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METRIC PROPERTIES OF OUTER SPACE

STEFANO FRANCAVIGLIA AND ARMANDO MARTINO

ABSTRACT. We define metrics on Culler-Vogtmann space, which are an

analogue of the Teichmdiller metric and are constructenpustiretching
factors. In fact the metrics we study are related, one besygranetrised
version of the other. We investigate the basic properti¢gisede metrics,
showing the advantages and pathologies of both choices.

We show how to compute stretching factors between markedanet

graphs in an easy way and we discuss the behaviour of stngtfadgtors
under iterations of automorphisms.

We study metric properties of folding paths, showing thaytare
geodesic for the non-symmetric metric and, if they do nogettte thin
part of Outer space, quasi-geodesic for the symmetric metri
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Culler-Vogtmann space, or Outer Space as it is sometimésdcdias

been the subject of intense study. Much of the direction &fwork has

been to develop a theory for Outer Space, and the Outer Aufurison
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group of a free group in an analogous way to the theory of Teidler
space and the mapping class group of a surface.

Our contribution to this effort is the study of a metric whiisha clear
analogue of the Teichmuller metric, with the goal that theortant features
of both Outer Space, and the automorphisms of a free groupagterred
by the geometry of this metric.

After recalling the basic definitions in sectibh 2, we speohs in sec-
tion[3 time defining and understanding the “one-sided” mefrom which
our metric is obtained by a “symmetrisation”. In fact, a spkcase of this
one-sided metric (where the objects are a rose, and its innager an au-
tomorphism) is a quantity that has appeared in the work ofoegh, [C],
where it is shown that the value is computable in double egptal time.
As part of our efforts to understand our metric, and simpfifgny of the
proofs of its properties, we show that the calculation isstderably sim-
pler, Proposition 3.15, so that the calculation for a rostsally linear.

We then study the metric itself in sectidbh 4, and show thatrtiedric
topology is the same as the usual length function topolagwedl as show-
ing that the metric is proper; closed balls are compact mgpace. This is
one advantage the symmetric version of the metric has oeartBymmet-
ric version, since for the one-sided metric not only are @gsequences
not always convergent, but also points whgttouldbe at infinite distance,
namely points on the boundary of outer space, are actudilyit distance
from points in the interior of outer space.

Sectiori b is concerned with the connection between the gepofeuter
space and the properties of the automorphisms of a free g&psggifically,
we study the behaviour of “folding paths” and their metriopperties. It
is fairly straightforward to show that these paths are gsimddor the one-
sided metric, but it seems to be much more difficult to show they are
even quasi-geodesics for the actual metric. However, tfaddag paths
are shown to have good properties, such as the “4 point gydpdefined
in Theoren _7.B.

In sectiori6 we show with an example that outer space, eqdipfib the
symmetric metric, is not a geodesic space. We want to stezssthat such
example was suggested to the authors by Bert Wiest and y@Gaulbois
when a previous version of this paper was posted on the arxiv.

In sectiorL¥, we show that if folding paths remain within thigi¢k part”
of Outer Space, then they will be quasi-geodesics which esalt, defini-
tions aside, that it very intuitive. We finish, in sectidn 8 &lyowing that
for an automorphism of exponential growth, the map fidno outer space
which sends an integem,to then'" iterate of a given point under the auto-
morphism is a quasi-isometry. Interestingly, while thisuigis clearly false
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for automorphisms of polynomial growth, we show that for dipalar ex-
ample of polynomial growth automorphism, the folding padtween the
rose and aimage of the rose under an (arbitrary) iterateectkomorphism
is a quasi-geodesic with uniform constants.
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2. PRELIMINARIES

We refer the reader to [11] for an excellent survey and refsgerticle
to Culler-Vogtmann space.

Our basic objects are finite marked metric graphs of somengiaak
n. A graph of this type is represented as a metric gra@phthat is, with
a positive length assigned to every edge - and a marking/hich is a
homotopy equivalence from the rose witlpetals R, to A,

Ta: Ry — A

We shall make the standard assumption that vertices hagroaht least
three. Nonetheless, we notice that it is sometimes connetoellow ver-
tices of valence two. When it is clear from the contest, we mat specify
whether we use bi-valent vertices.

Two marked graph# andB are equivalent if there is a homothely;,
A — B, such that the following diagram commutes up to free homgtop

h

B
W, S

Alternatively, we could only consider metric graphs of vokl 1 and
then the equivalence would be given by isometries in pla¢deofotheties.
In either case, the resulting space of equivalence classealled Culler-
Vogtmann space of rank orC\j, (when bi-valent vertices are allowed, two
marked graphs are also equivalent if they have a common Baibelivi-
sion.)

A

Remark 2.1. In the following, if there are no ambiguities we will not dis-
tinguish between a marked metric graph and its class.
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When we will need to be precise we will refer to a metric grapraa
element of the unprojectivised i;\and to its class as an element of £V

Given any marked graph, we can look at the universal cové which
is anR-tree on whichmy (R,) acts by isometries, via the marking. (From
now on, we identify the free group of rankF,, with the fundamental group
of R,.) Conversely, given any minimal free action Igf by isometries on
a simplicial R-tree, we can look at the quotient object, which will be a
graph,A, and produce a homotopy equivalenge R, — A via the action.
Equivalence of graphs i@V, corresponds to actions which are equivalent
up to equivariant homothety.

Thus, points InCV,, can be thought of as equivalence classes minimal
free isometric actions on simplici&-trees. Given an elementof F, and
a pointA of the unprojectivise@€V;, with universal covelia whose metric
we denote byls, we may consider,

|a(w) := inf da(p,wp).

It is well known that this infimum is always obtained and tHat,a free
action, it is non-zero for the non-identity elements of tmeup. In this
context,la(w) is called the translation length of the elemenh the corre-
sponding tree and clearly depends only on the conjugacyg ofas in F,.
Thus for any pointA, in C\j; we can associate the seque(igg¢w) )wer, and
itis clear that equivalent marked metric graphs will progltwo sequences,
one of which is a multiple of the other by a positive real num(tiee homo-
thety constant.) Moreover, it is also the case that inedgmtgoints inCV,
will produce sequences which are not multiples of each ditjeirhus, we
have an embedding @V, into R™/ ~, where~ is the equivalence relation
of homothety. The spadgV, is given the subspace topology induced by
this embedding.

Finally it is clear we can realise any automorphiggmoef F, as a homo-
topy equivalence, also callegl of R,. Thus the automorphism group B&f
acts onCV,, by changing the marking. That is, given a padiAtta) of CV,
the image of this point undegis (A, TA9).

/TA

Ri—= Ry —2> A

Since two automorphisms which differ by an inner automasphalways
send equivalent points i@V, to equivalent points, we actually have an ac-
tion of Out(F,) onCV,, and this space is often call€@lter Spacdor this
reason.
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3. CALCULATING STRETCHING FACTORS

Given two marked metric graph8, andB with fundamental group free
of rank n, we would like to compute the distance between them and, as a
first step, the “right hand distance” between them, defindlbsvs.

Definition 3.1 (Right hand factor) For any pair A B of marked graphs we
set

. ls(wW)
A SR Tt

Recall thatlo(w) is the translation length of the element corresponding
to w in the treeTp (and hence is dependent only on the conjugacy class of
w). However, it is readily seen that this translation lengtthie same as the
length of the shortest representative in the free homottagsof loops in
A defined by the (conjugacy class @f) We note that this second definition
means thata(w) is easy to compute given a particular we look at the
image ofw in A via the marking and we “cyclically reduce” the loop in the
graph by performing free cyclic reductions which may, of rs@y change
the basepoint. The length of any cyclically reduced elenretiis sense,
calculated simply by summing the lengths of the edges cdpssél be
Ia(w). We shall also usk, to refer to the lengths of (free homotopy classes
of) loops inA in the obvious way. We also note that saying a loop\iis
cyclically reduced is equivalent to saying that, if we calesithe loop as
a map from the circle to the graph it is an immersion. In theesapirit,

a path is reduced if it is an immersion when considered as afroapa
closed interval.

While finding lengths of elements with respect to a markedimgtaph
structure is straightforward, that does not indicate howcatculate the
supremum given above. In order to do that, we need to relatestrnc-
ture to the other. One way to do this is to find an equivarianp finam
A to B, which we can simply think of as a homotopy equivalence betwe
the graphs, which respects the markings. That is, a imfgy which the
following triangle commutes up to free homotopy,

f
B
., S

In other words,f is a map homotopic to;l followed by1g, f ~ Tgtgl.
It is important to note that this is not a graph map in that edage not
necessarily sent to edges nor vertices to vertices. We vatiefore restrict
to a particular class of maps that are more easy to handle.

