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A model of the development of rail-head acoustic roughness on tangent track has been 

formulated. The model consists of a two-dimensional time domain wheel-rail interaction 

force calculation, with the normal force used as the input to a two-dimensional rolling 

contact and wear model. The possibility of multiple wear mechanisms arising from stress 

concentrations is considered by using a wear coefficient that can vary with the conditions 

at each point in the contact. The contact model is based on a variational technique, taking 

account of non-Hertzian and transient effects. A novel feature of the rolling contact model 

is the introduction of a velocity-dependent friction coefficient. In rolling contact this leads 

to a high frequency stick-slip oscillation in the slip zone at the trailing edge.  

Roughness development depends on the dynamics of the track. Roughness growth 

has often been linked to the pinned-pinned frequency and other resonances of the coupled 

track and vehicle system. Here the effect of different vehicle and track parameters on track 

dynamics, wear and roughness development has been examined. Rail dampers are studied 

as they change the dynamic response of the track. Results are presented in the form of 

roughness growth rate functions both for individual vehicle types and for mixed traffic. 

The model parameters match those at a site used for measurements of roughness 

development taken by Deutsche Bahn AG as part of the EU project Silence. 

The study shows that it is important to include non-Hertzian effects when studying 

roughness with wavelengths shorter than 100 mm. With a non-Hertzian contact model, no 

mechanism has been found for consistently increasing roughness levels. The model 

predicts that roughness wavelengths shorter than the contact length will wear away. Rail 

dampers are shown to reduce the pinned-pinned frequency and smooth the peaks and 

troughs in the track receptance. Rail dampers also reduce the dynamic wheel-rail 

interaction forces, especially around the pinned-pinned resonance, and shift the force 

spectrum to lower frequencies or longer wavelengths. However, rail dampers are not 

predicted to affect roughness growth rates significantly. 
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1 INTRODUCTION 

1.1 Background 

Demand for rail transport services is increasing with growing populations and 

environmental awareness. High-speed rail networks are expanding in many countries and 

conventional speed railways are being operated at higher capacities, driven by the political 

objectives of expanding economies and promoting growth. Populations are becoming 

increasingly mobile, demanding improved opportunities for travel and tourism, as well as 

access to increasingly diverse products. For example, in Europe the demand for freight 

transport volumes increased by 35% in the ten years up to 2006 (for all transport modes 

combined). The average number of kilometres travelled by people increased in the same 

time period by 1.3% each year [European Environment Agency, 2009]. 

 

In addition to the increasing demand for rail services caused by economic and population 

growth, increasing awareness of the need to reduce carbon emissions means that a shift in 

transport mode towards rail from the more energy intensive modes of road and air is 

desirable. Rail is an environmentally friendly means of transport when compared with the 

alternatives of road and air traffic. The average carbon dioxide emissions for rail transport 

are around 18 to 35 g/tkm*, compared with those for road transport of 62 to 110 g/tkm and 

for air of over 665 g/tkm. [European Environment Agency, 2009].  

 

As with other modes of transport, the increased noise levels that result from expanding rail 

networks are a significant restriction to development especially in areas with dense 

populations. Noise is not simply an annoyance; it is recognised by the World Health 

Organisation as being harmful to health, as well as interfering with performance of daily 

activities [Berglund et al., 1999]. Noise and vibration concerns are often used to oppose 

new rail developments. In an interview for a UIC newsletter, Dr. Matthias Mather (Head of 

Environmental Protection in the Environment Centre of Deutsche Bahn AG) states that: 

“Residents are afraid that traffic, and hence noise, will increase. So they object to the 

expansion of rail freight traffic without simultaneous, effective measures for noise 

abatement. In other words, the residents will only accept the growth in rail freight traffic if 

the noise pollution falls at the same time.” [UIC, 2008]. 

 

                                                 
* g/tkm is grams of CO2 emitted when 1 tonne is transported 1 kilometre 
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In Europe, the Environmental Noise Directive [European Commission, 2002] requires the 

mapping of noise sources and the development of action plans to reduce noise. Noise 

legislation limiting the noise emitted by rail vehicles has been introduced via the Technical 

Specifications for Interoperability or TSIs [European Commission, 2005 & 2006]. Since 

noise limits can restrict rail vehicle speeds or the amount of rail traffic, the cost of noise 

control must be balanced with the need for capacity increases. 

 

1.1.1 Railway noise and roughness 

Railway noise has been studied extensively since the 1970s and models of rolling noise are 

now well established. Thompson’s book [2009] is a comprehensive reference covering the 

overall topic of railway noise and vibration, including analysis of rolling noise 

mechanisms, modelling and control.  

 

The dominant source of railway noise is the rolling of the wheels over the rails, except at 

very high speeds where aerodynamic noise can become the most significant source. This 

rolling noise has a broad spectrum in the frequency range up to about 5000 Hz, and its 

level and frequency content increase with train speed. The inherent roughness of the 

wheels and rails in the contact zone induces a relative motion which results in dynamic 

interaction forces, vibration of the wheel and track structures, and noise radiation 

[Thompson, 2009]. It is therefore the combined roughness of the wheel and rail that 

provides the fundamental excitation source for railway rolling noise.  

 

Increasing roughness of the wheel and rail leads to higher noise levels and also to higher 

contact forces. Ultimately high roughness levels require maintenance attention. Wheels can 

be removed from service for re-profiling, but grinding the track to control roughness and 

corrugation is time-consuming and expensive. It is important to understand mechanisms of 

rail wear and roughness development in order to minimise rail roughness growth rates and 

hence the costs of noise control and maintenance. The roughness of interest is not limited 

to corrugation; it includes broadband roughness with wavelengths between 5 and 500 mm, 

referred to as ‘acoustic roughness’. 

 

Before developing the themes of this thesis on research into wheel-rail interaction and 

wear in the contact patch, this chapter provides an introduction to the topics of railway 

rolling noise and roughness. The objectives of this thesis are summarised, as are the 
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contributions made to the understanding of rail roughness development. Some of the 

literature in the field is discussed in this chapter as background material, but most of the 

existing work on roughness and corrugation modelling is reviewed separately in Chapter 2.  

 

1.2 Objectives 

Understanding the mechanisms of the development of railway acoustic roughness is clearly 

useful for long-term noise control. In this thesis, a model is presented that predicts the 

change in roughness profile of a railhead as a wheel or wheels rolls over the rail surface. 

This work aims to further the understanding of the mechanisms of the development of 

railway roughness, and the factors that affect it. Results for different input scenarios are 

presented in the form of a roughness growth rate spectrum, which indicates the 

wavelengths at which roughness is expected to grow or decrease over time. Using this 

approach, it may be possible to optimise railway tracks to minimise long-term roughness 

growth rates.  

 

Noise prediction models such as TWINS [Thompson, 1993a-e] give a clear understanding 

of the sources of railway rolling noise, but these models assume the roughness levels as an 

input and do not consider the propensity of a system to develop roughness or corrugation 

over time. The aim of the work of this thesis is to develop a model for the development of 

broadband acoustic roughness, and to use it to assess the effect of different track 

parameters on the rates of rail-head roughness development. Because the focus is on track 

components and parameters, rail roughness is examined rather than wheel roughness 

(although it could be modelled in the same way). 

 

The development of roughness is a rolling contact mechanics problem. The first step 

towards modelling the change in roughness of the railhead over time is to develop a model 

of the dynamic interaction between vehicle and track. This is used to calculate the response 

of the track to the excitation arising from the movement of the wheels over the combined 

roughness of the surfaces. The resulting dynamic interaction forces between the wheels 

and the rail are input into a contact model with a wear calculation to predict the resulting 

change in the railhead roughness profile after a number of wheel passages.  

 

A great deal of work has been published on the subjects of wheel-rail interaction, rolling 

contact mechanics and wear. In Chapter 2, some of the significant work in these complex 
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fields is reviewed in more detail. The conclusions drawn by other authors have been used 

to determine a suitable approach to take in modelling the development of railhead acoustic 

roughness. Following a similar procedure to that used by others to model corrugation 

development, the model of roughness development described in this work may be divided 

into three sections: 

1. A wheel-rail interaction model (presented in Chapters 3 and 4) 

2. A rolling contact mechanics model (Chapters 5, 6 and 8) 

3. A wear model (Chapter 7) 

 

At each stage of the model the effect of different vehicle parameters and track components 

is assessed.  

 

1.2.1 The effect of rail dampers on roughness 

Rail dampers are an example of a change in the track parameters that could affect 

roughness development. Rail damping devices have been shown to be highly effective for 

noise control, both in theoretical simulations and in installations on operating lines 

[Thompson et al., 2007]. Adding rail damping components to the track to control noise 

will change the track dynamics, and a variation in the track dynamics may result in a 

change in the propensity of the system to develop roughness or corrugation. Therefore the 

long term effectiveness of rail dampers for noise control may be affected by the propensity 

of the upgraded system to develop roughness or corrugation over time.  

 

In work linked to this research, measurements of roughness have been carried out by 

Deutsche Bahn AG over several years at a test site near Gersthofen in Germany as part of 

the EU Silence project [Stiebel, 2005; Asmussen et al., 2008]. Rail dampers are installed at 

two locations at this site, with different rail pad stiffnesses. The measured roughness 

spectra are presented in Chapter 9 for comparison with the predictions of the roughness 

growth model. Measured track decay rates from the site have also been used to calibrate 

the finite element model of the track in Chapter 3, and the parameters for the vehicle model 

introduced in Chapter 4 are taken from typical train types at Gersthofen. In this work a 

‘typical’ freight train refers to a typical train at this site, not a general freight train, and 

similarly for regional trains and high-speed trains.  
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1.3 Railway rolling noise 

This work concentrates on the development of acoustic roughness rather than rolling noise 

explicitly. A detailed review of literature on roughness growth is given in Chapter 2. 

However, models of rolling noise and of roughness development share a basis in modelling 

the dynamic interaction between track and vehicle in a similar frequency range. Therefore 

a brief review of railway rolling noise models is given here. Methods of railway noise 

control are also mentioned, since part of this project includes an analysis of the effect of 

rail dampers on the development of railhead acoustic roughness.  

 

1.3.1 Models for the prediction of railway rolling noise 

Rolling noise models can be used to compare different wheel and track designs and to 

optimise the components selected for the best acoustic performance [Vincent et al., 1996]. 

Remington [1976a,b] developed one of the first analytical models of the interaction 

between wheel and rail in order to predict the radiated noise. In this model the combined 

roughness of wheel and rail acts as a vertical excitation to the system. The vibration 

response of the wheel and rail to this excitation is calculated and used to predict the 

resulting noise. Thompson [1993a-e] extended Remington’s theory and implemented the 

model as the computer program TWINS (Track-Wheel Interaction Noise Software).  

 

The TWINS software has been validated by a series of comparisons with measurements, 

both for conventional wheel/track systems [Thompson et al., 1996a,b] and for various 

noise-reducing track and wheel designs [Jones & Thompson, 2003]. These experiments 

have found the TWINS model to be capable of predicting noise levels from wheel and 

track components to within about 2 dB. A number of intermediate stages of the calculation 

have also been examined, including the track response to excitation by the combined 

wheel-rail roughness. Thus the wheel-rail dynamic interaction model has also been 

validated, and the linear relationship between roughness, wheel and rail vibration and the 

resulting noise radiation has been clearly established. 

 

1.3.2 Rolling noise sources and reduction techniques 

The sources of rolling noise are well understood, thanks largely to the development and 

validation of TWINS. For typical ballasted track, the wheels and the rails are both 

significant contributors to the overall rolling noise level. Figure 1.1 shows an example of 
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the sound power level calculated using TWINS for a freight train on track with soft rail 

pads. In this case the rail is the major contributor to the overall noise in the frequency 

range from 500 to 2000 Hz. At lower frequencies, noise from the sleepers dominates, and 

at higher frequencies wheel noise takes over from the rail. The sleeper noise is increasingly 

significant in cases with stiffer rail pads [Thompson & Jones, 2000].  
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Figure 1.1 Example sound power level contributions calculated using TWINS for a typical 
tread-braked freight train wheel on ballasted track with soft rail pads. 
 

Rolling noise reduction techniques have been summarised by Thompson and Gautier 

[2006]. At the source, a noise reduction may be achieved by reducing the roughness of the 

wheels and rails. The next option is to deal with the vibration response to the roughness 

excitation, for example by using wheel or rail dampers. Finally, noise barriers may be used 

to limit propagation. 

 

To reduce the roughness of the rails, the track may be ground. Grinding is usually applied 

as part of track maintenance rather than purely to control noise, although in Germany a 

programme of acoustic rail grinding is in place [Asmussen et al., 2006]. For the wheels, 

using disc-braked vehicles or composite brake blocks rather than cast-iron blocks in tread-

braking systems gives a significant reduction in wheel roughness [Oertli, 2008]. The 

railways are phasing out the use of cast-iron brake blocks mainly due to legislation in the 

form of the TSIs; however, it is expected to take many years before they are eliminated.  

 

Rail damping devices have been designed in order to reduce at source the component of 

railway rolling noise radiated by the track [Maes & Sol, 2003; Thompson et al., 2007; 
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Thompson, 2008]. The rail dampers proposed by Thompson et al. [2007] are tuned, 

damped mass-spring absorber systems, with either a single mass or two masses enclosed in 

an elastomeric material. In their current form these dampers are attached to the rail in pairs 

in the middle of each sleeper bay. The dampers reduce the effective radiating length of the 

rail by increasing the track decay rate. To control the response of the wheel, wheel 

dampers can be used. Wheel dampers are most useful in controlling curve squeal, but they 

also have some effect on rolling noise [Thompson and Gautier, 2006]. Wheel shape 

optimisation can also give some benefit. 

 

Noise barriers restricting propagation should be seen as a last resort for noise control, 

erected at specific problem sites. They are expensive, are not effective at all locations, and 

are often visually intrusive.  

 

For a given roughness level, the noise from the system can be reduced by increasing the 

damping of the track, by acoustic optimisation of wheels and track components or by 

barriers. In the long term, however, the noise level is dependent both on the noise produced 

for a given roughness and on the rate of roughness development.  

 

1.4 Railhead roughness 

The roughness responsible for rolling noise has wavelengths between 5 and 500 mm 

[Thompson, 2009] and amplitudes from less than 1 µm up to about 50 µm [Thompson & 

Jones, 2000]. For a train speed of 100 km/h, this wavelength range corresponds to a 

frequency range of around 50 to 5000 Hz. Roughness is usually expressed as decibel levels 

with a reference value of 1 µm, so a 1 µm (rms) roughness amplitude is equivalent to 0 dB. 

 

Linear noise prediction models are based on the assumption that the roughness from the 

wheel and the rail can be combined by simple incoherent addition. This was found to be 

valid by Thompson [1996] for typical roughness levels. However if either the wheel or the 

rail is significantly rougher than the other component, the resulting noise spectrum will be 

dominated by the rougher surface. For example, the type of braking system employed by 

the rolling stock has a significant effect on the roughness of the wheels. If cast-iron block 

brakes are used then the wheel roughness will tend to dominate unless corrugation is 

present on the rail [Dings & Dittrich, 1996]. 

 



 

8 

Figure 1.2 shows some example roughness spectra reproduced from Dings and Dittrich 

[1996]. The ‘average’ rail roughness shown was determined by measuring roughness at 30 

sites on the Dutch rail network, while the wheel data was obtained from at least 30 samples 

for each type of braking system. The frequency axis on this figure corresponds to a train 

speed of 100 km/h. 
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Figure 1.2 Example roughness spectra. Wheel roughnesses and average rail roughness 
reproduced from Dings and Dittrich [1996]:  TSI limit for rail roughness 
[European Commission, 2005 & 2006]; · · · · · · · average rail roughness; — — — disc 
braked wheel roughness; – · – · – · cast-iron block braked wheel roughness. Frequency 
axis corresponds to a vehicle speed of 100 km/h. 
 

The TSI roughness spectrum [European Commission, 2005 & 2006] is also shown as a 

reference in Figure 1.2. This roughness spectrum is intended as a limit for the rail 

roughness on track that is to be used for pass-by noise measurements. It is considered to be 

a realistic rail roughness spectrum, and it is seen in Figure 1.2 to have a similar level to the 

average rail roughness reported by Dings and Dittrich [1996]. The TSI spectrum is used as 

a reference roughness spectrum throughout this work. 

 

1.4.1 Measurements of railhead roughness 

The standard ISO 3095 [2005] specifies the conditions required to achieve reliable, 

reproducible measurements of the noise emitted by railbound vehicles. Its appendix gives a 
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description of rail roughness measurement and processing techniques. The introduction of 

the Technical Specifications for Interoperability [European Commission, 2005 & 2006] 

has led the European Committee for Standardisation (CEN) to develop a dedicated 

standard for roughness measurements, EN 15610:2009 [CEN, 2009]. In its development, 

this standard was tested in a ‘road test’ described by Jones et al. [2008a,b]. This test used a 

number of different measuring instruments and examined the consistency of approach and 

measured spectra produced by a number of teams independently following the standard. 

Roughness measurements were found to have approximately a ±2 dB variation when 

different measurements were taken of the same line of roughness.  

 

Several different manufacturers produce instruments for measuring roughness but they 

generally fall into two categories. One type of measurement device uses a fixed straight 

edge as a reference with a displacement transducer moving along the rail. This type of 

instrument measures roughness in short segments of around 1.2 m, and as a minimum, five 

separate measurements are then required to determine the roughness of a test section. The 

other type of device uses an accelerometer mounted on a trolley which is moved along an 

unlimited length of rail, with the signal integrated twice to give a displacement output. 

Both systems have been found in the ‘road test’ to be capable of measuring roughness 

accurately [Jones et al., 2008a,b]. 

 

Although roughness can be measured in a standardised way, the time required for a change 

in roughness to be measurable at a particular site means that little data has been published 

on the development of broadband acoustic roughness over time. Cox and Wang [1999] 

describe roughness measurements taken on two nearly new, recently ground, sections of a 

high-speed line in Belgium and repeated one year later. The rail pads in one section were 

very soft, around 80 MN/m, at the other section the rail pad stiffness was around 

370 MN/m which is a medium stiffness for typical ballasted track. The initial roughness 

spectrum at both sites had a peak in the 20 mm wavelength band, attributed to the grinding 

process, which was not apparent in the measurement taken a year later. The site with softer 

rail pads had initially higher roughness levels at wavelengths longer than 20 mm. After a 

year of traffic the roughness spectrum at both sites was very similar. Roughness had 

decreased slightly for wavelengths longer than 2 mm at the softer rail pad site, and 

roughness increased for wavelengths longer than 20 mm at the stiffer rail pad site. It was  

concluded from this study was that roughness grows more on track with stiffer rail pads, 

even though the final roughness levels measured were similar at both locations. 
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Bracciali [2004] made repeated measurements throughout a year over a 120 m section of 

tangent track on a high-speed line in Italy. The track had been ground prior to the 

measurements, and had visible grinding marks that were worn away over several months. 

Both the left and right rails were observed. On the left rail, roughness wavelengths shorter 

than 31.5 mm were found to remain stable or decrease slightly, while longer wavelength 

roughness increased. On the right rail, roughness wavelengths longer than 125 mm 

remained stable while an increase of 2 to 3 dB was observed at shorter wavelengths. 

Roughness increased more slowly in wavelength bands where the initial roughness level 

was lower. In general roughness growth was found to be ‘slow but significant’.  

 

The change in roughness over time observed by Bracciali [2004] or Cox and Wang [1999] 

does not give a definitive indication of the long-term development of roughness when the 

approximate ±2 dB variability in repeatability of results found in the roughness road test 

[Jones et al., 2008a,b] is considered. A longer time frame is needed to observe the 

phenomenon. Measurements at a corrugated site and at an adjacent smooth site have taken 

over about four years in the Netherlands [Hiensch et al., 2002; Nielsen, 2003]. Here the 

corrugated site displayed a growth rate of about 2 dB per year at a wavelength of 40 mm, 

with roughness at other wavelengths also growing consistently for wavelengths longer than 

about 20 mm. In comparison, roughness at the adjacent smooth site remained almost 

constant, growing slightly in some one-third octave wavelength bands and decreasing 

slightly in others. 

 

Verheijen [2006] carried out a survey of roughness measurements on the Dutch network. 

This survey did not explicitly carry out repeated measurements at a single site; however 

some overall conclusions were drawn on the development of roughness over time and the 

effects of rail grinding. Grinding introduces peaks into the roughness spectrum, which are 

worn away over time. When tracks are not ground regularly, in most cases roughness 

levels were found to increase at a rate of 1 to 2 dB per year. Roughness growth was not 

observed uniformly – the smoothest track measured had not been ground for 18 years. 

 

The most comprehensive monitoring of long term roughness growth is that carried out on 

the German railway network on the ‘Specially Monitored Track’ sections [Asmussen et al., 

2006]. Roughness has been monitored since 1998 over almost 1000 km of track using a 

dedicated car with smooth wheels which uses its own rolling noise as an indicator of the 
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track roughness. The technique used means that only average results are available, with 

broadband roughness found to increase by about 0.7 dB per year on average. 

 

1.4.2 Corrugation – a special case of roughness 

Corrugation is a periodic irregularity on the rail surface, which in severe cases can be seen 

with the naked eye. A corrugated rail has a roughness spectrum with a significant peak at 

one particular wavelength. Although there is little data in the literature on the development 

of broadband roughness over time, a great deal of work has been published on the subject 

of corrugation. Sato et al. [2002] estimated that over 1500 papers had been written on the 

subject, and these have been added to since. 

 

Instances of rail corrugation are commonly classified by a damage mechanism and a 

wavelength-fixing mechanism, as described by Grassie and Kalousek [1993]. In some 

instances the reasons for the corrugation formation are clear, for example in cases with 

plastic deformation and heavy haul traffic. One type of corrugation, known as ‘short-pitch 

corrugation’ or ‘roaring rail’ is less well understood. This type of corrugation has 

wavelengths in the range from 25 to 80 mm. Studies of this form of corrugation are of 

interest when considering broadband roughness development since corrugation can 

develop from an initial situation of broadband roughness via a process of differential wear 

[Grassie, 1996]. 

 

Measurements of the development of corrugation have shown that the material properties 

of the rail could be a factor in corrugation development. At adjacent sites 250 m apart in 

the Netherlands subject to the same traffic, corrugation developed at only one of the 

locations [Hiensch et al., 2002]. The only obvious difference between the sites was the rail 

manufacturer. In this case the different tendency to corrugate was explained by different 

wear resistance of the rails, although the corrugated rail displayed a higher wear resistance 

than the smooth rail. A work-hardened, white etching layer was observed on both rails but 

was more pronounced on the corrugated rail. 

 

Hiensch et al. [2002] associated the wavelength of corrugation with a low track receptance 

near the sleepers around 1200 Hz, caused by the pinned-pinned resonance. This is a 

constant-frequency rather than a constant-wavelength phenomenon, and the wavelength of 

the expected corrugation is then proportional to the vehicle speed. Many other authors have 
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also linked the pinned-pinned resonance to corrugation, including Hempelmann et al. 

[1991]; Hempelmann & Knothe [1996]; Nielsen [2003]; Sheng et al. [2006] and Croft et 

al. [2009]. Measurements on the London Underground [Grassie et al., 2007] show that 

corrugation at a particular wavelength corresponding to the pinned-pinned resonance was 

shifted to a different wavelength by a change in the operating speed of the vehicles at the 

site. The pinned-pinned resonance is considered to be a likely wavelength-fixing 

mechanism of short-pitch corrugation [Grassie, 2005]. 

 

The pinned-pinned resonance may act to determine the wavelength of short-pitch 

corrugations in some cases, but alone it is insufficient to explain all corrugation formation. 

Corrugation does not appear on all discretely supported track types, and also appears on 

some continuously supported systems. Corrugation therefore remains an area of intensive 

research. Theories of corrugation formation are discussed in more detail in Chapter 2 in the 

context of models to predict the differential wear of the railhead. 

 

1.4.3 Contact filter effects 

The contact between the wheel and the rail has a finite area, meaning that roughness 

wavelengths shorter than the size of the contact patch tend to be absorbed by the contact 

spring and do not excite the wheel-rail system as effectively as longer wavelength 

roughness. The area of the contact patch is possibly the reason that short wavelength 

roughness such as marks left after rail grinding are observed to decrease over time, and 

why corrugation does not develop at wavelengths shorter than around 25 mm. 

 

To account for the effect of the contact patch size, a ‘contact filter’ is required when 

predicting the interaction force between wheel and rail resulting from the combined 

roughness. Remington [1976a] used a frequency domain filter to account for the contact 

patch size. This filter required an assumption of the extent of correlation of roughness in 

the direction across the rail head. More recently, Remington and Webb [1996] developed a 

three-dimensional ‘Distributed Point Reacting Spring’ (DPRS) model of the contact patch. 

A layer of independent, non-linear springs is assumed to lie between the contacting 

surfaces. This DPRS method is more computationally efficient than the alternatives of 

finite element analysis or using analytical results for the stresses and displacements caused 

by a point force on the surface of a half-space. The results from the DPRS model were 

compared with results from a more complete model of the deformation between contacting 
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bodies using a Boussinesq procedure. The models showed good agreement. The DPRS 

contact model is also available in the TWINS software. 

 

Thompson [2003] used the three-dimensional DPRS model with many parallel measured 

lines of roughness data 2 mm apart, and compared the resulting contact filter characteristic 

with that calculated using Remington’s analytical model [1976a] for different wheel radii 

and loads. He found that the analytical model gives excessive attenuation at high 

frequencies.  

 

Often in practice only a single line of roughness data is measured along the railhead and 

for this case Ford and Thompson [2006] produced a simplified two-dimensional DPRS 

model for calculation of the filtering effect of the contact patch. This particular model of 

the contact filter is employed in this work, as it is the most appropriate method when 

taking a two-dimensional approach to the wheel-rail interaction force analysis. It is 

described further in Section 4.4.4. 

 

1.5 Contributions made in this thesis to understanding the development of acoustic 

roughness 

This work concentrates on mechanisms for broadband roughness development, whereas 

much of the existing work in the field of wheel-rail wear in rolling contact (reviewed in 

Chapter 2) has concentrated on corrugation. Most authors studying corrugation have 

employed Hertzian contact theory. However, recent work has shown that the choice of 

contact model can affect the wear prediction (see Section 2.5.4). This work examines in 

detail the differences arising from Hertzian and non-Hertzian assumptions. 

 

Studies have shown that friction between sliding surfaces decreases as the velocity of 

sliding increases. Velocity-dependent friction coefficients have been used in models of 

wheel squeal [Xie et al., 2006; Huang et al., 2008], but only in conjunction with simplified 

models of the tangential stress distribution. In this work, a velocity-dependent friction 

coefficient is introduced to solve the rolling contact tangential stress distribution. The 

effect of velocity-dependent friction on stress distribution and rail wear is examined. A 

stick-slip oscillation is identified in partially slipping rolling contact when a velocity-

dependent friction law is used.  
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Many existing models of corrugation growth assume frictional abrasive wear to be the sole 

damage mechanism. These models predict ‘infinite’ corrugation growth. But in many 

practical cases corrugation reaches a saturation point and steady-state, and at many sites 

corrugation never forms at all. To model broadband roughness growth there is a need to 

consider a combination of potential wear mechanisms. Two wear mechanisms have been 

shown in the literature to be important for roughness development; frictional abrasive wear 

and ratchetting (see Section 2.4). In this work the wear coefficient throughout the contact is 

determined by the local stresses, and is not limited to mild wear. The contact conditions 

that are required for the transition between frictional abrasive and ratchetting wear are 

examined. 

 

The effect of rail dampers on railway rolling noise when the wheel/rail roughness is 

presumed to be constant is well known; however their effect on track dynamics other than 

the track decay rate has not been examined. This work includes rail dampers in a finite 

element model of the track. The features and complexity of the rail damper model that are 

required in order to simulate their behaviour accurately are determined. The change in 

track receptance due to the rail dampers is then examined. It is of particular interest to 

examine the effect of the rail dampers on the anti-resonance above a sleeper at the pinned-

pinned frequency of the track (see also Croft et al. [2009]). 

 

The wheel-rail interaction forces are modified by the application of rail dampers, in 

particular at the pinned-pinned frequency and corresponding wavelengths. The pinned-

pinned mode has been linked to railhead wear and corrugation. This work demonstrates 

that rail dampers reduce the wheel-rail interaction forces at wavelengths corresponding to 

the pinned-pinned frequency (Section 4.9). The resulting roughness development 

predictions for situations with and without rail dampers are presented in Chapter 9, along 

with the roughness spectra measured by Deutsche Bahn AG at the Gersthofen test site as 

part of the Silence Project. 
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2 REVIEW OF ROUGHNESS AND CORRUGATION MODELLING 

2.1 Introduction 

The aim of this work is to develop a model of the growth of broadband rail roughness. As 

described in Section 1.2, this requires the implementation of a model of the dynamic 

interaction between the wheel and track, as well as a model of the stress distribution in 

rolling contact and the resulting wear of the rail. In this chapter, existing work in these 

fields is reviewed with the aim of determining appropriate methods to use in the current 

analysis. 

 

This review of the literature has been divided into three main sections corresponding to the 

three stages of modelling roughness development that have been identified in Section 1.2. 

Relevant literature on the subject of wheel-rail interaction is further divided into models in 

the frequency domain and models in the time domain. Work on wheel-rail contact 

mechanics begins with Hertzian contact theory and introduces subsequent developments in 

the field. The review of wear models examines different wear mechanisms and 

experimental work to characterise the different types of wear. 

 

This chapter also reviews models of corrugation initiation and growth, in Section 2.5. 

These models are generally based on the theories and models reviewed in Sections 2.2, 2.3 

and 2.4, and some of those theories and models were developed specifically to examine 

corrugation. Reviewing these corrugation models separately clarifies the appropriate 

methods required to model roughness development in this work. 

 

Finally the approach used to model broadband roughness development in this work is 

summarised in Section 2.6. 

 

2.2 Wheel-rail interaction force models 

A model of the interaction between the vehicle wheels and the track is needed as the first 

step towards modelling the change in roughness of the railhead over time. The interaction 

between wheels and rails has been modelled extensively by many researchers for various 

purposes. Models are used to predict the forces on different track components, to predict 

the noise radiated from the system, and to predict the wear of the railhead and wheels. 
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In this section, different wheel-rail interaction force models are discussed with the aim of 

determining the necessary model characteristics to include in this work. Most interaction 

force models may be categorised as either time domain or frequency domain models. 

Historically, time domain models have required a large computational capacity whereas 

frequency domain models are usually more efficient, albeit less flexible. Within these two 

broad categories, models for different applications employ different representations of the 

various track and vehicle components.  

 

2.2.1 Early examples of frequency domain models 

The TWINS model of wheel-rail noise generation developed by Thompson [1993a-e] is 

based on a frequency domain model of the wheel-rail interaction following the work of 

Remington [1976a]. Remington represents the rail as an infinite beam, coupled to a static 

wheel, with a moving roughness excitation passing between the two. This means that the 

receptances of wheel and rail are taken for a stationary force and do not include the 

splitting of resonance frequencies resulting from the vehicle motion [Thompson, 1993a]. 

This deficiency is corrected for the wheel in Thompson’s model [1993e], where it is 

important for noise, and is implemented in the TWINS software.  

 

Grassie et al. [1982] proposed two frequency domain models of the track, one with an 

infinite track on continuous supports and the other a periodically supported track (similar 

models of the track are included in TWINS). They calculated the contact forces between a 

moving wheel mass and a sinusoidal corrugated rail. At around the same time, Clark et al. 

[1982] developed a time domain model using similar parameters. Grassie noted qualitative 

agreement between the predictions from the two models. Some differences in magnitude 

were evident but could be attributed to differences between the damping models. At this 

stage of development, none of the models took account of the effect of the presence of 

multiple vehicle wheels on the wheel-rail interaction. 

 

2.2.2 Frequency domain models with multiple wheels 

Wu and Thompson [2001, 2002] developed a frequency domain model with multiple 

wheels on the rail, by using the superposition principle. In this method, one wheel is 

assumed to be active (roughness is present) while the others are passive. Each wheel is 

treated in turn as the active wheel. The principle of superposition may then be applied to 

determine the resulting forces and vibration. Coupling of the response to each wheel 
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through the vehicle body is neglected as the suspension will isolate the vehicle body at the 

frequencies of interest of above 50 Hz. Wu and Thompson [2001, 2002] found that for 

frequencies up to about 550 Hz (and for the track parameters used) the interaction forces 

are virtually unaffected by the presence in the model of multiple wheels on the rail. 

Between 550 Hz and 1200 Hz there is noticeable difference between the single and 

multiple wheel models. Wave reflections between the wheels are responsible for peaks in 

the interaction force spectrum. With softer rail pads, this effect is more noticeable than 

with stiffer rail pads; in the latter case the interaction force around the pinned-pinned 

frequency is dominant over the reflected wave effects. 

 

Since the spectrum of the railhead wear is thought to be proportional to the interaction 

force spectrum, corrugation is expected to be associated with a peak in the interaction force 

spectrum. Consequently these authors recommend that effects from multiple wheels should 

be included in any model of interaction force and the resulting wear or roughness 

development. Wheels more than 10 m away may be neglected because of the decay of 

vibrations along the track.  

 

2.2.3 Improving the representation of the rail in frequency domain models 

For vertical vibration, a single Timoshenko beam model may be used only for frequencies 

up to about 2000 Hz. Above this frequency the foot response may be considerably higher 

than the head response. Figure 2.1 shows different possible representations of the rail 

cross-section of increasing complexity. Wu and Thompson [1999a] modelled the rail using 

a double Timoshenko beam model to give a better representation of the rail profile without 

the increase in computational effort required by a finite element model. One beam 

represents the rail head and web, connected by continuously distributed springs to another 

beam representing the rail foot (shown in Figure 2.1(b), symmetry means the two rail feet 

shown can be treated mathematically as a single beam). Wu and Thompson [1999a] also 

point out that a discretely supported rail model is important for frequencies above 1000 Hz. 

 

A multiple beam model can also be used to examine the lateral behaviour of the track [Wu 

and Thompson, 1999b]. Compared with modelling vertical rail vibration, it is more 

difficult to model lateral rail vibration because cross-sectional deformation of the rail 

should be taken into account. Finite element methods may be used but these result in a 

large number of degrees of freedom. Wu and Thompson proposed a model where infinite 
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Timoshenko beams with torsion represent the head and foot of the rail, connected by an 

array of finite beams to represent the bending of the web.  

 

Alternatively, the rail cross-section can be represented by finite elements as shown in 

Figure 2.1(c). An example is the frequency domain interaction model used by Müller 

[1999, 2000] in his studies of corrugation growth. This model uses finite element matrices 

to describe the rail so that the rail profile can be considered more accurately than by using 

a simple beam model. The track is assumed to be infinite, and the rail is discretely 

supported by rail pads, sleepers and ballast. Müller takes account of the elasticity of the 

wheelset, six degrees of freedom at each node, transient creep, shift of the contact point 

(due to the geometry of the initial roughness) and filter effects due to the size of the contact 

patch. This is a comprehensive model, building on the work of Hempelmann et al. [1991, 

1996], within the limitations of assumed linearity about small levels of roughness and 

without including the effects of multiple wheels. As with all the frequency domain models 

reviewed so far, a further limitation is that the load does not move along the rail, rather a 

‘roughness strip’ is moved between the wheel and the rail, and therefore parametric 

excitation due to the discrete supports is also not considered.  

 

 

Figure 2.1 Increasing complexity of representation of rail cross-section: (a) single beam 
model; (b) multiple beam model; (c) finite elements [Wu & Thompson, 1999a] 
 

2.2.4 Parametric excitation effects in frequency domain models 

Parametric excitation occurs as a result of variation in the dynamic stiffness of a track 

arising from supporting the rail with sleepers at discrete locations. This variation in 

stiffness can be seen at the pinned-pinned resonance frequency in the rail receptance (the 

inverse of stiffness) above a sleeper and in the middle of a sleeper bay, shown in 

(a) (b) (c) 
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Figure 2.2. The wheel-rail interaction force therefore varies periodically with the sleeper-

passing frequency. Wu and Thompson [2004] employed a single wheel frequency domain 

model to demonstrate the magnitude of this parametric excitation on the system, and to 

compare it with the excitation arising from normal wheel and rail roughness. The 

interaction force due to parametric excitation was found to increase with increasing train 

speed. The interaction force spectrum shows the sleeper passing frequency and its 

harmonics, with high force components seen around the pinned-pinned frequency. 

However if major discontinuities or large roughness levels are present, the parametric 

excitation effect becomes less significant compared with the higher excitation levels from 

other sources. 
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Figure 2.2 Vertical point receptance of rail from a single Timoshenko beam model with 
discrete supports:  mid-span; — — — above sleeper. Obtained using frequency 
domain model described in Chapter 3. 
 

Parametric effects are most noticeable when the sleeper spacing is exactly periodic. Wu 

and Thompson [2000] examined the influence of random sleeper spacing and ballast 

stiffness on the dynamics of a track, using a method introduced by Heckl [1995]. The 

results show that with random parameters, the point receptance and track decay rate 

become distributed rather than having a fixed value. The random ballast stiffness mainly 

affects track vibration at low frequencies below 300 Hz, while the random sleeper spacing 

influences the response in the whole frequency range considered, 50 to 1500 Hz. In 

particular the pinned-pinned resonance becomes less sharp and can be suppressed 
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completely if there is enough variability in the sleeper spacing. The effects of random 

sleeper spacing are more noticeable on track with stiff pads than track with soft pads. 

Despite these variations, the regular and irregular track models do not predict a significant 

difference in the resulting rolling noise.  

 

2.2.5 Recent developments in frequency domain models  

Sheng et al. [2005] developed a frequency domain model based on spatial harmonics that 

is very efficient computationally, and allows the problem to be addressed by using the 

force-time history for a single sleeper bay. The dynamic force and thence the roughness 

growth are modelled as periodic with the sleeper spacing. This model has the disadvantage 

that the track structure must be exactly periodic; however it can include multiple moving 

wheels on the rail. A single Timoshenko beam was used to represent the vertical dynamics 

up to 3000 Hz. This wavenumber-based approach has been used to compare results with 

moving and stationary loads. The load speed is found to have a significant effect on the 

vibration response of the track at the pinned-pinned frequency. The height/depth of the 

peak/dip in the track vibration response spectrum at the pinned-pinned frequency decreases 

as the load speed increases. Also the peak at the pinned-pinned frequency is split into two.  

 

Some improvements to this model have been made and are described by Sheng et al. 

[2007] incorporating a Fourier-series approach. This work removes the limitation that force 

and roughness must be periodic with the sleeper bay length, allowing the roughness 

excitation to be periodic over a greater number of sleeper bays.  

 

Frequency domain wheel-rail interaction models can take account of multiple wheels and 

parametric excitation, and are more computationally efficient than many time domain 

models. The remaining limitation is the assumption of linearity inherent in a frequency 

domain model. This is valid as long as the roughness excitation of the system is low, so the 

frequency domain is often used for noise prediction models. In comparison, time domain 

models have been developed mostly to study cases where non-linear effects are significant, 

for example in modelling rail corrugation or forces arising from wheel flats or 

polygonisation.  
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2.2.6 Early time domain models 

Clark et al. [1982] developed one of the earliest time domain models of the dynamic 

effects generated by a wheel running over a corrugated rail, and carried out an experiment 

to confirm the predicted dynamic responses. This model used a 20 sleeper bay length of 

rail, represented by Euler beam elements with fixed boundary conditions at the ends. The 

track must be a finite length because the time domain model uses a modal summation 

technique. The sleepers were also included in the track model as flexible beams, to 

incorporate their bending modes in the frequency range of interest which was from 0 to 

1300 Hz.  

 

Nielsen and Abrahamsson [1992] developed a general method for the analysis of problems 

involving moving non-linear systems on continuous damped beam structures. The method 

was based on earlier work by Lundén and Åkesson [1983], Abrahamsson [1988] and by 

Nielsen [1991] on the natural frequencies and modes of beam structures, and is expanded 

in later papers for the specific purpose of modelling wheel-rail interactions. This original 

Nielsen model entailed a track modelled by Timoshenko beam elements, fixed at each end, 

characterised by exact stiffness matrices and solved via the Wittrick-Williams algorithm 

[Wittrick & Williams, 1971] to obtain the modal parameters. The vehicle model was of 

half a bogie, i.e. two wheels, coupled to the track via constraints on contact force and the 

displacements and accelerations of the point of contact. These constraints allowed for the 

inclusion of a roughness function along the rail surface. Nielsen [1991] used interpolating 

polynomials to distribute the forces and displacement of the point of contact onto the 

adjacent nodes of the track finite element model as the wheel moves along the track with 

time. Another feature of Nielsen’s model is the use of a state-space formulation of the 

problem to enable a solution by time-stepping using a standard Adams integration routine.  

 

Nielsen [1994] used this model to examine the influence of various track parameters on the 

dynamic wheel-rail interaction. The effect on the system of changes in sleeper cross-

sectional area, rail cross-sectional area, sleeper spacing, pad stiffness and damping and 

ballast stiffness under the end and middle of the sleeper was assessed. For this study, rail 

and wheel roughness were neglected and responses were found to be nearly quasi-static.  

 

Further work by Fermér and Nielsen [1995] examined the influence of soft rail pads 

compared with stiff rail pads. The vertical dynamic interaction forces were calculated 

using Nielsen’s model for a range of different loading cases and compared with 
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measurements taken using an instrumented wagon. The standard deviation of the results 

was found to increase with vehicle speed, but in general the model calculated frequency 

response functions that matched well with measured values. The calculated interaction 

forces also agreed reasonably well with measurements for train speeds up to about 

80 km/h. The sleeper responses were overestimated - it was concluded that the rail pad and 

ballast model used was overly simplistic to model the frequency dependent behaviour of 

the track throughout the full frequency range examined, up to 1000 Hz.  

 

Nielsen and Igeland [1995] revised this model, which is known as ‘DIFF’, this time using 

standard polynomial finite elements and improving the efficiency of the model by moving 

away from the Wittrick-Williams algorithm. The sleeper model was extended from simple 

masses to beam elements. They used the model to investigate the effect of wheel and track 

imperfections on interaction forces. A finding was that a model with a single unsprung 

mass as the vehicle model may underestimate the dynamic response of the system.  

 

Two wheels can interact through the vibration of the track structure. Igeland [1996] 

investigated this phenomenon in a study that combined the interaction force model with 

wear theory in an attempt to explain rail corrugation growth. She found that resonance in 

the coupled bogie/track system has a significant effect on the interaction forces, especially 

if the wheelbase is equal to an integer number of sleeper spacings, as this appears to 

exaggerate the effect of the pinned-pinned resonance. Consequently, including more than 

one wheel is important in an interaction force model. Igeland [1999] also introduced 

variable sleeper spacings into the model in order to compare theoretical results with full 

scale measurements. 

 

Igeland [1997] modified the model further by improving the ballast model to include a 

ballast mass as well as stiffness and damping. However, she reverted to a single wheel 

vehicle model and a simplified rigid sleeper model. 

 

2.2.7 Time domain models with more complex track support representation 

The interaction model developed initially by Nielsen has continued to be updated. Two 

areas of improvement have been (1) modelling the vehicle using flexible components 

[Andersson & Oscarsson, 2000] and (2) the modification of the linear track model to 
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include state-dependent (non-linear) properties of the ballast and rail pads [Andersson & 

Oscarsson, 2000; Nielsen & Oscarsson, 2004].  

 

Andersson and Oscarsson [2000] considered vertical track dynamics only. They used state-

dependent ballast and pad parameters, i.e. the parameters depend on the load, and are valid 

for a dynamic frequency range rather than just for static loadings. A three-parameter 

viscoelastic model of the rail pad was employed consisting of a spring in parallel with a 

Maxwell element. The model was found to represent both low and high frequency 

train/track interaction well. The vehicle representation was also extended, by including one 

wheel, half an axle (modelled by finite elements) and a quarter of a bogie frame 

represented by a lumped mass. Previously a lumped mass wheel model had been used. The 

findings from this study were that only small differences exist between the results for a 

state-dependent track model with a flexible wheel and a linear track model with a lumped 

mass wheel. A simple vehicle model was found to be sufficient if only the vertical motion 

of the system is to be considered. 

 

Nielsen and Oscarsson [2004] used complex modal superposition in the presence of state-

dependent track properties to model the wheel-rail interaction. They included the stiffness 

and damping of rail pads and ballast by adding a linear contribution from the unloaded 

track to increments determined by the time-varying state of the simulation. The time-

varying component was added in the form of external forces on the corresponding nodes of 

the model. This model has been validated by experimental measurements, and using state-

dependent track properties was found to improve the agreement of the model results with 

experimental data. 

 

2.2.8 Recent developments in time domain models 

Nielsen’s model DIFF, developed at Chalmers University over many years, was extended 

to allow for general motion by Andersson and Abrahamsson [2002], who added lateral and 

longitudinal dynamics to the existing vertical track dynamics. They modelled both rails 

and two wheelsets to include the flexibility of the vehicle. This model (known as DIFF3D) 

was developed to form a basis for wear and corrugation studies for a frequency range of up 

to 1000 Hz. General vehicle dynamics results from the model were verified by comparison 

with a commercial multibody program with good agreement. Vertical dynamics results 
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from DIFF3D were compared with the output from the two-dimensional DIFF. The normal 

forces calculated by the two and three-dimensional models are almost identical. 

 

The two-dimensional DIFF model has been validated for the frequency range of 20 to 

2000 Hz by a campaign of field tests using an instrumented wheelset and a wheel impact 

load detector [Nielsen, 2006]. Several different versions of the model were examined, 

considering different visco-elastic representations of the rail pad and either a single wheel 

or two-wheel model of the vehicle with the wheel itself included either as a rigid mass or a 

more detailed finite-element representation. All the vehicle models were found to give 

similar results although with some differences. Including more than one wheel in the 

model allows the capture of standing waves in the rail between successive wheels. A 

lumped mass wheel model neglects the influence of wheel modes in the frequency range of 

interest. These give several distinct peaks and troughs in the interaction force spectrum. 

The choice of track model was found to have a negligible effect on the calculated contact 

forces, indicating that a simple spring and damper representation of the rail pad is adequate 

to predict the force in the frequency range of the model, i.e. from 20 to 2000 Hz. Nielsen 

[2006] concludes: “Based on the good and consistent agreement between measured and 

simulated vertical contact forces, both with respect to magnitude and frequency content, it 

is argued that the computer program DIFF is a useful tool in investigations of vertical 

dynamic train-track interaction at high frequencies.” 

 

Other recent work in this area has concentrated on improving the computational efficiency 

of time domain wheel-rail interaction models. Baeza et al. [2006] proposed a modal 

substructuring approach, where the rail and sleeper, which display linear behaviour, are 

modelled using modal coordinates and the other components, such as the rail pads and 

ballast, are introduced by means of the forces in connecting elements. DIFF was used as a 

reference to validate the model, but the difference in computational cost of the new 

approach is not quantified in the paper. 

