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The design of experiments for generalised nonlinear models is investigated and applied to
an optical process for characterising interfaces which is widely used in the physical and natural
sciences. Design strategies for overcoming the dependence of a D-optimal design on the values
of the model parameters are explored, including the use of Bayesian designs. Designs for the
accurate estimation of model parameters are presented and compared, as are designs for the
estimation of a set of ratios of parameters, which is of particular importance in the motivating
example. The effectiveness of various design methods are studied, and the benefits of well
designed experiments are demonstrated.
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1. Introduction

Nonlinear parametric regression models are widely used in the physical and natural sciences
to describe the influence of one or more explanatory variables on a response. Typically, these
models are phenomenological (i.e. derived from scientific theory), have parameters whose values
are directly interpretable by the experimenters, and have additive independent random errors.
When designing an experiment to estimate such a model, it is common practice to assume
Normal errors with constant variance. If these assumptions are believed unlikely to hold, then
a wider class of models should be entertained and methods for obtaining efficient experimental
designs for this class employed.

Generalised nonlinear models extend nonlinear regression models to allow non-normally dis-
tributed error structures; see Wei (1997); Batchelor et al. (2007); Kosmidis and Firth (2008).
Their relationship to nonlinear regression is analogous to that between generalised linear models
(McCullagh and Nelder, 1989) and linear regression, in that the mean is related to the explana-
tory variables through a differentiable and strictly monotonic link function. Unlike generalised
linear models, the relationship between the transformed mean and the explanatory variables is
nonlinear in the unknown parameters (see Section 1.2).

The purpose of this paper is to develop and apply methods for finding optimal and effi-
cient experimental designs for generalised nonlinear models. The methods are motivated and
demonstrated through an application from laser-surface chemistry.

1.1. Motivating application

The behaviour of the interface between two phases of matter, such as a liquid and gas or
a solid and a liquid, is an important field of research in modern chemistry with applications
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Figure 1: Schematic of a second harmonic generation experiment: + and I' denote input and
output polarisation angles

in surfactants, catalysis, membranes and electrochemistry. Second harmonic generation (SHG;
Shen, 1989) is an optical process for characterising surfaces and interfaces through counting the
number of molecules at the interface of the two phases and determining molecule orientation.
It has many advantages over other methods, such as spectroscopy and other optical techniques:
it is simpler to apply, is directional (allowing in-situ measurements of surfaces), and is high
frequency, and hence suitable for dynamic systems that change quickly over time. SHG has
applications in science and engineering, including physics, electronics and biology (Campagnola
and Loew, 2003; Salafsky, 2007).

Our application concerns an air/liquid interface, specifically the characterisation of an L-
phenylalanine surface. In an experiment, a laser beam is fired through a polariser and strikes
the liquid surface. The reflected beam of light passes through another polariser and its intensity
is measured by a count of photons which is used to investigate the number and orientation of
surface molecules (Fig. 1). See also Fordyce et al. (2001) for further details of the experimental
procedure. The experimenter can control the size of the input and output polarisation angles
~v and I', respectively.

The observed intensity Y;; of the laser beam at the jth observation at polarisation angles
v; and I'; is modelled as a Poisson random variable where the expectation is the theoretical
intensity | E;|?, derived from a phenomenological model (Mizrahi and Sipe, 1988; Fordyce et al.,
2001). That is,

Y; ~ Po(|E;]*), i=1,...,n, j=1,...,n;, (1)
Ej = Es,j Sin(Fj) + Ep,j COS(Fj) y
Es Csin(2v;), E,; = A COS2(’7j) + B sin2(7j) ,

where n is the number of distinct combinations of input and output angles in the experiment,
known as support points of the design, and n; is the number of replicates of the ith support
point, with n; + ... 4+ n, = N. The parameters A, B and C' may be complex numbers but to



ensure identifiability, A is constrained to be real. These parameters can be expressed in either
Cartesian or polar coordinates (see Section 2); in the Euler parameterisation, they have the form
A=ry B=ryexp(igy), and C' = r.exp(i ¢.). Hence the parameters that require estimation in
this model are @ = (14, 7y, ¢, ®p, ¢c). Welsh et al. (2005) applied this phenomenological model
to data from the air/liquid interface for L-phenylalanine. The data were obtained using a full
3 x 14 factorial design, &y, with levels I' = 0, 7/4,7/2 and v = 0,7/26, ..., 7/2. Each of the 42
combinations was equally replicated (n; = ... =n,).

