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used to evaluate the use of E(s2)-optimal and Bayesian D-optimal designs,
and to compare three analysis strategies representing regression, shrinkage
and a novel model-averaging procedure. Suggestions are made for choosing
the values of the tuning constants for each approach. Findings include that
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comments are made on the performance of the design and analysis methods
when effect sparsity does not hold.
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1. Introduction

A screening experiment investigates a large number of factors to find those
with a substantial effect on the response of interest, that is, the active factors.
If a large experiment is infeasible, then using a supersaturated design in which
the number of factors exceeds the number of runs may be considered. This
paper investigates the performance of a variety of design and model selection
methods for supersaturated experiments through simulation studies.

Supersaturated designs were first suggested by Box (1959) in the dis-
cussion of Satterthwaite (1959). Booth and Cox (1962) provided the first
systematic construction method, and made the columns of the design matrix
as near orthogonal as possible through the E(s2) design selection criterion
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(see Section 2.1.1). Interest in design construction was revived by Lin (1993)
and Wu (1993), who developed methods based on Hadamard matrices. Re-
cent theoretical results for E(s2)-optimal and highly efficient designs include
those of Nguyen and Cheng (2008). The most flexible design construction
methods are algorithmic: Lin (1995), Nguyen (1996) and Li and Wu (1997)
constructed efficient designs for the E(s2) criterion. More recently, Ryan and
Bulutoglu (2007) provided a wide selection of designs that achieved lower
bounds on E(s2), and Jones et al. (2008) constructed designs using Bayesian
D-optimality. For a review of supersaturated designs, see Gilmour (2006).

The challenges in the analysis of data from supersaturated designs arise
from correlations between columns of the model matrix and the fact that the
main effects of all the factors cannot be estimated simultaneously. Methods
to overcome these problems include regression procedures, such as forward
selection (Westfall et al., 1998), stepwise and all-subsets regression (Abraham
et al., 1999), and shrinkage methods, including the Smoothly Clipped Abso-
lute Deviation procedure (Li and Lin, 2002) and the Dantzig selector (Phoa
et al., 2009). We compare the performances of one representative from each
of these classes of techniques, together with a new model-averaging proce-
dure. Strategies are suggested for choosing values of the tuning constants for
each analysis method. It is widely accepted that the effectiveness of super-
saturated designs in detecting active factors requires there being only a small
number of such factors, known as effect sparsity (Box and Meyer, 1986).

Previous simulation studies compared either a small number of analysis
methods (Li and Lin, 2003; Phoa et al., 2009) or different designs (Allen and
Bernshteyn, 2003), usually for a narrow range of settings. In our simula-
tions, several settings are explored with different numbers and sizes of active
effects, and a variety of design sizes. The results lead to guidance on when
supersaturated designs are effective screening tools.

In Section 2 we describe the design criteria and model selection methods
investigated in the simulation studies. Section 3 describes the studies and
summarises the results. Finally, in Section 4, we discuss the most interesting
findings and draw some conclusions about the effectiveness of the methods
for different numbers and sizes of active effects.
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2. Design criteria and model selection methods

We consider a linear main effects model for the response

Y = Xβ + ε , (1)

where Y is the n × 1 response vector, X is an n × (m + 1) model matrix,
β = (β0, . . . , βm)T and ε is a vector of independent normally distributed
random errors with mean 0 and variance σ2. We assume that each of the m
factors has two levels, ±1. The first column of X is 1n = [1, . . . , 1]T, with
column i corresponding to the levels of the (i−1)th factor (i = 2, . . . ,m+1).

2.1. Design construction criteria

2.1.1. E(s2)-optimality Booth and Cox (1962) proposed a criterion that
selects a design by minimising the sum of the squared inner-products between
columns i and j of X (i, j = 2, . . . ,m + 1; i 6= j). We extend this definition
to include the inner-product of the first column with every other column of
X to give

E(s2) =
2

m(m+ 1)

∑
i<j

s2
ij , (2)

where sij is the ijth element of XTX (i, j = 1, . . . ,m+1). The two definitions
are equivalent for balanced designs, that is, where each factor is set to +1
and -1 equally often. The balanced E(s2)-optimal designs used in this paper
were found using the algorithm of Ryan and Bulutoglu (2007). These designs
achieve the lower bound on E(s2) for balanced designs given by these authors
and, where more than one design satisfies the bound, a secondary criterion
of minimising maxi<j s

2
ij is employed.

