
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Classification under Input Uncertainty

with Support Vector Machines

by

Jianqiang Yang

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

July 31, 2009

http://www.soton.ac.uk
mailto:jy03r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Classification under Input Uncertainty with Support Vector Machines

by Jianqiang Yang

Uncertainty can exist in any measurement of data describing the real world. Many

machine learning approaches attempt to model any uncertainty in the form of addi-

tive noise on the target, which can be effective for simple models. However, for more

complex models, and where a richer description of anisotropic uncertainty is available,

these approaches can suffer. The principal focus of this thesis is the development of

advanced classification approaches that can incorporate the known input uncertainties

into support vector machines (SVMs), which can accommodate isotropic uncertain in-

formation in the classification. This new method is termed as uncertainty support vector

classification (USVC). Kernel functions can be used as well through the derivation of a

novel kernelisation formulation to generalise this proposed technique to non-linear mod-

els and the resulting optimisation problem is a second order cone program (SOCP) with

a unique solution. Based on the statistical models on the input uncertainty, Bi and

Zhang (2005) developed total support vector classification (TSVC), which has a similar

geometric interpretation and optimisation formulation to USVC, but chooses much lower

probabilities that the corresponding original inputs are going to be correctly classified

by the optimal solution than USVC. Adaptive uncertainty support vector classification

(AUSVC) is then developed based on the combination of TSVC and USVC, in which

the probabilities of the original inputs being correctly classified are adaptively adjusted

in accordance with the corresponding uncertain inputs. Inheriting the advantages from

AUSVC and the minimax probability machine (MPM), minimax probability support

vector classification (MPSVC) is developed to maximise the probabilities of the original

inputs being correctly classified. Statistical tests are used to evaluate the experimen-

tal results of different approaches. Experiments illustrate that AUSVC and MPSVC

are suitable for classifying the observed uncertain inputs and recovering the true target

function respectively since the contamination is normally unknown for the learner.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:jy03r@ecs.soton.ac.uk

Contents

Nomenclature xiii

Author’s Declaration xvi

Acknowledgements xvii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Motivation and Relationships to Existing Approaches 5

1.3 Contributions . 6

1.4 Outline of Thesis . 7

2 Noise Models 9

2.1 Different Noise Models . 9

2.1.1 Traditional Additive Noise . 10

2.1.2 Noise Model Independent of the Function and the Distribution . . 11

2.1.3 Noise Model Dependent on the Function 13

2.1.4 Noise Model Dependent on the Distribution 14

2.1.5 Noise Model Dependent on the Function and the Distribution . . . 15

2.2 Input Uncertainty . 19

2.2.1 Gaussian Processes on Output Uncertainty Prediction 19

2.2.2 Input Uncertainty Prediction . 21

2.2.3 Statistical Models on Input Uncertainty 23

2.2.4 Input Uncertainty Model . 24

2.3 Summary . 26

3 Uncertainty Support Vector Classification 28

3.1 Incorporating Input Uncertainty in Support Vector Machines 28

3.1.1 Geometric Interpretation . 29

3.1.2 Statistical Approach . 31

3.1.3 Second Order Cone Program . 32

3.2 Dual Problem . 33

3.2.1 Dual Problem for the Linearly Separable Case 33

3.2.2 Dual Problem for the Linearly Non-Separable Case 38

3.3 Extension to Non-Linear Models . 39

3.4 Experiments on Uncertainty Support Vector Classification 42

3.4.1 SeDuMi . 42

3.4.2 Linear Case . 44

ii

CONTENTS iii

3.4.3 Non-Linear Case . 45

3.4.3.1 Polynomial Kernel . 45

3.4.3.2 Gaussian Radial Basis Function Kernel 47

3.4.4 Result of Degenerate Case . 48

3.4.5 Experimental Comparison of USVC and SVC 49

3.5 Summary . 50

4 Other Related Methods 51

4.1 Total Support Vector Classification . 51

4.1.1 Linear Case . 51

4.1.2 Limitations . 55

4.1.3 Non-Linear Case . 57

4.1.4 Experimental Comparison of TSVC and USVC 58

4.2 Second Order Cone Programming Formulation 65

4.3 Minimax Probability Machine . 67

4.3.1 Optimal Bounds in Probability . 68

4.3.2 Linear Case . 70

4.3.3 Non-Linear Case . 71

4.4 Summary . 73

5 Iterative Constraints in Classification Subject to Input Uncertainty 75

5.1 Adaptive Uncertainty Support Vector Classification 75

5.2 Minimax Probability Support Vector Classification 81

5.2.1 Uncertain Inputs without Prior Distribution Information 81

5.2.2 Minimax Probability Support Vector Classification 84

5.3 Algorithmic Complexity Analysis . 94

5.4 Summary . 95

6 Data Analysis 97

6.1 Statistical Comparison . 97

6.1.1 Analysis of Variance . 99

6.1.2 Friedman Test . 100

6.1.3 Post-Hoc Analysis . 101

6.2 Experimental Setup . 104

6.2.1 Contamination . 104

6.2.2 Bi and Zhang’s Setting . 106

6.2.3 The Reverse Setting . 110

6.2.4 The General Setting . 110

6.3 Experimental Platform . 111

6.3.1 MOSEK . 111

6.3.2 MATLAB External Interface . 112

6.3.3 Parameters Setup . 113

6.4 Experimental Results . 114

6.4.1 Banana Data Sets . 115

6.4.2 Titanic Data Sets . 121

6.4.3 Thyroid Data Sets . 123

6.5 Summary . 126

CONTENTS iv

7 Conclusions and Future Work 128

7.1 Summary of Work . 128

7.2 Future Work . 131

7.2.1 Other Prior Assumptions . 131

7.2.2 Large Scale Implementations . 131

A General Derivations from Primal Problems to Dual Problems 133

B Derivations of Kernelising TSVC in the General Case 138

C Demonstration of the Friedman Test and Post-Hoc Tests 140

Bibliography 145

List of Figures

1.1 General description for input and target uncertainty. 3

2.1 Univariate Gaussian noise, Laplacian noise and uniform noise. 12

2.2 2-D example of a malicious noise model EX(g,D, η), in which η = 0.05,
{x, y} ∈ D and g(x) = wT x + b = 0 denotes the target function shown
as the solid line in the figure, where w = [0.5,−1]T and b = 0.25. The
original input data are displayed in (a), and (b) shows the contaminated
inputs. Light green pluses and light yellow squares in Figure 2.2(b) rep-
resent the original inputs before being contaminated, dashed arrow shows
how individual inputs are corrupted by this malicious noise model. 12

2.3 2-D example of a function-dependent attribute noise model EX(g,D, η),
in which η = 0.05, {x, y} ∈ D and g(x) = wT x+b = 0 denotes the target
function shown as the solid line in the figure, where w = [0.5,−1]T and
b = 0.25. The original input data are displayed in (a), and (b) shows
the contaminated inputs. Light green pluses and light yellow squares in
Figure 2.3(b) represent the original inputs before being contaminated,
dashed arrow shows how individual inputs are corrupted by this noise
model. 14

2.4 2-D example of a five-nearest neighbour distribution-dependent attribute
noise model EX(g,D, η), in which η = 0.05, {x, y} ∈ D and g(x) =
wT x + b = 0 denotes the target function shown as the solid line in the
figure, where w = [0.5,−1]T and b = 0.25. The original input data are
displayed in (a), and (b) shows the contaminated inputs. Light green
pluses and light yellow squares in Figure 2.4(b) represent the original
inputs before being contaminated, dashed arrow shows how individual
inputs are corrupted by this noise model. 15

2.5 2-D example of a nasty classification function and distribution dependent
attribute noise model EX(g,D, η), in which η = 0.05, {x, y} ∈ D and
g(x) = wT x + b = 0 denotes the target function shown as the solid
line in the figure, where w = [0.5,−1]T and b = 0.25. The original
input data are displayed in (a), and (b) shows the contaminated inputs.
Light green pluses and light yellow squares in Figure 2.5(b) represent the
original inputs before being contaminated and the inputs in the middle
of contamination process, dashed arrow shows how individual inputs are
corrupted by this noise model. 17

v

LIST OF FIGURES vi

2.6 2-D example of a nasty classification function and distribution dependent
attribute noise model EX(g,D, η), in which η = 0.05, {x, y} ∈ D and
g(x) = ‖x − [0.5, 0.5]T ‖ = 0.398 denotes the polynomial target function
shown as the solid line in the figure. The original input data are dis-
played in (a), and (b) shows the contaminated inputs. Light green pluses
and light yellow squares in Figure 2.6(b) represent the original inputs be-
fore being contaminated and the inputs in the middle of contamination
process, dashed arrow shows how individual inputs are corrupted by this
noise model. 18

2.7 A two-dimensional example of input uncertainty model, in which xio is
the original input and xi is corrupted input at two possible locations,
covariance matrix Mi represents the uncertainty at xio. The red dashed
line contours the conditional distribution of xi for a given value of xio,
while the blue solid lines contour two possible conditional distributions of
xio. 26

3.1 Two-dimensional linearly separable classification subject to input uncer-
tainty. The elliptical contours represent the uncertain inputs zi which
follow the Gaussian distributions centred at xi. The thin and thick solid
lines denote two possible solutions of the classification, the dashed lines
describe the loci of the margin. 29

3.2 Geometric interpretation of a two-dimensional classification subject to
input uncertainty. The elliptical contours represent the uncertain inputs
zi which follow the Gaussian distributions centred at xi. The solid line
denotes the optimal classifier, which is parallel to all dashed lines. The
dashed line passing through zi illustrates how zi is determined by the
weight vector w and the covariance matrix Mi. The dash-dot line illus-
trates the track on which zi varies between zmin and zmax. 30

3.3 Linearly separable case of USVC, where the solid line denotes the optimal
classifier and the dotted lines mark the loci of the margin. 44

3.4 Linearly non-separable case of USVC, where the solid line denotes the
optimal classifier and the dotted lines mark the loci of the margin. (a)
high misclassification tolerance determined by a small C = 1. (b) low
misclassification tolerance determined by a large C = 106. 45

3.5 Non-linearly separable case of USVC, where the solid line denotes the op-
timal classifier and the dotted lines mark the loci of the margin. (a)
non-linear classification with polynomial kernel function (xT

i xj + 1)3.
(b) non-linear classification with Gaussian radial basis kernel function

exp
(
−‖xi−xj‖2

2

)
. 46

3.6 Non-linearly non-separable case of USVC by implementing the polyno-
mial kernels with different parameters d, where the solid line denotes the
optimal classifier and the dotted lines mark the loci of the margin. 46

3.7 Non-linearly non-separable case of USVC by implementing the polynomial
kernels with different regularisation parameter C, where the solid line
denotes the optimal classifier and the dotted lines mark the loci of the
margin. 47

LIST OF FIGURES vii

3.8 Non-linearly non-separable case of USVC by implementing the Gaussian
radial basis function kernels with different parameters σ, where the solid
line denotes the optimal classifier and the dotted lines mark the loci of
the margin. 48

3.9 Degenerate case of USVC by implementing the polynomial kernels, where
the solid line denotes the optimal classifier and the dotted lines mark the
loci of the margin. 49

3.10 Experimental comparison of USVC and SVC over the same data set,
where USVC is represented by the solid line and SVC is represented by
the dashed line. (a) linear classification. (b) non-linear classification with
polynomial kernels. 49

4.1 Geometric interpretation of TSVC and USVC. 53

4.2 Linearly separable case of TSVC and USVC, where the solid line denotes
the optimal classifier of USVC and the dotted lines mark the loci of the
margin of USVC solution. The dashed line denotes the optimal classifier
of TSVC and the loci of the margin of TSVC solution are marked by the
dash-dot lines. 54

4.3 Probabilistic interpretation of TSVC and USVC. In the figure, the uncer-
tain input zi ∼ N ([0.5; 0.5] , [1.143,−0.286;−0.286, 0.571]) remains un-
changed, two linear classifiers are applied to this input with different
weight vectors w. 3D shaded surface and the contour beneath surface
represent multivariate normal cumulative distribution function. Hollow
point is the nearest point of ellipse to the optimal solution and the dotted
line mark the locus of the margin of USVC solution. Solid point is the
farthest point of ellipse and the locus of the margin of TSVC solution is
marked by the dash-dot line. 60

4.4 Selected results from the 5th and 9th 50-input training data sets for lin-
ear classification in the reproduction of Bi and Zhang’s experiment (Bi
and Zhang, 2005). TSVC is represented by blue dashed line, USVC is
represented by black solid line and green dotted line represents SVC. The
target function is illustrated by red dash-dot line. 61

4.5 Selected results from the 1st and 8th 100-input training data sets for
linear classification in the reproduction of Bi and Zhang’s experiment (Bi
and Zhang, 2005). TSVC is represented by blue dashed line, USVC is
represented by black solid line and green dotted line represents SVC. The
target function is illustrated by red dash-dot line. 61

4.6 Selected results from the 5th and 7th 50-input training data sets for clas-
sification with quadratic kernel in the reproduction of Bi and Zhang’s
experiment (Bi and Zhang, 2005). TSVC is represented by blue dashed
line, USVC is represented by black solid line and green dotted line repre-
sents SVC. The target function is illustrated by red dash-dot line. 62

4.7 Selected results from the 3rd and 9th 100-input training data sets for
classification with quadratic kernel in the reproduction of Bi and Zhang’s
experiment (Bi and Zhang, 2005). TSVC is represented by blue dashed
line, USVC is represented by black solid line and green dotted line repre-
sents SVC. The target function is illustrated by red dash-dot line. 63

LIST OF FIGURES viii

4.8 Selected results from the 5th and 9th 50-input training data sets for lin-
ear classification in the recomposition of Bi and Zhang’s experiment (Bi
and Zhang, 2005). TSVC is represented by blue dashed line, USVC is
represented by black solid line and green dotted line represents SVC. The
target function is illustrated by red dash-dot line. 64

4.9 Selected results from the 1st and 8th 100-input training data sets for
linear classification in the recomposition of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC
is represented by black solid line and green dotted line represents SVC.
The target function is illustrated by red dash-dot line. 65

4.10 Selected results from the 5th and 7th 50-input training data sets for clas-
sification with quadratic kernel in the recomposition of Bi and Zhang’s
experiment (Bi and Zhang, 2005). TSVC is represented by blue dashed
line, USVC is represented by black solid line and green dotted line repre-
sents SVC. The target function is illustrated by red dash-dot line. 65

4.11 Selected results from the 3rd and 9th 100-input training data sets for clas-
sification with quadratic kernel in the recomposition of Bi and Zhang’s
experiment (Bi and Zhang, 2005). TSVC is represented by blue dashed
line, USVC is represented by black solid line and green dotted line repre-
sents SVC. The target function is illustrated by red dash-dot line. 66

5.1 Selected results from the 9th 50-input and 8th 100-input training data sets
for linear classification in the reproduction of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC
is represented by black solid line, SVC is represented by green dotted
line and magenta dash-dot line represents AUSVC. The target function
is illustrated by the thin red dash-dot line. 80

5.2 Selected results from the 7th 50-input and 9th 100-input training data
sets for classification with quadratic kernel in the reproduction of Bi and
Zhang’s experiment (Bi and Zhang, 2005). TSVC is represented by blue
dashed line, USVC is represented by black solid line, SVC is represented
by green dotted line and magenta dash-dot line represents AUSVC. The
target function is illustrated by the thin red dash-dot line. 80

5.3 Comparison of individual probability confidence between Gaussian distri-
bution and no prior assumption of distribution in one-dimensional input
space. 83

5.4 Comparison of predicted probability associated with individual probabil-
ity confidence under Gaussian distribution and no prior assumption of
distribution in two-dimensional input space. The weight vector of the
optimal classifier is w = (1;−1). Under Gaussian assumption, zi ∼
N ((0.5; 0.5) , (1.143,−0.286;−0.286, 0.571)) and zi ∼ ((0.5; 0.5) , (1.143,−0.286;−0.286, 0.571))
when the assumption of distribution is unavailable. The upper 3D shaded
surface and the contour beneath surface represent multivariate normal
cumulative distribution function Φmv and multivariate function κ−1

mv is
illustrated by the lower 3D shaded surface. 84

LIST OF FIGURES ix

5.5 Geometric interpretation of the minimax probability error (MPE). In the

figure, di = pi
qi

, where pi = ‖wT xi + b‖ and qi = ‖M1/2
i w‖. The solid line

denotes the optimal classifier and the dashed lines represent the lines that
are simultaneously in parallel with the optimal classifier and tangential
to the nearest edges of uncertainties. For convenience, the distributions
of uncertain inputs are set to Gaussian distribution here. In real classifi-
cation, uncertain inputs can follow many other distributions. 86

5.6 Selected results from the 1st and 8th 100-input training data sets for
linear classification in the reproduction of Bi and Zhang’s experiment (Bi
and Zhang, 2005). TSVC is represented by blue dashed line, USVC is
represented by black solid line, SVC is represented by green dotted line,
AUSVC is represented by magenta dash-dot line and thick cyan dashed
line represents MPSVC. The target function is illustrated by red dash-dot
line. 91

5.7 Selected results from the 3rd and 9th 100-input training data sets for
classification with quadratic kernel in the reproduction of Bi and Zhang’s
experiment (Bi and Zhang, 2005). TSVC is represented by blue dashed
line, USVC is represented by black solid line, SVC is represented by green
dotted line, AUSVC is represented by magenta dash-dot line and thick
cyan dashed line represents MPSVC. The target function is illustrated by
red dash-dot line. 91

5.8 Selected results from the 5th 50-input and 8th 100-input training data sets
for linear classification in the recomposition of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC is
represented by black solid line, SVC is represented by green dotted line,
AUSVC is represented by magenta dash-dot line and thick cyan dashed
line represents MPSVC. The target function is illustrated by red dash-dot
line. 93

5.9 Selected results from the 7th 50-input and 9th 100-input training data
sets for classification with quadratic kernel in the recomposition of Bi and
Zhang’s experiment (Bi and Zhang, 2005). TSVC is represented by blue
dashed line, USVC is represented by black solid line, SVC is represented
by green dotted line, AUSVC is represented by magenta dash-dot line
and thick cyan dashed line represents MPSVC. The target function is
illustrated by red dash-dot line. 94

6.1 The difference between classifiers follows a Gaussian distribution. 98

6.2 The contamination results of banana data set under Bi and Zhang’s set-
ting. Thick solid lines are the estimated true target function obtained
from standard SVC, star and dotted lines represent the results of Gaus-
sian mixtures. 109

6.3 The contamination results of banana data set under the reverse setting.
Thick solid lines are the estimated true target function obtained from
standard SVC, star and dotted lines represent the results of Gaussian
mixtures. 110

6.4 The contamination results of banana data set under the general setting.
Thick solid lines are the estimated true target function obtained from
standard SVC, star and dotted lines represent the results of Gaussian
mixtures. 111

LIST OF FIGURES x

6.5 Selected results from the 3rd and 38th banana training sets contaminated
by Bi and Zhang’s setting. USVC is represented by black solid line, SVC
is represented by green dotted line, TSVC is represented by blue dashed
line, AUSVC is represented by thick magenta dash-dot line, MPSVC is
depicted by thick cyan dashed line and the true target function is ap-
proximated by SVCRaetsch trained with the original noiseless data and
illustrated as red dash-dot line. 116

6.6 Selected results from the 41st and 50th banana training sets contaminated
by the general setting. USVC is represented by black solid line, SVC is
represented by green dotted line, TSVC is represented by blue dashed
line, AUSVC is represented by thick magenta dash-dot line, MPSVC is
depicted by thick cyan dashed line and the true target function is ap-
proximated by SVCRaetsch trained with the original noiseless data and
illustrated as red dash-dot line. 119

6.7 Selected results from the 76th and 77th banana training sets contaminated
by the reverse setting. USVC is represented by black solid line, SVC is
represented by green dotted line, TSVC is represented by blue dashed
line, AUSVC is represented by thick magenta dash-dot line, MPSVC is
depicted by thick cyan dashed line and the true target function is ap-
proximated by SVCRaetsch trained with the original noiseless data and
illustrated as red dash-dot line. 120

List of Tables

4.1 Average test error percentages of NMCU of USVC, TSVC and standard
SVC in reproducing Bi and Zhang’s experiment, means and standard
errors of NMCU are listed in the table. 59

4.2 Average test error percentages of TME of USVC, TSVC and standard
SVC in reproducing Bi and Zhang’s experiment, means and standard
errors of TME are listed in the table. 60

4.3 Average test error percentages of NMCU of USVC, TSVC and standard
SVC in recomposing Bi and Zhang’s experiment, means and standard
errors of NMCU are listed in the table. 63

4.4 Average test error percentages of TME of USVC, TSVC and standard
SVC in recomposing Bi and Zhang’s experiment, means and standard
errors of TME are listed in the table. 64

5.1 Average test error percentages of NMCU and TME of AUSVC in repro-
ducing Bi and Zhang’s experiment, means and standard errors of NMCU
and TME are listed in the table. 79

5.2 Average test error percentages of NMCU of USVC, TSVC, SVC, AUSVC
and MPSVC in reproducing Bi and Zhang’s experiment, means and stan-
dard errors of NMCU are listed in the table. 90

5.3 Average test error percentages of TME of USVC, TSVC, SVC, AUSVC
and MPSVC in reproducing Bi and Zhang’s experiment, means and stan-
dard errors of TME are listed in the table. 90

5.4 Average test error percentages of NMCU of USVC, TSVC, SVC, AUSVC
and MPSVC in recomposing Bi and Zhang’s experiment, means and stan-
dard errors of NMCU are listed in the table. 92

5.5 Average test error percentages of TME of USVC, TSVC, SVC, AUSVC
and MPSVC in recomposing Bi and Zhang’s experiment, means and stan-
dard errors of TME are listed in the table. 93

5.6 Comparison of the algorithmic complexities of SVC, TSVC, USVC, AUSVC
and MPSVC. 94

6.1 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the first 40 banana data sets (from the 1st data set to the 40th data
set) contaminated under Bi and Zhang’s setting, whose ACCL is 6.03%
(The average percentage of misclassified inputs in all inputs is 7.42%
before contamination and 13.45% after contamination). 115

xi

LIST OF TABLES xii

6.2 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the middle 30 banana data sets (from the 41st data set to the 70th
data set) contaminated under the general setting, whose ACCL is 2.22%
(The average percentage of misclassified inputs in all inputs is 7.73%
before contamination and 9.95% after contamination). 117

6.3 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the last 30 banana data sets (from the 71st data set to the 100th data
set) contaminated under the reverse setting, whose ACCL is −0.59% (The
average percentage of misclassified inputs in all inputs is 7.73% before
contamination and 7.14% after contamination). 118

6.4 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the first 40 titanic data sets (from the 1st data set to the 40th data
set) contaminated under Bi and Zhang’s setting, whose ACCL is 6.05%
(The average percentage of misclassified inputs in all inputs is 18.73%
before contamination and 24.78% after contamination). 122

6.5 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the middle 30 titanic data sets (from the 41st data set to the 70th
data set) contaminated under the general setting, whose ACCL is 1.00%
(The average percentage of misclassified inputs in all inputs is 20.53%
before contamination and 21.53% after contamination). 122

6.6 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the last 30 titanic data sets (from the 71st data set to the 100th data
set) contaminated under the general setting, whose ACCL is −1.03% (The
average percentage of misclassified inputs in all inputs is 22.33% before
contamination and 21.30% after contamination). 123

6.7 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the first 40 thyroid data sets (from the 1st data set to the 40th
data set) contaminated under Bi and Zhang’s setting, whose ACCL is
24.57% (The average percentage of misclassified inputs in all inputs is
3.43% before contamination and 28.00% after contamination). 124

6.8 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the middle 30 thyroid data sets (from the 41st data set to the 70th
data set) contaminated under the general setting, whose ACCL is 9.97%
(The average percentage of misclassified inputs in all inputs is 3.25%
before contamination and 13.21% after contamination). 125

6.9 Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the last 30 thyroid data sets (from the 71st data set to the 100th data
set) contaminated under the general setting, whose ACCL is 2.92% (The
average percentage of misclassified inputs in all inputs is 3.93% before
contamination and 6.85% after contamination). 125

List of Algorithms

1 TSVC’s Iterative Algorithm for Linear Case 57

2 TSVC’s Iterative Algorithm for Non-Linear Case 58

3 AUSVC . 78

4 MPSVC . 89

5 Generating Covariance Matrix . 105

xiii

Nomenclature

x input vector

y label of input vector

f probability density function

D data set

g target function

η noise rate (probability) of inputs being contaminated

EX(g,D, η) noise model

x
′

corrupted input vector

w weight vector

b offset bias

gv function vertical to target function

Pr(.) probability

φ(.) mapping function

K(.) kernel function

K(.) covariance matrix

k(.) covariance function

Cov covariance

N (µ,Σ) Gaussian distribution with mean vector µ and covariance matrix Σ

xk known features of x

xm missing features of x

θ parameter of conditional distribution

xio original counterpart of xi

xi corrupted input vector

zi uncertain input vector

Mi covariance matrix of uncertain input

yi label scalar of uncertain input in training data sets

ρ margin

E(A,a) ellipsoid with centre a and covariance matrix A

S(0, 1) unit ball

α lower bound of probability of inputs being correctly classified

Φ(.) cumulative distribution function

ξi penalty parameter

xiv

NOMENCLATURE xv

C regularisation parameter

αi variable scalar in dual optimisation problem

βi variable vector in dual optimisation problem

l number of uncertain inputs

n dimension of input space

m dimension of feature space

J Jacobian matrix

I identity matrix

δi uncertainty bound

△xi noise following a certain distribution

V set of support vectors

O(.) order

r probability confidence

ri individual probability confidence

d minimal distance from uncertainty to boundary

κ(α) monotonically increasing function of probability α

erf Gauss error function

pi minimal distance from the mean of uncertainty to its misclassified part

qi distance between the mean of uncertainty and the nearest edge of

its distribution to the optimal solution

Di lower bound of individual probability confidence ri

Li regularisation parameter

p p-value

r̄.j average rank for each algorithm

r̄ average rank for all algorithms

N number of data sets

k number of algorithms compared

CD critical difference

qα critical value

fs space factor

fd dimension factor

fc contamination factor

τ parameter for percentage of contaminated inputs to all

ν severe or light contamination controller

ζ parameter for contamination according to the distribution of inputs

or the target function

DECLARATION OF AUTHORSHIP

I, . , [please print name]

declare that the thesis entitled [enter title]

. .

. .

and the work presented in the thesis are both my own, and have been generated by me

as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• none of this work has been published before submission, or [delete as appropriate]

parts of this work have been published as: [please list references]

Yang, J., Gunn, S.R.: Uncertain Input Classification in Support Vector Machines. Sheffield Machine

Learning Workshop. (2004)

Yang, J., Gunn, S.R.: Exploiting Uncertain Data in Support Vector Classification. KES2007 11th Inter-

national Conference on Knowledge-Based and Intelligent Information & Engineering Systems. (2007)

Yang, J., Gunn, S.R.: Iterative Constraints in Support Vector Classification with Uncertain Information.

International Workshop on Constraint-Based Mining and Learning, at ECML/PKDD 2007. (2007)

Signed:. .

Date:. .

xvi

Acknowledgements

Sincerely, I am deeply indebted to my supervisor Professor Steve Gunn, whose wise

guidance and encouragement helped me in all the time of research for and writing of

this thesis, especially after I moved to London, he always made some time to discuss the

difficulties I met in my research every time he travelled to London for business. Also his

creativity and enthusiasm enlightened me many times on the journey of Ph.D.

Besides, I would like to express my appreciation and gratitude to Professor Bob Damper

and Dr Gavin Cawley, whose suggestions made me improve my work from different

points of view.

Finally, a special gratefulness must be sent to many nice colleagues at ISIS which is such

a cheerful working place.

Especially, I would like to give my special thanks to my beloved wife, Nan, whose patient

love and continuously moral support enabled me to complete this work. This thesis is

dedicated to my parents.

xvii

Chapter 1

Introduction

How can we forecast future events? What can we explain based on existing events? The

answer is learning, through which future events can be forecasted by analysing existing

events. Learning is

“Changes in a system that enable it to do the same task or tasks drawn from

the same population more efficiently and more effectively the next time.”

defined by Simon (1983). A human can adapt and learn from their experience by using

his/her biological systems. With the growth of algorithms and the development of com-

puter technology, our cognitive abilities have been expanded to a new level. Computer

systems can develop solutions for particular complex learning tasks that are too difficult

or impossible to construct manually, can develop systems that automatically customise

themselves to the needs of individual users through experience, and can develop database

mining systems by discovering knowledge and patterns in databases. Machine learning

is

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in

T as measured by P , improves with experience E.”

defined by Mitchell (1997). Machine learning methods develop models by extracting

principles, rules and patterns out of data sets. Generally, machine learning tasks can be

divided into supervised, unsupervised, semi-supervised and reinforcement learning. The

task of supervised learning is to provide an algorithm that the supervised learner uses

to generate a function which maps inputs to desired outputs. The methods developed

in this thesis are all categorised as supervised learning.

Theoretically, machine learning algorithms and their performance can be analysed in a

related mathematical field, computational learning theory, which attempts to explain

1

Chapter 1 Introduction 2

the learning process from a statistical point of view. Normally, since training sets are

finite and the future is uncertain, learning theory usually yield probabilistic bounds on

the performance rather than absolute guarantees of the performance of the algorithms.

On the other hand, different approaches to computational learning theory use varied

inference principles and definitions of probability, finally leading to different machine

learning algorithms. The different approaches include the probably approximately cor-

rect learning (PAC learning) proposed by Valiant (1984), Vapnik-Chervonenkis theory

(VC theory) proposed by Vapnik and Chervonenkis (1971), Bayesian inference (Winkler,

2003) and the algorithmic learning theory proposed by Gold (1967).

VC theory is related to statistical learning theory and can be applied to empirical pro-

cesses. VC theory covers at least four parts (Vapnik, 1999), including theory of consis-

tency of learning processes, non-asymptotic theory of the rate of convergence of learning

processes, theory of controlling the generalisation ability of learning processes and the-

ory of constructing learning machines. VC theory contains important concepts such as

the VC dimension and structural risk minimisation (SRM), from which, a well known

learning algorithm, the support vector machine (SVM) was developed by Boser et al.

(1992). As a maximum margin method, SVM maximises the margin between two data

sets to minimise an upper bound on the VC dimension, which holds an upper bound for

the generalisation error. In general, the larger the margin the lower the generalisation

error. SVM receives much attention and becomes an active field of machine learning re-

search. Applications include isolated handwritten digit recognition (Cortes and Vapnik,

1995; Gorgevik and Cakmakov, 2002), object recognition (Blanz et al., 1996; Boughor-

bel et al., 2004), speaker identification (Schmidt, 1996; Wan and Renals, 2003), face

detection in images (Osuna et al., 1997; Huang et al., 2002), etc.

1.1 Problem Statement

Uncertainty is the lack of certainty, a state of having limited knowledge where it is im-

possible to exactly describe existing state or future outcome, more than one possible

outcome (Hubbard, 2007). In machine learning, there exist different types of uncertain-

ties, including uncertainty about variability, structural uncertainty, input uncertainty

and target uncertainty. Variability is described by frequency distributions, whereas un-

certainty is described by probability distributions (Morgan and Henrion, 1990). The

uncertainty about variability is generated by estimating the unknown distribution of

inputs in the population being studied. This uncertainty can be handled in classifica-

tion problems by the minimax probability machine (MPM) proposed afterwards. The

connections of the other uncertainties can be illustrated by Figure 1.1, where g repre-

sents the structure of a model that defines how characteristics y are determined from

inputs x and y = g(x), Dx denotes the plausibility region for model inputs and Dy de-

notes the uncertainty region for model targets. Structure uncertainty comes from model

Chapter 1 Introduction 3

x
yg

xD

yD

Figure 1.1: General description for input and target uncertainty.

structures, considers both model and parameter uncertainty, where the output is deter-

mined by a variety of statistical models consisting of a family of distributions indexed

by the parameters. The Bayesian approach provides a natural and general probabilistic

framework that accounts for model uncertainty as well as parameter uncertainty (Clyde

and George, 2004). Input uncertainty comes from any uncertain input x defined by

a probability distribution function and exists independently of the model. The prob-

ability function f(x) describes input uncertainty and f(y) describes target or output

uncertainty, we have x ∼ f(x), x ∈ Dx and y = g(x) ∼ f(y), y ∈ Dy.

Often, training sets may contain incomplete or incorrect information introduced by noise,

which may exists in varied situations of data pre-processing and collection, obscuring the

original inputs. As a result, processing the incompletion before learning can generate

uncertainty for an input by estimating the missing attributes of this input under the

assumption of a joint Gaussian distribution by which the missing and observed attributes

of this input are distributed. On the other hand, incorrect or corrupted inputs that are

observed can introduce uncertainties through chosen conditional distribution models

related to their unknown original counterparts. No matter where these uncertainties

are generated from, they contain the estimated amounts or information by which the

observed or calculated inputs may differ from the original inputs. In this thesis, we will

focus on the input uncertainty.

Here we have some examples of input uncertainty. For instance, in geographic informa-

tion systems (GIS), there exists a raster-based model for structural landscape classifica-

tion (Canters et al., 2002). This model uses two types of input data: a digital elevation

model (DEM) and a land-cover map. Combining both data sources, for each cell in the

landscape model, four structural indices (two from each type) are calculated. Based

on the values of these indices for each cell, a landscape typology is derived, reflecting

two important characteristics, openness of the landscape and the degree of landscape

homogeneity. The land-cover map will be derived from remotely sensed data and some

Chapter 1 Introduction 4

input data can be perturbed during the data collection. For the elevation input, there

are some observed differences in elevation between the DEM and an independent set of

control points. The fact that the perturbation and the observed differences are present

in data collection can introduce input uncertainties in the land-cover map and the DEM,

and may affect the quality of the landscape classification model.

Another example is given by Cullen and Frey (1999). Probabilistic exposure assessments

are carried out for exposure models and a diverse set of environmental hazards. Expo-

sure models combine information about the frequency, intensity and duration of human

contact with environmental contaminants and/or radionuclides through inhalation, in-

gestion, and dermal absorption. The model inputs can be categorised in accordance

with the roles they serve. Some describe the degree of contamination of various environ-

mental media, others depict the behaviours, activities, or demographics of exposure and

exposed populations, and still others describe human physiology. Input uncertainties of

these model inputs may appear as measures of the incompleteness of one’s knowledge

or information about unknown quantities whose true values could be established if the

perfect measuring devices were available. And the quality of the exposure models may

be affected by these input uncertainties as well.

Besides, input uncertainties may be introduced in many other aspects of machine learn-

ing research: in speech recognition, if the observed noisy input is assumed to be produced

by noise corrupting the unknown clean input, the uncertainty for the clean input is a

Gaussian whose mean is a linear transformation of the noisy input under the assump-

tion that the clean input and the noisy input have a joint Gaussian distribution (Droppo

et al., 2002; Liao and Gales, 2004). And the uncertainty and lack of confidence may also

exist in the process of feature extraction from image and video (Wallace et al., 2006).

In general, these input uncertainties can be introduced through data pre-processing or

collection before learning when the incompleteness or errors appear to make the orig-

inal inputs at least partially unknown to the learner. The obtained uncertain inputs

are distributed by assumed distributions. Moreover, uncertainties, which are introduced

through different ways, can lead to different approximations of these uncertainties. How-

ever, the uncertain information is typically ignored by traditional learning algorithms,

but should be introduced to formulate new learning approaches. So the following ques-

tions are raised:

• How is it best to accommodate input uncertainty in supervised learning algo-

rithms?

• What performance advantages are gained over approaches which do not directly

include the “input uncertainty” information?

• Which kind of noise can boost or weaken the performance of algorithms which

incorporate the “input uncertainty” information?

Chapter 1 Introduction 5

1.2 Motivation and Relationships to Existing Approaches

Traditionally, many approaches have considered either modelling and removing the un-

certainties from inputs by approximating or estimating the input uncertainties, or di-

rectly incorporating the input uncertainties into the learner. The different input uncer-

tainty models and the learning algorithms have been proposed in several papers, such as

four sources of uncertainty are quantified in concentrations predicted by a multi-media

fate model, including input uncertainty in substance properties is quantified using prob-

abilistic modelling (Hauck et al., 2008). In another example, a Bayesian uncertainty

framework presented by Huard and Mailhot (2006) allows one to account for input, out-

put and structural uncertainties in the calibration of a model. Then the impact of input

uncertainty on the parameters of the hydrological model is studied using this framework.

Indeed, Bayesian approach is widely used not only to estimate the effects of model un-

certainty (Mackay, 1992) but also to be extended to incorporate input uncertainty into

learning systems (Wright, 1999). Draper (1995) discussed a Bayesian approach that can

fully assess and propagate structural uncertainty, output uncertainty can then be as-

sessed in accordance with input uncertainty and the structural uncertainty obtained. In

Chick (2001), the Bayesian model average (BMA) approach can provide meaningful es-

timates of the mean of simulation output by quantifying the effects of input uncertainty

on simulation output.

Recent advances in machine learning methods have seen significant contribution from

kernel-based approaches. These have many advantages, including strong theory and

convex optimisation formulation. As a maximum margin method derived from VC

theory, SVM not only can accommodate different kernels, but more importantly can

hold the upper bound of the generalisation error by maximising the margin can for

the optimal solution in classification problems. However, the traditional support vector

classification (SVC) can only accommodate isotropic uncertainty information in input

space. When a richer description of anisotropic uncertainty is available, it can suffer.

In this work we aim to incorporate knowledge of input uncertainty into traditional SVM

to provide more robust kernel-based algorithms in classification. Recent approaches

have attempted to model input uncertainty in SVM within the kernel learning frame-

work, such as Lanckriet et al. (2002a,b), Bi and Vapnik (2003); Bi and Zhang (2005),

Bhattacharyya (2004); Bhattacharyya et al. (2005), Shivaswamy et al. (2006). They

have derived some solutions for classification subject to input uncertainty, leading to

quadratically constrained quadratic program (QCQP) and second order cone program

(SOCP) formulations.

Comparing with the traditional SVC, the algorithm of the total support vector classi-

fication (TSVC) proposed by Bi and Zhang (2005) has an improved performance than

SVC because the approach efficiently incorporates input uncertainties into the learner,

where these input uncertainties come from the Gaussian-distributed uncertain inputs

Chapter 1 Introduction 6

which denote the unknown corresponding original inputs. Minimax probability machine

(MPM) (Lanckriet et al., 2002b) is an algorithm developed from the moment problem

and probability theory, and can be used to classify the contaminated classes of inputs

with the assumption that no prior distribution of inputs is available. MPM also leads

to another new algorithm proposed in (Bhattacharyya et al., 2005; Shivaswamy et al.,

2006), whose structure is close to that of TSVC.

1.3 Contributions

The main contributions of this work are to introduce a new algorithm, uncertainty sup-

port vector classification (USVC) by introducing the information of uncertain inputs,

and two new iterative algorithms based on USVC and other related methods. All these

newly developed algorithms can be deemed as or transformed to maximum margin meth-

ods, well controlling the upper bound of the generalisation error and can be extended to

accommodate different kernels through a novel kernelisation formulation. The primary

contribution of this work has been to combine existing approaches along with new ones

geometrically and statistically to provide robust solutions for classification subject to

input uncertainty in both classifying the contaminated inputs available in observation,

and recovering the original target function, which, together with the unknown origi-

nal inputs, is indeed from the noiseless data set. More details of the contributions are

specified as follows,

• Detailed discussion of different noise models defined in accordance with classifica-

tion problems. Input uncertainty can be estimated from the observed corrupted

inputs and their corresponding unknown original inputs.

• Development of a novel kernel-based maximum margin algorithm named the un-

certainty support vector classification (USVC) (Yang and Gunn, 2004). The dual

problem of USVC is derived and kernelised to accommodate non-linear case with

the introduction of a novel kernelisation formulation.

• Development of an iterative algorithm named the adaptive uncertainty support

vector classification (AUSVC) (Yang and Gunn, 2007a). AUSVC combines the

characteristics of convex optimisation of USVC and TSVC statistically and geo-

metrically.

• Development of a new algorithm, the minimax probability support vector classifi-

cation (MPSVC) (Yang and Gunn, 2007b), which borrows the idea of the minimax

probability machine (MPM) and combines MPM with other existing SVM-based

approaches.

Chapter 1 Introduction 7

• Analysing and summarising the relationships statistically between USVC, TSVC,

AUSVC, MPSVC and the traditional SVC. The algorithmic complexity of these

algorithms are compared as well.

1.4 Outline of Thesis

This prelude has given some examples of where input uncertainty is generated under

noisy situation and how input uncertainty can affect the inputs in training data set,

and has introduced some difficulties that the traditional SVM can not accommodate

anisotropic input uncertainty in classification problems. In this section, an outline of

the remaining chapters for this thesis will be shown as follows:

Chapter 2 first introduces some noise models that can be used to contaminate original

inputs. In classification problems, the applied noise models can be classified into four

kinds based on two basic factors, the true target function (the original hyperplane) and

the distribution of inputs in training set. The contamination can depend on neither,

either or both of these two factors. Dependence on the true target function means

that the chosen original inputs move according to the original hyperplane under the

contamination. The contamination dependent on the distribution can move the chosen

original inputs based on the distribution of inputs. Obviously, to make the classification

more difficult, the chosen original inputs can be moved towards the opposite class on

purpose. Then like the Gaussian process regression used to predict the missing labels, a

characteristic of the Gaussian distribution can be used to estimate the missing attributes

(or features) of an input under the assumption that the missing and available attributes

of this input follow a joint Gaussian distribution, the resulting uncertain input is a

Gaussian. A statistical model is also introduced to analyse the connections between the

original and contaminated input under Gaussian noise, a conditional distribution of the

contaminated input given the original input is a Gaussian as well. Finally, an input

uncertainty model is proposed to provide a distribution for the unknown original input,

whose distribution is assumed to be a Gaussian.

Chapter 3 describes the incorporation of input uncertainty to derive a new maximum

margin method USVC based on the traditional SVC. The resulting optimisation problem

is a SOCP with a unique solution. The primal and dual problems of USVC can be

extended to a non-linear case by introducing a novel kernelisation formulation. USVC

has the similar formulation as that of SVC except for the introduction of the covariance

matrices and the dual variables α, β in the primal and dual problems respectively.