A
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Definition 3.2 (PL maps) A map f: A— Bis a PL-map if it is linear on
edges. More precisely, for each edge e of A, if we parametéfiswith the

segmenti0,la(e)], then fle has constant speed. We denote by the speed
of f|e (the stretching factor of e.)

The stretching factor of a PL-mafy defined as the maximal speed of
f, is in fact the Lipschitz constant df. We denote that quantity b$;
(the notationL¢ for the Lipschitz constant is more natural but also more
confusing since we already have lengths denoted by the I¢tte

St = max{St ¢ : eedge ofA} = Lip(f)
In general, givert, there is a unique PL-mapwhich is homotopic tof
and agrees with on vertices. It is readily checked that

(1) Sr=Lip(f) <Lip(f).

A useful observation one can make here is thpt f) serves as an upper
bound forAr(A,B). This is because, starting with a loggn A, it is clear
that

Is(f(y)) < Lip(f)Ia(y).

Since we can consider all loops which are cyclically redunedthis means
that,

Ig(w) < Lip(f)la(w),forallwe R,
and we hence proved
Lemma 3.3. For any Lipschitz map f A — B in the homotopy class of
BTt
ls(w)

AR(A,B) = su < Lip(f).
R(AB) S W) p(f)
Sincef is arbitrary, and because (i), we can deduce that

)
(2) Ar(AB)= sup
(AB) 14wek, |A(W)
It is fairly clear that the infimum on the right hand side of atjan[2 will
be realised by an actual map.

<inf{St : f is PL andf ~ 151, }.

Lemma 3.4. Let A B two marked metric graphs. Then there exists an-f
8T, such that

St, =inf{Sf: f PLand f~1g1,1} = inf{Lip(f): f ~ 151, }.

Proof. For anyc, the set ofc-Lipschitz maps fromA to B is precompact
by Ascoli-Arzela theorem becaug&eis compact. Therefore a sequence of
mapsf,, whose stretching factors tend to the infimum has a convesgdn
sequence whose limit i, and it is easily checked th&, = inf{S;,}. O
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Remark 3.5. Previous lemma holds in a more general setting of spaces of
length functions (e.g. actions on real trees.)

Remark 3.6. Equationgl an@]2, and Lemrha13.4 tell us that from now on
we can, as we do, assume that any map is a PL.

Now note that there are two obstructions to making equaiian qual-
ity. While we may realise the infimum by a concrete mapywe may still
have that for a given loop not all edges oy may be stretched by the same
amountS;. Thus we need the collection of edges which are stretched max
mally to be large enough as to contain a loop. Furthermoes) éwe have
such a loopy, the imagef (y) may not be cyclically reduced iB. However,
if we have a cyclically reduced loop,in A, all of whose edges are stretched
by S¢ and such thaf (y) is cyclically reduced irB, thenAr(A,B) = Ss. It
will turn out that there always exists a méamnd a loopy with these prop-
erties. Before going into details, we need some prelim@sari

Definition 3.7. Let A B be marked metric graphs of rank n. Given a PL-
map f~ TBT;1, we denote by flax f) the subgraph of A whose edges are
stretched maximally, by;S

Definition 3.8 (Optimal maps) A PL-map f~ Tgrgl is NOT optimal if

there is some vertex ofA( f) such that all edges of iy f) terminating

at that vertex have f-image with a common terminal partiajead
Otherwise f is optimal.

Remark 3.9. Using the terminology of legal and illegal turns, a PL-map is
optimal if each vertex of fux has at least one legal turn.

Suppose that a maip~ TBT;1 is not optimal. Let/be a vertex 0Amax( )
such that all edges @nax f) terminating at havef-image with a common
terminal partial edge, say. Let stafv) denote the set of edge emanating
fromv. We setN = starv) N AmaxandK = star(v) \ N.

Now, let f; be the homotopy that movesackward alongx. More pre-
cisely, we lefr : Ax [0, T] — B be the homotopy such tht=F (-,t) : A—

B is the PL-map that agrees withoutside staiv) and such thaf;(v) € a
with d(fi(v),a) =t. Such a homotopy exists for small Moreover, for
smallt we have:

(1) For anyeg € N and anye; € K, St g, < St g-
(2) e EitherSy, = St andAmax( ft) C Amax(f) (but not equal.)
o Or Sy, < St andAmax( ft) = Amax( ).

Definition 3.10. Let fy be the supremum of times t such thaexists and
has the above properties. We define NgXtas .
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Note thatNext(f) can be defined only for non-optimal maps. We can
now prove that the inequalifyl 2 is an equality, as was firsv@doby Tad
White.

Proposition 3.11. Let A B be marked metric graphs of rank n. Then there
exists an f~ TBT;1 and a cyclically reduced loog contained in Aqax
the subgraph of maximally stretched edges of A, whose fanmglso
cyclically reduced. In particulay\r(A, B) = S for this map f.

Proof. By Lemmal3.4, we may choose a mépvhose stretching factor is
minimal. Moreover, we may choose such a map with the leastyeurof
edges iMnax( ). HenceNext,(f) cannot exist, and therefoffeis optimal.
This means that any path, in Amax f) which is mapped to a reduced path
by f can be continued to a longer path, which is also mapped tothamge
reduced. This is because the obstruction to continyirg exactly non-
optimality of f. Starting with a single edge, and since there are only finitel
many oriented edges Minax( f), we can find a reduced path of the foege
which is mapped to a reduced path by It is then clear thay = eqis a
cyclically reduced loop, which is mapped to something @ally reduced.
Moreover,|g(y) = Stla(y), and hencé\r(A,B) = S as required. O

Actually, one can do better.

Definition 3.12. Let f: A— B be a PL-map. For any sub-graph Af A, we
defined; Ag the f-boundary of Aas the set of vertices v opAuch that all
edges of Aterminating at v have f-image with a common terminal partial
edge.

So, for example, a map is optimal if and onl\ifAmax = 0.

Proposition 3.13. Let A B be marked metric graphs of rank n. Then there
exists an f~ TBT;1 such that, ifA1 > --- > A are the stretching factors of
edges, if Adenotes the sub-graph of edges stretched; bthen for all i

0tA C Ai_1.
(So, heuristically, Ais a cycle relative to A1.)

Proof. Once one founds optimal maps as in Proposifion]3.11, choese b
tween them one that has the smallesandA,, argue as in Proposition 3]11,
and conclude inductively on O

We note that implicit in the proof of Propositidn 3|11 is a girdhat
AR(A, B) is computable. Namely, the pagiproduced at the end of the proof
can be chosen minimally, and so we may assume that it pagseglhheach
oriented edge at most once. There are only finitely many satttspand we
may compute their lengths lhandB (without reference td) as well as the
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maximum of the ratio of these lengths. By the Propositiois thaximum
will be exactlyAr(A, B). However, the number of sughwill be exponen-
tial in the number of edges. We will now show that it is alwaygsgible
to find a “less complicated” loop which will cut down the computational
complexity considerably.

We will approach this problem in two steps, and the idea &f tesult is
that we want to reduce the complexityyadis a loop irA. We always have in
mind an optimal mag, and so we will assume thaties in Anax. We shall
attempt to simplify by cutting and gluingto itself. Since we will only use
edges that were already ynwe ensure that our loops are always contained
in Amax In order for the cutting and pasting to result in loops whstiti
give the value fo\r(A, B), we need to make sure that the resulting image
in B is cyclically reduced. Therefore we always need to keep imdntihat
we are working at two levels. On the one hand we have a pabought
of as a map from the circle #& (Amnax in fact). We then compose this map
with f and the resulting loop iB is an immersion. For the first step of our
result, we prove the following “Sausages Lemma”, which shgswe may
take ay which realiseg\r(A, B) and whose shape i#ahas in Figuréll.

OO OO

FIGURE 1. Sausages

For any oriented pathhwe denote by its inverse.

Lemma 3.14(Sausages Lemmal.et A B be marked metric graphs of rank
n, and let f~ TBT;1 be an optimal map. Then there exists a lgoguch
that Is(y) /1a(y) = St = Ar(A, B). In particular,yis cyclically reduced in A
and in B via f. Furthermorey is a sausage, i.e/ = y1y2> where eacly; is a
path in A that can be parameterised wjth 1] in such a way that

¢ y; andy», are embeddings;

e there exists a finite family of disjoint closed intervajsd (0, 1),
each one possibly consisting of a single point, such thét) =
y2(s) if and only if t=s and t belongs t¢0, 1} Uj I;.

