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Abstract

A methodology is developed to estimate comparable international migration flows be-

tween a set of countries. International migration flow data may be missing, reported by

the sending country, reported by the receiving country or reported by both the sending and

receiving countries. For the last situation, reported counts rarely match due to differences

in definitions and data collection systems. In this thesis, reported counts are harmonized

using correction factors estimated from a constrained optimization procedure. Factors are

applied to scale data known to be of a reliable standard, creating an incomplete migra-

tion flow table of harmonized values. Cells for which no reliable reported flows exist are

then estimated from a negative binomial regression model fitted using the Expectation-

Maximization (EM) type algorithm. Covariate information for this model is drawn from

international migration theory. Finally, measures of precision for all missing cell estimates

are derived using the Supplemented EM algorithm. Recent data on international migra-

tion between countries in Europe are used to illustrate the methodology. The results

represent a complete table of comparable flows that can be used by regional policy makers

and social scientist alike to better understand population behaviour and change.
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Chapter 1

Introduction

Migration flow data inform policy makers, the media and academic community to the

level and direction of population movements. In any one country, reliable migration data

provide a means to improve the governance of population flows and their impacts. They

also allow a better understanding of the causes and consequences of people’s movements.

However, reliable migration data for comparisons of international population flows between

a set of countries are often lacking. Reported counts are either missing, reported by the

sending country, reported by the receiving country or reported by both the sending and

receiving countries. For the last situation in which two sources of information are possible

for one particular flow, reported counts rarely match due to differences in data collection

and measurement.

Comparable migration data can help concerned parties to manage policy and under-

stand people’s movements better. This is apparent for a number of reasons. First, com-

parative summaries of international migration flows become more meaningful when they

are presented in a multinational context. Second, data from multiple nations can provide

a more comprehensive empirical source for the testing of migration theories. Third, such

analysis has the potential to provide new insights to the dynamics of migration between

countries. Finally, the difference between public policies for international migration across

multiple countries can be more readily studied when comparative measures exist. This

thesis develops steps towards these ends, introducing a methodology for the estimation of

international migration flow tables of comparable data.

This introductory chapter commences with an overview of international migration flow

data. The lack of comparability in flow data can be grouped into two areas: inconsisten-

cies and incompleteness. These problems have lead to the development of estimation

methods for the provision of comparable data by previous researchers. The next section

discusses migration flow tables. Analysis of international migration tables of comparable

data have a number of discussed advantages which motivate their study throughout this

thesis. The succeeding section describes the aims and scope of this thesis. Included are a

set of desirable criteria for methodologies to estimate international migration flow tables of

comparable data. These criteria are used to evaluate estimation techniques (including the
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one developed in this thesis) and help determine the comparability of resulting estimates.

Finally, a summary of the thesis structure is given.

1.1 International Migration Data

Migration can be measured as either a flow or stock. Data for migration flows quantify

the magnitude of population movements between selected countries during a specified time

period (usually one year). Migrant stock data quantify the size of immigrant populations.

This thesis concentrates on the first of these measures.

International migration flow data often lack adequate measurements of volumes, direc-

tion and completeness between nations (Kelly, 1987; Salt, 1993; Willekens, 1994; Nowok

et al., 2006). The lack of comparability in flow data can be traced to a number of causes.

First, migration is a multi-dimensional process (Goldstein, 1976) involving a transition

between two states. Consequently, movements can be reported by sending or receiving

countries. When data collection methods or measurements used in these countries differ,

the reported counts do not match. Second, international migration flow data are typically

collected by individual national statistics institutes in each country. Institutes have de-

veloped measures of migration solely suitable to their domestic priorities. These are often

produced within a legal framework, and hence alterations to their collection are difficult to

implement. Third, in many countries, migration data collection systems do not exist. In

other countries, collection methods (such as passenger surveys) may provide inadequate

means to report flows at the levels of detail required by some data users. Finally, the

nature of international migration continues to change. In recent decades movements have

become more global, occurring at faster rates and diversifying into a greater range of mi-

gration types, such as migration for short periods of time, for retirement or for political

asylum (Castles and Miller, 2003, p7-9). National statistics institutes are often unable to

adapt data collection and measurement procedures to provide users with information on

such changes.

Difficulties in producing international migration flow statistics creates multiple prob-

lems in obtaining comparable data needed for a better understanding of population change

and behaviour. These problems can be grouped into two areas: inconsistencies and in-

completeness. Inconsistencies in reported values, for the same flow, occur due to different

measurements and data collection systems. Incompleteness in reported values occurs when

national statistics institutes do not collect or disseminate data. Estimation techniques,

such as those applied in this thesis, can be used to overcome these problems. These

techniques often require knowledge of the collection methods and measurement in each

data source, assumptions regarding the difference between reported counts and statistical

models for the imputation of missing flows.
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1.2 International Migration Flow Tables

Data on migration between a set of regions are commonly presented in a square table with

off diagonal entries containing the number of people moving from any given origin to any

given destination. These are known as migration tables or matrices. The analyses of tables

of comparable international migration data have a number of advantages. First, they allow

a fuller understanding of population behaviour and change in comparison to other migra-

tion measures. For example, the study of a net migration measure cannot differentiate

reported counts by migrant origins or destinations (Rogers, 1990). Second, international

migration tables provide details on the propensity of movements across multiple countries.

Consequently, the contributions made by each nation to a system of migration can be eas-

ily identified. An alternative analysis of migration, such as flows into a single country or

net migration cannot account for this heterogeneity. For example, when modelling the

movements into a single country over time, a similar country may undergo a period of

immense growth, drawing migrants away from the country of study. The analyses of flows

for the country of study may be able to explain fewer migrants sent from this high growth

country but may fail to account for a fall in its relative attraction to potential migrants

from other origins. Third, the analysis of migration tables allows the possibility for counts

to be divided into sub-tables based on individual characteristics of migrants such as age

and sex. These additional dimensions, as with origin and destination, allow the analysis of

migration flow tables containing information in a whole system of movements, furthering

the possibility for insights that may have been confounded by more conventional methods

of analysis. Finally, migration tables may be considered as part of a wider account of

demographic data. Rees (1980) noted that national account statistics of financial stocks

and flows have served economists well in their modelling activities, encouraging users to

compare data for consistencies, check for inadequacies and force analysts to attempt to

match available data with a conceptual model. A demographic account of population

stocks and flows would lead to similar improvements.

1.3 Thesis Aims and Scope

The study of transition patterns, such as migration flows, generally involves three steps

(Rogers, 1980). First, data are collected and missing observations estimated. Second,

appropriate rates and probabilities are calculated. Finally, simple projections of the future

conditions that would arise were probabilities to remain unchanged are generated. This

thesis concentrates on the first of the three stages, with the aim of providing a methodology

for the estimation of comparable data for international migration flow tables.

The methodology developed in this thesis addresses the two fundamental data prob-

lems of inconsistencies and incompleteness. In order to make observed data consistent, a

constrained optimization procedure is used. Such procedures have been applied to harmo-

nize international migration data in previously proposed methodologies, such as Poulain

(1993). These are reviewed in Chapter 3, and extended using a variety of distance func-
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tions and constraints in Chapter 4. There exists a range of model based methods to

deal with missing data in statistical literature, see for example the seminal text of Little

and Rubin (2002). One such method, the Expectation-Maximization (EM) algorithm is

applied to harmonized international migration flows in Chapter 5. This method is cho-

sen because of its effectiveness and relative simplicity in application compared with other

missing data techniques. This new application of a popular missing data technique allows

the imputations for missing migration flows to be estimated. In Chapter 6, the asymptotic

variance-covariance matrix for parameter estimates is obtained using the Supplemented

EM (SEM) algorithm of Meng and Rubin (1991). When this extended algorithm is ap-

plied to migration flow data, measures of precisions for imputations from Chapter 5 can

be derived.

The methodology developed in this thesis, and alternative frameworks presented in

Chapter 3, will be evaluated with respect to eight desirable criteria for methodologies in

estimating international migration flow tables of comparable data. These are shown in

Table 1.1. Criteria are divided into two groups: properties of estimates and properties

of the methodology for their estimation. These are not mutually exclusive or exhaustive,

and data users may require further criteria in estimates or the methodology. However,

they do provide guidance for comparisons between estimates and their frameworks which

may otherwise be difficult to evaluate.

Table 1.1: Desirable Criteria for Methodologies in Estimating International Migration

Flow Tables of Comparable Data.

Estimates:

Complete

Consistent

Reliable

With associated precision measures

Methodology:

Model based imputations for missing data

Incorporate expert opinion

Easily replicable

Flexible to different time periods and regions

The first three criteria for estimates were originally outlined by Willekens (1994) for

future work on combining data sources to create a statistical data base of international

migration flows. When present, these characteristics will result in comparable data which

can allow users to better understand population behaviour and change. One additional

desirable criterion, for a measure of precision in the estimates, is also given. As estimation

techniques are used to provide comparable data, an associated measure of precision can

4



further aid data users to understand the possible variation associated with estimated

values.

Willekens (1994) also suggested that a methodology for estimating a data base of com-

parable international migration flows should allow for the imputations of missing values

to be based on models of migration and incorporate expert opinion. Models of migration

counts create a description of each flow in the table in relation to other data. Once the

model is specified, it may be used to impute or update data while preserving imposed

structures or constraints. In addition, model based imputation methods can allow esti-

mates to be based on likelihood methods, to obtain the most likely estimates given the

data. Estimation methodologies can be aided by the inclusion of expert opinion, which

may provide a useful supplementary data source to inform the estimation procedure. In

addition to these two methodological criteria, two additional factors are also proposed.

First, a methodology should be easily replicable to allow users to reproduce results with

relative ease and understand at what stage (if any) erroneous estimates occur. Second, a

degree of flexibility in the methodology is desirable. This can allow data users to apply

the framework to different time periods or sets of countries.

Further desirable criteria, not listed in Table 1.1, may also be considered. Willekens

(1994) suggested international migration flow data should be applicable to national de-

mographic accounts. Hence, the net migration derived from the difference of the number

of migrants received and sent in a single time period should be equal to the current pop-

ulation minus the population of the previous time period plus the natural change from

births and deaths. Data users may also desire a methodology to estimate comparable mi-

gration flow data for migration by individual characteristics of migrants such as age and

sex, to allow the further analyses of population behaviour and change. These additional

properties are deemed beyond the scope of this thesis. The incorporation of international

migration estimates into national demographic accounts would only be appropriate if an

estimated migration table contained flows to and from all possible destinations in the

world. However, this thesis is restricted to estimating aggregated flows between a selected

set of nations.