As model (1) is a generalised nonlinear model (Section 1.2), this application demonstrates
the need to find optimal and highly efficient designs for the estimation of the model parameters
for this class of models (see Section 2).

When chemists wish to compare results from several experiments, then important quantities
of interest are the ratios of the coefficients A, B and C. In the Euler parametrisation, these
ratios have the form

S orgets g
5T 18 i¢s—or) — . _ . _
T_Tt€i¢t_rt€ ), S, T=AB,C; s,t=a,bc; ¢,=0. (2)
Hence ratios of the radii s, s = a, b, ¢, and differences between the angles ¢,, s = a, b, ¢, require
efficient estimation. The problem of finding optimal designs for a set of ratios is addressed in

Section 3.
1.2. Generalised nonlinear models

Let ¢; = (zj1,. .., ;) hold the values for the k quantitative explanatory variables in the jth
run of the experiment (j =1,...,N) and Y; denote the corresponding response. A generalised
nonlinear model (GNM) is defined by the following components:

1. a distribution for the response, Y, from the exponential family, which may have variance
depending on the mean:

Fr(yj;a5,0) = exp{ly;o; — bley)]/a(d) + c(y,0)}, j=1,....N,

which has canonical parameters ¢, a scale parameter ¢ and functions a(-), b(-) and ¢(-)
specific to the member of the exponential family,

2. a systematic predictor, n(x; @), involving functions of the explanatory variables which
may be nonlinear in the p unknown model parameters 8 = (6y,...,60,)", and

3. a link function, g(-), that maps E(Y') = u to the predictor; g(u) = n(x; 9).

Wei (1997) gave technical details for the existence of this class of models; we note only that
n(x; @) must be at least twice differentiable with respect to 8 and that E(Y;) = 0b(«;)/0a; = p;
and Var(Y;) = a(0)9°b(a;)/0aF = a(d)h(p;). A more general definition is also possible via the
quasi-likelihood approach of Wedderburn (1974) which requires only specification of a mean
and variance relationship.

GNMs can be fitted via maximum likelihood using an iteratively reweighted least squares
algorithm (see, for example, Turner and Firth, 2007). An implementation is available in the
gnm package (Turner and Firth, 2006), available for R (R Development Core Team, 2009).
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Asymptotic variances for 9, the maximum likelihood estimators of @, can be obtained from
the inverse of the Fisher information matrix

2] . .\ T
) {80804 — Zv(mj)f(mj,e)f(mj,e) , (3)

J=1

where v(z;) = h(p;) " (Op;/09(1;))? and f(x;;0) is the vector of derivatives of n(x;;0) with
respect to the elements of .

It is clear that model (1) is a GNM in which the response follows a Poisson distribution,
the predictor is a nonlinear combination of the parameters @, and the link is the identity.

In the remainder of this paper, the problem of designing experiments for GNMs is investi-
gated. In common with other nonlinear models, the information matrix (3) depends on 6 and
hence the performance of a design, as measured by functionals of (3), may vary with 6. Mis-
specification of @ when planning an experiment may result in an inefficient design. In Section 2
the Bayesian D-optimality design criterion is described, together with supporting results on the
reparameterisation of the model and methods for finding approximations to Bayesian designs
to reduce the computational burden. In Section 3, optimal designs are found and assessed for
the estimation of ratios of the model parameters. Section 4 gives a brief discussion.

2. Optimal designs for parameter estimation

A continuous design £ is a probability measure defining a finite set of distinct support points
in a design space X C R* and the proportions, w;, of observations to be taken at these points:

n
m m P m
g:{ o2 "} O<w <1, Y w=1.
Wy Wy - Wy —
1=

To implement a design in practice, a rounding procedure usually has to be applied to obtain
exact designs such that the replication, n;, of each support point is integer (for example,
Pukelsheim and Rieder, 1992). The vector of polarisation angles (7;,I';) defines a support
point x; in an SHG experiment.