Proof. The content of the result is that= y; Y2 with the specified properties,
since everything else follows from Proposition 3.11. Thil fellow from
two sublemmas. First we establish some notation. We shak tif y as a
map fromS! to A and also, via, as a map fron$' to B. We shall subdivide
St to give it a graph structure and so that edges map to edgBs For
simplicity, although it isn’'t really necessary, we shalsae that all the
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vertices ofA map to vertices oB, which we can arrange after a suitable
subdivision.

5, 5,

FIGURE 2. Triple Points

Our first sublemma says that if three distinct pointStrhave the same
image inA, then we can choosgto be shorter (in botiA andB.) To do
this, we look at three points i mapped to the same point#& Thus we
decomposg asd16,03 as in the picture above, where the endpoints of each
0, map to the same point iA. Our first attempt is to try to replagewith
one of thed;, each of which is clearly a shorter pathAnand each of which
maps to a reduced path By The only way that this can fail is if eadh
maps to a reduced but not cyclically reduced patB.iiThis means that we
can write,

0 = €...6
» = .6
3 = €3...83,

where we are writing each; as a concatenation of edgkedelledby the
image of that edge iB. Thus we are saying that the image &fin B
begins with an edge; and ends with the inverse edge However, we
know thaty is immersed irB, so thate; # e,. In particular, this implies that
the loopd10, is immersed irB, and we are done.

For the second sublemma, we will show that we can avoid argsku-
ble points iny. That is, if we can writey as a concatenatioby 5,8384 in St
such that the initial points a¥; andd3 have the same image i and the
initial points ofd, andd, have the same image & then we may replaceg
by a shorter path (shorter in bofhandB).

Now we try to replacey by one of the path$;d;,1 (subscripts taken
modulo 4). If any of these map to cyclically reduced loop®Binve are
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FIGURE 3. Crossing Points

done. Otherwise, we get that,

010 =
003 =
0304
0401

where, as before, this is a concatenation of edgé® iabelled by the im-
ages inB. This implies that

LR K

I
LI P

6i =6...§13,
with subscripts taken mod 4. Since we know tihas immersed irB, we
must have thae; # es andey £ 4. Thus it is clear that the loop; 03 is
immersed irB, and hence we have proven the second sublemma.

For our third and final sublemma, we wish to remove all “baangles”.
This may be slightly confusing terminology, but we wish to@\the situa-
tion wherey is the concatenation of 6 paths, where alternating pathssn t
decomposition are closed (and the other 3 form a, not netlgssabed-
ded, triangle). Formally, let us assume that we can write

Y = 010203040506,

whered;, d3, 05 are closed paths, and show that this means we can shorten
y. Note that if any of the pathg;,ds,d5 are immersed iB then we are
done, simply by replacing. So let us assume that none of these subpaths
are immersed. Using similar arguments as before, this eaphatd,040¢
is a closed path which is immersedBrand we are done.

Armed with these sublemmas, we may remove all triple poaitsross-
ing points and all bad triangles since there are only finibeyny loops less
than a given length i\ (or B). We subdividey into edges and vertices,
labelled by their image iB. Clearly, the labelling need not be unique since



METRIC PROPERTIES OF OUTER SPACE 12

y need not be embedded, however since we have removed &l pajphts
each label may occur at most twice. If each label occurs gniseembed-
ded and we are done. Otherwise, choose an "innermost” pagrtites in
y with the same label. That is, choose such a pairand one of the paths
between themd so thatd embeds irB except at the endpoints.

Since we have removed all bad triangles, there are at moshtveomost
such pairs (in fact there are exactly two, if we also keepktiaicthe path
between them and remember that we are assuming thaot embedded).
For each innermost pair, choose a point between them (ieheogpecified
path). So we now have two points grand therefore two subpathg,, y»
between them ang= y,Y>. Since we have no bad triangles, bgtrandy-
must be embedded B We have also divideg and hence its subpaths, ac-
cording to the image iB and use this parameterisation to finish the Lemma.
Namely, the disjoint intervall correspond to edges or verticesBivhich
have more than one pre-imageyinSince we have eliminated all crossing
points iny, the intervald; appear in the same order in bgthandy, are we
are done. O

The final step in simplifying our looy is to move from a collection of
sausages to at most two.

Proposition 3.15.Let AB € CV,, and let f~ tBtgl be an optimal map.
Then there exists a loopwith Ig(y) /1a(y) = St = Ar(A, B) so that either

O. yis a simple closed curve in A,

00, yis an embedded bouquet of two circle, iye= y1y2, wherey; are
simple closed curves which do not meet each other, exceptiat a
gle point, or

0O-0. y=V1Y3Y2Y3, Wherey; andy. are simple closed curves which do not
meet, andys is an embedded path that touchgsand y, at their
initial points only.

In particular, there exists a finite set of loogds,in A so that g(y)/Ia(y) =
ARr(A,B) for somey € I and the sel’ can be chosemdependentiypf B.

Proof. We shall start by taking the loop= y1Y2 supplied by Lemmpa_3.14.
If the family of intervals{l;} is empty, thery is a simple closed curve; if
it consists of a single intervaltheny is either an embedde®- or O—O-
curve, depending whethéris a single point or not. In these cases we are
done.

Suppose that the familyl;} contains at least two intervals. We show
how to reduce to the case of only one interval. [s&eb] and|[c,d] be the
two extremal intervals ofl; }; namely, suchthat&@ a<b<c<d<1and
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noljin (0,a)uU(d,1). We replace the loog, with the following

Ya(t) t<b
S(t) = yi(t) te (b
Ya(t) t>c

Note thatd, is embedded i\ becausey (t) = yo(s) if and only ift = s
(by Lemmd3.14.) Also, thé-image ofd, in B is reduced because of the
same reason and because thienages of bothy; andy, are reduced. The
new loopy = y18; is therefore a sausage-loop satisfyipy) /Ia(y) = St =
NR(A, B), and the cardinality of thg’s is now one. O

Another interesting consequence of Proposition]3.11 is/tkas always
defined and finite. We notice that this can also be provedtijrasing the
immersion of paths in the space of geodesic currents. Indeedpace of
geodesic currents is compact, and lengths are continutesr lfunctionals,
so the ratio of two length functionals always has maximum mnmdmum
realised by some current. In particular the maximum is fiaitd the min-
imum is non-zero, and we have additionally proved that ieslised by a
rational current.

4. METRICS

We are now in a position to define a metric©x, and our starting point
will be Definition[3.1. In fact we have both left hand and rigtand dis-
placements (whose existence is guaranteed by Propdsifidra8d the pre-
ceding discussion.)

Definition 4.1 (Right hand left factors)For any pair A B of marked metric
graphs of rank n we set:

A= p [T A e (=B

Remark 4.2. Since | embeds in the space of geodesic currents as a dense
sub-space, we could equivalently deffing and A taking the supremum
over the space of currents.

The reason that we wish to use ba@th and/\_ is that they are not sym-
metric functions and hence if we wish to define a genuine memiC\V,
we will need to use both of them. We are now ready to define thdermn
CWh.

Definition 4.3 (Distance) For all A,B € CV,, we define
A(A,B) := Ar(A B)AL(A B).
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Thedistancebetween A and B is then given by,
d(A,B) =logA\(A,B).

The first remark is that if we scale the length functibgandlg by posi-
tive numbersd(A, B) remains unchanged. So it is well-defined@w, with
values (a priori) inf—oo, co].

Proposition_3.11 shows in fact thd{A,B) is always finite (which is
straightforward using currents,) but we still need to shioat it is indeed a
metric. We begin with an elementary observation.

Remark 4.4. Given a positive real valued function, f,
<u 11
P ~inff)

Moreover,supTlx) exists if and only ifnf f (x) exists and is non-zero.

This has an easy but interesting consequence for us,

Lemma 4.5. )
W
SURL£weF I:(w)

inf1 wer %

A(AB) =

Proof. Apply the previous remark tl;g%, noting thatA\r(A, B) always ex-

ists. O
It is now immediate thadl will be a non-negative function,

Corollary 4.6. For all A,B € C\i,, A(A,B) > 1 and hence @A, B) > 0.

Next we need to show that is only zero when the two entries are the
same point oCV,.

Lemma 4.7. Given AB € C\,, d(A,B) = 0if and only if A= B.

Proof. Thinking of C\,, as a space of length functions, it is clear that if the
two functions] 5 andlg differ by a multiplicative constant, theh(A,B) =1
and sod(A,B) = 0. Conversely, ifd(A,B) = 0 then after rescaling (by
AR(A,B)) we get thata = I. O

Lemma 4.8 (Triangular inequality) For all marked metric graphs AB,C
of rank n
d(A,C) <d(A,B)+d(B,C).