2.1.2. Bayesian D-optimality Under a Bayesian paradigm with con-
jugate prior distributions for β and σ2 (O’Hagan and Forster, 2004, ch. 11),
the posterior variance-covariance matrix for β is proportional to (XTX +
K/τ 2)−1. Here, τ 2K−1 is the prior variance-covariance matrix for β. Jones
et al. (2008) suggested finding a supersaturated design that maximises

φD = |XTX + K/τ 2|1/(m+1) .
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They regarded the intercept β0 as a primary term with large prior variance,
and β1, . . . , βm as potential terms with small prior variances, see DuMouchel
and Jones (1994), and set

K =

(
0 01×m

0m×1 Im×m

)
. (3)

The prior information can be viewed as equivalent to having sufficient addi-
tional runs to allow estimation of all factor effects. This method can generate
supersaturated designs for any design size and any number of factors.

BayesianD-optimal designs may be generated using a coordinate-exchange
algorithm (Meyer and Nachtsheim, 1995). The value of τ 2 reflects the quan-
tity of prior information; τ 2 = 1 was used to obtain the designs presented. An
assessment (not shown) of designs found for τ 2 = 0.2 and τ 2 = 5 indicated
insensitivity of design performance to τ 2, see also Jones et al. (2008).

2.2. Model selection methods

Three methods are examined: regression (forward selection), shrinkage
(Gauss-Dantzig selector), and model-averaging.

2.2.1. Forward selection This procedure starts with the null model
and adds the most significant factor main effect at each step according to
an F -test (Miller, 2002, pp. 39-42). The process continues until the model
is saturated or no further factors are significant. The evidence required for
the entry of a variable is controlled by the “F -to-enter” level, denoted by
α ∈ (0, 1).

2.2.2. Gauss-Dantzig selector Shrinkage methods form a class of con-
tinuous variable selection techniques where each coefficient βi is shrunk to-
wards zero at a different rate. We investigate the Dantzig selector, proposed
by Candes and Tao (2007), in which the estimator β̂ is the solution to

min
β̂∈Rk
||β̂||1 subject to ||XT(y −Xβ̂)||∞ ≤ δ . (4)

Here ||β||1 = |β0|+. . .+|βm| is the l1 norm, ||a||∞ = max(|a0|, . . . , |am|) is the
l∞ norm, and δ is a tuning constant. The Dantzig selector essentially finds
the most parsimonious estimator amongst all those that agree with the data.
Optimisation (4) may be reformulated as a linear program and solved, for
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example, using the package lpSolve (Berkelaar, 2007) in R (R Development
Core Team, 2009).

Candes and Tao (2007) also developed a two-stage estimation approach,
the Gauss-Dantzig selector, which reduces underestimation bias and was used
for the analysis of supersaturated designs by Phoa et al. (2009). First the
Dantzig selector is used to identify the active factors, and those factors whose
coefficient estimates are greater than γ are retained. Second, least squares
estimates are found by regressing the response on the set of retained factors.

2.2.3. Model-averaging Here inference is based on a subset of models
rather than on a single model. For example, model-averaged coefficients are
obtained by calculating estimates for a set of models and then computing a
weighted average where the weights represent the plausibility of each model
(Burnham and Anderson, 2002, ch. 4). This approach provides more stable
inference under repeated sampling from the same process.

For a supersaturated design, it is often not computationally feasible to
include all possible models in the procedure. Further, many models will
be scientifically implausible and therefore should be excluded (Madigan and
Raftery, 1994). Effect sparsity suggests restriction to a set of models each
of which contains only a few factors. We propose a new iterative approach,
motivated by the many-models method of Holcomb et al. (2007):

1. Fit all models composed of two factors and the intercept and calculate
for each the value of the Bayesian Information Criterion (BIC)

BIC = n log
((y −Xβ̂)T(y −Xβ̂)

n

)
+ p log(n) , (5)

where p is the number of model terms.