The methodology developed in this thesis is applied to data from 15 countries in the

European Union (EU) before the expansion of May 2004 (EU15). A series of tables, from

2002 to 2006 are studied. Larger sets of countries from alternative geographies such as the

EU27 or EU31 are not studied in this thesis in order to provide a more concise illustration

of reported data, estimates and the methodology. A concentration on European data is

taken for a number of reasons. First, the study of international migration data in Europe

is of growing importance due to the political reforms agreed by the European Parliament

in 2004. These reforms have allowed citizens in the EU the right to move between, and

reside freely in, member states (Kraler et al., 2006). Second, data from multiple countries

in Europe are accessible from a number of international organizations, including Eurostat

(the statistical office of the EU). Availability has been aided by policy makers of the Euro-

pean Parliament who have introduced legislation for the supply of international migration
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flow data. In 1976, Community Regulation No 311/76 required members to supply migra-

tion statistics annually to Eurostat. In 2007, Regulation No 862/07, obliged members to

provide migration statistics which comply with a harmonized definition. Third, countries

within EU vary in their population sizes and economic statuses but have relatively similar

political structures. Measures of differences in the first two of these areas are more read-

ily available, which will be of use for model based imputation methods. Fourth, recent

European research projects such as Towards the Harmonisation of European Statistics

on International Migration (THESIM) and MIgration MOdelling for Statistical Analyses

(MIMOSA) have allowed differences between data collection methods and measurements

used by national statistics institutes to be better understood. Finally, despite political

reforms, regulations, similarities in member states and research reports, reported interna-

tional migration flow data are still incomparable (see for example Nowok et al. (2006) or

Kupiszewska and Nowok (2008)). National statistics institutes have struggled (and may

continue) to adjust data collection and measurement procedures to provide data which is

consistent across the region. In addition, there remain a number of countries which do

not provide reported counts due to the lack of collection infrastructure or problems in the

dissemination of data.

The reported data used in this thesis is obtained directly from the Eurostat web site,

using origin-destination migration flows as supplied by sending and receiving countries

(with local definitions of a migrant flow). This is further discussed in Chapter 4. Compa-

rable data will be estimated according to the United Nations (UN) definition for a long

term migration flow, i.e., the number of people who move to establish the usual place of

residence in the destination country for twelve months or more (UN, 1998). This definition

is also contained in EU regulations for the provision of international migration statistics

by national statistics institutes (Giambattista and Poulain, 2006).

1.4 Thesis Structure

The study is structured in seven chapters. The following two chapters present known

methodologies in statistics and international migration flow table estimation. New ap-

plications and extensions of the previously outlined methods are then presented in the

remaining chapters of this thesis. Included in the early sections of these chapters are

known statistical techniques, not previously introduced, as they require specific attention

in the context of the study.

Chapter 2 introduces important statistical modelling techniques on which succeeding

chapters will be heavily reliant. This commences with an introduction to the mathemat-

ical notation followed by an overview of generalized linear models, a unified modelling

theory which can handle different response types. Included in this section are Poisson

and log-normal regression models which are commonly used in modelling migration flows.

The Iterative Reweighted Least Squares algorithm, a popular fitting method in statisti-

cal software for generalized linear models, is then outlined. This chapter concludes with
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a description of the negative binomial regression model, a useful extension to a Poisson

regression model in the presence of overdispersion, but not a generalized linear model

itself.

Chapter 3 reviews previous modelling frameworks used for estimating international

migration flow tables. First, a brief outline of international migration flow tables and

their data issues are given. This allows a basic understanding of the problems which

motivated previous researchers to develop estimation techniques for European data. The

subsequent sections concentrate on detailing frameworks for estimating migration flow

tables, developed by Poulain (1993) and Raymer (2007). A comparison of the methods,

with reference to the criteria in Table 1.1, are made and possible areas for extended study

in following chapters are identified

Chapter 4 introduces a new methodological framework for the harmonization of inter-

national migration flow data. This uses constrained optimization techniques to estimate

correction factors to scale reliable reported data. The first section presents international

flow data for migration between EU15 countries, including background information and

expert opinion on the characteristics of reported counts from each national statistic insti-

tute. This information helps inform the constrained optimization procedure to select data

sources for which estimated correction factors are fixed to one, as they require no alter-

ation. Data from unreliable sources are ignored as the scaling of reported flows will have

no improving effect, and replacement values are estimated using missing data techniques

outlined in the later chapters. Constrained optimization routines in statistical software

are applied to minimize the difference in scaled reliable data. Estimates of harmonized

flows are then calculated to obtain a set of incomplete international migration flow tables

in each time period.

Chapter 5 uses the harmonized data of its preceding chapter to estimate missing mi-

gration flow data. It commences by reviewing models for migration flow tables. Negative

binomial regression models are used in order to account for overdispersion in the data. A

range of covariates on economic, demographic and geographical factors are considered. An

appropriate model is selected based on the Akaike Information Criterion (AIC) statistics

from the observed data. The model is then fitted by implementing the EM algorithm of

Dempster et al. (1977) which accounts for missing data in the parameter estimation and

imputes values for missing cells.

In Chapter 6, measures of variation for the imputations are obtained. The chapter

commences by reviewing the convergence properties of the EM algorithm. An extension

to the EM algorithm, the SEM algorithm of Meng and Rubin (1991) is then outlined. The

SEM algorithm uses iterations in the EM algorithms to calculate the variance-covariance

matrix of the parameters estimates and hence a measure of variability of imputations

for previously missing data may be deduced. The succeeding section reviews the AICcd

statistics (AIC for complete data) of Cavanaugh and Shumway (1998). The AICcd utilizes

the SEM algorithm to allow the comparisons of models based on complete (both observed

and missing) data, unlike in AIC statistics in Chapter 5.
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Finally, Chapter 7 contains a summary of the findings, as well as the most important

conclusions from the study. Together with a synopsis of the main results with reference

to the criteria in Table 1.1, several recommendations for future research in the field of

international migration flow tables are considered. The study is concluded by reflecting

on the estimation framework in the context of international migration modelling and

international migration data. The thesis is accompanied by an Appendix containing the

S-Plus/R program codes used for the constrained optimization approach of Chapter 3,

distance measures of Chapter 4, the EM algorithm in Chapter 5 and the SEM algorithm

in Chapter 6.
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Chapter 2

Statistical Modelling

2.1 Introduction

This chapter outlines the statistical modelling techniques for migration flow tables to set

the stage for future chapters. It commences by introducing the notation to be used,

demonstrated in a classic linear regression model. In the following section generalized lin-

ear models, a unified theory encompassing models for continuous, dichotomous and count

responses are outlined. Included are Poisson and log-normal regression models which

have often been used in modelling migration, as will be discussed further in Chapter 5.

This is succeeded by general formulations for the mean and variance terms, likelihood

equations and asymptotic variance-covariance matrix of parameters. These allow the Iter-

ative Reweighted Least Squares algorithm, which is a popular fitting method in statistical

software for generalized linear models, to be fully described. This algorithm is useful for

finding maximum likelihood parameter estimates. The negative binomial regression model

is then detailed. This model does not belong to the generalized linear model family but is a

useful extension to a Poisson regression model in the presence of overdispersion. Included

is a description of the Newton-Raphson method which is frequently used to fit parameters

for the negative binomial regression model. This fitting method and associated extensions

are also used in optimization problems, such as those implemented in Chapter 4. In the

final section, techniques for estimating parameters in the presence of missing data are

introduced.

2.2 Regression Models

In many scientific studies, interest lies in the relationship between two or more observable

quantities. Regression analysis allows an estimation of the change in one quantity, y

as a function of another, x. The quantity of primary interest in regression analysis,

y is called the response variable. In a statistical model, the value of y is considered

random in the sense that the observed values could have turned out differently due to the

sampling process or natural variation of the population. Additional variables which are

not considered as random, x are commonly known as covariates. In regression models,
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the conditional distribution of y given x is of interest, and studied in the context of a

set of units i = 1, . . . n, on which observed values yi and xi are measured. The set of

p explanatory variables used in a model define the linear predictor which is commonly

expressed as:

β1xi1 + · · ·+ βpxip, (2.1)

where β1 . . . βp are the parameter estimates of the effect of y on xi1 . . . xip. In many

applications the variable xi1 is fixed at 1, so that β1xi1 is constant for all i. The linear

predictor of (2.1) may also be written in matrix notation as xTi β or a component of Xβ,

where β = (β1 . . . βp)T , xTi = (xi1 . . . xip) and X is a n × p matrix. In a classic linear

regression model the response variable is fully described by specifying the conditional

probability density of y given the linear predictor,

y = Xβ + u, (2.2)

where y = (y1 . . . yn)T are continuous responses and the residuals u = (u1 . . . un)T are

independently normally distributed with zero mean and constant variance σ2 for all units,

ui ∼ N(0, σ2). The classic linear regression model can be alternatively defined by setting

the conditional expectation of the responses, µi, given the linear predictor, equal to xTi β:

µi ≡ E(yi|β, σ,xTi ) = xTi β, (2.3)

where yi are independent normally distributed with mean µi and variance σ2.

2.3 Generalized Linear Models

Linear regression models are part of a range of statistical models, known as generalized

linear models (Nelder and Wedderburn, 1972). These models link together a variety of

random response variables to a systematic linear predictor. This includes models where

the assumption of a linear relationship or normal variations of a response variable may not

be appropriate, such as a log-linear relationship or a Poisson count response, both of which

will be expanded upon in this section. Agresti (2002, p116-7) outlines three components

used in the specification of generalized linear models:

(a) A random component identifying the natural parameter, θi, where the distribution

of the response variable is a member of the natural exponential family. A natural

exponential distribution has probability density function of the form;

f(yi|θi, φ) = exp
{
θiyi − a(θi)

c(φ)
+ b(yi, φ)

}
, (2.4)

where a(·), b(·) and c(·) are functions depending on the distribution. The value of θi
may vary for units i = 1, . . . , n, depending on the values of the explanatory variables.

The dispersion parameter φ is equal to unity for some distributions.

(b) A systematic component to relate the vector η = (η1, . . . , ηp)T to the explanatory

values, through a linear model, using the linear predictor, ηi = xTi β.
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(c) The link function, g(·), to connect the random and systematic components. When µi
is the conditional expectation of the response, a generalized linear model links µi to

ηi by ηi = g(µi). As g(·) is a monotonic differentiable function, it can be expressed

in terms of explanatory variables by g(µi) = xTi β.

These three components transform the mean of a response variable, in the natural expo-

nential family distribution, from a non-linear to a linear model.

