in sample sizes and tends to stabilize R .

Using a less complex logistic model to estimate response probabilities results in
a ‘smoothing’ of the probabilities and hence an increase in the value of the R-

indicator. We include in Tables 1 and 2 values of R which is the R-indicator for

puO?
the logistic model for the reduced set of auxiliary variables which best fits the
response propensities generated by the ‘true’ model (for the full set of auxiliary

variables) in the population. Treating R,,, as the parameter of interest, we observe

that the bias adjustment does reduce the (absolute) bias for the household survey but
not necessarily for the individual survey, where the bias correction can lead to
overestimation.

Simulation means of the linearization variance estimator (see section 6.2) are

compared in Tables 3 and 4 with the simulation variances (calculated across the
replicated samples) of Iip for the household and individual surveys, respectively.

[PLACE TABLE 3 HERE]
[PLACE TABLE 4 HERE]
The linearization variance estimator is seen to be approximately unbiased across the

range of conditions represented in these tables.

Figures 1 and 2 present box plots comparing Iip and its bias adjusted version

Iip for the Household and Individual Survey simulation respectively when fitting the

‘true’ logistic regression model. The gains from the bias adjustment are evident.
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[PLACE FIGURE 1 HERE]

[PLACE FIGURE 2 HERE]

8. Application to Real Surveys

We demonstrate R-indicators on business surveys undertaken for the 2007
Dutch Short Term Statistics (STS) for retail and industry. Table 5 provides a brief

description of the two surveys.

[PLACE TABLE 5 HERE]

In the table, the survey response rates are given for 15, 30, 45 and 60 days of
fieldwork. After 30 days STS needs to provide data for monthly statistics. We
examine both a small set of auxiliary variables consisting of business size class (based
on number of employees) and business sub-type. For the full auxiliary set we added
VAT 2006 as collected by the Tax Board. Table 6 provides the results of the bias
adjusted R-indicators, 95% confidence intervals and the standardized maximal bias
(obtained by plugging estimated response propensities into (4.4)) after 15, 30, 45 and
60 days of fieldwork for each of the business surveys. Figures 3 and 4 provide plots of
the bias-adjusted R-indicators against the response rates at each of the reporting times

for the STS Industry and STS Retail respectively.

[PLACE TABLE 6 HERE]

[PLACE FIGURE 3 HERE]

[PLACE FIGURE 4 HERE]
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The samples for the business surveys are large and hence the confidence
intervals are small with widths between 1% and 1.5%. The R-indicator for STS retail
after 30 days fieldwork drops almost 7% when VAT is added to the auxiliary
information. For STS industry the decrease is much smaller. Apparently, the size of
VAT in the previous year does not relate to response very strongly. Without the VAT
information the retail respondents have a higher R-indicator than the industry
respondents. When VAT is added this picture changes and the retail respondents score
worse. STS retail shows a reduction in the R-indicator as the response rates increase
for the small set of auxiliary variables. The main survey item of the STS surveys is
monthly turnover (subdivided over different activities). As VAT in a previous year
can be expected to correlate strongly to turnover in the running year, it is important
that representativeness is good with respect to VAT. The main conclusion is that for
Industry, the R-indicator goes up after 30 days, suggesting response
representativeness is still improving and one would ideally wait longer than 30 days
before producing statistics. For Retail, the R-indicator is lower, suggesting that
response is less representative than for Industry, but there is very little change when
data collection is prolonged. Hence, it does not pay off to wait longer
than 30 days considering the composition of the response. The only reason to do so
would be that the risk of nonresponse bias as reflected by the maximal bias is still

decreasing as responses are coming in.

9. Discussion

In this paper we have considered a new indicator, called the R-indicator, designed to
reflect the potential estimation error arising from nonresponse. The indicator is defined at the
population level and we have developed methods for its estimation using sample data,

including methods of bias adjustment and variance estimation. The approximate validity of

18



these methods has been demonstrated via simulation. We have also demonstrated how the
indicator may be used in real business surveys.