2. For model i, calculate a weight

wi =
exp(0.5×∆BICi)∑K

k=1 exp(0.5×∆BICk)
, i = 1, . . . , K ,

where ∆BICi = BICi − min
1,...,K

(BICk) and K = m(m− 1)/2.
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3. For each factor, sum the weights of those models containing the factor.
Retain the m1 < m factors with the highest summed weights. Param-
eter m1 should be set fairly high to avoid discarding active factors.

4. Fit all possible models composed of three of the m1 factors and the
intercept. Calculate weights as in step 2. Retain the best m2 < m1

factors, as in step 3, to eliminate models of low weight and obtain more
reliable inference.

5. Fit all M models composed of m3 < m2 factors and the intercept,
where M = m2!/m3!(m2 −m3)!. Calculate new weights as in step 2.

6. Let β?
1r, . . . , β

?
m2r be the coefficients of the m2 factors in the rth model

(r = 1, . . . ,M), where we set β?
lr = 0 if the lth factor is not included in

model r. Calculate model-averaged coefficient estimates

β̄?
l =

M∑
r=1

wrβ̂
?
lr ,

where β̂?
lr is the least squares estimate of β?

lr if factor l is in model r,
and 0 otherwise.

7. Use an approximate t-test, on n − m3 − 1 degrees of freedom, to de-
cide if each of the m2 factors is active. The test statistic is given by
β̄?

l /{V̂ar(β̄?
l )}1/2, where estimation of the model-averaged variance is

discussed by Burnham and Anderson (2002, pp. 158-164).

The effectiveness of the each of the three methods described above de-
pends on the values chosen for the tuning constants, discussed in Section 3.3.

3. Simulation Study and Results

We identified a variety of features of a typical screening experiment and
combined these to provide settings of varying difficulty on which to test the
design and model selection methods.
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3.1. Features varied in the simulation

• Ratio of factors to runs in the experiment. Three choices of increasing
difficulty were used and coded m n: 22 factors in 18 runs (22 18), 24
in 14 (24 14) and 26 in 12 (26 12).

• Design construction criteria. To investigate the use of E(s2)-optimal
and Bayesian D-optimal designs, one design was found for each m n
under each criterion. These designs were then used for all simulations
with m factors and n runs. For each design, the values of the objective
functions E(s2) and φD are given in Table 1, together with the maxi-
mum (ρmax) and minimum (ρmin) correlations between factor columns.

For each m n, the designs have similar values of E(s2) and φD but
different structures. The E(s2)-optimal designs are balanced, whereas
the Bayesian D-optimal designs have 9, 7, and 5 unbalanced columns
for the 22 18, 24 14 and 26 12 experiments respectively, with column
sums of ±2. Also, the Bayesian D-optimal designs have a wider range
of column correlations than the E(s2)-optimal designs. In particular,
ρmax for an E(s2)-optimal design is always less than or equal to that
of the corresponding Bayesian D-optimal design.

• Number and sizes of active factors. The magnitude of the coefficient
for each of the c active factors was drawn at random from a N(µ, 0.2)
for the following scenarios:

1. Effect sparsity: c = 3, µ = 5.

Table 1: Values of objective functions and maximum and minimum column
correlations for E(s2)-optimal and Bayesian D-optimal designs used in the
simulation study

Experiment 22 18 24 14 26 12
Construction Criterion E(s2) D E(s2) D E(s2) D
E(s2) 5.3 5.4 7.2 7.1 7.5 7.3
φD 11.7 11.7 6.1 6.1 4.3 4.3
ρmax 0.33 0.33 0.43 0.58 0.33 0.67
ρmin 0.11 0 0.14 0 0 0
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2. Intermediate complexity: c = 4 or c = 5 (chosen with equal prob-
ability) and µ = 4.

3. Larger number of small effects: c = 6 and µ = 3.

4. Larger number of effects of mixed size: c = 9 and one factor with
each of µ = 10, µ = 8, µ = 5, µ = 3, and five factors with µ = 2.

• Model selection methods. The four methods of Section 2.2 were applied
and tuning constants chosen as described in Section 3.3.

3.2. Experiment simulation

For each of 10,000 iterations:

1. From columns 2, . . . ,m + 1 of X, c columns were assigned to active
factors at random.

2. To obtain the coefficients for the active factors, a sample of size c
was drawn from a N(µ, 0.2), and ± signs randomly allocated to each
number.