Proof. Forany 1 g € F,
Ar(A,B)AR(B,C)

AVAR
g
()
Ohe
a ik
ez
y
> |
=
w
c
=
'S
s
m
g
=
<
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Thus/Ar(A,B)ARr(B,C) > Ar(A,C). Using the same argument o , we
have verified the triangle inequality fdc U

Since the functiord is clearly symmetric, collecting previous lemmata
we have a proof of

Theorem 4.9. The function dA,B) = log/\(A, B) defines a metric on GV

Remark 4.10. It is straightforward that automorphisms of the free group
act by isometries on G\Wvith respect to d.

Armed with the metric above, we clearly need to verify thattbpology
it gives is the same as the one we already hav€yn

Theorem 4.11(The topology) The topology induced by d on CV is the
usual one.

Proof. First of all, recall that marked metric graphs are charaszer by
their translation lengths, so elements@, are characterised by the pro-
jective classes of their translation lengths.

We show that the two topologies have the same convergingeseqs,
that being enough since both topologies have countablesbase

First, we show that iti(Ax, A) — 0 thenAy — Ain CVW,. If d(A,A) — 0,
then by Lemma@&4]5 the function

su

o la /1)
uniformly converges to 1. Therefore, up possibly to rescalla, — |a
pointwise, and thudy — A as elements dt .

Conversely, ifAx — A as elements o€V, then, up possibly to rescaling,
Ax — A as marked metric graphs. Therefore, there dxjst- 1 andhy-
Lipschitz functionsfy : Ax — A andg : A — A¢ in the homotopy classes
corresponding to the markings. Therefore, Lenima 3.3 (andnialogous
for AL) impliesd(Ax,A) — O. O

Theorem 4.12(Completeness)or any Xe CV;, any closed d-ball centred
at X is compact. Whend€V,,d) is complete.

Proof. Let {A;} be any sequence BV, such thad(X,A) < e}. We show
that it has a convergent sub-sequence. By hypothesis we have

su

>Hlla/1x) <R
and, up to possibly scaling the metricAf we can suppose iflfy /Ix) = 1.
Therefore{sup(la /Ix)} is a bounded sequence, and a diagonal argument
now shows that, up to possibly passing to subsequehgdsas as point-
wise limit that we denote bY.,. Since the closure of Outer Space is the
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space of “very small actions” [7]/ [2], [5]. corresponds to a transla-
tion length function of a minimal isometric action of thedrgroupF, on
anR-tree. Since the infimum of functions is upper semicontirsjtw is
bounded below away from zero. We show in Lenimal4.13 that thydies
that the action given b is actually free on a simplicial tree, and corre-
sponds therefore to a poiAtof CV,, which, by Theorerh 4.11 is the limit of
{A}. O
Lemma4.13.Let| be the translation length function of a minimal isonetr
action of the free groupfon aR-tree T. Ifinfl > c > 0then T is simplicial
and the action is free.

Proof. The fact that the action is free is obvious siide bounded below
away from zero. Now suppose, by contradiction, that theoadt not sim-
plicial. Then, there is a pointe T and a sequence of segmeagsno three
of them co-linear, such that the sequeresg} of their starting points con-
verges tox. Let R, denote the universal cover of the standard rlaw e.
R, is the Cayley graph of,) with a marked origirO, and letf : R, — T
be a LipschitzPL-map which is equivariant with respect to the actions of
Frnon R, andT. letyk € R, such thatf (yx) = s. Letwy € F, be elements
such thatw(yk) stay at distance less than one fr@n After passing to a
subsequence, we may assume thigly) is convergent irR,, and hence
thatwy(s¢) is convergent ifT . Looking at distances ifi we see that,

d(Wi () Wh(sc)) < d(Wh(Sk), Wh(Sh)) +d(Wh(Sh), Wh(Sk))
d(Wk(S), Wh(sh)) +d(sh), S)-

Hence, from the remarks above, the translation lengtnotwy in T, tends
to zero, a, k — co. Moreover, since the no three of tbg's are co-linear,
the family {wy} is infinite and hencew, ~wy cannot always equal the iden-
tity. This contradicts the hypothesis thas bounded away from zero. [J

Since our metrid is the corresponding of a symmetrised version of the
Thurston metric on Teichmuller space, it is natural to aslathhappens to
the non-symmetric pieces.

Definition 4.14. Given A< C\j, we denote bxb_\ its representative which has
total volume one.

Definition 4.15(Right and left hand non-symmetric metri¢or any AB €
CV, we define
dr:=log(Ar(A,B))  d_:=log(AL(A,B)).

Sinced (A,B) = dr(B,A) we can restrict our study to the right hand
metricdr. The elementary properties require some more work thanen th
case of the symmetric metric.
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First of all, note thad is well-defined for marked metric graph, and it
is scale-invariant, so it descends to a metricQMj. This property does
not hold fordg, however, which is why the normalisation to volume one is
crucial.

Lemma 4.16. For any AB € CV;, the right hand distance is non-negative
and vanishes only if A B:

dr(A,B) >0 and dr(A,B)=0<A=BeCW,.

Proof. Let f : A— B be an optimal map (that exists by Proposition 8.11)
then
3  1=vol(B)=vol(Im(F)) < Ar(A,B)vol(A) = Ar(A,B)

sodr(A,B) > 0. If, for any edgee of Awe denote bya(e) its length (hence
5 |x(e) = 1) recalling that; ¢ denotes the stretching factor @fwe have

(4) vol(Im(f)) = Stela(e) -C

eedge ofA

whereC is a non-negative quantity that measure overlappinds ®here-
fore, if Ar(A,B) = 1, then the inequality of3) is an equality, and fronf)
we getSs ¢ = 1 for all edgese, andC = 0 which together imply that is an
isometry. Thu®A = B as marked graphs, ad= B as elements &@V,,. [

Ordered triangular inequality is already proven in Lemin& go we have
proved

Theorem 4.17.The function g(A,B) defines a non-symmetric metric on
CWh.

As for the symmetric case, the topology induceddpyon CV; is the
usual one.

Theorem 4.18(The Topology) For any sequencéAy} and Ac CV;
d(AA) — 0< dr(A A — 0= dr(A,A) — 0.

Clearly ifd = dr+d_ — O then bothdg andd, go to zero. Suppose that
dr(A,Ax) — 0. Let fy : A— Ay be an optimal map. As i) we have

1=vol(Im(fy)) = ( ka7eIA—(e)> —Cx
e edge ofA

with Sf, e < Ar(A,Ax) — 1 and3 I5z(e) = 1. Which implies thatfy con-
verges to an isometry and therefai@, Ax) — 0. A similar argument works
for whenAr(Ag, A) — 1. O
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The first important difference between symmetric and nansagtric
metrics is that the latter are not complete. Therefore, mega, the fact
that a sequence is a right hand Cauchy sequence does natigeacanver-
gence inCVi.

Theorem 4.19(Incompleteness)The spac€C\i, dr) is not complete. Namely
there are sequencdg\c} such that &(Ax, Axrm) — 0 as k— o« which have

no accumulation point. Moreover, for any@CVj,, and any Be CV;,\ C\,,

one has that\r(A,B) < .

Proof. Let Ag be R, the standardr-petals rose with a uniform metric of
volume one. Lef be the graph obtained by multiplying the metric of one
petal by a factor 1k and normalised to have volume one. Then, a direct
calculation shows

((k+m)n—1)k
(k+m)(kn—1)

which goes to 1 ak — . Thus,{Ak} is a right hand Cauchy sequence,
but its only accumulation point is the standard rose withl petals which
does not belong t&V, — but it can be viewed as an elemen#,.

In order to prove the second statement, one simply consteuet., equi-
variant map fromA to B. This is guaranteed to be Lipschitz, sin&eés in
CV;, (for any choice oB.) WhenceA\r(A, B) is bounded. O

/\R(Ak7Ak+m) =

Remark 4.20. Theoreni_4.19 points out another “pathology” of the non-
symmetric metrics. Indeed, consider a volume-one, marletdagraph A,
and a sequenced®f volume-one, marked metric graphs such thatA, By)
goes to infinity. This can be easily done using iterationsutbmorphisms
(see for instance Sectigh 8.) Then, up to possibly passiagtidsequence,
Bk — B a point inCV;, \ CV,. By Theorenh 4.19 we haver(A,B) < « and
/\R(A7 Bk) — .