The indicator has been defined with respect to a set of auxiliary variables. A key
assumption has been that these variables are measured on both respondents and
nonrespondents. This assumption may be reasonable in some survey settings. For example,
rich auxiliary information is available at Statistics Netherlands from a population register.
However, in other survey settings, the availability of unit-level auxiliary information on
nonrespondents may be very limited. Instead, aggregate information on the population totals
of auxiliary variables may be available. We are addressing the estimation of R-indicators

using such information in subsequent work.
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Annex 1. Variance of p, for logistic regression model

For the logistic regression model, write h(n) = g™ (r7) = exp(n7) /[1+exp(;)] . The
estimating equations in (5.3) may then be expressed as:

> AR =h(x'B)]x =0. (Al.1)
Let ,é solve (A1.1). Then in large samples we may approximate the distribution of /§’
with respect to the sampling design (c.f. Skinner, 1989) by the distribution of :

By +1(B) X AR ~h(44,)x], (AL2)
where £, is defined in (6.1), 1(8) =) d,Vh(x 'B)xx " is the information matrix
and Vh(y) =oh(n)/ on = h(n)[L-h(;7)]. In particular, the variance of 2 with respect

to the sampling design is in large samples
Vo (8) = 1(B,) VAL AR —h(X8,)IxH (8,) (A1.3)
and, since p, =h(x ' B) from (5.4), we have

V. (5,) = Vh(XB,)° XV, (B)X% = V(X B, )’ X1 (B,) VAL d;[R; = (x| B, )X H (B,) %
(Al.9)

This expression treats the response indicators R; as fixed. To account for the
response mechanism also, we may write p,, =E, (R | x;) and

var(3,) = E, IV, ()14, [E, (3)] (A.15)
In large samples, we may write E.(p,) ~h(x'f,). Assuming o, =E (R |%), we
may write 3, = £,,+0,(N™*) and V,[E,(5,)]=O(N™) . The first term in (A.1.5) is
generally of O(N™) and so the second term may be treated as negligible if the

sampling fraction n/ N may be treated as negligible. In this case an expression for

var(p,) may be obtained by replacing 4, in (Al1.4) by £,,.
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Annex 2. Derivation of Bias adjustment
We consider the bias of §§ defined below (5.5). We use the decomposition:
Pi=P0 = (5= p)+(p=Bo) +(Py = P)+ (B, = )
where p, =N d,p, and use the approximation E,(5,) ~ p; to obtain E, (f)u) ~ P,
and:

E (5 -2 1=V, (8)+ (o —2u)* + (. — B, ) +V, (B,)
~2Cov, (5. ) - 2(p, — P, )(P: — B,y
=(p=pPu) +V. (P, _13U)+(ﬁs =Pu)* =2(p = Py) (P~ Py)

It follows that

E,(S2)~(N-1){X.di(p - p,) + .4V, (5 - 5,)
+N, (P, - 2,)* - 2(P, — A, )(Np, — N7, )}

where N, =" d,.
Taking expectation also with respect to the sampling design, we obtain:
E.E (S?)~S2+A+A, (A2.1)
where A =E{(N-1)"Y dV,(5-7,)}
A, =E{(N-1)"[N,(7, - 5,)" - 2(5, - B, )(N 2, — N, 5, )1}
Both A and A, are terms of O(1/n) and, following standard linearization arguments,
we simplify these expressions by removing terms of lower order. First, A is
asymptotically equivalent to:
A =E{NTY dV,(5)}-
Using the results in Annex 1 and assuming the nonresponse model is true, we may

write :

A =ELANTY dVh(x'B)’x 'var(B)x}-
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Turning to the term A, , we may write
N (2, = 2,)° = 2P = 2, )N, =Ny, ) ={N, —2N}(p, - ) + 2(N, = N)(p, - 7,) A,
and, ignoring terms of lower order, A, is asymptotically equivalent to
Ay ~—E(P. ~2) 3+ 2B, EA(N N, -1)(7, - 7,)}
= —var,(p,)+2p,Ncov,(N,,7.) .
Replacing A and A, in (A2.1) by 4 and A4, respectively, we obtain the
approximation:

E,E,(S2)~S2+ 4+ 4,

Annex 3. Variance of Estimated R-indicator Ii(p) and Variance Estimation
From (5.5) and using linearization we have

var[Iip] ~S? var(SAf,) . (A3.1)
To approximate var(§j) we shall decompose the distribution of SE into the part

induced by the sampling design for a fixed value of ﬁ and the part induced by the
distribution of ﬁ’ We take the latter to be ,3 ~ N(f,%), where:

2=3(8)* var{Z d,[R ~h(x'A)x N (5)* (A3.2)
and J(B) = E{I ()} is the expected information rather than the observed information

in (A1.3). These two choices of information are asymptotically equivalent (to first
order) but the expected information has the advantage that ¥ does not depend on s.