3. Coefficients for the inactive factors were obtained as a random draw
from a N(0, 0.2).

4. Data were generated from model (1), with errors randomly drawn from
a N(0, 1), and analysed by each of the three model selection methods.

The random assignment of active factors to columns is important to re-
move selection bias. The choice of distributions at steps 2 and 3 ensures
separation between the realised coefficients of the active and inactive factors.

3.3. Choice of tuning constants

For each method, a comparison of different values for the tuning constants
was carried out prior to the main simulation studies. The aim was to find
values of the tuning parameters that did not rely on detailed information from
each simulation setting. This was achieved either by choosing values to give
robust performance across the different settings, or by applying automated
adaptive procedures.
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Our strategy for the selection of δ and γ for the Gauss-Dantzig selec-
tor was to control type II errors via δ, by choosing a larger than necessary
model with the Dantzig selector, and then control type I errors by choosing
γ sufficiently large to screen for spurious effects. To choose δ, we used the
standard BIC statistic (5) which gave similar results to the use of AIC. Phoa
et al. (2009) proposed a modified AIC criterion which, in our study, consis-
tently selected too few active effects when c = 6. The value of γ needs to be
sufficiently small so that few active factors are declared inactive, but large
enough for effects retained by the Dantzig selector to be distinguishable from
the random error. This was achieved by the choice γ = 1.5.

Model-averaging is the most computationally demanding of the methods
due to the large number of regression models fitted. In the choice of m1,
m2 and m3, a balance must be struck between discarding potentially active
factors too early in the procedure, and including unlikely (for example, too
large) models in the final step. Preliminary studies showed that m1 = 18,
m2 = 13 and m3 = 8 was an effective compromise. In step 5 of the procedure,
some models may not be estimable. We found that removing a single factor
overcame this problem. We therefore chose to remove the factor with smallest
weight that produced a non-singular information matrix. Reassuringly, the
power of the procedure to detect active effects (see Section 3.4) is relatively
robust to the values of m1 and m2. Attempting to fit too large models in step
5, i.e. setting m3 too high, can result in loss of power and also higher type I
errors. We suggest that m3 is chosen broadly in line with effect sparsity, and
a little larger than the anticipated number of active factors.

In forward selection and model-averaging, α = 0.05 was used based on
investigations (not presented) that showed α > 0.05 gave a substantial in-
crease in type I errors without a corresponding increase in power. Decreasing
α resulted in unacceptably low power for even the easiest simulation settings.

For each method studied, the results of the analysis can depend critically
on the choice of tuning constants. The Gauss-Dantzig selector has the ad-
vantages of having a robust automated procedure for the choice of δ, and a
straightfoward interpretation of γ as the minimum size of an active effect.
This quantity may often be elicited from subject experts (see, for example,
∆, in Lewis and Dean, 2001).
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Table 2: Simulation study results for 22 18 designs. FS=Forward Selection,
GDS=Gauss-Dantzig Selector, MA=Model-Averaging; π1=power, π2=type
I error rate, π3=coverage, π4=number of factors declared active

Design E(s2)-optimal Bayesian D-optimal
Analysis FS GDS MA FS GDS MA
Scenario 1: c = 3, µ = 5
π1 1.00 1.00 1.00 1.00 1.00 1.00
π2 0.11 0.01 0.02 0.11 0.03 0.02
π3 1.00 1.00 1.00 1.00 1.00 1.00
π4 5.07 3.17 3.41 5.07 3.61 3.42

Scenario 2: c = 4 or c = 5, µ = 4
π1 0.89 1.00 0.99 0.90 1.00 0.99
π2 0.09 0.01 0.02 0.10 0.04 0.02
π3 0.85 0.99 0.98 0.86 0.99 0.98
π4 5.57 4.72 4.74 5.69 5.11 4.74

Scenario 3: c = 6, µ = 3
π1 0.57 0.93 0.90 0.58 0.95 0.89
π2 0.06 0.02 0.02 0.06 0.04 0.02
π3 0.37 0.77 0.74 0.38 0.82 0.73
π4 4.35 5.97 5.63 4.43 6.26 5.62