2.3.1 Normal and Log-Normal Distribution

In a continuous case, the response variable can be assumed to be independently normally

distributed with parameters (µi, σ2) for the mean and variance respectively. The proba-

bility density function of this distribution is given by

f(yi|µi, σ2) =
1√

2πσ2
e−

1
2σ2 (yi−µi)2 . (2.5)

In the generalized linear model format we can re-express the probability density function

in the representation of the natural exponential family of (2.4):

f(yi|θi, σ2) = exp

{
µiyi −

µ2
i

2

σ2
− 1

2
log(2πσ2)− y2

i

2σ2

}
, (2.6)

where a(θi) = θ2i
2 , b(yi, φ) = −1

2 log(2πσ2) − y2i
2σ2 , c(φ) = σ2 and θi = µi. Hence, the

expectation of the random variable in the generalized linear model format is µi and we

connect this to the systematic component using the (canonical) identity link function

g(µi) = µi. This gives the regression model of (2.3);

ηi = µi = xTi β. (2.7)

A linear regression model may be applied in a generalized linear model framework

when the response is non-linear. When the assumption of normality does not hold a log

link function rather than the identity link of (2.7) is commonly used. The log-normal

distribution is typically assumed for response variables which take positive values on the

continuous scale, where there exist no theoretical possibility of a non-positive value oc-

curring. A traditional approach to modelling data that has log-normal distribution is to

normalize the response in (2.7), relative to the linear predictor, by calculating the loga-

rithm of each unit’s outcome. Hardin and Hilbe (2001, p59) noted that this method leads

to an inconvenient interpretation of fitted values and parameter estimates which are in

terms of a log response. They suggest an alternative approach is to internalize within the

model itself the log transformation of the response. This can be represented in the form

of the natural exponential family,

f(yi|θi, σ2) = exp

{
log(µi)yi − (log(µi))

2

2

σ2
− 1

2
log(2πσ2)− y2

i

2σ2

}
, (2.8)

where a(θi) = (log(θi))
2

2 , b(yi, φ) = −1
2 log(2πσ2) − y2i

2σ2 , c(φ) = σ2 and θi = log(µi).

Hence, the log link function g(µi) = log(µi) is used to connect the random and systematic
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components giving a log-linked normal regression model

ηi = logµi = xTi β. (2.9)

2.3.2 Poisson Distribution

In a discrete case, a response variable of count data can be assumed to have a Poisson

distribution with rate parameter µ. The probability density function of this distribution

is given by

f (yi |µi ) =
e−µiµyii
yi!

, yi = 0, 1, 2, . . . . (2.10)

In a generalized linear modelling format we can re-express the probability density function

in the representation of the natural exponential family of (2.4):

f (yi |θi ) = exp
{
yi logµi − µi

1
− log yi!

}
, (2.11)

where a (θi) = eθi , b (yi, φ) = − log yi!, c (φ) = 1 and θi = logµi. The expectation of

the random variable in the generalized linear model format is µi, and is connected to the

systematic component using the log link function g (µi) = log µi. This results in a Poisson

regression model,

ηi = logµi = xTi β, (2.12)

which is identical to the model expressed in (2.9), but where the response is no longer

assumed to be log-normal.

When modelling count data, it is often of interest to measure the rate at which the

count occurs rather than the count itself. The rate can be obtained by dividing the count

by the related exposure, ei, of each unit. Hence, a Poisson rates model can be derived

from (2.12) as

log
(
µi
ei

)
= xTi β

log(µi) = log(ei) + xTi β (2.13)

where log(ei) is a known offset term. Poisson regression models with offset terms have

been used in a previous framework for the estimation of international migration such as

Raymer (2007). This will be outlined in Chapter 3 of this thesis.

2.4 Fitting Generalized Linear Models

Maximum likelihood estimates are frequently used in migration models as they posses very

desirable asymptotic properties such as consistency, asymptotic normality and asymptotic

robustness (Sen and Smith, 1995, p457-69). In generalized linear models, such estimators

are found within most statistical software packages using the Iteratively Reweighted Least

Squares (IRLS) procedure, which McCullagh and Nelder (1989, p41-2) proved to converge

to the maximum likelihood solutions. In this section the IRLS fitting method will be

described after some necessary properties of generalized linear models are outlined.
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2.4.1 Mean and Variance

The mean and variance of the random component in a generalized linear model may be

obtained in a general form, allowing the maximum likelihood estimates to be found using

IRLS. Assuming the responses of all units are independent, the likelihood for a generalized

linear model is

L(θ|y) =
n∏
i=1

f(yi|θi, φ). (2.14)

where θ is the p-dimensional parameter vector. If we let li denote the log-likelihood for

the ith observation then

l(θ|y) =
n∑
i=1

li =
n∑
i=1

log f(yi|θi,φ). (2.15)

Therefore, using the probability distribution of the natural exponential family expressed

in (2.4) we may deduce by differentiation

∂li
∂θi

=
yi − a′(θi)
c(φ)

∂2li
∂θ2

i

= −a
′′(θi)
c(φ)

, (2.16)

where a′(θi) and a′′(θi) are the first and second derivatives of a(·) evaluated at θi. As Cox

and Hinkley (1974) showed, the general likelihood results: E
(
∂li
∂θi

)
= 0 and −E

(
∂2li
∂θ2i

)
=

E
(
∂li
∂θi

)2
are satisfied by the natural exponential family, so

E

(
yi − a′(θi)
c(φ)

)
= 0

and hence

E(yi) = a′(θi), (2.17)

for the mean, and

E

(
a′′(θi)
c(φ)

)
= E

(
yi − µi
c(φ)

)2

thus

(E(yi)− µi)2 =
a′′(θi)(c(φ))2

c(φ)

and

Var(yi) = a′′(θi)c(φ), (2.18)

for the variance. Hence, the mean and variance of any distribution from the natural

exponential family can be easily derived from (2.17) and (2.18). For example, for the

Poisson distribution, where a(θi) = eθi = µi as θi = logµi, the mean E(yi) = a′(θi) = µi

and variance Var(yi) = a′′(θi)× 1 = µi.
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2.4.2 Likelihood Equations

In order to obtain maximum likelihood parameter estimates for a generalized linear model

we must first obtain the likelihood equations. Assuming that the responses of n units are

independent, the likelihood for generalized linear model can be expanded from (2.15) as

l(β|y) =
n∑
i=1

θiyi − a(θi)
c(φ)

+
n∑
i=1

b(yi, φ), (2.19)

where l(β|y) reflects the dependence of θ on the model parameters. The likelihood equa-

tions can then be derived by differentiating the log-likelihood with respect to an arbitrary

βj , using the chain rule, and then equating to zero:

∂l

∂βj
=

∂l

∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

= 0. (2.20)

As µi = E(yi) = a′(θi),

∂l

∂θi
=
yi − a′(θi)
c(φ)

=
yi − µi
c(φ)

∂θi
∂µi

=
(
∂µi
∂θi

)−1

=
1

a′′(θi)
=

c(φ)
Var(yi)

∂µi
∂ηi

= g′(µi), as ηi = g(µi)

∂ηi
∂βj

= xij , as ηi = xTi β, (2.21)

where xij is the (i, j) element of X and g′(µi) is the first derivative of the link function

g(·) evaluated at µi. We may substitute these expressions into the likelihood equations to

give

∂l

∂βj
=

n∑
i=1

yi − µi
c(φ)

c(φ)
Var(yi)

g′(µi)xij = 0

=
n∑
i=1

xij(yi − µi)
Var(yi)

g′(µi). (2.22)

The likelihood equations for any distribution from the natural exponential family can be

directly obtained from (2.22). For example, a normal distributed response in a classic

linear regression model has Var(yi) = σ2 and g′(µi) = 1. Hence, the likelihood equations

are
∂l

∂βj
=

n∑
i=1

xij
σ2

(yi − xTi β) = 0. (2.23)

2.4.3 Asymptotic Variance-Covariance Matrix of Parameters Estimates

The asymptotic variance-covariance matrix for parameter estimates is required to provide

a useful simplification in the IRLS procedure. This may be derived from the inverse of

the p × p Fisher (or expected) information matrix I(β), which has elements (I(β))jk =

−E
(
∂2l(β)
∂βj∂βk

)
for any two arbitrary parameters. Using the general likelihood results of
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Cox and Hinkley (1974) we may express I(β) as

−E
(

∂2li
∂βj∂βk

)
= E

(
∂li
∂βj

∂li
∂βk

)
= E

{
xij(yi − µi)

Var(yi)
g′(µi)

xik(yi − µi)
Var(yi)

g′(µi)
}

= E

{
xijxik(yi − µi)2

Var(yi)2
g′(µi)2

}
=

xijxik
Var(yi)

g′(µi)2

=
xijxik

c(φ)V (µi)
g′(µi)2, (2.24)

where E(yi − µi)2 = Var(yi) = V (µi)c(φ) and V (µi) is the variance function evaluated at

µi. Since l(β) =
∑
li

−E
(
∂2l(β)
∂βj∂βk

)
=

n∑
i=1

xijxik
c(φ)V (µi)

g′(µ)2, (2.25)

which can be generalized to matrix formation for I(β) = X′WX, where W is a p × p
diagonal matrix with main diagonal elements

wi =
g′(µi)2

c(φ)V (µi)
. (2.26)

The asymptotic variance-covariance matrix, V, of the parameters estimates, β̂, is esti-

mated by

V = I(β̂)−1=(X′ŴX)−1, (2.27)

where Ŵ is W evaluated at β̂. The asymptotic variance-covariance matrix of any dis-

tribution from the natural exponential family can be directly derived from (2.26). For

example, a Poisson regression model has c(φ) = 1, V (µi) = µi and g′(µi) = µi. Hence W

in (2.27) has main diagonal elements wi = µ2
i
µi

= µi.

2.4.4 Iterative Reweighted Least Squares

For the likelihood equations of a classic linear regression model the maximum likelihood

estimators of β can be found by re-expressing (2.23) for β, in a matrix notation:

XW−1(y −Xβ) = 0

hence,

β = (X′W−1X)−1X′W−1y (2.28)

where W is a diagonal matrix with diagonal elements equal to σ2. As the residual variance

is homoscedastic with all diagonal elements of W equal, this term can be dropped leaving

an ordinary least squares estimate for β. If the residuals are heteroscedastic, where c(φ) =

σ2
i , then the maximum likelihood estimate of β can be found using a weighted least squares

estimator, as given in (2.28) with weights σ2
i , as c(φ) = σ2

i , V (µi) = 1 and g′(µi) = 1 in

(2.26). Hence the likelihood equations are linear in β

∂l

∂βj
=

n∑
i=1

xij
σ2
i

(yi − xTi β) = 0. (2.29)
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When the likelihood equations are non-linear, as in some generalized linear models,

we may use the IRLS algorithm to estimate β. The algorithm works by linearizing the

likelihood equations for the application of weighted least squares at each cycle of the

iterative procedure. Each iteration cycle, r, estimates a current iterate, βr = (βri , . . . , β
r
p)
T

with corresponding mean, µri , and a working variate, zri , where

zri = xTi βr + (yi − µri )g′(µri ), (2.30)

hence

yi − µri =
(zri − xTi βr)

g′(µri )
. (2.31)

Estimates of βr can be updated using weighted least squares, from the working variate

vector z = (z1, . . . , zn)T ,

βr+1 = (X′WrX)−1X′Wrzr, (2.32)

where the diagonal elements of Wr are given by g′(µri )
2c(φ)V (µi). When this weight is

incorporated into (2.29) as if the model were linear, the likelihood equations,

0 =
n∑
i=1

xij
g′(µri )2c(φ)V (µri )

(zri − xTi βr)

=
n∑
i=1

xij
g′(µri )c(φ)V (µri )

(zri − xTi βr)
g′(µri )

=
n∑
i=1

xij
g′(µri )c(φ)V (µri )

(yi − µri ), (2.33)

are the same as the original weighted least squares likelihood equations, (2.22), except

the weights are fixed at the estimates from the previous iteration, r. Hence, solving

these equation using weighted least squares of (2.32) gives estimates of βr+1 which may

lead to new calculated weights, then new estimates using reweighted least squares and so

on, iterating until convergence. Skrondal and Rabe-Hesketh (2004, p192) noted that this

method is identical to Fisher Scoring, an alternative iterative method for solving likelihood

equations.