Most popular design selection criteria optimise a functional of the information matrix of &
for parameter @ which, from (3), is proportional to

M(£,0) = Zwiv(a}i)f(wi; 0)f(x;0)".

When interest is in accurate parameter estimation, a D-optimal design, £*, may be sought
which minimises the asymptotic joint confidence ellipsoid for the parameter estimators 6 or,
equivalently, maximises

o(6:0) = %mg M(.8)]. (4)

For nonlinear models, objective function (4) is dependent on the values of the parameters 6,
and a design that maximises (4) is said to be locally D-optimal. To compare the performance



of an arbitrary design £ to a locally D-optimal design &*, we use the efficiency of &, calculated
as

(1M, 0\
Eﬁ(f)‘(\M(fa@)\) ' ©)

As 0 is unknown prior to experimentation, a Bayesian criterion may be employed to find
designs robust to the values of the model parameters. A Bayesian D-optimal design & maximises
the average of (4) across the parameter space © with respect to a prior distribution ()

B(c) = /@ 6(£:0) dn(6) (6)

where © C RP is the parameter space. This objective function can be viewed as the pre-
posterior loss from an asymptotic Normal approximation to the posterior distribution (Chaloner
and Larntz, 1989). It was used by Woods et al. (2006) to obtain robust D-optimal designs for
multi-variable GLMs.

As (6) is a concave and differentiable function of the design, an extension of the arguments
of Chaloner and Larntz (1989, p.194) can be used to establish an equivalence theorem. In
particular, it can be shown that, for a compact design space X', a necessary and sufficient
condition for a design £ to be Bayesian D-optimal is

/@ v(@) f(z, 0)" M1, 0) f(x, 0) dr() < p, (7)

for all x € X, with equality at the support points of £;. The corresponding result for a locally
D-optimal design is the special case in which the prior distribution is a point mass located at
the value of 6.

For many nonlinear models, there may be several possible parameterisations with different
properties; for example, a particular parameterisation may improve the conditioning of a model
(Batchelor et al., 2007). In the SHG example, the phenomenological formulation leads to
more than one natural parameterisation (using Cartesian or polar coordinates). The following
theorem, proved in the Appendix, gives necessary and sufficient conditions for the Bayesian
D-optimality of a design for a GNM to be invariant to the choice of parameterisation. The
invariance of local D-optimality follows easily as a special case of the theorem.

Theorem 1. Let ¢(-) be a differentiable function from ©; — ©,, where ©; C © (i = 1,2) is an
open subset of R? and let the derivative of ¢(-) be invertible. Then a design which is Bayesian
D-optimal for estimating 8 € O, is also Bayesian D-optimal for estimating ¢ (0) € Os.

Two methods have been recently proposed for finding approximate solutions to the robust
design problem which are less computationally demanding than the Bayesian approach. Both
methods use a set of m locally D-optimal designs obtained for a sample of parameter values
él, ey 0,, drawn from ©.

1. Dror and Steinberg (2006) applied a K-means clustering algorithm to the union of the
sets of design points of exact locally D-optimal designs. A robust design is then formed
by taking the centroids of the resulting clusters as equally-weighted support points of the
design (see also Russell et al., 2009).



2. Melas (2005) took a set of m locally optimal continuous designs and, for each design,
calculated the D-efficiency (5) for each of the m values of the parameter vector. The
design with the maximum value of the minimum efficiency is then considered a most-
robust locally optimal design. This method offers considerable computational advantage
over the application of a maximin criterion across all designs and parameter values.

These authors applied and assessed their methods on designs for GLMs, and for logistic, hy-
perexponential and rational regression models respectively.

2.1. Application to second harmonic generation experiments

We apply and compare the above methods using the SHG example. We start by establishing
two results, both proved in the Appendix, which aid in finding Bayesian D-optimal designs.
The first result shows that the same design is Bayesian D-optimal under both Cartesian and
polar (Euler) representations of the parameters B and C in model (1) (Corollary 1 below).
This allows attention to be restricted to the Euler parameterisation in the remainder of the
paper. The second result (Lemma 1) enables a reduction in the design space that needs to be
searched.

Corollary 1. Let r, # 0 and r. # 0. Then it follows from Theorem 1 that a design which is
Bayesian D-optimal for estimating the parameters @ in the Euler representation is also Bayesian
D-optimal for estimating their Cartesian counterparts.