 

Pieringer et al. [2008] represent the wheel and rail by sets of impulse response functions or 

Green’s functions, a technique that has its origins in work on tyre/road contact. Since the 

Green’s functions are calculated in advance for a particular wheel and track model, the 

calculation of interaction forces is extremely fast for a perfectly periodic track. The DIFF 

model has again been used as a reference for model validation, with good agreement found 

for the normal force calculation. An advantage of Pieringer’s technique over DIFF is that 
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the rail is not divided into elements, so no discretisation effects occur. Also, it has the 

potential to include more complex representations of the wheel-rail contact, including 

tangential effects. Most time domain interaction force models simplify the contact to a 

Hertzian spring acting at a single point, and pre-process the roughness input to take 

account of the contact filter effect. Any tangential analysis of the contact follows as a 

separate calculation step. In Pieringer’s model, the size of the contact and the distribution 

of normal and tangential stress taking account of the surface roughness may be determined 

at each time-step without the need for pre- or post-processing.  

 

This review of time domain wheel-rail interaction models has concentrated largely on work 

done at Chalmers University of Technology. Other authors to use time domain modelling 

techniques include Zhai et al. [1996, 2001], Ilias [1999], Wu and Thompson [2004], and 

Xie and Iwnicki [2008b,c]. 

 

2.2.9 Summary of wheel-rail interaction models 

Models of the interaction force between wheel and rail have been developed and refined 

over the last thirty years. The vertical interaction problem in particular has been studied in 

great detail, including the experimental validation of a two-dimensional time domain 

model by Nielsen [2006]. Depending on the frequency range and parameters of interest, 

models of varying complexity are available in both the time and frequency domains. The 

general statement that time domain models tend to be more flexible whereas frequency-

domain models are more computationally efficient still holds, although advances in 

computational capabilities mean that time domain analyses are becoming possible for 

increasingly complex models. An example of this is the three-dimensional analysis of 

Andersson and Abrahamsson [2002]. In addition, the impulse response function approach 

of Pieringer et al. [2008] has the potential to make a significant reduction in calculation 

times compared with more established time domain techniques.  

 

2.3 Wheel-rail contact mechanics 

In most wheel-rail interaction force models, the effect of the discrete size of the contact 

patch is limited to filtering the roughness excitation to the system. The contact area is 

commonly replaced by a Hertzian spring acting at a single point. This is adequate for the 

determination of the overall normal forces. However to predict the wear of the railhead, a 

more detailed analysis of the wheel-rail contact is required. In this section, some of the 
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significant contact mechanics theories are reviewed, beginning with frictionless Hertzian 

contact, which considers normal forces only. Techniques for including tangential loadings 

are also discussed. Alternatives to Hertzian contact theory include Kalker’s numerical 

methods and elastic foundation models. 

 

2.3.1 Background 

Johnson’s book Contact Mechanics [2001] is a comprehensive text on the subject. It begins 

with stationary contact problems and describes theories of increasing complexity, 

including elastic and inelastic materials, normal and tangential loading, rolling and sliding 

contact and treatment of rough surfaces.  

 

The aim of the contact analysis in the context of this current work is to determine the size 

and shape of the contact between the wheel and the rail, and the distribution of normal and 

tangential stresses throughout the contact area.  

 

In the case of rolling contact, tangential loads can result in a relative displacement between 

parts of the contacting surfaces. In terms of the contacting bodies as a whole, this relative 

displacement is known as creep or creepage. Creep is relieved inside the contact area by a 

small relative motion over part of the interface known as ‘slip’. The rest of the interface 

‘sticks’ or deforms without relative motion. The magnitude of creep between contacting 

bodies is often defined as a ratio, for example in terms of the difference between the 

translational velocity of the wheel and its circumferential velocity at the rail (see 

Section 6.2).  

 

The division of the contact into stick and slip zones is not known in advance and must be 

determined by trial, for example by initially assuming that no slip occurs anywhere and 

then examining the solution for stress distribution iteratively. With steady rolling, it may 

be assumed that there is no change in either the forces or contact geometry over time. 

Many models of corrugation initiation and growth assume steady rolling. But if the 

interaction forces fluctuate with time, as in the rolling of a wheel over a rough rail, any 

calculation of the stress distribution in the contact zone and the areas of stick and slip 

should proceed step by step from a set of initial conditions. 
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2.3.2 Hertzian theory 

Hertzian theory (developed in 1880 by Heinrich Rudolf Hertz) shows that the contact area 

between parabolic surfaces is elliptical, describes how it grows in size with increasing 

load, and gives the magnitude and distribution of surface tractions transmitted across the 

interface. The restrictions or assumptions of Hertz theory are summarised by Johnson 

[2001]. The profiles must be parabolic, and any higher terms are neglected. Surfaces must 

be smooth, non-conforming and frictionless. Elastic half-space theory must be valid, that is 

the contact dimensions must be small compared with radii of curvature of the undeformed 

surfaces and the contact stresses must not depend on the shape of the bodies away from the 

contact patch.  

 

Based on these restrictions, Hertzian theory is not strictly applicable for the wheel-rail 

contact. The roughness of the surface in practice is likely to contain wavelengths that are of 

comparable length to the dimensions of the contact patch, so the assumption of non-

conforming surfaces may be incorrect on the scale of the roughness. Conforming surfaces 

may also arise across the width of the contact if the wheel and rail profiles are worn. In 

addition, the assumption of frictionless contact is inconsistent with a model to predict the 

wear of a rail due to frictional work.  

 

Despite its limitations, Hertz theory gives a complete three-dimensional description of the 

normal stress distribution for a steady-state without oscillating forces. It has the advantage 

that the size of the elliptical contact and the ratio of the axes can be calculated directly 

from a simple set of equations with a low computational effort.  

 

2.3.3 Including tangential effects 

The tangential force that can be supported by the wheel-rail contact increases with 

increasing creep, until the friction limit is reached and the full contact area slips. Figure 2.3 

shows a simple linear representation of the creep-force relationship. The first model of 

wheel-rail contact developed specifically for a railway application was that published by 

Carter [1926], a two-dimensional solution to the problem of frictional losses in driving or 

braked locomotive wheels. In this case, large tangential forces are transmitted. Carter 

developed a creep-force law connecting the driving-braking couple and the creep ratio (see 

Section 6.2). Carter’s theory is considered insufficient for vehicle motion simulation as 

only longitudinal, and not lateral, forces are included [Kalker, 1991]. Despite this 
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limitation it has all the necessary elements for a basic prediction of the stress in the contact 

patch based on Hertz theory. 

 

 

Figure 2.3 Example of a linear creep-force relationship 
 

Vermeulen and Johnson [1964] generalized Carter’s theory from the two-dimensional 

model, firstly, to include circular contacts and longitudinal and lateral creep (but no spin), 

and then to include elliptical contact areas. They assumed a linear relationship between 

tangential force and creep. Shen, Hedrick and Elkins [1983] then developed a non-linear 

creep law based on Vermeulen and Johnson’s theory. They used more accurate creep 

coefficients than the approximate values used previously, and incorporated spin (although 

not entirely successfully according to Kalker [1991]). Their theory is valid for unrestricted 

creep but only for small spin, and is therefore useful for vehicle dynamics simulation on 

straight track where no flanging occurs. Again its use is confined to elliptical Hertzian 

contacts. 

 

Kalker’s linear creep contact theory makes use of three-dimensional Hertz theory [Kalker, 

1991]. This linear theory is valid for cases with low creep or vanishing slip, as is the case 

for example if the coefficient of friction is high. Rolling takes place in the direction of one 

of the axes of the contact ellipse. Creep coefficients are defined depending only on 

Poisson’s ratio and the ratio of the axes of the contact ellipse. The latter in turn depends 

only on the curvatures of wheel and rail.  

 

Kalker provided a computer program called ‘FASTSIM’ for calculating the total force in 

rolling contact from a given creep and spin, assuming an elliptical Hertzian contact patch 

[Kalker, 1982]. The main advantage of FASTSIM is its speed and relative accuracy for 

cases with Hertzian contact, but it is less accurate if the Hertzian assumptions do not apply. 
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The algorithm divides the contact area into strips, treating each strip as a two-dimensional 

problem. This method neglects interaction between the strips, and works best if the contact 

patch width is much greater than its length in the rolling direction. The surface 

displacement at a point is determined only by the surface traction at the same point, 

whereas in reality the displacement at a point depends on the traction at all points on the 

surface.  

 

2.3.4 Non-Hertzian contact 

Kalker also developed an ‘exact’ method for all contact problems of bodies that can be 

described by half-spaces, as described in his book Three-Dimensional Elastic Bodies in 

Rolling Contact [1990]. This is implemented in the computer program ‘CONTACT’. 

CONTACT works by a variational method, minimising a strain energy function subject to 

the constraint that the contact pressure is positive everywhere (and presumably zero at the 

edges of the contact). It can be used for both Hertzian and non-Hertzian contact problems, 

and takes account of transient effects by calculating step by step from given initial 

conditions, following the loading history of the particular problem.  

 

The main limitation of CONTACT is the computation time [Kalker, 1991]. An extremely 

fine discretization of the potential contact area is required in order to deal with micro-

roughness of the surface. Also, CONTACT is limited to elastic problems and does not 

include plastic deformation of any asperities.  

 

If micro-roughness is included, it is predicted using CONTACT that the maximum contact 

stresses will actually be several times higher than those predicted by Hertzian theory, and 

correspondingly the real contact length will be less than predicted by Hertz. The high 

stresses are limited to a layer next to the surface which should experience some plastic 

deformation, which may be responsible for the formation of white etching layers [Kalker, 

1991]. 

 

Although CONTACT has historically been prohibitively slow for analysing rolling over 

the distance required for railway wear analysis, since its inception it has remained the 

standard against which most other models have been validated. In Knothe’s [2008] review 

of the history of wheel-rail contact mechanics he states, “Nowadays, most problems of 

rolling contact mechanics can be solved using Kalker’s programs”. 
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2.3.5 Elastic foundation models 

An alternative to the elastic half-space assumption is to replace the contact between the 

two bodies by a Winkler elastic foundation or ‘mattress’. This avoids the difficulty in 

elastic contact stress theory that the displacement at any point on the contact surface 

depends on the distribution of pressure throughout the whole contact [Johnson, 2001]. If 

there is no interaction between the springs of the model, then the contact pressure at any 

point depends only on the displacement at that point. Kalker’s FASTSIM code uses this 

principle. The shape and size of the contact patch is determined from the elastic foundation 

model, then stick and slip conditions can be applied (as in other models) to find the 

distribution of the tangential traction.  

 

Remington and Webb’s [1996] three-dimensional ‘Distributed Point Reacting Springs’ 

model used non-linear independent springs to simulate the normal contact, but does not 

solve the tangential problem.  

 

2.3.6 Other developments in contact mechanics 

In Kalker’s [1991] review of wheel-rail rolling contact theory he draws conclusions about 

the appropriate models to use for various purposes. For wear calculations where the profile 

is developing over time without particular corrugation, Kalker is of the opinion that only a 

complete, exact theory such as CONTACT is appropriate. Ten years later Knothe et al. 

[2001] reviewed the state of the art in techniques for modelling wheel-rail contact 

mechanics. CONTACT remained the most encompassing model available, although 

Knothe notes that simpler models have uses in steady-state cases.  

 

Jin and Zhang [2001] have produced a rolling contact theory similar to Kalker’s model but 

valid for general three-dimensional rolling contact, avoiding the half-space assumption. 

This allows the influence of the geometry of the contacting surfaces and any other 

boundary conditions, such as elastic deformation of the rail structure, to be included. 

However it is not clear how much difference this makes to the solution obtained. 

 

Surface adhesion effects in rolling contact have been analysed by Hao and Keer [2007]. 

These effectively contribute to friction in the contact, but, while friction forces are 

commonly modelled as being proportional to the normal load, surface adhesion can occur 
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in the absence of overall forces as a result of attraction between surfaces on an atomic 

level. This is an interesting tribological problem, but for railway applications the high 

normal forces mean that surface adhesion effects become less significant.  

 

Recent work on rolling contact in many cases has been driven by vehicle motion 

simulation problems. Particular attention has been paid to improving on a Hertzian 

representation of the contact without increasing the computational cost of the problem, and 

also to the creep-force relationship, and predicting adhesion limits for traction control 

purposes.  

 

Ayasse and Chollet [2005] allow for non-Hertzian conditions in the lateral direction (e.g. 

the transition from an arc to a flat) but assume Hertzian conditions in the direction of 

travel. This technique does not account for any effects of the surface roughness or possible 

two-point contacts, but has applications for improving on a purely Hertzian model in 

vehicle motion simulations. The size and shape of the contact patches are no longer 

elliptical due to the correction in the lateral direction. The calculation of stress in the patch 

is carried out in strips in a similar manner to Kalker’s FASTSIM algorithm. 

 

The effect of surface roughness on the contact problem has been studied by Bucher et al. 

[2002], to determine if the gradient of the creep-force relationship is changed by the 

presence of surface roughness. They show that the roughness can be considered as a 

boundary layer, and that increasing roughness levels reduce the tangential force that can be 

supported in the contact. Pauk and Zastrau [2003] used a similar technique to include 

roughness in a rolling contact analysis by means of dimensionless roughness parameters. 

This is an analytical model that effectively modifies the shape of the normal and tangential 

stress distributions depending on the overall roughness level rather than the particular 

roughness profile, giving more creep between rough rollers than between smooth rollers. 

These models are used in the low creep range leading up to the adhesion limit.  

 

The negative gradient part of the creep-force curve at high creepages is another subject of 

study. This has been observed in measurements, for example by Zhang et al. [2002] and by 

Polach [2005], and is attributed to velocity-dependent friction, itself probably the result of 

thermal effects [Kragelskii, 1965]. Bucher et al. [2006] have modelled dry friction in the 

wheel-rail contact using the technique of movable cellular automata. They investigated 

different friction laws, temperature-velocity dependence and the effect of roughness at 
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three levels of consideration – macro, micro and nano. They found that the decrease in 

creep-force curves at high creep values is well explained by temperature, velocity and 

friction effects. The friction law was found to be highly dependent on the material 

properties, and on dynamic processes at the nano-scale. 

 

The effect of temperature and velocity on the coefficient of friction has also been studied 

using finite element methods. Daves and Fischer [2002] solved the contact problem taking 

account of non-linearities, contact stress distribution, temperature effects and plastic 

deformation. Their study shows that the material properties at the contact may be highly 

variable over time. They conclude that assuming elasticity in the wheel-rail contact may be 

overly simplistic. 

 

Giménez et al. [2005] introduced a velocity-dependent friction coefficient into Kalker’s 

FASTSIM algorithm (see also Alonso and Giménez [2008a]). This model has been used by 

Xie et al. [2006] to study wheel squeal but until now, velocity-dependent friction has not 

been considered in studies of roughness growth or corrugation. 

 

Historically it has been impossible to carry out experiments to characterise the contact 

between rough wheels and rails due to the difficulty in measuring stress distributions inside 

the contact area. Marshall et al. [2006] have used ultrasound measurements to quantify the 

stress distribution in new, worn and damaged wheel-rail contacts. The roughness was 

found to influence the stress distribution significantly compared with a Hertzian analysis. 

Short wavelength roughness on the wheel was also observed to become smoother over 

time, repeating, in the laboratory, a result that has been observed on rails in the field, where 

short wavelength grinding marks wear away after many wheel passages. 

 

2.4 Wear mechanisms 

In a general sense, wear may be divided into four main types [Rabinowicz, 1965]. 

(1) Adhesive wear occurs when material fragments are pulled off one, initially smooth, 

surface and adhere to the other surface in sliding contact. Material is transferred rather than 

lost. (2) Abrasive wear occurs when rough surfaces slide over one another, displacing 

material which forms loose wear particles. (3) Surface fatigue wear is observed during 

repeated sliding or rolling, causing the formation of cracks which eventually result in the 

break up of the surface. (4) Finally, corrosive wear occurs when sliding wears away the 
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protective film formed by corrosion, allowing further corrosion to take place. Of these four 

wear mechanisms, abrasive wear and surface fatigue are the most relevant for railway 

roughness development. 

 

Nearly all the discussion of railhead wear or damage mechanisms in the literature has 

centred on the mechanisms of corrugation formation and rolling contact fatigue, rather than 

on mechanisms for general roughness growth over time. This is because corrugation and 

rolling contact fatigue are more immediate problems for railways than the noise arising 

from the normal broad spectrum of rail roughness levels. The wear mechanisms involved 

in corrugation development, rolling contact fatigue and general roughness growth are not 

necessarily the same, and it is likely that a combination of the various wear mechanisms 

occurs in many cases.  

 

For corrugation, Grassie and Kalousek [1993] summarised the knowledge of the time on its 

characteristics, causes and treatments. They classified six different types of corrugation 

(heavy haul, light rail, booted sleeper, contact fatigue, rutting and roaring rails). They 

attribute corrugation development to three damage mechanisms: plastic deformation, 

rolling contact fatigue and frictional or abrasive wear. 

 

2.4.1 Abrasive wear 

Abrasive wear occurs as a small amount of material is removed with every wheel passage. 

This is often assumed to be proportional to the frictional work done in the contact area. 

The wear relationship is commonly represented by Archard’s wear equation [Archard & 

Hirst, 1956]. 

 

In the time and frequency domain interaction models discussed in Section 2.2, most 

authors that have gone on to examine roughness or corrugation have done so by assuming 

an abrasive wear mechanism. Models assuming abrasive wear tend to differ in the 

complexity of their representation of the contact mechanics, rather than in their 

representation of the wear, although there is some variation in the constant of 

proportionality used in the wear equation. 
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2.4.2 Rolling contact fatigue and ‘ratchetting’ wear 

Rolling contact fatigue is generally thought of as micro-cracks in the rail material growing 

as the result of repeated loadings, and causing damage to the rail when they become large 

enough and reach the surface. Rolling contact fatigue can result in general wear of the 

railhead, as well as cracking. ‘Ratchetting’ refers to the wear mechanism that is a result of 

high stresses exceeding the elastic limit of the material and leading to some form of plastic 

flow [Kapoor, 1997]. Depending on the loading there may be some strain hardening so that 

on subsequent applications of the load, there is no further plastic flow. High loading can 

lead to varying degrees of plastic strain which may result in failure. 

 

Alwahdi et al. [2005] considered ratchetting wear of a ductile material to be a possible 

mechanism for the wear of rails. They developed a model that divides the material into 

layers of ‘bricks’. After failure, a brick will be removed when its layer reaches the surface 

of the material. This paper builds on earlier work by Kapoor and Franklin [2000] and 

Franklin et al. [2001, 2003].  

 

The orthogonal shear stress used by Alwahdi et al. [2005] was calculated for a Hertzian 

elastic contact with an elliptical pressure distribution. The model allowed for partial slip in 

the contact region and the effects of partial slip and work hardening on the wear rate were 

examined and compared with the full slip case. The model predicted that, after an initial 

period with no wear, wear rates would increase sharply before settling down to a steady-

state. Work hardening was shown to increase the duration of the initial period of no wear, 

and to reduce the wear rate in the steady-state period. Increased traction coefficients 

resulted in increasing wear rates. Increasing the creep increased the wear rate up to a 

maximum value. Overall, the wear rates calculated using this model were found to be in 

good agreement with measured values for total height of rail removed (about 0.5 mm over 

16 months, or 376,000 cycles).  

 

Recent work by Franklin and Kapoor [2007] and by Franklin et al. [2008] has developed 

the ‘brick’ model further to consider roughness effects and to include the effects of rail 

steel microstructure on wear and crack initiation. 
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2.4.3 Plastic deformation 

Plastic deformation occurs when the stresses in the surface of the rail exceed the elastic 

limit of the material. This may occur in the wheel-rail contact area as a whole if 

corrugation of the rail leads to high wheel-rail interaction forces. It may also occur at 

individual peaks in the roughness profile at a microscopic level. 

 

Clark et al. [1988] mentioned plastic flow as a possible mechanism counteracting abrasive 

wear at the corrugation troughs, whereby rails with softer steels might experience higher 

forces and more plastic flow at the peaks of corrugation. Bohmer and Klimpel [2002] 

looked at plastic deformation in conjunction with frictional wear. They found that plastic 

deformation tends to counteract wear until a steady-state is reached. This is because the 

effect of plastic deformation is predicted to be greatest at the peaks in the normal force 

which correspond roughly to the peaks in the corrugation. The results of the model show 

the surface of corrugation peaks being depressed while the slopes either side of the peaks 

are lifted. This effect, on its own, results in a decrease in corrugation amplitude, with the 

effects of plastic deformation being more pronounced over the sleepers than at mid-span. 

In conjunction with a frictional wear model, an approximate sort of steady-state 

corrugation is predicted. 

 

Plastic deformation as a result of normal surface roughness has been investigated by 

Kapoor et al. [2002]. They examined the causes of plastic deformation in a 15 to 20 µm 

thick sub-surface layer of a Shinkansen rail, where the operating conditions are such that 

the rail was not expected to deform plastically. They simulated the wheel-rail contact in a 

twin-disc experiment and also calculated the contact pressures and stresses arising from a 

measured roughness profile. They conclude that roughness causes contact pressures that 

can be a factor of eight higher than the stresses for a smooth surface, causing plastic flow 

within a few microns of the rail surface. 

 

Daves and Fischer [2002] developed a finite element model of the contact between wheel 

and rail with realistic surface roughness. The time history of the force for the wheel rolling 

over the rail, in the area considered, is taken from the calculated contact pressure 

distribution along a straight line on the rail for a stationary contact. The model was used to 

show the plastic zone that is formed during a contact at the surface of the rail due to the 

surface roughness. The depth of this plastic zone is increased if longitudinal creep is 

applied simultaneously with the normal load. Surface asperities of height less than 5 µm 
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are found to lead to a plasticized depth of 1 mm after only three normal loadings with 0.1% 

creep. The deformation rate decreases with repeated loading and it is thought that a steady-

state must be achieved in order to continue repeated loading of the rails. A possible 

reaction of the material is the development of a white etching surface layer which is much 

harder than the new rail steel. If this is the case, plastic deformation may be disregarded as 

a mechanism for general roughness growth with low initial roughness levels, in the 

absence of corrugations. Wen and Jin [2006] also observed plastic deformation effects 

stabilising under repeated wheel passages using a finite element analysis. 

 

2.4.4 Experimental characterisation of wear 

Recognising that several different wear mechanisms exist, an alternative approach to 

modelling wear by a single specific mechanism is to use data from experiments linking the 

severity of the contact conditions to the amount of material removed. Bolton and Clayton 

[1984] identified three regimes of wear of increasing severity from mild through severe to 

catastrophic. The wear rate was described as a linear function of the total tangential force, 

the creep and the contact area. Clayton [1996] presented a summary of experimental 

research on tribological aspects of wheel-rail contact. He noted that the most relevant 

results are achieved when the experimental test specimens match the field application, 

when the relative performance of specimens match equivalent field experience, and when 

overall patterns of behaviour are investigated.  

 

Lewis and Dwyer-Joyce [2004] examined wear mechanisms and transitions for R8T 

railway wheel steel and compared its wear resistance to other wheel steels. Lewis and 

Olofsson [2004] mapped more general rail wear regimes and the transitions between them. 

This work followed the approach of Bolton and Clayton [1984], using data collected from 

small and large scale laboratory tests and field data. Lewis and Olofsson identified the 

same three wear regimes as Bolton and Clayton, as well as transitions between the regimes. 

They did not link the wear regimes to particular wear mechanisms, but found that trends in 

wear rate are similar for a range of rail steels. In the mild wear regime, there is little 

difference in the wear rate for different wheel/rail material combinations. For more severe 

wear rates, a clear difference between different material combinations was found. 

 

A mathematical model to predict the wear of railway wheels has been developed by 

Braghin et al. [2006] also using the same approach. They divide the problem into a four-
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part iterative procedure. The global contact parameters are determined from a multi-body 

model of the railway vehicle. A local contact analysis then calculates the slip and 

tangential stress in the contact patch. A wear model predicts the material removed, 

depending on the wear regime, using a table relating wear rate to tangential force, creep 

and contact area. Finally, the wheel profile is smoothed and updated and the loop begins 

again. Their experimental tests showed that in the first mild wear regime, the mechanism 

for material removal was abrasive removal of an oxidised surface layer. As the severity of 

the contact increased, the wear mechanism changed and material was removed by a 

delamination process. In this case (matching the ratchetting wear mechanism) plastic 

deformation below the surface led to cracking parallel with the surface and the separation 

of slivers of material from the bulk. In the final, catastrophic, wear regime these cracks 

changed direction to run into the material allowing larger chunks to break away. In normal 

wheel-rail contact this final wear regime is not expected to occur [Lewis & Olofsson, 

2004].  

 

Vuong and Meehan [2009] have suggested an analytical model based on fundamental 

contact mechanics and heat transfer to calculate the wear coefficients and transitions 

between the different wear regimes. However this approach, aimed at research into wear 

coefficients, is over-complicated for the purposes of modelling the wear in the current 

project. 

 

2.5 Models of corrugation initiation and growth 

A number of reviews of the field of modelling wheel-track interaction and corrugation 

growth have been published. Knothe and Grassie [1993] reviewed track dynamics models 

and vehicle/track interaction. Popp et al. [1999] examined vehicle-track dynamics with an 

overview of wear models. Sato et al. [2002] have reviewed rail corrugation studies, 

including an extensive summary of Japanese research as well as the better known 

European efforts. Nielsen et al. [2003] also reviewed train-track interaction and 

mechanisms of irregular wear on wheel and rail surfaces. In this section, selected papers 

are grouped by date, summarising significant developments in corrugation growth 

modelling over the last twenty-five years.  
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2.5.1 Early studies of corrugation 

Grassie and Johnson [1985] and Clark et al. [1988] were among the first to study 

corrugation formation as a result of frictional wear. The interaction force component of the 

model of Clark et al. [1988] was derived from the original time domain model of Clark et 

al. [1982], but included vertical and lateral dynamics. The lateral dynamics were included 

to account for a wheelset having an angle of attack relative to the rail, as lateral creep was 

thought to be more significant in the development of corrugations than longitudinal creep. 

Previous work by Clark and Foster [1983] on a lateral and longitudinal model of the track 

showed the potential to develop corrugation patterns, but no wavelength fixing mechanism 

was found until vertical track dynamics were included.  

 

An important feature of the model of Clark et al. [1988] is that the wear prediction was 

carried out for a series of wheel pass-bys at randomly varying speeds, rather than just for 

one speed, and also for varying lateral creep. Using the model it was suggested that short 

wavelength corrugations are initiated by lateral stick-slip vibration, and are likely to grow 

significantly if the vertical track dynamic stiffness is high at a frequency which 

corresponds to a wavelength of the order of twice the contact patch length at typical train 

speeds. Possible approaches to reduce corrugation formation were discussed including 

addressing wheelset yaw misalignment, and also modifying the track vertical receptance to 

minimise the vertical dynamic stiffness at the critical frequency perhaps by adding 

damping to the pinned–pinned mode. Running a variety of trains with different wheels, 

loadings and speeds was also recommended.  

 

Frederick [1986] discussed the causes of rail corrugation, mentioning many aspects of the 

problem that are still being debated in the literature. Rail wear, plastic deformation, the 

effect of an initial surface roughness and wear resistance of rail steel were all considered. 

A frequency domain model of wheel-rail interaction forces and lateral and longitudinal 

creep was developed, and phase relationships were discussed. Among other things, it was 

pointed out that the pinned-pinned frequency has undesirable effects and that continuous 

support to eliminate this would be an improvement, also that damping lateral rail motion is 

desirable. In Frederick’s work, short pitch corrugation was linked to high vertical 

impedance over sleepers and low lateral impedance of rails, combined with lateral creep of 

wheels. Longitudinal creep was thought to oppose the effect of lateral creep in the 

frequency range 600 to 1000 Hz. 
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Since the work of Clark et al. [1988] and Frederick [1986], many roughness growth and 

corrugation models have been developed that, for simplicity and computational efficiency, 

limit the degrees of freedom of the system, including only vertical and longitudinal track 

dynamics and neglecting the effects of lateral creep. 

 

2.5.2 Efforts during the 1990s 

Kalker’s book [1990, Section 5.2.2.5] includes some remarks on corrugation. He applied 

both CONTACT and FASTSIM to predict the development of corrugation over time with a 

constant longitudinal creepage. Rather than examining corrugation initiation, Kalker 

included the effect of the force fluctuation as a result of the corrugation itself. The purpose 

of the analysis was to compare the steady-state FASTSIM predictions with the transient 

analysis of CONTACT. Little difference was found between the two. The analysis 

predicted that corrugation ridges would be ground down over time.  

 

Building on the model of Hempelmann et al. [1991], Hempelmann and Knothe [1996] 

presented a linear model for the prediction of short pitch corrugation, applying Hertzian 

contact mechanics with constant lateral creepage. This model is valid only for the initial 

stage of corrugation initiation, with very small profile irregularities and linearization about 

a reference state. Longitudinal and spin creep were neglected. Rather than calculating the 

actual wear for each position as the wheel moves along the rail (although their model does 

do this too), they obtained an exponential growth law for corrugation formation. 

Corrugation growth was then expressed in terms of local corrugation growth rates at 

certain positions in a sleeper bay for certain frequencies. These corrugation growth rates 

were compared with the track receptance, indicating that high corrugation growth occurs 

corresponding to the anti-resonance of the pinned-pinned mode at a sleeper. The local 

corrugation growth rates are independent of the number of wheelset passages and of the 

initial profile irregularity. 

 

Higher corrugation growth rates are predicted by Hempelmann and Knothe [1996] in 

situations with stiff vertical structural dynamics of the track. This occurs where the rail has 

an anti-resonance, or when the structure is excited at the node of a modeshape. They also 

predict smoothing of short wavelengths as the contact filter provides a mechanism to 

suppress very short wavelength corrugation. 
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Corrugation growth has also been linked to standing waves in the track between the 

successive wheels of a bogie [Igeland, 1996]. The bogie wheelbase was found to be an 

important parameter and, if the wheelbase is equal to an integer number of sleeper 

spacings, can lead to amplification of pinned-pinned resonance effects. Separate work by 

Manabe [2000] using an analytical model without discrete rail supports also determined 

that standing waves between multiple wheels are a possible wavelength fixing mechanism 

for corrugation. This mechanism may explain why observed corrugation wavelengths do 

not always vary linearly with vehicle speed. 

 

Igeland and Ilias [1997] compared corrugation development predictions developed using 

different wheel-rail interaction models, achieving similar results from both models. They 

found that non-linear and linear models give different predictions for roughness growth. 

Ilias [1999] linked stiffer rail pads with higher corrugation growth, and also noted that 

parametric excitation of the system is important for corrugation growth. 

 

In an attempt to explain the lack of velocity dependence of corrugation wavelengths 

observed in practice, Müller [1999, 2000] investigated short pitch corrugation using a 

linear model. He found that, as well as the pinned-pinned resonance, other resonances and 

anti-resonances can dominate the development of the rail profile. The dominant 

wavelength that arises where there are multiple resonances is determined by a contact 

mechanical filtering function that limits corrugation growth to a particular wavelength 

band. 

 

J.B. Nielsen∗ [1999] neglected the dynamics of the track and vehicle, reducing the system 

to a cylinder rolling over a periodically varying surface. The development of corrugation 

then becomes purely a contact mechanics problem, treated using an analytical model 

including some non-Hertzian effects arising from the surface corrugation. J.B. Nielsen’s 

model predicts a minimum wavelength at which corrugation will occur, corresponding to 

the filtering effect of the size of the contact patch. A characteristic wavelength at which 

corrugation is more likely to develop was also identified, determined by the magnitude of 

the creep and the length of the contact. This is a constant wavelength effect, not a constant 

frequency effect like the pinned-pinned resonance. For wheel-rail contact the characteristic 

                                                 
∗ N.B. in general, references to ‘Nielsen’ mean ‘J.C.O. Nielsen’ 
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wavelength is likely to be between 25 and 100 mm, which corresponds to observed lengths 

for short-pitch corrugation. 

 

2.5.3 Corrugation research 2001-2005 

One of very few models of roughness growth that have been compared with measurements 

on track is that of Nielsen [2003]. He applied his time-stepping interaction force model to a 

tangent track, and predicted the rail roughness growth over time. Model parameters were 

determined by mobility measurements on the track. An initial realistic (but low level) 

roughness profile was assumed, filtered at each instant in time to account for contact patch 

effects. The change in the roughness spectrum due to frictional wear was calculated as an 

average from seven different initial roughness profiles. 

 

The wear calculation employed an elliptical contact patch, but wear was only calculated 

along the centre-line of contact. Nielsen [2003] found it was acceptable to multiply wear 

after a single wheel passage by 200,000 to simulate the traffic over a year (since similar 

results were achieved using 8 intermediate steps of 25,000). The wear constant was 

determined from measured data to be 2.5×10-9 kg/Nm. The model predicted corrugation 

growth at wavelengths of about 30 to 40 mm, which corresponds well with measured 

corrugation on a line where 85% of the traffic is passenger trains at 130 km/h (the site was 

the same as that used by Hiensch et al. [2002]). Slower and less frequent freight trains 

were not predicted to have as much impact on roughness growth as the passenger trains. 

 

Nielsen [2003] comments that adding damping to the rail would be one way to increase 

track receptance above sleepers around the pinned-pinned frequency, thus smoothing peaks 

and troughs in the receptance. He also comments that wear is possibly not the only damage 

mechanism, as ‘identical’ tracks do not always develop similar roughness patterns, 

referring to Hiensch et al. [2002]. Assessing the relative importance of different 

mechanisms is considered important for future work. 

 

Andersson and Johansson [2004] predicted rail corrugation growth, applying a three-

dimensional interaction force model similar to that of Andersson and Abrahamsson [2002]. 

Hertz theory was used to deal with the normal contact; the tangential contact was modelled 

using the theory of Shen et al. [1983]. The spatial variations of creep and traction were 

evaluated using FASTSIM for the wear calculations. As the wear from a single wheel 
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passage is very small, it was assumed that any resulting change in interaction forces is also 

very small. The wear after each bogie passage was therefore multiplied to simulate 

thousands of wheel passages, without recalculating the contact forces.  

 

The wear prediction showed high wear rates around two wavelengths corresponding to 

resonant behaviour of the train-track system. The wheelset spacing was found to have a 

significant effect, in accordance with the results of Igeland [1996]. Increasing the vehicle 

speed shifted the growth of corrugation to longer wavelengths. Andersson and Johansson 

[2004] concluded that, for the generation of rail corrugation on tangent tracks, vertical 

track dynamics is of major importance and that lateral motion plays a minor role. 

 

The simplest roughness development model is a two-dimensional Hertzian approach, 

applied originally by Grassie and Johnson [1985] and also used by Wu and Thompson 

[2005] in their study of multiple wheel effects on corrugation. The width of the contact is 

assumed constant for all loads and at each instant in time the contact patch is divided into a 

stick zone and a slip zone, with wear proportional to frictional work done in the slip zone. 

With soft pads, the interaction force has several peaks in the frequency range due to 

reflections between the wheels and consequently there are also several peaks in the 

corrugation growth rate. With stiff pads there is less difference between results with single 

and multiple wheels. Stiff pads emphasise the pinned-pinned effects and lead to a higher 

corrugation growth rate at that frequency than with soft rail pads. 

 

A different approach was taken by Meehan et al. [2005]. They developed an analytical 

model to investigate corrugation growth, using a time domain model to confirm the 

analytical results. The analytical model considers the effect of dynamic components on 

corrugation growth rate, condensing a large number of parameters into two terms 

describing the contribution to corrugation growth from the vehicle/track dynamics and 

from the contact and wear properties. A sensitivity analysis was then performed to assess 

the influence of various parameters on corrugation. The parameters that had the most effect 

on corrugation growth were the wear coefficient, the ratio of the tangential load to the 

friction limit, the friction coefficient and the damping of the vehicle and track. 
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2.5.4 Recent contributions to corrugation and roughness modelling 

Sheng et al. [2006] combined the interaction force model of Sheng et al. [2005] with a 

two-dimensional Hertzian-based wear model similar to that of Wu and Thompson [2005]. 

The results show that the discrete supports have a significant effect on the initiation of rail 

roughness beginning with a smooth rail. Maximum roughness growth was predicted 

around the pinned-pinned frequency. Low rail pad stiffness was found to reduce 

corrugation growth although broadband roughness still developed. The inclusion of 

multiple wheels in the calculation, instead of a single wheel, resulted in a lower predicted 

roughness growth.  

 

The effect of wheel tread irregularities on roughness growth rate was examined by 

Johansson and Nielsen [2007]. They concluded that the averaging effect of many wheel 

passages means that wheel corrugations have a negligible effect on rail corrugation growth. 

The standing waves in the rail between the two wheels of a bogie were found to be more 

important for corrugation growth. 

 

Meehan and Daniel [2008] and Bellette et al. [2008] used the analytical model of Meehan 

et al. [2005] to examine the effect of speed and the frequency of successive wheels on 

corrugation formation. They proposed increasing the spread of vehicle velocities at a 

particular site as a means of reducing corrugation growth rates. As with other multiple 

wheel corrugation models, increasing the wheel passing frequency (by decreasing the 

wheelbase) was also found to affect corrugation growth. 

 

Another analytical model of wear pattern generation or corrugation is that of Hoffmann 

and Misol [2007]. They apply simple one or two degree-of-freedom models with a moving 

point contact to the problem of wavelength selection in cases of uneven wear. This work 

addresses the reason wear patterns are not always proportional to the velocity, by using 

stability analysis to show that dominant wavelengths can appear as a result of randomly 

distributed velocities. 

 

An alternative mechanism for corrugation formation has been identified by Ciavarella and 

Barber [2008] and by Afferante and Ciavarella [2009]. Afferrante and Ciavarella “disagree 

that pinned-pinned resonance is so clearly uniquely responsible for short pitch 

corrugation”. Their reasoning is that the wavelengths of a great deal of measured instances 

of corrugation cannot be explained by a constant-frequency mechanism. Using an 
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analytical model neglecting discrete supports of the track but including partial slip in the 

contact based on Hertzian contact mechanics, they find that corrugation may appear in two 

regimes, firstly at low frequencies around 500 Hz and secondly at frequencies above 

1500 Hz. At low frequencies the corrugation wavelength is linearly related to the vehicle 

speed, but in the high frequency regime the wavelength remains almost constant. The 

corrugation growth depends purely on the geometry and load conditions.  

 

On the other hand, Grassie and Edwards [2008] explain corrugation growth in terms of 

varying normal forces. The principle is that if the tangential load is essentially constant, 

then fluctuations in the normal force lead to more or less slip in the contact and hence more 

or less wear. Decreasing the normal force gives more slip for the same tangential load. 

This work, using a simplified analytical model, gives some explanation for corrugation 

formation after track features such as welds and joints, which can lead to significant 

fluctuations in the normal force. 

 

The importance of including transient effects in models of rolling contact has been 

investigated by Baeza et al. [2007, 2008]. They conclude that, although transient models 

converge rapidly to the results from stationary models when the applied forces are 

constant, when forces vary rapidly, significant differences occur between stationary and 

transient models. This has consequences when estimating wear at the wheel-rail interface, 

so a transient model of the rolling contact should be used. One conclusion reached is that 

“the type of contact model determines the corrugation pattern, mainly in the cases of short 

wavelength defects” (Baeza et al. [2008]). 

 

Non-steady-state or transient contact mechanics effects have also been studied by Alonso 

and Giménez [2008b] and by Knothe and Groß-Thebing [2008]. Most corrugation models 

assume quasi-steady contact, where the stress distribution between the wheel and rail at 

each point of interest does not depend on the distribution at previous locations. Exceptions 

include, for example, Kalker’s CONTACT program and the work of Sheng et al. [2006]. 

Knothe and Groß-Thebing [2008] find that non-steady-state effects should be included in 

contact models for corrugation initiation and growth studies. They act as a filter on the 

wavelengths of corrugation growth, limiting it to the range between 20 and 100 mm, 

corresponding to the typical wavelength range of short-pitch corrugation. This effect can 

combine with system resonances, such as the pinned-pinned resonance, to give a sort of 

‘worst case scenario’ for corrugation growth at wavelengths of around 30 to 40 mm. 
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Xie and Iwnicki [2008a] have programmed Kalker’s variational method [Kalker, 1990] in 

Matlab and carried out a study of wear. They examined, firstly, constant normal forces and 

then, sinusoidal normal forces, with corrugations of various wavelengths. Non-linear 

effects, transient effects and non-Hertzian effects were all included in a three-dimensional 

analysis. They found that, with a non-Hertzian contact model, the maximum wear always 

occurs at the peaks of corrugations, and consequently roughness does not grow. Extending 

their model to include time domain wheel-rail interaction, Xie and Iwnicki [2008b] also 

calculated time-varying forces and creep and the wear for driven and undriven wheels for 

various train speeds and wavelengths of sinusoidal roughness. Maximum wear was again 

found to occur at the crest of the roughness, resulting in roughness decreasing rather than 

growing. Roughness was also found to decrease with a broadband roughness input. Similar 

results were obtained from a two-dimensional non-Hertzian contact model [Xie & Iwnicki, 

2008c]. 

 

The finding of Xie and Iwnicki [2008a,b,c] that roughness tends to decrease supports the 

results of Jin et al. [2005, 2006]. They have studied initiation and evolution of corrugation 

on curved tracks, using a modified version of Kalker’s non-Hertzian theory (CONTACT). 

They also concluded that corrugation should decrease with more wheel passages. 

 

2.6 Approach for this work 

The existing work in the fields of wheel-rail interaction force modelling, rolling contact 

mechanics, wear modelling and corrugation development has been reviewed. On the basis 

of this review, in this section the appropriate modelling approaches to take in order to 

achieve the aims of this work are discussed. 

 

To summarise the existing work in the field, it can be said that wheel-rail interaction force 

models are well developed and established. Models are available with a wide range of 

complexity, and an appropriate model can be chosen and adapted as required.  

 

Rolling contact models are also reasonably well established, although historically the 

implementation of the most comprehensive models has been limited by their computational 

cost. Even the most sophisticated contact models tend to rely on simplified friction laws to 

determine the tangential stress distribution.  
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Most existing models of corrugation development assume a simple frictional wear model. 

More comprehensive models of wear exist, taking account of different wear mechanisms 

and wear rates, but these have not been used to predict roughness or corrugation 

development. 

 

2.6.1 Wheel-rail interaction force modelling approach 

In this work the frequency range of interest is limited to between 100 and 2000 Hz. This 

includes the range of action of the rail dampers, and it permits the rail to be modelled as a 

single Timoshenko beam (see Section 2.2.3). At a train speed of 100 km/h this frequency 

range corresponds to wavelengths between 14 and 280 mm, while for a train at 150 km/h 

the wavelength range is around 20 to 420 mm. Interaction forces at shorter wavelengths 

will in any case be filtered by the size of the contact patch. 

 

The wheel-track interaction force model used here is based on the two-dimensional time 

domain formulation published by Nielsen and Igeland [1995]. This model, in the form of 

DIFF, is well established and has been validated by measurements [Nielsen, 2006]. 

Although this model has been extended to general motion by Andersson and Abrahamsson 

[2002], the subsequent corrugation growth modelling of Andersson and Johansson [2004] 

indicated that for tangent track the vertical dynamics is most important with lateral 

dynamics having only a minor effect (see Section 2.2.8). Many other authors agree that 

vertical resonances of the track are important in determining the wavelengths at which 

corrugation develops, regardless of the direction of creep in the tangential stress analysis. 

For this reason, to maintain an appropriate level of complexity, only vertical interaction is 

considered. As motion is limited to the vertical plane, the vehicle’s unsprung mass is the 

only significant component in the vehicle model, since the vehicle suspension isolates the 

bogie and body from the wheelset. Bending modes of the axle are not considered. Wheel 

radial resonances occur at and above 2000 Hz [Thompson, 2009] and are also neglected 

here. The roughness is pre-processed to account for contact filter effects, using the two-

dimensional method of Ford and Thompson [2006]. 

 

The track is represented by a finite element model of a finite length of track. The rails are 

represented by Timoshenko beams. The rail pads and ballast are represented as in DIFF as 

simple spring and viscous damper systems. More sophisticated three-parameter 
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viscoelastic models for the rail pads exist, as used by Andersson and Oscarsson [2000], but 

it becomes difficult to determine each parameter and the benefits do not necessarily 

compensate for the additional computational cost. Similarly fractional derivative models 

for the rail pad have been developed [Fenander, 1997, 1998] but the added complexity is 

unnecessary to calculate the interaction forces in the frequency range of interest. Some 

models introduce an independent ballast mass below the sleepers, or more complicated 

mass-spring-damper combinations, but these are mainly relevant below 100 Hz and it is 

difficult to obtain satisfactory parameter values for the ballast models. Therefore in this 

work a simple spring and viscous damper ballast model is used. 

 

A model of the rail damper elastomer is developed using parallel Maxwell elements 

[Lockett, 1972] in combination with an additional spring. This technique gives an 

improved representation of the elastomer loss factor over a simple spring-damper system. 

More sophisticated methods for time domain modelling of viscoelastic elements have been 

developed, for example by Golla and Hughes [1985] and Lesieutre [1992]; however the 

computational cost of implementing these techniques in this model is prohibitive. 

 

Track receptances and decay rates are calculated from the finite element model of the 

system and compared with measured values and with results from simple frequency 

domain track models in Chapter 3. Since the depths of the anti-resonances in the track 

receptance have been linked to rail corrugation, an assessment is made of the effects of rail 

dampers on the track receptance and on the dynamic wheel-rail interaction forces. The time 

history of the vertical interaction force obtained in Chapter 4 is used as an input to the 

rolling contact model. 

 

2.6.2 Rolling contact model approach 

It has been shown in models of corrugation development that the type of contact model 

selected can have a large influence on the corrugation pattern predicted, particularly for 

short wavelength roughness. Historically most models have used quasi-steady Hertzian 

models to determine the distribution of stresses throughout the contact patch, assuming that 

roughness wavelengths shorter than the length of the contact can be neglected in a 

corrugation analysis. Recent work has shown the importance of including transient effects, 

i.e. the tangential stress calculation should take account of the loading history in rolling 
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contact. In addition, models accounting for non-Hertzian effects give very different results 

to Hertz-based models (see Section 2.3.6 and 2.5.4). 

 

Kalker’s solution of the contact problem, as implemented in CONTACT, is considered the 

most complete numerical theory of elastic contact available. It is considered to be ‘exact’ 

in that within the elastic half-space assumption, the accuracy of the output is limited only 

by computational capacity and the size of the elements used to solve the problem. In this 

work a two-dimensional representation of transient, non-Hertzian rolling contact is 

implemented based on Kalker’s method. This method is presented and discussed in 

Chapters 5 and 6.  

 

A limitation of Kalker’s method is the simple representation of friction by a constant 

friction coefficient. In Chapter 8, a velocity-dependent friction law is introduced for the 

solution of the rolling contact tangential stress distribution. 