Generalized linear models are commonly applied by social scientists to model migration

data, as will be discussed in Chapter 5. This is often undertaken to gain a substantive

understanding of movements. In this thesis, the aspects discussed in this section have

an alternative use, to derive estimates for migration data that is currently unreliable.

In Chapter 5 the IRLS procedure is used within the Expectation Maximization (EM)

algorithm for fitting migration models to incomplete data. This allows imputations for

missing values to be obtained. In Chapter 6 the IRLS procedure is used within the

Supplemented EM algorithm to derive estimates of the asymptotic variance-covariance

matrix for model parameter estimates in the presence of missing data.

2.5 Negative Binomial Regression Models

The negative binomial distribution has two-parameters that allow a mean and variance

to be fitted separately, as opposed to a single parameter Poisson regression model. It
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may be considered in two ways: as a marginal distribution of a Poisson random variable

where the rate parameter has a gamma distribution or as a probability function in its own

right for the observation of y failures before a nth successes in a series of Bernoulli trials.

Hardin and Hilbe (2001, p140) noted that when considered as the first of these approaches

(as will be the case in this thesis), the negative binomial distribution is not a member

of the exponential family and hence cannot be considered in the generalized linear model

framework. Considered as such the probability density function can be expressed as

f(yi|µi, α) =
Γ(yi + α−1)
yi!Γ(α−1)

(
αµi

1 + αµi

)yi ( 1
1 + αµi

)α−1

, yi = 0, 1, . . . , α ≥ 0, (2.34)

such that

µi = exp(xTi β) (2.35)

where µi is the mean of a Poisson distribution and α is a dispersion parameter. The

regression model of a negative binomial response takes the same format as the Poisson

regression model of (2.12). The model has a mean of µi and variance function of µi+αµ2
i .

When the overdispersion is zero the Poisson model is obtained.

2.5.1 Asymptotic Variance Covariance Matrix

Cameron and Trivedi (1998, p71) showed that for the negative binomial regression model

the maximum likelihood estimates are the solution to the first order conditions
n∑
i=1

yi − µi
1 + αµi

xTi = 0. (2.36)

Hence, the asymptotic variance-covariance matrix for the parameter estimates can be

derived as  E
(

∂2li
∂βjβk

)−1
0

0 E
(
∂2li
∂α2

)−1

 , (2.37)

where the elements off the block diagonal are solutions to ∂2li
∂βj∂α

= 0 for each j. Thus the

variance-covariance between elements of the parameter vector β are the same as (2.27) for

a generalized linear model, where c(φ) = 1, V (µi) = µi+αµ2
i , g
′(µi) = µi, and W has main

diagonal elements wi = µ2
i

µi+αµ2
i

= µi
1+αµi

. Cameron and Trivedi (1998, p72) demonstrated

that by expressing Γ(yi+α
−1)

Γ(α−1)
=
∏yi−1
g=0 (g + α−1) in (2.34), the variance of α in (2.37) can

be deduced as n∑
i=1

1
α4

log(1 + αµi)−
yi−1∑
g=1

1
(g + α−1)

2

+
µi

α2(1 + αµi)

−1

. (2.38)

2.5.2 Fitting Negative Binomial Regression Model

Agresti (2002, p560-1) noted that a negative binomial model may be fitted in a simi-

lar manner as Poisson regression models when the dispersion parameter is known. This

can be implemented using the IRLS procedure. When the dispersion parameter is not
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known, three possible methods exist to obtain maximum likelihood parameter estimates:

a Newton-Raphson routine for fitting all parameters simultaneously; the evaluation of the

profile likelihood for various fixed α, and an alternation strategy of 1) using IRLS to solve

mean parameter estimates β, for fixed α and 2) using Newton-Raphson to estimate α from

fixed β, until convergence.

The Newton-Raphson method (also known as an Newton optimizer) is an iterative

routine for finding roots in non-linear equations, in one or more dimensions. It can be

applied to likelihood functions to find local maxima and local minima often with rapid

convergence. The method is also used for other optimization problems in non-statistical

settings. The Newton-Raphson method considers an approximation of the derivatives of

the likelihood function, using a first order Taylor expansion around a parameter estimate

θ:

L(θ + ∆θ) = L(θ) + L′(θ)∆θ +
1
2
L′′(θ)(∆θ)2, (2.39)

This expression attains its extremum when ∆θ solves the linear equation

L′(θ) + L′′(θ)∆θ = 0, (2.40)

and L′′(θ) is positive. Thus, provided that L(θ|y) is a twice-differentiable function and

the initial guess of a working estimate, θr, is chosen close enough to the stationary point,

θ∗, then

θr+1 = θr − L′(θr)
L′′(θr)

, (2.41)

will converge towards θ∗. When fitting a negative binomial regression model, this method

can be used to estimate the dispersion parameter, where θ = α in (2.41) and current esti-

mates of mean parameters, β are provided by IRLS. The asymptotic variance-covariance

matrix of (2.37) may then be fully obtained given the estimate of α for (2.38).

The Newton-Raphson routine can be generalized to several dimensions for multiple

parameters, θ = (θ1, . . . , θp). Replacing the derivative of (2.41) with the p dimensional

gradient vector, vT =
(
∂L(θ1)
∂θ1

, . . . ,
∂L(θp)
∂θp

)
, and the reciprocal of the second derivative with

the inverse of the Hessian matrix, H, where an element hjk = ∂2L(θ)
∂θj∂θk

. Hence, a modified

iterative scheme for multiple parameters is obtained:

θr+1 = θr − (Hr)−1vr. (2.42)

For a negative binomial regression model this generalized routine can also be used to

estimate all parameter, where θ = (β, α).

In comparison with generalized linear models, negative binomial regression models

have been more limited in their application to migration data by social scientists. This

will be discussed further in Chapter 5 where negative binomial regression models are used

to obtain imputations for missing data. In Chapter 4, the quasi-Newton optimizer (related

to (2.42) with numerical estimates of v and H) will be used in a non-statistical setting

to estimate correction factors that minimize the distance between reported migration flow

counts, subject to a set of constraints.
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2.6 Statistical Modelling of Missing Data

International migration flow data is often missing. In order to estimate missing flows,

model based methods may be used to derive parameter estimates that account for data

incompleteness. In this thesis, the EM algorithm of Dempster et al. (1977) is used to find

maximum likelihood estimates of model parameters in the presence of missing data. In

Chapter 6, the Supplemented EM (SEM) algorithm of Meng and Rubin (1991) is used

to estimate the variance covariance matrix of parameter estimates when there is missing

data. Within these algorithms, methods described in this chapter, such as IRLS and the

Newton-Raphson routine are used repetitively. Unlike the fitting methods discussed in this

chapter, standard functions for these algorithms are unavailable in statistical software. To

this end, S-Plus/R functions were written to fit negative binomial regression models for

international migration flow data using the EM and SEM algorithms. A full discussion

of the algorithms, their properties and the functions written are hence deferred until the

appropriate chapters of this thesis.
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Chapter 3

A Review of Methodologies for

Estimating an International

Migration Flow Table of

Comparable Data

3.1 Introduction

At present, the responsibility for the collection of international migration flow data rests

with individual national statistics institutes. Consequently, data on a considered flow can

be missing, reported by the sending country, reported by the receiving country or reported

by both the sending and receiving country. For the last situation, in which two sources

of information are possible for one particular flow, data rarely match due to differences in

collection and measurement.

In this chapter, previous frameworks to estimate international migration flow tables of

comparable data are reviewed. The strengths, weaknesses and differences of methodologies

are made with reference to the desirable criteria shown in Table 1.1. The next section

commences with an outline of the problems in the comparability of international migration

flow data. The succeeding section provides an introduction to migration flow tables,

illustrated with generated counts. This allows a clear presentation of data issues and

frameworks for estimating flow values. The following sections concentrate on different

frameworks for estimating migration flow tables in a single year. The first, developed by

Poulain (1993), used a constrained optimization to estimate correction factors to scale

reported data. This method, and more recent extensions, are illustrated with an example.

The second methodology, initially introduced by Raymer (2007) modelled the components

of a saturated regression model applied to a migration flow table. Both methodologies are

discussed separately, before concluding with a comparative review.
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3.2 Problems of Comparability in International Migration

Flow Data

The lack of comparability in international migration data can be traced to the multi-

dimensional nature of migration (Goldstein, 1976). As a result, national statistics in-

stitutes have developed measures of migration solely suitable to their domestic priorities.

Full reviews of the international migration flow data and their issues can be found in Kelly

(1987), Willekens (1994), Nowok et al. (2006) and Kupiszewska and Nowok (2008). The

incomparability between data sources in any time period is predominantly derived from

(a) differences in data production techniques,

(b) differences in the dissemination of data.

Each is discussed in relation to measures of migration flows by origin or destination.

3.2.1 Data Production Techniques

Differences in the production of migration flow statistics can be derived from distinctive

data collection methods and definitional measurements used by national statistics insti-

tutes.

Data collection methods may influence the completeness and accuracy of reported mi-

gration flows (Nowok et al., 2006). National statistics institutes collect migration flow data

from a variety of sources. Computerized population registration systems that continuously

cover the target population often provide reliable and timely statistics. Where administra-

tive sources do not cover all or part of the target population, other registers such as alien

or residency permit data bases are sometimes used. Some nations rely on surveys carried

out during border crossings or among households inside a country. These can be more

problematic. For example, in Great Britain the International Passenger Survey (IPS) is

used to provide international migration flow data. In order to supply sufficient detail for

analysis, the sample size must be very large, otherwise unexpected irregularities appear

for specific origin-destination flows (Perrin and Poulain, 2006b).

Migration definitions can influence the reported volume of movements. Definitions of

migration flows involve a statement of duration and population coverage. The duration

of time used to identify international migrants varies between countries (Kupiszewska and

Nowok, 2008). For population register data, international migration may refer to persons

who have lived in a different country for three months, six months or one year. For census

or survey data, the entry date of international migrants is often unknown, only that they

lived outside the country one-year or five years prior to the census or survey date. For

some data sources the intended duration, rather than the actual duration is used. Under

an actual duration measure, reporting of counts are delayed to allow the period used in

the timing criteria to pass, whereas under an intended duration measure an assumption

that the intended period will become the actual duration is made. Nowok et al. (2006)

noted that some national statistics institutes measure intended duration measures for non-
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national immigrants by the period specified in the authorization to stay, which may hence

differ from the actual duration.