On the other hand, right and left hand metrics are more deefated to
folding procedures, this providing an easy descriptionesddgsics.

We note that one interesting consequence of the existertbe ofietric,
is that one can use it to prove the Bounded Cancellation Leofrf&.

The Bounded Cancellation Lemma, first proved by Cooper, isyar&-
sult in the study of automorphisms of free groups. It has mequjivalent
formulations, of which we state one.

Theorem 4.21(Bounded Cancellation Lemma,| [6]L.et A B be marked
metric graphs of rank n, and consider. A — B, a PL map such that £
tBTgl. Let|.|a and|.|g denote the length functions of A and B respectively.
(Note that this is not quite the translation length, sincedsenot cyclically
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reduce). Letr, 3 be loops in A, at a vertex v, such tHaP3|a = |a|a+ |B|a-
Then, there exists a constant K depending only on A and B (aeinoh, 3)
such that,

[f(aB)ls = [f(a)ls+[f(a)ls—2K.
We call K a bounded cancellation constant for the map, f, twiciearly
only depends on f up to homotopy relative to vertices.

We observe that the existence of the bounded cancellatingtaat is
related to our (left) distance.

Proposition 4.22.Given AB and f as above, let be the Lipschitz constant
for f. Then if i isnota bounded cancellation constant for f, we may find
loopsa;, Bi at a vertex v of A such that

(1) [iBila = [aila+ |Bila

(2) |f(aiBi)[s <[f(ai)[s+[f(Bi)[s—2(i — Avol(A))

(3) |f(ai)|s < AVol(A) +i, |f(Bi)[s < AVOI(A) +i.
Moreover, we can ensure thatf; is cyclically reduced in A.

Proof. By hypothesis, we may find loops;, Bi such that|f(aiBi)|s <
|f(ai)|s+ |f(Bi)|s — 2i. This means that there is a terminal segment of
f(aj) cancels with an initial segment ¢{3;) of lengthi (though the can-
cellation may be longer). We can look at the pre-image ofgbgment in

a; andBi. Now, by adding a segment of length not greater thaltA) to
each of these pre-images, we may replac; by paths which are loops,
(which we continue to catk;, 3;) so thata;3; is cyclically reduced irA.

By construction,f(a;) is a loop inB which is the original cancellation
segment of length followed by a path which is the image of something of
length at mosvol(A). Since the image of this terminal segment has length
at mostAvol(A), we know that a terminal segment éfa;) of length at
leasti — Avol(A) survives (and is a terminal segment of the original can-
cellation segment). By a similar argument fiif3;), we may deduce that
a segment of length at least Avol(A) must cancel inf (a;B;). Therefore,

[ (ciBi)[s < | (i) s+ F(ai)|e — 2(i — Avol(A)).

Moreover, by constructionf (a;)|s < Avol(A)+i, | f(Bi)|s < AVOI(A) +i

and we are done. O

Now, consider two loops i®\, a,[3, which are based at the same vertex
of A, such thatif is cyclically reduced anttif|a = |a|a+ |B|a, and with
the additional contidion thati|a, |B|a < 4Avol(A)AL(A,B). Let

[f(@)s+[f(B)s—If(aB)ls
2

since there are only finitely many pairs,3 with the above properties, we
may find a maximunkK of the number«, g.

Ka,g =
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Corollary 4.23. With the above notation, the number+Avol(A) is a
bounded cancellation constant for f.

Proof. Recall that
= inf
AL(AB) W [|w[a
and that/|w|| < |w| with equality if and only ifw is cyclically reduced. In
particular, whenevemf3 is cyclically reduced, we have

feB)s  [If(eB)s . 1
jaBla — [laBlla — AL(AB)
By Propositior 4.22, if is not a bounded cancellation constant fowe
may finda, B such thatiB is cycliclally reduced, the cancellation fr{a()
is greater tham— Avol(A), and|f(a)|g, | f(B)|s < Avol(A) +i.
So we get f(ap)|g < 4Avol(A) and
|£(aB)BAL(A,B) > aBla
whenceja|a < 4Avol(A)A(A,B) and thu, g < K.
Since the cancellation if(af3) is greater than— Avol(A)
[f(aB)le < [F(c)]o+ | (B)]a—2(i — Mvol(A))
whence — Avol(A) < K. O

5. FOLDING PATHS AND GEODESICS

In this section we study properties of geodesics and metoipearties of
folding paths for the symmetric and the non-symmetric rostri
The following lemma provides an easy characterisation otigsics

Lemma 5.1. Lety be a continuous path from an interval b] to a (possibly
non-symmetric) metric space. If for any three points ¥ < z€ [a,b] y
realises the triangular equality

d(y(x), y(y)) +d(¥(y),¥(2)) = d(y(x), ¥(2)),
thenyis geodesic.

Proof. Given a subdivisiora =ty < t; < --- <ty = b of [a,b], the sum
S, d(y(ti—1),Y(ti)) approximates the length gfas the subdivision is finer
and finer. By the triangular equality we get

3, 406-0).90) = (it it) + 3 o). (6)

and inductively we conclude thgts rectifiable and that its length realises
the distance betweeyia) andy(b). O
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Corollary 5.2. Let A,t € [a,b] denote a continuous path in GVSuppose
that for each xy,z € [a,b] there is a loopy which is maximally stretched
both from A to from A and A to A,. More precisely, suppose that
I
Ay(W) _ lAy(y) maXIAZ(W) _ |AZ(V> ‘
wola (W) A (Y) wla, (W) a(Y)
Then A is a dz-geodesic.

Proof. It is immediate to check thal; realises the (oriented) triangular

equality. O
The very same argument gives the following

Corollary 5.3. Let A,t € [a,b] denote a continuous path in GVSuppose

that for each xy,z € [a,b] there are loopsy andn which are respectively

maximally and minimally stretched both from # from A, and A to A,
More precisely, suppose that

Then Ais a d-geodesic.

Remark 5.4. Since d= dr+d_, a path is d-geodesic if and only if it is both
dr- and d -geodesic.

We are now ready to construdg-geodesics using scalings and folding
paths.

Theorem 5.5(Right hand geodesicsfjor each AB in C\;, there is a ¢-
geodesic path between them, that is to say a continuous path\t such

that ckr(A,A) =t and Ay, ap) = B.

Proof. Recall thatA andB denote the volume-one representatives in their
respective projective classes. LfetA — B be an optimal map, letC Amax
be a path realisind\r(A,B). Namely,y is a geodesic irA (i.e. a reduced
path) whosef-image is geodesic (i.e. reduced) By and such thay is
uniformly stretched byf exactly byAr(A, B). The existence of suchand
yis ensured by Propositign 3]11. B

Let A’ be the marked metric graph obtainedApy shrinking each edge
so that it is stretched by exactly byAr(A,B), and letAq the graph homo-
thetic toA’ so thatAr(Ag,B) = 1. We still denote byf the induced map
f:Ayg— B.
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Note that we still have thatis a reduced loop iy whosef-image is
reduced, and that it realises the maximal stretching fattgAo,B) = 1.
Also, note that nowf stretches each edgesAyf exactly by 1 (that is to say,

f is an isometry o edges.)

We describe now a folding procedure that will produce ouidgsec. The
idea is that we never tough so that it will realise the maximally stretched
loop between any two points of the folding, so that we cankev@orol-
lary[5.2. _

First, we subdivide — allowing valence-two vertices — béhand B
so thatf is simplicial (.e. vertices to vertices, edges to edges.) For each
vertexv of Ag andt > 0O let ~ , be the equivalence relation @% defined
by:

X~tvY
if and only if f(x) = f(y) and bothx andy lies at distance less or equal than
t fromv. Let ~; be the union of all relations , asv varies on the set alll
vertices ofAg. Fort > 0 we define

A= AO/ ~ty

we denote byp; the projectiordy — A;, and we denote bf the mapA; — B
induced byf, which is well-defined since ~ , y implies f (x) = f(y) .

For small timeg, A; is obtained fromAg just identifying germs of edges
having the same image undg(local folding.) Lett; be the smallest time
such that a pair of edges 8§ is completely identified i.

Our first claim is that, fot € [0,t1], A; is a metric graph and thdt is an
homotopy equivalence, whenégis a marked metric graph. The fact that
A is a graph is because for any segmem B, f ~1(o) is a finite union of
segments, and therefofg is the result of identifications of a finite number
of segments. The fact thd is a homotopy equivalence follows from the
fact thatf factorises as

fAPrALE
and from the fact thatp ). : Tu(Ao) — T4 (Ar) is surjective. _

Our second claim is now thatrealises boti\r(Ag, A;) and Ar(As;, B).
First note that, as thé-image ofy is geodesic, then also itg-image
is. ThusAr(Ao,A:) is greater or equal to the rati@, (y)/la,(y), which
is one because; is a local isometry on edges, fact that also implies that
AR(A0,A) < 1. ThusAr(Ao,A) =1 and it is realised by. A similar
argument shows that(A;, B) = 1 is realised by.