 

2.6.3 Wear modelling 

Wear mechanisms and models have been discussed in Section 2.4. It is apparent that 

roughness growth and corrugation models assuming a single wear mechanism are limited, 

and that an ideal model of rail wear would account for factors such as elastic and plastic 

deformation, high temperature effects, work hardening, and local variation in material 

properties and wear resistance.  

 

For this prediction of roughness growth development, alternative wear mechanisms are 

considered by using the experimentally determined wear rates of Braghin et al. [2006]. In 

this way the wear coefficient is determined at each element of the contact based on the 

severity of the conditions at that location. The advantage of the approach of Braghin et al. 

[2006] is that the wear relationship has been validated using laboratory tests under 

controlled conditions. It is a more comprehensive model than the single wear coefficient 

approach, which can only consider mild wear for all contact conditions. 

 

Plastic deformation is not included in this study, as it is not thought to be a significant 

mechanism for general roughness growth, as discussed in Section 2.4.3. In any case the 

initial surface roughness levels used in the model have been chosen to prevent excessively 

high wheel-rail interaction forces that might lead to loss of elasticity. 
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2.6.4 Measurements of roughness development 

Measurements of the development of railhead roughness have been discussed in 

Section 1.4.1. Because of the long time scales involved in roughness development, there is 

very little measurement data available that examines the change in roughness spectrum at a 

single site over time. For this work, roughness measurements made at Gersthofen as part of 

the Silence project have been made available by Deutsche Bahn AG (see Section 1.2.1). 

The test site includes track with two different rail pad stiffnesses, and the aim of the 

measurements was to examine the effect of rail dampers on roughness growth rates on 

typical ballasted track. The measured roughness spectra are presented in Chapter 9, and 

discussed in the context of the results of the roughness model.  

 

2.7 Summary 

Extensive studies of short-pitch corrugation development over a period of almost 30 years 

have not resulted in a clear consensus on the causes of corrugation initiation and the 

wavelength fixing mechanisms. Corrugation might be a constant frequency phenomenon, 

or a constant wavelength phenomenon, or neither or both. This confusion also applies to 

broadband roughness growth phenomena, if corrugation can develop by a process of 

differential wear from an initially broadband roughness level. It is clear from recent work 

in this field that the model used to predict the stress distribution in rolling contact can have 

a significant effect on the predicted wear of the rail.  

 

In this work, a model of broadband roughness development is presented using the best 

available, non-Hertzian, transient rolling contact theory, alongside a wear model that takes 

account of multiple wear mechanisms. In addition, the rolling contact theory is extended to 

include the velocity dependence of the friction coefficient. This model is used to examine 

the effect of track and vehicle parameters on roughness development. The main parameters 

considered are the rail pad stiffness, the vehicle type and speed, and the effect of rail 

dampers. The effect of rail dampers on roughness growth is of particular interest, as they 

are known to affect the pinned-pinned resonance of the track which has been linked to 

corrugation growth. 
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3 MODELS OF TRACK DYNAMICS 

3.1 Introduction 

A mathematical representation of the track dynamic behaviour is required as the first step 

in modelling the dynamic interaction between the vehicle and the track. A great deal of 

work exists on the subject and many models of track have been developed in both the 

frequency and time domains. These models range in complexity from simple beams on 

continuous elastic support, to elaborate three-dimensional finite element models including 

several support layers under each rail.  

 

One particular well-established modelling approach in the time domain using finite 

elements is used for the work of this project and is therefore described in greater detail. 

This model is based on the work of Nielsen et al. at Chalmers University of Technology 

[Nielsen, 1991; Nielsen & Abrahamsson, 1992; Nielsen & Igeland, 1995]. It is used 

throughout this thesis to determine the normal interaction force between the wheels and a 

single rail, required as the input to the wear model. 

 

In this chapter some frequency domain track models developed by other authors are also 

described and compared. The frequency domain models are used to check the suitability of 

the time domain model of the track and to determine the parameters used to represent 

different track components in the finite element model. As an additional check, the finite 

element model is used to predict the track decay rate for a typical track configuration for 

which measured decay rates are available for comparison. Measurements have been taken 

by Deutsche Bahn AG and Corus as part of the EU project Silence at a site near Gersthofen 

in Germany [Asmussen et al., 2008]. In this work the model parameters are chosen to 

match the track and vehicles at this site. 

 

Rail dampers have not previously been included in a track model of this type. A model of 

the rail dampers is developed for inclusion in the finite element model. The effect of the 

rail dampers on the track receptance and decay rate is studied and compared with 

measurements taken at Gersthofen. 
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3.2 Frequency domain track models 

The level of complexity required in a model of the track depends on the problem to be 

investigated. For some applications, if only low frequency behaviour is of interest and 

determination of the deformation of the rail cross-section is not necessary, it is adequate to 

represent the rail by a continuously supported simple beam [Knothe & Grassie, 1993]. 

More detailed models include higher frequency behaviour and more features of the track 

are included, such as different support layers or discrete supports.  

 

3.2.1 Euler beam on continuous support 

It is instructive to begin a description of frequency domain track models with the simplest 

model, an infinite Euler beam resting on a continuous elastic foundation as shown in 

Figure 3.1. This model provides the basis for more advanced models described later.  

 

 

z k′,η 
x 
 

 

Figure 3.1 Infinite Euler beam on continuous elastic support 
 

The Euler beam in Figure 3.1 may be characterised by its Young’s modulus E, second 

moment of area of the section I, cross-sectional area A and density ρ. The support is 

characterised by the stiffness per unit length k′ and a damping loss factor η. Damping of 

the support is included in the following equations by replacing k′ with a complex stiffness 

k′ (1+ηi). 

 

Without damping, the equation of motion of the unloaded beam shown in Figure 3.1 is 
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∂+′+
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t

u
Auk

x

u
EI ρ  (3.1) 

where x is the position along the beam, u is the vertical displacement of the beam in the z 

direction and t is time.  

 

For harmonic motion of frequency ω, the equation of motion may be rewritten as a 

dispersion relation between ω and the wavenumber h:  

024 =−′+ ωρAkEIh  (3.2) 
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The natural frequency ω0 of the beam on the support stiffness is defined by  

A

k

ρ
ω

′
=0  (3.3) 

From Equation (3.2), the wavenumber may be written as 
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22
2 ωωρωρ −

±=
′−±=  (3.4) 

ω0 is also known as the cut-on frequency, as below this frequency the wavenumber cannot 

be real and no free wave propagation can occur [Thompson, 2009]. 

 

For this work the point receptance (displacement amplitude at a point on the rail per unit 

force applied at the same point) and track decay rate (the rate of attenuation of vibration 

along the length of the rail) from the model are of interest for comparison with measured 

results and results from alternative track models. The point receptance of the track at 

frequency ω (derived from the mobility given by Thompson [2009]) is 

( ) ( )
34

1

EIh

i+−=ωα  (3.5) 

The track decay rate ∆ in dB/m is given by  

( )( ) imim hh 686.8explog20 10 −=−=∆  (3.6) 

where him is the imaginary part of the wavenumber [Jones et al., 2006]. 

 

3.2.2 Timoshenko beam on continuous support 

As the frequency range of interest increases it becomes necessary to include more features 

of the track. Using a Timoshenko beam, rather than an Euler beam, extends the frequency 

range of validity by including shear and rotational inertia effects. The dispersion relation 

between ω and the wavenumber h is then [Thompson, 2009]: 

0)()( 3
2

2
4 =++ ωω ChCh  (3.7) 

where 









−






 −′
=

EI

I

G

k
C

22

2 )(
ωρ

κ
ρωω  (3.8) 

and 









−







 −′
=

κ
ωρωρω

GA

I

EI

Ak
C

22

3 1)(  (3.9) 

in which G is the shear modulus and κ is the shear factor. 



 

53 

 

The point receptance of the Timoshenko beam on continuous support is given by  
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Equation (3.10) has been adapted from the transfer receptance given by Thompson [2009] 

using the contour integration method of Grassie et al. [1982]. The summation is of the 

residues of the poles lying inside the appropriate contour, 2 in this case. 

 

The receptance and decay rate for Euler and Timoshenko beam types are plotted in 

Figure 3.2 with parameters as listed in Table 3.1. The receptance curve has a single peak 

corresponding to the resonance of the rail mass on the support stiffness, at frequency ω0 in 

this case occurring at 440 Hz. This is also the frequency at which the track decay rate 

begins to drop off. Above ω0 the waves in the rail are uncoupled from the support, so the 

track decay rate becomes low.  
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Figure 3.2 (a) Vertical point receptance and (b) decay rate of track modelled as a beam on 
a single layer of continuous support:  Euler; — — — Timoshenko. 
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Table 3.1 Input parameters for model of track as a beam on an elastic support. 

Description Notation Value 

Youngs modulus of elasticity E 2.1×1011 N/m2 

Second moment of area of rail I 30.55×10-6 m4 

Density of rail ρ 7850 kg/m3 

Cross-sectional area of rail A 7.69×10-3 m2 

Shear modulus of rail G 0.77×1011 N/m2 

Shear factor for rail κ 0.4 

Support layer stiffness per unit length k′ 4.6×108 N/m2 

Support layer loss factor η 0.20 

 

The Timoshenko beam model is often applied rather than an Euler beam model in cases 

where higher frequencies are of interest. It might therefore be assumed that the results from 

the two models would converge at low frequencies. In fact, as seen in Figure 3.2, the 

inclusion of shear effects in the model leads to a small difference across the whole 

frequency range. The Euler beam may be viewed as a special case of the Timoshenko 

beam, with the effects of shear deformation and rotational inertia neglected. Although 

these effects are counteracting, the shear deformation effect is around three times larger 

than the rotational inertia effect [Timoshenko et al., 1974]. Therefore, including these 

effects allows a Timoshenko beam to deform more under the same static load than an Euler 

beam. It appears to be ‘softer’ under static load and the receptance of the Timoshenko 

beam is slightly higher than that of the Euler beam throughout the frequency range. 

 

Modelling the track as a beam on continuous elastic support is sufficient if the frequency 

range of interest for the track is below 500 Hz [Knothe & Grassie, 1993]. To represent the 

track response at higher frequencies more information about the track structure needs to be 

included in the model. The first improvement to make to the model is the inclusion of 

distinct support layers to represent the rail pads, sleepers and ballast. 

 

3.2.3 Beam on two-layer continuous support 

A two layer continuous support as shown in Figure 3.3 allows the resonances of the rail 

and sleeper masses on the rail pads and ballast to be simulated. In this model the rail pads 

and ballast are represented by distributed elastic layers with no mass, separated by a 

distributed mass layer representing the sleepers. 
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Figure 3.3 Infinite beam on two-layer continuous elastic support. 
 

The support layers are now characterised by two stiffnesses per unit length, kb′ for the 

ballast layer and kp′ for the rail pad layer, with each layer incorporating a damping loss 

factor ηb and ηp respectively. The sleeper mass per unit length in the x direction is ms′. The 

sleeper layer has no bending stiffness in this model. The resulting support stiffness as seen 

by the rail is frequency dependent [Thompson, 2009]: 
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For this system the receptance and track decay rate may be calculated as for the beam on a 

single layer of support in Equations (3.5) and (3.6), for wavenumbers given by:  
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(3.13) 

 

The corresponding results for a Timoshenko beam may be obtained by substituting the 

two-layer frequency dependent stiffness k′(ω) from Equation (3.12) into Equations (3.7) to 

(3.11) for the beam on a single support layer. 

 

The receptances and decay rates for both beam types for this system are shown in 

Figure 3.4 for parameters as listed below in Table 3.2. The first resonance of the support 

system is the rail and sleeper mass on the ballast layer at 93 Hz for these parameters. The 

anti-resonance of the track at around 210 Hz corresponds to the resonance of the sleepers 

on the combined ballast and rail pad stiffnesses (with the rail fixed). Finally comes the 

resonance of the rail mass on the rail pad stiffness at around 400 Hz. Above this frequency 

the rail becomes decoupled from the supports. The track decay rate then decreases as 

waves propagate freely along the undamped rail. 
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The Timoshenko beam receptance and track decay rate diverge from the Euler beam 

results at high frequency; however in the frequency range shown here the results for both 

beams are similar.  
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Figure 3.4 (a) Receptance and (b) track decay rate comparison between beams on two 
layer continuous support:  Euler; — — — Timoshenko. 
 

Table 3.2 Inputs for frequency domain model of track on two layer elastic support 

Description Notation Value 

Youngs modulus of elasticity E 2.1×1011 N/m2 

Second moment of area of rail I 30.55 x10-6 m4 

Density of rail ρ 7850 kg/m3 

Cross-sectional area of rail A 7.69×10-3 m2 

Shear modulus of rail G 0.77×1011 N/m2 

Shear factor for rail κ 0.4 

Half sleeper mass per unit length ms′ 245 kg/m 

Rail pad layer stiffness kp′ 3.33×108 N/m2 

Rail pad layer loss factor ηp 0.20 

Ballast layer stiffness kb′ 8.33×107 N/m2 

Ballast layer loss factor ηb 1.0 
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3.2.4 Timoshenko beam on discrete supports 

A continuously supported model is valid up to around 500 Hz [Knothe & Grassie, 1993]. 

Above this, the variation in point receptance between a position above a sleeper and a 

position at mid-span becomes significant and it is no longer adequate to spread the track 

characteristics into a continuous support model. A discretely supported track model as 

shown in Figure 3.5 is able to represent the pinned-pinned resonance of the track. 

 

z 

x 
 

 

Figure 3.5 Infinite Timoshenko beam on discrete supports. 
 

In order to calculate the response of this system, the discrete supports may be modelled as 

point forces applied to an infinite free beam. Supports at a large distance from the point of 

interest may be neglected due to the decay of vibrations along the rail. The number of 

supports therefore need not be infinite, but must be large enough to give an acceptable 

approximation to the behaviour of an infinitely supported track.  

 

The receptance α(x,xF) of a free Timoshenko beam is the response at a point x to a unit 

point force acting at xF, and is calculated here using the equations detailed in Heckl [1995]. 

The displacement response of the beam u(x) to many different point forces of strengths Fj 

due to the discrete supports may be obtained from the principle of superposition, so that 
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where F0 is the external force applied by the wheel at x0. 

 

The force at each support point Fj is related to the displacement u(xj) by 

( )jj xKuF −=  (3.15) 

where, for a two-layer support with complex stiffnesses kb for the ballast and kp for the rail 

pad and the sleeper mass ms, the dynamic stiffness K is given by 
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This has a similar form to the stiffness in Equation (3.12), but the sleeper mass and the 

stiffness of the rail pad and ballast are no longer distributed along the length of the rail. 

 

From Heckl [1995], the receptance of the system is then the displacement response of the 

beam u(x) at a general point x to a unit force of frequency ω applied at x0: 
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=
 (3.17) 

and the point receptance is the displacement response of the beam at x0 to the unit force 

also acting at x0. Equation (3.17) is evaluated firstly for the point receptance at each of the 

J support points, giving a set of equations from which expressions for u(xj) may be 

extracted. These can then be used in Equation (3.17) to determine the receptance at any 

general point. 

 

The average decay rate along the track may be calculated from the calculated transfer 

receptances in the same way that it is calculated from measured frequency response 

functions over many sleeper spans. The decay rate calculated in this way is not strictly 

identical to that calculated from the imaginary part of the propagating wavenumber as in 

Equation (3.6), as it includes all wave types, both propagating and near-field. However it is 

similar, especially at high frequencies, and is a good indication of the track properties. The 

calculation and the differences between the two methods are described in detail by Jones et 

al. [2006].  

 

For measurements on a real track, the required frequency response measurements (mobility 

or accelerance) are taken at a grid of points, beginning with the point response in the 

middle of a sleeper bay and then moving the excitation point away. The points are closely 

spaced initially with four in each sleeper bay to capture the higher decay rates which are 

typically around 10 dB/m. The points may be spaced further apart to measure the response 

at larger distances in order to obtain lower decay rates.  

 

With responses calculated from a track model it is possible to obtain the transfer 

receptance between any number of points, so the decay rate may be calculated in the same 

manner. From Jones et al. [2006], the track decay rate ∆ in dB/m is given by 
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where Y(0) is the point mobility at xj = 0, the first point in the grid, xmax is the maximum 

measurement or calculation distance, and ∆xj is the distance between the midpoints of each 

grid interval to the locations either side. The grid need not be evenly spaced. 

 

Figure 3.6(a) shows the comparison of the track receptance at two points in a sleeper bay. 

All parameters are as for the two-layer distributed support model, but divided between the 

discrete supports at 0.6 m intervals. At a location in the middle of the sleeper bay, the 

pinned-pinned resonance results in a peak in the track receptance. Above a sleeper, there is 

a corresponding anti-resonance. The inverse of receptance is stiffness, so above a sleeper 

the track appears to be stiff, while at mid-span the track appears to be soft. For these 

parameters, the pinned-pinned frequency is around 1070 Hz. The pinned-pinned resonance 

also adds a peak to the track decay rate when using a discretely supported track model, as 

shown in Figure 3.6(b). 
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Figure 3.6 (a) Receptance and (b) decay rate for Timoshenko beam on two layer discrete 
supports:  Receptance mid-span; — — — Receptance above sleeper. 
 

3.2.5 Frequency domain model with viscous damping 

In the above frequency domain models, damping has been included in the form of a 

constant loss factor (a hysteretic or structural damping model). This is realistic for many 

materials, in particular the rail pads. However hysteretic damping can only be used in 
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frequency domain models as it leads to causality problems if applied to time domain 

models. The conventional damping model used in the time domain is the viscous damping 

model as shown in Figure 3.7.  

 

 

Figure 3.7 Infinite Timoshenko beam on discrete supports (viscous damping). 
 

For this damping model, the complex stiffness applied previously to the rail pad and ballast 

in the form k(1+iη) is replaced by k+iωc where c is the viscous damping. The constant 

term kη has been replaced by the frequency-dependent term ωc. The response of this 

system may also be calculated using the technique of Heckl [1995], with the force at each 

support point Fj related to the displacement u(xj) by K as in Equation (3.15). K may be 

determined from the equations of motion of a single support as shown in Figure 3.8. 
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Figure 3.8 Single support with viscous damping 
 

The equations of motion of this two-degree-of-freedom system are 
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Writing the forces and displacements in the form Fj = Feiωt, uj = Uje
iωt and eliminating the 

exponential term yields 
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Eliminating U1 and rearranging into the form of Equation (3.15) gives 
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This is the same as K in Equation (3.16), if cp and cb are set to zero and the pad and ballast 

stiffnesses are complex.  

 

For comparison with the structural damping model, the track receptance and decay rate 

from a model with viscous damping are shown in Figure 3.9.  
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Figure 3.9 Receptance (a) above sleeper and (b) mid-span and (c) decay rate from 
Timoshenko beam on two layer discrete supports:  structural damping; — — — 
viscous damping. 
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The rail pad and ballast stiffnesses are the same in each case shown in Figure 3.9. The rail 

pad damping for the viscous damping model is 12,000 Ns/m and the ballast damping is 

130,000 Ns/m. With these values, the resulting rail pad damping is equivalent for both 

damping models at a frequency of 530 Hz. The ballast damping is equal for both damping 

models at a frequency of 180 Hz. The viscous damping model parameters have been 

chosen to match the decay rates with measured values on typical UIC60 track with 

relatively soft rail pads of stiffness 200 MN/m, from the Silence project test site at 

Gersthofen (see Section 3.5). 

 

3.3 Finite element track model 

A finite element model is an alternative to the above infinite beam models. The 

disadvantage of a finite element track model is that it requires the track length to be 

truncated, which could introduce errors if the modelled length is insufficient and 

reflections from the ends of the structure become significant. However, the advantages of a 

finite element model are the capability to simulate non-linear effects, for example in the 

wheel-rail contact and in the rail roughness. Irregular sleeper spacings or support 

stiffnesses may also be considered. In addition, a finite element model allows rail dampers 

to be included in a straight-forward manner, and variations in the damper design and 

placement to be considered. Finally a finite element model allows the calculation of wheel-

rail interaction forces in the time domain with a moving vehicle. 

 

The track model used in the remainder of this work is the finite element model described 

here. For the sake of efficiency and control, the finite element track model has been 

implemented in dedicated software. The method follows that of Nielsen and Igeland 

[1995]. 

 

A finite length of track is modelled by specifying a number of sleeper bays to include and 

the sleeper spacing. The rail is modelled using Timoshenko beam elements on discrete 

supports. Half the track only is considered, i.e. a single rail on half sleepers. The sleepers 

are modelled as lumped masses, while rail pads and ballast are modelled as spring-damper 

sets with a simple viscous damping model, shown in Figure 3.10. 
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Figure 3.10 Finite element two-dimensional track model. 
 

3.3.1 Equations of motion for track 

The track is modelled as Timoshenko beam elements on supports to simulate the rail pads, 

sleepers and ballast. The track is truncated to a finite length, with sleepers spaced 

periodically. In each sleeper bay the rail is divided into a number of elements. Each 

support/sleeper consists of two spring-damper elements representing the pad and ballast, 

with a lumped mass for the sleeper itself. The degrees of freedom of the model allow 

displacement u in the vertical direction and rotation θ in the vertical plane. Lateral effects 

are not included. The track ends are constrained in displacement and rotation depending on 

the chosen boundary conditions. The displacement vector {uij} for a general element of the 

model linking nodes i and j is then  
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The mass and stiffness matrices of the beam elements are determined using Timoshenko 

beam theory as described by Petyt [1990]. The following equations are equivalent to those 

for an Euler beam if β is set to zero, thus neglecting the effects of shear and rotational 

inertia. The mass matrix for each rail beam element is 
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where a is half the element length,  
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The stiffness matrix for each rail element is given by 
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The damping in the rail itself is known to be very low. The loss factor of steel is about 10-4. 

A hysteretic loss factor of 0.02 is typically used in TWINS models, to make up for cross-

section deformation effects at high frequency that are not explicitly included [Thompson et 

al., 1996a]. Other frequency domain models have used rail loss factors of 0.01 [Sheng et 

al., 2005], and 0.004 [Nordborg, 2002] if rail damping is included at all. Often it is 

neglected, as in the work of Nielsen and Igeland [1995]. In a finite-length model, the 

inclusion of a realistically low level of damping in the rail elements is beneficial in order to 

allow the length of the model to be minimised without increasing the effect of reflections 

from the track ends, particularly at higher frequencies where the rail vibration decouples 

from the supports which have higher damping levels. Therefore in this work damping of 

the rail elements is included in the form of stiffness-proportional Rayleigh-type damping.  

 

For Rayleigh damping, the element damping matrix is proportional to a linear combination 

of the stiffness and mass matrices [Petyt, 1990]: 

kmc 21 aa +=  (3.27) 
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For stiffness-proportional Rayleigh damping the coefficient a1 is zero. Stiffness-

proportional damping is chosen here rather than mass-proportional damping, or a 

combination of the two, as its effects increase with frequency, and it has been found to be 

reasonably representative of internal material damping [Petyt, 1990]. The coefficient a2 is 

estimated and the damping ratio ζ at the frequency ω of any mode of the system may be 

calculated from: 

ω
ζ2

2 =a  (3.28) 

For this work a value of a2 = 1×10-6 s is assumed. This corresponds to a damping ratio at 

modes at the upper end of the frequency range of interest (2000 Hz) of 0.006, or a loss 

factor of approximately 0.012. At lower frequencies the loss factor is correspondingly 

lower. The damping matrix for a rail element is then 

r2r kc a=  (3.29) 

 

The mass, stiffness and damping matrices for a rail pad element are listed below (including 

the sleeper mass). Each rail pad element connects a rail node and a sleeper node. Again the 

degrees of freedom of the model allow displacement of the sleeper in the vertical direction. 

Rotation of the sleeper mass in the vertical plane is neglected. ms is the mass of half a 

sleeper (since one rail only is considered). 
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Here kp is the vertical rail pad stiffness and cp is the vertical rail pad damping. Rotational 

stiffness and damping due to the rail pad are included in the terms involving Lp, the length 

of the rail pad along the rail. The inclusion of these terms has a small effect on the pinned-

pinned resonance of the track, particularly if stiff rail pads are modelled. Similarly for the 

ballast elements: 
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For the ballast element, the mass matrix is null as the sleeper mass has been included in the 

pad element. kb is the vertical ballast stiffness, cb is the vertical ballast damping. Any 

damping in the rotational degree of freedom due to the ballast layer is neglected, as is 

rotation of the sleeper mass. In addition, the ground nodes are constrained, that is, terms 

for the displacement and rotation of the ground nodes are set to zero after assembling the 

global matrices of the system. The global matrices are assembled from the element 

matrices in the usual way [Petyt, 1990]. 

 

The equations of motion for the track finite element model may be written as 

{ } { } { } { }fuKuCuM =++ &&&  (3.34) 

where M, C and K are the global mass, damping and stiffness matrices for the finite 

element model and {u} is the vector of displacements of the degrees of freedom in the 

model. {f} is a vector of forces and moments acting on the nodes of the model.  

 

Equation (3.34) may be rearranged in order to represent the problem as a first order 

system:  
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where Atrack and Btrack are assembled from the global mass, stiffness and damping matrices 

and y is a vector of the displacements and velocities of the degrees of freedom in the 

model: 
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Harmonic solutions are sought at frequency ω. With the right hand side of Equation (3.35) 

set to zero, solving the eigenvalue problem results in a system of complex eigenvalues iωn 

and a complex modal matrix P with the eigenvectors ϕ(n) as columns [Nielsen & Igeland, 

1995].  
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The size of P is 2N ×2N where N is the number of degrees of freedom in the track model. 

The number of columns used can be reduced if not all modes are to be included in the 

modal summation. For this work, modes with natural frequencies up to 3000 Hz are 

included covering approximately twice the frequency range of interest. 

 

The eigenvalues and eigenvectors in P are complex conjugate pairs; hence the number of 

columns is twice the number of degrees of freedom in the model. The lower half of P is 

equal to the upper half multiplied by the corresponding eigenvalues.  

 

The modal matrix P is used to transform the equations of motion of the track to modal 

coordinates, where q is the modal displacement vector and Q is the modal load vector: 









==
0

f
PQPq,y T  (3.38) 

 

The uncoupled equations of motion of the track are then [Nielsen & Igeland, 1995] 

Q)qb(q)a( =+ diagdiag &  (3.39) 

where 

PBP)b(PAP)a( trackTtrackT == diag;diag  (3.40) 

 

The elements of the diagonal matrices a and b are functions of the modal mass, stiffness 

and damping (see [Abrahamsson, 1988; Nielsen & Abrahamsson, 1992]).  

 

The uncoupled equations of motion of the track (Equation (3.39)), with the equations of 

motion of the vehicle and the equations governing the wheel/track interaction (see 

Chapter 4), are in a form suitable for solving using state-space formulation and a time-

stepping routine.  
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3.3.2 Receptance and decay rate from finite element track model 

The track receptance and decay rate may be calculated from the finite element track model 

for comparison with that from the frequency domain track models. The receptance, αjk(ω), 

is the response in degree of freedom j due to a harmonic force of unit magnitude and 

frequency ω applied to degree of freedom k. For the formulation used here n modes are 

included in the summation with ωr being the natural frequency of mode r: 

( ) ( )∑
= −

=
n

r rrr

rkrj
jk ii1 ,

,,

a

PP
)(

ωω
ωα  (3.41) 

 

The calculation of track decay rates from frequency response functions is as in 

Equation (3.18) following the method described by Jones et al. [2006].  

 

The finite element model parameters are listed in Table 3.3. They have been tuned to those 

of the Gersthofen test site by comparing calculated decay rates with measured track decay 

rates. These parameters are the same (where equivalent) as those used previously in the 

infinite track models. 

 

Table 3.3 Input parameters for time-stepping interaction force model. 

Notation Value Description 

L 0.6 m Sleeper spacing 

E 2.1×1011 N/m2 Young’s modulus of elasticity 

Ir 30.55×10-6 m4 Second moment of area of rail 

ρ 7850 kg/m3 Density of rail 

κ 0.4 Shear factor for rail 

G 0.77×1011 N/m2 Shear modulus of rail 

Ar 7.69×10-3 m2 Cross-sectional area of rail 

ms 147 kg Half mass of sleeper 

kp 2×108 N/m Rail pad stiffness (‘soft’) 

kp 8×108 N/m Rail pad stiffness (‘stiff’) 

cp 12×103 Ns/m Pad damping 

kb 150×106 N/m Ballast stiffness 

cb 130×103 Ns/m Ballast damping 

Lp 0.15 m Rail pad width 
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3.3.3 Model element size, truncated track length and boundary conditions  

In this section the basic parameters selected for the finite element model are determined 

and validated. In representing the rail over each sleeper bay as a number of finite elements, 

it is important that the number of elements is high enough to give accurate results when 

calculating the wheel-rail interaction force in the frequency range of interest. Also, there is 

a need to be able to determine transfer receptances at quarter-sleeper intervals for the 

calculation of track decay rates. To maintain flexibility in the model when including rail 

dampers,  rail nodes are also required for ‘attaching’ the dampers to the track model at 

particular locations. For geometric convenience then, the minimum number of elements 

per sleeper bay that can be used in the model is four. However, the number of elements 

used to represent the rail in each sleeper bay is set to eight, for reasons described in 

Section 4.4.1 where the effect of the rail element length on the interaction force is 

discussed further. 

 

The number of sleeper bays included in the finite element model must be sufficiently large 

to allow track vibrations to decay significantly before being reflected from the ends. The 

necessary number of sleeper bays can therefore be estimated from the expected minimum 

track decay rate. The minimum decay rate from measurements and predictions from a 

simple beam track model described by Jones et al. [2006] for a similar track is about 

0.3 dB/m. A similar minimum decay rate is predicted by the discretely supported track 

models (Figure 3.9). Vibration amplitudes will therefore decrease by 10 dB over a distance 

of at most 33 m. Assuming this reduction is sufficient to prevent reflections having a 

significant effect in the central sleeper bays, a track length of at least 16.5 m either side of 

the central sleeper bays of interest is required. With a sleeper spacing of 0.6 m the required 

length of the model is approximately 60 sleeper bays or 36 m. 

 

The rail point receptance above a sleeper and at mid-span are shown in Figure 3.11(a) and 

(b), calculated from this 60 sleeper bay model with fixed end conditions. These are plotted 

against the corresponding results from the frequency domain model with periodic supports 

and viscous damping. Other end conditions have been considered but the fixed ends give 

the best match with the infinite frequency domain model results at the pinned-pinned 

frequency. The decay rates from these models are shown in Figure 3.11(c) and again the 

finite element model and frequency domain model give similar results. The decay rate for 

the finite element model has been calculated over the middle 25 sleeper bays of the model. 
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Figure 3.11 Track vertical receptance (a) above sleeper, (b) mid-span and (c) decay rate. 
 finite element model; — — — discretely supported frequency domain model with 
viscous damping. 
 

To minimise the effect of reflections from the ends of the track, the damping of the five rail 

pad elements at each extreme of the track model has been increased by a factor of five. A 

similar method was used by Andersson [2003]. Above 700 Hz the receptance calculated 

from the finite element model begins to show some very slight oscillations due to the 

discrete length of the model, however these are insignificant. This additional damping does 

not significantly affect the magnitude of the receptance. The small differences in the 

receptance seen at high frequencies in Figure 3.11(a) and (b) are due to limiting the 

number of modes included in the finite element modal summation. 
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The small differences in decay rate at high frequencies between the finite element and 

frequency domain models seen in Figure 3.11(c) are due mostly to the addition of Rayleigh 

damping to the rail in the finite element model. The additional damping applied to the rail 

pads at the track ends has a smaller effect on the decay rate than the Rayleigh damping. 

Limiting the number of modes included in the finite element model also affects the decay 

rate, but again this is less than the influence of the Rayleigh damping. 

 

The effect of the Rayleigh damping that has been included in this model is shown in 

Figure 3.12. The small amount of Rayleigh damping used gives a slightly smaller dip at the 

pinned-pinned resonance above a sleeper compared with setting the coefficient a2 to zero 

(Figure 3.12(a)). Using a much higher damping coefficient in the rail however has a 

significant effect on the pinned-pinned resonance, although it also smoothes out the minor 

undulations arising from reflections from the ends of the model. The track decay rates in 

each case shown in Figure 3.12(b) show the effect of the rail damping more clearly. The 

small amount of stiffness-proportional Rayleigh damping used here is reasonable, whereas 

a higher amount of rail damping would eliminate reflection effects entirely but have 

adverse effects on the model particularly by artificially reducing the pinned-pinned 

resonance.  
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Figure 3.12 (a) Track vertical receptance above a sleeper and (b) decay rate with different 
Rayleigh damping coefficients:  a2=1×10-6 s; — — — a2=0 s; · · · · · · a2=10×10-6 s. 
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Although it is frequency dependent, the effect of the Rayleigh damping in this work is 

similar at 2 kHz, the upper end of the frequency range, to the effect of setting a constant 

rail loss factor in TWINS. The intention in TWINS is to mimic the extra damping that 

arises at high frequencies due to cross-sectional deformation of the rail interacting with the 

rail pads [Thompson & Jones, 2000]. 

 

3.3.4 Effect of rail pad stiffness on track receptance and decay rate 

The parameter that is subject to the greatest variation for typical ballasted railway tracks is 

the pad stiffness. Figure 3.13 presents the receptance and decay rate for track with stiffer 

rail pads, 8×108 N/m, but with all other parameters as in Table 3.3. 
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Figure 3.13 Track vertical receptance (a) above sleeper, (b) mid-span and (c) decay rate. 
 stiff rail pads 8×108 N/m; — — — soft rail pads 2×108 N/m. 
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With stiffer rail pads, the anti-resonance in the point receptance of the rail due to the 

sleeper mass vibrating on the ballast and pad stiffnesses is shifted to around 400 Hz, from 

around 200 Hz for the soft pads. The resonance of the rail mass on the support stiffness is 

also shifted up, from 410 Hz to 760 Hz. The pinned-pinned resonance frequency at the 

middle of a sleeper span is not greatly affected by the increase in pad stiffness although its 

amplitude is increased. The anti-resonance due to this mode at locations above sleepers is 

also much deeper with stiff pads than with soft pads and is increased in frequency. The 

slight oscillations in receptance caused by the truncated track seen with the soft pad model 

are no longer visible with the stiffer rail pads due to the higher decay rate. 

 

The track decay rate rolls off at a higher frequency with the stiffer rail pads. This is the 

frequency at which the rail becomes decoupled from the supports. The decay rate is higher 

with stiffer rail pads in the frequency range between around 300 Hz and 2000 Hz.  

 

3.4 Models of rail dampers  

Rail dampers are available commercially with various designs produced by different 

manufacturers. The rail dampers modelled in this work are of the design proposed by 

Thompson et al. [2007] i.e. tuned, damped mass-spring absorber systems, with either one 

or two masses enclosed in an elastomeric material. Early versions of these dampers were 

applied in a continuous strip along each side of the rail. In their current form, as tested in 

the Silence project [Asmussen et al., 2008], discrete dampers are fastened to the rail in 

pairs, either side of the rail in the middle of each sleeper bay.  

 

The inclusion of rail dampers is achieved in the model by adding additional elements to the 

finite element track model. In order to understand the effect that they have on the track 

dynamics, models of the rail dampers with increasing complexity are examined here. 

 

3.4.1 Additional mass added to rail without additional damping 

The mass that a rail damper adds to the track is significant. The dampers used in the 

Silence project [Asmussen et al., 2008] add 28 kg/m to the track, compared with a rail 

mass per unit length of 60 kg/m. Even in the absence of additional stiffness and damping, 

this extra mass changes the track dynamics. This is investigated first using the model 

shown in Figure 3.14. Figure 3.15 shows the receptance and decay rate results from the 

model of the track with soft rail pads, but with an additional 17 kg added at the rail node in 
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the middle of each sleeper bay, the mass of a pair of rail dampers for one sleeper bay of 

length 0.6 m. 

 

 

Figure 3.14 Addition of lumped mass to a sleeper bay in the finite element model. 
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Figure 3.15 Effect of added mass at mid-span on track vertical receptance and decay rate 
(a) receptance above sleeper, (b) receptance mid-span , (c) decay rate.  17 kg 
added mid-span; — — — no added mass. 
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With the additional mass, the pinned-pinned frequency is shifted from 1070 Hz down to 

760 Hz, and the magnitudes of the resonance and the anti-resonance at the respective 

locations are increased (see Figure 3.15(a) and Figure 3.15(b)). In terms of stiffness, the 

track will appear even stiffer above sleepers and even softer at mid-span than in the normal 

case without rail dampers or extra mass.  

 

The additional mass introduces a peak into the track decay rate shown in Figure 3.15(c) 

corresponding to the shifted pinned-pinned frequency. This is a result of increasing the 

usual pinned-pinned effects by adding the masses at mid-span. In practice, measured decay 

rates on tracks without rail dampers can display features of a similar magnitude. These are 

an effect of the measurement technique which samples predominantly at mid-span (see 

Jones et al. [2006]). Here, however, the peak is due to the addition of the 17 kg mass to the 

rail at mid-span. 

 

3.4.2 Lumped mass rail damper model with viscous damping 

A simple model of a rail damper represents it as a single lumped mass attached to the rail 

in the centre of each sleeper bay via a spring and viscous damper system, as shown in 

Figure 3.16.  

 

 
Figure 3.16 Addition of rail damper into a sleeper bay in the finite element model- simple 
viscous damping model. 
 

This representation of the rail dampers exhibits a single resonance, of the damper mass md 

on the spring stiffness kd. This ‘tuning frequency’ can therefore be chosen by setting kd for 

a particular mass. The parameters for this model of the rail damper are given in Table 3.4. 

The three values of stiffness kd have been chosen to give tuning frequencies below, at and 

above the pinned-pinned resonance. The damping coefficient cd gives the same damping at 

Sleeper node 

Damper mass node 

Rail nodes 
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800 Hz for the damper tuned to 1050 Hz as the nominal loss factor of the damper 

elastomer, 0.35.  

 

Table 3.4 Parameters for lumped mass representation of rail dampers with viscous 

damping, for various damper tuning frequencies. 

Description 800 Hz 1050 Hz 1300 Hz 

Mass of damper pair md 17 kg 17 kg 17 kg 

Elastomer stiffness kd 4.3×108 N/m 7.4×108 N/m 11.3×108 N/m 

Elastomer damping cd 3.0×104 Ns/m 3.0×104 Ns/m 3.0×104 Ns/m 

Equivalent loss factor at tuning frequency 0.35 0.46 0.57 

 

The addition of this rail damper model to the track again results in a shift in the pinned-

pinned anti-resonance above a sleeper to a lower frequency, as seen with the addition of 

pure mass to the system. In this case, shown in Figure 3.17(a) and (b), the pinned-pinned 

resonance peak at mid-span seen in the model without rail dampers has been smoothed out 

especially if the rail damper is tuned to 1050 Hz near the pinned-pinned frequency. A 

smaller peak appears instead at the shifted pinned-pinned frequency. This occurs at 690 Hz 

for the stiffer rail damper and slightly lower at around 660 Hz for the damper tuned near 

the original pinned-pinned resonance. The softer rail damper does not give a very distinct 

resonance at mid-span, as it is damping controlled at the new pinned-pinned frequency.  

 

An extra resonance above the sleepers has been introduced with the addition of the rail 

dampers to the model. This corresponds to modes of the rail with the dampers as nodes in 

the middle of each sleeper bay, and the greatest rail displacements occurring above the 

sleepers. It is the same modeshape as the pinned-pinned mode of the rail without rail 

dampers, but shifted half a sleeper bay along the track. This resonance occurs at around 

1180 Hz, higher than the pinned-pinned resonance without the rail dampers as it is affected 

by the stiffness of the rail pads. It is also more damped than the original pinned-pinned 

resonance as a result of the rail pad damping. 

 

For this damper model, the tuning frequency of 800 Hz has the greatest effect on the 

pinned-pinned resonance, resulting in the largest shift to lower frequency and also in the 

greatest reduction in the depth of the anti-resonance above the sleepers. This may be partly 

because the rail damper tuning frequency corresponds to the new pinned-pinned frequency 

of the system with the rail dampers (and their additional mass). 
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Figure 3.17 Effect of rail damper (lumped mass on spring and viscous damper) on track 
vertical receptance and decay rate for various damper tuning frequencies: (a) above 
sleeper, (b) mid-span, (c) decay rate;  no rail dampers ; — — —1050 Hz; · · · · · · · 
1300 Hz; – · – · – · 800 Hz. 
 

The track decay rate from the model is shown in Figure 3.17(c). The decay rate rolls off as 

for the model without rail dampers at the frequency of decoupling of the rail from the 

supports. The decay rate then increases again at the damper tuning frequency, and remains 

high throughout the frequency range of interest despite there being no further resonances 

of the rail damper. Much of the effect on the decay rate above the damper tuning frequency 

is due to the viscous damping model giving increasing effective loss factor with increasing 

frequency. This effect may unintentionally mimic the behaviour of the actual rail dampers, 

which have two tuning frequencies and additional beam bending modes and therefore 
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increase the track decay rate across a broad frequency range. However a more 

comprehensive model of the rail damper than this simple single-degree-of-freedom system 

is desirable to give a better representation of the properties of the elastomer in the finite 

element model. 

 

3.4.3 Measured rail damper properties 

In order to model the effect of the rail dampers on the track dynamics, it is particularly 

important to represent the properties of the elastomer accurately. The stiffness and 

damping properties of the elastomer used in the rail dampers tested in the Silence project 

have been measured in the form of shear modulus and loss factor across the frequency 

range of interest and are shown in Figure 3.18 (supplied by Corus). 

 

 

Figure 3.18 Measured shear modulus and loss factor vs. frequency for Silence project rail 
damper elastomer (supplied by Corus). 
 

The elastomer stiffness (shear modulus) increases slightly with frequency, while the loss 

factor is relatively constant. The apparent decrease in loss factor measured above 1000 Hz 

is a function of the measurement procedure, as is the increasing gradient of the shear 

modulus. Resonances in the measurement apparatus result in an erroneous measurement of 

loss factor above about 1000 Hz, in practice the loss factor is not expected to decrease 

[Ahmad, 2009]. 
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The stiffness parameter of the simple viscous damping model of a rail damper presented in 

the previous section can be set to give the correct damper tuning frequency. However, the 

ability to fit the damping characteristic is limited as the equivalent loss factor of the rail 

damper model is linearly dependent on frequency. The loss factor from the simple viscous 

damping model (using parameters from Table 3.4 for the damper tuned to 1050 Hz) is 

compared in Figure 3.19 with the measured loss factor and the nominal target loss factor 

for the damper design of 0.35 [Thompson et al., 2007]. 
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Figure 3.19 Equivalent frequency dependent loss factor of finite element model of rail 
dampers tuned to a natural frequency of 1050 Hz:  measured; · · · · · · · viscous 
damping model; — — — nominal constant value. 
 

The loss factor of the simple viscous damping has been set to be equal to the nominal loss 

factor in the middle of the frequency range of interest, around 800 Hz in this case, however 

at lower frequencies the loss factor as modelled will be too low, and at higher frequencies 

the loss factor is over-estimated by this model. In order to model accurately the effect of 

the rail dampers on the track dynamics, an improved model of the damping characteristics 

is needed for inclusion in the finite element model of the track. 

 

3.4.4 Lumped mass rail damper model with improved damping representation 

In order to represent the properties of the rail damper elastomer better, a combination of 

‘Maxwell elements’ [Lockett, 1972] in parallel with a spring is used as shown in 

Figure 3.20. The damper mass is again represented as a single lumped mass attached to the 

rail in the centre of each sleeper bay via the spring/damper system.  
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Figure 3.20 Addition of rail damper (improved damping model) the finite element model. 
 

In practice, implementing Maxwell elements in a finite element code creates a difficulty in 

that the absence of any mass at the node required between each spring and damping 

element results in a singularity. To circumvent this difficulty, small additional masses are 

included at each of the intermediate nodes as shown in Figure 3.21. The natural 

frequencies of the added masses mf1 and mf2 on the damper springs kd1 and kd2 are set to be 

well above the frequency range of interest for the model. Modes of vibration of these small 

masses are then not included in the modal summation.  

 

kd1 

md 

kd 

kd2 

cd1 cd2 

mf1 mf2 

 

Figure 3.21 Damping element with small added masses mf1 and mf2 to remove 
singularities. 
 

In order to calibrate the damper model to the actual damper, the equivalent stiffness and 

loss factor of the system are calculated and compared with measured values.  

 

Sleeper 

node 

Damper 

mass node 

Rail nodes 
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Equation (3.42) gives the equations of motion of the damping element in matrix form. 

These are obtained by neglecting all the masses in the system and using the degrees of 

freedom shown in Figure 3.22. 

 

kd 

kd2 kd1 

cd1 cd2 

u1 

u2 u3 

f1 

 

Figure 3.22 Degrees of freedom of damping element 
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The equations of motion may be rearranged to eliminate the internal degrees of freedom 

into the form f1 = ku1, where k is both complex and frequency dependent:  
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 (3.43) 

 

For hysteretic damping f = k(1+iη)u where η is the loss factor. Therefore the imaginary part 

of the bracketed term in Equation (3.43) may be normalised by dividing by the equivalent 

stiffness of the spring, i.e. the real part of the bracketed term, and compared with the 

nominal design loss factor of the elastomer of 0.35. This is shown in Figure 3.23 for the 

damper parameters listed in Table 3.5 for the damper tuning frequency of 1050 Hz. The 

damper parameters are scaled to give the same loss factor characteristic in each case for the 

three different tuning frequencies. 

 

A good model of the damping characteristics of the elastomer is achieved by modelling the 

damping elements in this way over the frequency range of interest between 100 and 

2000 Hz.  
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Figure 3.23 Equivalent frequency dependent loss factor of finite element model of rail 
damper elastomer:  measured; · · · · · · · improved damping model (1050 Hz tuning 
frequency); — — — nominal constant value. 
 

Table 3.5 Input parameters for single lumped mass model of rail damper, for various 

damper tuning frequencies. 

Description 800 Hz 1050 Hz 1300 Hz 

Mass of pair of dampers md 17 kg 17 kg 17 kg 

Elastomer stiffness kd 2.58×108 N/m 4.3×108 N/m 6.45×108 N/m 

Stiffness 1st Maxwell element kd1 1.56×108 N/m 2.6×108 N/m 3.9×108 N/m 

Stiffness 2nd Maxwell element kd2 1.56×108 N/m 2.6×108 N/m 3.9×108 N/m 

Damping 1st Maxwell element cd1 1.2×105 Ns/m 2.0×105 Ns/m 3.0×105 Ns/m 

Damping 2nd Maxwell element cd2 1.2×104 Ns/m 2.0×104 Ns/m 3.0×104 Ns/m 

 

The real part of the bracketed term in Equation (3.43) may be compared with the stiffness 

of the spring kd across the frequency range, shown in Figure 3.24. In practice the elastomer 

stiffness increases with frequency as does the equivalent stiffness of the damper system. 

Consequently the Maxwell element model is a better representation of stiffness than that 

achieved by using a single frequency-independent value. 
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Figure 3.24 Equivalent frequency dependent stiffness of finite element model of rail 
damper elastomer: · · · · · · · as modelled (1050 Hz tuning frequency); — — — nominal 
stiffness of spring kd;  measured shear modulus (right hand axis). 
 