Lemma 1. The design space X = [0, 27| x [0, 27] can, without loss of generality, be reduced to
either X = [0,7/2] x [0, 7] or X = [0, 7] x [0, 7/2].

For the SHG experiment, both locally and Bayesian D-optimal designs were found numer-
ically using a quasi-Newton method with numerical derivatives (the BFGS algorithm; Dennis
and Schnabel, 1983). To aid convergence, an unconstrained optimisation problem was obtained
through use of an arctan transformation for @ = (v,T") and a standard transformation for the
weights w, see Atkinson et al. (2007, ch. 9).

2.1.1. Locally D-optimal designs We first consider locally D-optimal designs for a vec-
tor of parameter values @. The existence of such designs with 5 < n < 15 support points
is ensured through the compactness of the induced design space = = {y/v(x)f(x;0)|x =
(7,T) € X} and Caratheodory’s Theorem. Optimal designs were calculated for different
values of 6, including the maximum likelihood estimates from Welsh et al. (2005), 8, =
(0.889,0.317,0.588,1.142,0.301). Optimality of these designs was established using (7). Most
designs had n = 5, 6 or 7, and only designs with 5 support points had equal weights w;.
Examples of these designs are given in Table 1.

The support of the locally D-optimal designs considered includes the point (0,0), or the
equivalent points (0,7), (7, 0), (m, ) for this model, and also the point (7/2,0). Most designs
also had support points close to (7/4,7/2). The points (0,0) and (7/2,0) are stationary points
of the regression function irrespective of the values of the parameters. Therefore considerable
changes in the behaviour of the function may occur at these points, and this can be best
detected by taking observations at these points. The designs in Table 1 are typical in that they
have similar support points.

Table 2 gives the D-efficiencies of the locally D-optimal designs of Table 1 when the pa-
rameter values are misspecified. For example, if the true value of 0 is @, and we use the locally



Table 1: Support points (I',) and weights (w) of the locally D-optimal designs for values
0 = 007 Ola 02

0,0 B9 = (0.889,0.317,0.588,1.142,0.301)

v 7w/2 1.068 0 0.788 1.952 2.593
r 0 0.332 0 1.446 0.788 0.934
w 0.181 0.061 0.199 0.188 0.175 0.195

€0, 61 = (1,0.25,0.5,1,0.5)

v 1.928 0.784 0 2555 7/2
I' 0.782 1.310 0 1.037 0
w 02 02 02 02 02

€o,: 02 = (1,0.5,0.8,1,0.6)

v 0.778 0 2628 /2 1.967
I 1.326 0 0.922 0 0.766
w 02 02 02 02 02

Table 2: D-efficiencies for the locally D-optimal designs &g, (i = 1,2, 3) of Table 1 for 8 = 6,
017 02

Parameter vector

Design 00 01 92
o, 1 0.904 0.974
o, 0.814 1 0.905

o, 0.942 0.862 1

optimal design, &g,, for 6, then the efficiency for estimating the model parameters is 0.974.
The locally D-optimal designs have generally high D-efficiencies for the three sets of parameter
values. The lowest efficiency, 0.814, is obtained if the true value is 6y, and the experimenter
has misspecified this value as 8;. Design &g, is slightly more robust with a lowest efficiency of
0.904 among the three parameter vectors; this may be a result of the design having an extra
support point.

2.1.2. Robust designs We investigate Bayesian D-optimal designs for the SHG experi-
ment using two joint prior distributions for @ which reflect different degrees of prior uncertainty.
A beta distribution on [0, 1] was used to describe each radius, r,, m, and ., and a von Mises
distribution on [0, 27| was used for each angle, ¢, and ¢.. For the first prior distribution, 7{(8),
the respective modes of the beta distributions were chosen to be 0.889, 0.317, and 0.588, to
match the first three entries of 8y (Section 2.1.1). Similarly, the von Mises distributions for ¢,
and ¢, were centred on 1.142 and 0.301, respectively, both with dispersion parameter x = 4,
corresponding to moderate prior knowledge. The second prior distribution, 75(8), represents
greater prior uncertainty through using flat beta(1, 1) distributions (i.e. uniform) for the radii,
and more diffuse von Mises distributions with x = 2 and centred as above.