The coverage of difficult to measure population groups, such as asylum seekers, stu-

dents and illegal residents varies between data sources. Asylum seekers are generally

included as migrants when granted permission to stay. Exceptions to this rule are found

in some countries such as Germany and the Netherlands, where the registering of seekers

occurs at an earlier stage of the asylum procedure (Erf et al., 2006b). Erf (2007) noted that

students moving between EU countries are often not included in international migration

flow figures as they are not required to report their migration. However, in countries such

as Denmark, students are required to have residency permits on which migration data are

based. Data on undocumented migrants should be included in migration figures according

to most definitions used in European migration statistics regulations, but are often missed

due to collection difficulties. Among the EU member states, only Spain allows the regis-

tration of illegal migrants through a pardon system (Breem and Thierry, 2006b), allowing

the capture of data on this difficult to measure group.

3.2.2 Data Dissemination Methods

Differences in the dissemination of migration flow statistics can be derived from alternative

methods for handling migrants with unknown origins or destinations and limitations on

the collection of specific flow information.

National statistics institutes may struggle to fully disseminate information on the ori-

gin or destination of migrants. In such cases, the total flow in or out of the country is

often known, resulting in a count of migrants with unknown countries of origin or desti-

nation. For some nations, the size of these counts is relatively large with regard to the

total migration count. For other nations, this count may be small or zero. Hence, when

comparing differences in reported migration flows between multiple nations, the counts of

movements associated with unknown origins or destinations must be considered.

Migration flow data may be completely available, partially available or completely

unavailable. Partial availability can occur for data from countries that have a domestic

need to measure only certain flows. For example, in 2002 Ireland produced estimates of

total movements to and from only three areas: Great Britain, the United States of America

and the EU (Perrin, 2006). In other countries, partial completeness is caused by insufficient

data collection methods. For example, the IPS carried out during border crossings to and

from Great Britain are unable to provide estimates for individuals origins or destinations

where low volumes of movements exist (Perrin and Poulain, 2006b). For some countries, no

migration flow data may be produced. For data sources from member states of the EU this

failure appears to be random. For example, France, which has a large volume of migration,

does not register citizens entering or leaving the country (Breem and Thierry, 2006a).

Conversely, similar sized countries, such as Italy and Germany, regularly publish migration

flow data. In some years, migration flow data provided by countries to international

organizations (the main source of international migration flow data for multiple nations)
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can appear as incomplete. This might be caused by national statistics institutes not

providing, or the organizations not publishing data, despite collection procedures being in

place.

3.3 International Migration Flow Tables

Migration data are commonly represented in square tables, with off diagonal entries con-

taining the number of people moving from any given origin i, to any given destination j, in

a single time period. The diagonal entries in the migration flow table (which corresponds

to either counts of migration flows within an area or populations) are often omitted in an

international context. As a single flow can be counted by national statistics institutes of

both sending and receiving countries, two migration tables may be produced: one for re-

ceiving data collected at the destinations and one for sending data collected at the origin.

Observations of these flows can be represented in an array mijk, where k = 1, 2 indicates

receiving and sending flow tables respectively. A simple example of such tables is shown

in Table 3.1, where data is generated using a Poisson random process (from the rpois

function in S-Plus 6.2) with rate parameter equal to 10. Data were not generated for

migrants received and sent by region E.

Table 3.1: Simulated Migration Flow Tables from Receiving (left) and Sending (Right)

Countries

Origin Destination Total
A B C D E

A 8 12 11 31
B 5 7 8 20
C 11 8 5 24
D 12 10 17 39
E 12 7 10 7 36

Total 40 33 46 31 150

Origin Destination Total
A B C D E

A 7 10 8 11 36
B 7 10 8 6 31
C 5 4 14 9 32
D 11 11 14 15 51
E

Total 23 22 34 30 41 150

In both tables the origins are shown on the vertical axis and destinations on the

horizontal axis. Data collected by the receiving destination countries in the left hand

table form a vertical pattern. In the same manner, the origin reported values in the right

hand table, as collected by the sending nations, form a horizontal pattern.

For any single year, demand exists for a single table with one comparable flow value

for each origin-destination combination. As discussed in the previous section, data for

international migration flow tables often lack comparability (in the same manner as Table

3.1). Sources of the incomparability between a flow reported in each table can be attributed

to two areas: inconsistencies and incompleteness.

Where two sources of information exist for one particular flow, the data might or

might not resemble each other because of differences in definitions and collection systems.

These differences result in data inconsistencies similar to those shown in Table 3.1. For

example, the flows from country A to B are very similar (8 and 7 respectively), whereas
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the flows from country C to B are very different (8 and 4 respectively). Inconsistencies

in reported flow values create a confusing impression as to which data source (if any)

is to be preferred. In turn, more doubts are apparent when considering values in cells

where only a single value is reported (such as from country A to E). Values compared

across columns for receiving data or across rows for sending data could be higher or lower

depending on definitions and data collection methods rather than more or less migrants

entering or leaving countries. Where both reported flow counts are missing data users

are unable to obtain any idea of the level of flows between nations. Together, problems

of inconsistent and incomplete data make comparisons of migration flows across a set of

countries difficult.

Comparable international migration flow data are needed by researchers working on

identifying, understanding and monitoring migration flows. Governments and planners

can also use more comparable estimates to help forecast the demand for services that

are created by population changes, for which the role of international migration has a

significant influence. Previous methodologies for adjusting and imputing missing data

have been created to address this demand. These have tended to be broken into multiple

stages, addressing the problems of inconsistencies and incompleteness through a mixture

of methods.

3.4 Constrained Optimization

Estimates of a complete migration flow table between 28 European nations in 2004 were

calculated by Poulain and Dal (2007) (and Poulain and Dal (2008)) as part of the MI-

MOSA project. This involved decomposing the estimation of international migration flow

tables into three stages: harmonization of referee countries data using a constrained op-

timization, estimation of flows between referee and non-referee countries and estimation

of flows between non-referee countries. Refereed countries were chosen according to the

availability of flow data and expert judgement on their reliability. Full details on this

decision are left to the discussion section. In this section, the methodology of Poulain and

Dal (2008) is initially discussed mathematically, followed by an illustrated example from

the hypothetical data presented in Table 3.1.

The first step of the procedure of Poulain and Dal (2008) built on earlier work (Poulain,

1993, 1999) which used smaller migration tables of flows between selected countries without

missing data. The estimation of harmonized values in these studies required an underlying

assumption that differences in the reported counts of flows between countries are fixed.

Thus the distance between counts represent the non-random discordance in the collection

and measurement of migration flows between any two national statistics institutes. Under

this assumption the equality

rjmij1 = simij2, (3.1)

is believed to hold, where rj , scales receiving data reported in destination j, and si scales

sending data reported in origin i. When correction factors are unknown, Poulain (1993)
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suggested that they can be estimated by minimizing the Euclidean distance,

f(rj , si|mijk) =
∑
i,j

(rjmij1 − simij2)2. (3.2)

Poulain and Dal (2007) proposed the replacement of this measure with a Chi-Squared

distance function to allow the sum of differences in adjusted cell counts to be weighted by

the observed data,

f(rj , si|mijk) =
∑
i,j

(rjmij1 − simij2)2

mij1 +mij2
. (3.3)

Estimates for the correction factors from both distance measures can be obtained by

finding the root of the partial differential equation. The optimal solution to these equations

are for all correction factors to equal zero. In order to determine non-zero parameter values,

Poulain and Dal (2007) imposed a constraint,

c(θ|mijk) =
∑
i,j

rjmij1 + simij2

2
=
∑
i,j

max(mij1,mij2). (3.4)

Earlier studies such as Poulain (1993) used alternative constraints, based on the reported

receiving data. In order to minimize (3.3) with respect to this constraint the method

of Lagrange multipliers was used. This can be illustrated by letting the distance and

constraint functions be denoted by f(θ|mijk) and c(θ|mijk) for the parameter set θ =

(r, s), where r and s are the sets of receiving and sending correction factors for referee

data sources respectively. The method of Lagrange multipliers achieves the stationary

points of θ by setting the partial differentials of

L(θ, λ|mijk) = f(θ|mijk)− λc(θ|mijk), (3.5)

to zero where λ is the Lagrange multiplier. For the Chi-Squared distance function and

constraint used in Poulain and Dal (2007), the partial derivatives for the parameter set

and Lagrange multiplier:

∂L(θ|mijk)
∂rj

=
∑
i,j

2mij1(rjmij1 − simij2)
mij1 +mij2

− λ
∑
i,j

mij1

2
= 0

∂L(θ|mijk)
∂si

=
∑
i,j

−2mij2(rjmij1 − simij2)
mij1 +mij2

− λ
∑
i,j

mij2

2
= 0

∂L(θ|mijk)
∂λ

= −
∑
i,j

rjmij1 +i mij2

2
+
∑
i,j

max(mij1,mij2) = 0, (3.6)

are all linear equations. These can be represented by a system of equations in matrix

format as such,

Aθ = b, (3.7)

where A includes the constant terms expressed in (3.6), θ = (r, s, λ)T and b is a vector

of zeros, with except the last element, which is equal to
∑

i,j max(mij1,mij2).

Poulain and Dal (2008) suggested that in order to harmonize values to a known defini-

tion the parameter set should be normalized to a selected country. This allows correction
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factors in θ to be interpreted as the effect of different measurement and collection sys-

tems in each data source in reference to the selected (normalized) data source. In their

demonstrated example, this was implemented with Swedish receiving data, which were

highly regarded by data experts due to the collection methods and definitional measure

used (Herm, 2006a). Dividing all parameter estimates by the estimated parameter corre-

sponding to Swedish receiving data, resulted in the constraint of (3.4) no longer holding.

In the second and third stage, correction factors for all remaining data sources are

estimated by dividing the scaled flow values estimated using the correction factors from

the first stage with the original reported data,

rj′ =
∑

i simij′2∑
imij′1

si′ =

∑
j rjmi′j1∑
jmi′j2

, (3.8)

where i′ and j′ represent the respective row and columns corresponding to non-refereed

countries. When no original reported data exists for the estimation of the correction

factors in (3.8), alternative migration data such as origin-destination migrant stocks or

migration flows defined by country of citizenship (rather than country of previous/next

residence) are imputed.

Final estimated flow values, yij , for the migration flows from origin i to destination

j, are derived by using the set of correction factors for both refereed and non-refereed

countries to scale the reported (or imputed) data according to a set of preferences,

yijt =



1
2(rjmij1 + simij2) if rj and si exist
1
2(rjmi′j1 + si′mi′j2) if rj exists and si does not
1
2(rj′mij′1 + simij′2) if si exists and rj does not
1
2(rj′mi′j′1 + si′mi′j′2) otherwise.

(3.9)

Hence, average scaled values are taken when reported flows are from either refereed or

non-refereed countries.