The rail dampers as described are included in the finite element model of the track, adding 

into the global mass, stiffness and damping matrices of Equation (3.34). Figure 3.25(a) and 

(b) show the predicted vertical track receptance with the addition of the rail dampers. The 

pinned-pinned frequency is shifted to a lower frequency and its resonances are smoothed 

as before (see Figure 3.17). The effect of this damper model on the sharpness of the anti-

resonance above the sleepers is more pronounced than the effect of the simple viscous 

damping model. In general though, the effect on the receptance of this damper model is 

similar to the viscous damping model.  

 

Figure 3.25(c) shows the decay rate characteristic of the track for this model of the rail 

dampers for several tuning frequencies. These are mostly similar to the decay rates 

predicted by the simple viscous damping model (Figure 3.17(c)). For the damper with the 

lowest tuning frequency (800 Hz), the decay rate drops off above the damper tuning 

frequency, whereas for the corresponding viscous damper model, the decay rate remains 

high throughout the frequency range of interest. A slight drop in the decay rate above the 

tuning frequency is also seen for the 1050 Hz damper in Figure 3.25(c) when compared 

with the viscous model decay rate. 
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Figure 3.25 Predicted change in track vertical receptance and decay rate with the addition 
of rail dampers (lumped mass on improved spring and viscous damper system) for various 
damper tuning frequencies. (a) Receptance above sleeper; (b) receptance mid-span; (c) 
decay rate:  no rail dampers; — — — 1050 Hz; · · · · · · 1300 Hz; – · – · – · 800 Hz. 
 

3.5 Comparison of modelled and measured track decay rates  

Figure 3.26 shows the vertical track decay rates calculated by the model compared with 

measurements taken by Corus at the Silence project test site. The comparison is made for 

track both with and without rail dampers. Without rail dampers, the finite element model 

predicts slightly higher decay rates at high frequencies than seen in the measurements. This 

difference is due mostly to the use of a viscous damping model to represent the rail pad. 

The difference could be reduced by decreasing the damping in the rail pad model, but then 

a longer track length would be required to eliminate end effects from the results. The roll 

off in track decay rate above 300 Hz as the rail decouples from the sleepers and ballast is 
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represented well by the model. Overall the finite element model of the track without the 

rail dampers gives a good match for the decay rate compared with measurements. 
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Figure 3.26 Comparison of track vertical decay rates. Measurements taken by Corus at the 
Gersthofen test site with soft rail pads:  measured without rail dampers; — — — 
measured with rail dampers; · · · · · · · calculated without rail dampers; – · – · – · 
calculated with rail dampers tuned to 1050 Hz. 
 

The effect of the rail dampers as modelled here on the track decay rate is clear but the 

model used does not fully represent the effect of the actual rail damper at all frequencies 

(Figure 3.26). This is to be expected as each rail damper is made up of two beams (with 

two tuning frequencies) rather than a single lumped mass as modelled. Consequently the 

model with a single lumped mass does not result in the same uniformly high decay rate as 

that measured at the Gersthofen site. An additional resonance above the sleepers and anti-

resonance at mid-span above 1000 Hz has been introduced to the system by the rail 

dampers as modelled, resulting in an over-estimation of the track decay rate at this 

frequency. This corresponds to a bending mode of the rail with the dampers acting as 

nodes, which would not be expected to be as significant for a real damper attached at more 

than one point in the sleeper bay.  

 

The damper modelled here has a single lumped mass and therefore a single tuning 

frequency. To make detailed studies of realistic commercial damping devices more detail 

should be included, taking into account the attachment to the rail (over approximately half 

the sleeper bay length) and multiple masses and tuning frequencies. More detailed 

modelling has been carried out to study the Corus rail damper design and is reported in 

Croft et al. [2009]. The modelling of specific designs of damper in this fashion requires 
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larger finite element models and greatly extended computing times. For the purpose of this 

thesis however, the presentation and discussion is limited to a generic lumped mass damper 

model. Overall the effect of the dampers on the track dynamics is represented by the model 

satisfactorily for the time being. 

 

3.6 Summary of track modelling 

In this chapter the finite element model of the track to be used in this work has been 

described. The parameters required to represent a typical ballasted track have been 

determined. The point receptance and decay rate of the track as modelled have been 

examined and compared with simple frequency domain models in the frequency range of 

interest up to 2000 Hz. A limitation of the finite element track model is the requirement to 

truncate the track. However comparison of finite element model results with results from 

an infinite beam model have shown that end effects have been minimised and that a track 

length of 60 sleeper bays is adequate. 

 

The rail dampers have been included in the track model and their effect on the track 

receptance and decay rate has been investigated. The model shows that the mass of the rail 

dampers leads to a shift in the pinned-pinned frequency from 1050 Hz to around 760 Hz. 

The rail dampers also smooth the peaks and dips in the track receptance. The modelled 

track decay rates have been compared with measurements from Gersthofen with and 

without the rail dampers. Overall the track model as described here is a good 

representation of the typical ballasted track at this site. 
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4 WHEEL-RAIL INTERACTION FORCE 

4.1 Introduction 

The purpose of this chapter is to calculate the normal force between the wheel and rail to 

use as an input to the contact and wear model that follows. The normal force may be 

calculated by the simultaneous solution of equations describing the motion of the track and 

vehicle. A representation of the vehicle and the coupling between the vehicle and the rail 

must therefore be added to the model of the track.  

 

The finite element model of the track has been described in the preceding chapter. In this 

chapter, a simple model of the vehicle is added. The coupling between the vehicle and 

track takes place through the stiffness of the contact spring between the wheel and the rail. 

Hertzian contact is assumed for this part of the calculation, and the roughness of the track 

is processed to account for the filtering effect of the size of the contact patch before 

entering the time-stepping routine. 

 

The equations of motion of the track and vehicle system are solved using a state-space 

approach in a time-stepping routine. The variable of interest is the interaction force 

between the wheel or wheels and the rail. A set of initial values is assumed for the analysis 

and the calculation proceeds step by step from this initial point, converging to the required 

solution over a distance of several sleeper bays. The force results are then extracted from 

the middle sleeper bays of the track model. The interaction force model used here is not 

original; it is based on the work of Nielsen and Igeland [1995] with only minor changes. 

Sample results from the force model are compared with the output of Nielsen’s model 

DIFF and also with output from the model of Pieringer et al. [2008] as a check on the 

implementation and coding. 

 

The results from the interaction force model are of interest in their own right, to assess the 

effect of different track and vehicle parameters on the interaction forces. Different vehicle 

types and speeds result in different interaction force spectra. The effect of rail dampers on 

the track dynamics and interaction forces has not previously been studied. In particular the 

effect of the rail dampers on the interaction forces at and around the pinned-pinned 

resonance of the track is of interest. Some interaction force results with the rail dampers 

are therefore included as examples at the end of this chapter, with the full set of results 

presented in Appendix A.  
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4.2 Model of vehicle 

The vehicle is modelled by either one or more uncoupled wheel masses each linked to the 

rail by a non-linear Hertzian contact spring, with an external static force applied to 

represent the sprung vehicle mass. Figure 4.1 is a representation of the elements of the 

vehicle and track models. 

 

 

 

Figure 4.1 Finite element track and vehicle model.  
 

In order to calculate the contact forces between the wheels and the rail as the wheels move 

along the track at constant speed v, the equations of motion of the system are solved by a 

time-stepping routine using a state-space formulation.  

 

4.2.1 Equations of motion for vehicle 

Each wheel (including its contact spring) has two degrees of freedom, the vertical 

translation of the contact point uai and the vertical translation of the wheel centre ubi in the 

vertical direction (positive downwards) where i is the wheel number, as shown in 

Figure 4.2. The external static load on the wheel is Fei, and the contact force at the 

interface with the rail is Fai. The wheels need not be connected to each other as above 

around 10 Hz the vehicle suspension isolates the vehicle body from the unsprung mass of 

the vehicle and the track [Knothe & Grassie, 1993]. 
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Figure 4.2 Wheels and contact springs. 
 

The contact stiffnesses kHi for the wheels are non-linear and are determined by 
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0forN/m 

0

>−−





= aibiaibiH
Hi

uuuuC
k  (4.1) 

where CH is a constant calculated from the Hertzian equations for an elliptical point 

contact. For this approximation of the contact between the wheel and the rail, the relation 

between the contact force Fai and the approach of distant points δ in the two bodies is given 

in this form by Johnson [2001]: 
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where R is the equivalent radius of curvature and δ is equivalent to ub-ua. Assuming the 

wheels and rail are perpendicular cylinders, R is calculated from the radius of the wheel Rw 

and the radius of the rail Rr as 

rwRRR =  (4.3) 

 

E* is determined from the Young’s modulus E and Poisson’s ratio ν of the wheel and rail 

(here both steel) by 
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Equation (4.2) may be rearranged into the form 

2
3

δHai CF =  (4.5) 

so that the constant CH is given by  
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2*
3

4
RECH =  (4.6) 

 

The wheel radius for each vehicle type examined here is 0.46 m, while the material 

properties of both the wheel and rail are E = 2.1×1011 N/m2 and ν = 0.3. For a new rail 

profile the radius of the rail head across the rail is 0.3 m. These parameters result in a value 

of the Hertzian constant CH of 93.8×109 N/m3/2. 

 

Typical parameters for three vehicle types are listed in Table 4.1 below. The velocities are 

the averages for each vehicle type measured by Deutsche Bahn AG at the Gersthofen test 

site, as part of the Silence project.  

 

Table 4.1 Vehicle model parameters. 

Train Type Notation Value Description 

Freight 

TAMNS 895 

(wheel BA04) 

v 29.44 m/s Train wheel velocity 

Mw 488.5 kg Unsprung wheel mass 

Fe 100×103 N Static load on wheel 

l 0 m, 1.8 m, 5.04 m, 6.84 m Axle spacing  

Regional 

Doppelstockwagen 

DBz751 

(wheel BA220) 

v 37.78 m/s Train wheel velocity 

Mw 702.5 kg Unsprung wheel mass 

Fe 60×103 N Static load on wheel 

l 0 m, 2.5 m, 6.4 m, 8.9 m Axle spacing  

High-speed 

ICE1 coach 

(wheel BA014) 

v 43.06 m/s Train wheel velocity 

Mw 782 kg Unsprung wheel mass 

Fe 60×103 N Static load on wheel 

l 0 m, 2.5 m, 7.4 m, 9.9 m Axle spacing  

 

 

In matrix form, the resulting equations of motion for a single wheel vehicle model are  
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(4.7) 

where Mw is the unsprung mass of the wheel. The force at the contact point Fa is the 

variable of interest, to be determined from the model of the wheel coupled with the model 

of the rail. 
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For a two wheel model, the equations of motion of the system may be written as 
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 (4.8) 

 

4.2.2 Coupling of wheel and track models 

In order to couple the physical model of the wheel with the modal track model, the force at 

the contact point Fa between each wheel and the rail needs to be distributed between the 

nodes of the track model on either side of the actual wheel location at each point in time. 

 

A local coordinate ξj(t) is defined for j = 1, ... , Je. Je is the total number of finite element 

model track elements. Its value ranges from 0 to Lj for each finite element between two 

track nodes, where Lj is the distance between two nodes of the track model as shown in 

Figure 4.3. As the wheel moves with time t, at each time-step the distance is recalculated. 

This local coordinate is the same as that introduced by Nielsen and Abrahamsson [1992]. 

 

ξj(t) 

node j  node j +1 

Displacement ut,2j-1 
Rotation θt,2j 

Displacement ut,2j+1 
Rotation θt,2j+2 

 

Figure 4.3 Element j of track model. 
 

The load from a wheel at position ξj(t) is distributed onto the adjacent nodes by use of 

Hermite interpolating polynomials [Martin & Carey, 1973; Nielsen & Abrahamsson, 

1992]: 
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The interpolating polynomials are assembled in a matrix H in the same order as the 

degrees of freedom of the finite element model: a vertical term followed by a rotation term 

for each node. 

[ ]4321 HHHH=H  (4.13) 

 

The rail deflection, velocity and acceleration at positions between the nodal degrees of 

freedom are estimated using the same interpolating polynomials, and equated to the wheel 

translation taking account of any initial track roughness r, which is a function of distance x 

or the local coordinate ξj for the each rail finite element. 

 

These interpolating polynomials are chosen because they provide continuity in derivative 

values across element boundaries. They are cubic polynomials which can therefore 

represent Euler beam bending (e.g. as in the derivation of a two-node Euler beam bending 

finite element [Petyt, 1990]). The interpolation functions correspond to the deformed shape 

of an Euler beam element; however they do not provide a good approximation of the 

deformed shape of Timoshenko beam elements where shear effects are significant. This 

leads to discretisation effects in the calculation of the wheel-rail interaction force. An 

alternative to these interpolation functions would be to use the corresponding shape 

functions for a Timoshenko beam. This approach was taken by Nielsen and Igeland [1995]. 

However, the resulting derivatives are discontinuous across element boundaries. This again 

results in discretisation effects of significant magnitude. The Timoshenko beam functions 

have been trialled in this model but the discretisation effects were found to be worse than 

those with the standard interpolating polynomials. Discretisation effects are discussed 

further in Section 4.4.1. 

 

The interaction forces are generated by the roughness function along the rail and also by 

parametric excitation due to the variation in track stiffness caused by the discrete supports. 

If the initial track roughness is set to zero then the interaction forces resulting from purely 

parametric excitation will be determined. The initial roughness along the rail may be set to 

zero, to a regular sinusoidal function, to a measured roughness profile, or to a roughness 

profile generated from a spectrum using randomly distributed phase for each wavelength 

component.  
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Applying the interpolation polynomials and any initial roughness, the displacement of the 

wheel uai at a point between two nodes of the track is given by the displacement of the rail 

and the relative distance between the track and wheel, i.e. the roughness function r: 
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In terms of modal coordinates, the four degrees of freedom of the adjacent track nodes 

correspond to Pint, which is a partition of the relevant four rows of the modal matrix P 

(from Equation (3.37)). 

 

The displacement of the wheel and track at the interface can be written in modal 

coordinates (i.e. using the track modal analysis described in Chapter 3) as: 

)()()( int
jai rttu ξ+= qPH  (4.15) 

 

The velocity and acceleration of the interfacial degree of freedom are given by time 

derivatives of the displacement: 

( ) ( ) ( ) ( ) ( ) rtttttuai &&& ++= qUqT  (4.16) 

( ) ( ) ( ) ( ) ( ) rtttttuai &&&&& ++= qSqR  (4.17) 

where T, U, R and S are defined by: 
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The derivatives with respect to time of the initial roughness function r are as defined by 

[Nielsen & Abrahamsson, 1992]: 
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The contact forces can also be written in the modal form, making use of the interpolating 

polynomials to distribute the loads between the nodes either side of the contact point. 

( )ta
TT FHPQ int=  (4.24) 

 

4.3 State-space solution to equations of motion of system 

The modal forms of the equations of motion for the track, vehicle and their interaction are 

to be solved simultaneously for the interaction forces between the wheels and the rail. 

These Equations (3.39), (4.8) and (4.24) are arranged in a standard matrix form as in 

Nielsen and Igeland [1995]. 

( ) ( ) ( ),t,t,t gFggBggA =+&  (4.25) 

 

A(g,t) and B(g,t) are as defined by Nielsen and Igeland [1995].  
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The wheel damping Cw is assumed to be zero in this work. Extra wheels add more entries 

to the last 5 rows and columns in A and B.  

 

g(t) is a vector constructed from the modal coordinates q and the parameters of interest to 

be solved for, namely the interaction force in the form of the impulse aF̂ , and the 

displacement and velocity of both the wheel centre and the contact point. The force 
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impulse aF̂ at each location is the integral of the normal interaction force Fa over the length 

of the time-step. 

( ) { }ababa Fuuuuqg ˆ
&&=t  (4.28) 

 

The forcing term F(g,t) in Equation (4.25) is given by 

( ) { }T
TTTTTT r-r-0F00gF &&&

ext
b,t =  (4.29) 

 

Equation (4.25) may be rearranged into the form of an ordinary differential equation: 

 

( ) ( ) 0
1 0 gt, ==−= − gBgFAg&  (4.30) 

 

In order to improve computational efficiency, the matrix A(g,t) is divided into submatrices: 
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(4.31) 

 

This allows the diagonal submatrix A11 to be inverted separately before entering the time-

stepping function, and removes the need to invert the large matrix A(g,t) at every time-

step, as the other submatrices are significantly smaller than A11. Instead, the inverse of 

A(g,t) is then calculated using a method described by Barnett [1979]: 
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where 

( )12
1

112122 AAAAG −−=  (4.33) 

 

To solve the state-space system, a set of initial values are given to g at time t = 0. The time 

is then incremented and new values for g are calculated using a standard variable step size 

Adams-Bashforth-Moulton routine. The Matlab routine ODE113 [Shampine & Reichelt, 

1997] has been used in this case. This routine returns results at the requested times, in this 

case those corresponding to regular 1 mm distance intervals. The wheel-rail interaction 

forces are thus determined as the wheels move along the model of the track. 

 

In order to minimise the calculation time, the time-stepping routine is begun with the 

wheel or wheels already part way along the track. The interaction forces are calculated 
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over 5 m of the track only, or more if more than one wheel is included. This 5 m length 

includes just over five bays to allow the routine to settle down from the initial transient 

effects, followed by the three sleeper bays of interest for the calculation. Minimising the 

calculation length in this way significantly reduces the time to run the interaction force 

time-stepping routine, and examination of the results as shown in Figure 4.4 indicates that 

the routine is able to converge to a solution before reaching the middle three sleeper bays. 

Three bays (1.8 m) has been chosen as a suitable sample length to balance the 

computational cost of the wear model with the roughness wavelength range of interest, 

discussed further in Section 7.6. 
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Figure 4.4 Example of interaction force converging to solution for a single wheel freight 
model on a smooth rail. Model length 60 sleeper bays; calculation begins with wheel 
13.6 m along the track and ends after wheel traverses the central three sleeper bays. 
 

4.4 Effect of variations in the track model 

The interaction force is sensitive to variations in the track model. In order to develop an 

understanding of the model sensitivity, the interaction force analysis has been completed 

for a series of baseline cases. The model variations considered are the number of beam 

elements in each bay, the number of vehicle wheels included, the effect of contact filtering, 

the initial roughness profile and the effect of variable sleeper spacings. 

 

The track model input parameters are as listed in Table 3.3. The vehicle modelled in this 

section is a typical freight train at this site as described in Table 4.1. 
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4.4.1 Effect of number of beam elements per sleeper bay 

Figure 4.5 shows the dynamic interaction force spectrum of the middle three sleeper bays 

of the model, calculated by discrete Fourier transform from the time history. The static 

load on the wheel has first been subtracted. Results are shown in one-third octave bands, 

plotted against roughness wavelength as well as frequency. The roughness wavelength is 

of interest as force results can then be compared later in this work with roughness spectra 

and roughness growth rates, independent of the vehicle velocity. The vehicle model for this 

example is a freight vehicle with a single wheel, and the rail is smooth with no initial 

roughness. As noted previously the Hermite interpolation functions used to determine the 

interaction force between two nodes of the model introduce some discretisation effects. 

The exact shape functions of a Timoshenko beam are not used for the interpolation of the 

results as they result in discontinuous derivatives at the element boundaries.  

 

To illustrate these discretisation effects, the rail has been modelled using 2, 4, 8, 12, 24 or 

48 elements in each sleeper bay as shown in Figure 4.5. The rail is smooth so the dynamic 

force is due to the parametric excitation and the element discretisation effects only. The 

parametric effects are evident in all these cases especially at 0.3 m which is half the sleeper 

spacing (to see the actual sleeper spacing of 0.6 m, more sleeper bays would need to be 

included in the analysis). Parametric effects are independent of the element length, 

although if less than eight elements are used in each sleeper bay the discretisation effects 

and parametric effects coincide, as shown in Figure 4.5(a) in the wavelength bands 

corresponding to half and quarter sleeper bay lengths. When more elements are used, 

shown in Figure 4.5(b), parametric effects dominate the force spectrum for wavelengths 

longer than about 0.125 m. Discretisation effects can be clearly seen at wavelengths shorter 

than 0.1 m, with each case showing a peak in the force-wavelength spectrum 

corresponding to the element length.  

 

If it were possible to use even more elements, the discretisation effects would shift to even 

shorter wavelengths and eventually out of the wavelength range of interest. However this 

would require an unfeasible number of elements in a track model of this type. In practice, 

using more than eight or twelve elements per bay results in extremely high computer 

memory requirements and long calculation times. 
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Figure 4.5 Dynamic interaction force spectrum due to parametric excitation and 
discretisation effects for track modelled using Timoshenko beam elements. (a)  8 
elements per bay; — — — 4 elements per bay; · · · · · · · 2 elements per bay (b)  8 
elements per bay; — — — 12 elements per bay; · · · · · · · 24 elements per bay; – · – · – · 48 
elements per bay. 
 

4.4.2 Discretisation effects with realistic rail roughness 

Now the effect of introducing a realistic rail roughness profile is examined for two 

example roughness levels. One roughness profile has been generated from the TSI limit 

spectrum [European Commission, 2005 & 2006], the other is a low-level broadband 

roughness generated from a smooth spectrum of similar level to measured roughness at the 

Silence project test site at Gersthofen (see also Section 4.4.4). These roughness spectra are 

shown in Figure 4.6. The roughness levels measured at Gersthofen are low, compared with 
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the TSI limit spectrum. Figure 4.7 shows the resulting dynamic force spectrum over three 

sleeper bays for track with these roughness levels. 
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Figure 4.6 Roughness spectra:  target low level broadband spectrum, similar in 
level to measurements at Gersthofen; — — — TSI limit spectrum. 
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Figure 4.7 Dynamic interaction force spectrum with broadband roughness, parametric 
excitation and 8 Timoshenko beam elements per sleeper bay:  smooth rail; — — — 
low level broadband roughness; · · · · · · · TSI level roughness. 
 

At most wavelengths shown in Figure 4.7, the dynamic forces generated by the TSI level 

roughness are at least 10 dB higher than the dynamic forces due to parametric excitation or 

element discretisation effects. For the low level broadband roughness, the short wavelength 

dynamic forces are almost all well above the level of the discretisation effects. However in 

the 0.08 m one-third octave wavelength band and at longer wavelengths, the dynamic force 

due to the low level roughness is not significantly higher than the force due to the 
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discretisation effects with 8 elements per sleeper bay. Care must therefore be taken in 

interpreting results from the model in the 0.08 m one-third octave wavelength band in 

cases with low level roughness. 

 

For this work eight elements are chosen to represent the rail in each sleeper bay. The 

effects of the discretisation remain. These are not significant in cases with a realistic TSI 

level roughness spectrum present on the railhead because they are masked by the dynamic 

forces due to the roughness as shown in Figure 4.7. With a lower rail roughness level, the 

element discretisation effects are insignificant in most of the wavelength range, but need to 

be kept in mind in analysing results in the 0.08 m one-third octave wavelength band. 

 

4.4.3 Effect of initial sinusoidal roughness profile  

In order to examine the effect of the railhead roughness on the wheel-rail interaction 

forces, results have been calculated for a series of cases with sinusoidal rail profiles of 

wavelengths 20, 40 and 80 mm. The amplitude of the sinusoidal roughness is 1×10-5 m in 

each case, corresponding to a roughness level of 17 dB re 1µm at that wavelength. All the 

following cases have eight beam elements per bay, regular sleeper spacing, soft rail pads 

and a single freight wheel model of the vehicle.  

 

The spatial history (time history plotted against location) of the interaction force in the 

middle sleeper bay is shown in Figure 4.8 for the smooth rail case and for each of the cases 

with a sinusoidal initial profile. With an initial roughness, the periodicity of the roughness 

dominates the interaction force. Some variation throughout the sleeper bay, due to 

parametric excitation and resonances of the track, can also be seen. 

 

In spectral terms, the interaction forces in Figure 4.9 show peaks corresponding to the 

original roughness wavelength in each case. The peaks in the smooth rail case arising from 

parametric excitation are much smaller than those where an initial sinusoidal profile is 

present. Harmonics of the initial profile wavelength can also be seen in the force spectrum. 

The magnitude of the dynamic force is much higher for the shorter wavelengths of 

harmonic roughness than for the smooth rail or for the harmonic roughness of wavelength 

0.08 m.  
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Figure 4.8 Dynamic interaction force history of middle sleeper bay for (a) smooth rail; (b) 
0.02 m wavelength profile; (c) 0.04 m wavelength profile; (d) 0.08 m wavelength profile. 
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Figure 4.9 Effect of initial harmonic roughness profile on dynamic interaction force 
spectrum:  smooth rail; — — — 0.02 m wavelength sinusoidal profile; · · · · · · · 
0.04 m wavelength sinusoidal profile; – · – · – · 0.08 m wavelength sinusoidal profile. 
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Figure 4.10 shows the variation in the force history alongside the roughness profile. In all 

these sinusoidal roughness cases, a peak in the interaction force occurs shortly before each 

crest in the roughness profile.  
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Figure 4.10 Dynamic interaction force history compared to sinusoidal roughness profile: 
(a) 0.02 m wavelength; (b) 0.04 m wavelength; (c) 0.08 m wavelength;  force;  
— — —  roughness profile (not to scale). 
 

4.4.4 Realistic broadband roughness and contact filter effects 

For this work, a broadband roughness profile based on the low level spectrum shown in 

Figure 4.6 is generated along the length of the finite element track model, as in Nielsen 

[2003]. Thirty harmonic roughness components with random phase have been included in 

each one-third octave wavelength band, to create roughness with the desired spectral 

content. Since this roughness, based on the measured spectrum, is low, and the wheel is 
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assumed to be smooth, selected calculations are repeated for a case with a roughness 

profile generated to match the TSI limit spectrum. This is still a relatively low roughness, 

especially since in practice the combined roughness of the system will be a combination of 

the wheel and rail roughness. 

 

With a broadband roughness profile, the dynamic interaction forces (as shown previously 

in Figure 4.7) are much higher at short wavelengths than the dynamic force with a smooth 

rail. However as the contact patch between the wheel and the rail has a finite area, 

roughness wavelengths shorter than the size of the contact patch do not excite the wheel-

rail system as effectively as longer wavelength roughness. The interaction force therefore 

decreases with shortening wavelengths. To account for the effect of the contact patch size a 

‘contact filter’ is required when predicting the interaction force resulting from a surface 

roughness. Here, the two-dimensional distributed point reacting spring (DPRS) model 

developed by Ford and Thompson [2006] is applied to all cases where the initial roughness 

has a realistic profile i.e. not zero or purely sinusoidal roughness.  

 

For a roughness profile r(x), the total contact force P for a wheel centred at x is given by 

Ford and Thompson [2006] as 

∫
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and z(x′) is the circular profile of the wheel as a function of x′, the position in the contact 

patch relative to the centre at x. The integration of the contact force is performed over a 

range –a<x′<a such that all potential points of contact are included, and a value of the 

deflection δ  is determined such that the total force P is equal to the static wheel load Fe. 

The equivalent roughness of the system including the filtering effect of the contact may 

then be determined from the difference between the calculated deflection δ and the 

nominal deflection 
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)1(2

1
2ν−

= E
k  (4.37) 

and the wheel radius Rm (adjusted to give the correct length assuming circular contact in a 

two-dimensional DPRS model) is  

wm RR
2

1=  (4.38) 

 

This contact filter can be used in a quasi-static sense, by assuming the contact patch length 

and the interaction force are constant along the length of the track. In this case the 

equivalent roughness calculated along the length of the track model replaces the input 

roughness profile before calculation of the interaction forces in the time-stepping model. 

Alternatively the contact filter may be applied dynamically inside the time-stepping routine 

at every position x along the rail with the force at each position able to vary. This method 

increases the calculation time but is more realistic, especially if the interaction force is 

varying significantly, for example with high levels of roughness. Ford and Thompson 

[2006] tested both methods and found that quasi-static filtering was adequate for low levels 

of roughness. This finding is replicated here, with Figure 4.11 showing very little 

difference in the results obtained by quasi-static and dynamic filtering. In the remainder of 

this work, quasi-static filtering is used and the roughness profile is processed before being 

used to calculate the interaction forces.  
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Figure 4.11 Effect of contact filter on dynamic interaction force spectrum with low level 
broadband roughness:  no contact filter; — — — quasi-static filtering with 
assumed constant force; · · · · · · · dynamic filtering at each position. 
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4.4.5 Validation by comparison with established force models  

The interaction force model used here has been validated by comparing results with the 

output from two established wheel-track interaction models developed at Chalmers 

University of Technology. The first of these is Nielsen’s model DIFF, which has been 

validated by measurements [Nielsen, 2006]. The second is the model of Pieringer et al. 

[2008] which uses a different approach based on impulse response functions, and does not 

require the rail to be divided into elements. The author acknowledges the assistance of 

Astrid Pieringer in calculating the results shown in this section from the Chalmers models. 

 

Results are presented in Figure 4.12 for a single freight wheel on smooth track with soft 

rail pads, from an 80 sleeper bay track model with eight rail elements per sleeper bay.  
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Figure 4.12 Force comparison for smooth rail case (a) Dynamic interaction force history 
and (b) dynamic interaction force spectrum:  Croft; — — — DIFF; · · · · · · · 
Pieringer. 
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The force history in the sleeper bay (Figure 4.12(a)) is similar from all three models, 

although there are differences at short wavelengths that can be seen more clearly in the 

spectrum (Figure 4.12(b)). The only excitation to the system in this case is parametric, so 

minor differences between the models lead to significant differences in the spectra. 

 

The dynamic force histories (Figure 4.13(a)) for a corrugated case with a sinusoidal profile 

of wavelength 40 mm again show that the results from all three models are very similar. 

The short wavelength differences in the force spectrum seen in the smooth rail case are 

also apparent in the spectrum results shown in Figure 4.13(b). At the wavelength 

corresponding to the corrugation, though, the force results are the same from each model.  
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Figure 4.13 Force comparison for sinusoidal corrugation case (a) Dynamic interaction 
force history and (b) dynamic interaction force spectrum:  Croft; — — — DIFF; 
· · · · · · · Pieringer. 
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Finally a case with broadband roughness has been calculated using the three different 

models and is shown in Figure 4.14. The roughness was pre-processed to take account of 

the contact filter independently of the models being compared. In this case both the force 

history in a sleeper bay and the spectrum are very similar for the three models. A very 

small difference can be seen in the one-third octave band corresponding to the element 

length of 0.075 m, and small differences are also seen for wavelengths shorter than 

0.008 m, but overall the agreement between the three models is excellent for this case with 

a realistic roughness excitation. It is therefore concluded that the force model used in this 

work is valid. 
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Figure 4.14 Force comparison for broadband, TSI level roughness case (a) Dynamic 
interaction force history and (b) dynamic interaction force spectrum:  Croft;  
— — — DIFF; · · · · · · · Pieringer. 
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4.4.6 Effect of variable sleeper spacing 

With a finite element model of the track it is possible to include sleeper spacings that are 

non-uniform. The actual sleeper spacings at the Silence test site were measured and found 

to have a mean spacing of 0.605 m with a standard deviation of 0.007 m. These are 

extremely regularly spaced sleepers. For comparison, the sleeper spacing at the Chilworth 

test track in Southampton has a mean of 0.628 m and a standard deviation of 0.039 m, 

while two Swedish sites have mean spacings of 0.652 and 0.650 m with standard 

deviations of 0.017 and 0.020 m respectively [Thompson, 2009]. 

 

The interaction force spectrum calculated from a model using the measured sleeper 

spacings from Gersthofen and from Chilworth is compared to the interaction force with 

regular sleeper spacings below. Results in Figure 4.15 are calculated for the same low level 

broadband roughness profile in all cases. Results shown are from five successive sets of 

three sleepers as listed in Table 4.2. A non-constant sleeper spacing results in small 

differences in the force spectrum at longer wavelengths, which are more noticeable with 

the more variable Chilworth sleeper spacings than with the Gersthofen spacings. However, 

the effect overall is small and in the presence of a realistic roughness, the interaction forces 

are dominated by the effects of the surface profile. Therefore, in the remainder of this 

work, the sleeper spacing will be assumed to be constant at 0.6 m intervals in all cases. 

 

Table 4.2 Sleeper spacings (mm) for variable spacing results shown in Figure 4.15. 

Site Set 1 Set 2 Set 3 Set 4 Set 5 

Gersthofen 612 

605 

612 

605 

611 

605 

601 

602 

606 

598 

615 

605 

607 

605 

612 

Chilworth 600 

606 

660 

625 

650 

642 

630 

629 

656 

663 

630 

636 

635 

613 

631 
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Figure 4.15 Effect of non-uniform sleeper spacing on dynamic interaction force spectrum 
with low level broadband roughness (a) Gersthofen spacings, (b) Chilworth spacings: 
 regular sleeper spacing; — — — variable sleeper spacing. 
 

4.4.7 Effect of number of vehicle wheels  

Igeland [1996] concluded that the interaction force is different at successive wheels, and 

that it is therefore important to include more than just one wheel in any model of wheel-

track interaction and also roughness growth. Other authors have also developed models to 

calculate the interaction forces between multiple wheels and the track and reached similar 

conclusions [Wu & Thompson, 2001; Sheng et al., 2006].  

 

All the force results presented in this section have been calculated using eight beam 

elements per sleeper bay and a realistic low level of rail roughness as shown in Figure 4.6. 
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Two rail pad stiffnesses are considered: 200 MN/m, which is relatively soft (Figure 4.16) 

and 800 MN/m which is relatively stiff (Figure 4.17). The interaction force between each 

wheel and the rail is calculated over the middle three sleeper bays of the model as before. 

The results from a model with a single wheel are compared with models with two and four 

wheels. The two wheels are the most closely spaced, i.e. those sharing a bogie. The four 

wheels are those from the bogies at the end and start of successive carriages. More distant 

wheels are omitted as they are unlikely to have a significant effect on the model results due 

to the decay of vibrations along the track length.  
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Figure 4.16 Effect of number of wheels on interaction force spectrum with soft rail pads 
and low-level broadband roughness: (a)  single wheel model; — — —two wheel 
model; (b)  single wheel model; — — — four wheel model. 
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With soft rail pads (Figure 4.16) there are clear differences in the interaction force seen at 

two successive wheels as they pass over the middle three sleeper bays, compared with the 

force calculated with a single wheel on the track. These results support the findings of 

Igeland [1996] that it is important to include more than one wheel. The results from a four 

wheel model are similar to those from a two wheel model, but some differences remain in 

the spectrum for each wheel. Therefore four wheels should be included in the force model 

in all cases with soft rail pads to capture the interactions between wheels. 
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Figure 4.17 Effect of number of wheels on interaction force spectrum with stiff rail pads 
and low-level broadband roughness: (a)  single wheel model; — — — two wheel 
model; (b)  single wheel model; — — — four wheel model. 
 

With stiff rail pads (Figure 4.17), the interaction force shows less sensitivity to the number 

of wheels included in the model. Results are very similar for all the models with different 
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numbers of wheels. With stiff rail pads it is therefore less necessary to include multiple 

wheels in the system than it is with soft rail pads. Four wheels will be considered, 

however, in order to provide uniformity when comparing the results from tracks with the 

two different rail pad stiffnesses.  

 

An examination of the track decay rates plotted against roughness wavelength for the 

tracks with soft and stiff rail pads explains the reason for including more than one wheel in 

the model. Figure 4.18 shows that the track decay rates become low with soft rail pads at 

frequencies that correspond to roughness wavelengths shorter than around 0.075 m. By 

comparison, with stiff rail pads, the track decay rate remains high for wavelengths down to 

half this length, at around 0.0315 m. Differences in the interaction force between single 

and multiple wheel models are expected for wavelengths where the decay rate is low. 

Therefore, there is little difference between single and multiple wheel models if the track 

has stiff rail pads, but if the track has softer rail pads it is important to include more than 

one wheel in the interaction model. 
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Figure 4.18 Track decay rate vs roughness wavelength (for freight speed):  stiff rail 
pads 8×108 N/m; — — — soft rail pads 2×108 N/m. 
 

4.4.8 Summary of sensitivity of force to variations in input parameters 

The number of elements required to represent the rail in each sleeper bay must be at least 

eight. If fewer elements are used, discretisation effects coincide with the parametric 

excitation effects and are noticeable particularly if the rail is assumed to be smooth. 

However, if the rail has a realistic level of broadband roughness, the discretisation effects 
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are less significant as the interaction force is dominated by the rail roughness and 

discretisation effects therefore tend to be masked. The rail roughness is the main 

contributor to variation in the wheel-rail interaction force in the frequency range examined 

here. 

 

It is important to include more than one wheel in the model if the rail pads are relatively 

soft, since the vibration decay rate along the rail is low in part of the frequency range of 

interest. Different interaction forces are seen if multiple wheels are included in the model 

on track with soft rail pads. With stiff rail pads, the effects of multiple wheels are less 

noticeable as the track decay rates are higher and waves do not travel as far between the 

wheels as on track with soft rail pads.  

 

The sharpness of the pinned-pinned resonance is affected by the precision of periodicity of 

sleeper spacing. Therefore variable sleeper spacing has been examined to assess the effects 

on the dynamic interaction force. However, the cases considered here show only a small 

effect on the calculated interaction force spectrum. Therefore in the remainder of this work 

effects of variable sleeper spacing will be neglected.  

 

4.5 Effect of variations in the vehicle parameters  

4.5.1 Effect of vehicle speed on wheel-rail interaction force 

The speed of the vehicle is a significant factor in the model to calculate the wheel-rail 

interaction forces. Figure 4.19 shows the mean interaction forces of a four wheel model of 

a freight train at three different speeds. Wavelength is shown, rather than frequency, to 

allow comparison with later results for different train types and also to allow comparison 

with the initial roughness profile. At the average freight train speed of 29.44 m/s measured 

in the Silence project, the wavelength of roughness and force that corresponds to the 

pinned-pinned frequency is 0.027 m. At a speed one-third higher than this, the wavelength 

shifts to 0.036 m. At two-thirds of this speed the wavelength is 0.018 m. The shift in the 

pinned-pinned effects can be seen in the force results; a peak appears in each case at the 

corresponding wavelength.  

 

The interaction forces are generally higher for a faster vehicle, in particular at wavelengths 

between about 0.02 m and 0.08 m. 
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Figure 4.19 Effect of vehicle speed on freight vehicle dynamic interaction force spectrum 
with low level broadband roughness:  29.44 m/s; — — — 20 m/s; · · · · · · · 40 m/s. 
 

4.5.2 Effect of vehicle wheel spacing on wheel-rail interaction force 

In order to assess the effect of the wheel spacing, results have been calculated for the 

freight train with more closely spaced wheels and wheels spaced further apart than usual. 

Figure 4.20 shows the mean interaction forces of a four wheel model of a freight train with 

three different bogie wheel spacings.  
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Figure 4.20 Effect of bogie wheel spacing on freight vehicle dynamic interaction force 
spectrum with low level broadband roughness and soft rail pads:  1.8 m nominal; 
— — — 1.5 m; · · · · · · · 2.1 m. 
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Varying the wheel spacing by up to 0.3 m has only a small effect on the force, in the 

wavelength range from 0.016 m to 0.063 m. The effect will be even less if the rail pads are 

stiffer, as the track decay rates are higher across the spectrum. Therefore, different wheel 

spacings will not be considered in the remainder of this work, except in that they are 

different anyway for the different vehicle types. 

 

4.5.3 Effect of vehicle unsprung mass on wheel-rail interaction force 

The unsprung mass of the vehicle includes the mass of the wheel, axle and any other 

components located below the primary suspension. Increasing or decreasing the unsprung 

mass by one third has very little effect on the predicted interaction force between the wheel 

and the rail in the wavelength range of interest (Figure 4.21). The force spectrum begins to 

show variation only at the longest wavelengths shown. 
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Figure 4.21 Effect of unsprung mass on freight vehicle dynamic interaction force spectrum 
with low level broadband roughness and soft rail pads:  488.5 kg nominal; — — — 
651 kg; · · · · · · · 326 kg. 
 

4.5.4 Effect of vehicle static load on wheel-rail interaction force 

The static load on each wheel is a function of the total mass of each carriage. Combined 

with the dynamic interaction force, it gives the total force at the wheel-rail contact which 

will be used as the input to the roughness growth model. A one-third increase or decrease 

in the static load has an effect on the dynamic interaction force as shown in Figure 4.22. 

The effect is not uniform across the wavelength range, i.e. the dynamic force is not always 

higher with a higher static load; for some wavelengths there is little difference. 
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Wavelengths between 0.25 m and 0.063 m show the most significant differences. The 

static load affects the interaction force because it changes the stiffness of the contact spring 

between the wheel and rail. Also, parametric effects are increased by increasing the static 

load. 
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Figure 4.22 Effect of static load on freight vehicle dynamic interaction force spectrum with 
broadband roughness:  100 kN nominal; — — — 67 kN; · · · · · · · 133 kN. 
 

4.6 Results for different vehicle types  

The average interaction force spectra over four wheels for each train type are presented in 

Figure 4.23 and Figure 4.24. These results are for track with soft rail pads and for the two 

realistic roughness profiles generated to match the low level roughness and TSI limit 

roughness spectra shown in Figure 4.6. Different wavelengths are dominant for each of the 

train types due to their differing average speeds and wheelbase. For the low-level 

roughness, the forces for the regional and high-speed trains are quite similar throughout the 

wavelength range. This is because the static load is the same for these two types, as is the 

bogie wheel spacing; the only major difference, therefore, between the two vehicles is their 

speeds. The unsprung mass of the vehicle has been shown to have less effect on the 

calculated force.  

 

With the higher TSI limit spectrum roughness, more differences become apparent 

especially in the wavelength range around 0.063 m. As expected, the faster high-speed 

train shows higher interaction forces than the regional train around this wavelength range. 
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For both roughness profiles, the slower freight vehicle shows lower interaction forces in 

this range. 
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Figure 4.23 Dynamic interaction force spectrum (soft pads) with low level broadband 
roughness for different vehicle types:  freight; — — — regional; · · · · · · · high-
speed. 
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Figure 4.24 Dynamic interaction force spectrum (soft pads) with TSI limit spectrum 
roughness for different vehicle types:  freight; — — — regional; · · · · · · · high-
speed. 
 

4.7 Effect of rail pad stiffness  

In order to assess the effect of rail pad stiffness on the interaction forces, the average 

interaction force spectra from four wheels are presented in Figure 4.25 for the freight 

vehicle, with soft and with stiff rail pads. Stiff rail pads lead to higher impact loads on the 
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sleepers and ballast, leading many railways to use softer rail pads to minimise track 

damage. The freight vehicle sees higher forces between the wheels and rail at wavelengths 

longer than 0.063 m with stiffer rail pads. At short wavelengths the interaction forces are 

very similar for both rail pad stiffnesses, because the track receptance at high frequencies 

is independent of the rail pad stiffness.  
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Figure 4.25 Dynamic interaction force spectrum with low level broadband roughness for 
freight train:  soft rail pads; — — — stiff rail pads. 
 

4.8 Effect of initial rail profile  

In this work the rail roughness profile along the 60 sleeper bays of the track model is 

generated to match a particular spectrum, by adding sinusoidal components with random 

phase. This means, firstly, that the roughness spectrum from the middle three sleeper bays 

(a relatively small sample) can show some variation between different generated profiles, 

and also that the actual spatial profile can be different. It is necessary to check that the low 

level roughness profile used as an input to the model in this work is representative of other 

roughness profiles of similar spectrum.  

 

In Figure 4.26 the interaction force has been calculated using five different generated 

roughness profiles of similar spectral content. The interaction forces are similar so it can be 

concluded that a single roughness profile is adequate to examine the differences that arise 

due to other model parameters. Some variation is seen in the spectra particularly at longer 

wavelengths. This is as expected, since results are only shown for the middle three sleeper 

bays of the track model and over three bays the random phase used to generate the 
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roughness profile allows some variation between different profiles. The peak in the force 

spectrum at a wavelength corresponding to half a sleeper bay (0.3 m) is present in all five 

results.  
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Figure 4.26 Dynamic interaction force spectrum from five different rail profiles with 
similar low level broadband roughness for freight train.  
 

4.9 Effect of rail dampers on wheel-rail interaction force 

In Chapter 3, rail dampers have been shown to shift the pinned-pinned frequency of the 

track and to smooth the peaks and troughs in the track receptance. The effect of the rail 

dampers on wheel-rail interaction forces for a typical freight train is shown in Figure 4.27 

for the low level broadband roughness. Similar results are seen for the TSI level roughness 

in Figure 4.28. Of particular interest is the force at the roughness wavelength 

corresponding to the pinned-pinned frequency, which for the typical freight vehicle speed 

is 0.027 m for the track without rail dampers but shifts to 0.043 m when the rail dampers 

are included. Results are shown for the ‘improved model’ of the rail damper elastomer 

(Section 3.4.4) with a more constant loss factor in the frequency range of interest. The 

freight train is used here as an example, the full set of interaction force results with rail 

dampers for all vehicle types are included in Appendix A. 

 

With soft rail pads, the peaks in the one-third octave wavelength bands around 0.02 m and 

0.0315 m have been smoothed out or shifted to longer wavelengths by the addition of rail 

dampers. The dip in the spectrum at around 0.063 m has been filled at least for some of the 
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wheels. The rail dampers have very little effect on the interaction force at wavelengths less 

than about 0.016 m or greater than 0.08 m. 

 

With stiff rail pads, the peak in the interaction force at the roughness wavelength 

corresponding to the pinned-pinned frequency is more pronounced than with soft rail pads. 

The rail dampers again act to shift this peak to a longer wavelength. The force spectrum is 

unchanged by the dampers outside the wavelength range of 0.016 m up to 0.063 m. 
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Figure 4.27 Dynamic wheel-rail interaction force for a freight train on (a) soft and (b) stiff 
rail pads with low broadband roughness:  with rail dampers; · · · · · · · without rail 
dampers. 
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Figure 4.28 Dynamic wheel-rail interaction force for a freight train on (a) soft and (b) stiff 
rail pads with TSI roughness:  with rail dampers; · · · · · · · without rail dampers. 
 

4.10 Summary of wheel-rail interaction force results 

The finite element track model described in Chapter 3 has been combined with a simple 

vehicle model. The equations of motion of the system are solved in the time domain using 

a state-space approach following the method of Nielsen and Igeland [1995]. The model has 

been validated by comparison of a set of sample results with output from DIFF and the 

model of Pieringer et al. [2008]. The interaction force between the wheels and rail from the 

middle three sleeper bays of interest is required as an input to the contact and wear model 

to follow.  
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The effect of different track and vehicle parameters on the dynamic interaction force 

between a wheel or wheels and the rail has been investigated. It is important to divide the 

rail into at least eight elements in each sleeper bay. If the rail pads are relatively soft it is 

important to include more than one wheel in the model, as the wheels are coupled by the 

track and can interact to give a different interaction force spectrum to that if a single wheel 

is considered. Including more than one wheel is less important if the track has stiff rail 

pads or rail dampers, since the track decay rate is higher, at higher frequencies, leading to 

less interaction between the wheels in the model. However, for uniformity, four wheels are 

included in the interaction force model as standard. 