Moreover, USVC behaves in a similar manner to SVC in the case of soft margin applied

with the regularisation parameter. Different kernel functions are then tested with some

synthetic data sets.

Chapter 1 Introduction 8

Chapter 4 first introduces the definition of TSVC, compares TSVC with USVC mathe-

matically and geometrically, and analyses their fundamentally statistical difference which

is actually based on the different assumptions of the probabilities of the unknown orig-

inal inputs being classified correctly. Meanwhile, the optimisation problem of TSVC is

extended to accommodate a more general case, anisotropic input uncertainty instead

of originally proposed isotropic input uncertainty. Secondly, although USVC has the

same primal problem as that of the introduced second order cone programming formu-

lation (SOCPF), USVC is more likely to be strong duality than SOCPF because of their

different dual transformation used. Finally, MPM can be applied in such classification

problems in which inputs are considered together for each class without prior knowledge

of distribution. The upper bound on the probability of misclassification of future data

set to be minimised in MPM.

Chapter 5 describes the development of two new algorithms. AUSVC is an iterative

algorithm based on USVC and TSVC, it aims to achieve a better classification perfor-

mance by adaptively adjusting the probability of every single unknown original input

being misclassified by future optimal hyperplane. The algorithm of MPSVC combines

the statistical approach of USVC under the assumption of Gaussian prior and the idea of

classifying inputs without prior knowledge in MPM. MPSVC maximises the sum of the

probabilities of inputs being correctly classified with the assumption of Gaussian prior

and the bounds of these probabilities constrained by the existing results from AUSVC.

MPSVC aims to achieve a balance between classifying the corrupted inputs (classifica-

tion) and recovering the original target function (restoration) when no further request

is confirmed. The connections of all existing SVM-based algorithms are analysed geo-

metrically and statistically as well as the comparison of their algorithmic complexities.

Chapter 6 is concerned with measuring and comparing the ability of classification and

restoration of the SVM-based algorithms for classification subject to input uncertainty

and some other existing methods on a number of real world data sets. Three different

settings are applied to the training data sets. The training and test sets are contaminated

by noise under three different settings which can be classified as severe contamination ap-

plied by Bi and Zhang’s setting, moderate contamination applied by the general setting

and light contamination applied by the reverse setting. The original and contaminated

test sets are used to evaluate the optimal solutions of different learners which have been

trained with the corrupted training sets. The measures obtained are compared with

each other by a statistical comparison, the Friedman test, and its post-hoc analyses.

Chapter 7 draws a review of the overall contributions of this thesis, and brings forward

some ideas for future work.

Chapter 2

Noise Models

Typically, data sets are not ideal in most real-life machine learning problems; different

kinds of uncertain or incorrect information will be introduced when measuring or pro-

cessing the input data: The noise (or errors) may exist in the observation of the real

world, in the pre-processing operations applied on the data, in the discretisation of the

data or in the representation of the data, which can lead to incorrectness or incomple-

tion of the obtained data. All these adversities have opportunities to alter the original

input data. As a result, processing the incompletion can generate uncertainties, which

are based on the model selection and the parameter estimation of the chosen model.

Generally, the analysis of input uncertainty problems focus on two aspects, the input

uncertainty model and the propagation of all noise to the system output or target, the

output uncertainty model. Different uncertainty models and their related learning algo-

rithms have been studied in several papers, including Gaussian process implemented as

uncertainty prediction (Williams and Rasmussen, 1996; Girard et al., 2002), Bayesian

method assessment on input uncertainties (Chick, 1997; Williams and Barber, 1998;

Zouaoui and Wilson, 2001; Aires et al., 2004).

2.1 Different Noise Models

Most of the noise models that are related to the degradation encountered in real ap-

plication of classification under contamination can be classified into four kinds of noise

models, which are determined by two basic components of classification problems: the

original input data sets and the target function used to discriminate the original input

data sets. Several examples of these noise models will be shown and illustrated in more

details by introducing some notations. Let EX(g,D, η) denote the noise model and the

learner for a classification problem is provided with EX(g,D, η) such that each call to

EX(g,D, η) returns a labelled input data, {x, y}, where x = [x1, . . . , xn]T ∈ Rn denotes

the attributes, y ∈ {−1, 1} denotes the label and D = {xi, yi}l
i=1 is a training data set,

9

Chapter 2 Noise Models 10

where l is the size of this data set. g(x) = 0 represents a target function, which is the

original hyperplane of this classification problem. η represents the rate (or probability)

that input data are contaminated by noise. In this thesis, the possible changes intro-

duced by output noise are not considered, we only discuss problems with input data

uncertainties introduced by input noise. Therefore, the inputs are corrupted by input

noise affecting only the attributes, their labels are set unchanged as the default setup in

contamination for all data sets thereafter. Before analysing noise models, we first intro-

duce some simple additive noise, which can be exploited by noise models to contaminate

input data.

2.1.1 Traditional Additive Noise

Noise is usually either additive or multiplicative. Additive noise is the noise additive

to input data. Additive noise exists no matter whether input data exist or not. While

multiplicative noise is strictly related to input data and it appears only when input data

exist. This thesis only focus on additive noise which is zero-mean and white. White noise

is spatially uncorrelated: the noise for each input data is independent and identically

distributed (i.i.d.).

Example 2.1. Some traditional multivariate noise models are given in this example.

• Gaussian noise (Miller and Ruben, 1966) is statistical noise that has a prob-

ability density function of Gaussian distribution. In other words, the values that

the noise can take on are Gaussian-distributed. Gaussian noise has an important

property: one can not do any better than the linear average to estimate the mean of

a stationary Gaussian random variable. This makes Gaussian noise a worst-case

scenario for non-linear estimators to restore the original inputs, in the sense that

the improvement over linear estimators is least for Gaussian noise. To improve on

the results obtained by linear estimator, non-linear estimators can exploit only the

non-Gaussianity of the distributions of inputs. Its multivariate probability density

function is:

f(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
xT Σ−1x

)
, (2.1)

where x ∈ Rn is a random input that has a multivariate Gaussian distribution

x ∼ N (0,Σ), 0 is n×1 zero mean vector, Σ is a n×n positive definite covariance

matrix and |Σ| is the determinant of Σ.

• Laplacian noise (Norton, 1984) is statistical noise that has a probability density

function of Laplace distribution, which is a continuous probability distribution and

also called the double exponential distribution because it can be thought of as two

exponential distributions spliced together back to back. The difference between two

Chapter 2 Noise Models 11

i.i.d. exponential values that the noise can take on is governed by a Laplace distri-

bution. Generally, Laplace distribution is an asymmetric distribution x ∼ L(µ,Σ)

(Kotz et al., 2003), where x ∈ Rn is a random input that has a multivariate Laplace

distribution. Here, parameter µ ∈ Rn controls both location and skewness, and Σ is

a n×n non-negative definite symmetric matrix. When µ = 0, asymmetric Laplace

distributions degenerate to symmetric ones. The multivariate probability density

function of symmetric Laplace distribution is presented by Anderson (1992),

f(x) =
2

(2π)n/2|Σ|1/2

(
xT Σ−1x

2

)ν/2

Kν

(√
2xT Σ−1x

)
, (2.2)

where ν = (2 − n)/2 and Kν(u) is the modified Bessel function of the third kind.

Non-linear estimators can provide a much more accurate estimate of the mean of

a stationary Laplacian random variable than the linear average.

• Uniform noise (Weisstein) is statistical noise that follows a uniform distribution,

which, sometimes also known as a rectangular distribution, is a distribution that

has constant probability. Uniform noise provides a useful comparison with Gaus-

sian noise. The linear average is a comparatively poor estimator for the mean of

a uniform distribution. This implies that non-linear estimators should be better at

recovering the original inputs from uniform noise than from Gaussian noise. Its

probability density function is given by:

f(x) =

{
1

2
√

3σ
, for |x| < σ

√
3,

0, else.
(2.3)

To clearly show the difference between these noise, a univariate example is shown in

Figure 2.1.

2.1.2 Noise Model Independent of the Function and the Distribution

This kind of noise model can generate contaminated input data from original input

data by following the parameters that are not related to the target function or the

distribution of input data. Traditional additive noise can be used in this noise model.

Here we introduce a direct example.

Example 2.2. Malicious noise model (Valiant, 1985; Kearns and Li, 1993) is an ex-

ample with independent noise, in which the noise is added to the input data in some prob-

ability. The model EX(g,D, η) then randomly chooses between returning the noiseless

data {x, y}, with probability 1−η, and returning the noisy data {x′
, y}, with probability η,

where x
′ ∈ Rn are drawn uniformly at random over the unit interval.

{x, y} =

{
{x, y}, with probability 1 − η,

{x′
, y}, with probability η.

(2.4)

Chapter 2 Noise Models 12

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2.1: Univariate Gaussian noise, Laplacian noise and uniform noise.

This random noise (or called independent noise) can vary to particularly give an ad-

versary the power to “distort” the perception of the target function no matter what the

distribution of input data set D is and where the target function g(x) is. Figure 2.2

shows a two-dimensional example of malicious noise model.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(a)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(b)

Figure 2.2: 2-D example of a malicious noise model EX(g,D, η), in which η = 0.05,

{x, y} ∈ D and g(x) = wT x + b = 0 denotes the target function shown as the solid

line in the figure, where w = [0.5,−1]T and b = 0.25. The original input data are
displayed in (a), and (b) shows the contaminated inputs. Light green pluses and light
yellow squares in Figure 2.2(b) represent the original inputs before being contaminated,
dashed arrow shows how individual inputs are corrupted by this malicious noise model.

Chapter 2 Noise Models 13

2.1.3 Noise Model Dependent on the Function

In this kind of noise model, the parameters are solely related to the target function. In

other words, the noise model can add noise to input data with references to the original

hyperplane obtained along with the input data.

Example 2.3. Random attribute noise model (Sloan, 1988, 1995; Goldman and

Sloan, 1995) adds noise to each input x by independently flipping each bit xi of input x

to xi with probability η for 1 ≤ i ≤ n. The noise model returns the altered input and the

original label y.

Strictly speaking, not only this so called random attribute noise model, but also all four

kinds of classified noise models can be reckoned as attribute noise models by which the

attributes of input data are contaminated. Random attribute noise model situations

where the attributes of the examples are subject to noise, which actually mirrors the

original examples based on the origin of coordinate axes. But this noise model is not

close related to the target function so that we still want to develop an attribute noise

model dependent on the target function.

Example 2.4. Function-dependent attribute noise model generally provides such

noise, which is imported to noise-free input data {x, y} by mapping x ∈ Rn to gv(x) ∈ Rn

with probability η. While the noiseless input data are returned by the noise model with

probability 1 − η.

{x, y} =

{
{x, y}, with probability 1 − η,

{gv(x), y}, with probability η,
(2.5)

where gv is a function that contains the parameters provided by g. gv(x) is then obtained

as the contaminated counterparts of the noiseless input x by moving along the traces

which are strictly related to the obtained parameters of g. A two-dimensional example

is shown in Figure 2.3, in which the target function is

g(x) = wT x + b = 0, (2.6)

and the contaminated inputs are given by

gv(x) = x + sgn(r1 − 0.5)r2
w

‖w‖ , (2.7)

where r1 and r2 are uniformly distributed random variables within the unit interval, sgn

is the sign function. No matter which directions the contaminated inputs are going to

move in Figure 2.3, the traces from x to gv(x) are always vertical to the target function

g(x) = 0.

Chapter 2 Noise Models 14

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(a)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(b)

Figure 2.3: 2-D example of a function-dependent attribute noise model EX(g,D, η),

in which η = 0.05, {x, y} ∈ D and g(x) = wT x + b = 0 denotes the target function

shown as the solid line in the figure, where w = [0.5,−1]T and b = 0.25. The original
input data are displayed in (a), and (b) shows the contaminated inputs. Light green
pluses and light yellow squares in Figure 2.3(b) represent the original inputs before
being contaminated, dashed arrow shows how individual inputs are corrupted by this

noise model.

2.1.4 Noise Model Dependent on the Distribution

The noise model dependent on the distribution of the input data is the third listed noise

model, which normally includes two main types, parametric distribution-dependent noise

model and non-parametric distribution-dependent noise model. The latter does not rely

on assumptions that the data are drawn from a given probability distribution and the

generated contaminated inputs can refer to a statistic whose interpretation does not

depend on the population fitting any parametrised distributions. While in parametric

distribution-dependent noise model, noise is introduced into input data with references

to the parameters obtained from the distribution of input data. Generally, we can as-

sume a proper distribution for the input data with its parameters being approximated

by an expectation-maximisation (EM) algorithm for finding maximum likelihood esti-

mates of the parameters. However, EM is an iterative method which alternates between

performing an expectation step and a maximisation step by computing the expected

value of the log likelihood function with respect to the conditional distribution under

the current estimate of the parameters and computing the parameters which maximise

the expected log likelihood respectively. Alternatively, some simple non-parametric noise

models can contaminate input data with similar effects according to varied distributions

of partial inputs. Here, we develop an example,

Example 2.5. M-nearest neighbour distribution-dependent attribute noise

model outputs the corrupted input for the selected input by evaluating the nearest M

neighbours or M chosen inputs from either class that are related to the selected input.

Chapter 2 Noise Models 15

The specific procedure of generating such noise in M -nearest neighbour distribution-

dependent attribute noise model is listed as follows, a two-dimensional example is shown

in Figure 2.4.

1. The model EX(g,D, η) randomly selects the input data {x, y} ∈ D that is going

to be contaminated by noise with probability η;

2. Choosing M inputs {xj, yj}M
j=1 ∈ D according to the selected input {x, y} and

the inputs {xj , yj}M
j=1 strictly belong to the same class. Therefore, if {xj, yj}M

j=1

and {x, y} are from the same class, {xj, yj}M
j=1 are the nearest M neighbours of

{x, y}. On the other hand, considering the possible move to the other class under

contamination, we may have yj = −y, {xj, yj}M
j=1 are hereby the closest inputs

from the other class to {x, y};

3. Searching the input with the highest sparsity among the M inputs {xj, yj}M
j=1 cho-

sen in step 2, the mean value x
′
of the attributes of the nearest M neighbours of

this obtained input is computed;

4. Replacing the original attributes x with this obtained mean value x
′
.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(a)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(b)

Figure 2.4: 2-D example of a five-nearest neighbour distribution-dependent attribute

noise model EX(g,D, η), in which η = 0.05, {x, y} ∈ D and g(x) = wT x+b = 0 denotes

the target function shown as the solid line in the figure, where w = [0.5,−1]
T

and
b = 0.25. The original input data are displayed in (a), and (b) shows the contaminated
inputs. Light green pluses and light yellow squares in Figure 2.4(b) represent the
original inputs before being contaminated, dashed arrow shows how individual inputs

are corrupted by this noise model.

2.1.5 Noise Model Dependent on the Function and the Distribution

With probability η, different noise models EX(g,D, η) return corrupted inputs about

which different assumptions may be made, including the noise models dependent on the

Chapter 2 Noise Models 16

target function or the distribution of the input data. In particular, the chosen input may

be maliciously contaminated by an adversary who has infinite computing power, and has

knowledge of the target function g(x), the distribution D and the learning algorithm.

Such a noise model called nasty noise model is designed by Bshouty et al. (2002) for

proving the worst case bounds of accuracy on learning algorithms.

Example 2.6. In nasty noise model, the adversary gets to see the whole data re-

quested by the learning algorithm before it is given to the algorithm and modifies E of

all l examples, where E represents the number of a fraction of all examples and is a

random variable distributed by the binomial distribution with parameters η and l. The

probability of selecting exactly E out of all l examples is given by the probability mass

function,

Pr{E = n} =

(
l

n

)
ηn(1 − η)l−n (2.8)

This distribution makes the number of examples modified be the same as if it were deter-

mined by l independent tosses of an η-biased coin. The E inputs chosen by the adversary

are removed from the data set and replaced by any other less “informative” and even

misleading data. While the l−E inputs not chosen by the adversary remain unchanged.

Example 2.7. Generally, the adversary may only know part of all possible “informa-

tive” data important to the learning algorithm. For simplicity, a weaker variant of nasty

noise model called nasty classification noise model is introduced by Bshouty et al.

(2002), in which the adversary modifies the chosen data according to the original classi-

fication. For classification problems subject to input uncertainty, especially when support

vector machines (SVMs) and their related approaches are used as learning algorithms,

nasty classification noise model can be extended to nasty classification function and

distribution dependent attribute noise model, in which the support vectors are

selected as “informative” data in contamination. Besides, the methods of generating

corrupted examples in function-dependent or distribution-dependent noise models are

reintroduced into this model as well. The specific procedure of generating noise in such

a noise model is listed as follows,

1. Support vector classification is applied on the original examples with a proper cho-

sen regularisation parameter;

2. The model EX(g,D, η) selects in total E input data {x, y} ∈ D out of all obtained

support vectors, where E is a random variable following the binomial distribution

with parameters η and l;

3. The contamination dependent on the distribution or the target function is deter-

mined by two uniformly distributed random variables within the unit interval, r3

and r4, which are related to each {x, y}. Due to the sequence of applying these

two random variables in the procedure, the probability that {x, y} is contaminated

Chapter 2 Noise Models 17

solely based on the target function is 0.5, the probability that {x, y} is contaminated

based on the distribution of input data is 0.25, and the probability of {x, y} being

contaminated according to both factors is 0.25;

4. If r3 < 0.5, then go to step 5; otherwise, search the input with the highest sparsity

among {x, y}’s M nearest neighbours {xj, yj}M
j=1 which are chosen from the other

class different to the class of {x, y}. The mean value x
′

of the attributes of the

nearest M neighbours of this obtained input is computed and the original attributes

x is replaced with x
′
;

5. If r4 < 0.5, and r3 < 0.5 obtained in step 4, or purely r4 ≥ 0.5, then x is corrupted

to gv(x) by following (2.7) except that the sign function is not determined by the

random variable r1 but fixed to move examples from one class towards the other

class.

A two-dimensional example of nasty classification function and distribution dependent

attribute noise model is shown in Figure 2.5. There are in total 8 support vectors chosen

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(a)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(b)

Figure 2.5: 2-D example of a nasty classification function and distribution dependent

attribute noise model EX(g,D, η), in which η = 0.05, {x, y} ∈ D and g(x) = wT x +
b = 0 denotes the target function shown as the solid line in the figure, where w =
[0.5,−1]

T
and b = 0.25. The original input data are displayed in (a), and (b) shows

the contaminated inputs. Light green pluses and light yellow squares in Figure 2.5(b)
represent the original inputs before being contaminated and the inputs in the middle
of contamination process, dashed arrow shows how individual inputs are corrupted by

this noise model.

as “informative” input data in Figure 2.5, where five nearest neighbours are evaluated to

replace the original data during the contamination dependent on the distribution. When

the contamination dependent on the target function is applied on the input data, the

traces from x to gv(x) are designed to be vertical to the target function.

More generally, the adversary may need to contaminate data sets generated from non-

linearly separable problems, in which linear function can no longer represent the target

Chapter 2 Noise Models 18

function especially when the input data are corrupted by the noise depending on the

target function. In fact, we can borrow the kernel method proposed in SVMs to extend

the contamination to non-linearly separable case.

Example 2.8. Compared with that the contaminated inputs are directly computed by

the weight vector w of the target function in linear case, the weight vector approximated

through kernel functions in non-linear case is the main difference. Specifically speaking,

1. Support vector classification (SVC) is first applied for an optimal hyperplane if the

exact expression of the non-linear target function is not available;

2. A small ball which has the same dimensions as the original input x is then created

by fixing the original input as its centre;

3. We search all possible points on the ball surface to find an exact point xs with

maximal difference value between the distance d from xs to the optimal hyperplane

and the distance from x to the optimal hyperplane;

d = y




l∑

j=1

yjαjK(x,xj) + b


 (2.9)

The weight vector w can be obtained by computing x and xs. A two-dimensional exam-

ple with polynomial kernel function K(xi,xj) = (xT
i xj + 1)2 used in SVC is shown in

Figure 2.6, where in total 8 support vectors chosen as “informative” input data accord-

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(a)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

x2

(b)

Figure 2.6: 2-D example of a nasty classification function and distribution dependent
attribute noise model EX(g,D, η), in which η = 0.05, {x, y} ∈ D and g(x) = ‖x −
[0.5, 0.5]

T ‖ = 0.398 denotes the polynomial target function shown as the solid line in the
figure. The original input data are displayed in (a), and (b) shows the contaminated
inputs. Light green pluses and light yellow squares in Figure 2.6(b) represent the
original inputs before being contaminated and the inputs in the middle of contamination
process, dashed arrow shows how individual inputs are corrupted by this noise model.

ing to the binomial distribution. The other settings remain the same as those used in

Figure 2.5.

Chapter 2 Noise Models 19

However, unlike the assumptions made that the learning algorithm is SVC in Example

2.7 and 2.8, the adversary has less opportunities of knowing the learning algorithm

which is going to request the corrupted data. In this thesis, only the target function and

the distribution of the input data are considered as influencing factors that can affect

classification problems subject to input uncertainty. When the noise model is dependent

on both the target function and the distribution, the contamination can possibly achieve

more adversarial results in the theory.

2.2 Input Uncertainty

Although we have presented several noise models that can introduce different kinds of

noise in their own ways and contaminate the input data sets, it is unclear for learning

algorithms to exactly know how the original input data are corrupted by noise? Because

all inputs that the learning algorithms have in the training session are contaminated

input data or incomplete input data which may be brought in through the contamination

introduced by adversaries. As a result, processing the incompletion generates input

uncertainties. On the other hand, what we consider in classification problems includes

not only the contaminated input data, but also their original counterparts which indeed

affect the recovery of the unknown target function in adversarial circumstances, but is

unknown to the learning algorithms. In this case, the information of an original input

data can be provided in an estimated distribution, following which this original input

data is deemed as an uncertain input near its corresponding contaminated input data.

Therefore, a possible input uncertainty model that includes both the contaminated input

data and the information of its original counterpart should be proposed first.

2.2.1 Gaussian Processes on Output Uncertainty Prediction

In the mathematical theory of probability, a Gaussian process is a generalisation of

a Gaussian distribution, which describes a finite-dimensional random variable, to func-

tions. Formally, the definition of Gaussian processes is given by Rasmussen and Williams

(2006): A Gaussian process is a collection of random variables, any finite number of

which have a joint Gaussian distribution. Here, the random variables represent the

value of the function g(x) at location x. A Gaussian process is fully specified by its

mean function and covariance function, which are defined as

m(x) = E [g(x)] ,

k(x,x
′
) = E[(g(x) −m(x))(g(x

′
) −m(x

′
))],

(2.10)

and the Gaussian process is written as

g(x) ∼ N
(
m(x), k(x,x

′
)
)
. (2.11)

Chapter 2 Noise Models 20

The method of Gaussian processes on regression problems was first proposed by O’Hagan

(1978). With a Gaussian prior placed over the function values, the covariance function

of the function f is approximated instead of directly introducing f , the Gaussian pro-

cess modelling framework can get the predictive distribution of the function values in

accordance with new inputs.

Further details mainly come from Williams and Rasmussen (1996). Given a Gaussian

prior on the function f and an observed data set D = {xi, yi}l
i=1, and we have

yi = g(xi) + ǫi, (2.12)

where ǫ ∼ N (0, σ2
ǫ) is an additive i.i.d. Gaussian noise of variance σ2

ǫ , xi ∈ Rn denotes

an input vector which represents the attributes or the features of an input, and y denotes

a scalar output which is also called a target or a label. Without loss of generality, all

l vector inputs can be aggregated in a l × n design matrix X = [x1, . . . ,xl]
T and the

targets are collected in a l× 1 vector y. The vector inputs and their outputs of the new

inputs can also be represented by a l∗ × n matrix X∗ and a l∗ × 1 vector y∗, where in

total l∗ new inputs need to predict their outputs and X∗ = [x∗
1, . . . ,x

∗
l∗

]T . We can write

the joint distribution of the observed target values and the function values at the new

inputs under the prior as

[
y

g(X∗)

]
∼ N

(
0,

[
K(X,X) + σ2

ǫ I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
, (2.13)

where K(X ,X∗) denotes the l × l∗ matrix of the covariance functions evaluated at all

pairs of the observed and the new inputs, and similarly for the other entries K(X ,X),

K(X∗,X) and K(X∗,X∗).

K(X ,X∗) =




k(x1,x
∗
1) k(x1,x

∗
l∗

)

...
. . .

...
... k(xp,x

∗
q)

...

...
. . .

...

k(xl,x
∗
1) k(xl,x

∗
l∗

)




,

k(xp,x
∗
q) = Cov(g(xp), g(x

∗
q)), 1 ≤ p ≤ l, 1 ≤ q ≤ l∗.

(2.14)

The zero mean functions and the covariance functions obtained in (2.13) and (2.14) are

directly derived from equation (2.10). In a more general case, a mapping function φ(x)

that can map a n-dimensional input vector x into a higher-dimensional feature space is

introduced into function f with the weight parameter w, we have

g(x) = φ(x)T w, (2.15)

Chapter 2 Noise Models 21

and a zero mean Gaussian prior with covariance matrix Σp is put on w, we have

w ∼ N (0,Σp). Therefore, (2.10) can be computed in accordance with xp, x∗
q and

the Gaussian prior of w,

m(xp) = E[g(xp)] = φ(xp)
T E[w] = 0,

m(x∗
q) = E[g(x∗

q)] = φ(x∗
q)

TE[w] = 0,

k(xp,x
∗
q) = E[(φ(xp)

T w −m(xp))(φ(x∗
q)

T w −m(x∗
q))]

= φ(xp)
TE[wwT]φ(x∗

q) = φ(xp)
T Σpφ(x∗

q).

(2.16)

Thus g(xp) and g(x∗
q) are jointly Gaussian with zero mean and covariance given by

φ(xp)
TΣpφ(x∗

q). Indeed, all function values corresponding to any number of the observed

and new inputs are jointly Gaussian. Moreover, the covariance between the outputs is

written as a function of the inputs. Like SVMs, the covariance function k(., .) can be

treated as a kernel function. A very common Gaussian type of kernel is the squared

exponential covariance function,

k(xp,x
∗
q) = Cov(g(xp), g(x

∗
q)) = exp

[
−1

2
(xp − x∗

q)
TΛ−1(xp − x∗

q)

]
, (2.17)

where Λ = diag[λ2
1, . . . , λ

2
n]T allows for various length scales in different input directions.

The covariance between two targets g(xp), g(x
∗
q) is related to the distance between the

two corresponding inputs xp and x∗
q under the kernel metric. The covariance is almost

unity between variables whose corresponding inputs are very close, and decreases as

their distance in the input space increases.

Therefore, the predictive distribution of the function values of the new inputs is obtained

by deriving the conditional distribution corresponding to conditioning the joint Gaussian

prior distribution on the observations, we have,

g(X∗)|X∗,X,y ∼ N (ḡ∗,Cov(f∗)), where

ḡ∗ = E[g(X∗)|X∗,X,y] = K(X∗,X)[K(X ,X) + σ2
ǫ I]

−1y,

Cov(f∗) = K(X∗,X∗) − K(X∗,X)[K(X ,X) + σ2
ǫ I]

−1K(X ,X∗).

(2.18)

Thus the output uncertainties (or the target uncertainties) of the new inputs can be

estimated by deriving the conditional distribution of the new inputs’ function values

g(X∗) given the new inputs X∗, the observed inputs X and the function values of

the observed inputs g(X). This method is also suitable for us to estimate the output

uncertainties of some inputs whose labels are missing under the contamination.

2.2.2 Input Uncertainty Prediction

Instead of missing labels, in this thesis, we focus on these cases, in which the attributes

of any input are partially unknown, or some of all attributes are missing for any input

Chapter 2 Noise Models 22

under the contamination. Let x denote the input that has missing attributes, xk is

the vector that denotes the known or observed attributes of x, xm is the vector that

denotes the unknown or missing attributes of x, and x = [xT
k ,x

T
m]T . A characteristic

of the Gaussian distribution that is similar to the Gaussian processes regression method

can be used to estimate the missing attributes xm directly from the observed attributes

xk and a predefined joint Gaussian distribution by which xk and xm are distributed.

Several theorems that are related to the estimation of the missing attributes were pro-

posed by Mardia et al. (1979). For continuity, the symbols originally used in Mardia

et al. (1979) are replaced by our definitions.

Theorem 2.1. (Theorem 3.2.3 in Mardia et al. (1979)) If x = [xT
k ,x

T
m]T ∼ N (µ,Σ),

then xk and xm.k = xm−ΣmkΣ
−1
kk xk have the following distributions and are statistically

independent:

xk ∼ N (µk,Σkk), xm.k ∼ N (µm.k,Σmm.k),

where

µm.k = µm − ΣmkΣ
−1
kk µk, Σmm.k = Σmm − ΣmkΣ

−1
kk Σkm,

µ = [µT
k ,µ

T
m]T , Σ =

[
Σkk Σkm

Σmk Σmm

]
.

(2.19)

Theorem 2.2. (Theorem 3.2.4 in Mardia et al. (1979)) Using the assumptions and

notation of Theorem 2.1, the conditional distribution of xm for a given value of xk is

xm|xk ∼ N
(
µm + ΣmkΣ

−1
kk (xk − µk),Σmm − ΣmkΣ

−1
kk Σkm

)
(2.20)

Theorem 2.2 can be simply proved by using Theorem 2.1’s result that xm.k is independent

of xk and its conditional distribution for a given value of xk is the same as its marginal

distribution. On the other hand, xm = xm.k + ΣmkΣ
−1
kk xk and this term is constant

when xk is given. Therefore, the conditional distribution of xm|xk is Gaussian, and its

conditional mean is

E[xm|xk] = µm.k + ΣmkΣ
−1
kk xk = µm + ΣmkΣ

−1
kk (xk − µk). (2.21)

The conditional covariance matrix of xm is the same as that of xm.k, namely Σmm.k.

Thus the input uncertainties of the missing attributes of any input can be estimated

through (2.19) and (2.20). An EM algorithm is used to estimate the parameters of

the joint Gaussian distribution of the observed and missing attributes of any input, the

detailed procedure was also proposed by Shivaswamy et al. (2006),

1. Initialise the joint Gaussian distribution’s parameters µ and Σ for input x;

2. Estimate xm|xk by using (2.19) and (2.20);

Chapter 2 Noise Models 23

3. Recompute and collect the new values of µ and Σ by using the completed data. If

µ and Σ converge, then the obtained values are what we expect, otherwise, return

to step 2;

2.2.3 Statistical Models on Input Uncertainty

Besides the case that the input uncertainties are generated from estimating the missing

or unknown attributes of inputs, a statistical model that gives a profile of the original

data and their contaminated counterparts can describe the input uncertainties as well

by using the maximum-likelihood method to estimate the unknown parameters.

The derivatives of this statistical model of the uncertainty mainly come from Bi and

Zhang (2005). For convenience in notation understanding, some notations are replaced

by some new expressions, which will be used as default notations for all data sets used

in this thesis thereafter. Consider a set of training examples {xi, yi}l
i=1, where xi ∈ Rn

is corrupted with noise and yi ∈ R is a label which is not contaminated by the noise.

Let xio denote the unobserved original counterpart of xi. We assume the following data

generating process: first (xio, yi) is generated according to a distribution Pr(xio, yi|θ),
where θ is an unknown parameter of the conditional distribution Pr(xio, yi|θ); next, given

(xio, yi), we assume that xi is generated from xio but independent of yi in accordance

with a distribution Pr(xi|θ′
, σi,xio), where θ

′
is another assumably unknown parameter

that are used in the conditional distribution Pr(xi|θ′
, σi,xio), and θ

′
along with θ can

be estimated from the data by using the maximum-likelihood estimate. σi is a known

parameter which is dependent on our estimate of the uncertainty (e.g. variance) for xi.

The joint probability distribution of (xio,xi, yi) can be written as:

Pr(xio,xi, yi) = Pr(xio, yi|θ) Pr(xi|θ
′
, σi,xio). (2.22)

The joint probability distribution of (xi, yi) is obtained by integrating out the unobserved

original quantity xio:

Pr(xi, yi) =

∫
Pr(xio, yi|θ) Pr(xi|θ

′
, σi,xio)dxio. (2.23)

This model can be reckoned as a mixture model in which each mixture component

corresponds to a possible original input xio not observed. The unknown parameters

(θ, θ
′
) can be estimated from the data using the maximum-likelihood estimate as:

max
θ,θ′

∑

i

ln Pr(xi, yi|θ, θ
′
) = max

θ,θ′

∑

i

ln

∫
Pr(xio, yi|θ) Pr(xi|θ

′
, σi,xio)dxio. (2.24)

Equation (2.24) is a principled approach under the current data generation process. It

often leads to a complicated formulation which is difficult to solve. Alternatively, the

previous formulation (2.24) can be transformed to an approximation formulation (2.25),

Chapter 2 Noise Models 24

in which each unobserved xio can be simply regarded as a parameter in the probability

model, so the maximum-likelihood becomes (Bi and Zhang, 2005):

max
θ,θ′

∑

i

ln Pr(xi, yi|θ, θ
′
) ≈ max

θ,θ′

∑

i

ln sup
xio

[Pr(xio, yi|θ) Pr(xi|θ
′
, σi,xio)]. (2.25)

Since large values of Pr(xio, yi|θ) Pr(xi|θ′
, σi,xio) dominate the summation in the in-

tegration
∫

Pr(xio, yi|θ) Pr(xi|θ′
, σi,xio)dxio, similar effects are derived from equation

(2.24) and (2.25), both of which prefer a parameter configuration such that the product

of Pr(xio, yi|θ) and Pr(xi|θ′
, σi,xio) is large for some xio.

We assume that Pr(xio, yi|θ) has a form Pr(xio, yi|θ) = Pr(xio) Pr(yi|θ,xio) and consider

regression problems with Gaussian noise:

Pr(xio, yi|θ) ∼ Pr(xio) exp

(
−(θTxio − yi)

2

2σ2

)
,

Pr(xi|θ
′
, σi,xio) ∼ exp

(
−‖xi − xio‖2

2σ2
i

)
.

The method in (2.25) becomes

θ = arg min
θ

∑

i

inf
xio

[
(θT xio − yi)

2

2σ2
+

‖xi − xio‖2

2σ2
i

]
. (2.26)

This formulation is closely related to the total least squares method (Golub et al., 1999;

Bi and Zhang, 2005), which is derived from a numerical computation point of view. The

resulting formulation of the total least squares algorithm is similar to (2.26), but its

solution can be conveniently described by a matrix singular value decomposition. Thus

the formulation (2.26) can be regarded as the underlying statistical model for total least

squares.

For binary classification, we consider a logistic conditional probability model for yi, while

still assuming Gaussian noise for the input:

Pr(xio, yi|θ) ∼ Pr(xio)
1

1 + exp(−θTxioyi)
, Pr(xi|θ

′
, σi,xio) ∼ exp

(
−‖xi − xio‖2

2σ2
i

)
.

Similar to (2.26), the following formulation is obtained:

θ = arg min
θ

∑

i

inf
xio

[
ln(1 + e−θT xioyi) +

‖xi − xio‖2

2σ2
i

]
. (2.27)

2.2.4 Input Uncertainty Model

For generality and practicality, Gaussian noise is applied to contaminate the inputs

throughout the thesis. According to (2.26) and (2.27), we know that the conditional

Chapter 2 Noise Models 25

probability distribution of the corrupted input for a given value of its original counterpart

can be presented as

Pr(xi|θ
′
, σi,xio) ∼ exp

(
−‖xi − xio‖2

2σ2
i

)
. (2.28)

From (2.28), we see that the conditional distribution is inversely proportional to the

quotient of dividing the Euclidean distance between the contaminated input xi and

its original counterpart xio by a variance. Geometrically, xi has fairish probability of

staying within a σi-radius sphere with xio being the centre. Additionally, xio can also be

deemed as a point that stays within the same σi-radius sphere but with xi appointed the

centre. In other words, the distribution of the original input can be estimated through

the information of xi when the conditional probability distribution of xi is available.

Moreover, the conditional distribution in (2.28) can be extended to accommodate other

noise models by simply introducing other noise’s distribution assumptions. When no

prior assumption of this conditional distribution is available, under the same probability

used in Gaussian noise, xi stays within a sphere well larger than the sphere generated

from Gaussian distribution. Pr(xi|θ
′
, σi,xio) can also be derived from the original input

xio and the variance σi (Please note that the probability of xi within the same σi-radius

sphere without prior distribution assumption is lower than the probability with Gaussian

prior). Further details about the situation of no prior distribution assumption will be

shown in Chapter 4 and Chapter 5 with the introduction of the minimax probability

machine (MPM).

Generally, the equidensity contour shape of a Gaussian distribution for any input in a

multi-dimensional space is not a prefect sphere, but an ellipsoid centred at mean. There-

fore, the one-dimensional Gaussian distribution used in (2.28) should be generalised to

a multivariate Gaussian distribution, which is presented as,

Pr(xi|θ
′
,Mi,xio) ∼ exp

(
−1

2
(xi − xio)

T M−1
i (xi − xio)

)
, (2.29)

where Mi is the covariance matrix. The directions of the principal axes of the contour

ellipsoid are given by the eigenvectors of the covariance matrix Mi and the squared

relative lengths of the principal axes are given by the corresponding eigenvalues. Similar

to the previous discussion in one-dimensional case, the original input xio can also be

estimated as an uncertain input zi that follows a multivariate Gaussian distribution

centred at its corrupted counterpart xi, and this multivariate Gaussian distribution can

be assumed as zi ∼ N (xi,Mi). A two-dimensional example is shown in Figure 2.7.

In the figure, the original input xio is set to move to two possible locations under the

contamination. Indeed, all possible locations chosen within the red dashed contour can

be the destination of the corrupted input xi with varied probabilities. The distribution

with the same covariance matrix as that of the conditional distribution Pr(xi|θ′
,Mi,xio)

Chapter 2 Noise Models 26

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

~xio

Mi

~xi

~xi

Figure 2.7: A two-dimensional example of input uncertainty model, in which xio is the
original input and xi is corrupted input at two possible locations, covariance matrix
Mi represents the uncertainty at xio. The red dashed line contours the conditional
distribution of xi for a given value of xio, while the blue solid lines contour two possible

conditional distributions of xio.

is applied to these possible locations to give xio’s estimated conditional distributions

centred at xi.

2.3 Summary

A main target of machine learning research is to develop algorithms which learn pre-

dictive relationships from data. However, the task will become difficult when training

data are corrupted by noise or partially unknown under data processing errors. In order

to generate varied contamination in classification problems, several basic noise models

were first explored in this chapter with only the attributes of inputs being contaminated.

Besides the traditional additive noise model, there are in total four types noise models

can be classified: the noise model independent of the target function and the distribu-

tion of input data, the function-dependent noise model, the distribution-dependent noise

model, the noise model dependent on both the target function and the distribution. All

of them can output corrupted inputs with given probabilities in accordance with the

hyperplane and distribution of the original inputs.

Chapter 2 Noise Models 27

The input uncertainties can then be obtained either by processing the incompletion or

by finding out the statistical connection between the original inputs and their corrupted

counterparts. Like the Gaussian processes used in output uncertainty prediction, the

unknown or missing attributes can be estimated from the existing attributes under the

assumption that both observed and missing attributes follow a joint Gaussian distri-

bution. On the other hand, a statistical model is introduced to illustrate and analyse

the relationship of the unknown original input, the observed contaminated input and

the model parameters. A conditional distribution of the contaminated input for a given

value of its original counterpart is then obtained as a Gaussian distribution. As a result,

the unknown original input can be estimated as an uncertain input that follows a Gaus-

sian distribution centred at the observed corrupted input. This Gaussian distribution

can be easily extended to a more general multivariate case by introducing a more general

covariance matrix.

Chapter 3

Uncertainty Support Vector

Classification

A disadvantage of logistic model (2.27) proposed in Section 2.2.3 for binary classification

is that it does not model deterministic conditional probability very well. This problem

can be remedied by using the support vector machine (SVM) formulation, which has

attractive intuitive geometric interpretations for linearly separable problems. In this

chapter, input uncertainties will be incorporated into this traditional method.

3.1 Incorporating Input Uncertainty in Support Vector

Machines

As we have known from Section 2.2.4, the unknown original input xio can be deemed as

an uncertain input that follows a multivariate Gaussian distribution centred at its ob-

served corrupted counterpart under the contamination of Gaussian noise. The following

definition is then obtained,

Definition 3.1. Let D = {zi, yi}l
i=1 denote the observed data, where yi ∈ {−1,+1},

zi ∈ Rn and zi ∼ N (xi,Mi), in which N denotes a Gaussian distribution with mean

xi ∈ Rn and covariance matrix Mi ∈ Rn×n.

Without loss of generality, we can assume that xio can not be observed when it is

contaminated by noise and vice versa. Therefore, if the original input is not corrupted

by noise, zi = xio; otherwise, zi ∼ N (xi,Mi). Figure 3.1 gives an example of two-

dimensional linearly separable classification over uncertain inputs. Here two solutions

are listed from many possible linear classifiers that can separate the data, but only one

is the optimal solution (the thick solid line in Figure 3.1) that can maximise the margin

ρ, which depicts the distance between the optimal classifier and the nearest uncertain

inputs of each class.

28

Chapter 3 Uncertainty Support Vector Classification 29

ρ
2

1ρ
2

1

� �� � � �
� ��

�

�
�� � � �

Figure 3.1: Two-dimensional linearly separable classification subject to input un-
certainty. The elliptical contours represent the uncertain inputs zi which follow the
Gaussian distributions centred at xi. The thin and thick solid lines denote two possible

solutions of the classification, the dashed lines describe the loci of the margin.