To illustrate the constrained optimization framework of Poulain and Dal (2008), the

generated data of Table 3.1 are used. If countries A to C are judged to be refereed nations,

corrections factors for rj and si where i, j = (1, 2, 3) can be obtained from the partial

derivatives in (3.6). These systems of equations can be expressed in matrix notation using

(3.7):

292 0 0 0 −70 −110 −224

0 256 0 −112 0 −64 −216

0 0 386 −240 −140 0 −370.5

0 −112 −240 298 0 0 −314.5

−70 0 −140 0 298 0 −246.5

−110 −64 0 0 0 82 −126

8 8 9.5 8.5 8.5 4.5 0





r1

r2

r3

s1

s2

s3

λ


=



0

0

0

0

0

0

56


. (3.10)
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A function to handle migration flow data and solve these equations for any sized table and

refereeing countries called poulain (shown in the Appendix) was programmed in S-Plus.

This function requires an array object of data and an indicator for countries that are

considered as non-refereed (nr). Using the solve command in S-Plus 6.2, the poulain

function simultaneously determines θ in (3.7) for all refereed countries. When provided

with the data in Table 3.1, the solution in (3.10) were r = (1.0526, 1.1514, 1.0909) and s =

(1.3114, 0.7598, 2.3108). These correction factors were used to scale reported counts from

refereed countries using the average in (3.9). The estimated flows are shown in Stage 1a of

Table 3.2. During the calculation of the values, the constraint
∑3

i=1

∑3
j=1

rjmij1+simij2
2 =∑3

i=1

∑3
j=1 max(mij1,mij2) = 56 is held, where the Lagrange multiplier is a small positive

value. In order to benchmark the correction factors to known definitions, as suggested by

Poulain and Dal (2008), values are divided by 1.0526, that of country A’s receiving data.

This creates new values for r = (1.0000, 1.0938, 1.0364) and s = (1.2458, 0.7218, 2.1952),

which are used to calculate the scaled averages given in Stage 1b of Table 3.2. In this

table, the sum constraint of (3.9) no longer holds.

Table 3.2: Example of Stage 1 in Poulain and Dal (2008) Framework

Stage 1a: Average (Original rj and si)
A B C D E Total

A 9.19 13.10 22.29
B 5.29 7.62 12.91
C 11.56 9.22 20.78
D
E

Total 16.85 18.41 20.72 56.00

Stage 1b: Average (Adjusted rj and si)
A B C D E Total

A 8.74 12.45 21.19
B 5.03 7.24 12.27
C 10.99 8.76 19.75
D
E

Total 16.02 17.50 19.69 53.20

In the second and third stage, correction factors for non-refereed countries are deter-

mined from the ratio of scaled sending (receiving) data with the original receiving (sending)

values of refereed countries. For example, the calculation of r4 = s18+s28+s214
11+8+5 = 1.9364.

A function to estimate these correction factors and estimates of flows to and from non-

refereed countries, called poulain.comp (shown in the Appendix) was programmed in

S-Plus. In order to facilitate the estimation for missing flows involving country E, data

were generated using the rpois function in S-Plus 6.2 with rate parameter equal to 20 to

reflect a (higher) stock measure. These values are given in the Stage 3 display of Table 3.3,

which the poulain.comp function uses to estimate r5 = 0.6405. In addition, sending data

correction factors of sj′ = (1.1266, 0.5176) for j′ = (4, 5) were estimated. Non-refereed
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correction factors, ri′ and sj′ , were used to estimate the final flows using the averages of

adjusted flows as in (3.9). This results in the final migration flow tables in Table 3.3.

Table 3.3: Additional Data and Final Estimates of Poulain and Dal (2008) Framework

Stage 3: Additional Data
A B C D E Total

A 16
B 25
C 18
D 17
E 22 22 14 18 76

Total 76 152

Final Estimates
A B C D E Total

A 8.74 12.45 15.63 11.98 48.80
B 5.03 7.24 10.63 10.17 33.07
C 10.99 8.76 20.21 15.64 55.61
D 12.20 11.67 16.70 13.89 54.46
E 11.69 9.52 8.81 11.44 41.46

Total 39.91 38.70 45.20 57.91 51.68 233.40

3.5 Model Component Modelling

A multiplicative component approach was applied by Raymer (2007) to estimate interna-

tional migration flows between ten countries in Northern Europe in 1999. The procedure

is based on modelling components as separate objects of explanation rather than the flows

directly, similar to that of Willekens and Baydar (1986) or Rogers et al. (2002).

Migration flow tables can be disaggregated into four separate components (Rogers

et al., 2002): an overall component representing the level of migration, an origin component

representing the relative pushes from each nation, a destination component representing

the relative pulls to each nation and an origin-destination component representing the

connectivity between places not explained by the previous three components. Components

may be derived from a log-linear regression model;

logµij = log β1 + log βOi + log βDj + log eij i 6= j, (3.11)

where µij is the expected migration flow from origin i to destination j. The overall effect

is denoted by β1, the origin (or row) effect by βOi , the destination (or column) effect by

βDj and the interaction effect by eij . This is equivalent to the log linear model of (2.12)

where β = (log β1, log βOi , log βDj , log eij) and the explanatory matrix notation containing

information on flow origin and destination is implied in the constraint system of β. The

log-linear model (3.11), can be expressed in a multiplicative component form, similar to

Raymer (2007),

µij = β1β
O
i β

D
j eij i 6= j, (3.12)

where all terms have been exponentiated.
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Previous implementations of multiplicative components models in migration (such as

that of Rogers et al. (2002) or (Raymer et al., 2006)) have focused on the description

and analysis of internal migration flows. Raymer (2007), however, uses this approach for

the estimation of international migration flows through separate models for components

βOi , β
D
j and eij . The methodology begins by estimating all origin and destination com-

ponents for the migration flow table of interest using log-normal regression models and

scaling reported data. This process can be separated into three stages. In the first stage,

one model attempts to explain the total outflow of migrants from all nations (after scal-

ing reported outflows totals to net migration estimates using the demographic accounting

equation model). This model is used to interpolate missing marginal totals, which like

origin-destination flows are often missing. In the second stage, two models attempt to ex-

plain the migration to and from all other countries in the world not included in the desired

flow table, which are again used to interpolate missing values. The difference between the

total flow values (a combination of scaled and interpolated estimates) from the first and

second sets of models results in the total number of migrants sent and received (and hence

marginal totals) for all possible flows in and out the studied countries. This allows the

final estimated flow table to be expanded to include an additional row and column for

flows to and from all other countries. In the third stage, the total migration within the

studied flow table is derived by taking the median of the estimated total migrants sent

and received, which were not previously constrained to match. This overall total is the

estimate of β1, using the total-sum reference category coding scheme recommended by

Raymer (2007). Final estimates of βOi and βDj are derived by dividing marginal estimates

by β1.

In order to estimate the final model parameter eij , origin-destination migration flow

data are derived by preferring receiving data over sending data where both values exist.

The resulting observed values are then divided by expected values from the independence

model (3.11 without the log(eij) term) obtained using Iterative Proportional Fitting (IPF)

algorithm of Birch (1963), where only knowledge of marginal totals and arbitrary stating

cell values are required. The observed to expected ratio cannot always be calculated for

every cell due to missing observed values. In order to account for incomplete data, Raymer

(2007) suggests a log-normal regression model involving a dummy covariate for contiguity

(for countries that share a border) to be fitted to the available ratios. This model can

then be used to interpolate the missing ratio values. These ratios are then entered into

the model of (3.11) in order to give a complete set of estimates for origin-destination

component. In order to fit the final log-linear (Poisson) regression model of (3.11), the

expected values are derived from the IPF algorithm using of βOi and βDj as marginal totals.

These expected values are then regressed on the constant and dummy covariates of origin

and destination with an offset of eij .

The model component framework has been applied to larger migration tables over a

series of time periods by Raymer (2008) and Raymer and Abel (2008). These studies

included a greater number of covariates to explain and interpolate missing values for
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marginal totals and flows to the rest of the world. Raymer (2008) expanded the basic

origin-destination model of (3.11) by an extra dimension to estimate flows by age and

sex groups. As part of the MIMOSA project, Raymer and Abel (2008) included an ad-

hoc harmonization of available data as an initial step, in an attempt to account for data

inconsistencies. Additional models were also built on a ad-hoc basis to aid the fit of

interaction components for problematic cells. Brierley et al. (2008) conducted a study in

the Bayesian paradigm with direct parallels to the multiplicative component model, using

the same Northern European data as Raymer (2007). Estimates of marginal totals were

fixed to the adjusted estimates found by Raymer (2007).

3.6 Discussion of Frameworks

Discussion on the presented frameworks and possible extensions is undertaken in the suc-

ceeding subsections. Comparisons between frameworks with reference to the desirable

criteria outlined in Table 1.1 are outlined in the next section.

3.6.1 Constrained Optimization

The framework proposed by Poulain (1993) was the first effort to estimate an international

migration flow table of comparable data. It formalized the concept that rows and columns

in migration flow tables of reported data can be higher or lower due to differences in data

collection and measurement techniques, and hence a correction factor can be estimated to

equate data to single level. It requires some degree of expert judgement in the decision

of which countries data should be included as a refereed nation. Poulain and Dal (2007)

recommended that this judgement is informed by repeatedly estimating correction factors

for different combinations of refereed countries. Estimates for data sources that appear

unstable during this process to the analyst should be considered as non-refereed countries.

In earlier versions of the framework, the properties of estimated flows were not stated

and remained unclear. Through normalizing correction factors in the first stage, Poulain

and Dal (2008) were able to present a final table of estimates that possess the charac-

teristics of the selected data sources used to normalize other values. Consequently, the

constraint function of (3.4) no longer held. This may not be of deep concern for two

reasons.

First, the normalized correction factors can be directly deduced without the constraint.

These are estimated by reconstructing the matrix A and vector b in (3.10) to represent

the set of partial derivative equations of only rj and si without terms involving λ. The

elements of A corresponding to r1 can then be directly replaced with zero and ones in
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order to constrain the correction factors to unity as such,

1 0 0 0 0 0

0 256 0 −112 0 −64

0 0 386 −240 −140 0

0 −112 −240 298 0 0

−70 0 −140 0 298 0

−110 −64 0 0 0 82





r1

r2

r3

s1

s2

s3


=



1

0

0

0

0

0


. (3.13)

A function for this direct method of calculating correction factors called poulain.direct

(shown in the Appendix) was programmed in S-Plus. It was reliant on the poulain func-

tion for the initial calculation of the A matrix. With larger flow counts, the use of substi-

tuting one to indicate fixed correction factors can create difficulties for the S-Plus function

solve. This can be overcome by using solve.default which may be altered to allow the

tolerance of the QR decomposition function (qr) used within the routine to be increased.

The solution for (3.13) were r = (1.0000, 1.0938, 1.0363) and s = (1.2457, 0.7217, 2.1951),

which are very similar to the parameter values from the normalized estimates for the data

in Table 3.1.

Second, the right hand term in the constraint of (3.4) is justified by Poulain and Dal

(2007) to allow the adjusted cell average to be equal to the maximum reported cell values.