 

The roughness of the rail is the single parameter that has the most effect on the interaction 

force spectrum. Differences are also seen between different vehicle types passing over the 

same track and rail roughness profile, as a result of their different speeds and static loads. 

The stiffness of the rail pads also has a significant effect on the interaction force between 

wheels and rail. Variations in the wheel spacing and unsprung mass of the wheel have less 

effect on the force. 

 

Adding rail dampers to the track shifts the pinned-pinned frequency of the track and 

consequently shifts the peak in the force spectrum corresponding to this resonance to 

longer wavelengths. 
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5 STRESS DISTRIBUTION IN THE WHEEL-RAIL CONTACT 

5.1 Introduction 

The previous chapters have concentrated on describing a model of the overall normal 

interaction force between a wheel or wheels and a rail of the track. For this purpose it has 

been sufficient to model the wheel-rail contact as a Hertzian spring. However, to predict 

the wear of the rail surface resulting from the passage of the wheels, a more detailed model 

of the contact patch is required. The size and shape of the contact area and the distribution 

of normal and tangential stresses throughout the wheel-rail interface is needed. 

 

In this chapter, a summary of existing analytical and numerical contact mechanics theory is 

presented. The work of Johnson [2001] has been used as a source for much of the 

background material to describe the contact problem. The variational method developed 

and proven by Kalker [1990] is used for the analysis of wheel-rail contact. Kalker 

implemented this theory in his CONTACT program, which remains recognised as the 

benchmark solution to the rolling contact problem [Knothe, 2008]. However, in practice 

the application of CONTACT to determine the distribution of stresses in three dimensions 

between railway wheels and rails has been limited by the calculation times required for the 

analysis. This chapter describes the implementation in Matlab of a contact theory based on 

that of Kalker [1990], firstly in three-dimensional form and then in a two-dimensional 

version. The two-dimensional version with a suitable assumed contact width gives a good 

approximation to the results from the centre-line of the three-dimensional model when 

lateral and spin effects are neglected.  

 

This chapter deals with static cases only, i.e. the application of constant normal and 

tangential forces in stationary contact. Rolling contact is treated in Chapter 6.  

 

5.2 Contact geometry and definitions 

The minimum inputs to a contact model are the overall normal force between the 

contacting bodies, and the initial profile of the bodies in their undeformed state before 

coming into contact. In this work, the overall normal force between the wheel and the rail-

head is determined by the interaction force model described in Chapters 3 and 4. Although 

both the wheel and rail are rough in practice, here the wheel is, for simplicity, assumed to 

be smooth and the combined roughness of the system is attributed to the rail. 
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Johnson’s book [2001] contains the necessary background to the contact problem. The two 

three-dimensional bodies in contact shown in Figure 5.1 are defined by their undeformed 

surface profiles z1(x,y) and z2(x,y). The undeformed distance between the two surfaces at 

the point of first contact is then given by h(x,y). 

( ) ( ) ( )yxzyxzyxh ,,, 21 −=  (5.1) 

 

Figure 5.1 Geometry of bodies in contact. Upper body is body 1, lower body is body 2. 
 

When the two bodies are pressed into contact under a normal load, the surfaces deform 

resulting in a discrete contact area. The normal load results in a distributed normal pressure 

across the contact area. 

 

The relative motion of two surfaces in contact may be defined as in Johnson [2001] in 

terms of sliding, rolling and spin. Sliding occurs when a relative linear velocity ∆v is 

present between the two surfaces at the contact point.  

21 vvv −=∆  (5.2) 

where v1 and v2 are the linear velocities of each body relative to the origin O. The sliding 

velocity ∆v may have components in the x and y directions (but not in the z direction as the 

bodies are assumed to remain in contact and not overlapping). In this work, however, 

lateral motion is neglected so any sliding is purely in the x direction. 

 

Rolling is a relative angular velocity ∆ω between two bodies about an axis lying in the 

tangent plane. The angular velocities of the bodies relative to the origin are ω1 and ω2. In 

this case rolling is purely about the y axis.  

21 ωωω −=∆  (5.3) 

Rolling contact is treated in more detail in Chapter 6. 

x 

y 

z 

z1(x,y) 

shape of body 1 

O 

z2(x,y) 

shape of body 2 
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Spin is a relative angular velocity about the common normal, here the z axis. Spin may be 

reasonably neglected for modelling the wheel-rail contact for tangent track with no flange 

contact.  

 

5.2.1 Forces in the contact patch 

The overall forces that may be transmitted through the contact area S are the compressive 

normal force P and the tangential force Q due to friction. Neglecting lateral motion, the 

tangential force Q is in a direction along the x axis to oppose any sliding velocity. The 

forces P and Q are related by the coefficient of friction µ such that the magnitude of Q is 

less than or equal to the friction limit. 

PQ µ≤  (5.4) 

 

The normal force P and the tangential force Q are distributed across the interface area S 

which lies in the x-y plane. This distribution leads to a normal pressure p and a tangential 

stress q across the surface area such that 

∫=
S

dSpP
 

(5.5) 

∫=
S

dSqQ
 

(5.6) 

 

In fully sliding contact, Q acts in the direction opposing the sliding velocity and the 

maximum value of Q is given by 

P
v

v
Q µ

∆
∆−=max

 
(5.7) 

 

5.2.2 Stick and slip zones 

If the magnitude of the tangential force is less than that of Qmax, then the contact is not 

purely sliding. A relative movement or slip will occur between the surfaces in part of the 

interface, and another part of the interface will stick, or deform without relative motion 

between the two surfaces. The contact patch may then be divided into stick and slip zones. 

At points in stick zones the tangential stress must be less than the limiting value due to 

friction, that is 

( ) ( )yxpyxq ,, µ<  (5.8) 
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In a slip zone the tangential stress is at its maximum and is equal to the friction limit  

( ) ( )yxpyxq ,, µ=  (5.9) 

 

The slip s is defined as the relative displacement between two initially coincident points in 

the contacting bodies. Slip is taken to be positive when the upper body moves in the 

positive x direction relative to the lower body. The tangential stress is in a direction 

opposing the direction of slip, so that  

( )
( )

( )
( )yxs

yxs

yxq

yxq

,

,

,

, −=
 

(5.10) 

 

In a stick region the slip is zero. 

 

5.2.3 Contact between bodies of quasi-identical materials 

The solution to the contact problem is the distribution of p and q and hence the location of 

the stick and slip zones in the contact area. In a general case, the normal and tangential 

stresses are coupled since, in the presence of friction, a normal force leads to tangential 

displacements at the interface as well as normal displacements. If the two materials in 

contact are different, the resulting tangential displacements of the two bodies will be 

different and slip may occur, although this is opposed by friction. Therefore in a central 

region of the contact the surfaces may stick, while at the edges they may slip, even in the 

absence of overall sliding or rolling motion, unless the friction is high enough to prevent 

all relative motion. However a simplification may be made if the materials in contact are 

identical, as in the case of steel-on-steel contact for a wheel on a rail. If the materials are 

the same, the tangential displacements resulting from a normal contact force are the same 

in both bodies, and therefore no slip arises as a result of the normal contact force in the 

absence of overall sliding or rolling. The normal stress distribution can therefore be 

developed independently of the tangential stress. 

 

5.3 Hertz theory for calculation of normal stress distribution 

Hertz developed his analytical theory describing the contact between parabolic surfaces in 

1880. The theory describes the normal stress distribution throughout the contact area. The 

equations are summarised by Johnson [2001] for general profiles within the limitations of 



 

127 

the theory, and are replicated here for simple circular contacts. The material properties are 

represented by the combined Young’s modulus E*, as defined in Equation (4.4). 

  

The equivalent radius of the system R is defined from the radii of the two spherical bodies 

R1 and R2 as  

1

21
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−
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R

 
(5.11) 

The size of the contact area for a normal load of magnitude P is then given by the radius of 

the contact circle a 

3
1

*4

3







=
E

PR
a  (5.12) 

 

The maximum contact pressure p0 at the centre of the contact circle is given by  









=

20 2

3

a

P
p

π  
(5.13) 

and the approach of distant points in the two bodies δ is  

R

a2

=δ  (5.14) 

 

The overall stress distribution p(x,y) is 
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(5.15) 

 

Where radii of curvature differ in perpendicular directions the contact is elliptical rather 

than circular and can be described by a modified version of the above equations. For rough 

and possibly conforming surfaces, i.e. when the surfaces are not parabolic, a different 

approach is required using numerical rather than analytical methods. 

 

5.4 Numerical methods for calculation of stress distributions 

For cases where Hertzian contact does not apply, other descriptions must be developed for 

the stress distributions p and q, and the contact area S. If the undeformed shapes of the two 

surfaces z1(x,y) and z2(x,y) are known, and the overall force P over the contact area is 

known, it is possible to evaluate numerically the size and shape of the contact area and the 
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distribution of the normal contact stresses. When both bodies have the same material 

properties, the normal force does not lead to any tangential stresses and the tangential 

stress distribution may be determined subsequently from the known tangential loading and 

the friction limit on maximum tangential stress.  

 

Numerical methods for the evaluation of the stress distributions are usually either direct 

methods, where boundary conditions are satisfied exactly at specified matching points, or 

variational methods such as that developed by Kalker [1990], where the values of traction 

at elements are chosen to minimise an appropriate energy functional. For both these 

methods a potential area of contact is defined in the x-y plane that is greater than the actual 

contact area.  

 

The direct method is also known as the matrix inversion method and is described in 

Johnson [2001]. It is not suitable for calculating the contact stress distribution in great 

detail at many positions due to the computational cost of the requirement for the inversion 

of large matrices at each position of interest.  

 

In the variational approach the potential contact surface is divided into N elements, each of 

length 
x and width 
y [Xuefeng & Bhushan, 1996]. The normal elastic displacement uz of 

the centre of each of these elements satisfies the equation  

( )
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>
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−+
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, δyxhuz  (5.16) 

where δ is the approach of distant points in the two bodies as in the Hertzian contact 

equations and h is the undeformed distance between the bodies. The centre of each element 

may also undergo a tangential elastic displacement ux. To determine the elastic 

displacements uz and ux, normal and tangential ‘influence coefficient’ matrices Cij and Dij 

are required. These matrices give the displacement of the centre of an element i on the 

contact surface due to a unit pressure applied at another element j. The total displacement 

of each element can then be determined from the sum of the displacements due to the 

normal pressure p or tangential stress q on all of the elements in the potential contact 

surface: 
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5.4.1 Influence coefficients Cij and Dij 

The displacement of a general point on the surface of a half-space resulting from uniform 

pressure acting on a rectangular area was analysed by Love [1929]. Kalker [1990] derived 

the influence coefficient matrices in a form suitable for use in his variational method 

algorithm (CONTACT). The following expressions describe the influence coefficients in 

the form used in this work, based on the method of Kalker. 

 

Figure 5.2 shows the relevant geometry of the potential contact area. Define a as half the 

length of each element in the x direction and b as half the length of each element in the y 

direction. For each of the Nx×Ny possible combinations of elements, influence coefficients 

Cij and Dij are calculated as follows [Kalker, 1990]. The distance in the x and y directions 

between the centres of elements i and j is denoted xij and yij. The distances in the x and y 

directions between the centre of one element and the four corners of another element are 

then given by: 
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 (5.19) 

 

 

Figure 5.2 Top view of geometry of potential contact area, showing representative 
elements i and j. 
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The straight line distances between the centre of one element and four corners of another 

element are expressed as: 
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 (5.20) 

 

The normal influence coefficient Cij between any two elements is given by: 
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and the tangential influence coefficient Dij between two elements is given by 
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Here G is the shear modulus of the material, given by 

( )ν+
=
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E
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and the functions f1-4 and g1-4 represent terms involving the geometrical distances derived 

in Equations (5.19) and (5.20). Functions f1-4 and g1-4 are defined as 
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 (5.24) 

 

These influence coefficients are valid for cases with no tangential stress in the y direction 

and for contact between identical materials. With different materials, or cases involving 

spin, combined lateral and longitudinal forces occur as well as normal forces. The element 

displacement in each direction is then affected by forces acting in other directions. The 

influence coefficients are then more complicated as described by Kalker [1990]. 

 

5.4.2 Variational method for calculation of stress distribution in the contact 

To find the values of the normal stress pj and the tangential stress qj for each element j in 

the potential contact area, a variational method may be used. Kalker’s CONTACT 

algorithm is an example of a variational method. In this technique, a solution is found that 

minimises an appropriate energy functional. Kalker [1990] has shown that the contact area 
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and stress distribution may be determined by solving a quadratic minimisation problem 

involving the total complementary energy, V*. The internal complementary energy UE* is 

also known as the complementary strain energy or the stress energy. It is a function of the 

internal force or stress and is represented by the area above the stress-strain curve (see 

Figure 5.3). The area below the stress-strain curve represents the elastic strain energy UE, 

which is a function of the elongation of the body [Richards, 1977]. 

 

 

Figure 5.3 Equivalence of complementary energy UE* and strain energy UE in linear 
elastic range of material [Xuefang & Bhushan, 1996]. 
 

For linear elastic materials the internal complementary energy UE* is numerically 

equivalent to the elastic strain energy UE. This is because the area above and below the 

linear stress-strain curve is the same for these materials, as shown in Figure 5.3.  

 

The total complementary energy V* in the absence of tangential loading can be written in 

terms of the internal complementary energy of the two stressed bodies UE* as [Johnson, 

2001]  
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(5.25) 

The strain energy of the system is expressed in terms of the normal stresses and 

displacements of the elements in the contact surface as 
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(5.26) 

Substituting the expression for the displacements from Equation (5.17) into the strain 

energy Equation (5.26) and the resulting expression for UE* into (5.25) yields the total 

complementary energy function to be minimised for values of p throughout the contact 

area S. The tangential stresses are neglected here, since for similar materials they have no 

effect on the normal stress distribution. 

Strain 
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The numerical evaluation of the total complementary energy due to the normal stresses 

over the elements of the potential contact surface is then 
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In Equation (5.28) the approach of the two bodies δ is a constant, as is the area of each of 

the elements Ai. These, therefore, do not affect the minimisation problem and the function 

to be minimised for the distribution of the normal stress p in the contact patch may be 

written as  
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For the tangential stress, the function to be minimised has a similar form to that of the 

normal stress distribution. The term for the undeformed distance between the surfaces hi in 

Equation (5.29) is replaced by a term representing relative tangential displacement between 

the two surfaces. This results from the application of the tangential force, consisting of a 

rigid tangential shift Wiτ and the prior displacement difference between the surfaces due to 

elastic deformation, u′iτ.  
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In a case examining the direct application of an overall tangential force Q less than the 

friction limit, both the rigid shift and the slip between the surfaces prior to the application 

of the tangential load are zero.  

 

Equation (5.30) is valid for cases with no tangential stress in the y direction and for contact 

between identical materials, and when the normal stress distribution is known already and 

is not affected by the tangential stress distribution or vice versa. 

 

Note that the actual overall complementary energy function for combined normal and 

tangential load includes the terms corresponding to the normal displacements as in 

Equation (5.28). However these may be omitted in the minimisation function of 
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Equation (5.30) to calculate the tangential stress distribution as they are known and 

therefore do not affect the minimisation. 

 

These functions for the normal and tangential problems are quadratic functions of the 

stress, and as such correspond to the standard form of quadratic minimisation problems. 

They may therefore be solved using standard quadratic programming algorithms. Kalker 

[1990] developed the algorithms ‘NORM’ and ‘TANG’ as part of CONTACT to find the 

solution. In this work the Matlab routine ‘quadprog’ is used.  

 

Two constraints apply to the solution of the minimisation problem for the normal case. The 

first is that the normal contact pressure p must be positive everywhere, or compressive, 

unless it is equal to zero outside the contact area. Also, the sum of the normal stresses pi on 

all the elements multiplied by the element area Ai must be equal to the total overall normal 

force P. 
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In the tangential direction the constraint on the solution is that the magnitude of the 

tangential stress in the contact patch must be everywhere less than the friction limit 

ii pq µ≤  (5.32) 

 

In addition, if the overall tangential load Q is known it must be equal to the sum of the 

stress on the individual elements multiplied by the element area Ai.  
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5.4.3 Comparison of normal stress from variational method with Hertz theory 

The normal stress distribution obtained from the variational method is compared with the 

analytical solution calculated from the Hertz equations for the contact between a smooth 

sphere of radius 0.46 m and a flat plane. The overall normal force P in the contact is taken 

as 100 kN. As expected, the stress distribution is circular and symmetrical. Figure 5.4 

shows the three-dimensional stress distribution in the contact patch, which has a radius of 

around 7 mm.  
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Figure 5.4 Normal stress distribution in contact patch from variational method. 
 

Figure 5.5 shows a cross-section of the same result, compared with the Hertzian stress 

distribution which has a radius of 6.7 mm. The agreement between the two methods is very 

good. The noticeable difference between them is at the edges of the contact patch; this is 

due to the discretisation of the contact area for the variational method. In this case, the 

elements in the contact have dimensions of 1 mm by 1 mm, so it is only possible to 

determine the radius of the contact to the nearest millimetre. Reducing the element size 

leads to greater accuracy. 
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Figure 5.5 Cross-section of normal stress in contact patch:  Hertz equations;  
— — — variational method. 
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5.5 Combined normal and tangential loading 

A simple case involving tangential loading occurs when two bodies, pressed into contact 

by a normal force P, experience a tangential force that is initially zero but increases 

steadily up to the friction limit µP.  

 

If the two bodies have the same material properties, then the tangential force has no effect 

on the normal stresses and displacements and the overall size and shape of the contact is 

determined purely by the normal force and the undeformed profiles of the bodies. Before 

the application of the tangential force, the whole contact area is in a state of stick. The 

application of a tangential force causes a shear elastic displacement of each of the bodies. 

As long as Q remains less than the friction limit, there is no overall sliding but slip occurs 

over part of the interface. The problem is to determine the location of the stick and slip 

zones. 

 

5.5.1 Analytical solution using Hertz theory 

This problem was treated analytically for the contact of two cylinders by Cattaneo in 1938 

and also by Mindlin in 1949, and is summarised by Johnson [2001] who also describes the 

extension of the theory to spherical contacts. As the bodies are assumed to be smooth, 

Hertz theory may be used. For a circular contact with a tangential load less than the friction 

limit applied along the x axis, the tangential stress q(x) acts in the same direction, and is 

symmetrical with a central stick area of radius c concentric with the overall contact area of 

radius a. In the slip zone (the annulus around the stick zone) the tangential stress is at its 

maximum, given by the friction limit 

( ) ( )yxpyxqslip ,, µ=  (5.34) 

where p is the Hertzian normal stress from Equation (5.15). The radius of the central stick 

region c is determined from the magnitude of the tangential force as [Johnson, 2001]  
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In the stick zone the tangential stress distribution is given by  
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The tangential stress distribution along the x axis of the contact patch for increasing 

tangential loads is shown in Figure 5.6. With no tangential load the entire contact patch is a 

stick zone, then as the load increases the stick zone shrinks as slip zones appear around the 

circumference of the contact. In the slip zones, the tangential stress is equal to the friction 

limit, i.e. the coefficient of friction multiplied by the normal stress at that point, here taken 

from the cross-section of the Hertzian normal stress shown in Figure 5.5. At the moment 

when the stick zone vanishes when sliding is imminent, the maximum tangential stress is 

equal to µ times the maximum normal stress p0. 
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Figure 5.6 Cross-section of tangential stress in the contact between a sphere and a flat 
plane: (a) Q = 0.25×µP; (b) Q = 0.5×µP; (c) Q = 0.75×µP; (d) Q = 1.0×µP imminent 
sliding. P and Q respectively are the overall normal and tangential forces in the contact,  
µ = 0.3 is the coefficient of friction. 
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5.5.2 Tangential stress solution using variational method 

In the simplest case of combined normal and tangential loading, first the normal stress 

distribution is determined independently of the tangential load. Then the tangential load is 

applied ‘instantly’. The prior tangential displacement difference between the surfaces u′iτ is 

zero. The division into stick and slip zones is not calculated explicitly but can be derived 

from the tangential stress distribution, using the definition of Equation (5.9) that the 

tangential stress is equal to the friction limit in a slip zone. Figure 5.7 shows the results 

obtained by the variational method for this case compared with the analytical solution. 

Differences are due to the discretisation of the contact patch into 1 mm square elements. 

The accuracy of the division into stick and slip zones depends on the size of the elements 

employed.  
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Figure 5.7 Cross-section of tangential stress in contact patch between a sphere and a flat 
plane:  analytical solution based on Hertz equations; — — — variational method. 
(a) Q = 0.25×µP; (b) Q = 0.5×µP; (c) Q = 0.75×µP; (d) Q = 1.0×µP imminent sliding. 
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Figure 5.8 shows an example of the three-dimensional distribution of the tangential stress 

in the contact patch calculated using the variational method. 
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Figure 5.8 Tangential stress distribution in contact patch calculated using variational 
method for Q = 0.5×µP with the coefficient of friction µ = 0.3. 
 

5.6 Two-dimensional representation of the contact problem  

The three-dimensional determination of the stress in the contact patch converges towards 

the exact solution as the element discretisation becomes finer. The numerical method 

therefore works well as long as the elasticity and friction assumptions are correct [Kalker, 

1990].  

 

The disadvantage of the technique when it is to be used in a wear calculation is the high 

computational cost of the minimisation over a grid of elements. The stresses at a single 

position may be determined relatively quickly (in a few seconds), but the time to calculate 

the stress at many wheel positions along a rail adds up to a significant computation time.  

 

For this work the roughness is known and required only along a single line of the wheel-

rail contact. Lateral forces, lateral creep and spin are assumed to be insignificant. There is 

therefore a large computation time benefit in simplifying the contact problem to two 

dimensions. Also, in the absence of detailed rail and wheel profile data the three-

dimensional model is itself an approximation as it assumes a constant rail-head curvature. 
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In two dimensions, the problem is that of a cylinder in contact with a plane, with constant 

stress across the width of the contact (in the y direction). Kalker [1970; 1971a; 1971b] 

analysed this problem using the variational method. The solution process is the same as for 

the three-dimensional analysis except that a different matrix of influence coefficients is 

required, and the overall normal force in the contact P is expressed as a force per unit 

width. The same influence coefficients are used for the normal and tangential calculation. 

The width of the contact in the y direction is assumed to be a constant. 

 

5.6.1 Influence coefficients for two-dimensional analysis 

To determine the normal and tangential elastic displacements in the two-dimensional case, 

a ‘piecewise linear’ representation of stress distribution is commonly used [Bentall & 

Johnson, 1967; Kalker, 1970, 1971a, 1971b & 1972; Sheng et al., 2004]. This 

representation differs from the ‘piecewise constant’ elements used in the three-dimensional 

case. In a piecewise constant representation, the stress p or q is constant across the surface 

of each element as shown in Figure 5.9, with a step change in the stress at the element 

boundaries. In piecewise linear representation the stress is built up as the sum of a series of 

overlapping triangles, removing the step change at the element boundaries as in 

Figure 5.10 [Johnson, 2001].  

 

 

Figure 5.9 Piecewise constant stress elements 
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Figure 5.10 Piecewise linear stress elements 
 

The two-dimensional matrix of influence coefficients Bij is given by Kalker [1971a] 

following the method of Bentall and Johnson [1967]: 
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Bij gives the displacement of the centre of an element i on the contact surface due to a unit 

peak stress applied at another element j. The total displacement of each element is again 

determined from the sum of the displacements due to the stress on all of the elements in the 

potential contact surface: 
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In the two-dimensional case, the normal and tangential displacements may be calculated 

using the same influence matrix, as long as the datum used for the displacements is the 

same in each case [Johnson, 2001].  

 

5.6.2 Two-dimensional analytical solution for tangential contact 

For a cylinder in contact with a plane and a tangential load less than the friction limit 

applied along the x axis, the tangential stress q(x) is again symmetrical with a central stick 

area of half-length c centred in the overall contact area of half-length a. The Hertzian 

analysis is similar to that for the three-dimensional analysis in Section 5.5.1, except that 

the half-length of the central stick region c is slightly different:  
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The tangential stress distribution in the stick zone is given by Equation (5.36) as before. 

 

5.7 Comparison of results from two and three-dimensional models 

The normal stress distribution calculated using the two-dimensional variational method 

may be compared with the results for the Hertzian contact between a cylinder and a plane 

and also with the results for Hertzian contact between a sphere and a plane. Figure 5.11 

shows the same case as calculated in Section 5.4.3 using the Hertz equations for a 0.46 m 

radius sphere. The radius of curvature of the cylinder is also 0.46 m. For the two-

dimensional variational method and for the Hertz equations for a cylinder, the width of the 

contact in the y direction is set to 13.4 mm which is the diameter of the resulting contact 

area in three dimensions.  
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Figure 5.11 Normal stress in contact patch between a 13.4 mm cylinder and a flat plane: 
 Hertz equations for cylinder; — — — variational method; · · · · · · · centre-line 
from Hertz equations for sphere. 
 

It can be seen firstly that the agreement between the variational method and the analytical 

results for a cylinder on a flat plane is very good, and as before the differences are due to 

the element discretisation. The length of the contact patch is different between the two-

dimensional and three-dimensional representations, as is the magnitude of the stress. This 

is to be expected as the two-dimensional representation assumes that the overall force is 

distributed equally along the cylinder in the y direction, whereas the three-dimensional 
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representation allows for a higher value of stress along the centre-line of the contact which 

then falls to zero at the edges of the contact in the y direction. The cylindrical stresses are 

therefore lower and the contact patch length is slightly shorter.  

 

A contact width for the two-dimensional case of 11 mm results in a closer match in the 

contact length compared with the three-dimensional case, shown in Figure 5.12. The 

magnitude of the normal stress for a cylinder remains less than that from the centre-line of 

the sphere calculated in three dimensions.  
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Figure 5.12 Normal stress in contact patch between a 11 mm cylinder and a flat plane: 
 Hertz equations for cylinder; — — — variational method; · · · · · · · centre-line 
from Hertz equations for sphere. 
 

Figure 5.13 shows the tangential stresses, for a load equal to half the friction limit, 

calculated by the variational method in two dimensions compared with the analytical 

solutions using Hertz theory for cylindrical and spherical contact. A three-dimensional 

spherical contact gives higher tangential stresses along the centre-line of the contact than 

the two-dimensional cylindrical contact. This means that even though the width of the 

cylinder has been adjusted to give the same overall contact length as the spherical case, a 

greater amount of the contact is found to be in a state of slip if a cylindrical model is used. 
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Figure 5.13 Tangential stress in contact patch between a 11 mm cylinder and a flat plane: 
 Hertz equations for cylinder; — — — variational method; · · · · · · · centre-line 
from Hertz equations for sphere. Q = 0.5×µP. 
 

5.8 Summary of modelling stress distribution in the contact 

A three-dimensional contact model based on Kalker’s variational method has been 

implemented in Matlab. The model calculates the distribution of normal and tangential 

stresses throughout the contact area. For the simple case of contact between a smooth 

sphere and a flat plane, results from the model have been compared with analytical results 

using Hertzian contact theory. The accuracy of this numerical model is limited only by the 

size of the elements used to represent the potential contact area, but the three-dimensional 

model is computationally expensive.  

 

A two-dimensional representation of the contact model has also been developed. This is 

required in order to reduce the calculation times to carry out analyses of rolling contact in 

the following chapters. The two-dimensional model requires the assumption of a constant 

width of the contact patch in the lateral direction. This width can be chosen to give the 

correct length of the contact patch in the longitudinal direction. 

 

The normal and tangential stress distributions from the two-dimensional model have been 

compared with analytical results as well as with the results from the centre-line of the 

three-dimensional model. The agreement with the analytical results from Hertzian contact 

theory is again limited only by the size of the elements used in the longitudinal direction. 

Compared with the results from the centre-line of a three-dimensional model, the two-
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dimensional model underestimates the maximum normal force in the contact and can 

exaggerate the length of slip zones slightly. These differences arise from the assumption 

that the stress distribution is constant in the lateral direction in the two-dimensional model. 

In the absence of detailed wheel and rail profile information in the y direction, for this 

work the two-dimensional contact model is adequate. It is also necessary, in order to 

reduce the calculation time when analysing rolling contact with very small element sizes. 
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6 ROLLING CONTACT  

6.1 Introduction 

In this chapter, the contact model described in Chapter 5 for static contact problems is 

extended to rolling contact. The extension to rolling contact is straightforward, as the 

variational method inherently includes transient effects. For rolling the model is applied in 

a time-stepping fashion and the contacting surface is stepped along the wheel and rail-head 

surfaces. The stresses and displacements calculated along the railhead (and wheel tread) at 

each time-step in rolling depend on the values at the previous position. These were 

previously assumed to be zero to calculate the static results presented in Chapter 5.  

 

The variables of interest to be determined by the model are the distribution of normal and 

tangential stress in the contact as the wheel rolls along the rail. The size and shape of the 

contact and the division into stick and slip zones may also be derived from the model. In 

the event that parts of the contacting surfaces slip, the relative sliding velocity of the two 

bodies in the slip zone is important for the calculation of rail wear. The size of the elements 

used to define the potential contact area is important as it affects the accuracy of the 

division into stick and slip zones and the slip velocity calculation. 

 

In this chapter the calculation of slip velocity at each location in the contact area is 

described and the effect of the rolling speed on the slip velocity is investigated. 

 

Rolling can occur without any tangential force being transmitted, i.e. with Q equal to zero. 

This is known as ‘free rolling’. Free rolling is not of interest in this work as it does not 

result in wear. Free rolling occurs for idealised unpowered or unbraked wheels only. Cases 

with non-zero tangential force Q are known as ‘tractive rolling’ [Johnson, 2001]. 

Tangential loading of the wheel-rail contact along the rail head arises in acceleration or 

braking and in overcoming frictional losses. Powered or braked wheels experience a 

sizeable value of Q. Unpowered trailer wheels may also experience small values of Q as a 

result of minor misalignments in rolling leading to creep. This chapter includes a 

description of creep in Section 6.2. Lateral forces can also occur but, as in the rest of this 

thesis, these are neglected here. 

 

A simple example of rolling contact is steady rolling. In steady tractive rolling with 

friction, the normal force P is constant and a constant tangential force Q is transmitted. 
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Carter [1926] developed a two-dimensional wheel-rail contact model which is an analytical 

solution to the steady rolling contact problem of a smooth wheel on a smooth rail. When 

using the variational method, however, steady rolling may be considered to be a special 

case that develops over a period of time in transient rolling from a set of initial conditions 

with unchanging external loads. In this chapter, the transient variational method is used to 

develop steady tractive rolling contact from an initial stationary position. The resulting 

tangential stress distributions are compared with the analytical solutions for the initial 

position and once steady rolling has been achieved.  

 

Some examples of rolling contact are examined using the variational method for situations 

involving roughness of the rail head. These illustrate the importance of considering non-

Hertzian effects in the form of the rail roughness when determining the distribution of 

normal and tangential stresses. Very different results are calculated for the stress 

distributions when the effects of surface roughness are included. 

 

6.2 Creep, creep ratio and creep-force relationship 

In tractive rolling contact, tangential loading can lead to a difference in elastic deformation 

of the two bodies in the stick zone. The difference in elastic deformation or strain in the 

stick zone is relieved by slip elsewhere in the contact area, which is known as ‘creep’. As 

described by Johnson [2001], creep arises when elastic deformation causes the surface of a 

wheel and rail to stretch in tractive rolling contact. Creep can occur in the longitudinal and 

lateral directions and also in the form of spin creep, where the relative slip between wheel 

and rail is rotational. Lateral creep arises for example if the plane of the wheel is rotated 

away from parallel with the rail during rolling. In this work only longitudinal creep is 

examined. 

 

For longitudinal creep under tangential tensile load, the wheel will move forward a 

distance in one revolution that is greater than its undeformed circumference. This means 

the effective circumference of the wheel under load is longer than it is under no load. If the 

load on the wheel is compressive then the wheel will move forward a shorter distance in a 

complete revolution. This description leads to the definition of the longitudinal creep ratio 

ξ as used by Johnson [2001]. The creep ratio is the fraction given by the difference in the 

distance travelled in one revolution by the deformed and undeformed wheels, divided by 

the undeformed circumference. It may also be expressed in terms of the velocity of the 
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surfaces of the contacting bodies. If the velocity of a point on the surface of the wheel in 

the contact is v1 and the wheel moves along the rail with overall velocity v2 then the 

longitudinal creep ratio is given by [Johnson, 2001] 

2

21

v

vv −
=ξ  (6.1) 

 

The creep ratio is often expressed as a percentage. For example it is common in modelling 

trailer wheels of railway vehicles to assume a small level of constant longitudinal creep of 

the order of 0.1%. This arises when the conicity of the wheels and assumed small lateral 

displacements of the wheel on the rail head cause the two wheels of a wheelset to run on 

different radii [Johnson, 2001]. The resulting difference in rolling radius of the wheels 

causes slip as the wheels travel a different distance to each other with each full axle 

rotation.  

 

The maximum tangential load that can be supported in the contact area in rolling before the 

onset of full sliding is of interest for the acceleration and braking of railway vehicles. This 

adhesion limit determines the maximum torque that can be applied to the wheel. In the 

absence of a detailed knowledge of the stress distribution in the contact patch, the 

relationship between longitudinal creep and overall tangential force is used to simulate 

adhesion limits for accelerating or braking vehicles. The creep-force relationship is also 

often used in vehicle motion simulations in place of a detailed model of the stress 

distribution, as it is much faster to calculate. 

 

In many cases a constant friction coefficient is assumed throughout the contact, which 

results in steadily increasing tangential force with increasing creep up to the adhesion limit. 

However, measurements of creep-force relationships show that for large creep ratios there 

is an optimum adhesion, with a decreasing section beyond this maximum [Polach, 2005]. 

The reduced capacity of the wheel-rail contact to support tangential loads without slipping 

for high creep is due to the dependence of the friction coefficient on sliding velocity. It is 

widely known that friction coefficients are different in static and dynamic situations. The 

dynamic friction coefficient depends on the sliding velocity between the surfaces – higher 

slip velocities result in lower friction coefficients. For high creep the falling friction 

coefficient causes the slope of the creep-force relationship to become negative. Figure 6.1 

shows the shape of a creep-force curve with constant friction coefficient and one with a 

velocity-dependent friction coefficient. 



 

148 

 

 

Figure 6.1 Creep-force relationship (simplified representation):  constant friction 
coefficient; — — — friction coefficient decreasing with increasing slip velocity. 
 

In this chapter the rolling contact analysis is carried out under the assumption of constant 

friction. A velocity-dependent friction law is introduced into the model in Chapter 8. 

 

6.3 Analytical solution for steady rolling contact 

The two-dimensional wheel-rail rolling contact model developed by Carter [1926] and the 

three-dimensional extension described by Johnson [2001] are analytical solutions to the 

steady rolling problem.  

 

As with the case for contact with a tangential force transmitted but no rolling, as long as 

the magnitude of Q is less than the friction limit, the contact is divided into stick and slip 

zones. However, with rolling, the condition that the direction of the slip must oppose the 

direction of the tangential stress means that the slip zone must be located at the trailing 

edge of the contact with a stick zone at the leading edge. 

 

For the static case described in Chapter 5, the distribution of the tangential stress in the 

stick zone was obtained analytically by the subtraction of a component from the maximum 

tangential stress which occurs in the slip zone. The resulting stick zone is symmetrical 

about the centre of the contact. In the case of steady rolling contact, the stick zone is 

shifted by a distance d corresponding to the difference between the half-length of the 

contact a and the half-length of the stick zone c. The following equations are from Johnson 

[2001] but the sign of d has been reversed to match the rolling direction convention used 

here. As in the static case, the width of the stick zone is determined by the magnitude of 

the tangential load Q. 

Creep ratio 
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acd −=  (6.2) 
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
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c

dr
p

a

c
qyxq slipstick µ  (6.3) 

 

This simple shift in the location of the stick zone is valid along the centre-line of a 

spherical contact for c as defined in Equation (5.35). However, away from the centre-line, 

a simple circular stick zone does not follow the leading edge of the contact area (as shown 

in Figure 6.2). Therefore this three-dimensional approximation does not meet the expected 

condition of stick along the leading edge. No analytical solution has been developed for the 

three-dimensional problem that meets this condition fully [Johnson, 2001]. 

 

 

 

 

Figure 6.2 Shape of stick and slip zones viewed from above in three-dimensional 
approximation of steady rolling contact of a sphere on a flat plane. The circular 
approximation of the stick zone is valid along the centre-line only. 
 

For the two-dimensional case of cylinders contacting along parallel y axes as studied by 

Carter [1926], the same expression for qstick applies but c is slightly different, as defined in 

Equation (5.40). The resulting contact area and slip and stick zones are effectively 

rectangular as shown in Figure 6.3. 

 

 

   

Figure 6.3 Approximation of shape of stick and slip zones viewed from above in two-
dimensional steady rolling contact of a cylinder on a flat plane. 

Rolling 
direction  

slip stick 
Contact area 

Rectangular stick zone 

slip 

stick 

Rolling 
direction  

Circular approximation 
of stick zone, diameter c 

Contact area 



 

150 

For the two-dimensional case, Figure 6.4 shows an example of the tangential stress 

distribution in steady-state rolling contact calculated analytically for a cylindrical 0.46 m 

radius wheel rolling over a smooth rail. The width of the contact is assumed to be 8 mm. 

The total normal load P is 100 kN and the tangential stress is half of the friction limit µP. 

The friction coefficient µ is 0.3. The trailing edge is slipping while the leading edge sticks. 
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Figure 6.4 Example of tangential stress distribution in steady-state tractive rolling contact 
with Q = 0.5×µP:  tangential stress; — — — friction limit. 
 

6.4 Transient rolling contact by the variational method 

Analytical methods are limited to steady rolling contact problems, as described in 

Section 6.3. However a wheel rolling over a rough rail is an unsteady or transient rolling 

contact problem, because the forces and stresses in the contact vary with time. Some 

models apply a quasi-static (or stationary) method to determine the stress distribution in 

rolling. For this method the normal force is allowed to vary, but the resulting tangential 

stress distribution is calculated as if in steady rolling at each time-step. This approach was 

used, for example, by Nielsen [2003] and by Wu and Thompson [2005].  

 

By choosing the variational method to determine the stress distribution in rolling contact, 

true transient rolling is accounted for. For the variational method, the stress distribution in 

the contact patch at each time-step depends on the stresses and displacements at the 

previous position. Steady rolling contact may then be considered as an extension or special 

case of the transient rolling contact theory [Kalker, 1990]. 
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The frame of reference is assumed to move with the contact patch. For a wheel rolling 

about the y axis along a rail, with no overall sliding and no spin, the surfaces then move 

through the potential contact area with rolling velocity v in the negative x direction 

(Figure 6.5).  

 

 

Figure 6.5 Moving frame of reference in rolling. 
 

Although the wheel moves along the rail in the positive x direction, the flow of material 

through the contact patch is in the negative x direction, from right to left. Rolling is 

assumed to take place in increments of time ∆t with the current time given by t and the 

previous time by t′. In each time-step the wheel rolls forward a distance 
x = v∆t which is 

chosen to correspond to the length of an element in the potential contact area. 

 

The tangential loading on a rolling system may be either an imposed overall tangential 

force Q, or an imposed rigid shift Wiτ. Accelerating or braking a wheel corresponds to 

imposing an overall tangential force Q, while imposed longitudinal creep may be described 

as a rigid shift. For example, if two wheels in a pair joined by an axle have different radii, 

when running on tangent track one wheel will have to slip or shift longitudinally to keep up 

with the rotation of the other wheel, while the other will slip backwards, leading to a 

resultant tangential force in the contact patch. 

 

The presence of a tangential force in rolling leads to elastic deformation along the x axis 

ux(x,t) of the material on the contacting surfaces. Point i of body 1 in the potential contact 

area at time t has an undeformed position defined as x1i(t). In its deformed state, its 

x 

y 

z 

O 

v 

v 

Body 1: wheel 

Body 2: rail 
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position is given by x1i (t) + ux1i (x,t). The corresponding point on body 2 has an 

undeformed position of x2i(t) and a deformed position x2i (t) + ux2i (x,t). 

 

In general, if corresponding points on the rail and wheel are in contact in their deformed 

state at time t′ = t −∆t, then the slip between their positions that occurs in a time-step ∆t is 

the sum of the ‘rigid’ shift and the ‘deformation’ shift given by  

( ) ( ) ( ) ( ) ( ){ }ixixixixiiiii uuuuxxxxtts 22112211 ′−−′−+′−−′−=′−  (6.4) 

where the x terms represent the ‘rigid’ shift and the ux terms represent the ‘deformation’ 

shift [Kalker, 1990]. The deformation shift is the difference in the elastic displacement 

occurring in time ∆t of the corresponding particles on the wheel and rail. The displacement 

difference uxi is defined as the difference between the points on the two bodies at a 

particular time,  

ixixxi uuu 21 −=  (6.5) 

The displacement difference is taken to be positive when body 1 moves in the positive x 

direction relative to body 2. The displacement difference at time t may be calculated from 

the tangential stress distribution and the influence coefficients using Equation (5.18). The 

tangential elastic displacement difference uxi is necessarily zero by definition in the stick 

zones, although the tangential stress q and the deformations of each body ux1i and ux2i are 

not zero. 

 

To minimise the function given in Equation (5.30) at time t, the rigid shift Wiτ between the 

bodies in a time-step and the tangential displacement difference u′iτ at the previous time t′ 

are required. If the tangential loading considered is purely in the form of an overall 

imposed tangential load Q, then the rigid shift is zero.  

 

At time t′=0, the stress distribution q in the contact area is determined from the initial 

conditions of overall tangential loading or rigid shift. The elastic displacement difference 

in each element may then be determined, along with the division into stick and slip zones. 

The wheel then rolls forward a distance 
x in time ∆t. The frame of reference moves along 

with the wheel. Now the displacement differences calculated at time t′ correspond to the 

previous set of potential contact elements. A slightly modified influence coefficient matrix 

Dij ′ is required to relate the tangential stress at time t′ to the displacement of the elements in 

the potential contact at time t. Dij ′ is calculated by adding the distance 
x to the distance 

between each element combination xij in Equation (5.19) before following the steps up to 

Equation (5.24). In fact the matrix Dij ′ is identical to Dij but with the first row dropped and 
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an additional row added. Figure 6.6 shows this shift in terms of the potential contact area 

for a three-dimensional analysis. 

 

In the two-dimensional case with transient rolling contact, a modified influence coefficient 

matrix Bij ′ is used to determine the displacements in the current time-step due to the 

stresses in the previous time-step. This corresponds to the matrix Dij ′ in the three-

dimensional case and is calculated similarly by adding the distance 
x to the distance 

between each element combination k in Equation (5.37). 

 

In each time-step, an element i of the N elements in the potential contact area is either in 

the contact zone or outside it. In the contact zone, each element is also in either a stick 

zone or a slip zone. The corresponding stresses satisfy 

zone Slip

zoneStick 

contact Outside0

contact Inside0

ii

ii

i

i

pq

pq

p

p

µ
µ

=
<
=
>

 (6.6) 

This division is implicit in the stress on each element, but the calculation of the stress 

distributions can proceed without explicitly dividing the contact into stick and slip zones. 

 

 

Figure 6.6 Shift in potential contact area in each time-step. 
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6.5 Example: development of steady-state rolling from rest 

As an example of the calculation of the tangential stress distribution in transient rolling 

contact, consider a cylindrical wheel of radius 0.46 m initially at rest on a smooth rail of 

transverse radius 0.46 m. These parameters are equivalent to a sphere of radius 0.46 m 

rolling on a flat surface, and result in a circular contact patch. A normal load P of 100 kN 

is applied to the wheel. A tangential force Q = 0.75×µP is applied to the wheel initially and 

this remains constant throughout rolling. The rigid shift is zero. The friction coefficient µ is 

0.3. The wheel is then permitted to roll along the rail with a constant velocity V = 1 m/s.  

 

This example corresponds to a transient rolling contact problem known as ‘Cattaneo to 

Carter’ and is used by Kalker [1990] to verify the variational method. The initial tangential 

stress distribution is that determined analytically by Cattaneo in 1938 as described in 

Section 5.5.1 (Cattaneo simplified the problem to two dimensions, in this example the 

extension to spherical contacts described by Johnson [2001] is used). The final steady-state 

stress distribution may be compared with Carter’s [1926] analytical results again in the 

three-dimensional version as described in Section 6.3. The ‘Cattaneo to Carter’ problem 

thus describes the evolution of the contact stress distribution as rolling begins from a 

stationary contact until steady rolling is achieved. 

 

The potential contact area is defined as a 20 mm × 20 mm square. This gives 400 elements 

in total, of length 1 mm in each direction, and the wheel will roll 1 mm in each time-step. 

At time t = 0 before rolling, the tangential stress distribution along the centre-line of the 

contact is identical that shown in Figure 5.6(c). The development of the tangential stress 

distribution shown over ten positions as rolling proceeds is shown in Figure 6.7. The stress 

distribution after rolling 10 mm is approaching a steady-state, and is shown in three 

dimensions in Figure 6.8. Figure 6.9 shows the comparison of the steady-state tangential 

stress distribution obtained by the variational method and by the analytical method based 

on the Hertz equations. The agreement is satisfactory given the spatial resolution used 

here. 
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Figure 6.7 Development of steady-state tractive rolling contact from rest:  
tangential stress q; — — — friction limit. Above each figure is the distance rolled from the 
initial position. Centre-line of contact shown from three-dimensional model. This 
corresponds to the case ‘From Cattaneo to Carter’ used by Kalker [1990] to verify the 
variational method. Q = 0.75×µP, µ = 0.3. 
 

This case, with a constant tangential force Q, corresponds to a driven wheel with a constant 

torque supplied to the wheel and constant normal loads. The creep is zero initially when 

the wheel is at rest and increases to a constant value in the steady-state. For driven wheels 

with varying normal loads, the creep is not constant but varies in each time-step. 
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Figure 6.8 Three-dimensional tangential stress distribution after 10 mm of rolling. 
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Figure 6.9 Cross-section of steady-state tangential stress in rolling contact between a 
sphere and a flat plane: — — — analytical solution based on Hertz equations;  
variational method. Q=0.75×µP. 
 

6.6 Example: steady-state rolling with constant longitudinal creep 

It is common in modelling non-driven wheels of railway vehicles to assume a small level 

of constant longitudinal creep. This creep arises from the conicity of the wheel and 

assumed small lateral displacements of the wheel on the rail head, and is typically of the 

order of 0.1% [Xie & Iwnicki, 2008b; Sheng et al., 2006; Wu & Thompson, 2005]. With a 

constant assumed creep in a time-step of duration ∆t, the rigid shift of the system Wiτ (the 

same for all elements in the potential contact area) is given by 

ξτ xWi ∆=  (6.7) 
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Note that the assumed creep in this case is negative, that is body 1 (the wheel) shifts in the 

negative x direction compared to body 2 (the rail) in the contact zone.  