Scenario 4: c = 9, µ = 10, 8, 5, 3, 2
π1 0.56 0.73 0.55 0.56 0.75 0.56
π1(10, 8) 1.00 1.00 1.00 1.00 1.00 1.00
π1(5, 3) 0.78 0.92 0.80 0.78 0.93 0.80
π1(2) 0.30 0.55 0.28 0.30 0.58 0.28
π2 0.04 0.06 0.02 0.05 0.07 0.02
π3 0.04 0.08 0.00 0.05 0.10 0.00
π4 5.63 7.37 5.22 5.64 7.73 5.24

3.4. Simulation results

A factorial set of 54 simulations was run on the four features of Section 3.1.
Four different criteria were used to assess performance of the designs and
analysis methods:
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Table 3: Simulation study results for 24 14 designs. FS=Forward Selection,
GDS=Gauss-Dantzig Selector, MA=Model-Averaging; π1=power, π2=type
I error rate, π3=coverage, π4=number of factors declared active

Design E(s2)-optimal Bayesian D-optimal
Analysis FS GDS MA FS GDS MA
Scenario 1: c = 3, µ = 5
π1 0.86 0.98 0.91 0.86 0.99 0.90
π2 0.11 0.03 0.05 0.11 0.04 0.05
π3 0.82 0.97 0.84 0.82 0.98 0.81
π4 4.77 3.54 3.83 4.81 3.75 3.83

Scenario 2: c = 4 or c = 5, µ = 4
π1 0.53 0.85 0.73 0.53 0.89 0.72
π2 0.09 0.06 0.06 0.09 0.07 0.06
π3 0.31 0.69 0.50 0.31 0.76 0.48
π4 4.03 5.04 4.47 4.02 5.25 4.45

Scenario 3: c = 6, µ = 3
π1 0.31 0.61 0.46 0.30 0.65 0.46
π2 0.08 0.09 0.09 0.08 0.09 0.09
π3 0.02 0.20 0.11 0.02 0.26 0.10
π4 3.22 5.23 4.29 3.16 5.57 4.31

Scenario 4: c = 9, µ = 10, 8, 5, 3, 2
π1 0.40 0.53 0.40 0.40 0.56 0.39
π1(10, 8) 0.90 0.98 0.90 0.91 0.99 0.88
π1(5, 3) 0.47 0.65 0.45 0.49 0.69 0.45
π1(2) 0.16 0.31 0.18 0.16 0.33 0.18
π2 0.08 0.14 0.09 0.08 0.14 0.09
π3 0.00 0.00 0.00 0.00 0.00 0.00
π4 4.76 6.89 4.86 4.74 7.14 4.86

π1: Average proportion of active factors correctly identified (Power; larger-
the-better); for Scenario 4, the power was calculated separately for ef-
fects with µ = 10, 8 (dominant; π1(10, 8)), µ = 5, 3 (moderate; π1(5, 3))
and µ = 2 (small; π1(2)).

π2: Average proportion of factors declared active which are actually inactive
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Table 4: Simulation study results for 26 12 designs. FS=Forward Selection,
GDS=Gauss-Dantzig Selector, MA=Model-Averaging; π1=power, π2=type
I error rate, π3=coverage, π4=number of factors declared active

Design E(s2)-optimal Bayesian D-optimal
Analysis FS GDS MA FS GDS MA
Scenario 1: c = 3, µ = 5
π1 0.66 0.89 0.67 0.67 0.92 0.68
π2 0.11 0.06 0.09 0.11 0.06 0.10
π3 0.54 0.82 0.48 0.56 0.87 0.47
π4 4.43 3.95 4.14 4.44 4.10 4.36

Scenario 2: c = 4 or c = 5, µ = 4
π1 0.37 0.65 0.45 0.36 0.69 0.47
π2 0.10 0.10 0.11 0.10 0.10 0.12
π3 0.10 0.35 0.15 0.09 0.41 0.15
π4 3.71 5.00 4.36 3.63 5.22 4.62

Scenario 3: c = 6, µ = 3
π1 0.25 0.43 0.31 0.25 0.47 0.32
π2 0.10 0.11 0.12 0.09 0.11 0.13
π3 0.00 0.04 0.01 0.00 0.07 0.01
π4 3.47 4.71 4.31 3.36 5.00 4.46

Scenario 4: c = 9, µ = 10, 8, 5, 3, 2
π1 0.31 0.44 0.31 0.31 0.47 0.32
π1(10, 8) 0.75 0.93 0.68 0.75 0.94 0.69
π1(5, 3) 0.31 0.48 0.31 0.31 0.52 0.32
π1(2) 0.14 0.23 0.16 0.14 0.25 0.17
π2 0.10 0.15 0.12 0.10 0.15 0.13
π3 0.00 0.00 0.00 0.00 0.00 0.00
π4 4.48 6.56 4.83 4.45 6.78 5.04

(Type I error rate; smaller-the-better).