This restricts the parameter space for estimates to a level of reported migration based on

a maximum measure of mixed definitions and data collection methods aggregated over all

cells. This is counter to the concept of minimizing a distance function, which concentrates

on the difference between (rather than totals across) reported cell values. In a similar spirit

the Chi-Squared distance function of (3.3) is a weighted measure based on a denominator

of observed values. These values are known to be incorrectly reported and provide an

unrealistic distance measure for some flows. There exist alternative measures of distance,

discussed in the next chapter, which might better capture the inequality of reported data,

without a reliance on reported data.

Final estimates from the constrained optimization framework have distributions across

a given row or column that are different to the original data, as flows between refereed

countries are diluted to a mixture of sending and receiving patterns. This is problematic

from two standpoints. First, receiving data is often believed to be of better quality (Erf,

2007; Raymer, 2007), and hence it may be more appropriate to weight the average for the

calculation of the final flow estimates to reflect this consideration. The extreme of this

solution would be to ignore the scaled sending data and use only the scaled receiving data

for final estimates. This would result in column distributions of the original data being

preserved. Second, the categorization of countries as refereed data providers is dependent

on the belief that their data is consistent and complete. Taking an average of scaled data

produces final flow estimates that are no longer consistent with regards to the original

data distribution and hence may affect the plausibility of a final flow table estimates.

In the final stage of the methodology, correction factors are calculated and applied to a

mixture of migration data. This operation is performed to obtain estimates of previously
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unknown cell values. As a consequence, these estimates rely on some form of migration

data being available. In some cases, this might require inserting poor data solely to allow

final estimates to be obtained. Taking the average of the adjusted non-refereed data

assumes that the inserted data has the same row or column distributions to that of the

true flows. However, non-refereed data may be known to be a poor proxy for the true flows

and hence any adjustment by a scaling method may exaggerate differences in comparison

to a true unknown migration flow.

3.6.2 Model Component Modelling

The multiplicative component methodology of Raymer (2007) decomposes a flow table

into a number of model parameters whose values are estimated using statistical models.

In the first stage, estimates of the total number of migrants sent and received are adjusted

to reported flow totals derived from net migration figures. This is undertaken with the aim

of creating cell estimates based on a one year timing definition. The scaling assumes that

a country has the same measure in its sending and receiving data which is not always the

case. For example, the Netherlands defines immigration on a six month and emigration

on an annual timing criteria (Erf et al., 2006a). This can potentially inflate the receiving

totals in comparison to the sending totals for which no provision is made in the framework.

After the total flows have been adjusted, estimates for the total flows to nations outside

the set of countries in the table are modelled in order to obtain table margin estimates

for missing data. The models implemented to do this are often simplistic. In Raymer

(2007) a model involving population, median age and gross national income was used

to describe total outflows of ten Northern European nations. For the estimates of total

flows to and from non-Northern European nations, population, gross domestic product

and migration rates covariates were used. These variables are too simple when trying

to replicate the framework for more dissimilar nations, and variables have no justifiable

inclusion over other potential economic, geographic, demographic or social effects that

may better explain total migrants leaving a nation for a particular set of nations. A

more thorough method might involve the use of more complicated models to help describe

the complex nature of patterns of total flows across multiple nations, as demonstrated in

Raymer and Abel (2008). However, the use of multiple effects and interactions is limited

by the amount of nations providing data with a total. For example, in 2006 only eight

countries of the EU15 provided total counts for the number of migrants received and sent,

constraining potential models to use only seven parameters to be fully identified.

Once the missing marginal estimates were obtained, all values were then scaled (again)

so that overall sending and receiving totals match. These manipulations may result in

final estimates not bearing much resemblance to the original reported values. Notable

differences in the reported data and estimates of Northern European flows by Raymer

(2007) are apparent in both the marginal totals and the distribution to and from selected

countries. These differences might be justifiable for data considered unreliable, however

differences were also found when comparing data that are considered to be of a good
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standard. For example, a comparison of reliable data sources, such as Swedish receiving

data (Herm, 2006a), and the final predicted values in Raymer (2007) shows an overall

drop of 2,988, a 25% fall from the reported total. The distribution of these migrants

into Sweden also altered greatly, where some larger sending nations, such as Norway, were

estimated to send 1,970 less migrants than reported (in line with the fall in overall total) as

opposed to Finland, which was estimated to send 293 more migrants than reported. These

large alterations from the distribution of known good reported data affect the plausibility

of the final estimates. Raymer and Abel (2008) attempted to overcome this problem by

adjusting reported flows using an iterative weighting of counts, prior to the modelling of

any components. This included weights that fixed the flow values from receiving data

sources believed to be of good quality.

Without flexibility in the modelling of marginal totals, interpolations for missing values

may be unrealistic or even impossible. For example, Raymer (2007) had problems with

overestimating the Lithuanian margin resulting in large flows to and from other nations.

This over-prediction could be partly due to the simplistic models used or in the assumption

that countries with missing data (such as Lithuania) all have the same relationships with

the covariates used for the regression on available data. In addition, there is no restriction

in place on interpolated values for migration flows to and from the rest of the world. As

these values are deducted from total flows to attain a table margin, large interpolated

values for the rest of world flows could potentially be greater than total flows creating a

negative margin total. Once the final margins are estimated and scaled so that the overall

totals match, the complete set of interaction terms are derived, again using interpolation

from a simplistic model. This is based on receiving data where it exists, even if it is known

to be inconsistent or reliable sending data are available.

3.7 Summary and Conclusion

The methodologies presented in this chapter take vastly different approaches to estimating

a complete migration table. Comparisons of estimation frameworks are undertaken in

this section using the criteria of Table 1.1. The estimates of both methodologies can

be compared with respect to the completeness, consistency, reliability and measures of

precision criteria. Both methods obtain estimates of complete tables, with imputations for

previously unknown flows values, allowing comparisons of all flows. These are estimated

using ad-hoc methods based on alternative data or existing relationships derived from

simplistic models.

To account for inconsistencies, the framework of Poulain and Dal (2008) estimates

correction factors for sending and receiving data, in order to scale reported counts to a

definition in a selected country. Minimizing a distance function of the difference between

cell values allows an explicit relationship between countries reported data to be formulated.

It also allows a clear understanding of the properties of the resulting estimates. The

estimates from the framework of Raymer (2007) rely on scaling total flows of available data
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to net migration totals suggested by the demographic accounting equation. This demands

that additional row and columns for flows to all other countries outside those being studied

are required, which for some nations are not always available. Once estimated, total

margins for each nation are scaled, allowing the overall number of migrants to and from

all countries to match. This step can radically alter the original totals of reliable reporting

countries. As discussed, Sweden was one such country, which Raymer (2007) estimated

to have a 25% reduction in its total flows. Although the marginal estimates match the

calculated net migration, it appears unrealistic to assume that the marginal totals conform

to a consistent definition due to the multiple scaling steps in the estimation of marginal

totals. Inconsistent estimates might also derive from the estimation of the eij term, which

is formed through a mixture of receiving and sending reported data with a variety of

definitions and data collection methods.

The reliability of estimates from both frameworks can be tentatively compared with

values and distributions of good quality reported data. Poulain and Dal (2007) estimated

migration flows between 28 European nations in 2004, (for the paper in 2008 no estimates

were given). For countries that were considered to have good quality data, such as Sweden,

estimates tended to be larger than receiving and sending reported data. These differences

are constant (and in most cases smaller) for flows to and from non-refereed countries due

to estimated correction factors close to unity. For flows between non-refereed countries

estimates tended to be further from the reported (stock) data and on some occasions are

reliant on very large correction factors. Consequently, unreliable estimates for originally

missing data can appear when applied to different data. As discussed previously, the

estimates from the framework of Raymer (2007) appeared unreliable when distributions

are compared with good quality data. A further measure of reliability could be undertaken

by comparing fully estimated migration flows tables across time. Correction factors for

refereed countries by Poulain and Dal (2008) are estimated in the succeeding chapter, and

demonstrate some stability across time. Neither frameworks considered in this chapter

allow estimates of precision measures to be obtained.

The methodology in both frameworks can be compared with respect to the use of model

based imputation methods, allowance for expert opinion, replicability for other users and

flexibility to alternative data from different countries and time periods. The constrained

optimization procedure imputes missing data in an ad-hoc manner, relying on alternative

data to be scaled according to correction factor estimates. In the multiplicative component

framework, missing components are interpolated from simple model based on available

data. Consequently, it is assumed that they share the same relationship as the observed

data. More considered methods exist in statistics, such as the Expectation-Maximization

algorithm of Dempster et al. (1977), which can more fully account for incomplete data.

This algorithm can be applied in either methodology to estimate missing data based on

models for the scaled flow data from refereed countries or for components of a migration

table. The former of these will be further studied in Chapter 5 of this thesis. An alternative

statistical approach to handle missing data could be undertaken in the Bayesian paradigm.
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Brierley et al. (2008) conducted such a study with direct parallels to the multiplicative

component model, using the same original data and marginal totals (which were fixed)

as Raymer (2007). Discussion of this method is left to the concluding chapter of this

thesis, as a concentration on harmonizing and modelling incomplete data in a Frequentist

approach in the remainder of this thesis is taken.

The constrained optimization framework allows a small degree of expert opinion in the

selection of refereed countries. Poulain (1999) selected refereed countries from an analysis

of the stability of correction factor estimates when systematically excluding data sources.

No explicit level of stability is mentioned and hence some level of expert opinion can be

used to determine which countries can be used to calculate refereed correction factors.

This feature is expanded further in the next chapter, to harmonize data that is reported

to be of good quality in recent literature on international migration flow statistics. The

approach of Raymer (2007) allows expert opinion to be used in the selection of covariates

in models for the interpolation of components for missing data. Brierley et al. (2008)

demonstrated that in a Bayesian framework, expert opinion can be fully incorporated to

alter estimates that are believed to be from unreliable data sources.

The replicability of the methodology of Poulain and Dal (2008) is considerably better

than that of model component modelling. As previously mentioned a S-Plus function was

created to quickly estimate correction factors and estimated flow tables. The methodol-

ogy of Raymer (2007) was more complicated, with multiple stages of data manipulations,

interpolation and model fitting. These can cause errors in the implementation of the frame-

work leading to different estimates. Unlike the constrained optimization framework, the

models to interpolate missing margins and interaction components require extra covariate

information, adding further complication. The Raymer and Abel (2008) extension of this

framework adds further stages, some of which are ad-hoc and dependent on estimates from

previous stages.

Both frameworks discussed in this chapter concentrated on European data. The frame-

work of Poulain and Dal (2008) had been previously applied (with alternative distance

functions and constraints) to alternative migration tables of different sizes and in time

periods. Due to the ad-hoc nature of estimating missing cell values it is dependent on

the availability other sources of migration data, such as stocks. These may not always be

available and up to date, which could severely affect the reliability of final estimates. The

model component framework has also been applied to larger European migration tables

over a series of time periods by Raymer (2008) and Raymer and Abel (2008). Both of

these studies included a greater number of covariates (allowed by working with a larger

table) to explain and interpolate missing values for marginal totals and flows to the rest of

the world. Additional models were also built on a ad-hoc basis to aid the fit of interaction

components for problematic cells.