 

Figure 6.10 shows the development of steady-state rolling contact from rest for a case with 

constant longitudinal creep of 0.1%. Again the centre-line of the contact calculated from 

the three-dimensional model is shown.  
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Figure 6.10 Development of steady-state rolling contact from rest with constant 
longitudinal creep:  tangential stress; — — — friction limit. Above each figure is 
the distance rolled from initial position. Centre-line of contact shown (from three-
dimensional model). 
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The tangential stress shown in Figure 6.10 is entirely due to the rigid shift arising from the 

constant longitudinal creep, there is no overall tangential stress Q applied and no constraint 

on the sum of the tangential stress over all the elements of the potential contact. The 

overall stress Q increases in each time-step until the steady-state is reached. All other 

parameters are the same as in the previous example (Section 6.5). In the initial time-step 

the tangential stress is below the friction limit throughout the contact, meaning there is no 

slip until a distance of just over 5 mm has been rolled. 

 

With constant creep imposed, the system requires more time to reach a steady-state than 

for the previous case with a constant Q imposed. In each step shown in Figure 6.10 the 

wheel has rolled 5 mm (the calculation step size is the same, but not all calculated steps are 

shown). The steady-state is reached after a distance of around 2 to 2.5 times the overall 

contact length. A similar distance for convergence was found by Kalker [1990]. 

 

6.7 Calculation of slip and slip velocity in the contact patch 

At each position as the wheel rolls along the rail, the relative slip s between corresponding 

elements on the two bodies is given by the creep across the element Wiτ added to the 

change in the elastic displacement difference occurring in each time-step, given by the 

elastic displacement in the current time-step uxi minus that from the previous time-step uxi′ 

xixiii uuWs ′−+= τ  (6.8) 

 

The slip velocitys&  is determined by dividing the slip by the time-step duration ∆t: 

t

s
s i

i ∆
=&  (6.9) 

 

In the stick zone there is no slip and the slip velocity is zero automatically. In the slip zone, 

the slip velocity increases up to its maximum at the trailing edge. Outside the contact zone 

the slip velocity falls away again, although this is meaningless. Those elements in the 

potential contact zone but outside the actual contact experience elastic deformation as a 

result of the stresses on the elements in the contact zone, but this cannot result in friction or 

wear. Therefore the slip velocity in elements outside the contact patch is set to zero before 

calculating the material removed from the rail in each time-step. This is not necessary if 

the stresses outside the contact are exactly zero, but the numerical minimisation technique 

can result in very small non-zero stresses outside the contact patch.  



 

159 

 

The two-dimensional model is used here in order to investigate the effect of element size in 

the numerical model results. Figure 6.11 shows the slip velocity and corresponding 

tangential stress distribution calculated using the two-dimensional variational method after 

reaching a steady-state under constant normal and tangential loading. The parameters are 

the same as used previously with a normal load of 100 kN, a constant longitudinal creep of 

0.1%, a cylindrical wheel of radius 0.46 m, a contact width of 11 mm and a smooth flat 

rail. The coefficient of friction µ is 0.3 and the rolling velocity v = 1 m/s. It can be seen that 

the slip occurs only at the trailing edge of the contact and is zero elsewhere. With the 1 mm 

element size used, there are three elements in a state of slip, with the maximum slip 

velocity of around 3 mm/s. 
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Figure 6.11 Slip and stress distribution in steady-state rolling with 0.1% creep and 1 mm 
element size. (a) Slip velocity; (b) tangential stress distribution:  variational 
method with 1 mm elements; · · · · · · · friction limit. 
 

6.7.1 Effect of element size on slip velocity 

If the stick-slip division is required in more detail, more elements of smaller size may be 

used to define the potential contact zone. Figure 6.12 shows the results from the same 

model but with four times as many elements in the potential contact. There are now twelve 

elements making up the slip zone with non-zero slip velocity. The tangential stress 
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distribution is also much smoother when calculated using smaller elements. The peak slip 

velocity at the trailing edge of the contact is now 4 mm/s which is significantly higher than 

the peak value calculated with 1 mm elements. The slip velocity increases up to a 

maximum at the trailing edge, so smaller elements give a better approximation of the peak 

slip velocities.  
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Figure 6.12 Slip and stress distribution in steady-state rolling with 0.1% creep and 
0.25 mm element size. (a) Slip velocity; (b) tangential stress distribution:  
variational method with 1mm elements; · · · · · · · friction limit. 
 

Figure 6.13 shows the slip velocity in a steady-state calculated with various different 

element sizes. There is very little difference in the slip velocity between an element size of 

0.1 mm and 0.25 mm, suggesting that at least 0.25 mm elements are required to represent 

accurately the slip velocity in the contact patch with a constant friction coefficient. In 

Chapter 8, however, it is found that even smaller elements are required if a velocity-

dependent friction coefficient is used. Therefore in the remainder of this work 0.1 mm 

elements are used.  

 



 

161 

−10 −5 0 5 10
−5

−4

−3

−2

−1

0

1
x 10

−3

Distance [mm]

S
lip

 v
el

oc
ity

 [m
/s

]

 

Figure 6.13 Effect of element size on steady-state slip velocity:  1 mm elements; 
· · · · · · · 0.5 mm elements; — — — 0.25 mm elements; – · – · – · 0.1 mm elements.  
 

6.7.2 Effect of rolling speed on slip and slip velocity 

If the longitudinal creep is constant, then the amount of slip in each time-step in rolling is 

independent of the rolling speed. This is because the distance rolled in a time-step is 

unchanged, since this distance is determined by the element size in the potential contact. 

The length of the slip zone is unaffected by the rolling speed for steady rolling and 

constant creep, as is the tangential stress distribution. However the slip velocity is directly 

proportional to the rolling speed, as shown in Figure 6.14. Doubling the rolling speed from 

1 m/s to 2 m/s doubles the slip velocity throughout the slip zone. 
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Figure 6.14 Effect of rolling speed on steady-state slip velocity:  speed 1 m/s; 
 — — — 2 m/s; · · · · · · · 10 m/s.  
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6.8 Comparison with results from 2-D and 3-D analytical solutions 

An example of the tangential stress in steady-state rolling contact is shown in Figure 6.15 

to compare the results from the two-dimensional variational model with analytical 

solutions in two and three dimensions. The parameters are the same as used previously but 

again with an assumed contact width of 11 mm. As with the normal stress distribution 

(Figure 5.12), the magnitude of the tangential stress is under-estimated when using a two-

dimensional representation. The location of the stick-slip boundary is similar. With the 

small 0.1 mm elements used in the variational method, the precision of determination of 

the location of the stick-slip boundary makes the two-dimensional analytical and numerical 

methods almost indistinguishable. 
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Figure 6.15 Tangential stress in steady-state rolling Q=0.75×µP:  analytical 
solution for cylinder; · · · · · · · 2D variational method (almost superimposed); — — — 
centre-line of analytical solution for sphere. 
 

The rolling contact case ‘From Cattaneo to Carter’ has been calculated again using the 

two-dimensional variational model and is shown in Figure 6.16. The parameters are the 

same as used for the three-dimensional case presented in Figure 6.7, but with an assumed 

contact width of 11 mm and smaller 0.1 mm elements. As with the three-dimensional 

model, before the initiation of rolling, there is a central stick zone with a slip zone at each 

end of the contact patch. With rolling, the slip zone becomes restricted to the trailing edge 

and a steady-state is achieved after around 10 mm of rolling. 
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Figure 6.16 ‘From Cattaneo to Carter’ using 2-D model. Development of steady-state 
tractive rolling contact from rest:  tangential stress q; — — — friction limit. Above 
each figure is distance rolled from initial position. 
 

Xie and Iwnicki [2008b,c] have obtained similar results from two- and three-dimensional 

models. Here it is clear that the two-dimensional version of the model can give an accurate 

representation of the length of the contact. If it is used to simplify spherical contact to two 

dimensions, the magnitude of the actual normal stress and hence of the tangential stress is 

under-estimated at the centre-line. The location of the stick-slip division may also be 

affected, which could influence the wear results in a frictional wear model. However in the 

cases considered here only the roughness profile of the centre-line is known. This profile 

can be assumed to extend over the width of the rail head with the rail head curvature, but 

the three-dimensional model is then itself an approximation of the actual rail profile. The 

true lateral roughness distribution is not known and for a worn rail, the rail head curvature 
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in the contact zone could be flattened out. In this situation the contact would be better 

represented by a cylinder on a plane than by the three-dimensional model.  

 

6.8.1 Contact width for two-dimensional model of actual wheel and rail  

In the case of contact between a cylindrical wheel of radius 0.46 m and a transversely 

curved rail of radius 0.3 m, the three-dimensional contact is elliptical rather than circular, 

and shorter in the lateral direction. An assumed width of the contact in the y direction of 

8 mm for the two-dimensional model gives a good approximation of the length of the 

contact in the x direction for the vehicle static loads modelled in this work. 

 

6.9 Rolling over a corrugated rail 

If the rail is not perfectly smooth, the contact length and the distribution of the stresses and 

slip in the contact patch varies with the contacting profile. For example, if a short 

wavelength corrugation is present on the rail, the contact may occur at more than one 

location and there may be several zones of stick and slip. Figure 6.17 shows an example 

with a 5 mm wavelength sinusoidal corrugation of amplitude 1×10-5 m. The normal load is 

60 kN and is assumed constant, i.e. does not fluctuate as a result of rolling over the 

corrugations. The wheel radius is 0.46 m and the width of the contact is assumed to be 

8 mm. This case could therefore represent the regional or high-speed train type, but with a 

constant normal load. Note that this amplitude of corrugation is unrealistic in practice at 

this short wavelength, so the example is hypothetical until wavelengths longer than the 

length of the contact are considered. The element length is 0.1 mm.  

 

This 5 mm corrugation wavelength is much less than the length of the contact, so when the 

wheel is centred over a corrugation trough, there are four corrugation peaks in contact with 

the wheel (Figure 6.17(a)). Note that the friction limit shown in this figure is proportional 

to the normal stress and therefore indicates areas in contact. Although four of the 

corrugation peaks are in contact, there are two corrugation troughs that are not in contact, 

so rather than a single contact patch, there are three contact patches when the wheel is 

centred over a corrugation trough. The leading contact patch is a stick zone, the middle 

contact patch has two stick zones and two slip zones, while the trailing contact patch is 

fully slipping. When the wheel moves on to be centred over a corrugation peak 

(Figure 6.17(c)), only the two peaks either side of the central peak are in contact and there 
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is a single contact patch, although stresses are very low in the corrugation troughs. At this 

position there are two slip zones and two stick zones.  
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Figure 6.17 Effect of 0.005 m wavelength sinusoidal roughness on tangential stress and 
contact length. (a) Roughness trough; (b) roughness upwards slope; (c) roughness crest; 
(d) roughness downwards slope:  tangential stress; — — — friction limit. 
 

Increasing the wavelength of the corrugation for the same amplitude reduces the effects of 

the roughness. The contact is confined to a single contact patch for a wavelength of 

10 mm, shown in Figure 6.18, although the corrugation peaks still distort the stress 

distribution considerably. Here a full corrugation wavelength fits within the length of the 

contact. 

 

In Figure 6.19, with a corrugation wavelength slightly longer than the contact length, the 

effect of discrete peaks is less visible although the contact length overall is affected by the 

location of the wheel centre relative to the corrugation peaks and troughs. In a trough, the 

contact is longer and the normal stresses are lower and more evenly spread throughout the 

contact than is the case with the wheel centred over a corrugation peak. As the corrugation 

wavelength increases, the stress distribution and maximum stresses approach the values for 

a smooth rail. 
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Figure 6.18 Effect of 0.01 m wavelength sinusoidal roughness on tangential stress and 
contact length. (a) Roughness trough; (b) roughness upwards slope; (c) roughness crest; 
(d) roughness downwards slope:  tangential stress; — — — friction limit. 
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Figure 6.19 Effect of 0.02 m wavelength sinusoidal roughness on tangential stress and 
contact length. (a) Roughness trough; (b) roughness upwards slope; (c) roughness crest; 
(d) roughness downwards slope:  tangential stress; — — — friction limit. 
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Overall, the peak normal stresses are much higher with a corrugated rail than those 

between a smooth wheel and rail, even in these examples where the normal load is 

constant, neglecting any dynamic effects arising from rolling over the corrugation. In fact 

the maximum normal contact stress predicted for the 5 mm wavelength case is 

approximately 1500 MPa (although as noted this example of corrugation is unrealistic at 

this wavelength), compared with a maximum of around 800 MPa for the same case with a 

smooth rail. For the 10 mm corrugation the maximum normal stress is around 1170 MPa, 

and for the 20 mm corrugation case it is 920 MPa. It is possible then that the normal stress 

in parts of the contact can exceed the yield strength of the rail steel. The contact model 

used here does not account for plastic effects. It is known that plastic deformation does 

occur in normal operation; an example is studied by Kapoor et al. [2002] for rail steel with 

a nominal yield stress of 480 MPa. However, under repeated loading the surface layer of 

the rail steel is known to harden, allowing it to remain elastic under higher stresses than the 

nominal yield limit. Also if plastic deformation does occur initially, the process of 

shakedown means that subsequent load cycles will give decreasing amounts of plastic 

deformation [Olofsson & Lewis, 2006; see also Daves & Fischer, 2002; Wen & Jin, 2006].  

 

6.10 Normal and tangential stress distribution in rolling with a rough rail 

In Chapter 4 it was seen that the roughness of the system is the factor that has the greatest 

effect on the normal interaction force. In transient rolling contact, the normal force is 

allowed to vary in each time-step and here is taken from the interaction force model 

described in Chapter 4. The time-stepping model returns the normal force at 1 mm 

intervals as the wheel rolls along the rail. This force history is interpolated to give the force 

at intervals determined by the element length in the potential contact area, here at 0.1 mm 

spacings. 

 

The effect of including the roughness of the contacting profiles on the magnitude of the 

stress in the contact patch may be assessed by comparing the maximum stress in the 

contact patch along a length of rough track with the stress calculated using a Hertzian 

contact model that neglects the roughness. Figure 6.20 shows an example with a freight 

wheel (parameters are listed in Table 4.1) where a Hertzian contact model would predict a 

maximum normal stress of around 1000 MPa. If the combined roughness of the wheel and 

rail is of the order of the TSI rail roughness limit the actual maximum normal stress might 
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be around 1200 MPa, and if the combined roughness is 10 dB higher the maximum might 

be 1700 MPa.  
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Figure 6.20 Example of normal stress in the contact area:  smooth rail (Hertzian 
model); ...........TSI roughness; — — — TSI roughness plus 10 dB. 
 

This analysis assumes purely elastic contact. The roughness asperities act as stress 

concentrators and can have a significant effect on the normal and hence tangential stress in 

rolling contact. With realistic combined wheel and rail roughness levels, the normal stress 

in rolling contact will exceed the nominal yield stress for rail steel leading to work 

hardening and shakedown. In the remainder of this work the analysis is limited to low-

level broadband roughness of a similar level to the measured spectrum at the Gersthofen 

test site (see Section 4.4.4). In this way stress levels remain within the yield limit, since 

with work hardening and shakedown effects it is difficult to be sure exactly where the 

elastic limit lies.  

 

Figure 6.21 is an example of a tangential stress distribution for a freight wheel on a rail 

with low level broadband roughness. With low level roughness there is typically only one 

slip zone at the trailing edge of the rolling contact as seen here. Multiple stick and slip 

zones are only seen with higher levels of roughness or corrugation. 
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Figure 6.21 Example of tangential stress in the contact area:  stress; — — — 
friction limit. 
 

6.11 Discussion - transient rolling contact 

Transient rolling contact is the default calculation state when using the variational method. 

Results for steady-state rolling have been obtained by allowing the system to converge 

under constant normal and tangential forces. The tangential forces can be input to the 

model either in the form of a constant overall tangential force, or in the form of creep. The 

steady-state results from the variational method have been compared with those calculated 

using analytical formulae based on Hertz theory.  

 

The derivation of the slip velocity in the rolling contact has been described. Although the 

stress distribution and the slip in rolling are not affected by the rolling speed, the slip 

velocity is directly related to rolling speed. It is also important to use sufficiently small 

elements in the potential contact area to capture the slip velocity correctly. This favours 

using the two-dimensional model for the rolling contact analysis. 

 

The variational method has been used to calculate example stress distributions in transient 

rolling. It is clear that the roughness of the surfaces has a significant effect on the normal 

and tangential stress distributions.  
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7 RAIL-HEAD WEAR MECHANISMS 

7.1 Introduction 

A wheel rolling over a rail results in wear of the two surfaces in contact. The wear can be 

gradual, with a small amount of material removed with every wheel passage. In some cases 

the wear may be more severe, for example fatigue may lead to ratchetting or surface 

cracking and the removal of material at a higher rate. As the contacting surfaces are not 

perfectly smooth initially and the forces between the wheel and rail vary with time, the 

amount of material removed varies along the rail. This uneven wear results in a change in 

the roughness profile of the rail (and wheel) after many wheel passages.  

 

Rail-head wear can occur by several different mechanisms, depending on the contact 

conditions [Lewis & Olofsson, 2004]. Frictional abrasive wear, or mild wear, is generally 

thought to be the mechanism for roughness growth on tangent track in the absence of 

corrugation or other defects in the contacting surfaces [Nielsen et al., 2003]. It is therefore 

common in roughness growth predictions to assume a single wear coefficient at all 

locations representing mild wear. Implicit in this assumption is the idea that wear only 

occurs in tractive rolling, in the slip region of the contact patch. 

 

However, the inclusion of non-Hertzian effects in the contact means that stress 

concentrations may arise from the roughness profile of the surfaces in contact. It is 

possible that these stress concentrations might lead to higher wear rates in some parts of 

the contact area. This in turn might affect the prediction of roughness growth rates and is 

therefore included in this model.  

 

This chapter begins with a description of the frictional wear and ratchetting wear 

mechanisms and mathematical models used to simulate them. A common feature of these 

wear models is that the amount of material removed is determined by the severity of the 

normal and tangential stresses in the contact zone, and the slip velocity. Previous chapters 

have described techniques to calculate the forces distributed through the contact patch and 

the resulting normal and tangential stresses and slip velocities. Here the stress distribution 

and slip velocity is linked to the removal of material from the rail. The work of Braghin et 

al. [2006] on wheel wear rates is used to predict the wear of rails taking account of three 

wear regimes of increasing severity. The contact conditions that are required to develop 

wear in the more severe wear regimes are investigated. 



 

171 

This chapter also includes an analysis of the differences in wear predictions that can arise 

from making an assumption of Hertzian contact conditions in the presence of even low-

level surface roughness. 

 

7.2 Frictional abrasive wear 

Frictional or abrasive wear occurs as a small amount of material is removed with every 

wheel passage, proportional to the frictional work done in the slip zone of the contact area. 

The relationship between the work done and the material removed is given by Archard’s 

wear equation [Rabinowicz, 1965]. In each time-step as the wheel moves along the rail, the 

slip in each element of the potential contact can be calculated from the elastic 

displacements that arise from the tangential stress in the contact patch. 

 

The depth of material dz removed across the area of an element i in the slip zone in each 

time-step is given by  

ρρ
iiii

i

qsKqstK
dz =

∆
=

&

 (7.1) 

where ρ is the density of the material and K is a wear constant that is determined by 

experiment or is taken from the literature. This equation is a form of Archard’s wear 

equation [Archard & Hirst, 1956], which relates the amount of material removed to the 

work done by the tangential stress in the slip zone. A commonly used value of the wear 

constant K for railway applications is 2.5×10-9 kg/Nm which was obtained by Nielsen 

[2003] by tuning a wear model to measured growth rates at a corrugated site in the 

Netherlands. More attention is given to the choice of wear constant in Section 7.4. 

 

The material depth removed is accumulated in each element as the wheel or wheels pass 

over the track and finally is subtracted from the original rail roughness profile. In a steady-

state case the material removed is independent of the velocity of the wheel. This is because 

the effect of the rolling speed on the slip velocity (shown in Section 6.7.2) is cancelled out 

by the dependence of the work done in the slip zone on the time-step ∆t. Higher tangential 

loads in the form of higher creep or higher torque applied to the wheel result in more 

material removed, as these cases lead to more slip. 

 

Figure 7.1 shows that when a single wheel rolling over a smooth rail under constant normal 

and tangential loadings reaches a steady-state, the material depth removed by a passage of 
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the wheel is a constant in each time-step. With smaller elements and hence shorter time-

steps, the material removed in a single time-step is less than if bigger elements are used. In 

Figure 7.1 the results have been normalised by the length of the element ∆x in each case, to 

allow the results to be compared for different element sizes. It is clear that in this case, if 

the element size is 1 mm giving three elements in the slip zone, the representation of the 

material removed in a time-step is relatively coarse compared with that calculated using a 

higher number of smaller elements. The results converge with decreasing element size. The 

two smallest element sizes give very similar results and therefore an element length of 

0.1 mm is chosen for this work. 

 

−10 −8 −6 −4 −2 0
0

0.5

1

1.5

2
x 10

−7

Distance [mm]

W
ea

r 
de

pt
h 

/ E
le

m
en

t l
en

gt
h 

[m
/m

]

 

Figure 7.1 Effect of element size on depth of material removed at steady-state. Wear depth 
in a single time-step has been divided by the length of the element to give comparable 
results:  0.05 mm elements; · · · · · · · 0.1 mm elements; — — — 0.5 mm elements; 
 – · – · – · 1 mm elements. Distance of 0 mm corresponds to the centre of the contact patch; 
wear occurs only in slip zone at the trailing edge. 
 

The distribution of the material removed in a time-step in steady-state rolling (shown in 

Figure 7.1) is controlled by the tangential stress and by the slip. At the border between the 

stick and slip zones the tangential stress is high but the slip velocity is zero, so the material 

removed is zero. At the trailing edge of the contact the slip velocity is at its maximum but 

the tangential stress is zero so again no material is removed. The peak in the material 

removed therefore occurs in the middle of the slip zone for steady rolling. In transient 

rolling with rough surfaces, the smooth distribution of material removed will be disrupted. 

 

Figure 7.2 shows the accumulated material removed as a wheel rolls along a rail for 

element sizes and rolling increments from 1 mm down to 0.05 mm. A steady-state for wear 
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is attained after around 0.15 m of rolling under constant tangential load. This is a longer 

distance than found in Section 6.6, where a steady-state for tangential stress distribution 

appears after 2 to 2.5 times the contact length, or about 0.03 m. This indicates that although 

the tangential stress and slip in transient rolling develop rapidly to a value close to their 

final value, true convergence in terms of the material removed from the rail under steady-

state conditions requires a larger rolling distance.  

 

From Figure 7.2 it can also be seen that the element size and rolling increment have an 

effect on the predicted wear. Higher peak slip velocities arise from a finer discretisation 

and result in more work in the slip zone. Consequently more material is removed in the 

steady-state as shown in Figure 7.2. The wear constant K is 2.5×10-9 kg/Nm and the normal 

load is 100 kN. 
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Figure 7.2 Effect of element size on accumulated depth of material removed under wheel 
rolling from rest along rail with constant normal force:  0.05 mm elements; 
· · · · · · · 0.1 mm elements; — — — 0.5 mm elements; – · – · – · 1 mm elements. 
 

7.3 Wear by ratchetting of a ductile material under repeated loading 

The mechanism of wear by plastic ratchetting is described by Kapoor [1997]. It occurs 

when a material is loaded above its yield strength in repeated sliding contact cycles. The 

plastic deformation accumulates over many cycles, causing small slivers of material to be 

compressed and gradually extruded from thin sub-surface layers. Even if the plastically 

deformed material does not extrude out or break off, wear may occur by fatigue with 

micro-cracks occurring in the material after repeated loading. Damage may occur in layers 
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below the surface, but particles are only removed from the surface as previously sub-

surface layers are exposed.  

 

The high stresses required for plastic deformation can occur in the contact of rough 

surfaces even if the average stress in the contact is below the yield stress. The peaks of 

roughness lead to higher stresses at the asperities. In tractive rolling with even partial slip, 

the sliding of the surfaces across one another in the slip zone ensures that high contact 

pressures due to asperities are spread across the surfaces. 

 

Kapoor and Franklin [2000] developed a model of the ratchetting wear mechanism by 

simulating the sliding of a two-dimensional cylindrical asperity over a smooth surface. In 

this model the surface is described as a number of thin layers, each of which accumulates 

an increment of shear strain if the stress in the layer is sufficiently high. As well as a 

critical strain to failure of the material, each layer has an associated effective or current 

shear strength which takes account of any strain hardening. The stress distribution is 

assumed to be Hertzian with a constant friction coefficient used to determine the maximum 

shear stress in the fully sliding contact. With each pass of the cylindrical asperity, the shear 

strain increment resulting from the peak shear stress is calculated at each layer and added 

to the accumulated strain at that depth. If the total accumulated strain in the top layer 

exceeds the critical value, then it fails and is removed allowing an estimation of the wear 

rate from the depth of material removed over many cycles. 

 

This model of wear was expanded by Franklin et al. [2001] by modifying the surface 

representation into a ‘brick’ form rather than the layers used previously. The use of ‘brick’ 

elements allows the consideration of roughness development rather than even wear, since 

bricks may fail and be removed while adjacent bricks remain in place. The failure of a 

brick is taken to depend not only on its accumulated total shear strain, but also on the status 

of the surrounding elements. A brick that has failed in isolation is not removed from the 

surface until at least one of the adjacent bricks has also failed. Additionally, a ‘healthy’ 

brick may be removed if it is not supported on either side by other bricks.  

 

The effect of surface roughness on the contact pressure has been modelled by Kapoor et al. 

[2002]. The resulting predicted wear rates and contact stresses were compared with 

experimental results from a twin-disc machine used to simulate the operating conditions of 

the Japanese Shinkansen train. The nominal operating conditions and contact stresses were 
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expected to be below the critical yield stress and the shakedown limit, but cross-sections of 

the rail showed sub-surface plastic deformation. The model and the experiment confirm 

that roughness leads to plastic deformation of thin layers of the surface. A limit of the 

model was noted; the contact stresses are calculated assuming elastic deformation, 

although the resulting stresses are high enough to lead to plastic flow. However, it is clear 

that roughness can cause the elastic limit of the material to be exceeded. 

 

The brick model has also been used to study the effect of random variations in the material 

properties of the surface on the wear rate [Franklin et al., 2003; Alwahdi et al., 2005]. 

More recently this variation has been used to model the microstructure of steels, assigning 

different material properties to pearlite and ferrite grains [Franklin & Kapoor, 2007]. The 

effect of partial slip in rolling contact has also been considered by Alwahdi et al. [2005] 

using a Hertzian contact stress distribution between a rolling cylinder and a half-space, 

with the tractive force less than the friction limit. The results of this work show that wear 

rates increase as traction increases, and are heavily dependent on the friction coefficient. 

Overall, the predicted wear rates correspond well with full scale experimental results. The 

roughness growth rate of the rail was not examined, although it is noted by Franklin and 

Kapoor [2007] that this is possible. However, a great number of iterations of the contact 

model would be required. 

 

7.4 Wear by multiple mechanisms  

An alternative to simulating ratchetting wear directly is to make use of experimentally 

determined wear rates including several different wear regimes. The work of Braghin et al. 

[2006] on wheel wear rates may be adapted to predict the wear of rails taking account of 

three wear regimes of increasing severity. Twin disc laboratory tests have been used to 

determine, under controlled conditions, the relationship between the tangential stress 

distribution in the slip zone of a contact patch and the rate of material removal. The wear 

rate is a linear function of the wear index Tγ/A where T is the tangential force, γ is the non-

dimensional slip and A is the contact area of an element. The variables T and γ correspond 

to the tangential force Q and the slip s used in this thesis, but with different units (see 

Table 7.1 and Equation (7.2)). This wear index model builds on the work of several authors 

in particular Bolton and Clayton [1984], Clayton [1996] and Lewis and Olofsson [2004]. It 

is assumed here, as in Braghin et al. [2006], that the wear relationship can be applied to 

individual elements of the contact area, although the wear index was originally developed 
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for the contact area as a whole. Figure 7.3 and Table 7.1 show the variation in wear rate 

with different wear regimes. The first of these regimes is equivalent to the frictional 

abrasive wear model described in Section 7.2. Here the wear is directly proportional to the 

wear index (although the constant of proportionality or wear coefficient typically used for 

pure frictional abrasive wear is different). In the second regime the wear rate is constant for 

a range of Tγ/A values. This second regime corresponds to the ratchetting wear mechanism. 

The wear rate in the third regime is again proportional to the wear index but with a much 

higher gradient indicating the rapid removal of material that occurs under the most severe 

contact conditions. 

 

 

Figure 7.3 Change in wear rate with different wear regimes: 1 ‘mild wear’; 2 ‘severe 
wear’; 3 ‘catastrophic wear’. 
 

 

Table 7.1 Wear regimes and coefficients [Braghin et al, 2006]. The equivalent wear 

coefficient is in the form used in Equation (7.1). 

 Tγ/A Wear rate (µg/m/mm2) Equivalent wear coefficient K (kg/Nm) 

1 Tγ/A<10.4 5.3 Tγ/A 5.3×10-9 

2 10.4< Tγ/A<77.2 55.0 55.0×10-9/( Tγ/A) 

3 77.2< Tγ/A 61.9 (Tγ/A-77.2)+55.0 [61.9 (Tγ/A-77.2)+55.0] /( Tγ/A) ×10-9 

 

The wear index Tγ/A can be evaluated for each element of the potential contact area and 

used to predict the amount of material removed from the rail in each time-step. In terms of 

the notation used in this work, the wear index for each element of the contact area (with an 

assumed constant contact width) in units of N/mm2 may be written as 

6101 −××
∆

=
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T iiγ
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The material depth removed over the surface of each element i is then calculated from 

Equation (7.1) but instead of the single wear coefficient K used previously the equivalent 

value of K for the corresponding wear regime is used from Table 7.1.  

 

In the frictional abrasive wear model described in Section 7.2, the wear coefficient used 

was 2.5×10-9 kg/Nm which is less than half the equivalent wear coefficient for the mild 

wear regime indicated in the literature of the multiple wear mechanisms approach. 

However Nielsen’s value was obtained by tuning the wear model to field measurements of 

roughness on operating track [Nielsen, 2003], and is therefore an average wear rate which 

could include more than one wear mechanism. Braghin et al. [2006] note that normal 

wheel-rail contact leads to wear in only the first two regimes in normal operation, and that 

the third regime of catastrophic wear would only be reached in severe curves. The single 

wear coefficient used in Section 7.2 is compared with the wear relationship with multiple 

mechanisms in Figure 7.4. 
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Figure 7.4 Wear rate comparison:  three wear regimes with different wear 
coefficients; — — — a single proportional wear coefficient. 
 

7.5 Factors that affect the wear rate 

The wear rate as modelled in this work is a function of the tangential stress and the slip. As 

noted in Section 7.2, in steady rolling with constant normal and tangential forces, the 

rolling speed alone does not affect the amount of material removed from the rail head. In 

transient rolling however, the normal force can fluctuate and its magnitude is higher for 

vehicles moving at higher speeds (Section 4.5.1). Higher initial roughness levels also result 
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in higher normal forces. It is of interest to investigate and understand the effect of the 

normal force and roughness profile on the wear rate in isolation before examining the 

material removed from the rail with simultaneously varying forces and roughness. In all 

the following examples the element size used in the potential contact area is 0.1 mm. 

 

7.5.1 Effect of magnitude of normal force with constant tangential loading 

Figure 7.5 shows that reducing the magnitude of the normal force with the same 

longitudinal creep of 0.1% results in less wear in steady-state rolling. If the normal force is 

reduced, the contact length is smaller, meaning an element of the rail is in contact with the 

wheel for a shorter time. Also the friction limit, tangential stress and slip velocity are all 

lower with a reduced normal force. The only factor which opposes the reduced wear is that 

more of the contact patch is in a state of slip if the normal force is lower for the same creep 

(Figure 7.6), but this does not result in higher wear. 
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Figure 7.5 Effect of normal force magnitude on accumulated material removed for wheel 
rolling from rest with constant 0.1% creep:  100 kN; · · · · · · · 60 kN; — — — 
40 kN; – · – · – · 10 kN. 
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Figure 7.6 Effect of normal force magnitude on contact length and tangential stress 
distribution with constant 0.1% creep:  tangential stress; — — — friction limit. 
 

In these simple steady-state rolling cases with a smooth wheel and rail, the wear regime is 

purely mild wear. For a 0.46 m radius wheel and a 100 kN normal force, the maximum 

wear index in steady rolling is around 0.5 N/mm2 which is well below the transition to 

severe wear at 10.4 N/mm2. Therefore using the mixed-mechanism model, the pattern of 

material removed (shown in Figure 7.5) is similar to that found in Section 7.2. The only 

difference is that more material is removed as a result of the higher wear coefficient that is 

applied to the mild wear regime in the mixed mechanism wear model. 

 

7.5.2 Effect of varying rail profile with constant normal force 

If the rail has a sinusoidal profile, the depth of material removed in a steady-state from the 

rail is also periodic for a constant normal force and constant 0.1% longitudinal creep. 

Figure 7.7 shows the material depth removed after a single wheel passage for different 

sinusoidal profile wavelengths all with amplitude 1×10-5 m. The variation in the wear 

depth depends on the wavelength of the initial profile. Short wavelengths create the highest 

stress concentrations and hence the greatest variation in the material removed. Increasing 

the wavelength of the periodic profile causes the material removed to approach the steady-

state constant value seen for the smooth wheel case (note, however, that the shortest 
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wavelength rail profile is not realistic, as corrugation does not form at such wavelengths 

shorter than the length of the contact patch). 
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Figure 7.7 Effect of sinusoidal roughness profile on depth of material removed at steady-
state:  material removed; · · · · · · · roughness profile (amplitude 1×10-5 m, not 
shown to scale). Roughness wavelengths top to bottom 5 mm, 10 mm, 20 mm, 40 mm, 
80 mm. 
 

The maximum material removed occurs near the crests in the rail profile, indicating that 

the ridges tend to be worn down. With a 5 mm wavelength initial profile there is almost no 

material removed from the corrugation troughs, suggesting that the troughs do not see 

significant normal or tangential stress levels and the load is taken by the profile peaks. This 

finding corresponds to the stress distributions shown in Figure 6.17. 
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7.5.3 Effect of varying normal force 

Now the wheel moving along the smooth rail with constant longitudinal creep of 0.1% is 

subject to a sinusoidal normal force. Five force wavelengths are considered ranging from 

5 mm to 80 mm. The force varies with amplitude 10 kN around the 100 kN static load in 

Figure 7.8 and by +/- 50 kN around a 60 kN static load in Figure 7.9. The maximum force 

is therefore the same in both sets of results.  
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Figure 7.8 Effect of small amplitude sinusoidal normal force on accumulated depth of 
material removed:  material removed; · · · · · · · force (not to scale). Force 
wavelengths top to bottom 5 mm, 10 mm, 20 mm, 40 mm, 80 mm. 
 

With the small fluctuation in force (Figure 7.8), the size of the contact and the length and 

location of the slip zone do not vary much. The variation in the overall contact length over 
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the force range is only around 1.5 mm, with an average contact length of around 14 mm. 

The slip zone is typically around 2 to 3 mm long and is centred around 6 mm behind the 

centre-line of the contact. So if the force does not fluctuate enough to change the contact 

characteristics significantly, the pattern of material removed from the rail follows the 

sinusoidal pattern of application of the force.  
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Figure 7.9 Effect of large amplitude sinusoidal normal force on accumulated depth of 
material removed:  material removed; · · · · · · · force (not to scale). Force 
wavelengths top to bottom 5 mm, 10 mm, 20 mm, 40 mm, 80 mm. 
 

With the larger amplitude force variation shown in Figure 7.9 the wear pattern is no longer 

clearly sinusoidal, although all cases show periodic wear. The maximum material removed 

increases with the wavelength of application of the normal force, i.e. with a 5 mm force 

wavelength the average material removed overall is similar to the minimum material depth 
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removed with an 80 mm force wavelength. For the cases with force varying at wavelengths 

of 10 mm or longer, the wear pattern consists of a region of low wear followed by a shorter 

distance with high wear, before dropping quickly back to low wear. The peak material 

removed occurs near the force minima. 

 

The variability in the material depth removed may be understood by examining the 

variation in the stress distribution and location of the slip zones as the wheel moves along 

the rail.  

 

When the force fluctuates quickly with a 5 mm wavelength (Figure 7.10), there are regions 

where there is little or no slip zone, including the time when the force is at its maximum. 

When the force is at its minimum, the contact is in full slip but the overall contact length is 

very short, the tangential stresses are very low and the resulting wear is correspondingly 

low. The normal force increases rapidly while rolling only a short distance, insufficient for 

a slip zone to develop before the force decreases again. Consequently the overall material 

removed with this quickly fluctuating force is low although a short wavelength variation in 

the rail profile develops.  
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Figure 7.10 Effect of 0.005 m wavelength large amplitude normal force on tangential 
stress and contact length. (a) Force minimum; (b) force increasing; (c) force maximum; 
(d) force decreasing:  tangential stress; — — — friction limit. 
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When the force fluctuates more slowly, as shown in Figure 7.11, there is more time for the 

stress distribution to adapt to the changing forces. With a 10 mm force wavelength, the slip 

zone vanishes as the force increases from its minimum value. At the maximum force 

location, a short slip zone is present at the trailing edge, and this trailing edge of the 

contact remains a slip zone which extends as the force decreases again until at the 

minimum force location the entire contact slips. In steady-state rolling, the slip zone is 

confined to the trailing edge, but here a small slip zone also appears at the leading edge of 

the contact as the normal force decreases (Figure 7.11(d)). 
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Figure 7.11 Effect of 0.01 m wavelength large amplitude normal force on tangential stress 
and contact length. (a) Force minimum; (b) force increasing; (c) force maximum; (d) force 
decreasing:  tangential stress; — — — friction limit. 
 

Increasing the force wavelength further to 20 mm (Figure 7.12), the stress and slip 

distributions at each location begin to resemble the typical steady-state distribution, 

although the contact remains in full slip when the normal force is at its lowest. 
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Figure 7.12 Effect of 0.02 m wavelength large amplitude normal force on tangential stress 
and contact length. (a) Force minimum; (b) force increasing; (c) force maximum; (d) force 
decreasing:  tangential stress; — — — friction limit. 
 

7.5.4 Discussion on factors that affect the wear rate 

The preceding examples illustrate that the wear rate at a series of locations along the rail 

head is affected by the rail profile and by the normal force. Examining these parameters in 

isolation has shown that more wear occurs in steady-state rolling for higher normal contact 

forces. This would suggest, for example, that more material is removed from the rail head 

by the passing of a typical loaded freight wheel than other wheel types, as a result of the 

higher load on each axle of a freight vehicle. However, wear of an initially smooth system 

with steady-state rolling is uniform along the track and does not result in a change in 

roughness profile. A varying wear rate along the rail is seen when either the force or the 

rail profile is not constant over time. 

 

Looking at a single sinusoidal component of roughness with a constant normal force, more 

material is removed from the peaks of the profile than from the troughs, suggesting that the 

profile will be worn down over time. This effect arises because the profile peaks act as 

stress concentrators, and the amount of material removed is proportional to the tangential 

stress. This is seen for all the single wavelength roughness profiles considered, from 5 mm 

to 80 mm.  
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If the rail is smooth but the normal force is fluctuating, the effect on the wear rate depends 

on the rate and magnitude of the fluctuation. A small magnitude force fluctuation leads to 

variable wear, but the size of the contact and the length of the slip zone do not vary much 

so the pattern of material removed follows the pattern of the normal force variation. The 

wear rate and the force are not necessarily in phase. If the force fluctuates rapidly and with 

large amplitude, the contact stress does not have time to settle into a distribution 

resembling the steady-state distribution. The resulting pattern of wear along the rail is no 

longer sinusoidal. There are periodic ‘bursts’ where more material is removed, 

corresponding to the force minima (see Figure 7.9). 

 

It is expected from these results that if the force does not vary significantly, the existing 

rail profile will have more effect on the location of wear than the varying force. If the force 

magnitude varies rapidly and significantly, for example if the rail were corrugated, it 

would dominate the location of wear. 

 

In Chapter 4 it was found that with a sinusoidally corrugated rail profile, the peak normal 

interaction force occurs near the peak in the roughness (see Figure 4.10). The minimum 

normal force occurs near the roughness troughs. If the stress concentrating effects of the 

rail profile are neglected, this combination has the potential for roughness growth. 

Roughness may grow if the force variation is high enough, as then more material would be 

removed from the troughs than from the peaks. However, the force fluctuation arising from 

these sinusoidal rail profiles with amplitude 1×10-5 m is around +/- 10 kN so the pattern of 

material removed is likely to be dominated by the stress concentrating effects of the rail 

profile. 

 

7.6 Wear with normal forces determined from interaction model 

The normal interaction force between a wheel and a rough rail has been calculated in 

Chapter 4 for cases with a smooth rail, sinusoidal corrugations and also for broadband 

roughness. The wear of the rail can then be determined using the actual rail profile and 

normal force at each location of interest. In calculating the wheel-rail interaction force it 

was necessary to include many sleeper bays in the track model to represent the dynamic 

characteristics of an infinite track accurately. In calculating the wear, however, the effect 

of the track dynamics and vehicle speed are included in the varying normal force. 
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Therefore the force and rail profile in the middle sleeper bays may be extracted from the 

rest and used as inputs to the wear model.  

 

Here a sample length of three sleeper bays or 1.8 m has been chosen. This is longer than 

the 1.2 m of data that can be measured by fixed-edge roughness measurement devices (see 

Section 1.4.1). This length is therefore sufficient to allow the change in roughness profile 

to be assessed, but is short enough to keep the calculation time for a single case reasonable. 

Results can be averaged for a number of cases if required (as described by the roughness 

measurement standard [CEN, 2009]). To allow the transient model of the rolling contact to 

converge, an additional 0.3 m of track is included in the wear analysis before the wheel in 

question reaches the sleeper bays of interest.  

 

7.6.1 Wear of initially smooth or sinusoidal rail profiles 

Figure 7.13 shows that the material removed from a perfectly smooth rail is not constant in 

a sleeper bay, but varies slightly as a result of the variation in force due to parametric 

excitation, i.e. the varying stiffness of the track caused by the discrete supports. When a 

sinusoidal profile is present on a rail and the force is allowed to vary, the material removed 

takes an overall sinusoidal shape. For each wavelength considered, more material is 

removed from the peaks and down-slopes of the profile than from the troughs or up-slopes. 

This suggests that a corrugation will shift longitudinally along the rail and also tend to be 

worn down over time.  

 

Figure 7.14 shows a ‘zoomed in’ view of the material removed along a single wavelength 

of the 40 mm wavelength sinusoidal profile with the normal force determined using the 

interaction force model. Also shown is the corresponding result when the force is taken to 

be constant, from Figure 7.7. If the force is constant, the maximum material removed 

occurs closer to the peak in the roughness profile than if the force is taken from the 

interaction model. So in both cases the profile is worn down and shifted along the rail over 

time, but the longitudinal shift is less if the normal force between wheel and rail is constant 

as it passes over the sinusoidal rail profile. More material is removed from the rail head in 

this case if the normal force can fluctuate.  

 



 

188 

0 0.1 0.2 0.3 0.4 0.5 0.6
6

8

10
x 10

−10 Smooth rail

W
ea

r 
de

pt
h 

[m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
6

8

10
x 10

−10 20mm profile wavelength

W
ea

r 
de

pt
h 

[m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
6

8

10
x 10

−10 40mm profile wavelength

W
ea

r 
de

pt
h 

[m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
6

8

10
x 10

−10 80mm corrugation wavelength

Distance [m]

W
ea

r 
de

pt
h 

[m
]

 

Figure 7.13 Material removed along rail with varying rail profile and normal force from 
interaction model:  material removed; — — — rail profile (not to scale). 
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Figure 7.14 Material removed by a single wheel along one wavelength of 40 mm 
sinusoidal profile:  normal force from interaction model; · · · · · · · constant normal 
force (as in Figure 7.7); — — — rail profile (not to scale). 
 

The wear rates for all the cases shown in Figure 7.13 remain low and in the mild wear 

range. The highest wear index of 0.6 N/mm2 is seen for the shortest wavelength rail profile 

examined, 20 mm. This is, however, only slightly higher than the 0.5 N/mm2 wear index 

for a perfectly smooth wheel and rail with only parametric excitation. Clearly with low 

longitudinal creepage of 0.1%, no lateral and spin creep and no very short wavelength or 

broadband roughness to act as stress concentration factors, mild wear is the only 

mechanism present. 

 

7.6.2 Wear of rail with initial broadband roughness 

Figure 7.15 shows the material removed from a short 40 mm length of rail with broadband 

roughness. Note that although the element size used in the contact model is 0.1 mm, results 

are presented here with 1 mm spacing as the original roughness profile information is 

normally available at 1 mm intervals. More material is removed from locations with peaks 

in the roughness profile than from locations with troughs in the roughness profile, 

suggesting that roughness levels at least at short wavelengths will reduce after many wheel 

passages. Although the difference in material removed along the rail shows a great deal of 

variation, the actual change in the rail profile at each location resulting from a single wheel 

passage is very small. 
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The material removed from each location in each time-step is a function of the slip velocity 

and the tangential stress. Both these parameters vary throughout the slip zone. The slip 

velocity is at a maximum at the trailing edge of the contact, while the tangential stress is 

highest for a smooth contact at either the front edge of the slip zone or at the centre of the 

contact. For a smooth rail this results in a parabolic distribution of material removed in the 

slip zone, as shown in Figure 7.1, where the most material is removed from the centre of 

the slip zone. When the rail is rough, the asperities in the contact result in higher normal 

stresses and consequently higher tangential stresses at the roughness peaks. The 

distribution of material removed then depends on the surface profile in the contact zone, 

and more material tends to be removed at roughness peaks where the tangential stresses are 

higher. This means that short wavelengths of roughness will tend to be worn away when 

using a non-Hertzian contact model to calculate the wear.  
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Figure 7.15 Material removed by a single wheel pass on rail with broadband roughness 
and normal force from interaction model:  material removed; — — — rail profile 
(not to scale). 
 

The maximum wear index seen in the three sleeper bays examined for this low-level 

broadband roughness case is 0.75 N/mm2. This is higher than the maximum wear index 

with a perfectly sinusoidal rail profile, but still well below the change to severe wear at a 

wear index of 10.4 N/mm2 (Table 7.1). This result again confirms that with low creep and 

low roughness levels, mild frictional abrasion is the dominant wear mechanism.  

 

Increasing the roughness levels but for the same constant 0.1% longitudinal creep results in 

an increase in the maximum wear index. For example, TSI level roughness with a freight 
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wheel and the same longitudinal creep leads to a wear index typically around 0.77 N/mm2. 

Roughness that is 10 dB higher than the TSI level leads to a wear index typically around 

1.4 N/mm2. Even with 0.3% creep and roughness 10 dB above the TSI limit curve, the 

wear index is below 3 N/mm2 and only mild wear is predicted. 