3.1.1 Geometric Interpretation

Definition 3.1 gives the description of uncertain inputs, whose data structures in classi-

fication subject to input uncertainty are similar to those of input data in the standard

support vector classification (SVC) except for introducing the covariance matrix Mi as

extra parameters. Like SVC, the optimal classifier here is constructed by the support

vectors, whose distribution contours are tangential to the margin. Since the original

inputs xio are unknown to the learner, and only their corresponding uncertain inputs zi

are available, the margin of the optimal classifier is geometrically chosen to be tangential

to the nearest edges of the distribution contours to make sure that the corresponding

uncertain inputs are correctly classified, or the unknown original inputs are likely to be

classified correctly. This is illustrated by depicting two support vectors in details in a

two-dimensional linearly separable classification shown in Figure 3.2 (Yang and Gunn,

2004), where ρ represents the margin, zmax and zmin denote those points, at which the

lines parallel to the optimal classifier are tangential to the ellipses.

The optimisation problem of achieving the maximal ρ is max{wT zi|zi ∈ E(Mi,xi)},
where E(Mi,xi) ⊆ Rn is an n-dimensional ellipsoid, xi ∈ Rn, Mi ∈ Rn×n and

E(Mi,xi) := {zi ∈ Rn | (zi − xi)
T M−1

i (zi − xi) ≤ 1}.

Theorem 3.2. (Grötschel et al., 1993) For every positive definite matrix A there exists

a unique positive definite matrix, denoted by A1/2, such that A = A1/2A1/2. It follows

Chapter 3 Uncertainty Support Vector Classification 30

ρ
2

1

w
r

ρ
2

1

Figure 3.2: Geometric interpretation of a two-dimensional classification subject to
input uncertainty. The elliptical contours represent the uncertain inputs zi which follow
the Gaussian distributions centred at xi. The solid line denotes the optimal classifier,
which is parallel to all dashed lines. The dashed line passing through zi illustrates how
zi is determined by the weight vector w and the covariance matrix Mi. The dash-dot

line illustrates the track on which zi varies between zmin and zmax.

by a simple calculation that

E(A,a) = A1/2S(0, 1) + a, (3.1)

where S(0, 1) is the unit ball around zero and thus every ellipsoid is the image of the

unit ball under a bijective affine transformation.

Proof. ∀x ∈ E(A,a), we have (x − a)T A−1(x − a) ≤ 1 from the definition of ellipsoid,

there exist y = A−1/2(x − a) and yT y ≤ 1, y ∈ S(0, 1), so we have A−1/2(E(A,a) −
a) ⊆ S(0, 1), contrariwise, we can get A1/2S(0, 1) + a ⊆ E(A,a), thus E(A,a) =

A1/2S(0, 1) + a is finally obtained.

According to the definition and theorem above, set Q := M
1/2
i and recall from (3.1)

that Q−1E(Mi,xi) = S(0, 1) + Q−1xi = S(Q−1xi, 1) (Grötschel et al., 1993), we have

max{wT zi | zi ∈ E(Mi,xi)} = max{wTQQ−1zi | Q−1zi ∈ Q−1E(Mi,xi)}
= max{wTQpi | pi ∈ S(Q−1xi, 1)}

= wTQ
1

‖Qw‖Qw + wTQQ−1xi

= wT 1√
wTMiw

Miw + wT xi.

(3.2)

So we have zmax = xi − 1√
wT Miw

Miw, zmin = xi + 1√
wT Miw

Miw and zi = xi −
r 1√

wT Miw
Miw. zi can be treated as a point, through which a hyperplane parallel

to the optimal hyperplane divides the corresponding ellipsoid into two parts, and the

further part to the optimal hyperplane contains less probability of the corresponding

unknown original input being correctly classified than Mi does. zi moves along the

Chapter 3 Uncertainty Support Vector Classification 31

track determined by the weight vector w and the covariance matrix Mi. Therefore, r

is indeed a parameter that tunes zi between zmin and zmax. The larger r is, the higher

the probability of the original input being correctly classified can reach. Reintroducing

zi into the constraint of the standard SVC, we have

yi(w
T zi + b) = yi

(
wT

(
xi − r

1√
wTMiw

Miw

)
+ b

)

= yi(w
T xi + b) − yir‖M1/2

i w‖ ≥ 1.

(3.3)

Since the inequality in (3.3) is supposed to satisfy any yi ∈ {−1, 1}, formulation (3.3)

can be rewritten as:

sup
w,b

(
yir‖M1/2

i w‖
)
≤ yi(w

T xi + b) − 1

r‖M1/2
i w‖ ≤ yi(w

T xi + b) − 1.

(3.4)

3.1.2 Statistical Approach

Alternatively, the Gaussian distribution in Definition 3.1 allows us to derive tighter

bounded probabilities of misclassification through statistical approach. The constraint

of the standard SVC becomes:

inf
zi∼N (xi,Mi)

Pr{−yiw
T zi ≤ yib− 1} = Pr

{
N (0, 1) ≥ −yi(w

T xi + b) + 1√
wTMiw

}

= 1 − Φ

(
−yi(w

T xi + b) + 1√
wTMiw

)

= Φ

(
yi(w

T xi + b) − 1√
wTMiw

)
≥ α,

(3.5)

where α is the lower bound of the probability that the uncertain inputs are correctly

classified by the optimal hyperplane, Φ(v) is the cumulative distribution function for a

standard normal Gaussian distribution,

Φ(v) = Pr{N (0, 1) ≤ v} =
1√
2π

∫ v

−∞
exp(−s2/2)ds. (3.6)

Since Φ(v) is monotonically increasing, we can write (3.5) as:

yi(w
T xi + b) − 1 ≥ Φ−1(α)

√
wTMiw. (3.7)

Comparing (3.4) and (3.7), we can set r = Φ−1(α) to control the probability of misclas-

sification, when the assumption is a Gaussian distribution. Here r ∈ Rn is named as the

probability confidence. Although the distribution is assumed as a Gaussian distribution

Chapter 3 Uncertainty Support Vector Classification 32

in this thesis, (3.4) provides a feasible way to exploit other distributions of the uncertain

inputs when the prior knowledge of those distributions is available.

In classification subject to input uncertainty, classifying the uncertainty ellipsoids as

much as possible through the optimal hyperplane is what we expect the learner to finish.

In accordance with the geometric interpretation in Figure 3.2, the probability that xio

is to be classified correctly by the optimal hyperplane is one-sided probability. If the

unknown xio has 95% probability of being correctly classified, the probability confidence

r = 1.645 in one-dimensional Gaussian distribution. And in multivariate Gaussian

distribution, r should be larger than that in one-dimensional Gaussian distribution under

the same probability. However, introducing a large r or a large α may be difficult

for the learner to classify the uncertain inputs, especially in the non-separable case.

On the contrary, r = 1 is used to mildly introduce the input uncertainty information

into classification. Moreover, r = 1 has explicit geometric interpretation illustrated in

Figure 3.2. Therefore, instead of zi, the obtained optimal points zmax is introduced into

the constraints of the standard SVC. We have

‖M1/2
i w‖ ≤ yi(w

T xi + b) − 1, i = 1, . . . , l. (3.8)

Like SVC, this optimal hyperplane is given by maximising the margin ρ, subject to the

constraints of (3.8). The margin is given by,

ρ(w, b) = min
yi=−1

∣∣∣wT xi +
√

wTMiw + b
∣∣∣

‖w‖ + min
yi=1

∣∣∣wT xi +
√

wTMiw + b
∣∣∣

‖w‖
=

2

‖w‖ ,
(3.9)

and the primal problem of this approach is

min
w,b

‖w‖2

2

s.t. ‖M1/2
i w‖ ≤ yi(w

T xi + b) − 1, i = 1, . . . , l.

(3.10)

3.1.3 Second Order Cone Program

Second order cone programming (SOCP) problems are convex optimisation problems in

which a linear function in minimised over the intersection of an affine linear manifold

with the Cartesian product of second order cones. Standard SOCP problem is shown as

follows (Boyd and Vandenberghe, 2004),

min
x

fT x

s.t. ‖Aix + bi‖ ≤ cT
i x + di, i = 1, . . . ,m

Fx = g,

(3.11)

Chapter 3 Uncertainty Support Vector Classification 33

where

Cki
=

{[
u
t

] ∣∣∣∣∣u ∈ R
ki−1, t ∈ R, ‖u‖ ≤ t

}
,

is standard ki-dimensional second order cone and

‖Aix + bi‖ ≤ cT
i x + di ⇐⇒

[
Ai

cT
i

]
x +

[
bi

di

]
∈ Cki

,

are second order cone constraints of dimension ki, which are the same as requiring the

affine functions (Aix + bi, c
T
i x + di) to lie in the second order cone Cki

. x ∈ Rn is

the optimisation variable, Ai ∈ R(ki−1)×n, bi ∈ Rki−1, ci ∈ Rn, d ∈ R and F ∈ Rp×n,

g ∈ Rp.

SOCP problems also include linear programs (LP), quadratic programs (QP) and quadrat-

ically constrained quadratic programs (QCQP) as special cases, which can all be formu-

lated as SOCP problems. When ci = 0, i = 1, . . . ,m, the problem (3.11) is equivalent to

a QCQP by squaring each of the constraints. And QP is a special case of QCQP. Simi-

larly, if Ai = 0, i = 1, . . . ,m, (3.11) reduces to a (general) LP. (Boyd and Vandenberghe,

2004).

3.2 Dual Problem

In the last section, we have seen how the introduction of uncertain inputs into the

SVM technique can be achieved. The resulting optimisation problem is shown to be a

convex SOCP. We name this algorithm uncertainty support vector classification (USVC).

Comparing the form of the standard SVC with (3.10), it can be found that the ellipsoid

matrices Mi, i = 1, . . . , l are introduced to formulate the margin of classification subject

to input uncertainty, while the margin of the standard SVC is fixed by the data points,

which is the reason that USVC can accommodate the input uncertainties. This difference

will cause a higher computational cost for USVC than SVC, especially with a large

training set. The reason for the different margins in USVC and SVC will be discovered

by deriving the dual problem of USVC. In the next two sections, the Lagrangian dual

method will be used to obtain the dual problem of (3.10), along with a kernelised version.

3.2.1 Dual Problem for the Linearly Separable Case

Like the standard SVC, after the derivation of the dual problem of USVC, the dual vari-

ables can be directly used to obtain the parameters of the optimal hyperplane. Moreover,

the dual problem can help us extend USVC to the non-linear case. In order to follow

the definition of SOCP in (3.11), an auxiliary parameter t is introduced into the optimi-

sation problem to transform formula (3.10) to the standard SOCP form. Let ‖w‖2

2 ≤ t,

Chapter 3 Uncertainty Support Vector Classification 34

which then can be transformed to standard SOCP form

∥∥∥∥∥

[
w
t−1√

2

]∥∥∥∥∥ ≤ t+ 1√
2
.

Therefore, we have

min
t,w,b

t

s.t. ‖M1/2
i w‖ ≤ yi(w

T xi + b) − 1,
∥∥∥∥∥

[
w
t−1√

2

]∥∥∥∥∥ ≤ t+ 1√
2
.

(3.12)

An auxiliary parameter w1 is introduced to simplify (3.10) further, by letting

w1 =
[
t wT b

]T ∈ Rn+2, thus we obtain:

min
w1

fT w1

s.t. ‖Aiw1 + bi‖ ≤ cT
i w1 + di, i = 1, . . . , l + 1,

(3.13)

where l is the size of the input data set and the other parameters in (3.13) are listed as

follows:

f =
[
1 0T 0

]T
,

Ai =




0 0
... M

1/2
i

...

0 0


 ,

i = 1, . . . , l,

bi = 0, ci =




0

yixi

yi


 , di = −1,

Al+1 =




1√
2

0T 0

0 0
... I

...
0 0


 , bl+1 =




− 1√
2

0


 , cl+1 =




1√
2

0

0



, dl+1 =

1√
2
,

where Ai ∈ Rn×(n+2), bi ∈ Rn, ci ∈ Rn+2, di ∈ R, i = 1, . . . , n, Al+1 ∈ R(n+1)×(n+2),

bl+1 ∈ Rn+1, cl+1 ∈ Rn+2, dl+1 ∈ R, and I ∈ Rn×n is an identity matrix. In order to

derive the dual problem, extra auxiliary parameters are introduced and set as follows,

ui = Aiw1 + bi,

ti = cT
i w1 + di,

ti ≥ ‖ui‖, i = 1, . . . , l + 1.

The Lagrangian multipliers used in the dual problem include αi, βi and γi, while αi, γi ∈
R and βi ∈ Rn, i = 1, . . . , l, and αl+1 ∈ R, βl+1 ∈ Rn+1 are derived from the auxiliary

Chapter 3 Uncertainty Support Vector Classification 35

variable t introduced in (3.12), so the dual problem of (3.12) is written as follows:

max
αi,βi

−
l+1∑

i=1

(bT
i βi + diαi)

s.t.
l+1∑

i=1

(AT
i βi + αici) = f ,

‖βi‖ ≤ αi, i = 1, . . . , l + 1.

(3.14)

If we introduce Ai, bi, ci, di, i = 1, . . . , l + 1 and f from formula (3.13) into (3.14)

and set βl+1 =
[
β′ β′

l+1

]T
, the constraint function

∑l+1
i=1(A

T
i βi + αici) = f can be

expanded as:




0
...

∑l
i=1(M

1/2
i)T βi

...
0




+




0
...

∑l
i=1 αiyixi

...
∑l

i=1 αiyi




+




1√
2
β′

...

β′
l+1

...
0




+




1√
2
αl+1

...
0
...
0




=




1
...
0
...
0



.

Thus, the dual problem of the linearly separable case can be obtained as:

max
αi,βi

l∑

i=1

αi +
1√
2
β′ − 1√

2
αl+1

s.t. ‖βi‖ ≤ αi, i = 1, . . . , l + 1,

l∑

i=1

(M
1/2
i)T βi +

l∑

i=1

αiyixi + β′
l+1 = 0,

l∑

i=1

αiyi = 0,

1√
2
β′ +

1√
2
αl+1 = 1.

(3.15)

In order to compare this with the dual form of the traditional SVC, extra work is still

needed to transform the dual optimisation problem of USVC. Here, t in the primal

problem is an auxiliary parameter, consequently, the αl+1 and βl+1 are auxiliary pa-

rameters in the dual problem as well. These auxiliary parameters can be removed (see

Appendix A). After combining the constraints of (3.15), the exact expression of w can

be obtained as follows,

w = −βl+1 =
l∑

i=1

αiyixi +
l∑

i=1

(M
1/2
i)T βi. (3.16)

Comparing (3.16) with the expression of w from the standard SVC, the uncertainties

are introduced into the expression of w of USVC. A new parameter Mi and a new

Chapter 3 Uncertainty Support Vector Classification 36

variable βi have been used to introduce the influence of the sizes and directions of the

uncertainty ellipsoids in the data set, with αi behaving in a similar manner to SVC, to

introduce the influence of the positions of the data points. Reintroducing (3.16) and the

constraints of (3.15) back to the objective function of (3.15), we have

max
αi,βi

l∑

i=1

αi −
1

2




l∑

i=1

l∑

j=1

αiαjyiyjx
T
i xj +

l∑

i=1

l∑

j=1

αiyix
T
i (M

1/2
j)T βj

+

l∑

i=1

l∑

j=1

αjyjβi
TM

1/2
i xj +

l∑

i=1

l∑

j=1

βi
TM

1/2
i (M

1/2
j)T βj




s.t. ‖βi‖ ≤ αi, i = 1, . . . , l

l∑

i=1

αiyi = 0

αi ≥ 0, i = 1, . . . , l,

(3.17)

where α1, α2, . . . , αl ∈ R and β1,β2, . . . ,βl ∈ Rn. The difference of the dual problems

between USVC and SVC is the introduction of uncertainty ellipsoids, which leads to a

higher algorithmic complexity in USVC than in SVC because of the increase in memory

requirements and computational cost of the algorithm. Following Definition 3.1, with

l input data and n features, the algorithmic complexities can be derived from (3.17).

The objective function of (3.17) can be transformed to (3.18).

Hence, the memory requirement of USVC is l2(n+ 1)2, which is of order O
(
l2n2

)
. The

computational cost of USVC is dominated by two aspects, the cost of constructing ma-

trix R in the objective function and the optimisation complexity of SOCP solver. The

latter is determined by the optimisation implementation and is shown to be bounded

by O
(
l3/2n3

)
in Section 3.4.1. The former is related to the amount of multiplication

required in constructing R, which is a symmetric matrix. Therefore, the cost of con-

structing R is l(l+1)
2 n + l2n2 + l(l+1)

2 n3, which is of order O
(
l2n3

)
because this cost is

determined by the lower symmetric sub-matrix consisting of M
1/2
i (M

1/2
i)T .

Therefore, the overall complexity of USVC is O
(
l2n3

)
, which may cost the learner a lot

to solve some non-trivial problems. However, there are some situations where only a few

points are known to be contaminated. Consequently, the complexity of USVC can be

significantly reduced. For instance, let lm denote the number of contaminated inputs, so

the other l − lm inputs are uncorrupted. Then the memory requirement of USVC is of

order O
(
(l + lmn)2

)
, the optimisation complexity, which is determined by the number

of second order cones, is O
(
l
3/2
m n3

)
, and the cost of constructing R is of order O

(
l2mn

3
)
.

C
h
a
p
ter

3
U

n
certa

in
ty

S
u
p
p
o
rt

V
ecto

r
C

la
ssifi

ca
tio

n
37

max
γ

pT γ − γTRγ where p =




1
1
...
1
0
0
...
0




, γ =




α1
α2

...
αl

β1

β2

...

βl




,

(3.18)

R =




y1y1x
T
1 x1 y1y2x

T
1 x2 . . . y1ylx

T
1 xl y1x

T
1 (M

1/2
1)T y1x

T
1 (M

1/2
2)T . . . y1x

T
1 (M

1/2
l)T

y2y1x
T
2 x1 y2y2x

T
2 x2 . . . y2ylx

T
2 xl y2x

T
2 (M

1/2
1)T y2x

T
2 (M

1/2
2)T . . . y2x

T
2 (M

1/2
l)T

...
...

. . .
...

...
...

...
...

yly1x
T
l x1 yly2x

T
l x2 . . . ylylx

T
l xl ylx

T
l (M

1/2
1)T ylx

T
l (M

1/2
2)T . . . ylx

T
l (M

1/2
l)T

y1M
1/2
1 x1 y2M

1/2
1 x2 . . . ylM

1/2
1 xl M

1/2
1 (M

1/2
1)T M

1/2
1 (M

1/2
2)T . . . M

1/2
1 (M

1/2
l)T

y1M
1/2
2 x1 y2M

1/2
2 x2 . . . ylM

1/2
2 xl M

1/2
2 (M

1/2
1)T M

1/2
2 (M

1/2
2)T . . . M

1/2
2 (M

1/2
l)T

...
...

. . .
...

...
...

...
...

y1M
1/2
l x1 y2M

1/2
l x2 . . . ylM

1/2
l xl M

1/2
l (M

1/2
1)T M

1/2
l (M

1/2
2)T . . . M

1/2
l (M

1/2
l)T




,

Chapter 3 Uncertainty Support Vector Classification 38

Furthermore, when no inputs are contaminated by noise, the uncertain information is

no longer available, then all Mi are zero matrices, USVC will degenerate to SVC, with

max
γ

pT γ − γTRγ

where p = [11 . . . 1]T ,

γ =
[
α1α2 . . . αl

]T
,

R =




y1y1x
T
1 x1 y1y2x

T
1 x2 . . . y1ylx

T
1 xl

y2y1x
T
2 x1 y2y2x

T
2 x2 . . . y2ylx

T
2 xl

...
...

. . .
...

yly1x
T
l x1 yly2x

T
l x2 . . . ylylx

T
l xl



.

Therefore, the memory requirement of SVC is of order O
(
l2
)
, the cost of constructing

the symmetric matrix R has order O
(
l2n
)
, and the optimisation problem is a quadratic

program with corresponding optimisation complexity of O
(
l3/2
)
.

3.2.2 Dual Problem for the Linearly Non-Separable Case

USVC can be extended to the linearly non-separable case in the same manner as SVC by

introducing the penalty parameters ξi. The primal optimisation problem now becomes:

min
t,w,b,ξi

t+ C

l∑

i=1

ξi

s.t. ‖M1/2
i w‖ ≤ yi(w

T xi + b) − 1 + ξi,∥∥∥∥∥

[
w
t−1√

2

]∥∥∥∥∥ ≤ t+ 1√
2
,

ξi ≥ 0, i = 1, . . . , l.

(3.19)

The dual form of the linearly non-separable case is given by

max
αi,βi

l∑

i=1

αi +
1√
2
β′ − 1√

2
αl+1

s.t. ‖βi‖ ≤ αi, i = 1, . . . , l + 1,

l∑

i=1

(M
1/2
i)T βi +

l∑

i=1

αiyixi + β′

l+1 = 0,

l∑

i=1

αiyi = 0,

1√
2
β′ +

1√
2
αl+1 = 1,

0 ≤ αi ≤ C, i = 1, . . . , l.

(3.20)

Chapter 3 Uncertainty Support Vector Classification 39

Similar to the separable case, (3.20) can be rewritten in a more familiar form,

max
αi,βi

l∑

i=1

αi −
1

2




l∑

i=1

l∑

j=1

αiαjyiyjx
T
i xj

l∑

i=1

l∑

j=1

αiyix
T
i (M

1/2
j)T βj

+

l∑

i=1

l∑

j=1

αjyjβi
TM

1/2
i xj +

l∑

i=1

l∑

j=1

βi
TM

1/2
i (M

1/2
j)T βj




s.t. ‖βi‖ ≤ αi, i = 1, . . . , l,

l∑

i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

(3.21)

The algorithmic complexity of (3.21) is the same as that of (3.17).

3.3 Extension to Non-Linear Models

Often, data to be classified will require a non-linear separation. We now consider extend-

ing the approach to this non-linear scenario. The theory of kernels was first developed

by Mercer (1909), which states that any continuous, symmetric, positive semidefinite

function K(x, y) can be expressed as a dot product in a high-dimensional space. An-

other ancestral field of the kernel approach is called “Reproducing kernel Hilbert space

theory”, which is a subfield of Hilbert space theory and was developed by Aronszajn

(1950). Mercer’s theorem for interpreting kernels was introduced into machine learning

by Aizermann et al. (1964) on the method of potential functions, but its possibilities

were not widely understood until it was first used in the support vector method (Boser

et al., 1992). The idea of the kernel method is to use a linear classifier algorithm to

solve a non-linear problem by mapping the original non-linear inputs in the input space

into a higher-dimensional feature space. Although kernel method makes a linear classi-

fication in the feature space equivalent to non-linear classification in the original input

space, operations are performed in the input space rather than the potentially higher-

dimensional feature space. Hence, the dot product does not need to be evaluated in

the feature space. When mapping the data of input space Rn to the higher-dimensional

Euclidean space, the feature space Rm, a mapping function φ is used.

φ : R
n 7→ R

m.

So xi,xj ∈ Rn of the input space are mapped to φ(xi), φ(xj) ∈ Rm of the feature space.

If the decision function would only depend on an inner product, which is called the

kernel function K, then no explicit computation of φ(x) is required.

K(xi,xj) = φ(xi) · φ(xj).

Chapter 3 Uncertainty Support Vector Classification 40

Although the input xi of the input space can be directly mapped to φ(xi) of the feature

space by the mapping function φ, it is difficult for φ to map the uncertainty ellipsoid Mi

to the feature space because the mapped region may correspond to an irregular shape

in the feature space. Thus an approximation strategy is proposed to try and find an

ellipsoid in the feature space that corresponds as closely as possible to the non-linear

projector of an ellipsoid in the input space performed using φ.

A Taylor series expansion is then introduced from Graepel and Herbrich (2003) in order

to find the connection of mapping input uncertainty between the input space and the

feature space. The Taylor series can be expanded at the training input xi in the input

space, and xj − xi is an infinitesimal vector between xi and its neighbour xj. Let

φ(xi) = zi =



zi1
...
zim


 xi =



xi1

...
xin


 ,

φ(xj) = zj =



zj1
...
zjm


 xj =



xj1

...
xjn


 ,

we assume when an infinitesimal vector △xj = xj −xi be continuous in the input space,

its mapping infinitesimal vector △zj = zj − zi = φ(xj) − φ(xi) must be continuous

in the feature space. And all partial derivatives must be evaluated at xi. The Taylor

expansion at xi is shown as follows,



zj1
...
zjm


 =



zi1
...
zim


+




∂z1

∂x1
(xj1 − xi1) + . . . + ∂z1

∂xn
(xjn − xin)

... +
... +

...
∂zm
∂x1

(xj1 − xi1) + . . . + ∂zm
∂xn

(xjn − xin)




+O

(
1

2

∂2z

∂x2
(xj − xi) + . . .

)



zj1
...
zjm


 =



zi1
...
zim


+




∂z1

∂x1
. . . ∂z1

∂xn

...
. . .

...
∂zm
∂x1

. . . ∂zm
∂xn






xj1 − xi1

...
xjn − xin


+O

(
1

2

∂2z

∂x2
(xj − xi) + . . .

)

φ(xj) = φ(xi) + J(xj − xi) +O

(
1

2

∂2z

∂x2
(xj − xi) + . . .

)
,

(3.22)

where J is the Jacobian matrix made up of the first order partial derivatives and

J =
∂φ(x)

∂x
=




∂z1

∂x1
. . . ∂z1

∂xn

...
. . .

...
∂zm
∂x1

. . . ∂zm
∂xn


 .

Chapter 3 Uncertainty Support Vector Classification 41

The Taylor expansion at xi can be approximated by truncating the second and higher

order partial derivatives,

△φ(xj) = J△xj . (3.23)

Furthermore, the expression (3.23) can be extended to accommodate the geometric

polygonal mapping between the input space and the feature space,




△φ(xT
1)

...

△φ(xT
l)


 =




△xT
1

...

△xT
l







∂z1

∂x1
. . . ∂zm

∂x1

...
. . .

...
∂z1

∂xn
. . . ∂zm

∂xn







△φ(xT
1)

...

△φ(xT
l)


 =




△xT
1

...

△xT
l


JT ,

(3.24)

where △φ(xi) ∈ Rm and △xi ∈ Rn. The uncertainty ellipsoid matrix Mi is a description

of the uncertainty in the input space, from Definition 3.1 and (3.2), we realise that Mi

represents the covariance matrix of a multivariate Gaussian distribution centred at xi

and the infinitesimal vector △xi in the input space is related to O
(
M

1/2
i

)
, which can

be represented as

△xi△xT
i ∝ Mi = (M

1/2
i)TM

1/2
i , i = 1, . . . , l. (3.25)

Therefore, the related geometric mapping of Mi in feature space can be formed by the

Jacobian matrix and its counterpart in input space in accordance with the derivation

result of (3.24),

φ(M
1/2
i) = M

1/2
i JT . (3.26)

Moreover, according to the definition of the kernel function K(xi,xj) = φ(xi) · φ(xj),

φ(xi) and φ(xj) can be seen as independent functions during the derivatives over kernel

functions because of their different function variables xi and xj , so the first and second

derivatives of kernel function can be retrieved by the inner product of the mapping

function φ and its derivative respectively. Therefore, we have

∂Φ(xi)

∂xi
· Φ(xj) =

∂K(xi,xj)

∂xi
. (3.27)

Φ(xi) ·
∂Φ(xj)

∂xj
=

[
∂K(xi,xj)

∂xj

]T

. (3.28)

∂Φ(xi)

∂xi
· ∂Φ(xj)

∂xj
=

∂2K(xi,xj)

∂xi∂xj
. (3.29)

Chapter 3 Uncertainty Support Vector Classification 42

In the general case, the optimisation expression of USVC is as follows:

max
αi,βi

l∑

i=1

αi −
1

2




l∑

i=1

l∑

j=1

αiαjyiyjK(xi,xj)

+
l∑

i=1

l∑

j=1

αiyi

[
∂K(xi,xj)

∂xj

]T

(M
1/2
j)T βj

+

l∑

i=1

l∑

j=1

αjyjβi
TM

1/2
i

∂K(xi,xj)

∂xi

+
l∑

i=1

l∑

j=1

βi
TM

1/2
i

∂2K(xi,xj)

∂xi∂xj
(M

1/2
j)T βj




s.t. ‖βi‖ ≤ αi i = 1, . . . , l,

l∑

i=1

αiyi = 0,

0 ≤ αi ≤ C i = 1, . . . , l. (Non-separable case)

(3.30)

Since the cost of computing (3.29) in the non-linear case will not exceed the complex-

ity of computing the multiplication of two n-dimensional matrices M
1/2
i (M

1/2
i)T , the

algorithmic complexity of (3.30) is the same as that of (3.17) and (3.21).

3.4 Experiments on Uncertainty Support Vector Classifi-

cation

In this section, several experimental results of USVC will be shown for linear and non-

linear classification with some synthetic data sets generated. It should be noted that

the experiments in this section are only intended as illustrations to convey the nature of

the algorithms. The experimental code is based on the MATLAB SVM toolbox (Gunn,

1998). SeDuMi (Sturm, 1999) is implemented as a freely available SOCP optimisation

toolkit.

3.4.1 SeDuMi

SeDuMi is an add-on interior-point method for MATLAB, which solves convex optimisa-

tion problems with linear, quadratic and semidefinite constraints. Furthermore, SeDuMi

can take full advantage of sparsity, leading to significant speed benefits and have large

scale optimisation problems solved efficiently, by exploiting sparsity.

SeDuMi stands for Self-Dual-Minimisation: it implements the self-dual embedding tech-

nique for optimisation over self-dual homogeneous cones (Sturm, 1999). The self-dual

Chapter 3 Uncertainty Support Vector Classification 43

embedding technique was proposed by Ye et al. (1994), essentially making it possible

to solve certain optimisation problems in a single phase, leading either to an optimal

solution, or to a certificate of infeasibility. Optimisation over self-dual homogeneous

cones, concisely, optimisation over symmetric cones, was first studied by Nesterov and

Todd (1997).

In order to solve such a SOCP problem, it is necessary to introduce the form needed

for the quadratic constraints and the quadratic cone in SeDuMi. A quadratic cone is by

definition a cone of the form,

L
n := {(x1,x2) ∈ R × R

n−1|x1 ≥ ‖x2‖}. (3.31)

and SOCP optimisation problem can be transformed as the following QP problem:

min{y1 + y2|y1 ≥ ‖q −Py3‖, y2 ≥
√

1 + ‖y3‖2}, (3.32)

where P is a given matrix, and q is a given vector. Problem (3.32) is a robust least

squares problem (Ghaoui and Lebret, 1997). The decision variables are the scalars y1

and y2, and the vector y3. So this problem has two quadratic constraints (Sturm, 1999),

(y1,q −Py3) ∈ Qcone,

(
y2,

[
1

y3

])
∈ Qcone, (3.33)

where Qcone denotes the quadratic cones.

In SeDuMi, the number of iterations for the interior-point method to decrease the duality

gap to a constant fraction of itself is bounded with time complexity O
(√

l log(1/ǫ)
)

(Sturm, 1999), where l denotes the number of second order cones in (3.30) and ǫ provides

termination control. SeDuMi will terminate successfully if it finds a solution that violates

feasibility and optimality requirements by no more than ǫ.

In each iteration of the interior-point method, the algorithmic complexity is O
(
ln3
)

(Lobo et al., 1998) for the SOCP problem (3.30), where n is the number of the at-

tributes of the inputs. Therefore, the optimisation complexity of USVC is bounded by

O
(
l3/2n3 log(1/ǫ)

)
, which can be written as O

(
l3/2n3

)
because we do not change the

default SeDuMi setting ǫ = 10−9 (Sturm, 1999) in our experiments. SVC reduces to

a quadratic program which initially can be solved with an optimiser in quadratic time

O
(
l2
)
. In this work, SVC is solved by SeDuMi and its algorithmic complexity per

iteration is O (l), thus the optimisation complexity of SVC is bounded by O
(
l3/2
)
.

Chapter 3 Uncertainty Support Vector Classification 44

3.4.2 Linear Case

Introducing the linear mapping function φ(x) = x to formula (3.27), (3.28) and (3.29)

in the case of feature space, we have

∂K(xi,xj)

∂xi
= xj ,

[
∂K(xi,xj)

∂xj

]T

= xT
i ,

∂2K(xi,xj)

∂xi∂xj
= I,

(3.34)

where I ∈ Rn×n is the identity matrix. If replacing the counterpart above in (3.30),

Class +1

Class −1

Optimal Classifier

Loci of the Margin

Figure 3.3: Linearly separable case of USVC, where the solid line denotes the optimal
classifier and the dotted lines mark the loci of the margin.

the problem same as (3.21) can be retrieved. The separable and non-separable case are

shown in Figures 3.3 and 3.4 respectively.

In Figure 3.3, the uncertain inputs from one class do not mix with those from the

other class. Therefore, the optimal linear classifier can clearly separate the inputs of

two classes. Like SVC, the loci of the margin are tangential to three of all uncertainty

ellipses, and these three uncertain inputs are support vectors, which provide information

for constructing the optimal separating line in the classification. This result is consistent

with the values of αi.

Chapter 3 Uncertainty Support Vector Classification 45

(a) C = 1 (b) C = 106

Figure 3.4: Linearly non-separable case of USVC, where the solid line denotes the
optimal classifier and the dotted lines mark the loci of the margin. (a) high misclas-
sification tolerance determined by a small C = 1. (b) low misclassification tolerance

determined by a large C = 106.

While in Figure 3.4, some uncertain inputs from one class mix with those from the

other class, which is non-separable case for the linear classifier. With the introduction

of the penalty parameters ξi, the USVC is applied in this linearly non-separable case,

where the same data set is trained with different values of the regularisation parameter

C, which behaves in a similar manner to that of SVC. Different C determine different

tolerance of misclassification, the smaller the C is, the larger the margin ρ becomes and

more uncertain inputs contribute as support vectors.

3.4.3 Non-Linear Case

In this subsection, some examples are illustrated with non-linear kernel functions applied

to validate the non-linear theory in USVC.

3.4.3.1 Polynomial Kernel

The polynomial kernels have been widely implemented in non-linear applications of

SVM. Since a polynomial kernel function is directional, all inputs with the same direction

of the support vector will have a high output from the kernel. Polynomial kernels are

suited for problems where all the training data is normalised. According to its kernel

function, the first and second derivatives can be derived to retrieve the optimisation

Chapter 3 Uncertainty Support Vector Classification 46

problem with the polynomial kernel function,

K(xi,xj) = (xT
i xj + 1)d

∂K(xi,xj)

∂xi
= d(xT

i xj + 1)d−1xj

[
∂K(xi,xj)

∂xj

]T

= d(xT
i xj + 1)d−1xT

i

∂2K(xi,xj)

∂xi∂xj
= d(d− 1)(xT

i xj + 1)d−2xjx
T
i + d(xT

i xj + 1)d−1I,

(3.35)

where I ∈ Rn×n is the identity matrix with the same size as xix
T
j . The separable case

of USVC with the polynomial kernel is shown in Figure 3.5(a).

(a) Polynomial, d = 4 (b) Gaussian RBF, σ = 1

Figure 3.5: Non-linearly separable case of USVC, where the solid line denotes the
optimal classifier and the dotted lines mark the loci of the margin. (a) non-linear
classification with polynomial kernel function (xT

i xj +1)3. (b) non-linear classification

with Gaussian radial basis kernel function exp
(
− ‖xi−xj‖

2

2

)
.

(a) Polynomial, d = 3, C = 105 (b) Polynomial, d = 6, C = 105

Figure 3.6: Non-linearly non-separable case of USVC by implementing the polynomial
kernels with different parameters d, where the solid line denotes the optimal classifier

and the dotted lines mark the loci of the margin.

Chapter 3 Uncertainty Support Vector Classification 47

In Figure 3.6, the inputs obtain higher outputs from the polynomial kernel with a larger

parameter d, which makes the decision boundary not as smooth as the optimal classifier

derived by the polynomial kernel with a smaller d. Like the linear case, the regularisation

parameter C controls the misclassification tolerance. As a consequence, the obtained

optimal hyperplane have some inevitable inputs misclassified in the classification with

a smaller C in Figure 3.7(a), where more support vectors are included to construct a

smoother decision boundary.

(a) Polynomial, d = 6, C = 103 (b) Polynomial, d = 6, C = 105

Figure 3.7: Non-linearly non-separable case of USVC by implementing the polynomial
kernels with different regularisation parameter C, where the solid line denotes the

optimal classifier and the dotted lines mark the loci of the margin.

3.4.3.2 Gaussian Radial Basis Function Kernel

Radial basis functions (RBFs) have received significant attention, most commonly with

a Gaussian of the form,

K(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)

∂K(xi,xj)

∂xi
=

xj − xi

σ2
exp

(
−‖xi − xj‖2

2σ2

)

[
∂K(xi,xj)

∂xj

]T

=
(xi − xj)

T

σ2
exp

(
−‖xi − xj‖2

2σ2

)

∂2K(xi,xj)

∂xi∂xj
=

1

σ2
I exp

(
−‖xi − xj‖2

2σ2

)
− (xi − xj)(xi − xj)

T

σ4
exp

(
−‖xi − xj‖2

2σ2

)
,

(3.36)

where I ∈ Rn×n is the identity matrix. The output of the kernel is dependent on the

Euclidean distance of the support vector xj from the input xi. The support vector is the

centre of the Gaussian RBF and σ determines the area of influence this support vector

has over the input space. The corresponding feature space is a Hilbert space of infinite

dimension. Maximum margin classifiers are well regularised, so the infinite dimension

Chapter 3 Uncertainty Support Vector Classification 48

does not spoil the results. The separable case of USVC with the Gaussian RBF kernel

is shown in Figure 3.5(b). Figure 3.8 shows the non-separable case of USVC with the

Gaussian RBF kernel. The character of the Gaussian RBF kernel function is illustrated

(a) Gaussian RBF, σ = 1, C = 105 (b) Gaussian RBF, σ = 4, C = 105

Figure 3.8: Non-linearly non-separable case of USVC by implementing the Gaussian
radial basis function kernels with different parameters σ, where the solid line denotes

the optimal classifier and the dotted lines mark the loci of the margin.

in Figure 3.8, where the large value of σ gives a smoother decision boundary. This is

because a RBF with large σ will allow a support vector to have a strong influence over a

larger area. A large σ value also increases the value of the Lagrange multiplier α for the

classifier. When one support vector influences a larger area, all other support vectors

in the area will increase in α value to counter the influence. Consequently, all α values

will reach a balance at a larger magnitude.

3.4.4 Result of Degenerate Case

When no uncertainty information is available, which means Mi are zero matrices, the

dual problem of SVC can be retrieved from problem (3.21). In this case, βi = 0 and

‖βi‖ ≤ αi can be rewritten as αi ≥ 0 in the constraints of (3.17), (3.21) and (3.30). The

resulting problem is the SVC optimisation,

max

l∑

i=1

αi −
1

2

l∑

i=1

l∑

j=1

αiαjyiyjK(xi,xj)

s.t.

l∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , l. (Non-separable case)

(3.37)

It can be seen from Figure 3.9 that Figure 3.9(a) is quite similar to Figure 3.9(b).

The slight difference between Figure 3.9(a) and Figure 3.9(b) can be explained by the

different optimisation toolboxes used in the implementations, SeDuMi in USVC and

LOQO (Vanderbei, 2006) in SVC.

Chapter 3 Uncertainty Support Vector Classification 49

(a) Polynomial, d = 6, C = 103, USVC (b) Polynomial, d = 6, C = 103, SVC

Figure 3.9: Degenerate case of USVC by implementing the polynomial kernels, where
the solid line denotes the optimal classifier and the dotted lines mark the loci of the

margin.

3.4.5 Experimental Comparison of USVC and SVC

The same synthetic data set used for non-linearly non-separable case can be applied to

both USVC and SVC to show their different characteristics in the classification when the

uncertainty information is available. To compare the algorithms objectively, the value of

the regularisation parameter C leading to the best performance must be determined first.

Since the size of the data set is very small, the leave-one-out cross-validation is chosen

to search the proper result by minimising the cross-validation error of the misclassified

xi. The optimal classifiers of USVC and SVC are shown in Figure 3.10.

(a) Linear, C = 10 in USVC and SVC (b) Polynomial, d = 4,C = 104 in USVC and SVC

Figure 3.10: Experimental comparison of USVC and SVC over the same data set,
where USVC is represented by the solid line and SVC is represented by the dashed line.

(a) linear classification. (b) non-linear classification with polynomial kernels.

Following the characteristics of support vectors, USVC is prone to strictly follow the

nearest edges of the uncertainties to achieve its optimal classifier, which leads to the

result that if some inputs’ ellipsoids have been correctly classified, their corresponding

Chapter 3 Uncertainty Support Vector Classification 50

unknown original inputs will likely be classified correctly by following their own distri-

butions. Without ellipsoids representing the uncertainties, the classifier of SVC goes

through some of the uncertainties, where the corresponding original inputs following

their distributions will possibly be misclassified by the optimal hyperplane obtained for

SVC, though the means of these inputs may have been correctly classified.

3.5 Summary

In this chapter, a new method of classification subject to input uncertainty, USVC,

is derived from SVC by incorporating uncertain inputs. Kernel functions can be used

by a novel kernelisation formulation to generalise this proposed technique to non-linear

models and the resulting optimisation problem is a SOCP with a unique solution. Dif-

ferent kernel functions along with USVC and SVC are applied to the experiments in this

section, which are intended as illustrations to convey the nature of the algorithms.

To obtain their optimal separating hyperplanes, both the new approach USVC and

the traditional method SVC implement soft margin classification to formulate their

optimisation problems. The solutions are determined by the support vectors, which are a

subset of the input data. Comparing USVC with SVC, it can be found that USVC follows

the formulation of SVC by inheriting SVC’s geometric and statistical characteristics

except for the introduction of uncertainty matrices, whose sizes and directions along

with the positions of the uncertain inputs determine the position and the direction of

the optimal classifier. Moreover, SVC can be retrieved from USVC in the degenerate

case of no uncertainties.