We argue now by induction. As above, we define relatisqs, v for
each vertex of A, and~_, as their union. Fot > t;, we setA; =
A,/ ~—ty, we letp 1 Ag — A be the projection, andét be map induced by
f.
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As above, itis easy to check that we have thatAg, A) = A\r(A,B) =1
are both realised by

Our third claim is that such a process ends in a finite timeedual since
our folding is isometric on edges, fox swe can bound below the differ-
ence of volumes

vol(A;) — vol(As)

by s—t.
So we must stop at a time, sy Since we stopped, at each vertex the
folding relations are trivial, but this simply means thats an isometry.
Summarising, we have constructed a péaglior t € [0,t] with the prop-
erty that,Ag is in the class of\' as element of\,,, A= Bis in the class of
B as element o€V, and for each Ar(Ag, A;) andAr(A, B) are realised by
the samey. This last property does not change if we rescale &qdb its

volume-one multiplé. Therefore, for eachwe have
dr(A',B) = dr(A, A) +dr(A;,B).

Now, note that for any & s < t <'t, if we construct a folding path from
As to A; following the above rules, we find exactly the restrictiontioé
folding path we build so far. Therefore, the pathfrom Ag to B realises
the triangular equality, and is therefalg-geodesic by Lemnia5.1.

The shrinking procedure fromito A’ also realises the triangular equality
because everything is shrank apts not touched. Finally, if we consider
a pointX betweenA andA’ and a pointY on the geodesic betweéi and
B, again we have that every loop is stretched less thaiA, B) andy is
stretched exactly byA\r(A,B). In conclusionyy always realises the maxi-
mum stretching factor between any two points in the path westtacted.
Such a path is thetdr-geodesic by Corollary 5.2. O

Since itis of independent interest, we formalise the peedéefinition and
notation the folding procedure described in the proof ofaree5.5.

Definition 5.6 (Fast folding paths and turnd)et A B be two marked metric
graphs, let f: A— B be an optimal map, and letp®B as in the proof of
Theoreni 555.

A fast folding paths a path t— A; constructed following the procedure
described in the proof of Theordmb.5.

A fast folding path comes with the simplicial subdivisioms! ahe se-
quence of time® =ty < t; < --- < t such that in eacHt;,ti11] a whole
segment is identified.

Aturnt at a time t of a fast folding path is a pair of edges having a
common end-point and whose germs are identified’fortt. We say that
the turn is folded, or that is a folding turn.
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Remark 5.7. The folding path we constructed in the proof of Thedrerh 5.5
is not unique in general, as in general we can start foldingnatny differ-

ent vertices. This shows thag-@eodesics between points of Cafe not
unique.

We analyse now the local structure of geodesics in the Plctsirel of
CVh.

Definition 5.8 (Simplices of Outer Spacep simplex of CYis a sub-set of
CV,, consisting of all marked metric graphs with fixed topologigae and
marking.

Given a marked graph with edges. . ., &, the corresponding simplex
is identified with the positive cone &K just by assigning the metric, i.e. a
length for each edge:

Ac o« (la(er),...,la(&)).

Similarly, we can assign to each loop, its counting vectamysly, for a
loop¢ let&(a) be the number of occurrences of the edga &; then

§— (&(er),...,&(&)).

This viewpoint generalises immediately to the setting afdgsic cur-
rents (see [9],110],18]) and in fact it is in that setting thiaear structures
arises naturally. Nevertheless, since the use of curremististrictly neces-
sary for our purposes, we stick to the world of loops.

The local linear structures @V, and the space of loops have as conse-
guence that we can handle length as a linear function

LA(E) = (A &) i=((Ia(er), .- .. 1a(&)), (E(er), ... &(&)))
where the last scalar product is the standard orieof

Proposition 5.9. Segments in simplices of g&re dz- and d -, whence d-,
geodesics.

Proof. Let A,B marked metric graphs in the same simplex. & &e a loop
that realises sypdg(w)/la(w). The segment betweekandB is parame-
terised byA; = (1—t)A+1tB (as vectors oRX.) Forany 0<s<t <1 we
have

IAS(W> B (1_S)<A7W> +S<B7W> B (l—S) +S(<B7W>/<A7W>>

The function

1—-t+1tx

X - @
i 1—s+sX
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is monotone increasing far> s. Thus, for anys < t the stretching factor
| a(w)/1as(W) is maximal or€. The thesis now follows from Corollafy 5.2.
O

Example 5.10. Two points of the same simplex are connected by several
geodesics.

Proof. In C\,, consider the simplex of the trivalent graph with a discon-
necting edge (i.e. a O-O graph.) Latbe the vector(1,1,1) where the
middle coordinate is referred to the disconnecting edgeBlze (A, 1,A 1)
with A > 1, and letc = (A,1,1). Lety; be the segment betwednandB.
Lety, be the union of the segment betweandC and the one betwedn
andB. Using Corollary 5.P it is readily checked thatandy. are different
geodesics betweehandB. O

6. THE SYMMETRIC METRIC IS NOT GEODESIC

In this section, we describe an example of two point€Va which are
not connected by d-geodesic.
This example is due to Bert Wiest and Thierry Coulbois.

Consider the outer space in rank two, with graphs normalisdtave
volume one, and where we denote the generators of the frep gfadank
two by a andb. Consider two simplex of maximal dimension@V- cor-
responding to graphs without disconnecting edges (thetphg) such that
they touch along a 1-dimensional simplex correspondingrtsa with two
petals. LetX andY be two points metric graphs, one in each simplex, as
shown in Figuré 4.

Since each 1-simplex disconne@$),, any path betweeK andY must
cross the edge common to the two simplices. We parameteighessige by
a numbein, so that in the graphy the petal corresponding tohas length
a, and the one correspondinghidias length 1- a (see figuré 4.)

By propositiori 5.D alr-geodesic betweeX andY reduces to the union
of two segmentX Ty andT,Y, for somea. By RemarK 5.4, if there is a
d-geodesic betweeX andY, there exist®t such thaX T, UTyY is bothdg-
andd, -geodesic. Itis readily checked théaiy UT,Y is dr-geodesic if and
only if there is a loop which is maximally stretched frotto Ty, from Ty
toY and fromX to Y (so that the triangular inequality become equality.)
The same holds fad, .

We choose nowK andY in a suitable way, we compute tleeso that
XTq UTLY is dr-geodesic and we show that for sughX Ty U ToY is not
d.-geodesic.

We chooseX andY in a symmetric way with respect the common edge:

X: A=1/6 B=1/3 C=1/2
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bquxsl\ % F
length o DQ — length (1—a)

FIGURE 4. The graph,Y andTy

Y: E=1/2 F=1/3 G=1/6

We compute now the right factorsz(X, Tq) andAr(X,Y). By Proposi-
tion[3.1% we have to check only the lengths of the loABsBC, AC.

Loop inX AB BC AC
Length inX 1/2 5/6 2/3
Length inTq a l1-a 1
It /Ix 20 [ 6(1—a)/5 3/2
Corresponding loop iiY EF GF | EFGF
Length inY 5/6 1/2 4/3
ly /1x 5/3 3/5 2
Loop maximally stretched fro toY *

It follows that AC must be the maximally stretched also frofnto Ty,
whence we get

3/2>2a and 3J2>6(1-0a)/5
that is
a < 3/4.

We compute now\r(Ty,Y). By Propositiori 3.15 we have only to check
the loopsa, b, ab,ab™?!
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Loop in Ty a b ab| ab!
Length inTq a l1-a 1 1
Corresponding loop i | EF GF |EG!|EFGF
Length inY 5/6 1/2| 2/3 4/3
IY/lTa 5/6(1 1/2(1—(1) 2/3 4/3

thus, sinceab—! must be the maximally stretched loop, we get
4/3>5/6a and 43>1/2(1—a)

that is
a>5/8 and a<5/8.

We therefore conclude that adg-geodesic betweeX andY must cross
the 1-simplex at the points/g. The completely symmetric calculation
shows that anyl -geodesic must cross the central edge at the plajit
Thus no path fronX to Y can be simultaneouslyz- andd, -geodesics. It
follows that nod-geodesic irCV» joins X andyY.