To facilitate numerical computation of Bayesian D-optimal designs using (6), each 7¢(0)
(1 = 1,2) was approximated by a discrete distribution, m;(@), with support consisting of a
random sample ©; C © of 1000 parameter vectors from 7¢(8) which were assigned equal
probabilities. The designs found, & and &, have 16 and 23 support points, respectively. The
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Figure 2: Bayesian D-optimal designs with respect to m1(0) (&1, left) and mo(0) (&2, right)

support points are shown in Fig. 2, using a plotting symbol whose size is proportional to the
corresponding weight w;, in common with all plots of designs in this paper. Both designs have
support points which include (0,0) and (7/2,0). These points have the largest weights and also
are included in the support of the locally D-optimal designs in Section 2.1.1.

The performance of §; (i = 1,2) was evaluated by calculating D-efficiency (5) with respect
to the locally D-optimal design for each element of ©; and (:)2 For design &; the median and
minimum efficiencies are respectively 0.82 and 0.14 across O, with corresponding values for
O, of 0.75 and 0.09. For design &, the respective efficiencies are 0.78 and 0.16 for 0., and
0.79 and 0.21 for ©,. Thus each design is fairly robust to the choice of prior distribution, with
higher efficiencies achieved under the less diffuse discrete distribution 71(0), and & having
higher minimum efficiency than &; across the support of both discrete distributions.

2.1.3. Cluster designs Two possible designs for the SHG experiment were found by a
modification of the method of Dror and Steinberg (2006). Each design was obtained by cluster-
ing the points in the union U; of the design points from the m = 1000 exact locally D-optimal
designs &; (j = 1,...,m; 4 = 1,2). The designs SU were obtained for N = 50 by apply-
ing rounding to a Continuous locally D-optimal design for each parameter vector in ©;. The
application of clustering to design points, rather than support points, has the advantage of
overcoming any large differences in the design weights, w. A preliminary visual inspection of
the points in each U; showed evidence of clustering which could be exploited by this method.

To construct a continuous cluster design, we generalise the method of Dror and Steinberg
(2006) by allowing unequally-weighted support points, where each weight is proportional to
the corresponding cluster size to reflect the relative importance of each cluster. The number
of clusters, i.e. support points, was chosen by investigating a range of possible values. For
each value, the D-efficiency of a cluster design was calculated via (5) relative to each of the m
locally D-optimal designs found for the parameter values in ©; (i = 1,2), summarised in Fig. 3.
The median efficiencies first increase sharply with the number of clusters and then level-off to
about 0.79 for (:)1 and 0.75 for C:)g; the minimum efficiencies show greater local variation. Hence
we chose 15 clusters for both cases, as a value where the median has reached a plateau and
satisfactory minimum efficiencies are also achieved. The resulting cluster designs, &3 and &4,
shown in Fig. 4, have minimum efficiencies of 0.16 and 0.15, respectively, for ©; and O,. In
common with the Bayesian designs (Fig. 2), each design gives high weight to (0,0) and (7/2,0),
and moderately high weight to (7/4,7/2) and (37/4,7/2) or points nearby.
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Figure 4: The 15-point cluster designs for ©; (&3, left) and O, (&, right)

2.1.4. Most-robust locally D-optimal designs We found the most-robust locally D-
optimal designs, &5 and &, through comparison with locally D-optimal designs for O, and
©,. Both designs have 6 support points, see Fig. 5: for & the point (0.70,0.45) with small
weight was found to be necessary for optimality. Again, the points (m,0), equivalent to
(0,0), and (7/2,0) features with high weight. Designs & and & are locally D-optimal for
6 = (0.67,0.55,0.57,1.26,6.20) and 8 = (0.79,0.84,0.94,1.34,0.69), respectively. The median
(minimum) efficiencies are 0.76 (0.16) for & and 0.63 (0.09) for &. The minimum efficiencies
are achieved at 8 = (0.33,0.26,0.69, 0.15,6.26) and @ = (0.87,0.10, 0.48, 0.16, 0.07).