Chapter 4

Other Related Methods

The classification with information of input uncertainty has started to receive some

attention in recent machine learning research. Known as a maximum margin classifier,

the SVM can be regarded as one of the attractive implements of classification process

subject to input uncertainty. As derived in Chapter 3, SVC can be extended to USVC by

incorporating noise-specific covariance information as additional soft constraints. USVC

not only can accommodate the inputs with certain values and the uncertain inputs

following isotropic Gaussian distribution like SVC can do, but also can accommodate

the uncertain inputs following general anisotropic Gaussian distribution. In dichotomy

classification, the margin needs to be maximised is no longer the nearest distance between

inputs from both classes, but the nearest distance between uncertain inputs with their

distributions. Theoretically, USVC makes no assumption about original inputs before

contamination, thus classifying uncertain inputs with their distributions tends to make

it certain that original inputs are correctly classified as well. Some recently developed

methods of classification subject to input uncertainty will be analysed in this chapter.

4.1 Total Support Vector Classification

Like USVC, Bi and Zhang (2005) proposed a novel formulation derived from SVC, which

can accommodate uncertainties in input data as well. The algorithm is named the total

support vector classification (TSVC).

4.1.1 Linear Case

Considering the previous definition in Section 2.2.3, a set of training input data {xi, yi}, i =

1, . . . , l are given, where xi is corrupted from the original uncorrupted input xio by Gaus-

sian noise, σi is the standard deviation of the Gaussian noise model and it is the estimate

51

Chapter 4 Other Related Methods 52

of the uncertainty (e.g. variance) for xi. In Bi and Zhang (2005), it is assumed that the

inputs are subject to an additive noise, xio = xi + △xi, where noise △xi follows a cer-

tain distribution, which is designed to be bounded by an uncertainty model ‖△xi‖ ≤ δi

with uniform priors. The bound δi has a similar effect of the standard deviation σi in

the Gaussian noise model, whereas the squared penalty term ‖xi−xio‖2

2σ2
i

is replaced by

‖△xi‖ ≤ δi. In linear case, the parameter θ in (2.26) and (2.27) is replaced by the

weight vector w and the offset bias b. The TSVC solution in linearly separable case is

shown as follows,

min
w,b,△xi

1

2
‖w‖2

s.t. yi(w
T (xi + △xi) + b) ≥ 1,

‖△xi‖ ≤ δi, i = 1, . . . , l.

(4.1)

Soft margin method is also used in TSVC by the introduction of slack variables ξi =

max{0, 1− yi(w
T xi + b)}, the square loss (θT xio−yi)

2

2σ2 in (2.26) or the logistic loss ln(1 +

e−θT xioyi) in (2.27) is simply replaced by ξi in linearly non-separable case,

min
w,b,△xi,ξi

C

l∑

i=1

ξi +
1

2
‖w‖2

s.t. yi(w
T (xi + △xi) + b) ≥ 1 − ξi,

‖△xi‖ ≤ δi,

ξi ≥ 0, i = 1, . . . , l.

(4.2)

Lemma 4.1. (Bi and Zhang, 2005) For any given hyperplane (w, b), the solution △x̂i

of problem (4.2) is △x̂i = yiδi
w

‖w‖ , i = 1, . . . , l.

△x̂i is the optimal solution of △xi and we derive the fact that when the optimal ŵ is

obtained, the optimal △x̂i can be represented in terms of ŵ.

Therefore, we can define Sw(x) = {xi + yiδi
w

‖w‖ , i = 1, . . . , l}. Sw(x) is a set of points

that are obtained by shifting the original points labeled +1 along w and points labeled

−1 along −w respectively, to its individual uncertainty boundary.

Theorem 4.2. (Bi and Zhang, 2005) The optimal hyperplane (ŵ, b̂) obtained by the

TSVC problem (4.1) separates Sŵ(x) with the maximal margin. The optimal hyper-

plane (ŵ, b̂) obtained by the TSVC problem (4.2) separates Sŵ(x) with the maximal soft

margin.

Using Lemma 4.1 and Theorem 4.2, △x̂i = yiδi
ŵ

‖ŵ‖ can be introduced to remove △x̂i

in the optimisation problem. The problems (4.1) and (4.2) can be converted to the

optimisation over variable w, b, ξi, the linearly non-separable problem (4.2) can be

Chapter 4 Other Related Methods 53

rewritten as

min
w,b,ξi

C
l∑

i=1

ξi +
1

2
‖w‖2

s.t. yi(w
T xi + b) + δi‖w‖ ≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , l.

(4.3)

Moreover, without loss of generality, the simple bounded uncertainty model ‖△xi‖ ≤ δi

can be replaced by a more general noise-specific covariance matrix Mi according to

Definition 3.1. As the result, ‖M1/2
i w‖ introduced by ellipsoidal uncertainties replace

δi‖w‖ in (4.3), we have

min
w,b,ξi

C
l∑

i=1

ξi +
1

2
‖w‖2

s.t. yi(w
T xi + b) + ‖M1/2

i w‖ ≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , l,

(4.4)

and the optimisation problem of USVC (3.19) can be rewritten as,

min
w,b,ξi

C
l∑

i=1

ξi +
1

2
‖w‖2

s.t. yi(w
T xi + b) − ‖M1/2

i w‖ ≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , l.

(4.5)

The first constraints of (4.4) and (4.5) come from (3.4) with the probability confidence

r set to ∓1 respectively. Figure 4.1 shows a figure originating from Bi and Zhang (2005)

TSVCW

USVC
W

Figure 4.1: Geometric interpretation of TSVC and USVC.

with the USVC solution superimposed to illustrate the different geometric interpretation

Chapter 4 Other Related Methods 54

between TSVC and USVC. In Figure 4.1, dotted circles represent spherical uncertain-

ties. The circles with circular points and the circles with triangular points respectively

represent the uncertain inputs from either class where yi = ±1. In classification, TSVC

uses the farthest points (solid points, obtained by Lemma 4.1 and realised by shifting the

original points labelled +1 along w and the points labelled −1 along −w respectively) in

the distributions of the uncertain inputs as reference to achieve the optimal hyperplane

(wTSVC, solid line), while USVC uses the nearest points (hollow points, obtained by

Lemma 4.1 and realised by shifting the original points labelled +1 along −w and the

points labelled −1 along w) in the distributions of the uncertain inputs to the optimal

hyperplane (wUSVC, dashed line) to compute the classifier.

Figure 4.2: Linearly separable case of TSVC and USVC, where the solid line denotes
the optimal classifier of USVC and the dotted lines mark the loci of the margin of
USVC solution. The dashed line denotes the optimal classifier of TSVC and the loci of

the margin of TSVC solution are marked by the dash-dot lines.

A linearly separable case of TSVC and USVC with hard margin is shown in Figure 4.2

by reproducing the classification in Figure 3.3. In the figure, three out of all inputs

are chosen as the support vectors for each algorithm. The totally different decision

boundaries of TSVC and USVC are dependent on their support vectors which are chosen

by TSVC and USVC based on their dramatically opposite strategies. The objective of

TSVC is to restore the true target boundary from contaminated data sets which are

created under the assumption that training inputs contaminated by Gaussian noise tend

to move towards the other class by attempting to cross the original boundary. TSVC can

well accommodate this assumption to reduce the effect from the noise in the classification

Chapter 4 Other Related Methods 55

by selecting the farthest points as reference to get the optimal solution. USVC choosing

the nearest points is to guarantee that uncertain inputs are correctly classified along

with their original inputs. Consequently, the obtained optimal solution of USVC may

be far different from the target function under some kinds of contamination.

4.1.2 Limitations

According to the definition of SOCP in (3.11), problem (4.5) is a SOCP problem and

certainly it is a convex optimisation. We need to know whether (4.4) is a SOCP problem

or not.

Definition 4.3. (Boyd and Vandenberghe, 2004) A convex optimisation problem is on

of the form

min f0(x)

s.t. fi(x) ≤ bi, i = 1, . . . ,m,

where the functions f0, . . . , fm : Rn → R are convex, i.e., satisfy

fi(ωx1 + (1 − ω)x2) ≤ ωfi(x1) + (1 − ω)fi(x2),

∀x1,x2 ∈ Rn and for any ω ∈ R with 0 ≤ ω ≤ 1.

Theorem 4.4. Problem (4.4)

min
w,b,ξi

C
l∑

i=1

ξi +
1

2
‖w‖2

s.t. yi(w
T xi + b) + ‖M1/2

i w‖ ≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , l,

is not a convex optimisation

Proof. ∀{w1, b1, ξ1}, {w2, b2, ξ2} ∈ {Rn,R,R}, ∀{x, y,M} ∈ V (the set of support vec-

tors). According to the characteristics of support vectors, the first constraint can be

rewritten as follows by introducing {w1, b1, ξ1} and {w2, b2, ξ2},

f(w1, b1, ξ1) : y(wT
1 x + b1) + ‖M1/2w1‖ = 1 − ξ1. (4.6)

f(w2, b2, ξ2) : y(wT
2 x + b2) + ‖M1/2w2‖ = 1 − ξ2. (4.7)

Chapter 4 Other Related Methods 56

For any 0 ≤ ω ≤ 1, we have,

(1 − ω)f(w1, b1, ξ1) + ωf(w2, b2, ξ2) : 1 − [(1 − ω)ξ1 + ωξ2]

= y[(1 − ω)w1 + ωw2]
T x + y[(1 − ω)b1 + ωb2]

+ (1 − ω)‖M1/2w1‖ + ω‖M1/2w2‖.
(4.8)

Since (1−ω)‖M1/2w1‖+ω‖M1/2w2‖ ≥ ‖(1−ω)M1/2w1 +ωM1/2w2‖, it is able to find

a ω and let

1 − [(1 − ω)ξ1 + ωξ2]

>y[(1 − ω)w1 + ωw2]
T x + y[(1 − ω)b1 + ωb2]

+ ‖M1/2[(1 − ω)w1 + ωw2]‖.
(4.9)

Therefore, from Definition 4.3, we know that the functions yi(w
T xi + b) + ‖M1/2

i w‖ ≥
1 − ξi, i = 1, . . . , l are not convex, then the problem is not a convex optimisation.

Corollary 4.5. Since problem (4.4) is not a convex optimisation, (4.4) is not a SOCP

problem.

Fortunately, Tikhonov regularisation (Golub et al., 1999; Bi and Vapnik, 2003; Bi and

Zhang, 2005) min C
∑
ξi+

1
2‖w‖2 has an important equivalent formulation as min

∑
ξi,

subject to ‖w‖ ≤ γ, where γ is a positive constant. It can be shown that if γ ≤ ‖w∗‖
where w∗ is the solution to (4.2) with 1

2‖w‖2 removed, then the optimal solution is

identical to the one of the Tikhonov regularisation problem for an appropriately cho-

sen C. In this case, the constraint ‖w‖ ≤ γ at optimality, which leads to ‖ŵ‖ = γ.

Consequently, the TSVC problem (4.3) can be converted to a simple SOCP with the

constraint ‖w‖ ≤ γ or a QCQP as follows if equivalently using ‖w‖2 ≤ γ2.

min
w,b,ξi

l∑

i=1

ξi

s.t. yi(w
T xi + b) + γδi ≥ 1 − ξi,

‖w‖2 ≤ γ2,

ξi ≥ 0, i = 1, . . . , l,

(4.10)

and the dual formulation of (4.10) in dual variables αi is given by Bi and Zhang (2005)

as follows,

min
αi

γ

√√√√
l∑

i,j=1

αiαjyiyjx
T
i xj −

l∑

i=1

(1 − γδi)αi

s.t.
l∑

i=1

αiyi = 0, 0 ≤ αi ≤ 1, i = 1, . . . , l.

(4.11)

Chapter 4 Other Related Methods 57

Although TSVC can be recast to a SOCP problem, directly implementing this SOCP

problem will be computationally expensive. Therefore, an iterative approach, is proposed

by Bi and Zhang (2005) to achieve the optimal solution of TSVC. According to Definition

3.1, this iterative approach can be reformulated as follows in linear case. As the result,

Algorithm 1 TSVC’s Iterative Algorithm for Linear Case

Initialise △xi = 0, repeat the following steps until
∑l

i=1 ξi reaches a local minimum:
1. Fix △xi, i = 1, . . . , l to the current value, solve problem (4.2) without its constraints
‖△xi‖ ≤ δi for parameters w and b. With fixed △xi, (4.2) is then transformed to a
SVC primal problem;
2. Use the obtained w, b to calculate △xi, i = 1, . . . , l, and

∑l
i=1 ξi, where △xi =

yi
Miw

‖M1/2

i w‖
and ξi = max

{
0, 1 −

[
yi(w

T xi + b) + ‖M1/2
i w‖

]}
.

this iterative approach may not achieve the global optimum of
∑l

i=1 ξi but only reach

many local optimum by a termination criterion because
∑l

i=1 ξi obtained in each step is

the optimal solution of SVC depending upon xi + △xi, which vary around the farthest

points during the iterations. This has been supported by the experimental results. In

the experiment of TSVC, if no fixed termination criterion is determined in Algorithm 1,

the more iterations, the better results we will have.

4.1.3 Non-Linear Case

TSVC can also be extended to the non-linear case by using a kernel function K. In

non-linear case, the optimisation problem obtained is similar to that of (4.2) only with

xi replaced by φ(xi) and △xi replaced by △φ(xi), where φ denotes a mapping func-

tion. The uncertainties in the input space can also be introduced in the feature space.

However, like USVC, when the uncertainty bounded spheres ‖△xi‖ ≤ δi in the input

space are mapped to the feature space, the mapped uncertainty may correspond to an

irregular shape in the feature space, which makes the optimisation of TSVC difficult.

Thus an approximation strategy is introduced based on the first order Taylor expansion

of the kernel function K(x,z)

K(xi + △xi,z) = K(xi,z) + △xT
i

∂K(xi,z)

∂xi
,

where ∂K(xi,z)
∂xi

is the gradient of K(x,z) with respect to x at point xi. Applying the

Taylor expansion, we have

yi



∑

j

yjαjK(xi + △xi,xj + △xj) + b




∼= yi



∑

j

yjαjK(xi,xj + △xj) + b


+ yi△xT

i

∑

j

yjαj
∂K(xi,xj + △xj)

∂xi
.

(4.12)

Chapter 4 Other Related Methods 58

Definition 3.1, along with the kernelisation method developed in Chapter 3, can be

applied to (4.12) to extend Algorithm 1 to non-linear case. More details can be found

in Appendix B. This iterative approach of TSVC is designed as follows:

Algorithm 2 TSVC’s Iterative Algorithm for Non-Linear Case

Initialise △xi = 0, repeat the following steps until
∑l

i=1 ξi reaches a local minimum:
1. Fix △xj, j = 1, . . . , l to the current value of △xi, i = 1, . . . , l, solve the non-linear
dual problem of SVC for αj and b ;

2. Use the obtained αj , b to calculate △xi, i = 1, . . . , l, and
∑l

i=1 ξi, where

△xi = yi(M
1/2
i)T vi

‖vi‖ , vi = M
1/2
i

∑
j αjyj

∂K(xi,xj+△xj)
∂xi

and

ξi = max
{
0, 1 −

[
yi

(∑
j αjyjK(xi,xj + △xj) + b

)
+ ‖vi‖

]}
.

The memory requirement of TSVC is of order O
(
l2
)
, the same as that of SVC because

every single iteration of the TSVC algorithm is a SVC problem. Since TSVC is an

iterative algorithm, the computational cost is related to the number of iterations before
∑l

i=1 ξi reaches its local minimum. In practice, it is not straightforward to determine

an optimal termination criterion. For convenience, the number of iterations is preset to

a constant and the optimal solution of TSVC is chosen alongside the minimum of all
∑l

i=1 ξi in all iterations. If a tie happens at the minimum of all
∑l

i=1 ξi, the latest one

will be selected. Hence, in TSVC, the number of iterations is fixed to Lt. In every single

iteration, the computational cost includes the cost of constructing auxiliary parameters

△xi and vi, besides, the cost of constructing the matrix R with order O
(
l2n
)

and the

optimisation complexity bounded by O
(
l3/2
)

are the same as those of SVC. Following

Algorithm 2, the cost of constructing auxiliary parameters in every single iteration is of

order O
(
llsvn

2
)
, where lsv is the number of support vectors. Since lsv is part of l, this cost

is bounded with order O
(
l2n2

)
. In general, the computational cost of TSVC has the

cost of constructing the matrix R with order O
(
Ltl

2n
)
, the optimisation complexity

bounded by O
(
Ltl

3/2
)

and the cost of constructing auxiliary parameters with order

O
(
Ltl

2n2
)
.

4.1.4 Experimental Comparison of TSVC and USVC

In this section, we exploit experimental comparison between TSVC and USVC by re-

producing the experiment from Bi and Zhang (2005). The data in the experiment are

generated by following the exact prescription described in Bi and Zhang (2005), hence,

the data differs solely by random input generator which follows the uniform distribution.

In the experiments with synthetic data in two dimensions, l = 50, 100 training inputs xi

are generated randomly from [−5, 5]2. Two binary classification problems are created

with target separating functions x1 − x2 = 0 and x2
1 + x2

2 = 9. TSVC and USVC are

trained with linear functions and quadratic kernel (xT
i xj)

2 for the problems respectively.

Chapter 4 Other Related Methods 59

The training inputs xi are contaminated by Gaussian noise with mean [0, 0] and covari-

ance matrix Σ = δiI where δi is randomly chosen from [0.1, 0.8]. The matrix I denotes

the 2×2 identity matrix. We randomly choose 0.1l from the first 0.2l inputs after inputs

are ordered in an ascending order of their distances to the target boundary. For these

0.1l inputs, noise is generated by using a larger δi randomly drawn from [0.5, 2].

In each problem, ten 50-input training data sets and ten 100-input training data sets

are created along with five 10000-input test data sets which are generated in exactly the

same manner as the training sets but without contamination. Five corrupted test data

sets are then generated from the original test data sets under the same rule of creating

training data sets. Models obtained by algorithms are evaluated over original test data

sets and their contaminated counterparts respectively. The misclassification error rates

averaged over five test data sets are collected in the test sessions. The rates collected from

the test sets without contamination are called the test misclassification error (TME),

which shows the difference between the obtained classifier and the true target function,

and evaluates the abilities that different approaches retrieve the original target function

from the corrupted inputs. The other misclassification error rate, named as the number

of misclassified centres of uncertainties (NMCU), compares different algorithms by the

number of the means (xi in Definition 3.1) of uncertain inputs (zi in Definition 3.1)

being correctly discriminated in the contaminated test sets.

To select proper regularisation parameter C for each algorithm, stratified 10-fold cross-

validation is introduced to evaluate NMCU in training data sets. The finally chosen

C is selected from a geometric sequence 1,
√

10, 10, . . . , 105 with common ratio
√

10.

To remove numerical difference of SOCP optimisers, SeDuMi (Sturm, 1999) is used to

replace LOQO (Vanderbei, 2006) hereafter in solving SVC problem based on MATLAB

SVM toolbox (Gunn, 1998). The results are shown in Table 4.1 and Table 4.2.

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

USVC 12.91 1.24 11.76 0.66 16.19 3.59 14.04 1.05

SVC 12.00 1.07 11.96 0.95 16.42 3.21 14.19 1.04

TSVC 11.62 0.75 11.58 0.61 14.27 1.16 13.33 0.21

Table 4.1: Average test error percentages of NMCU of USVC, TSVC and standard
SVC in reproducing Bi and Zhang’s experiment, means and standard errors of NMCU

are listed in the table.

TSVC performs overall better than USVC and SVC in both measures, and the classifiers

obtained by USVC have close performance to those of SVC. TSVC geometrically chooses

the farthest points in the uncertainties as reference to obtain the optimal solution.

If we recall (3.4) and (3.7), we can find that TSVC’s strategy consequently sets the

probability confidence r = −1, which leads to lower predicted probabilities that the

unknown original inputs xio are going to be classified correctly when the farthest points

Chapter 4 Other Related Methods 60

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

USVC 7.94 2.18 4.67 2.30 9.21 5.03 5.92 2.55

SVC 5.79 2.60 4.73 2.57 9.22 4.66 5.42 2.38

TSVC 4.21 2.30 3.45 2.29 5.09 2.29 2.57 1.01

Table 4.2: Average test error percentages of TME of USVC, TSVC and standard
SVC in reproducing Bi and Zhang’s experiment, means and standard errors of TME

are listed in the table.

of the covariance ellipsoids of distributions are designed to be correctly classified for their

corrupted counterparts zi in TSVC. On the contrary, USVC is a conservative approach,

which wants to correctly classify uncertain inputs with as much as their distributions

by choosing the nearest points in the uncertainties as reference to achieve its optimal

solution. In USVC, the probability confidence r = 1, which ensure that if uncertain

inputs zi have been correctly classified, their unknown original counterparts xio have

higher probabilities to be classified as well. It is important for the discussion that

will follow to notice that traditional probabilities differ from the predicted probabilities

mentioned here, which predicts probabilities at some positions that unknown original

inputs fall within particular subset of the range between these positions and the farthest

ends of the distributions to the classifier. These probabilities are determined by both the

distributions of uncertain inputs and the optimal classifier. For same uncertain inputs,

different classifiers vary the predicted probabilities introduced in USVC and TSVC. A

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5
−2

−1

0

1

2

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) w = [1;−1]

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) w = [1; 1]

Figure 4.3: Probabilistic interpretation of TSVC and USVC. In the figure, the un-
certain input zi ∼ N ([0.5; 0.5] , [1.143,−0.286;−0.286, 0.571]) remains unchanged, two
linear classifiers are applied to this input with different weight vectors w. 3D shaded
surface and the contour beneath surface represent multivariate normal cumulative dis-
tribution function. Hollow point is the nearest point of ellipse to the optimal solution
and the dotted line mark the locus of the margin of USVC solution. Solid point is the
farthest point of ellipse and the locus of the margin of TSVC solution is marked by the

dash-dot line.

two-dimensional uncertain input is shown with its distribution and two linear classifiers

Chapter 4 Other Related Methods 61

in Figure 4.3 to illustrate probabilistic difference between TSVC and USVC in classifying

uncertain inputs which follow multivariate Gaussian distributions.

The results of linear classification of the 5th and 9th 50-input training data sets are shown

in Figure 4.4 and the 1st and 8th data sets are shown for 100-input linear classification

in Figure 4.5, in which all algorithms achieve improved performance with increasing

training inputs.

(a) Data set 5, CSVC = 3.16×103, CUSVC = 105 and
CTSVC = 31.62

(b) Data set 9, CSVC = 3.16×102, CUSVC = 105 and
CTSVC = 10

Figure 4.4: Selected results from the 5th and 9th 50-input training data sets for linear
classification in the reproduction of Bi and Zhang’s experiment (Bi and Zhang, 2005).
TSVC is represented by blue dashed line, USVC is represented by black solid line and
green dotted line represents SVC. The target function is illustrated by red dash-dot

line.

(a) Data set 1, CSVC = 3.16×104, CUSVC = 104 and
CTSVC = 3.16 × 102

(b) Data set 8, CSVC = 3.16 × 104, CUSVC = 10 and
CTSVC = 10

Figure 4.5: Selected results from the 1st and 8th 100-input training data sets for
linear classification in the reproduction of Bi and Zhang’s experiment (Bi and Zhang,
2005). TSVC is represented by blue dashed line, USVC is represented by black solid
line and green dotted line represents SVC. The target function is illustrated by red

dash-dot line.

In Figure 4.4, the optimal solution of TSVC is the closest classifier of all algorithms

to the target function. Relatively, deviation from the target function usually happens

in the solution of USVC due to its characters and some specific training data sets. In

the bottom left part of Figure 4.4(a) and the top right part of Figure 4.4(b), some large

Chapter 4 Other Related Methods 62

uncertainties from one class tend to cross the original boundary, and these uncertainties,

at the same time, dominate areas with low input density from the other class. Choosing

the nearest points for USVC causes its optimal classifier to be stretched from the target

function despite the fact that lower NMCU may be achieved in the training sessions.

On the other hand, some sparsity in 50-input training data sets may cost the results

of TME. For instance, in the bottom left part of Figure 4.4(b), that single uncertainty

can well affect the results of TSVC and USVC. Because of its strategy, TSVC generally

performs better than SVC and USVC in the experiments created by Bi and Zhang (2005).

However, when the uncertainties near the original boundary tend to move towards the

other class, and moreover, are spread evenly around the boundary, SVC and USVC can

perform better than TSVC. For example, SVC performs better than USVC and TSVC

in Figure 4.5(a), and USVC performs better than SVC and TSVC in Figure 4.5(b).

(a) Data set 5, CSVC = 100, CUSVC = 3.16×103 and
CTSVC = 3.16 × 102

(b) Data set 7, CSVC = 3.16×103, CUSVC = 105 and
CTSVC = 3.16 × 102

Figure 4.6: Selected results from the 5th and 7th 50-input training data sets for
classification with quadratic kernel in the reproduction of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC is represented by
black solid line and green dotted line represents SVC. The target function is illustrated

by red dash-dot line.

The results of classification with quadratic kernel are shown in Figure 4.6 and Figure 4.7.

Figure 4.6(b) shows the case in which inputs are biased in distribution, this also happens

in the top part of Figure 4.6(a). Consequently, there exists some sparsity of training

inputs and uncertainties from one class dominate uncertainties from the other class in

some areas around the original boundary. Though all algorithms are affected by this

contamination, TSVC can better recover the target function with its closest optimal

solution to the original boundary. The dominance from one class to the other class in

some areas may also cause deviation in TSVC’s solution. In the bottom left part of

Figure 4.6(a), the optimal classifier is well stretched away from the target function by

TSVC’s farthest-point strategy. The different results coming out of different strategies

implemented in TSVC and USVC are shown in Figure 4.7, especially in the top and

bottom parts of Figure 4.7(a) and Figure 4.7(b).

Chapter 4 Other Related Methods 63

(a) Data set 3, CSVC = 103, CUSVC = 3.16×103 and
CTSVC = 100

(b) Data set 9, CSVC = 3.16×104, CUSVC = 104 and
CTSVC = 3.16 × 104

Figure 4.7: Selected results from the 3rd and 9th 100-input training data sets for
classification with quadratic kernel in the reproduction of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC is represented by
black solid line and green dotted line represents SVC. The target function is illustrated

by red dash-dot line.

However, if uncertain inputs are not generated from the rule provided by Bi and Zhang

(2005), can TSVC still remain its advantages over other approaches? The training data

sets are created by following the previous description except that original inputs from

one class no longer move towards the other class under the contamination, which alter-

natively moves original inputs along traces in parallel with the target function. This

contamination does not change the distribution of inputs drastically, but remains rela-

tively high density of uncertainties near the boundary with few means of the distributions

of corrupted inputs crossing the original boundary. To show the difference between var-

ied contamination, the same origins with Gaussian noise that have previously been used

to reproduce Bi and Zhang’s experiment, are inherited to generate the training and the

test data sets here. The means and standard errors of NMCU and TME over five test

data sets and their corrupted counterparts are reported in Table 4.3 and Table 4.4.

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

USVC 5.70 2.69 3.82 2.18 6.68 1.87 4.58 1.89

SVC 2.88 2.10 1.52 1.18 4.51 1.33 3.07 1.07

TSVC 3.14 2.44 2.40 1.94 4.80 1.70 3.40 1.47

Table 4.3: Average test error percentages of NMCU of USVC, TSVC and standard
SVC in recomposing Bi and Zhang’s experiment, means and standard errors of NMCU

are listed in the table.

It is known from the table that TSVC has the overall best performance of all algorithms.

Figure 4.8 and Figure 4.9 show the linear case. Under this lighter contamination, all

approaches have improved performance. Under its nearest-point strategy, the solution

Chapter 4 Other Related Methods 64

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

USVC 5.65 2.68 3.78 2.16 6.63 1.88 4.29 1.86

SVC 2.86 2.06 1.52 1.18 4.50 1.37 2.99 1.21

TSVC 3.13 2.44 2.36 1.88 4.85 1.74 3.44 1.70

Table 4.4: Average test error percentages of TME of USVC, TSVC and standard
SVC in recomposing Bi and Zhang’s experiment, means and standard errors of TME

are listed in the table.

(a) Data set 5, CSVC = 100, CUSVC = 10 and
CTSVC = 103

(b) Data set 9, CSVC = 31.62, CUSVC = 10 and
CTSVC = 31.62

Figure 4.8: Selected results from the 5th and 9th 50-input training data sets for linear
classification in the recomposition of Bi and Zhang’s experiment (Bi and Zhang, 2005).
TSVC is represented by blue dashed line, USVC is represented by black solid line and
green dotted line represents SVC. The target function is illustrated by red dash-dot

line.

of USVC deviates from the target function in the top parts of Figure 4.8(a) and Fig-

ure 4.8(b), and the bottom part of Figure 4.8(a), where either some inputs spread in

low density or some larger uncertainties from one class dominate other sparse smaller

uncertainties from the other class. Meanwhile, the solution of TSVC deviates from the

target function by following the opposite direction to the deviation of USVC. Because

the corrupted inputs are evenly distributed around the original boundary and few of

them cross the boundary after this contamination, choosing the means of inputs’ distri-

butions as reference gives SVC the best performance of all approaches. Sometimes, this

contamination may help USVC to achieve better performance shown in the top parts of

Figure 4.9(a) and Figure 4.9(b).

The results of TSVC, SVC and USVC with quadratic kernel functions over the training

data sets are shown in Figure 4.10 and Figure 4.11.

Chapter 4 Other Related Methods 65

(a) Data set 1, CSVC = 31.62, CUSVC = 3.16 and
CTSVC = 3.16 × 104

(b) Data set 8, CSVC = 105, CUSVC = 3.16 and
CTSVC = 10

Figure 4.9: Selected results from the 1st and 8th 100-input training data sets for
linear classification in the recomposition of Bi and Zhang’s experiment (Bi and Zhang,
2005). TSVC is represented by blue dashed line, USVC is represented by black solid
line and green dotted line represents SVC. The target function is illustrated by red

dash-dot line.

(a) Data set 5, CSVC = 3.16 × 102, CUSVC = 3.16 ×
102 and CTSVC = 3.16 × 102

(b) Data set 7, CSVC = 3.16 × 102, CUSVC = 3.16 ×
102 and CTSVC = 3.16 × 102

Figure 4.10: Selected results from the 5th and 7th 50-input training data sets for
classification with quadratic kernel in the recomposition of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC is represented by
black solid line and green dotted line represents SVC. The target function is illustrated

by red dash-dot line.

4.2 Second Order Cone Programming Formulation

Recently, another new classification approach subject to input uncertainty was proposed

in Bhattacharyya (2004),Bhattacharyya et al. (2005) and Shivaswamy et al. (2006). This

method is called second order cone programming formulation (SOCPF). For continuity

and simplicity, Definition 3.1 is introduced to transform SOCPF’s optimisation problem

Chapter 4 Other Related Methods 66

(a) Data set 3, CSVC = 103, CUSVC = 31.62 and
CTSVC = 3.16 × 102

(b) Data set 9, CSVC = 3.16 × 104, CUSVC = 31.62
and CTSVC = 105

Figure 4.11: Selected results from the 3rd and 9th 100-input training data sets for
classification with quadratic kernel in the recomposition of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC is represented by
black solid line and green dotted line represents SVC. The target function is illustrated

by red dash-dot line.

to traditional formulation. Its linear optimisation formulation is as follows:

min
w,b,ξi

l∑

i=1

ξi

s.t. yi(w
T xi + b) ≥ 1 − ξi + ri‖M1/2

i w‖,
‖w‖ ≤W,

ξi ≥ 0, i = 1, . . . , l,

(4.13)

where ri = Φ−1(α) is the probability confidence defined in (3.4) and (3.7), W is a

user-defined constant exploited as an upper bound of ‖w‖. The constraint ‖w‖ ≤
W comes from an important equivalent formulation of Tikhonov regularisation (Golub

et al., 1999), in which the traditional SVC

min
w,b,ξi

C

l∑

i=1

ξi +
1

2
‖w‖2

s.t. yi(w
T xi + b) ≥ 1 − ξi.

(4.14)

can be transformed to

min
w,b,ξi

l∑

i=1

ξi

s.t. yi(w
T xi + b) ≥ 1 − ξi,

‖w‖ ≤W.

(4.15)

It can be shown that if W ≤ ‖w∗‖, where w∗ is the solution to (4.14) with 1
2‖w‖2

removed, then the solutions to (4.14) and to (4.15) are identical for an appropriately

Chapter 4 Other Related Methods 67

chosen C. So when ri = 1, problem (4.13) is similar to problem (3.10). To simplify the

solutions to (4.13), we set W =
√
C in (4.13). According to Definition 3.1, the non-linear

version of the formulation in Bhattacharyya et al. (2005) and Shivaswamy et al. (2006)

can be transformed to accommodate the kernel functions. The dual transformation,

w =
∑l

i=1 αiyixi is introduced in (4.13) instead of w =
∑l

i=1 αiyixi +
∑l

i=1(M
1/2
i)T βi

derived along with USVC. Thus, we have

min
αi,b,ξi

l∑

i=1

ξi

s.t. yi




l∑

j=1

αjyjK(xj ,xi) + b


− 1 + ξi ≥ ri

∥∥∥∥∥∥

l∑

j=1

αjyjM
1/2
i

∂K(xi,xj)

∂xi

∥∥∥∥∥∥
,

∥∥∥∥∥∥

l∑

i=1

l∑

j=1

αiαjyiyjK(xi,xj)

∥∥∥∥∥∥
≤W,

ξi ≥ 0, i = 1, . . . , l.

(4.16)

Based on different expressions of w used in optimisation problems, SOCPF considers

only the means of the uncertain inputs but ignores the influence of the uncertainties to

determine the weight vector w of the optimal hyperplane, while USVC considers both

the means xi and the sizes of the uncertainties Mi in the classification. In addition,

the dual variables βi ignored in SOCPF just like removing the first l second order cone

constraints ‖βi‖ ≤ αi in dual problem (3.30). According to the characteristics of SOCP

problem, the dual problem of SOCPF is not strictly feasible (Lobo et al., 1998). As the

result, it is not guaranteed that there exist primal and dual feasible points that attain

the equal optimal values (Nesterov and Nemirovskii, 1994). But since strictly feasible

can be satisfied in the primal problem of SOCPF when a proper optimum is obtained

to satisfy the constraints with strict inequality, the optimal value of the primal problem

can be equal to that of the dual problem. On the other hand, if the optimal value of

the primal problem does not satisfy strictly feasible, then the dual problem of SOCPF

is weak duality, in which the optimal values from the primal and dual problems may

be different. Whilst, the dual problem of USVC is weak duality only if neither of its

primal and dual problems satisfy strictly feasible. Therefore, the dual problem of USVC

is more likely to be strong duality that the primal and dual problems achieve the same

optimum. Sometimes, USVC and SOCPF can perform at the same level no matter

which dual transformation is exploited.

4.3 Minimax Probability Machine

The minimax probability machine (MPM) is a recent method introduced by Lanckriet

et al. (2002a,b) and Huang et al. (2004). Unlike the generative approach, in which the

Chapter 4 Other Related Methods 68

predictor makes distributional assumptions about the class-conditional densities and

thereby estimates and controls the relevant probabilities, MPM attempts to control

misclassification probabilities in a worst-case setting to choose a discriminative approach

by minimising the probabilities that input data fall on the wrong side of the boundary.

Before the introduction of MPM, some important definitions and theorems about the

optimal bounds in probability are needed.

4.3.1 Optimal Bounds in Probability

Definition 4.6. (Bertsimas and Sethuraman, 2000) A sequence σ̄ : (σk)k1+...+kn≤k

is a feasible (n, k,Ω)-moment vector (or sequence), if there is a multivariate random

variable x = (x1, . . . , xn) with domain Ω ⊆ Rn, whose moments are given by σ̄, that

is σk = E[xk1

1 . . . xkn
n],∀k1 + . . . + kn ≤ k. We say that any such multivariate random

variable x has a σ̄-feasible distribution and denote this as x ∼ σ̄.

Given a sequence σ̄ of up to kth order moments σk of a multivariate random variable

x on Ω ⊆ Rn, our target is to find the “best possible” or “tight” upper bounds on

Pr(x ∈ S), for arbitrary events S ⊆ Ω.

Definition 4.7. (Bertsimas and Sethuraman, 2000) We say that α is a tight upper

bound on Pr(x ∈ S), and we will denote it by supx∼σ̄ Pr(x ∈ S) if:

(a) It is an upper bound, i.e., Pr(x ∈ S) ≤ α for all random variables x ∼ σ̄;

(b) It cannot be improved, i.e., for any ǫ > 0 there is a random variable xǫ ∼ σ̄ for

which Pr(xǫ ∈ S) > α− ǫ.

The (n, k,Ω)-upper bound problem can be formulated as the following optimisation

primal problem:

ZP = max

∫

S
f(z)dz

s.t.

∫

Ω
zk1

1 . . . zkn
n f(z)dz = σk, ∀k1 + . . . + kn ≤ k,

f(z) = f(z1, . . . , zn) ≥ 0, ∀z = (z1, . . . , zn) ∈ Ω.

(4.17)

where f(z) is a σ̄-feasible distribution. After introducing the dual variables uk and

constructing the dual polynomial g(x1, . . . , xn) =
∑

k1+...+kn≤k ukx
k1

1 . . . xkn
n , we obtain

the dual objective as follows:

∑

k

ukσk =
∑

k

ukE[xk1

1 . . . xkn
n] = E[g(x)].

Chapter 4 Other Related Methods 69

The dual problem of (4.17) can be written as:

ZD = min E[g(x)]

s.t. g(x) k-degree, n-variate polynomial,

g(x) ≥ χS(x), ∀x ∈ Ω.

(4.18)

where χS(x) is the indicator function of the set S:

χS(x) =

{
1, if x ∈ S,

0, otherwise.

In general, the optimum may not be achievable. Whenever the primal optimum is

achieved, we call the corresponding distribution an extremal distribution.

Theorem 4.8. (Weak Duality)(Bertsimas and Sethuraman, 2000) ZP ≤ ZD.

Theorem 4.9. (Strong Duality and Complementary Slackness)(Bertsimas and

Sethuraman, 2000) If the moment vector σ̄ is an interior point of the set of feasible

moment vectors, then the following results hold:

(a) Strong Duality: ZP = ZD.

(b) Complementary Slackness: If the dual is bounded, there exists a dual optimal so-

lution gopt(.) and a discrete extremal distribution concentrated on points x, where

gopt(x) = χS(x), that achieves the bound.

From Theorem 4.9, we know that if strong duality holds, we can obtain a tight bound

on Pr(x ∈ S) by optimising over the dual problem (4.18).

Now we consider the (n, 2,Rn)-bound problem with the assumptions that the mean

vector M = E[x] and the covariance matrix Γ = E[(x − M)(x − M)T] are known.

Given a set S ⊂ Rn, the tight upper bound of the probability Pr(x ∈ S) is derived by

the following theorem.

Theorem 4.10. (Bertsimas and Sethuraman, 2000)

(a) The tight (n, 2,Rn)-upper bound for an arbitrary convex event S is given by:

sup
x∼(m,Γ)

Pr(x ∈ S) =
1

1 + d2
, (4.19)

where d2 = infx∈S(x − M)T Γ−1(x − M), is the squared distance from M to the

set S, under the norm induced by the matrix Γ−1

(b) If M /∈ S and if d2 = infx∈S(x − M)T Γ−1(x − M) is achievable, then there is an

extremal distribution that exactly achieves the bound (4.19); otherwise, if M ∈ S

Chapter 4 Other Related Methods 70

or if d2 is not achievable, then there is a sequence of (M ,Γ)-feasible distributions

that asymptotically approach the bound (4.19).

Moreover, the result of the upper bound in (4.19) is stronger than the result in Cheby-

shev’s inequality.

4.3.2 Linear Case

The following derivations mainly come from Lanckriet et al. (2002a,b). Let x+ and x−
denote random vectors in a binary classification problem, with mean vectors and covari-

ance matrices given by x+ ∼ (x̄+,Σx+
) and x− ∼ (x̄−,Σx−), and x+, x̄+,x−, x̄− ∈ Rn

and Σx+
,Σx− ∈ Rn×n. The hyperplane to be determined is wT z = b (w,z ∈ Rn and

b ∈ R) which separates the two classes of data with maximal probability with respect to

all distributions having these means and covariance matrices. The optimisation problem

is

max
α,w,b

α s.t. inf
x+∼(x̄+,Σx+

)
Pr{wT x+ ≥ b} ≥ α

inf
x−∼(x̄−,Σx−)

Pr{wT x− ≤ b} ≥ α,
(4.20)

or equally, we have

max
α,w,b

α s.t. 1 − α ≥ sup
x+∼(x̄+,Σx+

)
Pr{wT x+ ≤ b}

1 − α ≥ sup
x−∼(x̄−,Σx−)

Pr{wT x− ≥ b},
(4.21)

where α is the lower bound of the probability that the input data are classified correctly

by the optimal hyperplane. Consider the second constraint in (4.21) and recall the result

of (4.19), we have

d2 = inf
wT x−≥b

(x− − x̄−)T Σx−
−1(x− − x̄−) =

max((b− wT x̄−), 0)2

wT Σx−w
. (4.22)

Since wT x̄− ≤ b, we have max((b− wT x̄−), 0) = b− wT x̄− and this reduces to

b− wT x̄− ≥ κ(α)
√

wT Σx−w where κ(α) =

√
α

1 − α
. (4.23)

Because κ(α) is a monotone increasing function of α, κ can be eliminated finally:

min
w

√
wT Σx+

w +
√

wT Σx−w s.t. w(x̄+ − x̄−) = 1, (4.24)

or

min
w

‖Σ1/2
x+

w‖ + ‖Σ1/2
x− w‖ s.t. wT (x+ − x−) = 1, (4.25)

Chapter 4 Other Related Methods 71

and

b∗ = wT
∗ x̄+ − κ(α∗)

√
wT∗ Σx+

w∗ = wT
∗ x̄− + κ(α∗)

√
wT∗ Σx−w∗, (4.26)

where w∗ and α∗ are the optimal values of w and α respectively. The optimisation

primal problem (4.25) of the minimax probability machine is a SOCP problem. Like the

derivations from (4.17) to (4.18), we introduce the dual vectors u, v and the Lagrange

multiplier λ. Therefore, problem (4.25) can be expressed as the following constrained

problem:

min
w

max
λ,u,v

uT Σ
1/2
x+

w + vT Σ
1/2
x− w + λ(1 − wT (x+ − x−)) s.t. ‖u‖ ≤ 1, ‖v‖ ≤ 1.

and the dual polynomial is constructed as follows:

g(u,v, λ) = min
w

uT Σ
1/2
x+

w + vT Σ
1/2
x− w + λ(1 − wT (x+ − x−))

=

{
λ, if λx̄+ − Σ

1/2
x+

u = λx̄− + Σ
1/2
x− v,

−∞, otherwise.