π3: Average proportion of simulations in which the set of factors declared
active included all those truly active (Coverage; larger-the-better).

π4: Average number of declared active factors.
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The results are summarised in Tables 2, 3 and 4 for experiments 22 18,
24 14 and 26 12 respectively. These show that the Gauss-Dantzig selector
has values of π1 and π3 as high, or higher, than the other analysis methods in
almost all the simulations and often has very low values for π2. The Gauss-
Dantzig selector was found to have the most consistent performance of the
three methods as measured by the variances (not shown) of the proportions
involved in π1, π2 and π3.

For the 22 18 experiment (Table 2), the performance of the Gauss-Dantzig
selector is almost matched by the model-averaging method for Scenarios 1–3.
However, the good performance of model-averaging is not maintained for the
more difficult 24 14 and 26 12 experiments. The addition of extra steps in the
procedure, such as fitting all four-factor models, may improve performance
for larger numbers of factors at the cost of more computation.

Forward selection has consistently the worst performance measured by π1

and π3, and also performs poorly under π2 for c = 3 and c = 4, 5. Also, the
type I error rate (π2), is always higher than the value set for the entry of a
variable, α = 0.05, due to the multiple testing.

From our comparisons, the Gauss-Dantzig selector is the most promising
method, particularly in the more challenging settings. For example, for the
26 12 experiment with c = 3, µ = 5 (Table 4), the Gauss-Dantzig selector has
a 28% increase in power (π1) and a 67% increase in coverage (π3), relative to
the next best method (model-averaging). In Scenario 4 for the 26 12 experi-
ment, the Gauss-Dantzig selector performs extremely well in identifying the
dominant factors (µ = 8, µ = 10), having π1 > 0.93; the next best method
(forward selection) has π1 = 0.75. All methods had difficulty identifying
small active effects.

To compare the supersaturated designs, we now focus on the preferred
analysis via the Gauss-Dantzig selector. The Bayesian D-optimal designs
have consistently higher values for π1, . . . , π4 than the E(s2)-optimal designs,
although the differences are often small. Thus the Bayesian D-optimal de-
signs lead to identifying as active a slightly higher proportion of both active
and inactive effects. All designs give their best results for Scenario 1 and the
worst for Scenarios 3 and 4, as expected. Performance deteriorates as the
ratio of factors to runs increases, although good results are obtained under
Scenario 1 (effect sparsity) for all m n.

When there are few active factors in the 26 12 experiment, both classes of
designs performed well under effect sparsity (Scenario 1, Table 4). To inves-
tigate if performance is maintained when the number of factors is increased
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Fig. 1: Proportion of times a given factor was wrongly declared inactive
plotted against ψ, for the 22 18 experiment and Scenario 3 analysed using the
Gauss-Dantzig selector: (a) E(s2)-optimal design; (b) Bayesian D-optimal
design.

substantially, simulations of a 48 12 experiment were performed using each
type of design. The results indicated poor performance with π1 and π3 less
than 0.61 and 0.37 respectively.

In practice, the assignment of active factors to the columns of a design
may influence the subsequent model selection. This was investigated by
measuring the overall level of correlation of a given column j of X by

ψj =
m+1∑
i=2

ρ2
ij ,

where ρij is the correlation between columns i and j of X (i, j = 2, . . . ,m+1).
Fig. 1 shows the proportion of times that a given factor was wrongly declared
inactive as a function of ψ for the 22 18 experiment and c = 6, µ = 3, anal-
ysed using the Gauss-Dantzig selector. There are strong positive correlations
for both the E(s2)-optimal and Bayesian D-optimal designs, 0.98 and 0.90
respectively. Similar trends were observed for other simulated experiments
and scenarios (not shown). This demonstrates the importance of using any
prior information on the likely activity of factors when assigning them to
columns of the design. For the Bayesian D-optimal design, any such infor-
mation should ideally be incorporated in the design construction through
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Table 5: Simulation results when there were no active factors.
FS=Forward Selection, GDS=Gauss-Dantzig Selector, MA=Model-
Averaging, SVD=SVDPRM; π2=type I error rate, π4=number of factors
declared active