 

Clearly for purely longitudinal creep even with higher level roughness, the dominant wear 

mechanism remains mild wear even when a non-Hertzian model is used to determine the 

stress distribution and slip velocity in the contact patch. 

 

7.6.3 Wear assuming Hertzian contact 

The following results in Figure 7.16 and Figure 7.17 have been determined using the same 

variational method, model and input forces as those presented in Figure 7.14 and in 

Figure 7.15. However, to represent the contact as Hertzian, the roughness of the rail has 

been disregarded in calculating the stress distribution. At each position along the rail, the 

length of the contact patch varies depending on the variation in the normal force, but the 

rail profile is assumed to be smooth and unvarying. The Hertzian assumption of smooth 

surfaces leads to very different results in terms of the predicted material removed from the 

rail. For the rail with a 20 mm wavelength sinusoidal profile (Figure 7.16(a)), the Hertzian 

model predicts the maximum material is removed from the troughs of the initial profile, so 

the corrugation worsens under many wheel passages. However, with the non-Hertzian 

model more material is removed from the peaks than from the troughs. For the 40 mm 

wavelength case (Figure 7.16(b)) the maximum material removed predicted by the 

Hertzian model occurs near the middle of the down-slope of the peak, whereas with the 

non-Hertzian model, the maximum material is removed is, again, closer to the peak in the 

profile. When the profile wavelength increases to 80 mm there is less difference between 

the predictions from the two model types, although there is more variation in the material 

removed along the rail with the non-Hertzian model, so changes in the rail profile would 

occur more rapidly. 

 

When the roughness profile of the rail is low-level but broadband (Figure 7.17), the Hertz 

model does not allow the roughness to produce any stress concentrations throughout the 

contact, so in effect the variation in the material removed along the rail is averaged out 

throughout the length of the contact. With a Hertzian model, the rapid variations in the 

amount of material removed along the rail shown in Figure 7.15 are not present, suggesting 
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that short wavelength roughness will not be predicted to be worn away as much with a 

Hertzian model as with a non-Hertzian model. 
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Figure 7.16 Material removed by a single wheel along rail with sinusoidal profile, (a) 
20 mm wavelength, (b) 40 mm wavelength, (c) 80 mm wavelength:  material 
removed assuming Hertzian contact; · · · · · · · material removed with non-Hertzian model; 
— — — rail profile (not to scale). 
 



 

193 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
6

6.5

7

7.5

8

8.5

9

9.5

x 10
−10

Distance [m]

W
ea

r 
de

pt
h 

[m
]

 

Figure 7.17 Material removed by a single wheel along rail with broadband roughness 
assuming Hertzian contact:  material removed; — — — rail profile (not to scale). 
 

7.7 Discussion on wear rates and regimes  

In typical wheel-rail rolling contact for tangent track, the interaction force between wheel 

and rail does not reach high enough levels to move the contact into the severe wear regime. 

Mild wear only is predicted by this model for cases with low-level broadband roughness 

and small amounts of longitudinal creep. Although this model allows for the possibility of 

multiple wear mechanisms in different parts of the contact patch, in practice only mild 

wear is present and the same results could be obtained from using a single wear coefficient. 

 

The most significant finding in this chapter (confirming the conclusions of Xie and Iwnicki 

[2008a,b,c]) is the difference in the prediction of material removed along the rail if a 

Hertzian contact representation is used in place of a more comprehensive non-Hertzian 

one. The variation in the stress distribution in the contact between the two models is 

significant even when the roughness has a very low level. Roughness asperities act as 

stress concentrators. This means that more material tends to be removed from roughness 

peaks than dips. In particular, short wavelength roughness is predicted to wear away when 

a non-Hertzian model is used, but not if a Hertzian model is used. Clearly it is important to 

consider the effects of surface roughness on the contact conditions when predicting the 

development of acoustic roughness over time.  
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8 VELOCITY-DEPENDENT FRICTION MODEL 

8.1 Introduction 

In Chapters 5 and 6 the variational method used by Kalker [1990] for the determination of 

the normal and tangential stress distribution in the contact patch has been described and 

investigated. This method allows the determination of the stick and slip zones and the slip 

velocity in rolling contact between rough surfaces. This can then be used to predict the 

wear of the surfaces. The method used to calculate the wear and to consider different wear 

mechanisms has been described in Chapter 7. 

 

A limitation of the method used in the previous chapters to calculate the tangential stress 

distribution is the assumption of a constant coefficient of friction. In fact the friction 

coefficient is not constant, but depends on contact parameters such as temperature and slip 

velocity. In this chapter, a velocity-dependent friction law is introduced into the non-

Hertzian contact model. This has not been done previously. The resulting tangential stress 

distribution and slip velocity in rolling contact are examined and compared with the results 

calculated using a constant coefficient of friction.  

 

In Chapter 7 it has been seen that, although there are several different wear mechanisms 

that could contribute to the development of acoustic roughness, when a constant coefficient 

of friction is used, only mild wear is seen, despite the stress-concentrating effect of the 

roughness asperities at some locations. The effect of the velocity-dependent friction law on 

the wear index and likely wear mechanisms is also discussed in this chapter. The 

roughness growth rate function initially developed by Hempelmann and Knothe [1996] is 

used here as a means of comparing the wear predictions from the middle three sleeper bays 

of the track model for different contact models and input parameters. 

 

8.2 Background studies in force-friction relationships 

A simple description of the friction-force relationship is contained in the theory known as 

Amonton’s law of friction [see Bowden, 1974]. This theory states that under sliding the 

friction force is proportional to the normal load, and that friction between bodies is 

independent of their size. The constant of proportionality is known as the friction 

coefficient µ. The consideration of different static and dynamic friction coefficients µs and 

µd is known as Coulomb’s theory [see Bowden, 1974]. This theory explains the difference 
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in force required to start an object sliding compared with the force required to maintain 

sliding. Coulomb believed that for metal-on-metal contacts, the velocity of sliding makes 

very little difference to the dynamic friction coefficient [Kragelskii, 1965]. 

 

In more recent times, tribological research has examined the mechanisms behind friction 

and obtaining understanding of the effect of elastic deformation, plastic deformation, 

adhesion of bodies and lubrication. A large amount of work has been carried out in the 

field, both experimentally and theoretically. The work of Bowden [1974] provides a good 

introduction to the field. Kragelskii’s book ‘Friction and Wear’ [Kragelskii, 1965] 

describes in more detail the historical development of different theories and in particular 

the work carried out by Russian researchers. Martins et al. [1990] have extensively 

reviewed studies into static and dynamic friction. Most experimental work on dynamic 

friction coefficients and stick-slip mechanisms involves pure sliding rather than rolling 

contact, and measurements involve the tangential force in an overall sense rather than the 

force distributed throughout the contact, as the distributed force is extremely difficult to 

measure. 

 

For very low sliding speeds there is some evidence to suggest that the friction coefficient 

increases with increasing speed, particularly for contact between different materials. This 

has been explained by Kragelskii and others [Martins et al., 1990] as resulting from the 

deformation of interface asperities, which would require more force to deform at higher 

speeds. For hard metal pairs, however, this effect is thought to be negligible. For sliding 

speeds greater than about 10-5 m/s, the friction coefficient tends to decrease with increasing 

sliding velocity. This phenomenon is commonly attributed to thermal effects, for example 

by Kragelskii [1965].  

 

Martins et al. [1990] conclude that even so-called steady sliding is inherently unstable, and 

can lead to self-excited stick-slip oscillations of very high frequency. The apparent 

decreases in dynamic friction with increasing sliding speed may then be the result of 

increasing amplitudes of these high-frequency stick-slip motions as the sliding speed 

increases. 
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8.3 Force-friction relationships in railway contact mechanics 

In the field of railway contact mechanics, friction research has been motivated largely by a 

need to understand the adhesion limit, or the maximum tangential load that can be 

supported in the contact area in rolling before the onset of full sliding. The adhesion limit 

is of interest for the acceleration and braking of railway vehicles as it determines the 

maximum torque that can be applied to the wheel.  

 

In the absence of a detailed knowledge of the stress distribution in the contact patch, the 

relationship between longitudinal creep and overall tangential force is used to simulate 

adhesion limits for accelerating or braking vehicles. This creep-force relationship is also 

often used in vehicle motion simulations in place of a detailed model of the stress 

distribution, as it is much faster to calculate. The creep-force theory of Shen et al. [1983] 

has been used extensively for this purpose. 

 

Measurements of creep-force relationships for railway rolling applications, e.g. Zhang et 

al. [2002] and Polach [2005], demonstrate that with high creep, the capacity of the wheel-

rail contact to support tangential loads without fully slipping is reduced. As discussed 

briefly in Section 6.2, this falling creep-force relationship is attributed to variations in the 

friction coefficient. The dynamic friction coefficient is dependent on the sliding velocity 

between the surfaces – higher slip velocities result in increased temperatures in the contact 

and lower friction coefficients. For high creep, a velocity-dependent friction law causes the 

slope of the creep-force curve to become negative (see Figure 6.1). 

 

8.4 Velocity-dependent friction law 

In this work the velocity-dependent friction law to be implemented is given by  
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This is taken from Xie et al. [2006] with a static coefficient of friction µs = 0.3. To reduce 

computational effort, Xie et al. [2006] used a simplified version of this friction law in their 

work, with the same static coefficient of friction µs but replacing the friction curve with a 

linear relationship for slip velocities up to 0.38 m/s. At greater slip speeds, they applied a 

constant dynamic friction coefficient of µd = 0.181. This simplification is not made here, 

instead the relationship between velocity and friction is variable at all speeds. 
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The resulting relationship between friction coefficient and slip velocity is shown in 

Figure 8.1 for µs = 0.3. 
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Figure 8.1 Velocity-dependent friction curve from Equation (8.1). 
 

The work of Xie et al. [2006] is based on a modified version of FASTSIM to solve the 

contact problem with a velocity-dependent friction law, following the work of Giménez et 

al. [2005]. The implementation of the velocity-dependent friction law in FASTSIM 

required the elimination of a derivative term to ensure mathematical stability of the 

resulting stress distribution. In this work the variational method described by Kalker 

[1990] is applied to the contact problem and no such mathematical difficulty is 

experienced. 

 

The implementation of this velocity-dependent friction law in the variational method 

requires an iterative loop, shown in Figure 8.2. With a constant friction coefficient, the slip 

velocity does not affect the normal or tangential stress distribution. With a variable friction 

coefficient, the tangential stress distribution depends on the slip velocity and vice versa, so 

iteration is required at each location along the rail. Firstly the normal stress distribution is 

calculated as before. To begin a rolling contact analysis, the friction limit is initially set 

using the static friction coefficient. Once rolling is underway, the friction limit is 

calculated based on the slip velocity distribution at the previous time-step. The tangential 

stress distribution and slip velocity are then calculated as preliminary estimates for the 

current time-step. The friction limit throughout the contact area is then re-calculated and 

this revised friction limit is used to obtain the tangential stress and slip velocity. It has been 
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found that ten iterations of the tangential stress calculation are required at each time-step to 

ensure that the system has converged to a solution at each location along the rail. 

 

 

Figure 8.2 Iteration loop for inclusion of velocity-dependent friction coefficient. 
 

8.5 Effect of velocity-dependent friction on tangential stress and slip velocity 

The variational method requires the wheel to travel over the rail for some distance before it 

will converge to a steady-state, even if the normal force is constant and the wheel and rail 

are assumed to be perfectly smooth. Figure 8.3 shows the total tangential force Q summed 

over all the elements in the contact patch for ‘steady-state’ rolling at a speed of 30 m/s with 

an assumed constant creepage of 0.1%. This has been calculated using the two-dimensional 

rolling contact model. It is clear that with a velocity-dependent friction coefficient, the 

system does not converge to a single constant value of Q, but instead develops a high-

frequency stick-slip oscillation shown in more detail in Figure 8.4. In general, a higher 

total tangential force is transmitted in the contact in steady-state rolling if the friction 

coefficient is assumed to be constant rather than velocity-dependent. 

 

An element length of 0.1 mm has been used in the potential contact area as in Chapter 7. 

Very small elements are needed to model the high-frequency stick-slip behaviour. The 

wavelength of this stick-slip oscillation is around 1.2 mm which is much shorter than the 

length of the contact. It is also shorter than the typical wavelengths of interest for acoustic 

roughness, since variations in roughness on this scale are filtered by the contact patch and 

do not excite the wheel-rail system causing noise. However, the instability in otherwise 

steady rolling is of interest as it may also lead to variations in the roughness at longer 

wavelengths. 
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Figure 8.3 Total tangential force in the contact with 0.1% creep: — — — constant friction 
coefficient;  velocity-dependent friction coefficient. 
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Figure 8.4 Detail of stick-slip instability in otherwise steady rolling contact with a 
velocity-dependent friction coefficient. 
 

The saw-tooth shape of the variation in the total tangential force supported in the contact 

area is typical of stick-slip vibration. The constant slip zone seen in the results for steady 

rolling with a constant friction coefficient is no longer present. To visualise this, start from 

a point immediately after a peak in the slip velocity, with some of the contact area in a 

state of stick and some in a state of slip, but with the slip velocity decreasing. This 

corresponds to Position 1 in Figure 8.5. As the slip velocity decreases, the friction limit 

that defines the maximum value of tangential stress in the contact increases. Eventually the 

slip velocity becomes almost zero and the entire contact approaches a state of stick (not 

just the leading edge, which is in a state of stick throughout). The total tangential stress 
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builds up until it is relieved by a sudden slip at the trailing edge of the contact, shown in 

Position 6 in Figure 8.5. 
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Figure 8.5 Effect of velocity-dependent friction coefficient on slip velocity in the contact 
patch, shown at six locations along the rail 0.2 mm apart. 
 

Figure 8.6 shows the resulting range of variation in the tangential stress distribution 

throughout the contact area. Moving through positions 1 to 5, the slip zone at the trailing 

edge shrinks steadily as the slip velocity decreases and the friction limit increases. The slip 

phase is initiated when the slip zone is vanishing, as at this position the friction limit is at 

its maximum and the total tangential stress can build up to its maximum before being 

relieved. The tangential stress is then at its minimum in Position 6, as, at this position, the 

stress has been relieved by the sudden slip at the trailing edge of the rolling contact. The 

slip zone is longest at this position. 

 

It can be seen in Figure 8.6 that including a velocity-dependent friction coefficient results 

in a periodically jagged variation in the tangential stress in the stick zone of the contact. 

The reason for this variation is not known. It does not appear to be directly related to the 

size of the elements used or the distance rolled in each time-step, as it repeats regularly 

along the length of the stick zone with a period of 1.1 mm. Figure 8.6 shows the stress 

distribution at successive locations 0.2 mm apart, and the peaks are 0.2 mm apart, 



 

201 

suggesting the locations of higher stresses in the stick zone are stationary as the wheel rolls 

along. It is possible that the tangential stress in the stick zone does not fall smoothly to zero 

at the leading edge of the contact. However, in the stick zone, the slip velocity is zero so 

the friction coefficient should be constant in those elements, within the numerical tolerance 

of the results. Another possibility is that the stick-slip oscillation in the trailing edge of the 

contact could be affecting the stress distribution in the leading stick zone in some way. In 

any case, for this work, the stress distribution in the stick zone is not of interest as it does 

not affect the wear of the rail. Therefore the reason for the periodically jagged variation in 

the tangential stress in the stick zone seen in Figure 8.6 remains an open question*. 
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Figure 8.6 Effect of velocity-dependent friction coefficient on tangential stress in the 
contact patch, shown at six locations along the rail, 0.2mm apart. 
 

Figure 8.7 and Figure 8.8 compare the slip velocity and tangential stress distribution in the 

contact patch from a velocity-dependent friction model with a constant friction model. The 

inclusion of a velocity-dependent friction coefficient results in lower slip velocities at most 

locations along the rail, when the stick-slip mechanism is sticking more than slipping. At 

locations where slip occurs suddenly, the slip velocity is much higher and a greater 

                                                 
* N.B. An apparently similar effect is discussed by E.A.H. Vollebregt in his paper: Refinement of Kalker's 

rolling contact model. In  Proceedings of the 8th International Conference on Contact Mechanics and Wear 

in Rail/Wheel Systems, pages 149-156, 2009. 
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proportion of the contact zone slips than is the case if a constant friction coefficient is used. 

The tangential stress (Figure 8.8) is generally lower in the slip zone of the contact area if a 

velocity-dependent friction coefficient is used. 
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Figure 8.7 Slip velocity in the contact patch:  steady-state with a constant friction 
coefficient; — — — range of results with a velocity-dependent friction coefficient. 
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Figure 8.8 Tangential stress in the contact patch:  steady-state with a constant 
friction coefficient; — — — range of results with a velocity-dependent friction coefficient. 
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8.6 Effect on creep-force relationship for increasing longitudinal creep 

The stick-slip oscillation arising in otherwise steady rolling contact means that the overall 

tangential force in the contact is not necessarily a smooth function of the overall creep. 

Instead, the total tangential force has a range of possible values for a particular level of 

creep. The analysis of Section 8.5 has been repeated for a series of creep values from 0.1% 

up to 0.5%, which is expected to cover the peak in the creep-force relationship with a 

falling friction coefficient. The rolling velocity is again 30 m/s. Figure 8.9 shows the mean 

total tangential force transmitted by the contact, as well as the maximum and minimum 

values calculated from 50 mm (or 500 calculation points) of ‘steady-state’ rolling.  

 

Note that when the creep is low, ten iterations of the velocity-dependent tangential stress 

calculation loop is sufficient to reach convergence and the resulting stick-slip oscillation in 

otherwise steady rolling contact might be described as a ‘stable’ instability, as it repeats 

predictably along the rail with a reasonably steady saw-tooth shape. However, as the 

longitudinal creep increases, the stick-slip oscillation becomes more unstable. This is 

reflected in the increasing variation in the range of values of total tangential force 

calculated for the different creep values and shown in Figure 8.9. Although the calculation 

can be performed for these higher creep levels, it is difficult to assess how realistically the 

results resemble the real behaviour in the time domain of such an unstable system. Despite 

this, the average creep-force relationship shown in Figure 8.9 seems to be realistic and to 

match the expected shape for tractive rolling contact with velocity-dependent friction. The 

minimum velocity-dependent creep-force relationship converges to the creep-force line 

corresponding to the velocity-dependent friction law (as shown in Figure 8.1) at the rolling 

speed of 30 m/s. 

 

The mean tangential force shows an optimum or maximum adhesion at a creep of around 

0.25%, although for higher values of creep the range of values calculated is quite large. In 

general, for increasing creep values less than 0.25%, the creep-force relationship increases 

steadily, albeit with regular oscillations as a result of the stick-slip mechanism. The part of 

the contact at the leading edge remains in a state of stick at all times. For higher creep 

values the overall force transmitted by the contact is much more unstable, with some 

periods of full slip predicted in the contact. Compared with a model with a constant friction 

coefficient, the optimum adhesion with velocity-dependent friction occurs on average at a 
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much lower creep value, and the average total tangential stress transmitted is around 60% 

of the optimum adhesion for constant friction.  

 

For the low value of creep of 0.1% often assumed in roughness growth prediction 

calculations, there is very little difference in the creep-force relationship between the 

model with a constant friction coefficient and that with a velocity-dependent friction 

coefficient. This confirms that the simple model is adequate for vehicle motion simulation 

in cases with low creep, where the total tangential force is of interest, rather than its 

distribution throughout the contact patch. However, for predictions of wear, the 

distribution of tangential stress and slip velocity are crucial. It has been shown here that the 

stress distribution and slip velocity are significantly modified by the inclusion of a 

velocity-dependent falling friction coefficient, even for low creep. 
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Figure 8.9 Creep-force relationship: · · · · · · · constant friction;  average with 
velocity-dependent friction; — — — maximum and minimum with velocity-dependent 
friction; – · – · – · from Equation (8.1) for speed 30 m/s and 100 kN normal load.  
 

8.7 Effect of velocity-dependent friction on wear prediction 

The inclusion of velocity-dependent friction clearly affects the tangential stress distribution 

and the slip velocity in the contact patch. It is therefore likely that the pattern of wear of 

the system will also be different with velocity-dependent friction. For the otherwise steady-
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state rolling cases examined so far, the variable friction model has resulted in short-

wavelength effects, which are not necessarily important for roughness growth at acoustic 

wavelengths. In transient rolling with rough surfaces differences may arise in the wear 

prediction from constant and velocity-dependent friction models.  

 

Rail roughness profile information is normally available at 1 mm intervals, and the 

interaction force model returns data at 1 mm intervals. These results are interpolated before 

applying the rolling contact model with an element size of 0.1 mm (see Section 6.7.1 for 

discussion on the element size required). The material removed along the rail can therefore 

be examined using results from every 0.1 mm along the rail or alternatively with results at 

1 mm spacings. If the friction coefficient is constant, there is very little difference between 

these results, but with a velocity-dependent friction coefficient, short wavelength effects 

are very noticeable. Examples are shown in Figure 8.10 for the material removed from a 

corrugated rail and in Figure 8.11 for the material removed from a rail with low-level 

broadband roughness. The rapid variation in the amount of material removed is caused by 

the stick-slip oscillation in the contact patch. Although it is interesting theoretically to 

model this instability in a partially slipping contact, the very short wavelength variation is 

outside the range of interest for acoustic broadband roughness growth. The rail profiles 

used in this work do not include any information on roughness variation at these short 

wavelengths. Therefore results in subsequent figures show the wear depth sampled at 

1 mm intervals only. 
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Figure 8.10 Material removed by a single wheel along corrugated rail. Velocity dependent 
friction model:  results sampled at 1 mm intervals to match initial roughness data; 
— — — raw results at 0.1 mm spacing. 
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Figure 8.11 Material removed by a single wheel along rail with broadband roughness. 
Velocity dependent friction model:  results at 1 mm intervals to match initial 
roughness data; — — — raw results at 0.1 mm spacing. 
 

8.7.1 Wear of initially rough rail with various contact models 

The pattern of material removed from a corrugated rail was examined in Section 7.6 using 

the non-Hertzian model with constant friction, compared with the material removed if 

Hertzian contact is assumed. Figure 8.12 shows the same results along with those from the 

velocity-dependent friction model. The wear depth with velocity-dependent friction is less 

than that with the other models since the overall tangential force in the contact patch at 

each location is less. The wear depth is no longer smooth and sinusoidal, although the 

overall shape of the curve over one wavelength of the sinusoidal rail profile is similar for 

the constant and velocity-dependent friction models.  

 

An example wear pattern for a system with broadband roughness is shown in Figure 8.13. 

Here the results from the constant friction model and the velocity-dependent friction model 

are again similar although the amount of material removed in an overall sense is less with 

the velocity-dependent friction law. The pattern of material removed remains dominated by 

the initial roughness profile, as was seen in Figure 7.15 where the peaks in the wear depth 

correspond to the asperities in the initial roughness. To examine the differences between 

the two models more quantitatively across the whole three sleeper bays included in the 

analysis, the results need to be examined in the frequency (or wavelength) domain in terms 

of roughness growth rate spectra.  
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Figure 8.12 Material removed by a single wheel along rail with a sinusoidal profile: 
 non-Hertzian model with velocity dependent friction; — — — non-Hertzian model 
constant friction; · · · · · · · Hertzian model. 
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Figure 8.13 Material removed by a single wheel along rail with broadband roughness: 
 non-Hertzian model with velocity dependent friction; — — — non-Hertzian model 
constant friction; · · · · · · · Hertzian model. 
 

8.8 Rail roughness growth rates 

It is difficult to draw any general conclusions about the development of acoustic roughness 

from the spatial history of wear along the rail for different contact models. In order to 

examine the effect of the contact model (and also the vehicle type and track parameters) on 

roughness development, it is of interest to present the results in the form of a roughness 

growth rate spectrum (strictly a transfer function rather than a spectrum). This roughness 
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growth rate can be compared with the dynamic interaction force spectrum (described in 

Chapter 4) and also the spectrum of the initial roughness profile. 

 

In the remainder of this work and, in particular, in the case studies presented in the 

following chapter, roughness growth results are presented as a global rate. This rate is 

independent of the number of wheel passages and the initial roughness level. The concept 

of a ‘global growth rate’ is described by Hempelmann and Knothe [1996]. It allows the 

comparison of results for roughness or corrugation predictions that are calculated for 

different input parameters and different reference states. A global growth rate is a single 

transfer function providing a mean value for the prediction in each one-third octave 

wavelength band for the full length of track included in the investigation, in this case, three 

sleeper bays. The global growth rate ψ is calculated from the initial roughness amplitude 

A0 and the final roughness amplitude An in each wavelength band k after n wheel passages 

as [Hempelmann & Knothe,1996]: 














=

0,

,ln
1

k

nk
k A

A

n
ψ  (8.2) 

If the roughness level in a particular wavelength band has increased after the passage of a 

wheel or wheels, the roughness growth rate is positive in that wavelength band. A negative 

roughness growth rate in a wavelength band indicates that the roughness level tends to 

decrease in that wavelength band.  

 

The roughness growth rate concept can be used to compare different contact models by 

carrying out the calculation for each model type using the same input parameters. 

Figure 8.14 is an example of the roughness growth rate calculated using three different 

contact models for the same inputs, in this case a single freight wheel rolling over a track 

with low-level broadband roughness.  

 

If a Hertzian contact model is used, as shown in Figure 8.14, the roughness growth rate is 

slightly negative or around zero for wavelengths longer than 40 mm. The maximum 

roughness growth rate occurs in the one-third octave wavelength bands centred around 20 

to 25 mm. For a freight train at 29.44 m/s, this wavelength range includes the pinned-

pinned resonance at 1050 Hz. So if Hertzian contact is assumed in this case, roughness is 

predicted to grow at wavelengths around that corresponding to the pinned-pinned 

resonance.  
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However, if a non-Hertzian contact model is used, the roughness growth rate is negative 

throughout the whole wavelength range. Short wavelength roughness is predicted to 

decrease dramatically. The roughness growth rate function with a constant friction 

coefficient is relatively smooth. The roughness growth rate function with a velocity-

dependent friction model is highly variable and suggests roughness may grow slightly in 

the 32 mm and 125 mm wavelength bands in this example, but will otherwise decrease. 
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Figure 8.14 Example roughness growth rate for a single freight wheel on a track with low-
level broadband roughness:  non-Hertzian model with velocity dependent friction; 
— — — non-Hertzian model constant friction; · · · · · · · Hertzian model. 
 

The initial roughness profile affects the stress distribution significantly when a non-

Hertzian contact model is used; therefore general conclusions cannot be drawn from a 

single case viewed in isolation such as shown in Figure 8.14. Figure 8.15 shows the 

roughness spectra and corresponding dynamic interaction force spectra for five different 

initial roughness profiles of similar spectral level. The roughness profiles have been 

generated over the full length of the track included in the interaction force model. 

However, the wear is only calculated along a 1.8 m length, or three sleeper bays. 

Therefore, the roughness, force and roughness growth rate spectra shown calculated over 

these three sleeper bays display higher variability at longer wavelengths, as there is less 

information on the long-wavelength behaviour held in a short sample length. 
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Figure 8.15 (a) Initial roughness spectra and (b) dynamic normal interaction force over 
middle three sleeper bays for five different initial rail profiles corresponding to the results 
shown in Figure 8.16. · · · · · · · TSI limit spectrum. 
 

Figure 8.16 presents the resulting roughness growth rates calculated using the two non-

Hertzian contact models for these five different initial roughness profiles. Figure 8.16(a) 

suggests that if a constant friction model is used, similar roughness growth rates are 

obtained from different initial roughness profiles across most of the wavelength range. At 

longer wavelengths there is more variation in the roughness growth rate results than at 

short wavelengths, reflecting the fact that the initial roughness spectra and dynamic 

interaction force spectra (Figure 8.15(a) and (b)) also display more variation at longer 

wavelengths.  
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Figure 8.16(b), calculated using velocity-dependent friction, shows much more variability 

across the whole wavelength range in the roughness growth rate results for the different 

initial roughness profiles. In general, roughness levels at wavelengths shorter than around 

25 mm are predicted to decrease rapidly with the non-Hertzian, velocity-dependent friction 

model. Longer wavelength roughness may grow slightly in some cases at some 

wavelengths, or decrease slightly, or remain relatively steady at around zero on the 

roughness growth rate spectrum.  
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Figure 8.16 Roughness growth rates for a single freight wheel on track with five different 
initial low-level broadband roughness profiles of similar spectral level. (a) Constant 
friction model; (b) velocity dependent friction model. 
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8.9 Wear index and mechanisms with velocity-dependent friction 

The maximum wear index seen over the three sleeper bays with low-level broadband 

roughness and a constant friction model was 0.75 N/mm2 (see Section 7.6.2), well below 

the transition from mild to severe wear. The corresponding results with the same inputs but 

with velocity-dependent friction lead to a much higher maximum wear index of 4.9 N/mm2 

(still in the mild range). Higher initial roughness levels lead to higher wear indices. A test 

case calculated with 0.1% longitudinal creep, roughness 10 dB above the TSI limit and 

velocity-dependent friction gives a maximum wear index of 9.6 N/mm2 which is 

approaching the transition to severe wear at a wear index of 10.4 N/mm2.  

 

Due to the stick-slip instability of the system with velocity-dependent friction at high creep 

levels, no effort is made here to predict the wear index in cases with higher roughness 

levels and high longitudinal creep. However it is likely that, with combined roughness 

levels (including both the wheel and rail roughness) more than 10 dB above the TSI limit, 

at some locations, the wear regime is likely to be in the severe range. In this range the wear 

mechanism is not purely frictional wear and may include plastic deformation or ratcheting 

effects. An example of the normal stress distribution at one location along a rail with this 

roughness level was presented in Figure 6.20, and the peak normal stress of 1700 MPa 

indicates that some plastic deformation is likely.  

 

When the combined roughness of the wheel-rail system is low, even with a velocity-

dependent friction model, the wear of the system is attributed solely to mild frictional 

wear. If a constant friction model is used to predict the wear of the system, only mild 

frictional wear is predicted even for higher roughness levels. When velocity-dependent 

friction is included in the model, higher roughness levels and higher creep are likely to 

result in more severe wear rates at some locations. The combined wheel and rail roughness 

level that might cause this transition to severe wear is a realistic level around 10 dB above 

the TSI limit, which is present on many tracks in service. For example the roughest rails 

recorded by Verheijen [2006] are at least 20 dB above the TSI limit at some wavelengths, 

as are some of the roughest wheels.  

 

8.10 Discussion  

It has already been seen in Chapter 7 that the type of contact model used can have a 

significant effect on the prediction of the development of rail-head acoustic roughness. 
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Hertzian and non-Hertzian contact models give very different results. Other authors 

studying non-Hertzian contact have reported similar findings, in particular, the recent 

efforts by Jin et al. [2006] and Xie and Iwnicki [2008a,b,c].  

 

From this chapter, it is clear that the friction law used in a non-Hertzian contact model can 

also affect the prediction of the development of roughness. In the examples shown in 

Figure 8.16, assuming constant friction throughout the contact leads to the prediction that 

low level roughness consistently does not grow in any wavelength band, and that rails 

therefore become smoother with the passing of many wheels. However, when a velocity-

dependent friction law is included in the model, the roughness growth rate is more 

variable. It is positive in some instances in some wavelength bands, mostly at longer 

wavelengths. Roughness wavelengths shorter than around 25 mm are predicted to decrease 

in roughness in the examples shown here. 

 

The roughness growth rate function allows the comparison of results with different input 

parameters. In the next chapter, a series of case studies are presented to examine the 

development of acoustic roughness for different input parameters, including different track 

components, vehicle types and mixed traffic. 
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9 APPLICATIONS AND CASE STUDIES 

9.1 Introduction 

In this chapter, the model described in the preceding chapters is applied to a series of case 

studies to examine the development of rail-head acoustic roughness. Results are presented 

in the form of roughness growth rate functions. This allows comparison between the 

different contact model theories, as well as different vehicle and track scenarios. 

Roughness growth rates are presented for freight, regional and high-speed vehicle types on 

tracks with soft and stiff rail pads. 

 

When using this model, the material removed from the wheel-rail interface can be 

calculated for a particular vehicle type on a particular track with a particular roughness 

profile. The model does not directly consider the effects of mixed traffic on the roughness 

development. However, if the approximate proportion of each vehicle type is known, a 

mixed traffic roughness growth rate can be derived from the results for each individual 

vehicle type. Roughness growth rate results calculated over three sleeper bays for various 

different initial rail profiles can be averaged to get an improved approximation of predicted 

roughness development over longer sections of track. For conciseness, where roughness 

growth rates are presented in this chapter as averages over five different initial roughness 

profiles, the individual results are included in Appendix B. Table B.1 lists all the roughness 

growth rate cases considered. 

 

The cases studied here examine the roughness development predicted by different contact 

theories and friction laws. The three contact theories considered are Hertzian contact, non-

Hertzian contact with a constant friction coefficient and non-Hertzian contact with a 

velocity-dependent friction law. Of these three, Hertzian theory has historically been most 

widely used to model rail wear (including for the purpose of predicting the development of 

corrugation). However, for broadband roughness development, including the stress-

concentrating effects of surface roughness in a non-Hertzian wear model is essential. 

Finally the effect of including velocity-dependent friction in a non-Hertzian contact model 

is examined and the findings compared with those from the other contact theories. This 

contact theory has not been used previously to predict wheel or rail roughness 

development.  
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For most of the cases examined here, a constant longitudinal creep of 0.1% is assumed. 

Some examples are also presented examining the roughness growth rate for accelerating or 

braking wheels with constant torque, using the non-Hertzian model with constant friction 

coefficient.  

 

Rail dampers affect the wheel-rail interaction force spectrum, as shown in Chapter 4. 

Previous work by Croft et al. [2009] using a Hertzian contact model has also predicted that 

the rail dampers lead to reduced roughness development at wavelengths around the pinned-

pinned resonance. Here the non-Hertzian model with velocity-dependent friction is used to 

examine the effect of rail dampers on the roughness growth rate.  

 

Finally, some measured roughness spectra from the Silence project test site near 

Gersthofen are presented. These measurements have been repeated over several years by 

Deutsche Bahn AG on track with two different rail pad stiffnesses, with and without rail 

dampers installed. It is not possible to compare directly the predicted and measured results, 

as the amount of material removed from the rails at the site cannot be measured. 

Nevertheless some comparisons between the model and measurements can be made. 

 

Throughout this chapter, ‘soft’ rail pads have a stiffness of 200 MN/m, while ‘stiff’ rail 

pads have a stiffness of 800 MN/m. The model parameters, as listed in Table 3.3 for the 

track and in Table 4.1 for the vehicle, have been chosen to match as closely as possible the 

track and traffic at the Gersthofen site. 

 

9.2 Roughness growth rates with a Hertzian contact model 

Results for the Hertzian contact model have been calculated using the variational method, 

but neglecting the roughness of the rail in the contact model used for the wear calculation. 

This means that the normal force calculated by the interaction force model is the only 

varying input to the contact and wear model. The friction coefficient is constant, µ = 0.3. 

 

The importance of including more than one wheel in the interaction force model has been 

examined in Section 4.4.7. If the rail pads are soft, the track decay rate is low across part of 

the frequency range of interest. Successive wheels are coupled via the rail, leading to a 

different force spectrum for a single wheel model when compared with the results from the 

four wheels of the multiple-wheel model. This effect is less significant if the rail pads are 
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stiff. However, when calculating the interaction force for track with soft rail pads it is 

important to include more than one wheel in the model of the vehicle. 

 

The calculation times for the wear module of the model are very long. Using a 2.2 GHz 

processor, a calculation time of up to 20 hours is required for each case with a single wheel 

if the friction coefficient is assumed to be constant. To calculate a set of results for two 

track types, three vehicle types and five different initial roughness profiles requires around 

600 hours of CPU time. Using a four-wheel vehicle model quadruples this calculation 

time. It is therefore of interest to check the validity of a single wheel model compared with 

a multiple wheel model in terms of the wear calculation. Results are presented here firstly 

from a single wheel model for both rail pad stiffnesses, then from a four-wheel model for 

the soft rail pad case.  

 

9.2.1 Single wheel vehicle model results 

Figure 9.1 shows the roughness growth rates calculated for each vehicle and track type 

using a single wheel vehicle model if Hertzian contact is assumed. These are the average 

roughness growth rates calculated over five different initial roughness profiles. Results for 

the individual roughness profiles are included in Appendix B.  

 

Figure 9.1(a) shows results for track with soft rail pads. The roughness growth rate for all 

three vehicle types is positive in the 40 mm one-third octave wavelength band and for 

shorter wavelengths. For longer wavelengths, the roughness growth rate is around zero or 

very slightly negative. This implies that short wavelength roughness will increase over 

time, while wavelengths longer than 40 mm will remain stable or decrease slightly. 

Roughness is predicted to grow fastest for the freight and regional vehicle types at 

wavelengths of around 20 to 25 mm. For the high-speed train, roughness is predicted to 

grow fastest in the 20 to 31.5 mm wavelength bands.  

 

The roughness growth rates for track with stiff rail pads (Figure 9.1(b)) show a similar 

trend with high roughness growth predicted for wavelengths shorter than 40 mm. Again, 

roughness levels at wavelengths longer than 40 mm are not predicted to grow or decrease 

significantly, although the freight and regional trains have a slightly positive roughness 

growth rate in the wavelength range from 40 mm to 80 mm that is not seen in the results 

with soft rail pads. There are other small differences in the results for each vehicle type, 
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with the high-speed vehicle showing high roughness growth rates at slightly longer 

wavelengths than the regional and freight vehicle types, but then negative roughness 

growth in the 40 to 80 mm wavelength bands.  
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Figure 9.1 Average roughness growth rate from a single wheel model, Hertzian contact: 
(a) soft rail pads; (b) stiff rail pads.  freight; — — — regional; · · · · · · · high-speed. 
Lines 1,2,3 correspond to pinned-pinned resonance for freight, regional and high-speed 
trains respectively. 
 

Effects at various wavelengths are expected as the result of the different speeds of the 

vehicles. However all the vehicle types show a drop in roughness growth rates for 

wavelengths shorter than around 12 mm. If the wavelengths of high roughness growth 

were purely determined by the pinned-pinned resonance and the speed of the vehicle, then 

they would appear in the 25 mm wavelength band for the freight vehicle, in the 31.5 to 

40 mm bands for the regional vehicle and in the 40 mm band for the high-speed vehicle, 

shown by vertical lines in Figure 9.1(b). These results are not so clearly staggered by 

wavelength. In fact, negative roughness growth is predicted for the high-speed train type 
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on stiff rail pads in the wavelength band corresponding to the pinned-pinned resonance. 

These results suggest that a constant-wavelength mechanism for roughness or corrugation 

growth may be present as well as the constant-frequency mechanism associated with the 

pinned-pinned resonance of the track. Other authors have concluded (also using Hertzian 

contact models) that constant wavelength effects are important for corrugation growth, 

including J.B. Nielsen [1999], Hoffmann and Misol [2007], Ciavarella and Barber [2008], 

Afferante and Ciavarella [2009] and Knothe and Groß-Thebing [2008]. 

 

9.2.2 Four-wheel model results for soft rail pads and Hertzian contact 

The average roughness growth rates over five roughness profiles obtained from a model 

with four wheels are presented in Figure 9.2 along with the single-wheel model results. 

The differences between the two sets of results occur in the wavelength bands between 

16 mm and 63 mm, including the wavelengths at which roughness is predicted to grow 

significantly. This is the same range in which a difference is apparent in the force spectrum 

with a multiple-wheel model compared with a single-wheel model (see Section 4.4.7). The 

results for the freight train, Figure 9.2(a), show two peaks in the roughness growth rate 

function at 25 mm and at 40 mm whereas the single-wheel result has just one smoother 

peak, spread between the 20 mm and 25 mm wavelength bands. The differences in the 

results for the other vehicle types have less effect on the shape of the results in that no new 

peaks or dips are introduced by the inclusion of the extra wheels. This may be explained by 

the difference in the wheel spacing on a bogie (Table 4.1). The freight wheels are closer 

together, 1.8 m apart in a bogie compared with 2.5 m for the regional and high-speed 

trains, and therefore including more wheels in the freight case has more effect on the 

results than for the other vehicle types.  

 

Despite the differences, the same observations can be made about the four-wheel model 

results as have been made for the single-wheel model roughness growth rates. The 

wavelengths of roughness growth or removal are more or less unaffected by the number of 

wheels included in the model.  
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Figure 9.2 Average roughness growth rate, Hertzian contact: (a) freight vehicle; (b) 
regional vehicle; (c) high-speed vehicle.  single wheel; — — — four wheels. 
 

9.3 Roughness growth rates with non-Hertzian contact and constant friction 

Roughness growth rates are now presented that have been calculated using the non-

Hertzian contact model. These use the same initial rail profiles and interaction force 

histories as the Hertzian cases, but include the rail profile in the determination of the 

normal and tangential stress distribution as the wheel rolls along the rail. The friction 

coefficient remains constant, µ = 0.3. It has been seen in Section 9.2 that similar roughness 

growth rates are obtained from a model with a single wheel and a model with four wheels 

in the Hertzian contact case. The same test is repeated here for the non-Hertzian contact 

case. 
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9.3.1 Roughness growth rates with non-Hertzian contact and a single wheel 

Figure 9.3 shows the average roughness growth rates for the individual vehicle types for 

track with soft rail pads and stiff rail pads in Figure 9.3(a) and (b) respectively. Again the 

roughness growth rates for each different initial rail profile before averaging are included 

in Appendix B. The most noticeable difference between these non-Hertzian results and the 

Hertzian results in Figure 9.1 is that when the roughness of the surfaces is taken into 

account, the roughness growth rate is negative across the entire wavelength range for both 

soft and stiff rail pads. There is some variation between the results for different vehicle 

types, mostly in the 31.5 mm one-third octave wavelength band.  
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Figure 9.3 Average roughness growth rate for a single wheel, non-Hertzian contact with 
constant friction: (a) soft rail pads; (b) stiff rail pads.  freight; — — — regional; 
· · · · · · · high-speed. 
 

In general, long wavelength roughness is predicted to decrease slightly, while roughness 

wavelengths shorter than 25 mm are predicted to decrease more rapidly. This finding 

agrees with the work of Jin et al. [2005, 2006] who conclude using a non-Hertzian model 
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that corrugation will decrease over time. Similarly Xie and Iwnicki [2008a,b,c] predict that 

both roughness and corrugation will decrease under many wheel passages. 

 

9.3.2 Non-Hertzian contact with multiple wheels 

The average roughness growth rates from the four-wheel vehicle running over five 

different initial roughness profiles are presented in Figure 9.4 for each vehicle type on 

track with soft rail pads. These demonstrate the effect that including multiple vehicle 

wheels has on the roughness growth rates, and allow an assessment of the importance of 

including multiple wheels in the wear model. 
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Figure 9.4 Average roughness growth rate, non-Hertzian contact with constant friction: 
(a) freight vehicle; (b) regional vehicle; (c) high-speed vehicle.  single wheel; 
 — — — four wheels. 
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Including four wheels leads to a variation in the roughness growth rates in the wavelength 

bands from 16 mm to 63 mm; the same range for which variation is seen with the Hertzian 

model. For the freight vehicle type, shown in Figure 9.4(a), the results calculated with a 

four-wheel model show peaks in the 25 mm and 40 mm one-third octave wavelength 

bands. The roughness growth rate function is otherwise smooth. For the other vehicle types 

the differences are less marked, because the wheels are spaced further apart. 

 

Despite these observations, including more than one wheel in the vehicle model does not 

affect the overall trend of the roughness growth rate function. For each vehicle type 

examined with this contact model, roughness is not predicted to grow at any wavelength; 

instead the model suggests roughness should decrease over time, especially at short 

wavelengths.  

 

Given the finding that the inclusion of multiple wheels does not significantly affect the 

roughness growth rate, remaining results in this chapter are presented for a single-wheel 

model only. 

 

9.3.3 Constant creep versus constant tangential stress 

In the results presented so far, a constant low value of longitudinal creep of 0.1% has been 

assumed. The sign of the creep (positive or negative) makes no difference to the calculated 

roughness development. This is intended to represent wheels that are not accelerating or 

braking, in normal operation on tangent track. The model can also be used to simulate a 

powered (or braked) wheel by applying a constant overall tangential force to the contact 

area rather than assuming constant creepage. This section presents roughness growth rates 

calculated from an initial assumption of constant torque applied to a wheelset, rather than 

constant longitudinal creep. The objective is to examine cases where powered wheels are 

providing tractive effort leading to higher tangential loads in the contact area than those 

seen without acceleration or braking forces, but still below the adhesion limit so that full 

slip does not occur. 

 

If a velocity-dependent friction coefficient is used, enforcing a constant tangential force 

constraint on the solution to the minimization problem removes the stick-slip oscillation 

effects seen with this contact model. The results obtained are then the same as those 
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calculated without the falling friction coefficient. Therefore this analysis is carried out only 

for the non-Hertzian model with constant friction coefficient. 

 

In the first example, shown in Figure 9.5 for a single initial roughness profile, the constant 

tangential force applied as the constraint in the minimisation problem has been chosen to 

correspond approximately with the constant creep value of 0.1%. The total tangential force 

corresponding to this creepage is around 10.5 kN for the freight vehicle and around 7.8 kN 

for the regional and high-speed vehicle types modelled. With a wheel radius of 0.46 m in 

each case, the resulting torque for the freight train is taken to be 9660 Nm per wheelset and 

7176 Nm per wheelset for the regional and high-speed trains. As the level of tangential 

loading is approximately the same in each case, differences in the roughness growth rates 

between Figure 9.5(a) and (b) are due to the different assumptions of either constant creep 

or constant tangential force. 
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Figure 9.5 Roughness growth rate for a single wheel on low-level broadband roughness, 
non-Hertzian contact, constant friction: (a) constant creep 0.1%; (b) constant tangential 
stress for similar creep.  freight; — — — regional; · · · · · · · high-speed. 
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The roughness growth rates shown in Figure 9.5(b) indicate that very short wavelength 

roughness will be reduced even more rapidly by powered wheels than by the non-powered 

and un-braked wheels. Roughness wavelengths shorter than 125 mm all display negative 

growth rates when the constraint is applied as a constant tangential force. Wavelengths 

longer than 125 mm have roughness growth rates around zero or above, with some positive 

growth possible. 

 

The freight train exhibits the lowest roughness growth rate (or highest roughness reduction 

rate) of the three vehicle types examined with a powered or braked wheel. Results for the 

other vehicle types are similar to each other. This difference is due to the higher tangential 

load limit set as the constraint for the freight case, which has a higher friction limit because 

the normal static load is higher.  

 

These tangential loads are well below the friction limit obtained by multiplying the friction 

coefficient of 0.3 by the normal static load, i.e. 100 kN for the freight vehicle and 60 kN 

for the other vehicle types. Figure 9.6 shows the effect of the magnitude of the tangential 

load on the roughness growth rates for a single freight wheel. The tangential load 

constraint is applied in the form of constant creep in Figure 9.6(a) and as constant 

torque/tangential force in Figure 9.6(b). The two sets of results are approximately 

equivalent in terms of creep (Figure 8.9 shows the creep-force relationship for the freight 

case with constant friction coefficient of 0.3). 