We write

var(S?) =E ﬁ[vars(§§)]+varB[ES(§j)], (A3.3)
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where the subscript ,3 denotes the distribution induced by ,@ ~ N(f,%), which may

be interpreted as arising from the response process. Following usual linearization

arguments we obtain:

var, (S?) var[N“Y di(p-2)°]
IS ﬂ:ﬂ

and, given the consistency of ﬁ’ for B (and for standard kinds of sampling designs),

we have approximately:

E;[var,(S2)] = var,[N Y. d,(p, - B,)°]. (A3.4)

Turning to the second component in (A3.3), we may write:

E(SD)~N"T(o-2)| -
ieU p=B

As a linear approximation we have p. ~ p; + zi’(ﬁ —5) where z, = Vh(x. ' B)x, .

Hence

S -p) =D -Pu)+2D (o - Pu )z —7y) (B~ B)

iU pojp iU iU
+2@-2)(B-PP-P) @ -1)

where Z, =N'Y z; .

In large samples, we assume that ,B is normally distributed so that (,B—,B) is

uncorrelated with (3 - B)(3 - B)'. Hence, we have

varé[Es(SAi)] ~ 4ATA + varﬁ{tr[B(,@ ~B(B-A1}, (A3.5)

where A=N"3 (0, -p,)(z-7,), B=N"X(z-7,)(z-7,) and X is defined in

ieU ieU
(A3.2). The second term involves the fourth moments of ,é which may also be

expressed in terms of X since ,@ is assumed normally distributed.
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The variance of §f, may be estimated by the sum of the estimated components of

(A3.3). The first of these appears in (A3.4) and may be estimated by a standard

design-based estimator of var,[> d (o, —2,)°], where this is treated as the variance

ies

of a linear statistic var,[> u,] and v is replaced by d, (5 —,f)u)2 in the expression for

ies
the variance estimator. The second component of the variance appears in (A3.5). To

estimate this term requires estimating A, B and X . First, z, may be estimated by

Z, :Vh(xi',é)xi. Then A may be estimated by A=N‘1Zdi(/3i—/%u)(2i—%u), B

ies

may be estimated by B=N"Y"d,(2 -Z,)(?, -Z,)', where Z, =N*Y d 2, and =

ies
may be estimated by a standard estimator of the covariance matrix of ,é :

Finally, the variance of R , may be estimated by plugging the estimated

variance of §j into (A3.1) and replacing S’ by SA;.
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version, Ifzp (across 500 simulated samples)

Table 1: Household Survey - Simulation Means of Iip and its bias-corrected

Sampling “True’ Logistic Model Less Complex Logistic
Fraction (Number of Persons, Model (Number of
(sample size) | Locality Type, Child Persons)
Indicator) R = 0.8780 R, =0.8842

R, R, R, R,
1:200 0.8700 0.8813 0.8755 0.8830
(n=1,612)
1:100 0.8735 0.8786 0.8801 0.8834
(n=3,224)
1:50 0.8749 0.8765 0.8807 0.8814
(n=6,448)

R, (across 500 simulated samples)

Table 2: Individual Survey - Simulation Means of Iip and its bias-corrected version,

Sampling “True’ Logistic Model Less Complex Logistic
Fraction (Number of Persons, Sex, | Model (Number of

Age Groups, Income Persons, Sex and Age

Groups, Locality Type, Groups)

Child Indicator)

R, =0.8767 R o =0.9023

R, R, R, R,

1:200 0.8587 0.8809 0.8941 0.9073
(n=3,769)
1:100 0.8686 0.8796 0.9008 0.9072
(n=7,537)
1:50 0.8748 0.8795 0.9029 0.9054
(n=15,074)