Design E(s2)-optimal Bayesian D-optimal
Analysis FS GDS MA FS GDS MA
22 18
π2 0.11 0.01 0.05 0.12 0.03 0.05
π4 2.52 0.12 1.13 2.55 0.57 1.14

24 14
π2 0.12 0.01 0.08 0.12 0.02 0.08
π4 2.88 0.23 1.85 2.82 0.43 1.88

26 12
π2 0.13 0.01 0.10 0.12 0.02 0.11
π4 3.28 0.33 2.64 3.22 0.52 2.83

adjusting the elements of the prior dispersion matrix K in (3).

3.5. No active factors

Further simulations were used to check the performance of the design
and analysis methods when there are no active factors, a situation where π1

(power) and π3 (coverage) no longer apply. From Table 5, the Gauss-Dantzig
selector is clearly the best analysis method and rarely declares any factors
active. The other methods have considerably higher type I errors, typically
declaring at least two factors active. Table 5 also shows that the E(s2)-
optimal designs perform better than the Bayesian D-optimal designs for the
Gauss-Dantzig selector, agreeing with the results for π2 in Section 3.4.
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Fig. 2: Performance measures, π1, . . . , π4, for the 22 18 experiment with
µ = 5 using the Gauss-Dantzig selector for E(s2) (solid line) and Bayesian
D-optimal (dashed line) designs.

3.6. What is ‘effect sparsity’?

A set of simulations was performed to assess how many active factors
could be identified reliably using supersaturated designs. These simulations
kept the mean, µ, of an active factor constant and varied the number of active
factors, c = 1, . . . , 10. Fig. 2 shows the four performance measures for the
22 18 experiment with µ = 5 using the Gauss-Dantzig selector for analysis.
Both the E(s2)-optimal and the Bayesian D-optimal designs perform well for
up to 8 active factors. The Bayesian D-optimal design has slightly higher
π1, π2 and π3 values and thus tends to select slightly larger models.

Fig. 3 shows the corresponding results for 24 14 experiment with µ = 3.
The performance, particularly under π1 and π3, declines more rapidly as the
number of active factors increases. Again, slightly larger models are selected
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Fig. 3: Performance measures, π1, . . . , π4, for the 24 14 experiment with
µ = 3 using the Gauss-Dantzig selector for E(s2) (solid line) and Bayesian
D-optimal (dashed line) designs.

using the Bayesian D-optimal design, a difference which is not observed for
other analysis methods. Further simulations (not shown) indicate consider-
able differences in performance between settings where µ = 3 and µ = 5.

4. Discussion

The results in this paper provide evidence that supersaturated designs
may be a useful tool for screening experiments, particularly marginally su-
persaturated designs (where m is only slightly larger than n). They suggest
the following guidelines for the use of supersaturated designs:

1. The Gauss-Dantzig selector is the preferred model selection procedure
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out of the methods investigated. If the design is only marginally su-
persaturated, model-averaging is also effective.

2. The ratio of factors to runs should be less than 2.

3. The number of active factors should be less than or equal to a third of
the number of runs.

The simulations include situations where these conditions do not hold but
nevertheless a supersaturated design performs well, for example, Table 4
Scenario 1 with m/n > 2. However, evidence from our study suggests that 2
and 3 are conditions under which supersaturated designs are most likely to
be successful.

Little difference was found in the performance of the E(s2)-optimal and
Bayesian D-optimal designs, with the latter having slightly higher power
to detect active effects at the cost of a slightly higher type I error rate.
The Bayesian D-optimal designs may be preferred in practice, despite being
unbalanced and having some high column correlations, as follow-up experi-
mentation may screen out spurious factors but cannot detect active factors
already removed. Such designs are readily available in standard software
such as SAS Proc Optex and JMP.

The simulations presented cover a broader range of conditions than pre-
viously considered, and investigate more aspects of design performance. Fur-
ther studies of interest include incorporating interaction effects in the models,
and Bayesian methods of analysis, see for example Beattie et al. (2002).
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