7. QUASI-GEODESICS

In section[b we have seen how to construct folding paths tteata
geodesic. In this section we address the question of whetloér paths are
guasi-geodesic for the symmetric metric, with constanpedding only on
the rank. In other words, we ask whether two points of outacsan be
joined by a quasi-geodesic with uniform constants.

To start, we recall the definition of a quasi-geodesic path.

Definition 7.1. A path,a : | — X, where | is a real interval an@X,d) is a
metric space, is called @\, €) quasi-geodesic if for every xe I,
1
5 X—yl—e=da(x),aly)) <Ax-y|+e.
The following lemma is tautological.

Lemma 7.2. Leta be a path from an interval to a metric space. Suppose
that there is a constant C such that

d(a(x),a(y)) > C-lengthaly).
Then the arc-length reparameterisation @fis bi-lipschitzian with con-
stants C1. In particular, it is a(C,0) quasi-geodesic.

Theorem 7.3(4 point property) Let AB be two marked metric graph of
the same rank. Lat be a gk-geodesic from A to B constructed as in Theo-
rem[5.5. Then for everys x <y <t we have

d(a(s),a(t)) = d(a(x),a(y)).



METRIC PROPERTIES OF OUTER SPACE 28

Proof. Let us denote by, the length function of the poird(p). We con-
sider the folding paths constructed before the rescalimliame 1, so that
while volume is not constant along the path, for every g, Ar(a(p),a(q)) =
1. Thus, the distance betweetip) anda(q) is exactly the logarithm of
AL(a(p),a(q)) = suplp/lg. Now we look at the points < x <y <t. As

in Propositionn 3.1]1, there existgqavhich realised\ (a(x),a(y)). Next we
realisep as an immersed path a(s). The folding path itself has two parts,
one in which we shrink the lengths of certain edges, and anathwhich
we isometrically identify edges - folding. In either of tlegsarts it is clear
that the length oft can never increase as we travel along the path. Thus,

Is(H) > Ix(H) > Ty(K) > (W)
In particular,

supls/lt > 1s(W) /1t (1) > 1x() /ly(K) = suplx/ly,
and thud(a(s),a(t)) > d(a(x),a(y)), as required. O

Proposition 7.4. Lety be a path with the 4 point property. Suppose that
y is a finite union of pieces which are quasi-geodesic. Thena quasi-
geodesic with constants depending on the constants of doepiand on
the number of the pieces.

More precisely, ifyis the path with the 4 point property which is the con-
catenation of n(A, €) quasi-geodesics, tharis a (nA, ne) quasi-geodesic.

Proof. By hypothesis, there exist numbegs< x; < ... < X, such that/ is

a map from the intervgko, x| and that each restrictioy, ., ,j is a(A,€)
quasi-geodesic (we assume that 1 since otherwise there is nothing to
prove). Now considep < g € [Xo, %], and findi, j such thafp <x <Xx; <q
so thati is minimal andj is maximal (note that> 1 andj < n—1). Itis
clear that,

d(y(p),¥(@) < d(V(p),x)+ 3 bt d(Xsk Xiski1) +A(Y(X)), Q)
A(Xi —p)+A th)_l_l(xwrkﬂ — Xitk)
+AO—X%j)+(2+]j—i)e

A(q—p) +ne.
For the other inequality we note that, using the we have divided the
interval [p, g into at mosi pieces. Thus, one of these pieces is of length at

least(q— p)/n. Now, suppose tha¢ 1 — X+« > (g— p)/n. Then, by the
4 point property,

d(y(p),y(a))

<
<

IN

d(Xik Xi+kt1)
(Xirk+1—Xitk) /A — €
(d—p)/nA —e&.

IV IV IV
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Clearly, the same argument works if either p > (q— p)/norq—Xx; >
(@—p)/n. O

Example 7.5. There are metric spaces with no rectifiable, non-constant
paths having the 4 point property.

Proof. Consider the spade?([0,1]) of the square-summable functions on
[0,1]. Let f : [0,1] — L?([0,1]) be the embedding
t— X[Oﬂ?

wherex|oy denotes the characteristic function of the get]. Letd the
f-pull-back metric orf0, 1]:

d(s;t) =vt—s
It is straightforward to check th&f0, 1], d) has the 4 point property and no
rectifiable, non-constant paths. U

By Theoreni 7.8 and Proposition 7.4, to check whether a rigbtigsic
between two point# and B, constructed as in Theorem b.5, is a quasi-
geodesic (with uniform constants not dependingfosndB,) it is enough
to check whether the fast folding path frokg to B is a quasi-geodesic.

Definition 7.6 (Multiplicities). Let A # B be any point in a fast folding
path. Themultiplicity of a turnt in a loopy is the number 4 (y) of occur-
rences oft turn iny (counted without any orientation.)

Thefolding multiplicity of y is the sum {(y) of the multiplicities of all
folding turns (see Definition 5.6) in

e (Y) = > (V).

In order to use Lemma_ 1.2, we need to estimate the local spead o
fast folding path. A folding path is PL, and therefore smomwtltall but
finitely many points (w.r.t. the PL-structure ©%,.) In particular, the right-
derivative is always defined, and its integral gives theltietagth of the
path.

Lemma 7.7 (Local speed of a folding path) et t— A; be a fast folding
path. Then, its local speed is

21k ()

la(Y)
wherey is a folded loop minimisinga (y) /().

Proof. Recall that in our situation (isometric folding as in Theusts.5,)
we haved = d_. Therefore, for small enough the distance betweeh ¢
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andA; is given by

d{fse.A) = log(sup Ia(€) Ia (%)

=
@)~ PP ) - 2u e
which is thus realised by a loopminimisingla, (y)/1(y). Note thaty can

be always chosen to be simple.
Therefore, the speed (as right-derivative) is given by

im dPceA) oL Ay el Ialy) _ 2i(y)
e MO ) I 2w T
U

Another quantity we need to estimate during a folding procedis the
speed we are approaching the final pddntdefined as the right-derivative
of the distance fronB.

Lemma 7.8(Local speed towarB). Lett— A; be afastfolding path. Then,
the speed at whichiAs approaching B is given by

21k (Y)

(V)
wherey is a loop that realises the maximal stretching factor fromoB\t

Proof. As above, since— A is an isometric folding path constructed as in
Theorem 5.5, we are interested onlydin We have

d(AB) = (A B) = log(%»

During the folding procedure, in the marked grafh the length ofy de-
crease twice the number of occurrences of the folding turrys Whence
the claim follows. O

Now, the aim is to show that the ratio between the speed to®aadd
the local speed is bounded below by a given constant. Indeed, one
could deduce that the hypothesis of Lenimad 7.2 is satisfiélptbviding
guasi-geodesics with uniform constants.

Lemma 7.9. Let A # B be any point in a fast folding path. Lebe a loop
that realises the maximal stretching factor from B o Bhen

He(y) >1

Proof. Otherwisey would be immersed via the optimal m&pused for
defining the folding procedure, which would imgdly (y) = Ig(y), whence
A =B. O

Lemma 7.10. In a fast folding path, for any loop, the quantity iy), as a
function of t, is monotone non-increasing.
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Proof. Let 0=tg < t3... be the subdivision of times. Clearly, nothing change
for t different from thet;’'s. We show that the multiplicity cannot increase
passing trough any’s. Lett = (a,b) be a turn where the segmertsind

b are identified during the interval of ting_1,tj]. The segmenta andb
have one extreme in common, say the starting point. On ther ditind,
the ending points o& andb, sayx andy respectively, must be different,
otherwise the folding procedure would decrease the rankuofnoarked
metric graphs, which is not possible.

The multiplicity, iny, of the turns that already exist fore (tji_1,tj) is
unchanged. So we have to check what happens to the new teatsdaiby
the folding. Those are pair of segmeatsandb’ havingx andy as starting
points, and identified by the optimal map. L{¢h;,bj)} be the set of turns
folded fort € (tj_1,t;) whose ending points aseandy.

The multiplicity of the turn(&,b’) counts how many timeg passes
trough the turn. But any times thgtpasses trouglia’,b’) must passes
trough one of theaj, bj)’s as well. So the total sum is not increased.[]

Definition 7.11(e-thin part) Thee-thin partof CV4 is the set of marked met-
ric graphs having a loop shorter thanin the volume-one-representative.
In other words, the class a marked metric graph A in,@¥s in thee-thin
part if
|a(shortest loop of A
<€
VOlA
Otherwise, we say that A lies in thehick part

Lemma 7.12. There is a constant & 0 such that for any fast folding path
t — A, if A; never enters the-thin part, then the ratio between the speed
approaching toward B and the local speed is bounded below-lgy C

Proof. Since our folding procedure is isometric, if, starting frégmwe fold
during a timeT, then the volume of; is decreased at least By

T <vol(A;) —vol(B) = vol(A;) — 1.