2.2. Comparison of designs

The performance of the following 10 designs were compared using D-efficiency: the factorial
design &y used by Welsh et al. (2005); locally D-optimal designs &, and &y, from Section 2.1.1;
robust designs &;,...,& discussed in Section 2.1.2; and a second factorial design &7, with 8
equally spaced input angles I' = 0,7/8,...,77/8 and 5 equally spaced output angles v =
0,7/8, /4,37 /8, 7/2. This last design has greater range of values for " than is present in &.

Designs were assessed via simulation from 7§(0) and 75(8), following Woods et al. (2006).
Independent samples of parameter vectors of size 1000 are drawn from each distribution and
locally D-optimal designs are found for each parameter vector. The D-efficiency (5) of each of
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Figure 5: Most-robust locally optimal designs for ©; (&5, left) and ©, (&, right)

o, -+, &7, &0y, Ep, was then calculated with respect to each locally optimal design. The resulting
approximations to the distributions of the efficiencies can be used to compare the designs using,
for example, median and minimum efficiencies, and are summarised in Fig. 6 and 7.

For both 7{(0) and 75(0), the Bayesian D-optimal designs, &; and &5, for the correctly speci-
fied prior distribution have the best performance (median efficiencies 0.81 and 0.77 respectively).
Mis-specification of the prior distribution has only a small impact on design performance, with
& having median efficiency 0.74 under 75(0) and & having median efficiency 0.78 under 7§(8).

The cluster designs, &3 and &4, perform similarly to the corresponding Bayesian D-optimal
designs, & and &, with respective median efficiencies 0.79 and 0.75 under 7§(€) and 75(8).
Hence both cluster designs are good alternatives to the Bayesian designs with their construction
requiring less computation. The most-robust locally D-optimal design, &, for ©; performs well
under both 7§(0) and 75(0) (median efficiencies 0.77 and 0.71). However, the same is not true
for &, the corresponding design for ©,. The wider spread of parameter values in O, leads to
a design which is locally optimal for a more extreme parameter vector, and hence has lower
efficiency across the majority of the parameter space.

All the remaining designs perform poorly overall. The 3 x 14 factorial, &, has the poorest
performance with median efficiency 0.35 under 7§(@) and 0.41 under 75(0). A comparison of
Figs. 6 and 7 shows that the differences between the performance of the designs are less for the
more diffuse distribution 75(8).

3. Optimal designs for estimating ratios of parameters

In several application areas, experimenters require accurate estimates of a set of ratios of
model parameters. Examples occur in science, as in the SHG example, and in discrete choice
and ranking experiments in marketing, where the marginal rate of substitution is of particular
interest. This rate measures the relative importance of different product attributes or features.
An important marginal rate of substitution is the willingness-to-pay, i.e. the ratio of model
parameters relative to the parameter for price.

A key step in finding optimal designs is the determination of a first-order approximation to
the variance-covariance matrix of the estimators. Suppose that 7(-) is a function which maps
the p-vector @ to v ratios of parameters (1 < v < p—1). As 7(-) is a differentiable function
of the original parameters, the delta-method (see, for example, Serfling, 1980) can be applied.
We consider any set of v admissible ratios such that the p x v Jacobian matrix J, of 7(-) is of

10
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rank v and hence C'(,0) = JTM~(£,0)J, is the approximate asymptotic variance-covariance
matrix of 7(0), with M~ (&, 0) being a generalised inverse of the information matrix. Therefore,
analogous to (6), a Bayesian D-optimal design for estimating the ratios 7(6) maximises the
objective function

B,(6,0) = / log |0~ (£, 0)] dn(6)

Lemma 2, proved in the Appendix, shows that the optimal design for estimating v ratios,
involving 2 < p; < p parameters, does not depend on the particular choice of v ratios of these
parameters.

Lemma 2. Let & be the Bayesian D-optimal design for estimating 1 < v < p — 1 admissible
ratios given by 7 = 7(@), involving 2 < p; < p parameters. Then & is also Bayesian D-optimal
for estimating any other set, K = k(0), of v admissible ratios involving the same p; parameters.