 

The highest tangential load applied, 20 kN, corresponds to a torque of 18400 Nm per 

wheelset, a creep of about 0.22%, and is two-thirds of the friction limit. In general, 

increasing the tangential force in the contact in this model increases the rate at which 

roughness is predicted to be worn away. If the tangential load is applied in the form of a 

constant creep, this occurs across the full wavelength range (Figure 9.6(a)). However, if 

the tangential load is applied as a constant force (simulating braking or accelerating, 

Figure 9.6(b)), then increasing the tangential load increases the rate at which roughness 

wavelengths shorter than 0.125 m are worn away. Longer wavelength roughness is not 

greatly affected by the tangential load when it is applied as a constant force rather than as a 

constant creep. 
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Figure 9.6 Roughness growth rate for a single freight wheel on low-level broadband 
roughness, non-Hertzian contact with constant friction: (a) constant creep  0.05%; 
— — — 0.1%; · · · · · · · 0.22%; (b) constant tangential force  5.25 kN; — — — 
10.5 kN; · · · · · · · 20 kN. 
 

9.4 Roughness growth rates with velocity-dependent friction 

Including a velocity-dependent friction coefficient in the non-Hertzian contact and wear 

model leads to more variation in the roughness growth rates predicted across the 

wavelength range for a particular initial rail profile. An example of this has been shown in 

Figure 8.16. There it was seen that there is much more variation possible in the roughness 

growth rate if the friction coefficient is velocity-dependent than if the friction is constant. 

With a constant friction coefficient the roughness growth rates are all negative in the one-

third octave wavelength bands shorter than 250 mm, but with a velocity-dependent friction 

coefficient some positive roughness growth rates are seen in some cases (see Figure 8.16). 

However, although there is variation in the results for different initial rail profiles (see 

Appendix B), the average roughness growth rates over five initial roughness profiles 

presented here are relatively smooth across the wavelength range. 
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The roughness growth rates calculated using the non-Hertzian contact model with velocity-

dependent friction are shown in Figure 9.7(a) and (b) for soft and stiff rail pads 

respectively for the different vehicle types. A single-wheel vehicle model only is 

considered, as up to 60 hours is required for each wheel analysis for every case when a 

velocity-dependent friction coefficient is used. The overall pattern of the average 

roughness growth rates is similar to that when a constant friction coefficient is used. 

Roughness is predicted to remain stable or decrease slightly at wavelengths longer than 

25 mm. Roughness levels are predicted to decrease significantly at wavelengths shorter 

than 25 mm. Some differences are evident in the results for the different vehicle types, 

similar to the differences seen in the roughness growth rates calculated using the non-

Hertzian contact model but with a constant friction coefficient (Figure 9.3). 
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Figure 9.7 Average roughness growth rate for a single wheel, non-Hertzian contact with 
velocity-dependent friction: (a) soft rail pads; (b) stiff rail pads.  freight; — — —
regional; · · · · · · · high-speed. 
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9.4.1 Magnitude of initial roughness profile 

The roughness growth rate is intended to give results that are independent of the initial 

roughness spectrum to allow the comparison of results between different vehicle and track 

types. To confirm that it is not dependent on the initial roughness level, example roughness 

profiles have been generated according to target spectra with three different levels. 

Figure 9.8 shows the three roughness spectra and the resulting interaction force between a 

freight wheel and rail with soft rail pads over three sleeper bays. The low level roughness 

is similar to the rail roughness at the Gersthofen test site, and has been used throughout this 

work. A second profile has been generated to have a similar level to the TSI spectrum, and 

finally the third roughness profile has a level approximately 10 dB higher than the TSI 

spectrum. The TSI spectrum is also shown as a reference in Figure 9.8(a). 
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Figure 9.8 (a) Initial roughness spectrum over three sleeper bays and (b) wheel-rail 
interaction force for freight vehicle:  low roughness level; — — — similar to TSI 
roughness; · · · · · · · similar to TSI roughness plus 10 dB; – · – · – · TSI roughness limit as 
reference.  
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In Figure 9.8(b) the dynamic interaction force spectra reflect the differences in magnitude 

seen in the roughness spectra. The low level roughness is well below the TSI reference at 

longer wavelengths, but approaches the TSI reference at short wavelengths. The force 

spectrum for these cases shows a similar trend. The highest roughness level leads to a 

dynamic interaction force spectrum that is around 10 dB above the force spectrum for the 

TSI level case across the wavelength range. 

 

Figure 9.9 shows the roughness growth rates calculated for the freight vehicle on track 

with soft rail pads and the three initial roughness profiles with different spectral 

magnitudes. These are not average roughness growth rates, each has been calculated for a 

single initial profile and for a single vehicle type. Both non-Hertzian contact models are 

examined; the results for constant friction are shown in Figure 9.9(a) and those for 

velocity-dependent friction in Figure 9.9(b).  
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Figure 9.9 Roughness growth rate for a single freight wheel on broadband roughness with 
non-Hertzian contact: (a) constant friction; (b) velocity dependent friction.  low 
roughness; — — — TSI roughness; · · · · · · · TSI roughness plus 10 dB. 
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If the friction coefficient is assumed to be constant, then the roughness growth rate is 

independent of the magnitude of the initial roughness spectrum. The small differences in 

the roughness growth rates seen in Figure 9.9(a) may be attributed to variability in the 

different generated profiles, and are no larger than the differences between roughness 

growth rates calculated for many different initial profiles with similar spectral levels shown 

in Figure 8.16(a). 

 

If the friction coefficient is dependent on the slip velocity (Figure 9.9(b)), the roughness 

growth rates are no longer entirely independent of the magnitude of the initial roughness 

spectrum. Distinct peaks are visible in the result for the low-level initial roughness. These 

peaks do not appear at the same wavelength for different initial roughnesses with the same 

spectral level, as the roughness growth rate calculated using velocity-dependent friction is 

highly variable even when the initial roughness profiles have the same spectral level (see 

Figure 8.16(b)). The TSI-level roughness prediction also displays some variability in the 

roughness growth rate across the wavelength range, but not as much as seen in the low-

level roughness case. As the initial roughness level increases the roughness growth rate 

begins to resemble that calculated with a constant coefficient of friction. 

 

In summary, if roughness levels are very low initially, including a velocity-dependent 

friction coefficient can have a significant effect on the predicted wear pattern compared 

with a constant friction model. But if the initial combined roughness level of the wheel and 

rail is higher than the TSI limit, there is little difference in the results obtained from the 

two friction models for 0.1% creep.  

 

9.5 Roughness growth rates for mixed traffic 

In a situation with a variety of traffic on a particular track, a mixed roughness growth rate 

can be estimated if the proportions and the typical length of each vehicle type are known. 

At the Gersthofen test site, approximately 40% of the wheel passages are freight wheels, 

27% are associated with regional vehicles and around 33% are high-speed vehicles. 

Figure 9.10 shows the resulting mixed traffic roughness growth rates for soft and stiff rail 

pads calculated using the three different contact models: Hertzian, non-Hertzian and non-

Hertzian with velocity-dependent friction.  
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Figure 9.10 Roughness growth rate for mixed traffic: (a) soft rail pads; (b) stiff rail pads. 
  velocity-dependent friction model; — — — constant friction model; · · · · · · · 
Hertzian contact model. 
 

In line with the previous findings, the Hertzian contact model is the only one of the three 

that predicts roughness growth. For track with soft rail pads, a Hertzian model results in 

roughness growth at all wavelengths shorter than 40 mm, and a peak in the roughness 

growth function at around 20 to 25 mm. Roughness is predicted to decrease slightly at 

wavelengths longer than 40 mm. With stiff rail pads and Hertzian contact, the predicted 

roughness growth rates are similar to those with soft pads, with the exception that stable or 

slightly increasing roughness is predicted in the wavelength range from 40 to 80 mm.  

 

Combining the roughness growth rates calculated for each vehicle type into a mixed traffic 

result removes many of the differences between the two non-Hertzian contact models. The 

variability between each individual case when a velocity-dependent friction coefficient is 

used averages out to give a similar mixed traffic result to that calculated with a non-

Hertzian, constant friction coefficient model. The mixed traffic roughness growth rates do 
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not show roughness increasing at any wavelengths. With non-Hertzian contact and mixed 

traffic, roughness is predicted to be worn away in all one-third octave wavelength bands 

considered, and to be worn away most rapidly at wavelengths shorter than around 25 mm.  

 

The Hertzian and non-Hertzian contact models give very different roughness growth rate 

predictions for all wavelengths shorter than 125 mm. At longer wavelengths, however, the 

roughness growth rates are converging. This suggests that if only roughness of 

wavelengths longer than 125 mm is of interest then a Hertzian model can be used in the 

wear calculation. For shorter wavelengths, non-Hertzian effects are significant and should 

be taken into account in a wear model. 

 

Several authors have linked high rail pad stiffness to increased roughness or corrugation 

growth, for example Ilias [1999], Cox and Wang [1999], Wu and Thompson [2005], Sheng 

et al. [2006]. The connection between pad stiffness and high roughness growth rates is 

thought to be that stiff pads emphasise the pinned-pinned effects, leading to a higher 

corrugation growth rate at that frequency than with soft rail pads. Here, if Hertzian contact 

is assumed, roughness is predicted to increase across a wider range of wavelengths if the 

track has stiff rail pads than if the track has soft rail pads (Figure 9.10). However, the rate 

of roughness growth for wavelengths shorter than 40 mm with mixed traffic is not 

predicted to be affected much by the rail pad stiffness of the track. 

 

With the non-Hertzian contact models and mixed traffic, there are some differences in the 

predicted roughness growth rates for track with different rail pad stiffnesses. However, 

these differences are not consistent across the wavelength spectrum. Soft pads are better at 

some wavelengths, while hard pads are better at others. In general, this model does not 

suggest any clear connection between the rail pad stiffness and the roughness growth rates. 

 

9.6 Roughness growth rates with rail dampers 

It has been shown in Chapters 3 and 4 that rail dampers affect the pinned-pinned frequency 

and the interaction force between wheel and rail. Previous work by Croft et al. [2009] has 

examined the effect of rail dampers on roughness growth rates using a Hertzian contact 

model. In this section, roughness growth rates with rail dampers are presented using the 

non-Hertzian contact model with velocity-dependent friction. The rail damper model used 
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is that described in Section 3.4.4, with a tuning frequency of 1050 Hz and parameters as 

listed in Table 3.5.  

 

The roughness growth rates for the various vehicle and track types with rail dampers 

included are shown in the following figures. Figure 9.11 presents the results for freight 

vehicle cases, Figure 9.12 for the regional vehicle and Figure 9.13 for the high-speed 

vehicle. All are average results from five different low-level broadband roughness profiles 

using a model with a single wheel. The roughness growth rates for the individual cases are 

included in Appendix B. 
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Figure 9.11 Roughness growth rate for freight vehicle: (a) soft rail pads with rail 
dampers; (b) stiff rail pads with rail dampers.  without rail dampers; — — — with 
rail dampers. Vertical lines indicate shift in wavelength corresponding to the pinned-
pinned resonance with the addition of rail dampers. 
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Figure 9.12 Roughness growth rate for regional vehicle: (a) soft rail pads with rail 
dampers; (b) stiff rail pads with rail dampers.  without rail dampers; — — — with 
rail dampers. Vertical lines indicate shift in wavelength corresponding to the pinned-
pinned resonance with the addition of rail dampers. 
 

For all the vehicle types and rail pad stiffnesses, the rail dampers make a clear difference to 

the roughness growth rate. At some wavelengths the roughness growth rate with rail 

dampers is higher than without rail dampers, and at others it is lower. In general, the 

addition of the rail dampers tends to shift or add peaks in the roughness growth function, in 

particular in the 31.5 mm wavelength band for the freight case (Figure 9.11) and in the 

40 mm wavelength band for the regional (Figure 9.12) and high-speed cases (Figure 9.13). 

This effect is more pronounced in the cases with stiff rail pads. The roughness growth rate 

for the high-speed case with rail dampers and stiff rail pads (Figure 9.13(b)) is positive in 

two wavelength bands, whereas it is negative at all wavelengths without the rail dampers 

and for all the soft rail pad results. 
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Rail dampers shift the pinned-pinned frequency of the rail from 1050 Hz to 760 Hz, largely 

as a result of the additional mass they add to the system (see Section 3.4). Using a Hertzian 

contact and wear model, Croft et al. [2009] found a corresponding shift in the roughness 

growth rates of track with rail dampers compared with track without rail dampers. High 

roughness growth rates at wavelengths corresponding to the pinned-pinned resonance were 

shifted to longer wavelengths with the addition of rail dampers. In the present results, with 

a non-Hertzian contact model, this effect is not discernable. Without the rail dampers, there 

is no peak in the roughness growth function corresponding to the pinned-pinned resonance. 

The peaks introduced by the rail dampers do not correspond to the new pinned-pinned 

resonance. Vertical lines in Figures 9.11 to 9.13 indicate the wavelength shift that might be 

expected from the shift in the pinned-pinned resonance.  
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Figure 9.13 Roughness growth rate for high-speed vehicle: (a) soft rail pads with rail 
dampers; (b) stiff rail pads with rail dampers.  without rail dampers; — — — with 
rail dampers. Vertical lines indicate shift in wavelength corresponding to the pinned-
pinned resonance with the addition of rail dampers. 
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The effect of rail dampers on the roughness growth rates with mixed traffic are shown in 

Figure 9.14. These results have been calculated using the velocity-dependent, non-Hertzian 

contact model. With soft rail pads, shown in Figure 9.14(a), including rail dampers in the 

model makes almost no difference to the predicted mixed traffic roughness growth rates. 

With stiff rail pads, a greater difference is seen between the results with and without rail 

dampers. At some wavelengths the roughness growth rate is lower with the rail dampers 

and at some wavelengths it is higher. The general trend remains: roughness levels are 

predicted to decrease slightly over time at wavelengths longer than 25 mm, and to decrease 

more rapidly at wavelengths shorter than 25 mm. From these results, rail dampers do not 

result in either a clear-cut benefit or a disadvantage in terms of rail roughness growth rates. 
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Figure 9.14 Roughness growth rate for mixed traffic from velocity-dependent friction 
model:(a) soft rail pads; (b) stiff rail pads.  without rail dampers; — — — with rail 
dampers. 
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9.7 Measured roughness spectra 

Measurements of roughness have been carried out by Deutsche Bahn AG at a test site near 

Gersthofen in Germany as part of the Silence project [Asmussen et al., 2008]. Corus rail 

dampers were installed at locations with two pad stiffnesses, corresponding to the soft and 

stiff pads modelled in this study. At the location with soft rail pads the dampers are 

installed on both rails of the track. An adjacent untreated section of track with the same rail 

pads provides a reference. At the location with stiff rail pads the dampers have been 

applied to a single rail only, with the other rail acting as the reference. All measurement 

locations are on tangent track well away from any curves. 

 

Roughness measurements are available from the time of the damper installation in 2006, 

after the dampers had been in place for one year and also after two years.  

 

9.7.1 Measured roughness development examining the effect of rail dampers 

For the track with soft rail pads, results are shown in Figure 9.15 without rail dampers and 

in Figure 9.16 with rail dampers. In the initial measurements a peak is found at 10 mm 

corresponding to grinding marks. This and other short wavelength roughness has been 

worn away after one year. Most noticeably, the 10 mm wavelength band shown in 

Figure 9.16 shows a change in roughness level of around 7 dB in the first year, which is 

well above the normal measurement uncertainty. The two most recent measurements 

shown in both figures are very similar, the differences could be entirely due to the variance 

in the measurement. In fact, aside from some short wavelength bands, all the 

measurements are close enough to each other for it to be difficult to determine whether the 

changes recorded are systematic or an artefact of roughness measurement variance, which 

is around +/- 2 dB [Jones et al., 2008b]. The change in roughness over time at this site is 

low, so measurements over a longer time period would be needed to determine the 

systematic roughness development. 

 

There is no clear difference between the results for the locations with and without rail 

dampers. Despite this, for track with soft pads, there is some evidence to suggest that long 

wavelength roughness remains relatively stable while short wavelength roughness tends to 

wear away over time, by up to 4 dB in some wavelength bands over the two years. Longer 

wavelengths might grow slightly or be worn down but really there is not a significant 
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change in the spectrum over this time period. The rail roughness at the site was very low to 

begin with, well below the TSI limit. 
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Figure 9.15 Measured roughness spectrum for track with soft rail pads without rail 
dampers: · · · · · · · 2006; — — — 2007;  2008; – · – · – · TSI roughness limit. 
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Figure 9.16 Measured roughness spectrum for track with soft rail pads and rail dampers: 
· · · · · · · 2006; — — — 2007;  2008; – · – · – · TSI roughness limit. 
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For the location with stiff rail pads the results are shown in Figure 9.17 and Figure 9.18. 

Here the trends are even less clear. Without the rail dampers, the roughness over the two 

years has reduced across the wavelength range. On the rail with rail dampers installed, the 

roughness is slightly higher after two years at shorter wavelengths (where it was initially 

very smooth), and has reduced at longer wavelengths. This pattern is not consistent 

however; at some wavelengths roughness decreased in the first year and then increased the 

next year. This result emphasises the difficulty in measuring small changes in roughness 

accurately, even over a two year period. 

 

The effect of the rail dampers on track with stiff rail pads is also difficult to assess because 

the initial roughness of the rail with dampers is very different from the roughness of the 

reference rail. At short wavelengths, the initial roughness shown in Figure 9.18 is the 

lowest measured at any location. The measured increase of between 1 and 3 dB in 

roughness in wavelength bands shorter than 25 mm could be a real increase, or an artefact 

of measurement uncertainty. In any case the final roughness level measured at this location 

with the rail dampers is very similar to the final roughness level on the rail without 

dampers shown in Figure 9.17, and remains well below the TSI limit spectrum. 
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Figure 9.17 Measured roughness spectrum for track with stiff rail pads without rail 
dampers: · · · · · · · 2006; — — — 2007;  2008; – · – · – · TSI roughness limit. 
 



 

239 

0.0040.0080.0160.03150.0630.125
−20

−15

−10

−5

0

5

1/3 Octave Band Centre Wavelength (m)

R
ou

gh
ne

ss
(d

B
 r

e 
1u

m
)

 

Figure 9.18 Measured roughness spectrum for track with stiff rail pads and rail dampers: 
· · · · · · · 2006; — — — 2007;  2008; – · – · – · TSI roughness limit. 
 

Examining these measurements, no evidence has been found to suggest that the rail 

dampers make a significant difference, either positive or negative, to the growth of 

acoustic roughness.  

 

9.7.2 General comments on measured roughness development 

In general, roughness levels at the site have not increased significantly or consistently in 

any wavelength bands. Figure 9.19 shows the mean of all the measured spectra for each 

year across all locations, with and without rail dampers. In this representation, roughness 

has decreased by around 2 dB across the wavelength range, except for the wavelengths 

between 12.5 and 25 mm where roughness grew slightly in the first year but then decreased 

in the second year, overall remaining relatively stable. 

 

A difference of 2 dB is not enough to give confidence that the measured decrease in 

roughness levels is real and not an artefact of normal measurement variation. However, the 

measurement also does not show any clear increase in acoustic roughness levels over time. 

In this broad sense therefore the measurements agree with the results of the non-Hertzian 

contact and wear model.  
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It is often assumed that roughness must consistently and monotonically increase over time. 

This is supported by data from the Dutch and German railway networks [Verheijen, 2006; 

Asmussen et al., 2006], whereas reports in the literature on measurements at other specific 

sites are somewhat mixed in terms of roughness decreasing or increasing, as discussed in 

Section 1.4.1, [Cox and Wang, 1999; Bracciali, 2004; Hiensch et al., 2002; Nielsen, 2003]. 

Here, the measured roughness spectra do not show any evidence of consistently increasing 

roughness levels over time. Moreover, for this situation on tangent track with initially very 

low roughness levels, no mechanism is shown in the model for consistently increasing 

roughness levels in the long term.  
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Figure 9.19 Mean measured roughness spectrum over all locations, with and without rail 
dampers: · · · · · · · 2006; — — — 2007;  2008; – · – · – · TSI roughness. 
 

9.8 Summary 

A series of roughness growth rate calculations have been made to examine the 

development of broadband acoustic roughness over time. The parameters used in these 

calculations have been chosen to match the track at the Silence project measurement site 

near Gersthofen, to enable some comparison between the model results and measured 

roughness development over a long period. 
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The roughness growth rate has therefore been examined for two different track forms, one 

with relatively soft rail pads of 200 MN/m stiffness and the other with relatively stiff rail 

pads of 800 MN/m stiffness. The addition of rail dampers to the track has also been 

included in both the modelling work and the measurements. Three different vehicle types 

(listed in Table 4.1) are considered as representatives of the type of traffic operating at the 

Gersthofen site. The approximate proportions of wheel passages due to each vehicle type is 

known, and has been used to estimate a ‘mixed traffic’ roughness growth rate from the 

model results.  

 

When calculating the interaction force between the wheel and rail for track with soft rail 

pads, it is important to include more than one wheel in the vehicle model since the track 

decay rate is low and allows interaction between successive wheels coupled by the rail. 

However, when using a non-Hertzian contact model to predict the wear of the rail and the 

roughness growth rates, similar results were obtained from a model with a single wheel 

and a model with four wheels. Including multiple wheels therefore does not significantly 

affect the predicted roughness growth rates.  

 

Roughness growth rate results have been compared from three different versions of the 

model. If a Hertzian contact model is used, roughness is predicted to grow significantly in 

the one-third octave wavelength bands between 12.5 mm and 40 mm. Outside this range, 

roughness is predicted to grow slightly at shorter wavelengths and decrease slightly or 

remain stable at longer wavelengths. However, if a non-Hertzian contact model is used, the 

results are very different. Roughness is then predicted to decrease in all wavelength bands, 

particularly at wavelengths shorter than 25 mm. The inclusion of a velocity-dependent 

coefficient of friction causes some variation in the wear of each particular case, and in 

some cases at some wavelengths roughness growth is positive. When roughness growth 

rates are averaged over many initial rail profiles however there is very little difference in 

the predicted results compared with when a constant coefficient of friction is used with the 

non-Hertzian contact model. 

 

The non-Hertzian contact models, therefore, do not support any tendency of the rails to 

become rougher over time. In fact, the model predicts that, as long as only longitudinal 

forces and creep are significant, tangent track with an initially low level of broadband 

roughness should become smoother under the passage of many wheels. This also assumes 
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that the wheels are smooth, since the combined roughness of the wheels and rails provides 

the excitation of the system. 

 

Roughness measurements over two years at the Gersthofen test site do not show any 

significant or consistent tendency of the rails to become rougher over time at any 

wavelength. There is some evidence to suggest that rails may become smoother over time, 

as predicted by the model. However, the differences observed over the two-year period are 

not large enough in most wavelength bands to give confidence that they are not an artefact 

of normal measurement variance. 

 

Neither the modelled nor the measured roughness growth rates indicate that the installation 

of the rail dampers will have a significant effect on the development of broadband acoustic 

roughness over time, either positive or negative. Also, the roughness growth rate results 

presented in this chapter do not suggest that roughness should develop differently on track 

with different rail pad stiffnesses.  

 

The roughness development predicted by a non-Hertzian contact model is generally 

independent of the rail pad stiffness, the wheel spacing, the pinned-pinned resonance and 

the addition of rail dampers. It is therefore largely independent of the track dynamics (the 

effect of vehicle speed on roughness growth rates has not been explicitly examined, 

although different vehicle types have different speeds). So, although the wheel-rail 

interaction force is highly dependent on the dynamics of the track and vehicle system, it 

appears that the resulting roughness growth rate is not. 
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10 CONCLUSIONS 

The aim of this work was to improve the understanding of roughness development on 

tangent track, which has potential benefits in the areas of long-term noise control and track 

maintenance. In this thesis a model of wheel-rail interaction forces, rolling contact and 

wear has been used to study the development of broadband rail-head acoustic roughness in 

the wavelength range from 5 mm to 250 mm. The effect of different track components on 

the roughness growth rate of the track-vehicle system has been examined. Using this 

model, the impact of track design changes on the roughness growth rates has been 

assessed. In particular, rail damping devices designed to reduce rolling noise have been 

examined to determine if the addition of rail dampers to a track will lead to a change in the 

tendency of the track to develop rail-head roughness. 

 

10.1 Conclusions from the literature 

Rail-head wear is a complex problem. An ideal model would account for factors such as 

elastic and plastic deformation, high temperature effects, work hardening, and local 

variation in material properties and wear resistance. It would also include a three-

dimensional analysis of vehicle dynamics, with torsional modes of the wheelsets and 

varying lateral and spin creep as well as the longitudinal creep considered here. However, 

the computational cost of such a model would be enormous. 

 

It is clearly necessary to simplify the problem in order to gain an understanding of the 

relative impact of different effects on roughness growth rates. In the literature various 

relationships between the resonances of track and vehicle have been proposed to suggest 

why roughness might grow more rapidly at some wavelengths than at others, and indeed 

why roughness should grow at all. The pinned-pinned resonance of the track has been 

identified as a possible wavelength-fixing mechanism in some cases of corrugation. The 

geometry of the contact between wheel and rail has been identified as promoting roughness 

or corrugation growth at particular wavelengths. Some models of corrugation attribute 

uneven railhead wear to lateral creep due to wheelset misalignment. Recent studies have 

tended to concentrate on longitudinal effects. The fundamental mechanisms of roughness 

growth and corrugation formation are clearly not well understood. 

 

Based on a review of the literature, it was decided to examine motion in the vertical plane 

only, enabling the simplification of the problem to two dimensions. Such a model is a 
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suitable starting point for studying the development of general acoustic roughness rather 

than corrugation phenomena. Efforts have then been concentrated on the contact 

mechanics calculation, including non-Hertzian and transient effects. A non-constant, 

velocity-dependent friction law has been investigated. This has not been implemented 

before in a non-Hertzian tangential contact stress distribution calculation.  

 

10.2 Conclusions on roughness growth mechanisms 

It has been confirmed that it is essential in roughness growth predictions to take account of 

the low-level, broadband roughness profile of the contacting surfaces within the contact 

model. The surface roughness, however small compared with the overall dimensions of the 

wheel and rail, acts as a stress concentrator that must be considered when determining the 

distribution of normal and tangential stress and the slip velocity in the contact. Assuming 

Hertzian contact, and thereby neglecting the roughness profile, leads to a completely 

different prediction of the tendency of a track to develop roughness. With a Hertzian 

model, roughness is predicted to grow or worsen under many wheel passages, and 

roughness growth is more significant at some wavelengths than at others. The non-

Hertzian model has been found to predict roughness decreasing over time.  

 

The effect of the initial roughness on the stress distribution is not limited to roughness 

wavelengths shorter than the length of the contact patch. The roughness growth rates 

predicted from Hertzian and non-Hertzian models are clearly different for all wavelengths 

shorter than around 100 mm, only converging at wavelengths longer than this. If the 

wavelength range of interest for short-pitch corrugations is 25 to 100 mm then this result 

suggests that non-Hertzian effects should also be considered in studies of the mechanisms 

of corrugation formation and growth. 

 

The results presented in Chapter 9 from the non-Hertzian contact models predict mostly 

negative roughness growth rates. Some combinations of initial roughness and vehicle 

parameters can lead to positive roughness growth at some wavelengths, but the average 

roughness growth developed over five different initial rail profiles is negative in all cases 

considered. Short-wavelength roughness in particular is predicted to become smoother 

under the passage of many wheels. This is expected as the result of the filtering effect of 

the contact patch, and has been observed in practice, most noticeably in the wearing down 
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of short wavelength grinding marks. However, the observation that roughness at longer 

wavelengths does grow at many sites has not been explained by the model predictions. 

 

The wear calculation employed here includes the possibility that different wear 

mechanisms might occur in different parts of the contact area, as a result of stress 

concentrations arising from the roughness profile. However this situation was found not to 

occur for the mostly low-level roughness profiles examined in this work. It has been found 

that roughness development may therefore be modelled adequately using a single wear 

coefficient representing the mild wear regime. 

 

Roughness measurements taken over a two year period at a location with mixed traffic and 

initially low level, broadband roughness show that it is possible that roughness might have 

reduced slightly over time at this site. However, it is difficult to be sure that the small 

changes seen in the roughness spectra are real, because of the variance of roughness 

measurements. It might be more correct to say that roughness levels at the test site have not 

increased significantly in the time period of the measurements, than to claim a decrease in 

measured roughness levels. 

 

10.3 Conclusions on the velocity-dependent friction law 

Including a velocity-dependent friction coefficient in the tangential contact analysis has 

been found to introduce a stick-slip oscillation into the slip zone at the trailing edge of an 

otherwise steady rolling contact. This is turn creates an uneven pattern of wear on an 

otherwise smooth surface. This is a very short wavelength effect, much shorter than the 

contact length, and as such is not a significant feature in the resulting roughness growth 

rates in transient rolling contact cases with realistic initial roughness levels. With 

increasing longitudinal creep and a velocity-dependent friction coefficient, the stick-slip 

oscillation increases until the creep-force relationship becomes increasingly unstable.  

 

If roughness levels are very low initially, the inclusion of a velocity-dependent friction 

coefficient can have a significant effect on the predicted wear pattern for a particular initial 

profile. However, if the combined roughness level of the wheel and rail is initially higher 

than the TSI limit, there is little difference in the results obtained by the two friction 

models. Moreover, if roughness growth rate results are averaged over a number of different 

initial rail profiles, the results from models with the different friction laws are not 
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significantly different, even for very low initial roughness levels. In this average sense 

roughness is not predicted to grow at any wavelengths regardless of the friction law used in 

the model. 

 

10.4 Conclusions pertaining to rail dampers 

Rail dampers change the dynamic response of the rail, reducing the pinned-pinned 

frequency and smoothing the peaks and troughs in the track receptance. Rail dampers have 

been found to reduce the dynamic interaction forces between wheels and the rail, 

especially around the pinned-pinned resonance. Rail dampers shift the wheel-rail 

interaction force spectrum to lower frequencies or longer wavelengths. 

 

Although the rail dampers have a significant effect on the dynamic interaction force, the 

addition of rail dampers to a track is not predicted to make a significant difference to the 

growth of broadband roughness levels, at least for tangent track where the initial roughness 

levels are low. The roughness growth is found to be neither greater nor less with rail 

dampers fitted. The measurements taken over two years at the Gersthofen test site also 

show no clear evidence of a change in roughness growth rates as a result of the installation 

of rail dampers. The measurement results are therefore consistent with the findings from 

the model. However, measurements should be continued over a longer time period to give 

increased confidence in this conclusion.  

 

10.5 Recommendations for future work 

Several questions have been raised by this work about the accepted understanding of the 

mechanisms of roughness development and corrugation formation. With the model 

including non-Hertzian and transient effects, no mechanism has been found for consistent 

roughness growth. Moreover, no connection has been found between the pinned-pinned 

resonance of the track and high roughness growth rates at the corresponding wavelengths. 

This does not mean that the pinned-pinned resonance is not a wavelength fixing 

mechanism for short-pitch corrugation. However, in practice, discretely supported tangent 

tracks do not all develop corrugation at wavelengths corresponding to the pinned-pinned 

frequency, even after many years of traffic. This evidence agrees with the results from the 

model developed here, for tangent track with purely longitudinal creep and where the 

roughness levels are sufficiently low to keep deformation in the contact within the elastic 

region.  
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Future work on roughness development and corrugation should consider that if Hertzian 

contact is assumed, any change in the wheel-rail interaction forces leads to a change in the 

predicted wear. The Hertzian assumption therefore results in an exaggerated relationship 

between the resonances of the track and vehicle system and the wear of the rail.  

 

The measurements taken by Deutsche Bahn AG as part of the Silence project are valuable 

because there are very few documented cases of roughness measurements being repeated at 

the same location over several years. Even over two years, the roughness at the site has not 

changed enough to be sure that the observed decreases in roughness are not due to 

measurement variability. These measurements should be continued. It is commonly 

accepted that broadband roughness on tangent track does increase, but roughness growth is 

not necessarily linear with time. Smooth track (possibly in conjunction with smooth 

wheels) may remain in good condition over many years, while track with initially high 

roughness levels may worsen more rapidly. At the Gersthofen test site initial roughness 

levels were uniformly low so it has not been possible to investigate differences in 

roughness development caused by the initial level. It would be useful to prove that 

roughness development is not linear, and to identify the relationship between initial or 

existing roughness level and roughness development. 

 

More measurements of roughness development over time are required to validate the 

roughness growth model and to understand the mechanisms of roughness growth. A useful 

long term experiment would be to take roughness measurements at six-monthly intervals 

over many years at locations with initially low roughness levels. It would also be useful to 

compare measurements from track with predominantly disc-braked vehicles, with 

roughness levels on track where the traffic is mostly tread braked. This would assess 

whether higher wheel roughness leads to higher roughness growth on the rails, possibly as 

a result of plastic deformation. Other factors that might be monitored in addition to the 

roughness itself include traffic axle loads, lateral forces and/or wheelset alignment, and 

traction and braking forces. However, these would be more difficult (and perhaps 

impossible) to collect on the time scales of roughness development. 

 

In terms of short-pitch corrugation research, the absence of any mechanism for corrugation 

formation found here suggests that the search for causes of corrugation should concentrate 

on lateral effects. Corrugation is more common on curves than on tangent track, where 
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lateral dynamics are more important. Discrete longitudinal effects such as rail joints or 

wheel-rail defects could also be investigated further as possible initiators of corrugation. In 

addition, metallurgical factors that have not been considered in this work could be 

important, including hardness and variations or defects in the crystalline structure of the 

rail steel.  

 

In the rolling contact analysis used here, the rail and the wheel have been treated as half-

spaces. Track and wheel dynamic effects have been included by means of their effect on 

the normal wheel-rail interaction forces. The stick-slip effect identified with the velocity-

dependent friction law is a very high-frequency phenomenon. It has a wavelength of the 

order of 1.2 mm in steady rolling, which corresponds to about 25 kHz at typical train 

speeds. It could conceivably interact with resonances of the track or wheel system. Further 

investigation is needed including the track and wheel dynamics in the rolling contact 

analysis to examine if the stick-slip oscillation might lock into another resonance of the 

system. 
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APPENDIX A RAIL DAMPER EFFECT ON FORCE 

This appendix contains the wheel-rail interaction force spectra showing the effect of the 

rail dampers for all three vehicle types (the freight vehicle results only have been shown in 

Section 4.9).  
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Figure A.1 Dynamic wheel-rail interaction force for a freight train on (a) soft and (b) stiff 
rail pads with low broadband roughness:  with rail dampers; · · · · · · · without rail 
dampers. 
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Figure A.2 Dynamic wheel-rail interaction force for a freight train on (a) soft and (b) stiff 
rail pads with TSI roughness:  with rail dampers; · · · · · · · without rail dampers. 
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Figure A.3 Dynamic wheel-rail interaction force for a regional train on (a) soft and (b) 
stiff rail pads with low broadband roughness:  with rail dampers; · · · · · · · without 
rail dampers. 
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Figure A.4 Dynamic wheel-rail interaction force for a regional train on (a) soft and (b) 
stiff rail pads with TSI roughness:  with rail dampers; · · · · · · · without rail 
dampers. 
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Figure A.5 Dynamic wheel-rail interaction force for a high-speed train on (a) soft and (b) 
stiff rail pads with low broadband roughness:  with rail dampers; · · · · · · · without 
rail dampers. 
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Figure A.6 Dynamic wheel-rail interaction force for a high-speed train on (a) soft and (b) 
stiff rail pads with TSI roughness:  with rail dampers; · · · · · · · without rail 
dampers. 
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APPENDIX B ROUGHNESS GROWTH RATES 

The following figures present the individual roughness growth rates calculated for five 

different initial roughness profiles for all the cases where average results have been shown 

in Chapter 9. Table B.1 is a summary of the cases contained in this appendix. 

 

Table B.1 Roughness growth rate figure list. 

Contact model Vehicle model Rail pad stiffness Figure 
number 

Hertzian Freight 1 wheel Soft & stiff B.1 

Regional 1 wheel Soft & stiff B.2 

High-speed 1 wheel Soft & stiff B.3 

Freight 4 wheels Soft B.13(a) 

Regional 4 wheels Soft B.13(b) 

High-speed 4 wheels Soft B.13(c) 

Non-Hertzian, constant 

friction 

Freight 1 wheel Soft & stiff B.4 

Regional 1 wheel Soft & stiff B.5 

High-speed 1 wheel Soft & stiff B.6 

Freight 4 wheels Soft B.14(a) 

Regional 4 wheels Soft B.14(b) 

High-speed 4 wheels Soft B.14(c) 

Non-Hertzian, velocity-

dependent friction 

Freight 1 wheel Soft & stiff B.7 

Regional 1 wheel Soft & stiff B.8 

High-speed 1 wheel Soft & stiff B.9 

Non-Hertzian, velocity-

dependent friction with rail 

dampers 

Freight 1 wheel Soft & stiff B.10 

Regional 1 wheel Soft & stiff B.11 

High-speed 1 wheel Soft & stiff B.12 
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B.1 Hertzian contact model 
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Figure B.1 Roughness growth rate for a single freight wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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Figure B.2 Roughness growth rate for a single regional wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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Figure B.3 Roughness growth rate for a single high-speed wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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B.2 Non-Hertzian constant friction contact model 

0.0080.0160.03150.0630.1250.250.5
−2

−1

0

1

x 10
−5

1/3 Octave Band Centre Wavelength (m)

M
ic

ro
m

et
re

s 
pe

r 
w

he
el

 p
as

sa
ge

(a)

0.0080.0160.03150.0630.1250.250.5
−2

−1

0

1

x 10
−5

1/3 Octave Band Centre Wavelength (m)

M
ic

ro
m

et
re

s 
pe

r 
w

he
el

 p
as

sa
ge

(b)

 

Figure B.4 Roughness growth rate for a single freight wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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Figure B.5 Roughness growth rate for a single regional wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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Figure B.6 Roughness growth rate for a single high-speed wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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B.3 Non-Hertzian velocity-dependent friction contact model 
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Figure B.7 Roughness growth rate for a single freight wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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Figure B.8 Roughness growth rate for a single regional wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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Figure B.9 Roughness growth rate for a single high-speed wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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B.4 Non-Hertzian velocity-dependent friction contact model with rail dampers 
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Figure B.10 Roughness growth rate for a single freight wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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Figure B.11 Roughness growth rate for a single regional wheel for five different low-level 
broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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Figure B.12 Roughness growth rate for a single high-speed wheel for five different low-
level broadband roughness profiles: (a) soft rail pads; (b) stiff rail pads. 
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B.5 Hertzian, constant friction contact and multiple wheel vehicle model 
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Figure B.13 Roughness growth rate for four wheel vehicle models on track with soft rail 
pads and five different low-level broadband roughness profiles: (a)freight; (b) regional; 
(c) high-speed. 
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B.6 Non-Hertzian, constant friction contact and multiple wheel vehicle model 
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Figure B.14 Roughness growth rate for four wheel vehicle models on track with soft rail 
pads and five different low-level broadband roughness profiles: (a)freight; (b) regional; 
(c) high-speed. 
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APPENDIX C LIST OF SYMBOLS 

A Cross-sectional area of beam (Chapter 3) 

A Area 

A0 Initial roughness amplitude in 1/3 octave wavelength band (Chapter 8) 

An Final roughness amplitude in 1/3 octave wavelength band (Chapter 8) 

A System matrix for state-space solution (Chapter 4) 

Atrack Assembled from the global mass and damping matrices (Chapter 3) 

Bij Two-dimensional influence coefficient matrix (Chapter 5) 

Bij ′ Two-dimensional influence coefficient matrix for previous time-step (Chapter 6) 

B System matrix for state-space solution (Chapter 4) 

Btrack Assembled from the global mass and stiffness matrices (Chapter 3) 

C1-3 Timoshenko beam coefficients (Chapter 3) 

CH Hertzian contact constant (Chapter 4) 

Cij Normal influence coefficient matrix (Chapter 5) 

C Global damping matrix for track (Chapter 3) 

Cw Global damping matrix for vehicle/wheels (Chapter 4) 

Dij Tangential influence coefficient matrix (Chapter 5) 

Dij ′ Tangential influence coefficient for previous time-step (Chapter 6) 

E Young’s modulus  

E* Combined Young’s modulus in contact 

F Force (Chapter 3) 

Fa Contact force between wheel and rail (Chapter 4) 

Fe External static load on wheel (Chapter 4) 

Fnorm Function to minimise for the normal contact problem (Chapter 5) 

Ftang Function to minimise for the tangential contact problem (Chapter 5) 

Fa Wheel rail interaction force matrix (Chapter 4) 

aF̂  Wheel rail interaction force impulse matrix (Chapter 4) 

G Shear modulus 

G Schur complement of matrix A (Chapter 4) 

H1-4 Hermite interpolating polynomials (Chapter 4) 

H Matrix of Hermite interpolating polynomials (Chapter 4) 

I Second moment of area of the cross-section  

I Identity matrix (Chapter 4) 

J Number of discrete supports (Chapter 3) 
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Je Number of rail elements in track model (Chapter 4) 

K Combined system stiffness (Chapter 3) 

K Wear constant (Chapter 7) 

K Global stiffness matrix for track (Chapter 3) 

KH Global contact stiffness matrix (Chapter 4) 

L Sleeper spacing (Chapter 3) 

Lj Length of rail element j (Chapter 4) 

Lp Rail pad length along rail (Chapter 3) 

L1-4 Distance from element centre to corners of other element (Chapter 5) 

Mw Unsprung mass of wheel (Chapter 4) 

M Global mass matrix for track (Chapter 3) 

Mw Global mass matrix for vehicle/wheels (Chapter 4) 

N Number of degrees of freedom in track model (Chapter 3) 

N Number of elements in potential contact area (Chapter 5) 

O Origin of axes 

P Total normal force in wheel-rail contact 

P Modal matrix (Chapter 3) 

Q Total tangential force in wheel-rail contact 

Q Modal load vector (Chapter 3) 

R Equivalent radius of curvature for Hertz equations (Chapters 4, 5) 

R1,2 Radius of spherical bodies 1, 2 (Chapter 5) 

Rm Modified wheel radius (Chapter 4) 

Rr Radius of rail in y-z plane (Chapter 4) 

Rw Radius of wheel in x-z plane (Chapter 4) 

R Component of acceleration of wheel-rail interface (Chapter 4) 

S Total contact area (Chapter 5) 

S Component of acceleration of wheel-rail interface (Chapter 4) 

T Tangential force (Chapter 7) 

T Component of velocity of wheel-rail interface (Chapter 4) 

U Displacement amplitude (Chapter 3) 

UE Elastic strain energy (Chapter 5) 

UE*  Internal complementary energy (Chapter 5) 

U Component of velocity of wheel-rail interface (Chapter 4) 

V*  Total complementary energy of contact system (Chapter 5) 

Wτ Rigid tangential shift (Chapters 5, 6) 
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Y Point mobility (Chapter 3) 

a Half-length of element in x direction (Chapters 3, 5) 

a Half-length of contact patch (radius if circular) (Chapters 4, 5, 6) 

a1, a2 Rayleigh damping coefficients (Chapter 3) 

a Diagonal matrix (Chapter 3) 

b Half the length of element in y direction (Chapter 5) 

b Diagonal matrix (Chapter 3) 

c Viscous damping (Chapters 3, 4) 

c Half-length of stick region (Chapters 5, 6) 

cd Damper damping (Chapter 3) 

c Damping matrix for an element (Chapter 3) 

dz Depth of material removed from railhead (Chapter 7) 

f Force on a rail damper element (Chapter 3) 

f1-4 Functions of geometric distances between elements (Chapter 5) 

f Vector of forces and moments for an element (Chapter 3) 

g1-4 Functions of geometric distances between elements (Chapter 5) 

g Vector of modal coordinates and parameters of interest (Chapter 4) 

h Wavenumber (Chapter 3) 

h Undeformed distance between two surfaces (Chapter 5) 

i Imaginary unit, 1− (Chapter 3) 

k Stiffness (Chapters 3, 4) 

k Distance between element centres in two-dimensional contact (Chapter 5) 

k′ Stiffness per unit length (Chapter 3) 

kH Hertzian contact stiffness between wheel and rail (Chapter 4) 

k Stiffness matrix for an element (Chapter 3) 

l Vehicle axle spacing (Chapter 4) 

m Mass (Chapter 3) 

m′ Mass per unit length (Chapter 3) 

md Damper mass (Chapter 3) 

ms Half sleeper mass in finite element model (Chapter 3) 

m Mass matrix for an element (Chapter 3) 

p Normal pressure on element of contact 

p0 Maximum normal pressure at centre of Hertzian contact (Chapter 5) 

q Tangential stress on element of contact 

q Modal displacement vector (Chapter 3) 
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r Rail roughness profile (Chapter 4) 

r Radial distance to centre of Hertzian contact (Chapters 5, 6) 

s Slip  

t Time  

t' Time at previous time-step  

u, uz Displacement in vertical direction  

ux Displacement in longitudinal direction  

u′iτ Tangential displacement difference at previous time (Chapter 5) 

u Displacement vector for an element (Chapters 3, 4) 

v Velocity  

x Longitudinal direction 

x′ Position in the contact relative to the centre at x (Chapter 4) 

y Lateral direction 

y Matrix assembled from u and u&  (Chapter 3) 

z Vertical direction 

z(x′) Circular profile of wheel for contact filter (Chapter 4) 

z1,2 Undeformed surface profile of body 1, 2 (Chapter 5) 


 Decay rate (Chapter 3) 

∆t Time increment 


v Relative velocity between two surfaces  


x Distance increment  


x Length of element in potential contact area (Chapter 5)  


y Width of element in potential contact area (Chapter 5) 

∆ω Relative angular velocity between two surfaces in contact (Chapter 5) 

α Receptance (Chapter 3) 

β Parameter used in Timoshenko beam finite element theory (Chapter 3) 

γ Non-dimensional slip in wear model (Chapter 7) 

δ Approach of distant points in two contacting bodies 

ζ Damping ratio (Chapter 3) 

η Damping loss factor (Chapter 3) 

θ Rotation in x-z plane 

κ Timoshenko shear factor (Chapter 3) 

µ Coefficient of friction 

µs Static coefficient of friction (Chapter 7) 

µd Dynamic coefficient of friction (Chapter 7) 
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ν Poisson’s ratio  

ξ Local coordinate in x direction along rail element (Chapter 4) 

ξ Longitudinal creep ratio (Chapter 6) 

ρ Density 

ϕ Eigenvector (Chapter 4) 

ψ Global roughness growth rate (Chapter 8) 

ω Circular frequency, angular velocity 

ω0 Natural frequency (Chapter 3) 

 

C.1 Common Subscripts 

r Rail 

p Rail pad 

s Sleeper 

b Ballast 

d Rail damper 
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