We obtain the dual problem as

max
λ,u,v

λ s.t. x̄+ + Σ
1/2
x+ u = x̄− + Σ

1/2
x− v,

‖u‖ ≤ 1

λ
, ‖v‖ ≤ 1

λ
.

(4.27)

Geometrically, the minimax approach uses (x̄+,Σx+
) and (x̄−,Σx−) to construct two

ellipsoids which represent the distribution of the input data of the two classes in the bi-

nary classification. When λ is small enough, the two ellipsoids intersect. (4.27) amounts

to finding the largest λ for which these ellipsoids intersect. Whenever the optimal λ is

achieved, the ellipsoids will be tangential to each other. The minimax optimal solution

is then the common tangent to both optimal ellipsoids.

4.3.3 Non-Linear Case

Let φ(x+) ∼ (φ(x+),Σφ(x+)) and φ(x−) ∼ (φ(x−),Σφ(x−)) denote the data in the

feature space, which are mapped by the mapping function φ : Rn 7→ Rm from the input

data {x+i}
Nx+

i=1 and {x−i}
Nx−
i=1 in the training classes. The decision hyperplane in the

feature space is wTφ(z) = b with w, φ(z) ∈ Rm and b ∈ R. The optimisation problem

in non-linear case is

min
w

√
wT Σφ(x+)w +

√
wT Σφ(x−)w

s.t. w
(
φ(x+) − φ(x−)

)
= 1.

(4.28)

Chapter 4 Other Related Methods 72

Since no uncertainties are introduced to the input data x+ and x−, w can be assumed

and written as

w =

Nx+∑

i=1

αiφ(x+i) +

Nx−∑

i=1

βiφ(x−i). (4.29)

Covariance Σφ(x+) can be estimated by

Σφ(x+) =
1

Nx+

Nx+∑

i=1

(
φ(x+i) − φ̂(x+)

)(
φ(x+i) − φ̂(x+)

)T
,

where φ̂(x+) = 1
Nx+

∑Nx+

i=1 φ(x+i). Introducing (4.29) and kernel function K(z1,z2) =

φ(z1)
Tφ(z2) back into (4.28), we have

min
γ

√
1

Nx+

γT K̃
T

x+
K̃x+

γ +

√
1

Nx−

γT K̃
T

x−
K̃x−γ

s.t. γT (k̃x+
− k̃x−) = 1,

(4.30)

where

γ = [α1 α2 · · · αNx+
β1 β2 · · · βNx−

]T ,

k̃x+
∈ R

Nx+
+Nx− , [k̃x+

]i =
1

Nx+

Nx+∑

j=1

K(x+j,zi),

k̃x− ∈ R
Nx+

+Nx− , [k̃x−]i =
1

Nx−

Nx−∑

j=1

K(x−j ,zi),

and zi = x+i for i = 1, 2, . . . , Nx+
,

zi = x−(i−Nx+
) for i = Nx+

+ 1, Nx+
+ 2, . . . , Nx+

+Nx− ,

and K̃ in (4.30) is defined as:

K̃ =




Kx+
− 1Nx+

k̃
T

x+

Kx− − 1Nx−
k̃

T

x−


 =


 K̃x+

K̃x−


 ,

where 1Nx+
is a column vector with ones of dimension Nx+

. Kx+
and Kx− contain

respectively the first Nx+
rows and the last Nx− rows of the Gram matrix K, which is

composed by Kij = φ(zi)
Tφ(zj) = K(zi,zj). Once the optimal values γ∗ is available,

Chapter 4 Other Related Methods 73

we can attain the optimal values of κ and b respectively

κ∗ =
1√

1
Nx+

γT∗ K̃
T

x+
K̃x+

γ∗ +

√
1

Nx−
γT∗ K̃

T

x−
K̃x−γ∗

,

b∗ = γT
∗ k̃x+

− κ∗

√
1

Nx+

γT∗ K̃
T

x+
K̃x+

γ∗

= γT
∗ k̃x− + κ∗

√
1

Nx−

γT∗ K̃
T

x−
K̃x−γ∗,

(4.31)

where κ∗ and b∗ are the optimum of κ and b.

4.4 Summary

This chapter has surveyed three different approaches to classification using information

about uncertain inputs. TSVC and SOCPF are derived from statistical methods, and

their resulting optimisation problems can be regarded as extensions of traditional SVC.

Besides, we kernelised TSVC and SOCPF by introducing new kernelisation method

derived in USVC. Though SOCPF does not generate a strictly feasible dual problem

since the dual variables related to uncertainties are ignored in dual transformation, it

can sometimes perform at the same level as USVC by attaining the optimum with its

strictly feasible primal problem. Generally, USVC is more likely to reach the optimum

for both the primal and dual problem than SOCPF in accordance with their different

dual optimisation problems.

Geometrically, with the probability confidence r = 1, USVC exploits the nearest points

in the distributions (ellipsoids) of uncertain inputs as the reference to obtain the op-

timal hyperplane. On the contrary, the farthest points in the distributions (ellipsoids)

are used to incorporate information of uncertainties into TSVC by equivalently setting

the probability confidence r = −1. Statistically, for those uncertain inputs which follow

multivariate Gaussian distributions, choosing the farthest points leads to lower probabil-

ities that the unknown original inputs are going to be correctly classified by the optimal

solution of TSVC. USVC is rather conservative by choosing the nearest points in el-

lipsoids to optimal classifier. Both USVC wants to guarantee higher probabilities that

the unknown original inputs will be correctly classified in case their corrupted counter-

parts are set to be discriminated right. These probabilities relate to the distributions of

uncertain inputs and the optimal classifier. Comparatively, SVC reaches a compromise

between TSVC and USVC. Experimental results have illustrated that neither TSVC

nor SVC has advantages over each other in all situations, and USVC generally performs

worse than TSVC and SVC. Indeed, the performance of these approaches depends on

their different strategies and the contamination.

Chapter 4 Other Related Methods 74

Unlike USVC or TSVC, MPM considers a different case of the uncertain inputs, in which

input data are not contaminated by noise individually but are considered together in

each class without prior knowledge of distribution. MPM can efficiently extend its

assumption from Gaussian distribution to other non-preferred prior distribution, which

can be applied to generate different probability confidence r in (3.7).

Chapter 5

Iterative Constraints in

Classification Subject to Input

Uncertainty

In classification subject to input uncertainty, the traditional SVC has been extended

to incorporate uncertain information. Based upon SVM, many approaches have been

created to accommodate the uncertainties. Among these approaches, USVC has been

developed with a new kernelisation formulation in Chapter 3. Some other recent SVM-

based algorithms were also presented in Chapter 4, such as TSVC and SOCPF. However,

these methods have limitations. USVC, along with SOCPF, is designed to evaluate the

future contaminated data by its optimal solution obtained from corrupted training data

sets. On the contrary, TSVC is designed to recover the true target function from the

same corrupted training data sets. We have illustrated in Section 4.1.4 that under some

circumstances, one representation is preferable to others and vice versa. Therefore, to

achieve a better performance, an algorithm may be improved by allowing it greater

control over the classification.

5.1 Adaptive Uncertainty Support Vector Classification

TSVC was introduced in the thesis not only because it is developed based on SVM,

but also because TSVC has similar optimisation formulations as USVC. In fact, as

previously shown in Figure 4.3, USVC chooses the nearest points to the optimal classifier

in covariance ellipsoids of uncertain inputs by setting the probability confidence to +1,

which leads to higher predicted probabilities that the unknown and uncontaminated

original data will be correctly classified by USVC if their contaminated counterparts

can be classified correctly. While through selecting the farthest points, the probability

75

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 76

confidence of TSVC is fixed to −1, which can only guarantee lower probabilities for the

original data to be discriminated correctly.

Theoretically, USVC more suits discriminating contaminated inputs of different classes

because its optimal solution is obtained by classifying contaminated inputs with their

own distributions as much as possible, or alternatively through retaining high predicted

probabilities for unknown original data as far as possible in train sessions. However,

USVC is difficult to recover the true target function as the original inputs are unable

to predict from the distributions of uncertain inputs. Under the assumption that noise

tends to make inputs of different classes overlap, TSVC can better recover the target

function. This result is illustrated in Section 4.1.4. Furthermore, setting high values to

the probabilities that original inputs are set to be correctly classified can cause problems

in USVC. Some contaminated areas of low input density of one class are dominated by

some larger uncertainties from the other class. USVC inevitably deviates from the target

function by these areas close to the original boundary. Since the larger uncertainties

may appear in different areas even the contaminated training and test sets follow the

same rule to generate, this deviation can seriously affect the performance of USVC in

NMCU. This difference is also reflected in Section 4.1.4. So the configuration of the

probability confidence needs to be reconsidered.

The similar structures make it possible to combine TSVC and USVC, finding proper

probability confidence for USVC by recalling (3.4) and (3.7). In other words, different

sizes and positions of uncertainties also affect the predicted probabilities that corre-

sponding original inputs are set to be correctly classified. The classification subject to

input uncertainty can benefit from lowering these probabilities and theoretically achieve

a better performance than USVC. Recalling problem (4.5), the primal problem can be

rewritten as

min
w,b,ξi

1

2
‖w‖2 + C

l∑

i=1

ξi

s.t. ri‖M1/2
i w‖ ≤ yi(w

T xi + b) − 1 + ξi,

ξi ≥ 0 i = 1, . . . , l,

(5.1)

where ri ∈ [0, 1] i = 1, . . . , l are the probability confidence for every single input. ri

are chosen individually for each uncertain input instead of selecting the probability con-

fidence r = 1 for all uncertainties in USVC. To distinguish ri from r, we name ri the

individual probability confidence. In fact, ri perform as factors to relax the constraints

separately without influencing other uncertainties. If considering the statistical inter-

pretation of the probability confidence, we should choose ri ∈ [−1, 1] based on TSVC

and USVC. But when ri ∈ [−1, 0), as we have proved before, (5.1) is no longer a convex

optimisation. Though it can be transformed to a SOCP problem through Tikhonov reg-

ularisation (Bi and Zhang, 2005), problem (5.1) will become more complicated. More

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 77

importantly, as an extension of USVC, this new method want to attain improved per-

formance in NMCU. If ri ∈ [−1, 0), the predicted probabilities of original data being

correctly classified are too low to theoretically guarantee that the original data will be

discriminated correctly.

Like USVC, the dual problem of (5.1) can also be extended to non-linear case through

the kernelisation formulation introduced in Chapter 3 (see Appendix A for more details).

max
αi,βi

l∑

i=1

αi −
1

2




l∑

i=1

l∑

j=1

αiαjyiyjK(xi,xj)

+

l∑

i=1

l∑

j=1

αiyi

[
∂K(xi,xj)

∂xj

]T

(M
1/2
j)T βj +

l∑

i=1

l∑

j=1

αjyjβi
TM

1/2
i

∂K(xi,xj)

∂xi

+
l∑

i=1

l∑

j=1

βi
TM

1/2
i

∂2K(xi,xj)

∂xi∂xj
(M

1/2
j)T βj




s.t. ‖βi‖ ≤ riαi i = 1, . . . , l,

l∑

i=1

αiyi = 0,

0 ≤ αi ≤ C i = 1, . . . , l,

(5.2)

Comparing problems (3.30) and (5.2), we see that individual probability confidence ri

are introduced in the first l constraints of the dual problem. In (5.2), ri actually reduces

the effects of dual variables βi upon computation of w, which also leads to some decrease

in the influence of the uncertainties Mi on determining the position and direction of w.

In general, individual probability confidence ri diminish the effects of uncertainties on

the optimal solution.

Since the exact value of ri for each uncertain input is unknown, an iterative algorithm

is proposed to vary individual probability confidence by following the rule that a small

scalar will not be deducted from the individual probability confidence unless the mean

of its corresponding uncertain input is misclassified by the obtained classifier. This new

algorithm is termed adaptive uncertainty support vector classification (AUSVC), which

is named after its iteratively varied individual probability confidence. Geometrically,

AUSVC is an iterative method of searching for optimal solution from the nearest points

to the central points in uncertainty ellipsoids.

In iterative algorithm, every change of individual probability confidence ri solely de-

pends on the classification result of its corresponding uncertain input in previous it-

eration. However, if some errors happen in one step, these errors can be amplified in

the following steps. This leads to an overfitting problem of training inputs and makes

generalisation more difficult to achieve, which is caused by an extra degree of freedom

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 78

introduced by tuning individual probability confidence ri at each training point. There-

fore, an extra rule is introduced to reduce the overfitting problem. Some inputs that are

correctly classified for certain will never change their corresponding individual proba-

bility confidence in iterations and fix them to 1, which can avoid amplifying the errors

generated by the overfitting in future iterations. The iterative algorithm of AUSVC is

shown below,

Algorithm 3 AUSVC

1. Initialise ri = 1, i = 1, . . . , l, solve (5.2), which indeed is USVC optimisation, for the
parameters αj, βj , and b;
2. Substitute the obtained parameters αj , βj , b and the training inputs (zi, yi) into

g(zi, yi) =yi




l∑

j=1

αjyjK(xj,xi) +

l∑

j=1

βT
j M

1/2
j

∂K(xj ,xi)

∂xj
+ b


 ,

where zi ∼ N (xi,Mi) (from Definition 3.1)

(5.3)

respectively to decide which inputs are correctly classified for certain by USVC, and
split the training set D into two sets, set of certainly correctly classified inputs Dc =
{(zi, yi)|sgn(g(zi, yi) − 2) ≥ 0, (zi, yi) ∈ D} and set of not certainly correctly classified
inputs Du = {(zi, yi)|sgn(g(zi, yi) − 2) < 0, (zi, yi) ∈ D}. The individual probability
confidence ri will never be modified again for inputs in Dc, otherwise, a predefined
positive scalar (normally 0.1) is deducted from ri for inputs in Du. Repeat the following
three steps (iteration 3 to 5) until rinew = ri, i = 1, . . . , l;
3. Fix ri, i = 1, . . . , l to the current value, solve (5.2) for the parameters αj , βj, and b;
4. Substitute the obtained parameters αj , βj , b and the training inputs (zi, yi) into
(5.3) respectively to determine whether the inputs are misclassified, sgn(g(zi, yi)) < 0
or correctly classified, sgn(g(zi, yi)) ≥ 0. If the inputs are misclassified and (zi, yi) ∈ Du,
the predefined positive scalar is deducted from its individual probability confidence ri,
otherwise, their ri remain unchanged. All changed and unchanged individual probability
confidence are saved in rinew;
5. If rinew = ri, the optimal results of αi, βi, and b are achieved, otherwise, assign rinew

to ri and return to step 3;

The uncertain inputs in Dc attain higher predicted probabilities of their original coun-

terparts being correctly classified. These probabilities are Pr

{
x ≤ xi + ri

Miw

‖M1/2

i w‖

}
, or

alternatively denoted by Pr

{
ri ≤ yi(wT xi+b)

‖M1/2

i w‖

}
because the results are definite when w

is determined.

The first two iterations in Algorithm 3 are preconditioning of its iterative last three

steps, step 3 to step 5. In fact, we use 2 as a threshold for g(zi, yi) to discriminate

uncertain inputs instead of selecting a proper p, such as p = 0.99, as a threshold for

the probabilities of the corresponding original inputs being correctly classified. This

is because some close-boundary uncertain inputs with small uncertainties have larger

predicted probabilities than the preset p, keep those uncertain inputs in Du can help

SVM-based AUSVC decide support vectors for its optimal solution.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 79

Since the objective function of (5.2) is the same as that of (3.30), the memory require-

ment of AUSVC is of order O
(
l2n2

)
. Like the iterative algorithm TSVC, the compu-

tational time of AUSVC is related to the number of iterations before the convergence

of ri, which depends on the training data set. Without loss of generality, La denotes

the number of iterations of AUSVC. In every single iteration, the computational cost

consists of the cost of constructing matrix R in objective function and the optimisation

complexity of solving (5.2), plus the cost of changing data-driven individual probability

confidence ri by computing (5.3). In each iteration, the complexities of constructing

R and optimisation in (5.2) are of the same order as those of USVC. Like the cost of

constructing auxiliary parameters in TSVC, the cost of changing ri is of order O
(
l2n2

)
.

Therefore, the computational complexity of AUSVC makes up of the cost of constructing

matrix R with order O
(
Lal

2n3
)
, the optimisation complexity bounded by O

(
Lal

3/2n3
)

and the cost of constructing individual probability confidence ri with order O
(
Lal

2n2
)
.

To test the performance of AUSVC, the experiment reproduced from Bi and Zhang

(2005) in Section 4.1.4 is used here with the same training and test sets created in

4.1.4. In the experiment, AUSVC is trained by stratified 10-fold cross-validation. For

convenience, only the results of AUSVC are listed in Table 5.1. The linear case and

the non-linear case with quadratic kernel are shown in Figure 5.1 and Figure 5.2. In

X
X

X
X

X
X

X
X

X
X

X

Measures
Measure

Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

NMCU 12.32 1.27 11.81 0.84 15.67 3.10 13.80 0.82

TME 6.26 2.81 4.56 2.37 8.24 4.56 4.94 2.25

Table 5.1: Average test error percentages of NMCU and TME of AUSVC in repro-
ducing Bi and Zhang’s experiment, means and standard errors of NMCU and TME are

listed in the table.

comparison of Table 4.1, 4.2 and Table 5.1, AUSVC generally performs better than

USVC. Except for the 50-input linear classification, AUSVC also has a better perfor-

mance than SVC. This is understandable as part of all individual probability confidence

ri vary from 1 to 0 in AUSVC according to the feedback of the classification situation of

each uncertain input. The change of ri can lower the predicted probabilities of original

inputs being correctly classified for those uncertain inputs whose uncertainty ellipsoids

may finally not be wholly correctly classified by the optimal solution. These adaptive

ri can give AUSVC advantages over USVC, which keeps higher probabilities of theo-

retically correctly classifying original inputs for their corresponding uncertain inputs by

fixing all individual probability confidence equally to 1. Decreasing individual proba-

bility confidence ri of those uncertain inputs which are not certainly correctly classified

allows AUSVC to reduce the optimal solution’s deviation from the target function that

is caused by some sparsity of uncertain inputs close to the original boundary. This

situation happens in the bottom left part of Figure 5.1(a) and the left part of Fig-

ure 5.2(a). Due to characters that only the means of uncertainties are introduced in

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 80

(a) Data set 9, CSVC = 3.16 × 102, CUSVC = 105,
CTSVC = 10 and CAUSVC = 10

(b) Data set 8, CSVC = 3.16 × 104, CUSVC = 10,
CTSVC = 10 and CAUSVC = 10

Figure 5.1: Selected results from the 9th 50-input and 8th 100-input training data
sets for linear classification in the reproduction of Bi and Zhang’s experiment (Bi and
Zhang, 2005). TSVC is represented by blue dashed line, USVC is represented by black
solid line, SVC is represented by green dotted line and magenta dash-dot line represents

AUSVC. The target function is illustrated by the thin red dash-dot line.

classification, the obtained classifier of SVC sometimes deviates from the target func-

tion in some close-boundary areas where larger uncertainties from one class dominate

smaller uncertainties from the other class, such as the bottom left part of Figure 5.1(b)

and the bottom part of Figure 5.2(b). Meanwhile, this situation can also cause higher

(a) Data set 7, CSVC = 3.16 × 103, CUSVC = 105,
CTSVC = 3.16 × 102 and CAUSVC = 103

(b) Data set 9, CSVC = 3.16 × 104, CUSVC = 104,
CTSVC = 3.16 × 104 and CAUSVC = 3.16 × 104

Figure 5.2: Selected results from the 7th 50-input and 9th 100-input training data sets
for classification with quadratic kernel in the reproduction of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC is represented
by black solid line, SVC is represented by green dotted line and magenta dash-dot line

represents AUSVC. The target function is illustrated by the thin red dash-dot line.

NMCU in SVC than in other approaches shown in Table 4.1, 4.2 and Table 5.1, because

the central points of ellipses can not entirely reflect the uncertain information, whereas

which is fully incorporated in different ways in USVC, TSVC and AUSVC.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 81

5.2 Minimax Probability Support Vector Classification

AUSVC has benefited from adaptive individual probability confidence ri in constraints

with a generally improved performance over USVC. However, the adaptive ri also intro-

duce additional degrees of freedom in optimisation, which may overfit training inputs by

adjusting several predicted probabilities of original inputs being correctly classified in

error even some individual probability confidence have been preconditioned in the iter-

ative algorithm of AUSVC. Some mistakenly lowered ri in previous iterations may lead

to further errors in adjusting ri afterwards, either mistakenly lowering ri that should re-

main unchanged or mistakenly keeping ri invariable that should be lowered. Therefore,

some additional constraints are needed to deal with ri.

5.2.1 Uncertain Inputs without Prior Distribution Information

In Section 4.3, MPM was introduced as a discriminative solution to control misclassifi-

cation probabilities in a worst-case setting by minimising the probabilities that inputs

fall on the wrong side of the boundary. Due to their similar statistical models, we then

can extend the knowledge from MPM (Lanckriet et al., 2002a,b) to SVM-based clas-

sification methods subject to input uncertainty, USVC, TSVC and AUSVC, which all

incorporate the probabilities that the original inputs are correctly classified with fixed

or varied individual probability confidence ri.

Recalling Definition 3.1 except that the distributions of uncertain inputs zi are unknown,

we can replace the hyperplane to be determined in MPM, wT z = b with the optimal

solution used in SVM-based approaches, yi(w
T zi + b) − 1 + ξi = 0. Consequently, each

uncertain input zi is separated by maximising this correct classification probability α

with respect to zi ∼ (xi,Mi), where xi and Mi are means and covariance matrices of

zi respectively. The optimisation problem can be expressed as:

max
α,w,b

α

s.t. inf
zi∼(xi,Mi)

Pr{yi(w
T zi + b) − 1 + ξi ≥ 0} ≥ α,

i = 1, . . . , l.

(5.4)

From Theorem 4.10, which was proposed with convex optimisation techniques by Bertsi-

mas and Sethuraman (2000), the probability of misclassified uncertain input is bounded

by:

sup
zi∼(xi,Mi)

Pr{yi(w
T zi + b) − 1 + ξi ≤ 0} =

1

1 + d2
,

with d2 = inf
yi(wT zi+b)−1+ξi≤0

(zi − xi)
T M−1

i (zi − xi),
(5.5)

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 82

which shows that the maximal probability of the uncertain input being misclassified

is determined by parameter d, which denotes the distance between the part of zi’s

distribution that is misclassified by the soft margins of optimal classifier and zi’s mean

xi. The minimal distance d admits a simple closed-form expression:

d2 = inf
yi(wT zi+b)−1+ξi≤0

(zi − xi)
TM−1

i (zi − xi)

=
max

(
(yi(w

T xi + b) − 1 + ξi), 0
)2

wTMiw
,

(5.6)

and the ith constraint of (5.4) can be transformed equivalently to

sup
zi∼(xi,Mi)

Pr{yi(w
T zi + b) − 1 + ξi ≤ 0} ≤ 1 − α. (5.7)

Combining (5.5) and (5.7), we have

1 − α ≥ 1

1 + d2
, or d2 ≥ α

1 − α
.

If yi(w
T xi + b) − 1 + ξi ≥ 0, we have

max
(
(yi(w

T xi + b) − 1 + ξi), 0
)

= yi(w
T xi + b) − 1 + ξi,

in (5.6), which indeed reduces to

yi(w
T xi + b) − 1 + ξi ≥ κ(α)

√
wTMiw, where κ(α) =

√
α

1 − α
. (5.8)

Comparing (5.8) and the first l constraints in (5.1), we see that these inequalities are

similar to each other except that the individual probability confidence ri ∈ [0, 1] is re-

placed by the cumulative distribution function Φ−1(α) and κ(α) respectively, when the

uncertain inputs follow the Gaussian distribution or no prior distribution information is

available. Both Φ−1(α) and κ(α) are monotonically increasing, and the comparison of

individual probability confidence between single-dimensional Gaussian distribution and

no prior distribution is shown in Figure 5.3. The decreasing ri can be explained as con-

trolling probability α which holds the lower bound of probability of an uncertain input

being correctly classified in theory. ri = 1 implies that α = Φ(ri) =
erf(1√

2
)+1

2 = 0.84 in

one-dimensional USVC, where erf = 2√
π

∫ x
0 e

−t2dt is error function. In one-dimensional

SVC, α = 0.5 is derived by ri = 0. In Figure 5.3, we see that Gaussian distribution

leads to a lower individual probability confidence ri than no prior assumed distribution

when probability α is set in advance. This comparison can also be generalised to multi-

dimensional circumstances, in which α = Φmv(xi + ri
Miw

‖M1/2

i w‖
) holds the lower bound of

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 83

0.2 0.4 0.6 0.8

−1

1

3

α

r
i

Gaussian distribution
no prior distribution

Figure 5.3: Comparison of individual probability confidence between Gaussian distri-
bution and no prior assumption of distribution in one-dimensional input space.

correct classification probability of a multi-dimensional uncertain input following mul-

tivariate Gaussian distribution, where Φmv is a multivariate normal cumulative distri-

bution function. Meanwhile, even the distributions that uncertain inputs follow are un-

known, they still can be considered in ellipsoids centred around their means with shapes

determined by their covariance matrices, we can use derivations from (3.2) to get the data

at which the predicted probabilities need to compute. Therefore, the lower bound of a

multi-dimensional uncertain input being correctly classified is α = κ−1
mv(ri

Miw

‖M1/2

i w‖
) when

the prior distribution of this input is not available, where κmv denotes a multivariate

version of κ function. When the individual probability confidence ri, the distributional

information xi, Mi and the weight vector w are the same, the only difference lies in the

value of the worst-case misclassification probability 1 − α associated with ri, α will be

higher under Gaussian assumption, so the hyperplane will have higher predicted proba-

bilities of classifying those unknown original data correctly. The comparison of correct

classification probabilities associated with ri between Gaussian assumption and no prior

assumption is shown in Figure 5.4, which is the reproduction of Figure 4.3(a) with the

case that the prior knowledge of distributions of those uncertain inputs is unknown.

Please note that the multivariate function κ−1
mv is not needed, thereby is not derived in

this thesis.

In Figure 5.4, one-dimensional function κ−1 is used to simulate κ−1
mv by following the

direction determined by Mi and w. Like the changes between multivariate and single

variate Gaussian cumulative distribution function, the results obtained from κ−1 are also

relaxed to fit κ−1
mv. We see that the predicted probability under Gaussian assumption is

larger than the predicted probability without prior knowledge, which is illustrated by

the fact that the three-dimensional shaded surface of κ−1
mv stays well beneath the surface

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 84

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.4: Comparison of predicted probability associated with individual probabil-
ity confidence under Gaussian distribution and no prior assumption of distribution in
two-dimensional input space. The weight vector of the optimal classifier is w = (1;−1).
Under Gaussian assumption, zi ∼ N ((0.5; 0.5) , (1.143,−0.286;−0.286, 0.571)) and
zi ∼ ((0.5; 0.5) , (1.143,−0.286;−0.286, 0.571)) when the assumption of distribution
is unavailable. The upper 3D shaded surface and the contour beneath surface represent
multivariate normal cumulative distribution function Φmv and multivariate function

κ−1

mv is illustrated by the lower 3D shaded surface.

of Φmv in Figure 5.4. The extra knowledge resulting from the Gaussian assumption

allows us to predict a higher probability of correct classification over unknown original

data.

5.2.2 Minimax Probability Support Vector Classification

MPM provides a feasible way to extend the existing and developed SVM-based classifica-

tion approaches subject to input uncertainty which are generated under the assumption

that uncertain inputs follow Gaussian distributions to accommodate the information of

uncertainties when no knowledge of their distributions is available. The drawback is that

larger individual probability confidence ri are required in the constraints of (5.1) when

the distributions of uncertain inputs are unknown. While the same predicted probabili-

ties of correctly classifying original data can be attained as those probabilities are applied

by smaller ri under Gaussian assumption. As what we have discussed before, large in-

dividual probability confidence can deteriorate the performance of classifiers. However,

adaptively decreasing individual probability confidence in AUSVC also has overfitting

problem that is resultantly brought by an extra degree of freedom introduced by the in-

terpolation of individual probability confidence at each training point. Therefore, some

additional constraints are needs to cope with these extra degrees of freedom.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 85

MPM not only derives a discriminative method to classify inputs without prior knowl-

edge of their distributions, but also can compare the performance of different algorithms

with a new measure, which adds up the possible maximal misclassification probabilities

of all uncertain inputs. Since this measure comes from MPM, it is named minimax

probability error (MPE) after MPM. This error comes from the upper bound of misclas-

sification probability (Bertsimas and Sethuraman, 2000):

sup
zi∼(xi,Mi)

Pr{yi(w
T zi + b) ≤ 0} =

1

1 + d2
,

with d2 = inf
yi(wT zi+b)≤0

(zi − xi)
T M−1

i (zi − xi).
(5.9)

Traditional penalties
∑
ξi which comes from margin errors rather than misclassification

are incorporated in the optimisation problems of previous SVM-based classification ap-

proaches. Depending on the regularisation parameter C, penalties
∑
ξi may be made

up of the margin errors from part of training inputs. While MPE comprises worst-case

misclassification probabilities of all uncertain inputs in a training set no matter whether

these inputs will be correctly classified or not by the optimal solution. MPM measures

the performance of different algorithms by including the contribution from all uncertain

inputs. Thus a new optimisation problem is formulated as below,

min
w,b

l∑

i=1

1

1 + d2
i

s.t. d2
i =

{
(wT xi+b)2

wT Miw
, yi(w

T xi + b) > 0,

0, yi(w
T xi + b) ≤ 0.

(5.10)

From problem (5.10), we see that though MPE reflects the misclassification probabil-

ities of uncertain inputs, it is indeed constructed by some geometric distances, which

are related to the distributions of uncertain inputs and the optimal hyperplane. These

distances are similar to the distance defined in traditional SVC except for the introduc-

tion of uncertain information and the removal of soft margins used. For this reason, we

name this optimisation problem the minimax probability support vector classification

(MPSVC).

The geometric interpretation is illustrated in Figure 5.5. In the figure, di = pi

qi
, where

pi = ‖wT xi + b‖ denotes the minimal distance from the mean of one uncertain input

to the misclassified part of its own distribution. qi = ‖M1/2
i w‖ is the distance between

the mean of one uncertain input and the nearest edge of its distribution to the optimal

solution. So di is proportional to both the uncertainty of the ith input and the optimal

hyperplane. When the whole uncertainty ellipsoid is correctly classified by the optimal

hyperplane, it is highly possible that di ≥ 1 for this uncertain input, such as z1 and

z3. When an uncertain input is partially correctly classified without its mean being

misclassified, such as z2, 0 ≤ d2 < 1. When an uncertainty is totally misclassified

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 86

2p
2x

1p

3p

2q

1q

3q

1x

3x

4x

1z

2z

3z
4z

121 == yy

143 −== yy

2M

1M

4M

3M

Figure 5.5: Geometric interpretation of the minimax probability error (MPE). In the

figure, di = pi

qi
, where pi = ‖wT xi + b‖ and qi = ‖M1/2

i w‖. The solid line denotes the
optimal classifier and the dashed lines represent the lines that are simultaneously in
parallel with the optimal classifier and tangential to the nearest edges of uncertainties.
For convenience, the distributions of uncertain inputs are set to Gaussian distribution

here. In real classification, uncertain inputs can follow many other distributions.

or partially misclassified but with its mean misclassified, such as z4, d4 = 0 and the

resulting maximal misclassification probability is 1.

According to (5.10), d2
i ∈

[
0, (wT xi+b)2

wT Miw

]
can be confirmed, even if the ith uncertain

input misclassified or not has yet been decided. The constraints of problem (5.10) can

be transformed to

yi(w
T xi + b) ≥ di‖M1/2

i w‖, (5.11)

which are similar to the constraints of (5.1) with soft margins removed from AUSVC.

Alternatively, we have ri ∈
[
0, yi(wT xi+b)−1+ξi

‖M1/2

i w‖

]
from (5.1). Therefore, di can also be

deemed as an individual probability confidence, which reflects the predicted probability

of corresponding original input being classified correctly at each training point. And

inequality (5.11) secures an upper bound for di to satisfy that the whole uncertainty

ellipsoid is correctly classified at this training point. Without loss of generality, (5.10)

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 87

can be transformed as follows by replacing di with ri.

max
w,b,ri

l∑

i=1

ri

s.t. yi(w
T xi + b) ≥ ri‖M1/2

i w‖,
‖w‖ ≤ C,

ri ≥ Di i = 1, . . . , l,

(5.12)

where C is a constant, ri ∈ R is the individual probability confidence of the ith uncer-

tainty. The lower bound of ri is held by Di ∈ R, which are set positive or negative in

advance. For those misclassified by the future optimal hyperplane, Di drive negative

to decrease their individual probability confidence, otherwise; ri will be bounded in a

higher positive range driven by Di. In general, Di theoretically extends the statistical

search area of the optimal solution from ri ≥ 0 in AUSVC to both ri ≥ 0 and ri < 0 in

problem (5.12) while this optimisation remains a convex and SOCP problem.

In fact, constraint ‖w‖ ≤ C can be replaced by ‖M1/2
i w‖ ≤ Li, where Li is a constant

as well. We can transform (5.12) as shown below by using Tikhonov regularisation and

appropriately chosen Li.

min
w,b,ri,qi

‖w‖2

2
+

la∑

i=1

Liqi

s.t. yi(w
T xi + b) ≥ Liri for all 1 ≤ i ≤ la,

yi(w
T xi + b) ≤ Liri for all la + 1 ≤ i ≤ l,

‖M1/2
i w‖ ≤ Li,

riqi ≥ 1 for all 1 ≤ i ≤ la,

0 ≤ ri ≤ riausvc for all 1 ≤ i ≤ la,

ri ≤ 0 for all la + 1 ≤ i ≤ l,

(5.13)

where riausvc denote the final individual probability confidence obtained in the optimi-

sation of AUSVC. We suppose that the individual probability confidence riausvc of first

la inputs can eventually remain positive when AUSVC reaches its optimum, while other

riausvc = 0. From the definition of individual probability confidence, it is obviously

that the predicted probabilities of correctly classifying original inputs are not limited

to be cumulated in the area of their uncertainty ellipsoids. The individual probability

confidence for those uncertain inputs whose uncertainty ellipsoids are wholly correctly

classified should be greater than 1. Therefore, the upper bounds of these ri are set to

a large positive if riausvc = 1 are finally achieved in AUSVC. Actually, MPSVC borrows

riausvc from AUSVC to set additional constraints for extra degrees of freedom introduced

by individual probability confidence.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 88

Problem (5.13) is designed to maximise both the margin between different classes’ un-

certain inputs and their individual probability confidence which comprise MPE measure

and are close related to the optimal classifier, uncertain inputs and the distance be-

tween them. Li are introduced by Tikhonov regularisation and they can be deemed

as regularisation parameters. Since the uncertain inputs close to the boundary make

more contributions to MPE measure with their relatively lower individual probability

confidence, we assign two values to Li. For those close-boundary uncertain inputs, their

Li are set fixed while other Li vary in the optimisation. And the exact values of the

varied Li can be chosen from a group of preset values through cross-validation method.

Introducing w =
∑l

i=1 αiyixi +
∑l

i=1(M
1/2
i)T βi that was derived in the dual problem

of USVC and the developed kernelisation formulation back into (5.13), kernel functions

can then be exploited to extend MPSVC to non-linear case. Problem (5.13) can be

rewritten as:

min
αi,βi,b,ri,qi

la∑

i=1

Liqi +
1

2




l∑

i=1

l∑

j=1

αiαjyiyjK(xi,xj)

+

l∑

i=1

l∑

j=1

αiyi

[
∂K(xi,xj)

∂xj

]T

(M
1/2
j)T βj

+

l∑

i=1

l∑

j=1

αjyjβi
TM

1/2
i

∂K(xi,xj)

∂xi

+
l∑

i=1

l∑

j=1

βi
TM

1/2
i

∂2K(xi,xj)

∂xi∂xj
(M

1/2
j)T βj




s.t. yi




l∑

j=1

αjyjK(xj,xi) +

l∑

j=1

βT
j M

1/2
j

∂K(xj ,xi)

∂xj
+ b


 ≥ Liri 1 ≤ i ≤ la,

yi




l∑

j=1

αjyjK(xj,xi) +
l∑

j=1

βT
j M

1/2
j

∂K(xj ,xi)

∂xj
+ b


 ≤ Liri la + 1 ≤ i ≤ l,

∥∥∥∥∥∥

l∑

j=1

αjyjM
1/2
i

∂K(xi,xj)

∂xi
+

l∑

j=1

M
1/2
i

∂2K(xi,xj)

∂xi∂xj
(M

1/2
j)T βj

∥∥∥∥∥∥
≤ Li,

riqi ≥ 1 for all 1 ≤ i ≤ la,

0 ≤ ri ≤ riausvc for all 1 ≤ i ≤ la,

ri ≤ 0 for all la + 1 ≤ i ≤ l,

‖βi‖ ≤ αi for all 1 ≤ i ≤ l,

0 ≤ αi ≤ Li for all 1 ≤ i ≤ l,

(5.14)

where 0 ≤ αi ≤ Li is introduced according to the derivation of dual problems of SVM-

based approaches, regularisation parameters Li provide upper bounds for dual variables

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 89

αi. Similarly, constraints ‖βi‖ ≤ αi that are generated in deriving dual problem of

USVC and AUSVC, are also introduced. In fact, these two bunches of constraints are

estimated by following some existing characters from SVM-based methods and SOCP

problem, we do not really explore the dual problem of MPSVC. For this reason, we do

not exploit ‖βi‖ ≤ riαi that has been used in AUSVC.

Algorithm 4 is the algorithm of MPSVC. Since MPSVC inherits the results of individual

probability confidence from AUSVC, AUSVC should be included in the algorithm of

MPSVC. Although the iterative algorithm of AUSVC has been illuminated in Section

5.1, for the reason of integrality, AUSVC is still shown as the first five steps in the

algorithm of MPSVC without some redundant definitions, checking Algorithm 3 for

more details.

Algorithm 4 MPSVC

1. Initialise ri = 1, i = 1, . . . , l, solve (5.2), which indeed is USVC optimisation, for the
parameters αj, βj , and b;
2. Substitute the obtained parameters αj , βj , b and the training inputs (zi, yi) into (5.3)
respectively to decide which inputs are correctly classified for certain by USVC, and split
the training set D into two sets, set of certainly correctly classified inputs Dc and set
of not certainly correctly classified inputs Du. The individual probability confidence ri
will never be modified again for inputs in Dc, otherwise, a predefined positive scalar
(normally 0.1) is deducted from ri for inputs in Du. Repeat the following three steps
(iteration 3 to 5) until rinew = ri, i = 1, . . . , l;
3. Fix ri, i = 1, . . . , l to the current value, solve (5.2) for the parameters αj , βj, and b;
4. Substitute the obtained parameters αj , βj , b and the training inputs (zi, yi) into
(5.3) respectively to determine whether the inputs are misclassified, sgn(g(zi, yi)) < 0
or correctly classified, sgn(g(zi, yi)) ≥ 0. If the inputs are misclassified and (zi, yi) ∈ Du,
the predefined positive scalar is deducted from its individual probability confidence ri,
otherwise, their ri remain unchanged. All changed and unchanged individual probability
confidence are saved in rinew;
5. If rinew = ri, the optimal results of αi, βi, and b are achieved, otherwise, assign rinew

to ri and return to step 3;
6. Preset the upper bounds of individual probability confidence ri according to the final
results of corresponding individual probability confidence riausvc obtained from AUSVC.
If riausvc 6= 1, then the upper bounds are set to riausvc, otherwise, the upper bounds are
set to a large positive (normally choosing infinity);
7. Substitute the parameters αj , βj and b obtained from optimised AUSVC to (5.3) to
assign the preset two values Lhi and Llo to regularisation parameters Li. If g(zi, yi)−1 ≤
0 and g(zi, yi) + 1 ≥ 0, then corresponding Li = Lhi, otherwise, Li = Llo;
8. Solve problem (5.14) for the parameters αj , βj, b, ri and qi.

Normally, the preset value Lhi is fixed to a normal positive, while Llo is chosen from a

geometric sequence constructed between a small positive and a large positive around Lhi

during the optimisation. After evaluating the selected measure, cross-validation method

can choose proper Llo for the optimisation of MPSVC.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 90

Like AUSVC, the memory requirement of problem (5.14) is of order O
(
l2n2

)
. The

cost of constructing optimisation problem, including the objective function and the con-

straints of (5.14), is of order O
(
l2n3

)
. The cost of computing g(zi, yi) for assigning Li

at step 7 is of order O
(
l2n2

)
. And the optimisation complexity is bounded with time

complexity O
(
l3/2n3

)
for SOCP problem solved by interior-point method. Although

Algorithm 4 includes both optimisation problems of AUSVC and MPSVC, the contri-

butions from (5.14) can be omitted from estimating the algorithmic complexity of the

algorithm of MPSVC, because in most cases, such as non-separable cases, AUSVC may

not be optimised in short iterations as a multi-iteration optimisation problem while

problem (5.14) is a single-iteration optimisation problem. Consequently, the computa-

tional cost of AUSVC and problem (5.14) may not be commensurable. Therefore, the

algorithmic complexity of MPSVC can be deemed as same as that of AUSVC.

The experiments previously exploited for different algorithms are rerun to test the per-

formance of MPSVC. In the experiments, Lhi = 1, and the proper Llo is chosen by

stratified 10-fold cross-validation from a geometric sequence from 0.01 to 100 with com-

mon ratio
√

10. For the convenience of comparisons, the results of NMCU and TMER

of MPSVC are shown in Table 5.2 and Table 5.3 along with the existing results of other

algorithms from Table 4.1, Table 4.2 and Table 5.1.