3.1. Optimal designs for the estimation of two ratios in the example

For model (1) the ratios of the complex values A, B and C' take the form (2). From Lemma
2, without loss of generality, we can restrict ourselves to considering just B/A and C/A, that
is, estimation of ¥(0) = (rp/ra,7c/Ta, b, Pc)-

A related problem is to estimate two ratios and, in addition, one of the radii. Here, the
ratios can be used to compare different experiments and the additional radius would serve as
a baseline. In this case, the optimal designs for estimating the model parameters, found in the
previous section, can be shown to be D-optimal for this new problem. The proof of Corollary
2 can be found in the Appendix.

Corollary 2. Suppose r,, 1, and 7. are non-zero, and let {; be the Bayesian D-optimal design
for estimating @ = (r, rp, ¢, b, ¢c). Then & is also Bayesian D-optimal for simultaneously
estimating two admissible ratios and one of the radii, either r,, r, or 7.

For notational convenience, the ratios 7(8) are denoted by 6". Fig. 8 shows the locally
D-optimal designs for the ratios 8; and 65 corresponding to the parameter vectors 6, and 6,
from Section 2.1.1.

Both locally optimal designs have six support points. As for the locally D-optimal designs
for parameter estimation, we found from our study that most locally D-optimal designs for esti-
mating ratios have 5-7 support points, and all are supported on the points (0, 0), or equivalently
(m,0), and (7/2,0).

To find robust designs, we use the same prior distributions, 7{(€) and 75(8), as in Sec-
tion 2.1.2. The resulting marginal densities for the two differences between angles are again
von Mises densities. For the two ratios of radii, the induced marginal densities are ratios of
two independent beta densities (Pham-Gia, 2000) for 7$(0), and a ratio of two independent
uniform densities for 75(8), given by

05 0<u<l
f<“)_{ 1/2u® u>1.

Fig. 9 shows the marginal prior densities for the ratio r./r, corresponding to the prior distri-
butions 7§(0) (ratio of beta densities) and 75(8) (ratio of uniform densities) for 8.
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Figure 9: Densities of the prior distribution for r./r, with respect to 7$(0) (left) and x5(0)

(right)

As in Section 2.1.2; the continuous distributions 7{(€) and 75(@) are approximated by
discrete distributions 7 (6) and m2(0). Fig. 10 shows the Bayesian D-optimal designs for ()
and m(@); cluster designs on 15 points, found using O, and O, as in Section 2.1.3, had similar
support points and weights. The distribution of points in these designs is very similar to the
corresponding designs from Section 2.1.2. This suggests that the performance of designs optimal
for parameter estimation will be similar to the performance of designs for the estimation of the
ratios.
3.2. Comparison of designs

Designs are compared using simulation, analogous to Section 2.2, with 1000 parameter
vectors drawn from each of m1(6) and m5(0). As the Bayesian D-optimal and the cluster designs
from Section 2.1.2 for the problem of parameter estimation outperform the other designs, we
evaluate the corresponding designs, &7, &5, & and &), for estimating the ratios. To assess
the robustness of locally optimal designs, we also compare locally D-optimal designs, {g and
£p,, for estimating the ratios under 6 = (0.357,0.661,1.142,0.301) and 05 = (0.5,0.8,1,0.6)
respectively. We also consider &, and the second factorial design &7 to assess their performance

13



15
15

10

1.0

05

T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
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for estimating ratios of parameters.

We also reassess the Bayesian D-optimal designs, & and &, and the cluster designs, &3 and
&4 from Section 2.1. These designs require less computational effort to find, as designs for ratio
estimation require a matrix inversion at each step of the optimisation. Also, if the aim of the
experiment is the estimation of both the model parameters and their ratios, designs are needed
which are efficient for both purposes.

Figs. 11 and 12 show the boxplots of the D-efficiencies from the comparative study for these
designs. The results are similar to those in Section 2.2: the Bayesian D-optimal design for
the correct prior distribution is the most robust design, closely followed by the cluster designs;
mis-specification of the prior distribution does not have a substantial effect on the performance
of the Bayesian and cluster designs. However, for estimation of the ratios, the locally optimal
designs, £ and &p,, have much better performance for 7{(@) than for the more diffuse 75(8)
with median efficiency for & (&p,) of 0.64 (0.59) for §(@) and 0.47 (0.34) for 75(@). The
optimal designs for parameter estimation, &;,...,&;, almost match the performance of their
counterparts for the estimation of the ratios, and so could be used if there was interest in both
these goals.