Sampling “True’” Logistic Model Less Complex Logistic
Fraction (Number of Persons, Model (Number of
Locality Type, Child Persons)
Indicator)
Simulation | Simulation | Simulation | Simulation
mean of Variance mean of Variance
linearization linearization
estimator estimator
1:200 0.40 0.43 0.40 0.45
(n=1,612)
1:100 0.20 0.19 0.20 0.20
(n=3,224)
1:50 0.10 0.10 0.10 0.11
(n=6,448)

Sampling “True’” Logistic Model Less Complex Logistic
Fraction (Number of Persons, Sex, | Model (Number of
Age Groups, Income Persons, Sex and Age
Groups, Locality Type, Groups)
Child Indicator)
Simulation | Simulation | Simulation | Simulation
mean of Variance mean of Variance
linearization linearization
estimator estimator
1:200 0.21 0.23 0.19 0.19
(n=3,769)
1:100 0.10 0.11 0.09 0.11
(n=7,537)
1:50 0.05 0.05 0.04 0.05
(n=15,074)

Table 3: Household Survey - Simulation mean of linearization estimator of variance
of R, and simulation variance (across 500 simulated samples) (10

Table 4: Individual Survey - Simulation mean of linearization estimator of variance
of R, and simulation variance (across 500 simulated samples) (10°®)
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Table 5: Description of 2007 Dutch Business Surveys

STS retail 2007 STS industry 2007

n=93,799 n=64,413
Response=49.5% (15days) Response=48.8% (15days)
Response=78.0% (30days) Response=78.7% (30days)
Response=85.8% (45days) Response=85.7% (45days)
Response=88.2% (60days) Response=88.3% (60days)
All businesses retail All businesses industry

Stratified design on size class  Stratified design on size class

and business type and business type
unequal design weights unequal design weights
Fieldwork 90 days Fieldwork 90 days
Paper + web Paper + web

Table 6: Bias-adjusted R-indicators, 95% Confidence Intervals and Standardized
Maximal Bias for Dutch Business Surveys using Small and Full Sets of Auxiliary
Variables

Small Set Full Set

Survey 15d 30d 45d 60d 15d 30d 45d 60d

R 921% 93.3% 94.0% 942% 90.5% 91.8% 93.1% 93.3%
Cl 913- 927- 935- 938- 89.7- 91.3- 92.6- 92.8-
Industry 92.8 94.0 94.4 94.6 91.3 92.2 93.5 93.8

B 162% 85% 7.0% 6.6% 195% 104% 81% 7.6%

R 96.1% 94.6% 94.0% 94.1% 88.1% 87.9% 88.3% 89.0%
Cl 954- 940- 935- 936- 873- 87.3- 87.6- 883-
Retail 96.7 95.2 945 94.6 88.8 88.6 88.9 89.6

B 79% 69% 70% 6.7% 24.0% 155% 13.6% 12.5%
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Figure 1: Household Survey Box plots for ﬁp and its Bias-Corrected Version, Iip

for 500 simulated samples with 1:200, 1:100 and 1:50 sampling fractions - ‘True’ R-
Indicator = 0.8780

oo O

094
092
0.90= T

BEE.

086

084 - 8

0.82- o

0.50

T T T T T T
r_hiased200 r_indicator200 r_hiasedi00 r_indicator100 r_biasedsl r_indicators0

30



Figure 2: Individual Survey Box plots for Iip and its Bias-Corrected Version, Iip

for 500 simulated samples with 1:200, 1:100 and 1:50 sampling fractions - ‘True
R-Indicator = 0.8767
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Figure 3: Plot of Response Rates against Bias Adjusted R-indicators at 15, 30, 45
and 60 Days of Fieldwork for the 2007 Dutch STS Industry survey

R-Indicator

STS Industry

—o— Small Set —#— Full Set

98

96

94

92 4

90

88

86

45 60

30
15
45

30

15

40

50 60 70 80 90
Response Rate

100

Figure 4: Plot of Response Rates against Bias Adjusted R-indicators at 15, 30, 45
and 60 Days of Fieldwork for the 2007 Dutch STS Retail survey
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