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

USVC 12.91 1.24 11.76 0.66 16.19 3.59 14.04 1.05

SVC 12.00 1.07 11.96 0.95 16.42 3.21 14.19 1.04

TSVC 11.62 0.75 11.58 0.61 14.27 1.16 13.33 0.21

AUSVC 12.32 1.27 11.81 0.84 15.67 3.10 13.80 0.82

MPSVC 12.24 1.14 11.59 0.72 16.01 3.25 13.73 0.80

Table 5.2: Average test error percentages of NMCU of USVC, TSVC, SVC, AUSVC
and MPSVC in reproducing Bi and Zhang’s experiment, means and standard errors of

NMCU are listed in the table.

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

USVC 7.94 2.18 4.67 2.30 9.21 5.03 5.92 2.55

SVC 5.79 2.60 4.73 2.57 9.22 4.66 5.42 2.38

TSVC 4.21 2.30 3.45 2.29 5.09 2.29 2.57 1.01

AUSVC 6.26 2.81 4.56 2.37 8.24 4.56 4.94 2.25

MPSVC 6.26 2.81 3.61 2.33 8.10 4.54 4.55 1.83

Table 5.3: Average test error percentages of TME of USVC, TSVC, SVC, AUSVC
and MPSVC in reproducing Bi and Zhang’s experiment, means and standard errors of

TME are listed in the table.

According to the tables, we see that MPSVC improves its performance of NMCU and

TME over AUSVC, hence MPSVC surely also performs generally better than USVC and

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 91

SVC except for linearly 50-input case. This reflects the advantages that MPSVC gains

over other algorithms by maximising the predicted probability of corresponding original

input being classified correctly at each training point. On the other hand, MPSVC still

can not always perform as well as TSVC though some of its performance are close to the

performance of TSVC. Some selected results of classification with linear and polynomial

kernels are shown in Figure 5.6 and Figure 5.7.

(a) Data set 1, CSVC = 3.16 × 104, CUSVC = 104,
CTSVC = 3.16 × 102, CAUSVC = 100 and Lhi = 1,
Llo = 1

(b) Data set 8, CSVC = 3.16 × 104, CUSVC = 10,
CTSVC = 10, CAUSVC = 10 and Lhi = 1, Llo = 0.01

Figure 5.6: Selected results from the 1st and 8th 100-input training data sets for linear
classification in the reproduction of Bi and Zhang’s experiment (Bi and Zhang, 2005).
TSVC is represented by blue dashed line, USVC is represented by black solid line, SVC
is represented by green dotted line, AUSVC is represented by magenta dash-dot line
and thick cyan dashed line represents MPSVC. The target function is illustrated by red

dash-dot line.

(a) Data set 3, CSVC = 103, CUSVC = 3.16 × 103

and CTSVC = 100, CAUSVC = 100 and Lhi = 1,
Llo = 0.32

(b) Data set 9, CSVC = 3.16 × 104, CUSVC = 104

and CTSVC = 3.16 × 104, CAUSVC = 3.16 × 104 and
Lhi = 1, Llo = 1

Figure 5.7: Selected results from the 3rd and 9th 100-input training data sets for
classification with quadratic kernel in the reproduction of Bi and Zhang’s experiment
(Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC is represented
by black solid line, SVC is represented by green dotted line, AUSVC is represented
by magenta dash-dot line and thick cyan dashed line represents MPSVC. The target

function is illustrated by red dash-dot line.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 92

MPSVC inherits the characters of lowering the predicted probabilities from AUSVC,

which also benefits from these characters to achieve better performance than USVC

and SVC. Besides, MPSVC can decrease some deviations from the target function in

AUSVC by maximising the predicted probabilities introduced from MPM. For instance,

MPSVC decreases AUSVC’s deviations from the target function generated in the area

where the uncertainties from one class dominate the uncertainties from the other class,

which is shown in the top part of Figure 5.6(a) and the bottom part of Figure 5.6(b).

And Figure 5.7(a) shows the case in which there exists some sparsity of training points

from both classes around the original boundary. MPSVC can better recover the target

function than USVC, SVC and AUSVC with its closer optimal solution to the original

boundary.

Though MPSVC has taken advantages over USVC, SVC and AUSVC, it is still shadowed

by TSVC which gives the best performance of all algorithms in the comparison over the

data sets generated by following the rules in Bi and Zhang (2005). However, as what we

have discussed before, it is arguable that TSVC will also outperform other algorithms in

different settings that are used to create data sets. Furthermore, MPSVC is expected to

provide generally better performance in different settings by minimising MPE for each

data set. Therefore, the experiment used in Section 4.1.4 is rerun here with data sets

comprising original inputs being contaminated to move along traces in parallel with the

original boundary. The results of means and standard errors of NMCU and TME over

five uncorrupted and corrupted test sets are reported in Table 5.4 and Table 5.5.

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

USVC 5.70 2.69 3.82 2.18 6.68 1.87 4.58 1.89

SVC 2.88 2.10 1.52 1.18 4.51 1.33 3.07 1.07

TSVC 3.14 2.44 2.40 1.94 4.80 1.70 3.40 1.47

AUSVC 3.05 1.77 2.40 2.11 5.10 2.05 4.02 1.30

MPSVC 3.01 1.85 1.86 1.22 4.33 1.23 3.09 1.22

Table 5.4: Average test error percentages of NMCU of USVC, TSVC, SVC, AUSVC
and MPSVC in recomposing Bi and Zhang’s experiment, means and standard errors of

NMCU are listed in the table.

Similar to the results listed in Table 4.3 and Table 4.4, SVC is still the best performer

of all algorithms in this test. MPSVC, which benefits from its predecessor AUSVC,

can achieve better performance over TSVC in comparison. Some selected classification

results with linear and quadratic kernels are illustrated in Figure 5.8 and Figure 5.9.

In the figures, we see that the solution of MPSVC is close to that of TSVC when the

optimal classifiers of TSVC and USVC are significantly different in the same training

set. The reason is that individual probability confidence of some inputs can be driven

to negative in MPSVC by composing the optimisation problem with MPE. And this is

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 93

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
Linear Target Function Quadratic Target Function
l = 50 l = 100 l = 50 l = 100

mean std mean std mean std mean std

USVC 5.65 2.68 3.78 2.16 6.63 1.88 4.29 1.86

SVC 2.86 2.06 1.52 1.18 4.50 1.37 2.99 1.21

TSVC 3.13 2.44 2.36 1.88 4.85 1.74 3.44 1.70

AUSVC 3.02 1.74 2.36 2.11 4.98 2.00 3.72 1.37

MPSVC 3.01 2.38 1.84 1.21 4.30 1.26 3.40 0.85

Table 5.5: Average test error percentages of TME of USVC, TSVC, SVC, AUSVC
and MPSVC in recomposing Bi and Zhang’s experiment, means and standard errors of

TME are listed in the table.

(a) Data set 5, CSVC = 100, CUSVC = 10, CTSVC =
103, CAUSVC = 100 and Lhi = 1, Llo = 0.01

(b) Data set 8, CSVC = 103, CUSVC = 3.162,
CTSVC = 10, CAUSVC = 10 and Lhi = 1, Llo = 1

Figure 5.8: Selected results from the 5th 50-input and 8th 100-input training data
sets for linear classification in the recomposition of Bi and Zhang’s experiment (Bi and
Zhang, 2005). TSVC is represented by blue dashed line, USVC is represented by black
solid line, SVC is represented by green dotted line, AUSVC is represented by magenta
dash-dot line and thick cyan dashed line represents MPSVC. The target function is

illustrated by red dash-dot line.

similar to TSVC, in which individual probability confidence are fixed to −1 to provide

lower predicted probabilities of original inputs being correctly classified. Selecting lower

predicted probabilities can help algorithms better recover the target function when the

contamination tends to move inputs across the boundary from one class to the other

class. However, the current setting of creating data sets in this experiment does not make

the means of the distributions of uncertain inputs cross the boundary, so that TSVC

can not take advantages by using lower predicted probabilities, or equivalently choosing

the farthest points in uncertainties. On the contrary, the predicted probabilities used in

MPSVC are indeed set to achieve moderate values like those fixed to 0 in SVC, neither

as aggressive as those in TSVC, nor as conservative as those in USVC.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 94

(a) Data set 7, CSVC = 3.16 × 102, CUSVC = 3.16 ×
102, CTSVC = 3.16 × 102, CAUSVC = 100 and Lhi =
1, Llo = 0.32

(b) Data set 9, CSVC = 3.16 × 104, CUSVC = 31.62,
CTSVC = 105, CAUSVC = 103 and Lhi = 1, Llo = 1

Figure 5.9: Selected results from the 7th 50-input and 9th 100-input training data
sets for classification with quadratic kernel in the recomposition of Bi and Zhang’s
experiment (Bi and Zhang, 2005). TSVC is represented by blue dashed line, USVC
is represented by black solid line, SVC is represented by green dotted line, AUSVC is
represented by magenta dash-dot line and thick cyan dashed line represents MPSVC.

The target function is illustrated by red dash-dot line.

5.3 Algorithmic Complexity Analysis

Previously, the algorithmic complexities of newly developed approaches have been de-

rived. However, model selection is required for choosing a proper regularisation parame-

ter from a regularisation parameter repository whose size s is not large for selecting sole

regularisation parameter in the experiments. The introduction of resampling method,

such as k-fold cross-validation, also magnifies the cost of training. Without loss of gen-

erality, the computational cost, which comprise the cost of constructing arguments, the

optimisation complexity and the cost of constructing auxiliary parameters, can be ap-

proximately magnified ks times. Besides, evaluating the measure for choosing proper

regularisation parameters is required by the cross-validation, and the cost of computing

the measure is introduced in the computational cost, and yet it is not commensurable to

the cost of constructing auxiliary parameters. The results are summarised in Table 5.6

with SeDuMi exploited as the optimiser in the experiments.

storage argument optimisation complexity of complexity of
complexity complexity complexity auxiliary parameters computing measure

SVC O
(
l2
)

O
(
ksl2n

)
O
(
ksl3/2

)
N/A O

(
sl2n

)

TSVC O
(
l2
)

O
(
ksLtl2n

)
O
(
ksLtl3/2

)
O
(
ksLtl2n2

)
O
(
sLtl2n

)

USVC O
(
l2n2

)
O
(
ksl2n3

)
O
(
ksl3/2n3

)
N/A O

(
sl2n2

)

AUSVC O
(
l2n2

)
O
(
ksLal2n3

)
O
(
ksLal3/2n3

)
O
(
ksLal2n2

)
O
(
sLal2n2

)

MPSVC O
(
l2n2

)
O
(
ksLal2n3

)
O
(
ksLal3/2n3

)
O
(
ksLal2n2

)
O
(
sLal2n2

)

Table 5.6: Comparison of the algorithmic complexities of SVC, TSVC, USVC, AUSVC
and MPSVC.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 95

Here, l is the number of inputs, n is the number of features, the numbers of iterations

of TSVC and AUSVC are denoted respectively by Lt and La, which solely depend on

the precision setting of optimiser used. In the experiments, we select 10-fold cross-

validation and small regularisation parameter repository. k = 10 and s are normally

commensurable to the features of inputs, and can not be omitted when estimating the

cost. Since single-iteration approaches do not involve any additional cost associated with

auxiliary parameters, the complexity of auxiliary parameters is displayed as “N/A” for

SVC and USVC in Table 5.6.

USVC, AUSVC and MPSVC require more memory than other approaches during op-

timisation because of the introduction of uncertainties Mi and dual variables βi. The

larger n becomes, the more memory these methods need. As iterative algorithms, the

computational cost of TSVC, AUSVC and MPSVC is firmly related to the number of

iterations used in the optimisation. The larger Lt and La are, the more time-consuming

these algorithms become. Benefiting from its simple structure and uncertainty-free op-

timisation problem, SVC needs the least time in constructing the optimisation problem

and its optimisation complexity is of the least order of all. While MPSVC costs the

most time. The argument construction complexity and the optimisation complexity

have similar effect on the computational cost and are related by
√
l in USVC, AUSVC

and MPSVC. On the other hand, the argument construction complexity dominates the

optimisation complexity by rate
√
ln in SVC and TSVC. In fact, the cost of computing

the measure for k-fold cross-validation can be omitted from estimating the computa-

tional cost. Practically, the computational complexities of SVC, USVC, AUSVC and

MPSVC are mainly decided by argument complexity and optimisation complexity. On

the contrary, the computational complexity of TSVC is mainly decided by auxiliary pa-

rameter complexity because uncertainties Mi are introduced to construct these auxiliary

parameters. Moreover, the number of features n significantly affect the time consumed

by SeDuMi. From the table, we see that the optimisation complexity of USVC may be

n3 times more than that of SVC.

5.4 Summary

In this chapter, two novel algorithm have been developed for classification subject to

input uncertainty. Acting as a natural extension of USVC, AUSVC follows the same

path of USVC to construct its optimisation formulation with the iterative constraints.

The individual probability confidence of one uncertain inputs may vary in each step

with respect to the classification of the same uncertain input from the last step. This

variation directly leads to the changes of the predicted probabilities that the unknown

original inputs are going to be correctly classified by the optimal solution. Kernelised

dual problem of AUSVC can be obtained through the same way used in USVC.

Chapter 5 Iterative Constraints in Classification Subject to Input Uncertainty 96

In classification subject to input uncertainty, MPM can not only extend the SVM-based

methods from the uncertain inputs’ Gaussian distribution assumption to more general

case, even the case that the prior knowledge of the distributions of uncertain inputs is

not available, but also introduce a new measure, MPE, to evaluate the performance of

different algorithms. Based on MPE, MPSVC is generated for classification subject to

input uncertainty through a more direct way, maximising the predicted probability of

corresponding original input being classified correctly at each training point. Some con-

straints of MPSVC are composed by borrowing existing results of AUSVC. And MPSVC

can also be extended to non-linear case by using the kernelisation formulation. The it-

erative algorithm of MPSVC introduces both the strategies from MPSVC and AUSVC

to allow the individual probability confidence of uncertain inputs to achieve values as

high as possible. As the result, MPSVC incorporates the contributions from both un-

certain inputs, being misclassified and being correctly classified, into the optimisation

and achieves a generally better performance.

In the experiments, two kinds of settings are applied to create contaminated training

and test sets, one setting follows Bi and Zhang (2005), the other introduces a lighter

contamination in data sets. In general, TSVC and SVC perform the best of all algorithms

respectively under two settings. AUSVC can reach improved performance than USVC.

The overall performance of MPSVC ranks the second of all under both settings. On the

other hand, MPSVC has the greatest algorithmic complexity of all algorithms. However,

if we simply focus on selecting an algorithm that generally has good performance in both

classifying the uncertain inputs and recovering the target function when how the data

sets are contaminated is unknown, MPSVC may be the right choice. In the next chapter,

these algorithms are going to be tested over more practical data sets.

Chapter 6

Data Analysis

In this chapter, the different algorithms proposed and developed in the thesis are com-

pared with each other. Two aspects of the results are focused in the data analysis,

• Classification. The measures of the number of misclassified centres of the uncer-

tainties (NMCU), the minimax probability error (MPE) and some other related

measures can be used to evaluate the performance of algorithms in classifying

the contaminated inputs. It compares the different methods simply through the

number of the contaminated inputs being correctly discriminated in the test no

matter how this obtained optimal classifier has been changed from the true target

function;

• Restoration. One of the most important goals in this thesis is to recover the

true target function when the training data sets are contaminated. The perfor-

mance of the algorithms in restoration is determined by the measure of the test

misclassification error (TME).

6.1 Statistical Comparison

In the last two chapters, several algorithms are compared by mainly focusing on their

classification figures, besides, we also compute some average classification measures of

the algorithms across the data sets. Although every measure of each classifier is commen-

surable to be averaged over all data sets, an overwhelming performance of the classifier

on one data set can compensate this classifier for its overall bad performance, or a total

failure on one data set may affect the fair results on others.

Statistical comparison is appropriate to measure differences between the classifiers from

different aspects. In statistical comparison, the null hypothesis is going to be rejected

when the decision p-value is less than a given statistical significance level α, which is

97

Chapter 6 Data Analysis 98

defined as probability of making a decision to reject the null hypothesis when the null

hypothesis is actually true. This is also known as a Type I error. In this chapter, the

null hypothesis is that all classifiers derived from different algorithms have no differences.

Generally, p-value can be obtained by computing the results of classifiers. No matter

what formula is used to get the p-value and what distribution the difference between

classifiers follows, p-value can be considered to represent the difference between classi-

fiers. For instance, we assume that the difference between classifiers follows a Gaussian

distribution, and we want the null hypothesis can be rejected with a certain confidence

(1−α) when this difference value exceed a certain value (one-sided risk, see Figure 6.1).

Where qα in Figure 6.1 is called the critical value. When the difference between classi-

−3 0 3qα

← α

← Gaussian distribution

Figure 6.1: The difference between classifiers follows a Gaussian distribution.

fiers is large enough, the resulting p-value will be in the shade zone shown in Figure 6.1,

thus the null hypothesis, that all classifiers derived from different algorithms have no

differences, can be rejected with a certain confidence (1−α). Traditionally, the selected

α is 0.05 or 0.1. If the performance of classifiers is similar, the p-value will be in the

white zone shown in Figure 6.1, and the null hypothesis can not be rejected. In applica-

tion, other distributions are widely introduced in analysing the performance of different

algorithms, such as studentised range distribution in the Nemenyi test, the Bonferroni-

Dunn test, the student’s t-test and the Tukey test, the chi-square distribution and the

F-distribution in the Friedman test, and the F-distribution in ANOVA. The distributions

used in different tests diversify their critical values when the statistical significance level

α remains unchanged. The lower qα becomes, the more the differences can be detected.

Thus the power of the statistical tests is much greater with smaller qα.

The usual way of multiple hypothesis testing is to control the family-wise error, which

is the probability of generating at least one Type I error in any of the comparisons be-

tween the algorithms. But the statistical significance of the differences between multiple

Chapter 6 Data Analysis 99

means can be directly analysed through specialised statistics procedures. Two well-

known methods, analysis of variance (ANOVA) and its non-parametric counterpart, the

Friedman test have been reviewed by Demšar (2006).

6.1.1 Analysis of Variance

Analysis of variance (ANOVA) proposed by Fisher (1970) is a common statistical method.

ANOVA tests the differences between the performance of more than two classifiers de-

rived from different algorithms over the same series of data sets.

The fundamental technique is a partitioning of the total variability into components

related to the effects used in the model, including variability between the classifiers and

the residual (error) variability. We have,

SSt = SSc + SSe, (6.1)

where SS is the abbreviation of sum of squares and represents the variance, SSt is the

total variance, SSc is the variance between the classifiers, and SSe represents the error

variance. According to the definition of ANOVA, we have

F =
SSc/dfc

SSe/dfe
,

where dft = dfc + dfe,

(6.2)

and df is the abbreviation of the number of degrees of freedom, which can be partitioned

and denoted in a similar way. Following the definitions of chi-square distribution and

F-distribution, we know that (6.2) is a F test statistic. If the p-value derived from this F

test statistic and F-distribution is smaller than a given significance level α, the between-

classifiers variability is significantly larger than the error variability. Therefore, the null

hypothesis can be rejected with a certain confidence (1 − α), and we can conclude that

there are some differences between the classifiers. If the differences exist, a post-hoc test,

such as Tukey test (Tukey, 1949) and Dunnett test (Dunnett, 1955) can be proceeded

to find out which classifiers actually differ.

However, ANOVA needs to fulfill some assumptions before it can be used to test the

differences. The common assumption of ANOVA is that the errors are independently,

identically and normally distributed. To satisfy this common assumption, the following

assumptions are needed. First, ANOVA assumes that the distributions of every measure

across the data sets are normal for each of the classifiers. Shapiro-Wilk test (Shapiro and

Wilk, 1965) can be used to confirm normality. Second, ANOVA needs the equality of

variances, called homoscedasticity, which means the variance of every measure should be

the same for each of the classifiers. Levene’s test (Levene, 1960), a statistic used to assess

the equality of variance in different samples, is typically used to confirm the homogeneity

Chapter 6 Data Analysis 100

of variances. In the thesis, the data sets will be contaminated by different settings of

noise, even the comparison is between classifiers across the data sets contaminated by

the same setting of noise, there is no guarantee for the two assumptions. Especially, the

homoscedasticity in data sets for each of the classifiers can not be taken for granted due

to the different characters of the learning algorithms. ANOVA therefore is not suitable

in this thesis for testing the differences between different algorithms.

6.1.2 Friedman Test

The Friedman test is a non-parametric statistical test developed by Friedman (1937).

Similar to ANOVA, it is used to detect differences between classifiers by ranking all

classifiers together in each data set and considering the values of ranks across the data

sets.

We assume that there are totally N data sets and k algorithms in the comparison, and

one of the measures is compared. The rank is recorded as a tableau {rij}N×k, if there

are tied values, assign to each tied value the average of the ranks that would have been

assigned without ties. rij denotes the rank for this measure of the jth of all k algorithms

in the ith data set. The Friedman test statistic is given by

χ2
F =

SSc

SSe
.

where

r̄.j =
1

N

N∑

i=1

rij ,

SSc = N
k∑

j=1

(r̄.j − r̄)2,

r̄ =
1

Nk

N∑

i=1

k∑

j=1

rij,

SSe =
1

N(k − 1)

N∑

i=1

k∑

j=1

(rij − r̄)2.

(6.3)

When N and k are large (i.e. N > 15 and k > 4), the Friedman test statistic can be

approximated by the chi-square distribution with k − 1 degrees of freedom. If N or k

is small, the approximation to chi-square becomes poor and the χ2
F in (6.3) should be

obtained from tables specially prepared for the Friedman test (Zar, 1998; Sheskin, 2000).

Since
∑k

j=1 r
2
ij can be approximated to 12 + 22 + . . .+ k2, we have

SSe =
1

N(k − 1)

(
N∑

i=1

k(k + 1)(2k + 1)

6
− NK(k + 1)2

4

)
=
k(k + 1)

12
.

Thus (6.3) can be simplified as follows,

χ2
F =

12N

k(k + 1)




k∑

j=1

r̄2.j −
k(k + 1)2

4


 . (6.4)

Chapter 6 Data Analysis 101

And we want to know the minimal size N of data sets, that guarantees the average ranks

of different classifiers across the data sets can be discriminated (or the null hypothesis

can be rejected) with a certain confidence 1−α obtained from χ2
F . The second minimum

of
∑k

j=1 r̄.j is required, because

min
r̄.j=

k+1

2

k∑

j=1

r̄2.j =
k(k + 1)2

4
.

Assume the only difference between all ranks is ǫ, the ranks can be represented by,

k + 1 − ǫ

2
,

k−2︷ ︸︸ ︷
k + 1

2
, . . . ,

k + 1

2
,
k + 1 + ǫ

2
,

so the second minimum of
∑k

j=1 r̄.j is obtained and we have,

k∑

j=1

r̄2.j −
k(k + 1)2

4
=
ǫ2

2
,

and

N =
k(k + 1)

6ǫ2
χ2

F . (6.5)

When ǫ becomes smaller or more classifiers need to be compared, more data sets are

required in the experiment.

Based on the Friedman test statistic χ2
F , a better statistic was proposed by Iman and

J.M.Davenport (1980),

FF =
(N − 1)χ2

F

N(k − 1) − χ2
F

, (6.6)

which is distributed according to the F distribution with k−1 and (k−1)(N−1) degrees

of freedom.

Since the advantage of no assumption of normality and homoscedasticity required in data

sets, the Friedman test is chosen as the method in statistical comparison for multiple

algorithms. If the null hypothesis is rejected, we can proceed with a post-hoc test.

6.1.3 Post-Hoc Analysis

Post-hoc analysis is used at the second stage of ANOVA or the Friedman test if the

null hypothesis is rejected. The question of interest at this stage of the Friedman test is

which classifiers significantly differ from others in respect to the ranks. Each time the

ranks of a group of classifiers are considered, a statistical test is effectively performed.

Four post-hoc tests are chosen in this thesis according to the reviews by Demšar (2006).

Chapter 6 Data Analysis 102

The Nemenyi test (Nemenyi, 1963) and the Bonferroni-Dunn test (Dunn, 1961) use same

formula to compute their test statistics z.

z = ‖r̄.i − r̄.j‖
/√

k(k + 1)

6N
,

CD = qα

√
k(k + 1)

6N
,

(6.7)

where CD is called the critical difference, and critical values qα are based on the stu-

dentised range statistic divided by
√

2. The performance of the ith and jth algorithms

is significantly different if the corresponding average ranks ‖r̄.i − r̄.j‖ ≥ CD (or test

statistic z ≥ qα). The difference between the Nemenyi test and the Bonferroni-Dunn

test is that the power of the Bonferroni-Dunn test is greater than than the Nemanyi test

by using smaller critical values derived from α
k−1 when the significance level is set to α

in both tests. Combining (6.5) and (6.7), we have

CD =
qα
χ2

F

ǫ. (6.8)

In the Nemenyi test and the Bonferroni-Dunn test, the critical difference is proportional

to the possibly-detected minimal rank difference in the Friedman test. Generally, qα <

χ2
F , so these two post-hoc tests can further find more difference between the performance

of algorithms than the Friedman test.

Besides, the pairwise comparisons or the comparisons between all algorithms and a

control algorithm are used as default ways for the Nemenyi test and the Bonferroni-Dunn

test (Demšar, 2006). Indeed, although the algorithms with the best or worst performance

sometimes can be used as the control algorithm, no algorithm is appointed the control

algorithm in this thesis. Thus the pairwise comparisons are mainly considered here. To

collect more information from these two tests in post-hoc analysis, some extra tricks are

introduced in the comparisons. In the Nemenyi test, every two algorithms are compared,

if r̄.i − r̄.j ≥ CD, then the ith algorithm is voted as a bad-performance algorithm and

the jth algorithm is voted as a good-performance algorithm, and if r̄.j − r̄.i ≥ CD,

we have the opposite voting result. After finishing all comparisons, one algorithm can

generally be recognised as an algorithm with the bad or good performance if the least

number of other algorithms that vote this algorithm as a bad-performance or good-

performance algorithm is satisfied. The least number can be set to more than half of all

other algorithms for example. In this thesis, this least number is set to k − 2.

In the Bonferroni-Dunn test, a definition of close-performance algorithms is introduced

besides the definitions of good-performance and bad-performance algorithms. In fact,

Close-performance algorithms are defined by being separated from those algorithms that

Chapter 6 Data Analysis 103

do not belong to good-performance algorithms in pairwise comparisons,

CD − ǫ ≤ r̄.i − r̄.k ≤ CD,

r̄.j − r̄.k ≤ CD − ǫ,
(6.9)

where ǫ is a small scalar. The ith algorithm has close performance to the algorithm

that performs significantly better than the kth algorithm, the jth algorithm does not

perform significantly better than the kth algorithm, and the ith algorithm is deemed as

a close-performance algorithm and the jth algorithm is deemed as a bad-performance

algorithm in the Bonferroni-Dunn test. The detailed procedure is shown as follows,

1. Finding the worst-performance algorithm with the largest average rank of all al-

gorithms, all others are compared with this worst-performance algorithm to deter-

mine the good-performance, bad-performance and close-performance algorithms

respectively;

2. Recomparing the good-performance algorithms with the algorithms whose perfor-

mance are no better than or almost better than the worst performance to further

discriminate the good-performance algorithms from bad-performance and close-

performance algorithms in these existing good-performance algorithms;

3. Updating the good-performance, bad-performance and close-performance algo-

rithms, return to step 2 until no more bad-performance and close-performance

algorithm is left or in total only one algorithm is left;

In statistics, the Holm test (Holm, 1979) and the Hommel test (Hommel, 1988) perform

more than one hypothesis test simultaneously. The Holm test uses step-down Bonferroni-

Dunn procedures instead of the single-step procedure to sequentially test the hypotheses

ordered by their significance. We assume the ordered p-values by p1,p2,. . . ,pk−1, and

p1 ≤ p2 ≤ . . . ≤ pk−1. The Holm test compare each pi with α
k−i , starting with the most

significant p1. If p1 is lower than α
k−1 , the corresponding hypothesis is rejected and p2

is allowed to compare with α
k−1 in the test. If the second hypothesis is rejected, the

test proceeds with the third hypothesis, and so on. As soon as a certain null hypothesis

can not be rejected, all the remaining hypotheses are retained. In the Hommel test,

the decisions for the individual hypotheses can be performed in the following way: find

j = max {i ∈ {1, . . . , nh} : pnh−i+k > kα/i ∀k = 1, . . . , i}. If no such j exists, reject

all hypotheses, otherwise reject all for which pi ≤ α/j. Here, nh is the number of the

hypotheses in the Hommel test, if the classifier that has the best or the worst performance

of all k classifiers is chosen as a control classifier and is compared with all other classifiers,

nh = k − 1. Some comparisons of post-hoc tests have been given by Demšar (2006).

The multi-step tests are more powerful than the single-step the Nemenyi test and the

Bonferroni-Dunn test. The Hommel test is slightly more powerful than the Holm test

by gaining more complexity of its calculation.

Chapter 6 Data Analysis 104

6.2 Experimental Setup

In the experiment, we use Gunnar Rätsch’s data sets (Rätsch, 2001b), which are gener-

ated based on the UCI, DELVE and STATLOG benchmark repositories, such as breast

cancer, heart, titanic, etc. All problems have been configured by Rätsch (2001b) to

adapt binary classification problems and 100 random realisations of training and test

set are generated for each problem. The experimental data sets can be downloaded from

Rätsch (2001a).

6.2.1 Contamination

To make the contamination totally random, we assume how the attributes of an orig-

inal input xio are affected by the contamination is unknown before a random scalar

value ι is drawn from a uniform distribution on the unit interval. Meanwhile, a series

[0, 1
n+1 ,

2
n+1 , . . . , 1] is obtained and bdj = [j−1

n+1 ,
j

n+1), j = 1, . . . , n + 1 is the jth of all

n+ 1 intervals. Here n denotes the dimensions of the input space. If ι ∈ bdj , j − 1 out

of n attributes of xio are contaminated by Gaussian noise.

We adopt the rule of generating Gaussian noise from Chapter 4. These Gaussian noise

have the same proportional sizes to that of the input space. In the thesis, the standard

sizes of axes of ellipses are randomly chosen from [0.01, 0.08] for small noise of two

dimensions in the unit space, and the counterpart axes for large noise of two dimensions

are chosen from [0.05, 0.2]. Then two factors related to the sizes of axes need to be

considered for noise of higher dimensions in a non-unit space, the space factor f s and

the dimension factor fd. The sizes of axes is affected by the space factor, which is

computed through the sizes of the related dimensions of the input space divided by that

of the unit space, and fs = [fs1, . . . , fsk, . . . , fsn]T , where fsk represents the space factor

for the kth dimension. To avoid overestimating the size of the input space from some

unwanted interference, the maximal limit of each dimension is estimated by counting

the mean of the top 1% data from the second maximum of this dimension. The minimal

limit is the mean of the bottom 1% data from the second minimum of this dimension.

The dimension factor fd is determined by f2d and fnd, where f2d are size factors that

reflect the proportional sizes of Gaussian noise in two-dimensional unit space and fnd

are magnification factors that applying the same proportional sizes of two-dimensional

Gaussian noise to a higher-dimensional input space. The computation of both f2d and

fnd are based on the upper and lower limits of axes of ellipses respectively.

f2dsl = n
√

1/(0.01 × 2)2,

f2dsu = n
√

1/(0.08 × 2)2,

f2dll = n
√

1/(0.05 × 2)2,

f2dlu = n
√

1/(0.2 × 2)2,

fndsl = n
√

1/(0.01 × 2)n−2,

fndsu = n
√

1/(0.08 × 2)n−2,

fndll = n
√

1/(0.05 × 2)n−2,

fndlu = n
√

1/(0.2 × 2)n−2,

Chapter 6 Data Analysis 105

where f2dsl, f2dsu, f2dll, f2dlu and fndsl, fndsu, fndll, fndlu represent the size factors

and the magnification factors for lower and upper limits of axes of small and large

noise respectively. Therefore, the size of kth axis of ellipsoids is randomly selected from

[0.01fskf2dslfndsl, 0.08fskf2dsufndsu] for small noise and [0.05fskf2dllfndll, 0.2fskf2dlufndlu]

for large noise in higher-dimensional input space.

When generating ellipses or ellipsoids, the chosen axes for specified contaminated at-

tributes are first randomly introduced to the diagonal elements of covariance matrix of

Gaussian noise. If not all attributes of xio are contaminated, other diagonal elements

are assigned small amount of zero order regularisation ǫ = 10−12 to avoid singularity

in matrix. Besides, several contaminated attributes may be covariant, so the rotation

matrix is introduced to the obtained covariance matrix to make the experiments more

comprehensive. In two-dimensional space, we have

Mi = RSiR
T

R =

[
cosψ − sinψ

sinψ cosψ

]
Si =

[
s11 0
0 s22

]
,

(6.10)

where R is two-dimensional rotation matrix and Si is diagonal matrix with assigned

diagonal elements. We can generate three-dimensional rotation matrices based on the

one of two dimensions, three-dimensional rotation matrices can be used to formulate

four-dimensional rotation matrices, and so on. Using above method, we surely can get

n-dimensional rotation matrices, but we prefer a rather simple way (see Algorithm 5)

by the property, the covariance matrix Mi must be a positive semi-definite symmetric

matrix. where r is a random number drawn from a uniform distribution on the unit

Algorithm 5 Generating Covariance Matrix
repeat

for i = 1 to n do
for j = i to n do

if sii > ǫ and sjj > ǫ then
sij = sji = rmin(sii, sjj)

end if
end for

end for
until Cholesky decomposition of the updated Si is valid.

interval. Since the rotation matrix may differ the values of diagonal elements in Mi from

those in Si. This updated Si is not the same as Mi in (6.10), it is only an alternative

for generating the covariance matrix. Contamination can be applied to the introduced

data sets according to three different settings.

Chapter 6 Data Analysis 106

6.2.2 Bi and Zhang’s Setting

The setting in the experiment of Bi and Zhang (2005) shows that the inputs being

contaminated are set to move towards the other class by trying to cross the original

boundary. Three experimental parameters, τ , ν and ζ, are introduced to strengthen the

contamination procedure under Bi and Zhang’s setting. We assume there are in total l

inputs in each training data set (for instance, l = 200 for breast cancer problem). All

the inputs are ordered in an ascending order of their distances to the target boundary.

The first (1− τ)l of all sorted inputs are selected to be contaminated by large Gaussian

noise, while others are contaminated by small Gaussian noise.

Parameter ν illustrates part of all inputs, that are severely affected by large or small

Gaussian noise. And the effects from severe or light contamination make the original

input either move far from or come close to the mean of its contaminated counterpart,

thus a factor named contamination factor fc is introduced. (1 − ν)l of all inputs have

relatively large fc obtained from the inverse of cumulative distribution function at some

probabilities. However, there is no unique inverse of cumulative distribution function

for multivariate Gaussian distribution, so the fc is not unique as well. But if the mov-

ing direction of this input is known, fc can be retrieved by recursively invoking the

multivariate cumulative distribution function. Without loss of difficulty in generating

adversarial data sets, we prefer a more simple way to obtain fc, which is derived from

the inverse of standard Gaussian cumulative distribution function at the corresponding

probability in a random number drawn from a uniform distribution on the unit interval.

In this experiment, small fc is obtained simply from half of a random number.

The previous discussion in Chapter 2 shows that the noise model dependent on the

function and the distribution is probably the most adversarial model for algorithms. In

classification problems, such contaminated data sets can be created by including both

two kinds of contamination, which depend on the target function and the distribution

from both of which inputs are originally generated in data sets. However, there is no

information about the target function and the distribution along with data sets. So the

information is required before it can be used to contaminate data sets.

When no prior knowledge of the distribution of inputs is available, it is possible to

assume that the wanted distribution is composed of distinct subclasses or clusters. Each

subclass is characterised by a set of parameters describing the mean and variation of the

spectral components. Gaussian mixture model (GMM) is a statistically mature method

for clustering and forming a probabilistic mixture model that is composed of a number of

component clusters. Here, we introduce a MATLAB toolbox named Cluster (Bouman,

1997) for modelling Gaussian mixtures. Cluster programme is an unsupervised algorithm

based on the expectation-maximisation (EM) algorithm and the minimum description

length (MDL) order estimation criteria. This programme can also estimate the number

of clusters directly from the inputs. Then the original input from one class is set to move

Chapter 6 Data Analysis 107

towards the mean of one of all clusters in the other class, the chosen cluster has the largest

posterior probability for the original input, weighted by the cluster probability. Here,

xm denotes the mean of the selected cluster.

The contamination depending on the target function is such a noise that the contami-

nated original input is set to move towards a selected input from the other class, making

the line between these two inputs geometrically vertical to the target hyperplane. When

the target function is available, we can directly search the proper input from the other

class. But the target function is not always known. In this experiment, we proceed a

standard SVC over original inputs to approximate the target function before contamina-

tion. It is difficult to compute the moving direction straightway from the target function

and its complicated expression f(α, b). Alternatively, a small multi-dimensional ball is

created by fixing the original input as its centre. Searching possible solutions for the

expression as follows,

max
xs∈surface of the ball

‖ds − dio‖

dio = yio




l∑

j=1

yjαjK(xio,xj) + b


 ,

ds = ys




l∑

j=1

yjαjK(xs,xj) + b


 ,

(6.11)

where xs are on the surface of the ball. We have the optimum xso. But the high dimen-

sionality of the input space will lead to a large number of xs, make the contamination

time-consuming. For instance, an n-dimensional original input will have kn xs when k

observation points are set in each dimension of the space. Sometimes, we just simply

use inputs from the chosen cluster of the other class to replace xs. In this case, (6.11)

is changed to

max
x∈the other class

‖d− dio‖
‖x − xio‖

. (6.12)

Both xm and xso contain the information acquired from the target function and the

distribution. We can then compute the moving direction, and derive the new position

of the corresponding original input being contaminated.

xi = xio ±
fcMi(xio − xm)√

(xio − xm)T fcMi(xio − xm)
, (6.13)

and

xi = xio ±
fcMi(xio − xso)√

(xio − xso)T fcMi(xio − xso)
. (6.14)

(6.13) and (6.14) are after the contamination depending on the distribution and the

target function respectively. Parameter ζ is introduced to determine using either con-

tamination or using both of them over data set. During the contamination procedure,

Chapter 6 Data Analysis 108

a generated random number greater than ζ leads to contaminating the corresponding

original input with the information from target function, and vice versa. Each equa-

tion has two results, one is the closest point to the mean of selected cluster or to the

target function, the other is the farthest point to them. The selection of two results

depends on the settings of contamination. For instance, when the contamination de-

pending on the target function is applied to the original input, its closest point is chosen

by computing (6.11) under Bi and Zhang’s setting. Some results of a banana data set

from Gunnar Rätsch’s repositories are shown as follows. To show the difference more

(a) Original Data Set

(b) Contaminated Data Set with τ = 0.8, ν = 0.6 and ζ = 1

Chapter 6 Data Analysis 109

(c) Contaminated Data Set with τ = 0.8, ν = 0.6 and ζ = 0

(d) Contaminated Data Set with τ = 0.8, ν = 0.6 and ζ = 0.5

Figure 6.2: The contamination results of banana data set under Bi and Zhang’s
setting. Thick solid lines are the estimated true target function obtained from standard

SVC, star and dotted lines represent the results of Gaussian mixtures.

distinctively between the contamination results, light colour is used to plot Gaussian

noise in Figure 6.2. Data set is contaminated with τ = 0.8 and ν = 0.6, which means

20% of all inputs are contaminated by large Gaussian noise and 40% of all inputs are

severely contaminated by their corresponding Gaussian noise. ζ = 1 means that all the

Chapter 6 Data Analysis 110

contamination depend on the distribution. While, ζ = 0 means that all the contamina-

tion depend on the target function. ζ = 0.5 means that the contamination depending

on the target function is chosen for almost half of all inputs, and the other half select

the other kind of contamination. ζ = 1 leads to a higher level of concentration of part

of the contaminated inputs which have crossed the target function, because they all

attempt to move close to the means of their corresponding limited number of clusters

of the other class. ζ = 0.5 can well disperse these inputs and make the formed data

set more adversarial by introducing the contamination upon the knowledge from both

the distribution and the target function. Without further notice, τ = 0.8, ν = 0.6 and

ζ = 0.5 are used as the default setup in contamination for all data sets thereafter.

6.2.3 The Reverse Setting

The reverse setting is named after its opposite design to Bi and Zhang’s setting. Inputs

being contaminated under the reverse setting are set to move far from the other class by

trying to be away from the original boundary. Unlike Bi and Zhang’s setting, the large

and small Gaussian noise are assigned to inputs not according to their distances to the

target boundary but based on random selection. Some results of banana data set under

the reverse setting are shown as follows,

(a) Original Data Set (b) Contaminated Data Set with τ = 0.8, ν = 0.6 and
ζ = 0.5

Figure 6.3: The contamination results of banana data set under the reverse setting.
Thick solid lines are the estimated true target function obtained from standard SVC,

star and dotted lines represent the results of Gaussian mixtures.

6.2.4 The General Setting

The general setting introduces a more normal kind of contamination, in which the moving

directions of inputs being contaminated are not related to any factor. The moving

directions are generated randomly. Consequently, these inputs can either move close to

Chapter 6 Data Analysis 111

or move far from the target function and clusters belonging to the other class. Like the

reverse setting, the large Gaussian noise have no priority to be assigned to the inputs

close to the target boundary. Due to its contamination procedure, the general setting

has the most trivial changes of all three settings by comparing the original data set and

the data set being contaminated. In general, the contamination under Bi and Zhang’s

(a) Original Data Set (b) Contaminated Data Set with τ = 0.8, ν = 0.6 and
ζ = 0.5

Figure 6.4: The contamination results of banana data set under the general setting.
Thick solid lines are the estimated true target function obtained from standard SVC,

star and dotted lines represent the results of Gaussian mixtures.

setting, the general setting and the reverse setting can be deemed as severe, moderate

and light contamination respectively.