4. Discussion

When an observed response from a scientific process is not normally distributed, a gener-
alised nonlinear model with the systematic predictor formed from physical theory may be an
appropriate description. We have investigated designs for such models, including their theo-
retical properties, numerical construction and efficiency, through an application of a GNM to
second harmonic generation.

In common with designs for other nonlinear models, the performance of designs for GNMs
may depend on the unknown model parameters, and robust designs are required to overcome
this dependency. We have applied various methods of finding robust designs to an SHG example,
for estimating model parameters, and also for estimating ratios of the parameters. Our findings
include: (i) robust designs tend to have a greater number of support points; (ii) cluster designs
built from locally optimal designs can provide effective, and more easily computed, alternatives
to Bayesian designs; (iii) factorial designs with uniform spacing of levels perform poorly, as they
do not incorporate any prior information or knowledge of the form of the model. In addition,
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robust designs for estimating all the parameters were found to be efficient for the estimation of
ratios of parameters.

The use of cluster designs has a computational advantage over Bayesian designs in that de-
sign construction can be easily implemented using distributed computing in an “embarrassingly
parallel fashion” | i.e. locally optimal designs for different parameter vectors can be generated
on different computers or nodes. The simulation-based design assessment, again using many
locally optimal designs, can be implemented similarly.
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Appendix A. Proofs

Proof of Theorem 1. Let M~1(£,0) denote the asymptotic covariance matrix of the estimator
for @ € ©1. From the delta-method, it follows that the asymptotic covariance matrix for the
estimator of (0) is given by JgM_l(f, 0)J, where J is the Jacobian matrix of ¢. Since the
derivative of ¢ is invertible, its Jacobian matrix J,, € RP*? is of full rank. So the determinant
of the covariance matrix is given by

[Ty M (& 0)Ty| = | Ju* [M (€, 0)]. (8)

Now, J, does not depend on the design £, and so a design which minimises M (¢, 0) will also
minimise |J,|* |M (£, 0)|. For Bayesian D-optimality we take logs in (8) and integrate with
respect to the given prior distribution 7(8) to obtain

/log(lszMl(&@)Jwaﬂ(@) = /log(!JW!M1(5,0)|)dﬂ(0)

101262 dax(8) + [ 1081217 (€, 0))) dn(6).

The first term does not depend on the design, which proves the assertion.

Proof of Corollary 1. Let 1(-) be the function transforming the polar coordinates of a point
0 from the Euler representation to their Cartesian counterparts, i.e. (Za,Zp, Tc, Yo, Ye) =
W(Ta, oy Te, Gy Gc) = (T, 7 €O8(Pp), e cOS(¢e), T sin(p), 7o sin(¢pe)). As the determinant of the
Jacobian matrix of ¢(+) is given by 7, r. # 0, the assertion follows from Theorem 1.

Proof of Lemma 1.

(1) The information matrix is shift invariant with respect to a shift of magnitude 7. This
follows from the equalities f((v,I');0) = f((v+m;1),0) = f((v,T+7);0) = f((y+7,T+7);0)
and v[(y,1)] = v[(y + 7, 1) = v[(y, T + 7)] = v[(y + 7, T + 7)].

(2) For each value of @ we have f((v,I');0) = f((m —~,7 —1');0) and v[(7,T")] = v[(m —
v, ™ —I')], and therefore the points (v,I") and (7 — v, 7 — I') provide equivalent information in
the design.

The assertion now follows directly by combining (1) and (2).

16



Proof of Lemma 2. As T and Kk involve the same set of p; model parameters, from the
delta-method, the asymptotic variance-covariance matrix for the estimator of K is given by
LTC(&,0)L, where L is the v x v full rank Jacobian matrix of k with respect to 7. Hence, the
corollary is established via an application of Theorem 1, with ¢(-) mapping from 7 to k.

Proof of Corollary 2. If all the radii are non-zero, the Jacobian matrix J,. of a function 7()
mapping 6 to a vector consisting of the Euler parameters, which describe two admissible ratios,
and of one of the radii is a 5 x 5-matrix of full rank. The assertion is therefore established via
an application of Theorem 1.
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