On the other hand, the length of a given loop is decreased by

t+T
Ia () —IB(y) =2 \ Hs(y) ds< 2T e (y)

where the inequality follow from Lemma 7J10.

Now, lety be a loop realising the maximal stretching factor frBrto A;.
Since vo[B) = 1, the length ofy in B is less than 2 (because of Proposi-
tion[3.15.) By the above inequalities it follows that

Ia (Y) < 21 (y) vol(Ar).
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Let y, be simple a loop minimisinty, (w)/pk(w). The ratio between the
approaching speed towaRdand the local speed is, by Lemmatal 7.7 7.8

L (Y1) e ()
L (Y)He (Y1)
which is therefore bounded below by

Ia (Y1) S | o, (Shortest loop of)
2volAk(y1) — vol(A)
whereC is a constant depending only on the ramctually, the constant
C depends on the fact thgt(y1) is bounded above, depending on the rank,
because; is a simple loop.
Therefore, the ratio between the approaching speed to#aadd the
local speed is bounded below Gye if A lies in thee-thick part ofCV,. [

An immediate corollary is the following

Theorem 7.13(Folding paths are quasi-geodesiEpr anye > 0 there are
constants KL depending only om and the rank of Cysuch that for any
two marked metric graph A and B whose corresponding fastrfglgath
t — A from Ay to B (notation as in Theorem 5.5) stay in thehick part,
there is right-geodesic between A and B which {&aL )-quasi-geodesic.

Proof. LemmalZ.1R implies that the hypothesis of Lenima 7.2 is sadisfi
By Theoreni 7.B and Propositibn 7.4 the claim follows. O

8. ITERATING AUTOMORPHISMS

Here, we study the behaviour of the orbits of automorphisitisr@spect
to our metrics.

Theorem 8.1.Let® € Aut(F,) be an automorphism of exponential growth.
Then for any Ac CV, the sequenc®"A is a quasi-geodesic as a map from
7. — CVh. Moreover, if A is a train-track for, then it is a g-geodesic.

Proof. If ® has exponential growth so do@s? (this is a consequence of
the existence of the relative train track representativg8]g That means
that SUR ek, | (®"(W))/I(w) > ke for somek > 0 andc > 1, where the
lengthl is calculated in any fixed rose (and the same holdstiot.) We
have

su | A(PMH M) Ia(P"W) Ia(PYW) (M) I(w)

Loty AO™W)  Loate, AW wer, (@MW) (W) Ta(w)

In the last term of above inequality, the first and the lastdiecare
bounded below by constants becasiges at finite distance from the rose
used for calculating. The middle term is bounded below lxg" by our
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hypothesis of exponential growth. Similarly, using thatab—! has expo-
nential growth, we can show that

A(OMMA DMA) > k!
for some constants> 0 andc > 1, this giving
d(®™™MA ®MA) > logk+ hlogc

The other inequality is even easier, and does not need angnasien on
@:

sup |A((Dh+mW) _ |A((DI+m\N) ‘ |A(¢h+m—1w> |A((D1+mw>
1iwery 1A(@™W) o er, IA(PMMIw) A (PMFM2w)  [A(DPMW)

which is bounded above by

h
|A((DW)
(ﬁ#&n (W) )

whence (arguing the same way for 1)
A(PTMA DTA) < A(PA AN

and
d(®™MA ®MA) < hd(DA,A).

Suppose now thah is a train track ford. Then every edge is stretched
exactly byA, the Perron-Frobenius eigenvalue associate to the ti@msit
matrix for ® (see[3].) It follows that\g(®"™™ ®M) = A", and the second
claim follows. O

The fact that train tracks fob and®—1 are in general different, and that
also the Perron-Frobenius eigenvaluesdoand @~ may differ, tells us
that we cannot follows this approach for building-@eodesic axis fo®.

Now, Theoreni_8]1 clearly fails if the automorphism in quastis of
polynomial growth. However it is important to note that, egteless, the
various folding paths from a point to the points in its orbiaynstill be
guasi-geodesics (with the unit speed parametrisationj éisel following
example.

Example 8.2.Let R be the rose of rank 2, with loops labelledfand letg
be the automorphism which sends A to A and B to BA. Then, fok ahg
folding path from R tap(R) is a (4,0) quasi-geodesic.

Proof. In the rose, the petals have the same length, but since ouicrset
scale invariant, we may choose that length - we choose it kothe We let

R« denotegt(R), which then also has two loops of the same length, which
we labelAy andBy, and give them both length 1. By definitioh,maps to
the loopAy in R andB maps toBy (Ay)X.
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In the folding path we start, first of all, by shrinking all tedges so that
(after scaling, which we have already done) the map from efftetd the
right is isometric on edges. This means that we shrink thp kantil it
has length 1. We call this new grajply; it has one vertex and two loops,
Ag — A¢ andBgy — Bk(Ak)k. The length ofAg is 1 and the length oBg is
K+1.

The folding path then proceeds by foldidg into By. If one imagines
this as a discrete process, after tflestage we will obtain a grapR, with
a single vertex and two loop8; — A, andB; — By (Ac) ¢ ; the length of
Aj is 1 and the length dB; isK +1—1.

If we then fold a part ofy;, of lengthd, into B; we travel to a point in the
folding path which we shall caR, 5. This has two verticess ando, and
three edgesh s, Bj 5 andC; 5. /

FIGURE 5. The grapIR; 5

Here, we can map the vertexto the unique vertex dRx and then map
the 100pA; sCi 5 to A andB; 5C; 5 to Bx(A«) K~ (this is enough to specify
the marking up to homotopy equivalence); the lengttAgf is 1— 9, the
length ofB; 5 is k+1—1i —d and the length of; 5 is . This marked met-
ric graph represents an arbitrary point on the folding padmfRy to Ry.
Now, following Lemmd 7.7, the local speed is realised by tuplB; 5A 5,
whereas the distance & is realised by the looBy which is realised by
Bi 5A 5(Cis Als)<'1in R 5. Both of these loops pass through the unique
folding turn (Definitior(5.6) oR, 5 exactly once.

Hence, by Lemmds .7 and 1.8, the ratio of the speed toRiaaahd the
local speed is,

k+2—i—20 S 1
2k+1-2i—-20 2
Thus, by Lemma 712, the path froRp to Ry is a(2,0) quasi-geodesic and
thus by Propositioh 714, the whole path i§4a0) quasi-geodesic. O
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9. SOME OPEN QUESTIONS

In this section we address some questions which arose dilméngpany
conversations we had with colleagues, principally durhmgydoffee breaks
of conferences, about the metric properties of Outer Space.

9.1. Existence of quasi-geodesicsAs we've seen, folding paths that do
not fold into the thin part provide quasi-geodesics for themetric met-
ric. Here we address mainly two questions. First, whethaldirfg path
will always produce a quasi-geodesic or not, with constdapending only
on the rank. Second, whether it is in general possible to @cnany two
marked metric graphs with a path which is a quasi-geodegilc,constants
depending only on the rank of the graphs.

For the latter question, there is an heuristic argumentpaes®the answer
is no. Then, letting blowing up the constants, one would gebanter-
example-sequence that contradicts Lenima 7.2. Then, folipthe ar-
guments of Theorerin 7.3 one gets that the folding paths ofdbeter-
example-sequence will eventually enter anghin part, but explicit com-
putations show that a folding path that enters the thin pamhot stay for
too long inside that part (one has perhaps to understand reow times a
folding path can enter the thin part.) Thus suggesting amative answer
to our questions.

9.2. Existence of a geodesic axis for an iwipWe have seen that iter-
ates of automorphisms produce quasi-geodesics (and gestl@she non-
symmetric metric.) The natural question here is whetheoraotphisms
have an axis and whether can such an axis be described in oénmmest-
ric properties. Also, one can ask whether one can comput&gtumnetric
rank” of such axis. Is there any analogue of the bounded gtiofeLemma?
(seel[4] and the recent preprint [1].)

9.3. Hyperbolicity, flats and coarse properties. It is natural to ask whether
some subset of Outer space (some thick-part?) is hyperdigticesents hy-
perbolicity phenomena. On the other hand, it would be istarg to study
the (quasi-) flats of Outer space, if any. In general coarspegties of
Outer Space are still unknown (for instance, what do its gdgtic cones
look like?)
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