6.3 Experimental Platform

The experimental platform is setup on a INTEL core 2 quad Q6600 computer with 8GB

ram memory. The operation system is windows xp 64-bit x86 professional version.

At this stage, SeDuMi is too time-consuming to handle experiments because of the

large size and the high dimensionality of data sets. MOSEK is then introduced in

the experiments since it is generally reckoned as the best of all optimisation softwares

in solving SOCP problems (Mittelmann, 2003). More recently, MOSEK still overall

outperforms other softwares including LOQO and SeDuMi in Mittelmann’s latest SOCP

benchmark (Mittelmann, 2008).

6.3.1 MOSEK

The MOSEK optimisation software is designed to solve large-scale and sparse math-

ematical optimisation problems. MOSEK has specialised solvers for linear problems,

conic quadratic optimisation problems, mixed integer problems, etc. MOSEK provides

Chapter 6 Data Analysis 112

optimisation toolboxes for MATLAB in both 32-bit and 64-bit windows system, which

combine the convenience of MATLAB with the speed of C code. The main computa-

tional engine in the MOSEK optimisation toolbox is a primal-dual type interior-point

algorithm. The conic optimisation problem can accommodate a SOCP problem when

its cone constraint specifies that the vector formed by a set of decision variables is con-

strained to lie within a second order cone. The following cones (MOSEK, 2008) in

constraints of conic optimisation problems are used in the experiments,

Qcone :



x ∈ R

n : x1 ≥

√√√√
n∑

j=2

x2
j



 ,

Rcone :



x ∈ R

n : 2x1x2 ≥
n∑

j=3

x2
j



 ,

where x = [x1, x2, . . . , xn]T and Qcone, Rcone denote the quadratic cones and the

rotated quadratic cones respectively.

The only available optimiser for conic optimisation problems is an interior-point opti-

miser, which is an implementation of the self-dual and homogeneous algorithm. Three

parameters control when conic interior-point optimiser terminates and the accuracy of

the solution obtained by the interior-point optimiser, including primal feasibility toler-

ance for the primal solution, dual feasibility tolerance for the dual solution and relative

primal-dual gap tolerance. The values of these parameters are changed from their default

values 10−8 to 10−6 in experiments. Besides, the interior-point optimiser in MOSEK

have been parallelised. We can take advantages of multiple CPUs because of the interior-

point optimiser used for conic optimisation problems. The number of CPUs can be set

to 2 for INTEL dual core CPU and 4 for INTEL quad core CPU. In a test run for

INTEL quad core CPU, four-threaded performance is at least three times faster than

single-threaded performance.

6.3.2 MATLAB External Interface

Besides the time spent within MOSEK solvers, still a lot of time is consumed in optimi-

sation procedure, especially in the loops of forming large matrices for MOSEK solvers

and iterations of computing multiplication of matrices and vectors for the measures

wanted. To make the code more efficient, part of the MATLAB programs, including

construction of large matrices and multiplication of matrices and vectors, are replaced

by C subroutines called from the MATLAB command line as if they were built-in func-

tions. These C programs are called binary MATLAB executable files (MEX-files), which

are dynamically linked subroutines that the MATLAB interpreter loads and executes

(MATLAB, 2007).

Chapter 6 Data Analysis 113

The compiler used on 32-bit Windows platform is the GNU compiler collection (gcc)

from minimalistic GNU for Windows (MinGW) (MinGW, 2008), which provides a com-

plete open source programming tool set. On 64-bit Windows platform, standard C99

compatible C compiler is used for building MEX-files from Pelles C (Orinius, 2008),

which is a freely complete development kit for Windows and Pocket PC.

6.3.3 Parameters Setup

In previous chapters, the parameters of different algorithms are fixed during the classi-

fication, including the selected kernel and its parameters. These preset parameters can

help us compare statistic and geometric difference explicitly between these chosen algo-

rithms. In the experiments, we use the same kernel function as the one used by Rätsch

(2001b), a Gaussian RBF kernel K(xi,xj) = exp
(
−‖xi−xj‖2

2σ2

)
which is generally a rea-

sonable first choice because of its following characters. Firstly, the Gaussian RBF kernel

can handle the case when the relation between class labels and attributes is non-linear

since it non-linearly maps inputs into a higher dimensional space. Furthermore, the

linear kernel is a special case of Gaussian RBF kernel as Keerthi and Lin (2003) shows

that the linear kernel with a regularisation parameter has the same performance as the

Gaussian RBF kernel with parameters C and σ. Secondly, the Gaussian RBF kernel has

less hyperparameters that influence the complexity of model selection than other non-

linear kernel functions. Finally, the Gaussian RBF kernel has less numerical difficulties.

Its value is limited between 0 and 1 in contrast to polynomial kernel whose value may

go to infinity or zero while the degree is large. The parameter σ of the Gaussian RBF

kernel is inherited from the results shown by Rätsch (2001a).

However, different algorithms can hardly reach their best performance with the same

preset regularisation parameters. Cross-validation can be used to find well-suit param-

eters for each algorithm. Cross-validation, sometimes called rotation estimation, is a

technique for assessing how the results of a statistical analysis will generalise to an

independent data set. With the advantages of mutually exclusive subsets and less com-

putational cost, k-fold cross-validation, out of other validation methods such as repeated

random sub-sampling validation and leave-one-out cross-validation, is selected to assess

serial regularisation parameters in the experiments. The number of split subsets k de-

termines the bias and the variance of an estimated parameter of an algorithm. The

higher the number of folds k, the lower the bias. Whereas increasing k too much may

increase the variance (Kohavi, 1995, 1996). Meanwhile, 10-fold cross-validation is com-

monly used. Therefore, k = 10 is selected in the experiments for the tradeoff between

the bias and the variance. Stratification can slightly reduce the variance as well. So

stratified 10-fold cross-validation is subsequently used in the experiments, this means

that each fold contains roughly the same proportions of the two types of class labels.

Chapter 6 Data Analysis 114

6.4 Experimental Results

Besides NMCU and MPE, a new measure, the number of misclassified edges of the

uncertainties (NMEU), is introduced to evaluate the performance of classifying the cor-

rupted inputs for different algorithms. As its name suggests that NMEU calculates

the number of input uncertainties whose nearest edges to the optimal hyperplane have

been misclassified by the classifier obtained. NMEU can better reflect how many un-

known original inputs are likely to be correctly classified by the optimal solution than

NMCU. Like NMCU, NMEU is collected by evaluating the learner’s optimal solution,

which is obtained from a contaminated training set, in a test set corrupted by the same

contamination used in that training set. NMCU, NMEU and MPE are also called the

classification measures and TME is called the restoration measure.

Additionally, to show how the classification results can be affected by the contamina-

tion, another traditional SVC is introduced and directly trained with contaminated data

sets and the optimal regularisation parameter given by Rätsch (2001a) instead of using

cross-validation to search the regularisation parameter. For convenience, this approach is

denoted by SVCRaetsch in the following comparisons. Indeed, SVCRaetsch can also be

applied to the uncontaminated original data set to approximate the true target function.

Moreover, a measure is defined here to illustrate the level of classification contamination

for each training set, this measure is termed as the classification contamination level

(CCL) which calculates the difference of the number of original inputs and corrupted

inputs misclassified by the true target function respectively before and after contami-

nation. For instance, if 6% original inputs are misclassified by the true target function,

and after a contamination affecting this training set, 11% observed inputs are misclas-

sified by this true target function, then CCL is 5% for this contaminated training set.

Generally, the average classification contamination level (ACCL) is used instead of CCL

to illustrate the level of classification contamination for each contamination setting by

averaging CCL of all available contaminated training sets under this setting.

All the experimental data sets used in this chapter are introduced from Gunnar Rätsch’s

repositories (Rätsch, 2001a). There are in total 100 training sets and 100 test sets in

each proposed example. To give consideration to both computational expense and the

minimal request of the number of data sets for the Friedman test, Bi and Zhang’s

setting, the general setting and the reverse setting are applied to the first 40 data sets,

the middle 30 data sets (from the 41st to the 70th data set) and the last 30 data sets

respectively throughout the experiments. Besides, the significance for the Friedman

test and especially for the post-hoc tests is chosen as 0.1 in all subsequent experiments

since the critical values of significance 0.05 are too large to discriminate some slight

difference between experimental approaches quite often. (Some examples of the outputs

of statistical tests are shown in Appendix C.)

Chapter 6 Data Analysis 115

6.4.1 Banana Data Sets

Banana data sets are introduced as a two-dimensional example comprising toy data sets

for classification subject to input uncertainty. Each training set contains 400 observed

data {zi, yi}, where zi ∈ R2 and y ∈ R, and each test set has 4900 data in it. The

training kernel is chosen as Gaussian RBF with σ = 1 and the optimal regularisation

parameter is C = 316.23 according to Rätsch (2001a). Trained with uncertain inputs

that are obtained by contamination under Bi and Zhang’s setting, different algorithms

can be evaluated by the average ranks of their different measures, which are shown is the

table below. With in total six algorithms and 40 data sets, FF is distributed according to

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 4.737 3.750 3.375 5.025

SVC 3.237 2.900 3.000 3.225

TSVC 2.950 2.663 2.750 1.925

AUSVC 3.750 3.275 2.825 4.125

MPSVC 3.400 3.487 3.875 3.188

SVCRaetsch 2.925 4.925 5.175 3.513

Table 6.1: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the first 40 banana data sets (from the 1st data set to the 40th data set) contam-
inated under Bi and Zhang’s setting, whose ACCL is 6.03% (The average percentage
of misclassified inputs in all inputs is 7.42% before contamination and 13.45% after

contamination).

the F distribution with 6− 1 = 5 and (6− 1)× (40− 1) degrees of freedom. The critical

value of F (5, 195) for significance α = 0.1 is 1.88, so the null hypothesis that these

algorithms have similar performance is rejected for all measures according to equation

(6.6) and the average ranks of these measures.

The post-hoc analysis is then proceeded and all four post-hoc tests are considered in

coming to draw a conclusion. In the comparison of NMCU, USVC performs signifi-

cantly worse than all other algorithms. While in the comparison of NMEU, SVCRaetsch

performs significantly worse than all other algorithms and TSVC performs significantly

better than USVC. In the comparison of MPE, SVCRaetsch performs significantly worse

than all other algorithms, TSVC and AUSVC perform significantly better than MPSVC.

In the comparison of TME, USVC performs significantly worse than TSVC, MPSVC,

SVC and SVCRaetsch, where TSVC is significantly better than all other algorithms.

Therefore, TSVC undoubtedly has the best performance of classification and restora-

tion of all algorithms under Bi and Zhang’s setting. USVC and SVCRaetsch are likely

the worst-performance algorithms under this setting. Improved from USVC, AUSVC

and MPSVC can achieve lower NMCU and NMEU than USVC, but the MPE of MPSVC

is higher than those of USVC and AUSVC due to its optimisation problem which has

smaller individual probability confidence than USVC and AUSVC at optimum. The op-

timisation problem of MPSVC simultaneously leads to generally lower TME than those

Chapter 6 Data Analysis 116

of all other algorithms except TSVC. This means MPSVC can better recover the true

target function than many other approaches when the training and test banana sets are

contaminated by noise under Bi and Zhang’s setting. The results of the 3rd and 38th

contaminated banana training sets are shown in Figure 6.5.

(a) Data set 3, CSVCRaetsch = 316.23, CSVC = 316.23, CUSVC = 3.16 × 103,
CTSVC = 31.62, CAUSVC = 10, Lhi = 1, Llo = 100

(b) Data set 38, CSVCRaetsch = 316.23, CSVC = 100, CUSVC = 3.16×103, CTSVC =
10, CAUSVC = 316.23, Lhi = 1, Llo = 31.62

Figure 6.5: Selected results from the 3rd and 38th banana training sets contaminated
by Bi and Zhang’s setting. USVC is represented by black solid line, SVC is represented
by green dotted line, TSVC is represented by blue dashed line, AUSVC is represented
by thick magenta dash-dot line, MPSVC is depicted by thick cyan dashed line and the
true target function is approximated by SVCRaetsch trained with the original noiseless

data and illustrated as red dash-dot line.

Chapter 6 Data Analysis 117

From the point of view for recovering the true target function, it can be seen that USVC

is severely overfitted in the figure. While SVC is also likely to be overfitted in some

sparsity of training inputs, such as the top left part of Figure 6.5(a) and 6.5(b), though

it has a generally better performance with banana sets under Bi and Zhang’s setting.

AUSVC can generally reduce the possibility of overfitting happening in USVC by using

its adaptive constraints, but AUSVC can still have overfitting problems in some cases,

such as Figure 6.5(b). MPSVC has a close performance to TSVC, and can better recover

the true target function than USVC and AUSVC from the contaminated data by driving

some individual probability confidence to negative through its problem optimised with

MPE.

As what has been discussed before, it is arguable that TSVC will also outperform other

algorithms in different settings of contamination. The following table compares the aver-

age ranks of different measures of these algorithms trained with uncertain inputs that are

obtained from original inputs contaminated by the general setting. Calculating equation

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 3.800 1.867 1.833 3.467

SVC 2.117 2.600 2.350 2.433

TSVC 4.167 3.633 3.500 4.100

AUSVC 3.417 2.950 3.067 3.833

MPSVC 3.067 4.317 4.800 2.817

SVCRaetsch 4.433 5.633 5.450 4.350

Table 6.2: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the middle 30 banana data sets (from the 41st data set to the 70th data set)
contaminated under the general setting, whose ACCL is 2.22% (The average percentage
of misclassified inputs in all inputs is 7.73% before contamination and 9.95% after

contamination).

(6.6) for all four measures, we see that all FF are larger than 1.89, which is the critical

value of F (5, 145) for significance α = 0.1. Therefore, the null hypothesis is rejected.

After considering all four post-hoc tests, the following conclusion can be drawn that SVC

performs significantly better than all other algorithms, while MPSVC performs signif-

icantly better than SVCRaetach and TSVC in the comparison of NMCU. In the com-

parison of NMEU, SVCRaetsch performs significantly worse than all other algorithms,

MPSVC performs significantly worse than USVC, SVC and AUSVC, TSVC performs

significantly worse than USVC and SVC, USVC is significantly better than AUSVC. In

the comparison of MPE, USVC, SVC, AUSVC and TSVC are significantly better than

SVCRaetsch and MPSVC, USVC and SVC are significantly better than TSVC, USVC

performs significantly better than AUSVC. In the comparison of TME, SVC performs

significantly better than all other algorithms except MPSVC, while MPSVC is signifi-

cantly better than SVCRaetsch and TSVC. Therefore, SVC is the one that has the best

performance of classification of all algorithms under the general setting though two of

all three classification measures of SVC rank lower than those of USVC, this is because

Chapter 6 Data Analysis 118

none of the classification measures of SVC are significantly worse than those of USVC,

but NMCU of USVC is significantly worse than that of SVC. USVC can be deemed to

have the second best performance of classification of all approaches. On the other hand,

SVC has the best performance of restoration, MPSVC ranks the second and has close

performance to SVC. The results of the 41st and 50th banana training sets contaminated

by the general setting are shown in Figure 6.6. The reason that SVC can better recover

the true target function is the contamination under the general setting, which, unlike

Bi and Zhang’s setting, does not force the original inputs move towards the other class.

Therefore, the mean values of the observed uncertain inputs are unlikely to move across

the original classifier, but generally stay close to their corresponding original inputs.

SVC can then achieve the best performance of classification and restoration with its op-

timisation problem including only the mean values but no other distribution information

of the uncertain inputs.

Another available setting of contamination is the reverse setting, under which the orig-

inal inputs corrupted by noise move towards their own class in accordance with the

distribution of original inputs and the true target function. These algorithms can be

compared with each other by the average ranks of all four measures illustrated in the

table listed below,

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 3.538 1.692 1.769 3.115

SVC 2.692 3.462 3.615 3.423

TSVC 2.577 3.423 3.423 3.423

AUSVC 3.308 3.000 2.538 3.192

MPSVC 3.846 3.692 3.923 2.769

SVCRaetsch 5.038 5.731 5.731 5.077

Table 6.3: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the last 30 banana data sets (from the 71st data set to the 100th data set) con-
taminated under the reverse setting, whose ACCL is −0.59% (The average percentage
of misclassified inputs in all inputs is 7.73% before contamination and 7.14% after

contamination).

In the comparison of NMCU, SVCRaetsch is significantly worse than all other ap-

proaches, TSVC and SVC are significantly better than MPSVC. In the comparison of

NMEU, SVCRaetsch performs significantly worse than all other algorithms and USVC

is significantly better than all other algorithms. In the comparison of MPE, SVCRaetsch

is significantly worse than all other algorithms, USVC and AUSVC perform significantly

better than all other approaches. In the comparison of TME, the only conclusion made

is SVCRaetsch performs significantly worse than all other algorithms. According to the

average ranks, TSVC has a close performance to SVC because the contaminated inputs

are likely to be separable under the reverse setting, TSVC can reach its optimum at very

first iterations and its optimal solution is then close to that of SVC. USVC has the best

Chapter 6 Data Analysis 119

(a) Data set 41, CSVCRaetsch = 316.23, CSVC = 3.16, CUSVC = 10, CTSVC = 1,
CAUSVC = 10, Lhi = 1, Llo = 31.62

(b) Data set 50, CSVCRaetsch = 316.23, CSVC = 3.16, CUSVC = 31.62, CTSVC = 1,
CAUSVC = 1, Lhi = 1, Llo = 0.32

Figure 6.6: Selected results from the 41st and 50th banana training sets contaminated
by the general setting. USVC is represented by black solid line, SVC is represented by
green dotted line, TSVC is represented by blue dashed line, AUSVC is represented by
thick magenta dash-dot line, MPSVC is depicted by thick cyan dashed line and the
true target function is approximated by SVCRaetsch trained with the original noiseless

data and illustrated as red dash-dot line.

performance of classification by significantly outperforming all other algorithms in the

comparison of NMEU and MPE, AUSVC ranks the second in the classification with only

the average rank of NMEU significantly lower than that of USVC. Though not a single

algorithm performs significantly better than all other algorithms except SVCRaetsch in

recovering the true target function, MPSVC, with USVC and AUSVC is generally better

Chapter 6 Data Analysis 120

than SVC and TSVC with higher average ranks of TME. The results of the 76th and

77th banana training sets contaminated by the reverse setting are shown in Figure 6.7.

(a) Data set 76, CSVCRaetsch = 316.23, CSVC = 10, CUSVC = 31.62, CTSVC = 1,
CAUSVC = 10, Lhi = 1, Llo = 3.16

(b) Data set 77, CSVCRaetsch = 316.23, CSVC = 31.62, CUSVC = 10, CTSVC =
31.62, CAUSVC = 31.62, Lhi = 1, Llo = 1

Figure 6.7: Selected results from the 76th and 77th banana training sets contaminated
by the reverse setting. USVC is represented by black solid line, SVC is represented by
green dotted line, TSVC is represented by blue dashed line, AUSVC is represented by
thick magenta dash-dot line, MPSVC is depicted by thick cyan dashed line and the
true target function is approximated by SVCRaetsch trained with the original noiseless

data and illustrated as red dash-dot line.

In General, these approaches perform at different levels over contaminated banana data

sets obtained from different settings. USVC performs very well under the general and

Chapter 6 Data Analysis 121

reverse settings, but it is likely to be overfitted under Bi and Zhang’s setting. Inheriting

the same optimisation structure from USVC, AUSVC generally improves the perfor-

mance of classifying the contaminated inputs under Bi and Zhang’s setting because its

adaptive constraint can effectively lower the probability of an unknown original input

being correctly classified when the corresponding observed input is misclassified. How-

ever, the adaptive constraints can also negatively affect the classification performance of

AUSVC, especially when the general and reverse settings are applied. Under the general

and reverse settings, if the mean value of any uncertain input is erroneously discrim-

inated as a misclassified input in one of AUSVC’s iterations, then the corresponding

individual probability confidence is likely to be reduced continuously afterwards since

the inputs originally being misclassified are limited (This can be proved by the clas-

sification measures of USVC, which indeed is the very first iteration of AUSVC.) and

resultantly not many other adaptive constraints corresponding to these inputs can be

adjusted to stop reducing the wrong individual probability confidence. While due to

the possibly large number of misclassified inputs under Bi and Zhang’s setting, it is

easy to learn the wrongly misclassified input in the most recent iteration as many other

adaptive constraints related to these misclassified inputs may be adjusted to correctly

classify this wrongly misclassified input correctly in the current iteration, stoping re-

ducing its corresponding individual probability confidence. That is why AUSVC has a

worse performance than USVC under the general and reverse settings. TSVC and SVC

are the best solutions in both classifying the contaminated inputs and recovering the

true target function under Bi and Zhang’s setting and the general setting respectively.

Considering all three settings, MPSVC is the best overall algorithm for recovering the

true target function by combining the results obtained from AUSVC and the measure

MPE. MPSVC tries to find a tradeoff between classification and restoration.

6.4.2 Titanic Data Sets

Titanic data sets from Gunnar Rätsch’s benchmark repository are also contaminated

by noise and introduced into classification subject to input uncertainty. This is a three-

dimensional example, each training set contains 150 observed data and each test set has

in total 2051 data in it. The training kernel is chosen as Gaussian RBF with σ = 2 and

the optimal regularisation parameter is C = 105 according to Rätsch (2001a). With the

uncertain inputs contaminated by Bi and Zhang’s setting, the average ranks of different

measures of these algorithms are shown in Table 6.4. From the table, we see that the

null hypothesis of the Friedman test is rejected for all measures under Bi and Zhang’s

setting in accordance with equation (6.6) before more analysis comes from the post-

hoc test. AUSVC, MPSVC, SVC and USVC perform significantly better than TSVC

and SVCRaetsch in the comparison of NMCU. In the comparison of NMEU and MPE,

SVCRaetsch is the one with the worst performance, while TSVC performs worse than all

other algorithms except SVCRaetsch. USVC and AUSVC are significantly better than

Chapter 6 Data Analysis 122

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 3.125 1.488 1.300 3.563

SVC 3.125 3.638 3.800 3.737

TSVC 4.325 4.925 4.925 4.150

AUSVC 2.487 1.962 1.900 3.025

MPSVC 2.987 3.087 3.175 2.962

SVCRaetsch 4.950 5.900 5.900 3.563

Table 6.4: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the first 40 titanic data sets (from the 1st data set to the 40th data set) contam-
inated under Bi and Zhang’s setting, whose ACCL is 6.05% (The average percentage
of misclassified inputs in all inputs is 18.73% before contamination and 24.78% after

contamination).

SVC and MPSVC. In the comparison of TME, the only conclusion can be drawn is that

MPSVC and AUSVC are significantly better than TSVC. Therefore, AUSVC has the

best overall performance in both classification and restoration, though it is outperformed

by USVC and MPSVC in NMEU, MPE and TME respectively. This is because in these

comparisons, USVC and AUSVC can be deemed as the best performers in classification,

while MPSVC and AUSVC can be deemed as the best performers in restoration, but

USVC and MPSVC have not gained absolute advantages over AUSVC. On the other

hand, SVC and TSVC perform not as well as USVC, AUSVC and MPSVC in both

classification and restoration.

When the general setting is applied to contaminate the original inputs, the average ranks

of all four measures of these algorithms are obtained and illustrated in Table 6.5. In

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 2.400 1.917 1.500 3.550

SVC 2.867 3.367 3.333 3.400

TSVC 5.067 4.950 5.000 3.900

AUSVC 2.867 1.933 1.700 3.467

MPSVC 2.183 2.933 3.567 2.667

SVCRaetsch 5.617 5.900 5.900 4.017

Table 6.5: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the middle 30 titanic data sets (from the 41st data set to the 70th data set)
contaminated under the general setting, whose ACCL is 1.00% (The average percentage
of misclassified inputs in all inputs is 20.53% before contamination and 21.53% after

contamination).

the comparison of NMCU, MPSVC, USVC, SVC and AUSVC are significantly better

than SVCRaetsch and TSVC. In the comparison of NMEU and MPE, SVCRaetsch

has the worst performance of all algorithms, TSVC performs significantly better than

SVCRaetsch, but significantly worse than the rest approaches, among which USVC and

AUSVC are significantly better than SVC and MPSVC. In the comparison of TME,

Chapter 6 Data Analysis 123

these algorithms perform at very close levels, but MPSVC still performs significantly

better than TSVC and SVCRaetsch. Therefore, considering the times by which one

algorithm outperforms another one, both USVC and AUSVC have the best performance

of classification, while MPSVC has the best performance of restoration. USVC, with

AUSVC and MPSVC, generally performs better than SVC and TSVC.

The reverse setting is also introduced to contaminate the original inputs and the results

of the average ranks for all four measures are illustrated in Table 6.6. In the comparison

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 3.325 1.575 1.250 3.550

SVC 3.250 3.475 3.725 3.400

TSVC 3.375 4.825 4.825 3.975

AUSVC 3.300 2.100 1.900 2.850

MPSVC 2.850 3.025 3.300 3.175

SVCRaetsch 4.900 6.000 6.000 4.050

Table 6.6: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the last 30 titanic data sets (from the 71st data set to the 100th data set) con-
taminated under the general setting, whose ACCL is −1.03% (The average percentage
of misclassified inputs in all inputs is 22.33% before contamination and 21.30% after

contamination).

of NMCU, SVCRaetsch is significantly the worst algorithm of all. In the comparison of

NMEU, TSVC performs significantly better than SVCRaetsch, but significantly worse

than the rest algorithms. USVC and AUSVC are significantly better than SVC, USVC

is significantly better than MPSVC. In the comparison of MPE, the results are the same

to that of the comparison of NMEU except that MPSVC is also significantly worse than

AUSVC. In the comparison of TME, the null hypothesis of the Friedman test is accepted,

which means that these algorithms perform similarly in the comparison of TME. Indeed,

USVC is voted as the best algorithm by the Nemenyi test in the comparison of NMEU

and no other algorithms are voted as the best algorithms in the comparison of other

classification measures, thus USVC can be deemed as the one that has best performance

of classification. And AUSVC can be deemed as the second best performer in classifica-

tion with considering the times by which it outperforms other algorithms. Though no

algorithms are significantly better than each other in the comparison of TME, AUSVC

and MPSVC have generally better performance of restoration.

6.4.3 Thyroid Data Sets

Thyroid data sets are five-dimensional examples that can be contaminated to affect the

performance of classification and restoration of these experimental algorithms. Every

training and test sets contain 140 and 75 observed data. The training kernel is chosen as

Gaussian RBF with σ = 3 and the optimal regularisation parameter is C = 10 according

Chapter 6 Data Analysis 124

to Rätsch (2001a). After trained with observed inputs being contaminated by noise un-

der Bi and Zhang’s setting, the average ranks of these approaches for all four measures

are shown in Table 6.7. From the table, we see that the null hypothesis of the Friedman

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 4.412 1.738 1.663 5.650

SVC 3.587 4.112 4.213 2.825

TSVC 3.487 5.487 5.350 2.112

AUSVC 3.575 1.875 1.938 4.550

MPSVC 3.100 3.800 3.888 3.112

SVCRaetsch 2.837 3.987 3.950 2.750

Table 6.7: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the first 40 thyroid data sets (from the 1st data set to the 40th data set) contam-
inated under Bi and Zhang’s setting, whose ACCL is 24.57% (The average percentage
of misclassified inputs in all inputs is 3.43% before contamination and 28.00% after

contamination).

test is rejected for all four measures under Bi and Zhang’s setting. In the comparison of

NMCU, SVCRaetsch and MPSVC are significantly better than USVC. In the compar-

ison of NMEU and MPE, TSVC performs worse than all other algorithms, USVC and

AUSVC are significantly better than SVC, SVCRaetsch and MPSVC. Indeed, USVC

and AUSVC have been voted as good-performance algorithms by Nemenyi test in the

comparison of NMEU and MPE. In the comparison of TME, the performance of USVC

and AUSVC is exact the opposite of that in the comparison of NMEU and MPE, USVC

is the worst approach in this comparison and AUSVC is significantly better than USVC

but significantly worse than rest algorithms, TSVC is significantly better than MPSVC.

It shows that USVC and AUSVC can continuously gain advantages in classifying the

contaminated inputs, especially, AUSVC can be deemed as the best performer in clas-

sification because it has not been outperformed by other algorithms. SVC and TSVC

have advantages in recovering the true target function, whilst TSVC can be deemed as

the best performer in restoration since it has outperformed other algorithms the most

times. MPSVC attempts to achieve a tradeoff between classification and restoration

with its resultantly moderate performance in both comparisons under Bi and Zhang’s

setting.

Under the general setting, the average ranks of these algorithms for all four measures are

illustrated in Table 6.8. In the comparison of NMCU, USVC is the algorithm with the

worst performance, SVCRaetsch, SVC, TSVC and MPSVC are significantly better than

USVC, SVCRaetsch and SVC are significantly better than AUSVC. In the comparison

of NMEU, AUSVC, USVC and SVCRaetsch are significantly better than TSVC, while

AUSVC and USVC perform significantly better than MPSVC and SVC. In the com-

parison of MPE, USVC, AUSVC and SVCRaetsch are significantly better than TSVC

and MPSVC, USVC and AUSVC are significantly better than SVC. In the comparison

of TME, SVCRaetsch, SVC, MPSVC, TSVC are significantly better than USVC and

Chapter 6 Data Analysis 125

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 4.841 2.750 2.227 5.250

SVC 2.705 4.068 4.091 2.773

TSVC 3.182 4.659 4.841 2.886

AUSVC 4.295 2.409 2.227 4.500

MPSVC 3.477 4.136 4.455 2.841

SVCRaetsch 2.500 2.977 3.159 2.750

Table 6.8: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the middle 30 thyroid data sets (from the 41st data set to the 70th data set)
contaminated under the general setting, whose ACCL is 9.97% (The average percentage
of misclassified inputs in all inputs is 3.25% before contamination and 13.21% after

contamination).

AUSVC. Therefore, slightly better than USVC, AUSVC is the algorithm with the second

best performance of classification besides SVCRaetsch. On the other hand, MPSVC can

achieve an improved performance of restoration based on AUSVC with affordable loss

in classification by inheriting the results from AUSVC.

Table 6.9 lists the average ranks for all four measures which are obtained from test

sessions of these algorithms on noiseless test sets and corrupted test sets contami-

nated by noise under the reverse setting. In the comparison of NMCU, SVCRaetsch,

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Algorithm

Measure
NMCU NMEU MPE TME

USVC 4.591 2.614 2.273 5.136

SVC 3.136 3.977 4.091 2.977

TSVC 2.955 4.432 4.591 2.932

AUSVC 3.932 3.182 2.545 4.250

MPSVC 3.523 4.227 4.545 2.455

SVCRaetsch 2.864 2.568 2.955 3.250

Table 6.9: Average ranks of NMCU, NMCU, MPE and TME of different algorithms
over the last 30 thyroid data sets (from the 71st data set to the 100th data set) con-
taminated under the general setting, whose ACCL is 2.92% (The average percentage
of misclassified inputs in all inputs is 3.93% before contamination and 6.85% after

contamination).

SVC and TSVC perform significantly better than USVC. In the comparison of NMEU,

SVCRaetsch and USVC are significantly better than TSVC, MPSVC and SVC. In the

comparison of MPE, USVC, AUSVC and SVCRaetsch are significantly better than

TSVC and MPSVC, while SVC performs significantly worse than USVC and AUSVC. In

the comparison of TME, USVC has the worst performance, MPSVC, TSVC, SVC and

SVCRaetsch are significantly better than USVC, while MPSVC, TSVC and SVC per-

form significantly better than AUSVC. Generally, besides SVCRaetsch, AUSVC has the

second best overall performance of classification of all algorithms since it has not been

significantly outperformed by any other algorithm. Whilst, USVC is outperformed once,

Chapter 6 Data Analysis 126

TSVC, MPSVC and SVC are outperformed twice respectively by other algorithms in

the comparison of classification. MPSVC is likely the best performer in the comparison

of restoration with slightly better performance than TSVC and SVC.

6.5 Summary

A number of real data sets have been contaminated and applied to statistically compare

the performance of classification and restoration of several approaches for the classifi-

cation subject to input uncertainty. These approaches are all developed based on SVM

and basically can be divided into two classes, TSVC and USVC. TSVC implements the

farthest points on the uncertainties as the reference in the classification, which provides

uncertain inputs with lower probabilities that their corresponding unknown original in-

puts are going to be correctly classified by the optimal solution of TSVC. USVC exploits

the nearest points on the uncertainties as the reference, which conservatively secures

higher probabilities of the unknown original inputs being correctly classified. The other

approaches introduced in this experiment are iterative algorithms, AUSVC and MPSVC,

which are derived from USVC, TSVC and MPM.

In this chapter, A non-parametric statistical comparison, the Friedman test, is first

introduced since the experimental environment set in this experiment can not guarantee

two assumptions which the parametric statistical test, ANOVA, needs to satisfy. Then

four post-hoc tests are used to analyse the result of the Friedman test more specifically.

In the experiment, the training and test data sets are contaminated by noise under three

settings, Bi and Zhang’s setting, the general setting and the reverse setting. Under Bi

and Zhang’s setting, the inputs being contaminated move towards the other class, this is

exactly the same as the preassumption of TSVC, which can effectively let TSVC handle

the classification with relatively lower probabilities of the original inputs being correctly

classified. The general and reverse settings make the inputs being contaminated move

around their original positions without appointed directions and move towards their own

class according to the distribution of inputs and the true target function respectively.

Some parameters are introduced to control the contamination specifically under different

settings.

In the experiment, banana, titanic and thyroid data sets are introduced from Gunnar

Rätsch’s repositories (Rätsch, 2001a). The contaminated training sets and the noiseless

and contaminated test sets are used to evaluate the performance of different algorithms

in classifying uncertain inputs and recovering the true target function. After considering

the Friedman test and all four post-hoc tests, the average ranks of all four measures,

NMCU, NMEU, MPE and TME, for different algorithms are compared with each other

statistically. Generally, TSVC has a better performance of restoration under Bi and

Zhang’s setting and SVC has a better performance of restoration under the general

Chapter 6 Data Analysis 127

setting because their optimisation structures can give TSVC and SVC advantages over

other algorithms for recovering the true target function under these two settings. USVC

and AUSVC generally perform significantly better than all other algorithms in the com-

parison of NMEU and MPE under all settings, though they have poor performance in

NMCU. This is because both USVC and AUSVC conservatively consider not only the

mean values of the uncertain inputs but the whole uncertain inputs in the classification.

Since the adaptive constraints of AUSVC can not correct the wrongly misclassified inputs

with limited misclassified inputs, AUSVC performs even worse than USVC in NMEU

and MPE under the general and reverse settings. On the contrary, AUSVC performs

better than USVC in NMEU and MPE under Bi and Zhang’s setting. With its adaptive

constraints, AUSVC also has a better performance in NMCU than USVC by effectively

lowering the probabilities of the original inputs being correctly classified. Developed

from AUSVC and MPM, MPSVC can significantly improve the performance in NMCU

and TME with its optimisation over the probability confidence, which at the same time

makes NMEU and MPE worse than those of USVC and AUSVC. In general, MPSVC

tries to reach a kind of balance between classification and restoration, though it does

not have the best overall performance of classification. Normally, the type of contam-

ination is unknown in classification problems. Therefore, AUSVC is recommended for

the purpose of classifying the observed uncertain inputs. For the purpose of recovering

the true target from contaminated inputs, MPSVC is recommended. However, if both

the performance of classification and the performance of restoration are required for the

classification subject to input uncertainty, we will consider MPSVC as the solver.

Chapter 7

Conclusions and Future Work

In machine learning research, incomplete or incorrect information may exist in any as-

pect of data pre-processing and collection, obscuring the original inputs. As a result,

processing the incompletion or handling either incorrect or corrupted observed inputs

can introduce uncertainties, which contain the estimated amounts or information by

which the observed or calculated inputs may differ from the original inputs. The prob-

lems related to these uncertain inputs are increasingly attracting the attention of many

machine learning researchers in recent years. Support vector machines (SVMs) as one of

the kernel-based maximum margin methods, maximising the margin between two class

to hold an upper bound for the generalisation error, have played a key role in the prob-

lems arising in data classification and mining. However, as one of the classic applications

of SVM, support vector classification (SVC) can only accommodate isotropic uncertain

information. This thesis has developed a series of kernel-based algorithms on the base of

SVM capable of incorporating the uncertain information with different kernel functions.

This concluding chapter summarises the work presented in this thesis and suggests some

future directions.

7.1 Summary of Work

The aim of this thesis has been to explore the construction of the classification subject

to input uncertainty with data-driven iterative constraints which are statistically and

mathematically well-founded and yet have the flexibility to model complex uncertain-

ties. An important component of this has been to provide a kernelisation formulation

allowing the impact from the uncertainties to be extended from lower-dimensional input

space to higher-dimensional feature space when the classification needs to be extended

to non-linear case. This work has been concerned with Gaussian distribution which

either can be directly obtained as the prior knowledge of an uncertain input or can be

approximated from estimating the missing attributes of an input using the assumption

128

Chapter 7 Conclusions and Future Work 129

that the attributes of this inputs follow a joint Gaussian distribution. The distribution

of the uncertain inputs can be further set to other prior beliefs in advance to accommo-

date different assumptions. This thesis compares several applicable SVM-based methods

with the developed approaches over the classification subject to input uncertainty, and

benchmarks them by several real data sets.

In Chapter 2, in total four noise models that are related to classification problems were

introduced besides the traditional additive noise. These noise models can contaminate

original inputs and generate corrupted inputs in accordance with the distribution of

original inputs and the true target function in classification. Processing the corrupted

inputs generated or estimating the missing attributes of original inputs can introduce

input uncertainty. Considering the Gaussian process capable of approximating the miss-

ing label of an input, the target (output) uncertainty estimation was extended to the

input uncertainty estimation for estimating the missing attributes of an input under the

assumption that all attributes of this input follow a joint Gaussian distribution. From

a statistical model introduced from Bi and Zhang (2005), the relationship between the

original inputs and their corrupted counterparts was illustrated and can be used to de-

rive the model of input uncertainty. An input uncertainty model is finally developed,

which can be applied to other kinds of contamination to accommodate more complicated

noise.

Based on the input uncertainty model obtained, Chapter 3 gave the definition of uncer-

tain inputs and further enabled these uncertain inputs to be incorporated into traditional

SVC through geometric interpretation and statistical approach. The resulting optimi-

sation problem is termed as the uncertainty support vector classification (USVC) and

involves a second order cone program (SOCP) with a unique solution, from which the

dual problem of USVC was derived. USVC was extended to non-linear case through

a novel kernelisation formulation, the resulting dual problem can conveniently accom-

modate different kernel functions. The experiment later in this chapter illustrates the

similarity and difference between USVC and SVC under the control of different param-

eters.

In Chapter 4, several existing approaches were explored in classification subject to in-

put uncertainty. Bi and Zhang (2005) proposed the total support vector classification

(TSVC), a SVM-based iterative method, which is indeed an alternative algorithm of the

original method directly derived from the statistical models on input uncertainty. TSVC

was also extended to accommodate anisotropic uncertainties and non-linear classification

by introducing the dual transformation and the new kernelisation formulation. Though

TSVC is similar to USVC mathematically and geometrically, both of them have limita-

tions to deal with different contamination situation because they expect different proba-

bilities of the unknown original inputs being correctly classified by the optimal solution.

Second order cone programming formulation (SOCPF) proposed by Bhattacharyya et al.

(2005) has an equivalent optimisation expression to USVC, though SOCPF is more likely

Chapter 7 Conclusions and Future Work 130

to be weak duality than USVC because of different dual transformation used, and can

perform the same as USVC with appropriately chosen parameters. Minimax probability

machine (MPM) was introduced by Lanckriet et al. (2002b) to solve the classification

without prior knowledge of the distribution of the inputs. The derivation of MPM also

gives an important corollary of the theorem from Bertsimas and Sethuraman (2000),

which can transform a probability inequality to a general inequality.

In Chapter 5, motivated by USVC and TSVC, a new iterative algorithm, the adaptive

uncertainty support vector classification (AUSVC) was developed by statistically com-

bining TSVC and USVC to adaptively achieve lower probabilities of the original inputs

being correctly classified for those uncertain inputs which have been misclassified in

the latest iteration. Based on AUSVC, another new method, the minimax probability

support vector classification (MPSVC) was developed incorporating MPM to minimise

a new measure, the minimax probability error (MPE). MPSVC can amend the pos-

sible biased optimal hyperplane of AUSVC caused by the imbalanced distribution of

the inputs and can achieve a better performance in recovering the true target function.

Both AUSVC and MPSVC incorporate the uncertain information into the optimisation,

their resulting algorithms are iterative data-driven optimisation problems with adaptive

constraints. Like USVC, AUSVC and MPSVC are able to be extended to non-linear

classification by introducing the dual transformation and the kernelisation formulation.

Finally, the algorithmic complexities of different algorithms were compared with each

other. With the introduction of input uncertainties, the optimisation complexity of

the algorithms directly incorporating input uncertainty may be up to the number of

attributes cubed times more than that of SVC.

In Chapter 6, a non-parametric statistical test, the Friedman test and in total four post-

hoc tests were introduced to evaluate the performance of classification and restoration

for different algorithms. A number of real data sets were introduced from Gunnar

Rätsch’s repositories (Rätsch, 2001a) and contaminated by noise under three different

settings: Bi and Zhang’s setting, the general setting and the reverse setting. These

algorithms were trained and tested with the contaminated training sets and the noiseless

and contaminated test sets, then the obtained average ranks of all four measures, NMCU,

NMEU, MPE and TME were compared with each other statistically in the Friedman test

and post-hoc tests. Generally, TSVC and SVC perform better than other algorithms in

recovering the true target function under Bi and Zhang’s setting and the general setting

respectively. While MPSVC performs better than other algorithms in recovering the

true target function under the reverse setting and it has the best overall performance

of restoration under all three settings. In the comparison of NMEU and MPE, TSVC

and SVC can not perform as well as in the comparison of NMCU because TSVC and

SVC choose the farthest points and the central points respectively in the uncertainties

as reference to classify the inputs, leading relatively low probabilities of the original

inputs being correctly classified for TSVC and SVC. AUSVC generally can improve the

Chapter 7 Conclusions and Future Work 131

performance of classification than USVC with its adaptive constraints. Combining the

advantages from AUSVC in classification and MPM in restoration makes MPSVC reach

a balance between classifying the contaminated inputs and recovering the true target

function. But all in all, the performance of classification in MPSVC is not comparable to

that of AUSVC. Therefore, AUSVC is considered when classifying the observed uncertain

inputs is required, MPSVC is considered for the purpose of recovering the true target

function from contaminated inputs.

7.2 Future Work

The work of this thesis was originally inspired by the idea of discriminating the training

data being contaminated by noise, and then was extended to the restoration of the true

target function from the corrupted training data. Meanwhile, some progress has been

made in describing the theoretical and practical aspects of the SVM-based classification

subject to input uncertainty. In this section some aspects of the current work which

could form the basis for further investigation are discussed.

7.2.1 Other Prior Assumptions

This thesis mainly focused on the Gaussian distribution which is defined as the prior

knowledge of the uncertain inputs and can be obtained from estimating the missing

attributes under the joint-Gaussian assumption. However, the introduction of MPM has

provided an idea to extend the prior assumption of the uncertain inputs. Equation (3.5)

can be used to incorporate other prior distribution assumptions. Specifically, formula

(5.8) can be introduced to handle the uncertain inputs without knowing their individual

distributions. Generally, this can lead to further applications in the future. For example,

the uncertain inputs zi and their distributions are unknown, but its samples zi = {zit :

t ∈ T} in time series are available instead. Then these time series samples can be

used to compute the mean and the covariance of zi, which can be incorporated into the

classification subject to input uncertainty.

7.2.2 Large Scale Implementations

In this thesis, all the approaches have used the standard QP and SOCP optimiser to esti-

mate complexities of these algorithms. The results show that the methods incorporating

the uncertainties are expensive in memory requirement and computational cost. Never-

theless, some methods have been proposed to exploit sparsity and structure in solving

the SVM problems. Joachims (1998) presented an algorithm based on a decomposition

strategy and effectively selecting the variables. Platt (1998) not only introduced decom-

position strategy in its developed algorithm, sequential minimal optimisation (SMO),

Chapter 7 Conclusions and Future Work 132

but also solved the small QP problems, obtained from the decomposition, analytically to

avoid a time-consuming inner loop. The memory requirement of SMO is linear O (l) and

the computation cost is somewhere between linear and quadratic time. And an improved

SMO method was proposed in Keerthi et al. (1999). In order to make the techniques

developed here more widely applicable, further work is warranted to find more efficient

algorithms exploiting the structure of the input uncertainty problem.

Appendix A

General Derivations from Primal

Problems to Dual Problems

The following derivations are used extensively in USVC and AUSVC to obtain the dual

problems from the original primal problems. In the derivations, we initially exploit a

general primal problem, which can be transformed to the specific primal problems of

USVC and AUSVC by setting parameter r. The general primal problem is shown as

follows:

min t+ C
l∑

i=1

ξi

s.t. rσi ≤ yi(w
T xi + b) − 1 + ξi

‖M1/2
i w‖ ≤ σi

∥∥∥∥∥

[
w
t−1√

2

]∥∥∥∥∥ ≤ t+ 1√
2

ξi ≥ 0 i = 1, . . . , l.

(A.1)

Letting w1 =
[
t wT b σ1 . . . σl ξ1 . . . ξl

]T
∈ Rn+2l+2, we obtain

min fT w1

s.t. ‖Aiw1 + bi‖ ≤ cT
i w1 + di, i = 1, . . . , 3l + 1,

(A.2)

133

Appendix A General Derivations from Primal Problems to Dual Problems 134

and the parameters in (A.2) are listed as follows:

f =
[
1 0T 0 0T CT

]T

Ai =




0 0
... 0

... 0 0
0 0




ci =
[
0 yix

T
i yi 0 . . .− r . . . 0 0 . . . 1 . . . 0

]T

i = 1, . . . , l

bi = 0

di = −1

Al+i =




0 0
... M

1/2
i

... 0 0

0 0




cl+i =
[
0 0T 0 0 . . . 1 . . . 0 0T

]T

bl+i = 0

dl+i = 0

A2l+1 =




1√
2

0T 0 0 0

0 0 0 0
... I

...
...

...
0 0 0 0




c2l+1 =
[

1√
2

0T 0 0T 0T
]

b2l+1 =




− 1√
2

0




d2l+1 =
1√
2

A2l+1+i =




0 0
... 0

... 0 0
0 0




c2l+1+i =
[
0 0T 0 0T 0 . . . 1 . . . 0

]T

b2l+1+i = 0

d2l+1+i = 0.

Reintroducing these parameters into (3.12) and setting β2l+1 =
[
β′ β′

2l+1

]T
, the (3.12)

can be rewritten as:

max
1√
2
β′ +

l∑

1=1

αi −
1√
2
α2l+1

s.t.




0
...

∑l
i=1(M

1/2
i)T βl+i

...
0
...
0
...
...
0
...




+




0
...

∑l
i=1 αiyixi

...
∑l

i=1 αiyi

...
−rαi

...

...
αi

...




+




1√
2
β′

...

β′
2l+1

...
0
...
0
...
...
0
...




+




1√
2
α2l+1

...
0
...
0
...

αl+i

...

...
α2l+1+i

...




=




1
...
0
...
0
...
0
...
...

C
...




.

(A.3)

Appendix A General Derivations from Primal Problems to Dual Problems 135

So we have

max
1√
2
β′ +

l∑

1=1

αi −
1√
2
α2l+1

s.t.
1√
2
β

′
+

1√
2
α2l+1 = 1. (A.4)

l∑

i=1

αiyixi +
l∑

i=1

(M
1/2
i)T βl+i + β′

2l+1 = 0. (A.5)

l∑

i=1

αiyi = 0. (A.6)

αl+i − rαi = 0 i = 1, . . . , l. (A.7)

αi + α2l+1+i = C i = 1, . . . , l. (A.8)

‖βl+i‖ ≤ αl+i i = 1, . . . , l. (A.9)

From the standard dual problem of SOCP, we have

βl+i = −αl+i
M

1/2
i w

‖M1/2
i w‖

. (A.10)

(A.10) is introduced back into (A.5) to reformulate the constraint (A.5) as:

l∑

i=1

αiyixi −
l∑

i=1

αl+i
M

1/2
i w

‖M1/2
i w‖

+ β′
2l+1 = 0. (A.11)

wT × (A.11) on both sides, we have

l∑

i=1

αiyiw
T xi −

l∑

i=1

αl+i‖M1/2
i w‖ + wT β′

2l+1 = 0. (A.12)

Introducing the constraints of (A.1) and (A.7) into (A.12), we have

l∑

i=1

αi ≤ −wT β′
2l+1. (A.13)

Like (A.10), β2l+1 can be transformed as:

β2l+1 = −α2l+1

(
w
t−1√

2

)

∥∥∥∥∥

(
w
t−1√

2

)∥∥∥∥∥

. (A.14)

Appendix A General Derivations from Primal Problems to Dual Problems 136

According to the definition of β2l+1, we have

√
‖w‖2 +

(t− 1)2

2
β′ = −α2l+1

t− 1√
2
. (A.15)

√
‖w‖2 +

(t− 1)2

2
β′

2l+1 = −α2l+1w. (A.16)

(t− 1)2

2
(α2

2l+1 − β′2) = β′2‖w‖2. (A.17)

(A.15)/(A.16), we have
√

2
t−1β

′‖w‖ = ‖β′
2l+1‖, thus,

α2
2l+1 = β′2 + ‖β′

2l+1‖2 =
2β′2‖w‖2 + (t− 1)2β′2

(t− 1)2
≤ (t+ 1)2

(t− 1)2
β′2. (A.18)

Introducing (A.4) into (A.18), we have

α2
2l+1 ≤ (t+ 1)2

(t− 1)2
(
√

2 − α2l+1)
2. (A.19)

Solving (A.19), we obtain

α2l+1 ≥ t+ 1√
2
. (A.20)

Introducing (A.4) into the objective function, we have max
∑l

i=1 αi + 1 −
√

2α2l+1.

According to the characteristics of lagrangian dual problem, we have

αi + 1 −
√

2α2l+1 ≤ t. (A.21)

Combining (A.20) and (A.21), we have
∑l

i αi ≤ 2t and this inequality turns to an

equality when the optimal solution is achieved. Recalling (A.13), we have

β′
2l+1 = −w. (A.22)

Reintroducing (A.22) into (A.5), we have

w =

l∑

i=1

αiyixi +

l∑

i=1

(M
1/2
i)T βl+i. (A.23)

Appendix A General Derivations from Primal Problems to Dual Problems 137

Introducing (A.20) back into the objective function, we obtain the dual problem as

follows:

max
l∑

i=1

αi −
‖w‖2

2

s.t.
l∑

i=1

αiyi = 0

‖βl+i‖ ≤ αl+i = rαi

0 ≤ αi ≤ C.

(A.24)

Appendix B

Derivations of Kernelising TSVC

in the General Case

The following derivations are implemented to obtain △xi and ξi of the iterative algorithm

of TSVC based on Definition 3.1. According to (4.2), (4.4) and the previous result of

(3.2), △xi in linear case can be derived by following Lemma 4.1,

△xi = yi(M
1/2
i)T

M
1/2
i w

‖M1/2
i w‖

. (B.1)

Therefore, we have

yi(w
T (xi + △xi) + b) = yi(w

T xi + b) + yi△xT
i w = yi(w

T xi + b) + ‖M1/2
i w‖. (B.2)

Thus,

ξi = max
{
0, 1 −

[
yi(w

T (xi + △xi) + b)
]}

= max
{
0, 1 −

[
yi(w

T xi + b) + ‖M1/2
i w‖

]}
.

(B.3)

In the non-linear case, φ(M
1/2
i) = M

1/2
i JT and w =

∑
j αjyjφ(xj) are introduced to

kernelise TSVC, where φ is the function mapping the data of input space to feature

space and J is Jacobian matrix. Following the derivations of TSVC in the linear case,

we have

△xi = yi(M
1/2
i)T

φ(M
1/2
i)w

‖φ(M
1/2
i)w‖

= yi(M
1/2
i)T

M
1/2
i

∑
j αjyj

∂K(xi,xj+△xj)
∂xi

‖M1/2
i

∑
j αjyj

∂K(xi,xj+△xj)
∂xi

‖
, (B.4)

138

Appendix B Derivations of Kernelising TSVC in the General Case 139

where JT w =
∑

j αjyj
∂K(xi,xj+△xj)

∂xi
and K(xi,xj +△xj) = φ(xi)φ(xj +△xj). Imple-

menting Taylor expansion, we have

yi(w
Tφ(xi + △xi) + b)

= yi(w
Tφ(xi) + b) + yi

[
∂φ(xi)

∂xi
△xi

]T

w +O

(
1

2

[
∂2φ(xi)

∂x2
i

△xi

]T

w + · · ·
)

≃ yi(w
Tφ(xi) + b) + yi△xT

i

[
∂φ(xi)

∂xi

]T

w

= yi



∑

j

αjyjK(xi,xj + △xj) + b


+ yi


yi

[
φ(M

1/2
i)w

]T

‖φ(M
1/2
i)w‖

M
1/2
i


JT w

= yi



∑

j

αjyjK(xi,xj + △xj) + b


+

∥∥∥∥∥∥
M

1/2
i

∑

j

αjyj
∂K(xi,xj + △xj)

∂xi

∥∥∥∥∥∥
.

(B.5)

So

ξi = max



0, 1 −


yi



∑

j

αjyjK(xi,xj + △xj) + b




+

∥∥∥∥∥∥
M

1/2
i

∑

j

αjyj
∂K(xi,xj + △xj)

∂xi

∥∥∥∥∥∥






 .

(B.6)

Appendix C

Demonstration of the Friedman

Test and Post-Hoc Tests

To show how statistical analysis works, some examples are demonstrated to show the

analysis outputs from the Friedman test and all four post-hoc tests. The following ex-

ample is the statistical comparison of the average ranks of NMEU of different algorithms

on titanic data sets contaminated by noise under the general setting. This matlab func-

tion name is “FriedmantestRatschData”, in which “titanic data sets” and “the general

setting” are the first two parameters, the third and fourth parameters are τ and ν,

which are set as 0.8 and 0.6 respectively. The fifth and sixth parameters are the serial

numbers of the first and the last of a group of data sets used. The last parameter is the

significance equal to 0.1 used in the Friedman test. While both 0.05 and 0.1 are used as

the significance for post-hoc tests.

>> FriedmantestRatschData(’titanic’,’general’,0.8,0.6,41,70,6,0.1)

The kernel is RBF.

Sigma = 2.

ANALYSING MISCLASSIFIED EDGE OBSERVED DATA NUMBER PERCENTAGE IN TEST.

SVCRatsch = 5.900

SVC = 3.367

USVC = 1.917

TSVC = 4.950

AUSVC = 1.933

MPSVC = 2.933

The Friedman test begins:

Reject the null hypothesis under Chi-square distribution, these algorithms are different

Reject the null hypothesis under F distribution, these algorithms are different

Post-hoc Nemenyi test begins:

Nemenyi test at 0.05: CD = 1.377

Nemenyi test at 0.10: CD = 1.250

The difference between:

140

Appendix C Demonstration of the Friedman Test and Post-Hoc Tests 141

SVCRatsch&SVC = 2.533

SVCRatsch&USVC = 3.983

SVCRatsch&TSVC = 0.950

SVCRatsch&AUSVC = 3.967

SVCRatsch&MPSVC = 2.967

SVC&USVC = 1.450

SVC&TSVC = 1.583

SVC&AUSVC = 1.433

SVC&MPSVC = 0.433

USVC&TSVC = 3.033

USVC&AUSVC = 0.017

USVC&MPSVC = 1.017

TSVC&AUSVC = 3.017

TSVC&MPSVC = 2.017

AUSVC&MPSVC = 1.000

The difference between the best and the worst performing algorithm is already larger than CD

in the Nemenyi test at 0.05

SVCRatsch,TSVC, is significantly worse than the other algorithms in the Nemenyi test at 0.05

Not enough algorithms vote for the best algorithm in the Nemenyi test at 0.05

The difference between the best and the worst performing algorithm is already larger than CD

in the Nemenyi test at 0.10

SVCRatsch,TSVC, is significantly worse than the other algorithms in the Nemenyi test at 0.10

Not enough algorithms vote for the best algorithm in the Nemenyi test at 0.10

Post-hoc Nemenyi test ended.

Post-hoc Bonferroni-Dunn test begins:

Bonferroni-Dunn test at 0.05: CD = 1.244

Bonferroni-Dunn test at 0.10: CD = 1.124

The difference between:

SVCRatsch&SVC = 2.533

SVCRatsch&USVC = 3.983

SVCRatsch&TSVC = 0.950

SVCRatsch&AUSVC = 3.967

SVCRatsch&MPSVC = 2.967

SVCRatsch has the worst performance of all algorithms

More details of the Bonferroni-Dunn test at 0.05

SVC,USVC,AUSVC,MPSVC, performs significantly better than SVCRatsch in the Bonferroni-Dunn

test at 0.05

TSVC, does not perform significantly better than SVCRatsch in the Bonferroni-Dunn test at 0.05

The further test is applied to TSVC, in the Bonferroni-Dunn test at 0.05

TSVC&SVC = 1.583

TSVC&USVC = 3.033

TSVC&AUSVC = 3.017

TSVC&MPSVC = 2.017

SVC,USVC,AUSVC,MPSVC, performs significantly better than TSVC in the Bonferroni-Dunn test at 0.05

More details of the Bonferroni-Dunn test at 0.10

SVC,USVC,AUSVC,MPSVC, performs significantly better than SVCRatsch in the Bonferroni-Dunn

test at 0.10

TSVC, does not perform significantly better than SVCRatsch in the Bonferroni-Dunn test at 0.10

The further test is applied to TSVC, in the Bonferroni-Dunn test at 0.10

TSVC&SVC = 1.583

TSVC&USVC = 3.033

TSVC&AUSVC = 3.017

TSVC&MPSVC = 2.017

SVC,USVC,AUSVC,MPSVC, performs significantly better than TSVC in the Bonferroni-Dunn test at 0.10

Post-hoc Bonferroni-Dunn test ended.

Appendix C Demonstration of the Friedman Test and Post-Hoc Tests 142

Post-hoc Holm test begins:

More details of the Holm test at 0.05

Compare the other algorithms with SVCRatsch in Holm test at 0.05

Algorithm=USVC i=1 p=0.000 threshold=0.010

Algorithm=AUSVC i=2 p=0.000 threshold=0.013

Algorithm=MPSVC i=3 p=0.000 threshold=0.017

Algorithm=SVC i=4 p=0.000 threshold=0.025

Algorithm=TSVC i=5 p=0.049 threshold=0.050

USVC,AUSVC,MPSVC,SVC,TSVC, are significantly better than SVCRatsch in Holm test at 0.05

Compare the other algorithms with TSVC in Holm test at 0.05

Algorithm=USVC i=1 p=0.000 threshold=0.013

Algorithm=AUSVC i=2 p=0.000 threshold=0.017

Algorithm=MPSVC i=3 p=0.000 threshold=0.025

Algorithm=SVC i=4 p=0.001 threshold=0.050

USVC,AUSVC,MPSVC,SVC, are significantly better than TSVC in Holm test at 0.05

Compare the other algorithms with SVC in Holm test at 0.05

Algorithm=USVC i=1 p=0.003 threshold=0.017

Algorithm=AUSVC i=2 p=0.003 threshold=0.025

Algorithm=MPSVC i=3 p=0.370 threshold=0.050

USVC,AUSVC, are significantly better than SVC in Holm test at 0.05

Compare the other algorithms with MPSVC in Holm test at 0.05

Algorithm=USVC i=1 p=0.035 threshold=0.025

Algorithm=AUSVC i=2 p=0.038 threshold=0.050

AUSVC, are significantly better than MPSVC in Holm test at 0.05

Compare the other algorithms with AUSVC in Holm test at 0.05

Algorithm=USVC i=1 p=0.972 threshold=0.050

More details of the Holm test at 0.10

Compare the other algorithms with SVCRatsch in Holm test at 0.10

Algorithm=USVC i=1 p=0.000 threshold=0.020

Algorithm=AUSVC i=2 p=0.000 threshold=0.025

Algorithm=MPSVC i=3 p=0.000 threshold=0.033

Algorithm=SVC i=4 p=0.000 threshold=0.050

Algorithm=TSVC i=5 p=0.049 threshold=0.100

USVC,AUSVC,MPSVC,SVC,TSVC, are significantly better than SVCRatsch in Holm test at 0.10

Compare the other algorithms with TSVC in Holm test at 0.10

Algorithm=USVC i=1 p=0.000 threshold=0.025

Algorithm=AUSVC i=2 p=0.000 threshold=0.033

Algorithm=MPSVC i=3 p=0.000 threshold=0.050

Algorithm=SVC i=4 p=0.001 threshold=0.100

USVC,AUSVC,MPSVC,SVC, are significantly better than TSVC in Holm test at 0.10

Compare the other algorithms with SVC in Holm test at 0.10

Algorithm=USVC i=1 p=0.003 threshold=0.033

Algorithm=AUSVC i=2 p=0.003 threshold=0.050

Algorithm=MPSVC i=3 p=0.370 threshold=0.100

USVC,AUSVC, are significantly better than SVC in Holm test at 0.10

Compare the other algorithms with MPSVC in Holm test at 0.10

Algorithm=USVC i=1 p=0.035 threshold=0.050

Algorithm=AUSVC i=2 p=0.038 threshold=0.100

USVC,AUSVC, are significantly better than MPSVC in Holm test at 0.10

Compare the other algorithms with AUSVC in Holm test at 0.10

Algorithm=USVC i=1 p=0.972 threshold=0.100

Post-hoc Holm test ended.

Post-hoc Hommel test begins:

More details of the Hommel test at 0.05

Appendix C Demonstration of the Friedman Test and Post-Hoc Tests 143

Compare the other algorithms with SVCRatsch in Hommel test at 0.05

Algorithm=USVC i=1 p=0.000 threshold=0.010 tighterthreshold=0.010

Algorithm=AUSVC i=2 p=0.000 threshold=0.020 tighterthreshold=0.010

Algorithm=MPSVC i=3 p=0.000 threshold=0.030 tighterthreshold=0.010

Algorithm=SVC i=4 p=0.000 threshold=0.040 tighterthreshold=0.010

Algorithm=TSVC i=5 p=0.049 threshold=0.050 tighterthreshold=0.010

USVC,AUSVC,MPSVC,SVC are significantly better than SVCRatsch in Hommel test at 0.05

Compare the other algorithms with TSVC in Hommel test at 0.05

Algorithm=USVC i=1 p=0.000 threshold=0.013 tighterthreshold=0.013

Algorithm=AUSVC i=2 p=0.000 threshold=0.025 tighterthreshold=0.013

Algorithm=MPSVC i=3 p=0.000 threshold=0.038 tighterthreshold=0.013

Algorithm=SVC i=4 p=0.001 threshold=0.050 tighterthreshold=0.013

USVC,AUSVC,MPSVC,SVC are significantly better than TSVC in Hommel test at 0.05

Compare the other algorithms with SVC in Hommel test at 0.05

Algorithm=USVC i=1 p=0.003 threshold=0.017 tighterthreshold=0.017

Algorithm=AUSVC i=2 p=0.003 threshold=0.033 tighterthreshold=0.017

Algorithm=MPSVC i=3 p=0.370 threshold=0.050 tighterthreshold=0.017

MPSVC are not significantly better than SVC in Hommel test at 0.05

USVC,AUSVC are significantly better than SVC in Hommel test at 0.05

Compare the other algorithms with MPSVC in Hommel test at 0.05

Algorithm=USVC i=1 p=0.035 threshold=0.025 tighterthreshold=0.025

USVC,AUSVC are not significantly better than MPSVC in Hommel test at 0.05

Compare the other algorithms with AUSVC in Hommel test at 0.05

Algorithm=USVC i=1 p=0.972 threshold=0.050 tighterthreshold=0.050

USVC are not significantly better than AUSVC in Hommel test at 0.05

More details of the Hommel test at 0.10

Compare the other algorithms with SVCRatsch in Hommel test at 0.10

Algorithm=USVC i=1 p=0.000 threshold=0.020 tighterthreshold=0.020

Algorithm=AUSVC i=2 p=0.000 threshold=0.040 tighterthreshold=0.020

Algorithm=MPSVC i=3 p=0.000 threshold=0.060 tighterthreshold=0.020

Algorithm=SVC i=4 p=0.000 threshold=0.080 tighterthreshold=0.020

Algorithm=TSVC i=5 p=0.049 threshold=0.100 tighterthreshold=0.020

USVC,AUSVC,MPSVC,SVC are significantly better than SVCRatsch in Hommel test at 0.10

Compare the other algorithms with TSVC in Hommel test at 0.10

Algorithm=USVC i=1 p=0.000 threshold=0.025 tighterthreshold=0.025

Algorithm=AUSVC i=2 p=0.000 threshold=0.050 tighterthreshold=0.025

Algorithm=MPSVC i=3 p=0.000 threshold=0.075 tighterthreshold=0.025

Algorithm=SVC i=4 p=0.001 threshold=0.100 tighterthreshold=0.025

USVC,AUSVC,MPSVC,SVC are significantly better than TSVC in Hommel test at 0.10

Compare the other algorithms with SVC in Hommel test at 0.10

Algorithm=USVC i=1 p=0.003 threshold=0.033 tighterthreshold=0.033

Algorithm=AUSVC i=2 p=0.003 threshold=0.067 tighterthreshold=0.033

Algorithm=MPSVC i=3 p=0.370 threshold=0.100 tighterthreshold=0.033

MPSVC are not significantly better than SVC in Hommel test at 0.10

USVC,AUSVC are significantly better than SVC in Hommel test at 0.10

Compare the other algorithms with MPSVC in Hommel test at 0.10

Algorithm=USVC i=1 p=0.035 threshold=0.050 tighterthreshold=0.050

Algorithm=AUSVC i=2 p=0.038 threshold=0.100 tighterthreshold=0.050

USVC,AUSVC are significantly better than MPSVC in Hommel test at 0.10

Compare the other algorithms with AUSVC in Hommel test at 0.10

Algorithm=USVC i=1 p=0.972 threshold=0.100 tighterthreshold=0.100

USVC are not significantly better than AUSVC in Hommel test at 0.10

Post-hoc Hommel test ended.

Another example is the statistical comparison of the average ranks of TME of different

algorithms on titanic data sets contaminated by noise under the reverse setting, in

Appendix C Demonstration of the Friedman Test and Post-Hoc Tests 144

which the hypothesis is accepted so that these algorithms have similar performance of

restoration.

>> FriedmantestRatschData(’titanic’,’reverse’,0.8,0.6,71,100,4,0.1)

The kernel is RBF.

Sigma = 2.

ANALYSING GENERALISATION ERROR.

SVCRatsch = 4.050

SVC = 3.400

USVC = 3.550

TSVC = 3.975

AUSVC = 2.850

MPSVC = 3.175

The Friedman test begins:

Accept the null hypothesis under Chi-square distribution, these algorithms are similar

Accept the null hypothesis under F distribution, these algorithms are similar

Bibliography

F. Aires, C. Prigent, and W.B. Rossow. Neural network uncertainty assessment using

bayesian statistics with application to remote sensing: 2. output errors. Journal of

Geographical Research, 109(D10304), 2004.

A. Aizermann, E.M. Braverman, and L.I. Rozoner. Theoretical foundations of the poten-

tial function method in pattern recognition learning. Automation and Remote Cntrol,

25:821–837, 1964.

D.N. Anderson. A multivariate linnik distribution. Statistics & Probability Letters, 14

(4):333–336, 1992.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathemat-

ical Society, 68(3):337–404, 1950.

D. Bertsimas and J. Sethuraman. Moment problems and semidefinite optimization. In

Handbook of Semidefinite Optimization, pages 469–509. Kluwer Academic Publishers,

2000.

C. Bhattacharyya. Second order cone programming formulations for feature selection.

Journal of Machine Learning Research, 5:1417–1433, 2004.

C. Bhattacharyya, K.S. Pannagadatta, and A.J. Smola. A second order cone program-

ming formulation for classifying missing data. In Advances in Neural Information

Processing Systems, volume 17, pages 153–160. MIT Press, 2005.

J. Bi and V. Vapnik. Learning with rigorous support vector machines. In Proceedings

of the 16th Annual Conference on Computational Learning Theory and 7th Kernel

Workshop (COLT/Kernel 2003), volume 2777 of Lecture Notes in Computer Science,

pages 231–242, Washington DC, USA, August 2003. Springer.

J. Bi and T. Zhang. Support vector classification with input data uncertainty. In Ad-

vances in Neural Information Processing Systems, volume 17, pages 161–168. Cam-

bridge, MA: MIT Press, 2005.

V. Blanz, B. Schölkopf, H. Bülthoff, C.J.C. Burges, V. Vapnik, and T. Vetter. Com-

parison of view-based object recognition algorithms using realistic 3d models. In

145

BIBLIOGRAPHY 146

Proceedings of International Conference on Artificial Neural Networks, volume 1112

of Lecture Notes in Computer Science, pages 251–256, Berlin, 1996. Springer.

B.E. Boser, I.M. Guyon, and V. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning

Theory, pages 144–152, Pittsburgh, Pennsylvania, USA, 1992. ACM.

S. Boughorbel, J.P. Tarel, and F. Fleuret. Non-mercer kernels for SVM object recogni-

tion. In Proceedings of British Machine Vision Conference, pages 137–146, London,

England, September 2004.

C.A. Bouman. Cluster: An unsupervised algorithm for modeling gaussian mixtures.

Technical report, School of Electrical and Computer Engineering, Purdue University,

https://engineering.purdue.edu/~bouman/software/cluster/, April 1997.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 1st

edition, 2004.

N. Bshouty, N. Eiron, and E. Kushilevitz. PAC learning with nasty noise. Theoretical

Computer Science, 288(2):255–275, 2002.

F. Canters, W.D. Genst, and H. Dufourmont. Assessing effects of input uncertainty in

structural landscape classification. International Journal of Geographical Information

Science, 16(2):129–149, 2002.

S.E. Chick. Bayesian analysis for simulation input and output. In Proceedings of the

1997 Winter Simulation Conference, pages 253–260, Atlanta, Georgia, USA, 1997.

S.E. Chick. Input distribution selection for simulation experiments: Accounting for

input uncertainty. Operation Research, 49:744–758, 2001.

M. Clyde and E.I. George. Model uncertainty. Statistical Science, 19(1):81–94, 2004.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,

1995.

A.C. Cullen and H.C. Frey. Probabilistic Techniques in Exposure Assessment: A Hand-

book for Dealing with Variability and Uncertainty in Models and Inputs. Springer,

N.Y., 1st edition, 1999.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.

D. Draper. Assessment and propagation of model uncertainty. Journal of the Royal

Statistical Society. Series B, 57:45–97, 1995.

J. Droppo, A. Acero, and L. Deng. Uncertainty decoding with splice for noise ro-

bust speech recognition. In Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, pages 57–60, Orlando, USA, May 2002.

https://engineering.purdue.edu/~bouman/software/cluster/
https://engineering.purdue.edu/~bouman/software/cluster/

BIBLIOGRAPHY 147

O.J. Dunn. Multiple comparisons among means. Journal of the American Statistical

Association, 56:52–64, 1961.

C.W. Dunnett. A multiple comparison procedure for comparing several treatments with

a control. Journal of the American Statistical Association, 50:1096–1121, 1955.

R.A. Fisher. Statistical Methods for Research Workers. Macmillan Pub Co., 15th edition,

1970.

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the

analysis of variance. Journal of the American Statistical Association, 32(200):675–701,

1937.

L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain

data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–1064, 1997.

A. Girard, C.E. Rasmussen, J.Q. Candela, and R. Murray-Smith. Gaussian process pri-

ors with uncertain inputs - application to multiple-step ahead time series forecasting.

In Advances in Neural Information Processing Systems, volume 15, pages 545–552.

Cambridge, MA: MIT Press, 2002.

E.M. Gold. Language identification in the limit. Information and Control, 10:447–474,

1967.

S.A. Goldman and R.H. Sloan. Can pac learning algorithms tolerate random attribute

noise? Algorithmica, 14:70–84, 1995.

G.H. Golub, Hansen P.C, and D.P. O’Leary. Tikhonov regularization and total least

squares. SIAM Journal on Numerical Analysis, 30:185–194, 1999.

D. Gorgevik and D. Cakmakov. Combining SVM classifiers for handwritten digit recog-

nition. In 16th International Conference on Pattern Recognition (ICPR’02), volume 3,

pages 102–105, Quebec City, QC, Canada, 2002.

T. Graepel and R. Herbrich. Invariant pattern recognition by semidefinite programming

machines. In Advances in Neural Information Processing Systems, volume 16, pages

33–40. Cambridge, MA: MIT Press, 2003.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer-Verlag, 2nd edition, 1993.

S.R. Gunn. Support vector machines for classification and regression. Technical report,

University of Southampton, May 1998.

M. Hauck, M.A.J. Huijbregts, J.M. Armitage, I.T. Cousins, A.M.J. Ragas, and D. Van

de Meent. Model and input uncertainty in multi-media fata modelling: Benzo[a]pyrene

concentrations in europe. Chemosphere, 72(6):959–967, 2008.

BIBLIOGRAPHY 148

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal

of Statistics, 6:65–70, 1979.

G. Hommel. A stagewise rejective multiple test procedure based on a modified bonferroni

test. Biometrika, 75:383–386, 1988.

J. Huang, V. Blanz, and B. Heisele. Face recognition using component-based SVM clas-

sification and morphable models. In International Workshop on Pattern Recognition

with Support Vector Machines (SVM2002), volume 2388 of Lecture Notes in Computer

Science, pages 334–341, Niagara Falls, Canada, August 2002.

K. Huang, H. Yang, I. King, M.R. Lyu, and L. Chan. The minimum error minimax

probability machine. Journal of Machine Learning Research, 5:1253–1286, 2004.

D. Huard and A. Mailhot. A bayesian perspective on input uncertainty in model cali-

bration: Application to hydrological model “abc”. Water Resources Research, 42(7):

CiteID W07416, 2006.

D.W. Hubbard. How to Measure Anything: Find the Value of “Intangibles” in Business.

John Wiley & Sons, Hoboken, NJ, 1st edition, 2007.

R.L. Iman and J.M.Davenport. Approximations of the critical region of the friedman

statistic. Communications in Statistics A: Theory and Methods, 9:571–595, 1980.

T. Joachims. Making large-scale support vector machine learning practical. In Advances

in Kernel Methods: Support Vector Learning, pages 169–184, 1998.

M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on

Computing, 22(4):807–837, 1993.

S.S. Keerthi and C.-J. Lin. Asymptotic behaviors of support vector machines with

gaussian kernel. Neural Computation, 15(7):1667–1689, 2003.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements to

platt’s SMO algorithm for SVM classifier design. Technical report, Technical Report

CD-99-14, Department of Mechanical and Production Engineering, National Univer-

sity of Singapore, 1999.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model

selection. In Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence, volume 2, pages 1137–1143, 1995.

R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision Graphs.

PhD thesis, Department of Computer Science, Standard University, Stanford, Cali-

fornia, USA, 1996.

BIBLIOGRAPHY 149

S. Kotz, T.J. Kozubowski, and K. Podgorski. An asymmetric multivariate

laplace distribution. Technical report, Technical Report No.367, Department of

Statistics and Applied probability, University of California at Santa Barbara,

http://wolfweb.unr.edu/homepage/tkozubow/0_alm.pdf, January 2003.

G.R.G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M.I. Jordan. Minimax prob-

ability machine. In Advances in Neural Information Processing Systems, volume 15,

pages 929–936. Cambridge, MA: MIT press, 2002a.

G.R.G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M.I. Jordan. A robust minimax

approach to classification. Journal of Machine Learning Research, 3:555–582, 2002b.

H. Levene. In Contributions to Probability and Statistics: Essays in Honour of Harold

Hotelling, pages 278–292. Stanford University Press, 1960.

H. Liao and M.J.F. Gales. Joint uncertainty decoding for noise robust speech recognition.

Technical report, CUED/F-INFENG/TR499, University of Cambridge, 2004.

M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second order cone

programming. Linear Algebra and its Applications, 284:193–228, 1998.

D.J.C. Mackay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.

K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press, 24/28

Oval Road, London NW1, U.K., 1979.

MATLAB. Matlab 7 external interfaces. http://www.mathworks.com, 2007. The Math-

Works, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098, USA, 2008.

J. Mercer. Functions of positive and negative type, and their connection with the theory

of integral equations. Proceedings of the Royal Society of London. Series A, Containing

Papers of a Mathematical and Physical Character, 83(559):69–70, 1909.

K.S. Miller and H. Ruben. Multidimensional gaussian distributions. The Annals of

Mathematical Statistics, 37(1):301–307, 1966.

MinGW. Mingwiki. http://www.mingw.org/wiki/MinGWiki, 2008.

T.M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, 1st edition,

1997.

H.D. Mittelmann. An independent benchmarking of sdp and socp solvers. Mathematical

Programming, 95(2):407–430, 2003.

H.D. Mittelmann. Socp (second-order cone programming) benchmark. Technical report,

http://plato.asu.edu/ftp/socp.html, November 2008.

M.G. Morgan and M. Henrion. Uncertainty: A Guide to Dealing with Uncertainty in

Quantitative Risk and Policy Analysis. Cambridge University Press, N.Y., 1990.

http://wolfweb.unr.edu/homepage/tkozubow/0_alm.pdf
http://wolfweb.unr.edu/homepage/tkozubow/0_alm.pdf
http://www.mathworks.com
http://www.mathworks.com
http://www.mingw.org/wiki/MinGWiki
http://www.mingw.org/wiki/MinGWiki
http://plato.asu.edu/ftp/socp.html
http://plato.asu.edu/ftp/socp.html

BIBLIOGRAPHY 150

MOSEK. The mosek optimisation toolbox for matlab manual. version 5.0 (revision 105).

http://www.mosek.com, 2008. MOSEK ApS, Symbion Science Park, Fruebjergvej 3,

Box 16, 2100 Copenhagen Ø, Denmark, 2008.

P.B. Nemenyi. Distribution-Free Multiple Comparison. PhD thesis, Princeton University,

Plainsboro, New Jersey, USA, 1963.

Y. Nesterov and A. Nemirovskii. Interior-point polynomial methods in convex program-

ming. SIAM Studies in Applied Mathematics, 13, 1994.

Y. Nesterov and M.J. Todd. Self scaled barriers and interior point methods for convex

programming. Mathematics of Operations Research, 22(1):1–42, 1997.

R.M. Norton. The double exponential distribution: Using calculus to find a maximum

likelihood estimator. The American Statistician, 38(2):135–136, 1984.

A. O’Hagan. Curve fitting and optimal design for prediction. Journal of the Royal

Statistical Society. Series B, 40:1–42, 1978.

P. Orinius. Pelles c for windows. http://www.christian-heffner.de/, 2008.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector

machines. In Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal

Processing, pages 276–285, Amelia Island, Florida, 1997.

J.C. Platt. Fast training of support vector machines using sequential minimal optimi-

sation. In Advances in Kernel Methods: Support Vector Learning, pages 185–208,

1998.

C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. the

MIT Press, http://www.gaussianprocess.org/gpml, 2006.

G. Rätsch. Benchmark repository used in soft margins for adaboost, fisher dis-

criminant analysis with kernels and robust boosting via convex optimisation.

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm, 2001a.

G. Rätsch. Robust Boosting via Convex Optimisation. PhD thesis, University of

Potsdam, Computer Science Dept., August-Bebel-Str. 89, 14482 Potsdam, Germany,

2001b.

M. Schmidt. Identifying speaker with support vector networks. In Interface ’96 Pro-

ceedings, Sydney, 1996.

S.S. Shapiro and M.B. Wilk. An analysis of variance test for normality (complete sam-

ples). Biometrika, 52:591–611, 1965.

D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Chap-

man & Hall/CRC, 2nd edition, 2000.

http://www.mosek.com
http://www.mosek.com
http://www.christian-heffner.de/
http://www.christian-heffner.de/
http://www.gaussianprocess.org/gpml
http://www.gaussianprocess.org/gpml
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

BIBLIOGRAPHY 151

P.K. Shivaswamy, C. Bhattacharyya, and A.J. Smola. Second order cone programming

approaches for handling missing and uncertain data. Journal of Machine Learning

Research, 7:1283–1314, 2006.

H.A. Simon. Why should machines learn? Machine Learning: An Artificial Intelligence

Approach, 1:25–37, 1983.

R. Sloan. Types of noise in data for concept learning. In Proceedings of the First

Annual Workshop on Computational Learning Theory, pages 91–96, MIT, Cambridge,

Massachusetts, USA, 1988.

R.H. Sloan. Four types of noise in data for pac learning. Information Processing Letters,

54:157–162, 1995.

J.F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetic cones.

Optimization Methods and Software, (11-12):625–653, 1999.

J.W. Tukey. Comparing individual means in the analysis of variance. Biometrics, 5:

99–114, 1949.

L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,

1984.

L. Valiant. Learning disjunctions of conjunctions. In Proceedings of the Ninth Inter-

national Joint Conference on Artificial Intelligence, pages 560–566, Los Angeles, CA,

1985.

R.J. Vanderbei. Loqo user’s manual-version 4.05. Technical report,

School of Engineering and Applied Science, Princeton University,

http://www.princeton.edu/~rvdb/loqo/LOQO.html, September 2006.

V. Vapnik. The Nature of Statistical Learning Theory: Statistics for Engineering and

Information Science. Springer, N.Y., 2nd edition, 1999.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. Theory of Probability and its Application, 16(2):264–280,

1971.

M. Wallace, S. Ioannou, A. Raouzaiou, K. Karpouzis, and S. Kollias. Dealing with fea-

ture uncertainty in facial expression recognition. International Journal of Intelligent

Systems Technologies and Applications, 1(3-4):409–429, 2006.

V. Wan and S. Renals. Support vector machine speaker verification methodology. In

IEEE International Workshop on Neural Networks for Signal Processing, volume 2,

pages 221–224, Toulouse, France, September 2003.

E.W. Weisstein. Uniform distribution. From MathWorld-A Wolfram Web Resource.

http://mathworld.wolfram.com/UniformDistribution.html.

http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://www.princeton.edu/~rvdb/loqo/LOQO.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html

BIBLIOGRAPHY 152

C.K.I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351, 1998.

C.K.I. Williams and C.E. Rasmussen. Gaussian processes for regression. In Advances in

Neural Information Processing Systems, volume 8, pages 514–520. Cambridge, MA:

MIT Press, 1996.

R.L. Winkler. Introduction to Bayesian Inference and Decision. Holt, Rinehart and

Winston, 2nd edition, 2003.

W.A. Wright. Bayesian approach to neural network modelling with input uncertainty.

IEEE Transactions on Neural Networks, 10(6):1261–1270, 1999.

J. Yang and S.R. Gunn. Uncertain input classification in support vector machines.

In Sheffield Machine Learning Workshop (Poster Session), Sheffield, UK, September

2004.

J. Yang and S.R. Gunn. Exploiting uncertain data in support vector classification.

In KES2007 11th International Conference on Knowledge-Based and Intelligent In-

formation & Engineering Systems, Part III, pages 148–155, Vietri sul Mare, Italy,

2007a.

J. Yang and S.R. Gunn. Iterative constraints in support vector classification with uncer-

tain information. In International Workshop on Constraint-Based Mining and Learn-

ing, at ECML/PKDD 2007, pages 49–61, Warsaw, Porland, 2007b.

Y. Ye, M.J. Todd, and S. Mizuno. An O(
√

nL)-iteration homogeneous and self-dual

linear programming algorithm. Mathematics of Operations Research, 19:53–67, 1994.

J.H. Zar. Biostatistical Analysis. Prentice Hall, Englewood Clifs, New Jersey, 4th edition,

1998.

F. Zouaoui and J.R. Wilson. Accounting for input model and parameter uncertainty in

simulation. In Proceedings of the 2001 Winter Simulation Conference, pages 290–299,

Arlington, Virginia, USA, 2001.