In conclusion, two very different frameworks exist to estimate international migration

flow tables. Both fail to satisfactorily address all the criteria for migration flow table esti-

mation methodologies set out in Table 1.1. However, some elements of the methodologies
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provide useful guidance that could be used in a more comprehensive framework. Most

notable was the underlying concept introduced by Poulain (1993) of estimating correction

factors to adjust reported data to a consistent level. This was based on an underlying

assumption that differences in the reported counts can be considered as non-random mea-

sures of the discordance in the collection and measurement of migration flows between

reliable data sources. The following chapter will explore this aspect further, investigating

different distance measures, the use of alternative constraints and using current research

into data sources to further improve the comparability of international migration flow

data.

36



Chapter 4

Overcoming Inconsistencies in

International Migration Flow

Tables

4.1 Introduction

The lack of comparability in international migration data can be traced to the multi-

dimensional nature of migration (Goldstein, 1976). As a result, national statistics insti-

tutes have developed measures of migration solely suitable to their domestic priorities.

When international migration data is compared across multiple countries in a single time

period, inconsistencies in reported flow values between data sources are apparent. Con-

strained optimization studies such as Poulain (1993) attempt to harmonize international

flow data by estimating correction factors to adjust reported data to a consistent level,

where differences in the reported counts are considered as non-random measures of the

discordance in the collection and measurement of migration by national statistics insti-

tutes.

The analysis and application of constrained optimization methods for international

migration flow data has been predominantly limited to a single time period offering only

a loose guidance on its application and neglecting the underlying causes of the incompat-

ibility in international migration flow data. The application of alternative distance and

constraint functions has remained partly ignored, driven by concerns of estimating missing

values for international migration flow tables of comparable data. This chapter concen-

trates solely on inconsistent data issues to develop a methodology for the estimation of

consistent migration flow data that are comparable across multiple nations. Included in

the study is an exploration of alternative distance and constraint functions. These will

be analyzed for reported flows over a series of time periods to allow added information to

inform the estimation of correction factors.

This chapter commences by presenting a series of migration flow tables for comparisons

over time for 15 countries of the EU before the expansion of May 2004 (EU15). Next,

expert opinion on the characteristics of data from these countries and levels of counts of
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migrations with unknown origins or destinations are presented. These allow a clearer ex-

planation of the differences in sending and receiving data and help in determining where

reported counts can be scaled to a comparable level. For some reported data, expert

opinion indicates that counts are inaccurate and hence a scaling of their values is not

considered as it would accentuate errors already present. The following section intro-

duces a methodology for creating comparable estimates from reliable data sources using

constrained optimization routines in statistical software. These allow the estimation of

correction factors to be easily obtained and with a great deal of flexibility in the speci-

fication of distance and constraint functions. This methodology is applied to a series of

international migration flow tables to estimate alternative sets of correction factors for

EU15 nations in two stages. First, correction factors for different constraint sets are esti-

mated using the same distance measures. Second, correction factors for a range of distance

measures on the same set of constraints are estimated. Comparing estimates across time,

the robustness of harmonization methods to changes in migration flows are assessed, under

the assumption that the sources of inconsistencies have remained the same. In the final

section, a generalization of the distance measures and constraint sets over time is carried

out to enable a larger number of observations to be used in calculating final estimates

of correction factors. This yields an incomplete set of international migration flow tables

which will facilitate statistical modelling in following chapters, allowing imputations for

missing flow values to be obtained for a complete harmonized table.

4.2 International Migration Flow Data for the EU15

International migration flow data may be obtained from a number of international orga-

nizations. One of the most comprehensive collections is provided by Eurostat. Data are

collected from individual national statistics institutes through a questionnaire on interna-

tional migration statistics sent annually to 55 countries, organized by five organizations:

Eurostat, United Nations Statistical Division, United Nations Economic Commission for

Europe, Council of Europe (CoE) and International Labour Organization. Eurostat pro-

cesses and disseminates data for the 37 European participants via their official data base,

New Cronos which is available online. The reported counts of these flows can also be

found in publications of individual national statistics institutes, the CoE and Système

d’Observation Permanente des MIgrations (SOPEMI) reports of the Organization for Eco-

nomic Co-operation and Development (OECD). Values of the same flows may not always

be the same in all international organization data bases. The cause of this difference is

not known due to insufficient documentation (Kupiszewska and Nowok, 2008).

The Eurostat data for flows between EU15 nations in years 2002 to 2006 was obtained

from the New Cronos web site (http://epp.eurostat.ec.europa.eu, accessed March

2008). This set of countries was chosen due to the availability of literature on international

migration statistics provided by national statistics institutes. In addition, a wide variety
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of the causes of incomparability in flow data, which will be discussed in the next section,

are present.

Reported values can be represented in two separate migration tables similar to Table

3.1 or as double entry tables shown in UN (1976), Kelly (1987) or Nowok et al. (2006).

For the 2006 data, a double entry matrix is displayed in Table 4.1, where origins are

shown on the vertical axis and destinations on the horizontal axis. Countries are labelled

according to three-letter classification by the International Standardization Organization

(ISO). Each cell comprises of two counts when both are available. The top values are

collected by the receiving destination countries and hence are read vertically. In the same

manner, the bottom value in each cell contains the origin reported values, as collected

by the sending nations, forming a horizontal pattern. As noted in the previous chapter,

reported counts may be very similar, such as the flow from Austria to the Netherlands, or

very different, such as the flow from Austria to Germany. These altering differences give

a confusing impression as to which data source, if any, to be preferred.

When data is collected over time a graphical representation of cell values allows an

easier viewing of migration levels and data issues. Plots of a series of migration flow tables

for the EU15 are shown on a logarithmic scale in Figure 4.1. Red lines represent receiving

country data and blue lines sending country data. Origins are shown on the vertical axis

and destinations on the horizontal axis.

When compared over time it is evident that some nations such as Belgium or France

never provide receiving data, and hence no red line appears in their columns. Other nations

such as Greece or Portugal never provide sending data, and hence no blue line appears

in their rows. Ireland consistently provides data only to Great Britain, with exception of

the last time period. In origin-destination cells where both sets of data are reported, the

lines are fairly parallel, a feature illustrated in Kupiszewska and Nowok (2008) for selected

flows between nations with good quality data collection procedures. Non-parallel lines are

visible for reported flows to and from some nations such as Great Britain, where British

counts tend to be more volatile than their reporting partners. For larger flows, such as

German and Spanish flows to and from Great Britain, British data are more volatile when

plotted on a non-logarithmic scale.

Reported flow values tend to be highest to and from of countries with the largest

populations such as Germany, Great Britain, France, Italy and Spain. Values between

neighbouring countries, such as Netherlands and Belgium or Germany and Austria, tend

to be larger than other values in the same row or column. Of the 1050 cells (corresponding

to a 15 × 15 non-diagonal mobility table over 5 years), 870 had values from at least one

reporting partner. In 332 cells, data from both sending and receiving countries were

available for which none reported the same value. In 225 cells there were no reported

values from either country. For 20 origin-destination combinations (out of a possible 210)

there is no data reported in any year.

A plot of the counts when both nations report data is shown in Figure 4.2. On the

right hand panel are counts as given in Figure 4.1, whilst on the left hand panel the counts
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Figure 4.1: Reported Migration Counts (000’s) for each available Origin-Destination Com-

bination of EU15, 2002-2006 of the Logarithmic Axis.
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Figure 4.2: Sending and Receiving Migration Flow Counts (left) and Logarithm of Counts

(right) for EU15 Countries, 2002-2006.
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in thousands are displayed. These plots demonstrate the correlation between sending and

receiving data when both are reported. If all data sources produced comparable data (from

identical data collection system and measurement) all points would lie on the solid diagonal

line where sender and reported values are equal. The logarithmic plot demonstrates that

the distance from this equality is not necessarily influenced by the size of the reported

flows when a transformation of the reported data is taken.

Some of the smallest differences occur for flows between the Nordic nations of Sweden,

Finland and Denmark. These nations all use registration systems to collect migration data.

An exchange system is in place for the reporting of movements between Nordic countries,

as migrants are only registered in one country at a time (Herm, 2006b). Consequently,

data for the number of migrants sent from one of these nations is recorded by the country

of destination, rather than origin. Reported counts of migrants sent between Nordic

countries, as collected by the sending data source, are unavailable. Differences in these

counts are attributed to dual citizens and time delays for migrations occurring at the end

of the year (Nowok et al., 2006).

4.2.1 Ratings of Migration Data for EU15

In order to obtain a comparison of the European migration flow data, Erf (2007) provided

subjective judgements by three characteristics: definitions of migration, measurement
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Table 4.2: Erf (2007) Ratings of Migration Data for EU15 from 2002 to 2006
Country Receiving Sending

Timing Completeness Accuracy Timing Completeness Accuracy

AUT 3 4 4 3 4 4

BEL 3 9 9 3 9 9

DNK 2(3) 4(4) 4(4) 3 4 4

FIN 2(4) 4(4) 4(4) 4 4 4

FRA 3 2 9

DEU 2 4 4 2 4 4

GRC

IRL 2 2 2 2 2 2

ITA 2(3) 3(3) 3(3) 4 3 3

LUX 2 3 3 2 3 3

NLD 3 4 4 4 4 4

PRT 4 9 9 3 2 2

ESP 2 3 3 2 3 3

SWE 4 4 4 4 4 4

GBR 4 2 2 4 2 2

0:Worst 1:Worse 2:Insufficient 3:Reasonable 4:Good 5:Excellent 9:Unknown

Scores in parentheses are for non-national, when national and non-national data are collected differently.

systems and intended coverage. For member nations of the EU15, ratings for both receiving

and sending data between 2001 and 2006 are shown in Table 4.2. Ratings based on timing

were judged by the degree of agreement with a twelve month timing criteria. This definition

is recommended by the United Nations (UN) to reflect long term migrants who have

changed their usual country of residence (UN, 1998). Ratings of completeness are based

on the degree of under-registration believed to be present in the measurement systems

used. Scores for accuracy are based on the coverage of the target population and the

collection, production and dissemination of data. Values for completeness and accuracy

measurements were judged by considering the data sources used and experience with vital

statistics. For most of the EU15 nations scores on the completeness and accuracy of

receiving and sending data were the same. Greece fails to provide any receiving flow data

and both France and Greece do not publish any sending migration data throughout the

time period. For Denmark, Finland and Italy receiving data are collected differently for

nationals and non-nationals, where the ratings for non-nationals are given in parentheses.

All scores are constant over the 2002-2006 time period.

4.2.2 Data Dissemination in the EU15

Plots of the available counts of migrants with unknown origins or destinations. as a

proportion of total sending and receiving countries, are shown in Figure 4.3 for EU15

nations between 2002 and 2006. Totals for this calculation were given by the New Cronos
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Figure 4.3: Proportion of Migrant Origins or Destinations Unknown for Available Receiv-

ing and Sending Data of EU15 in 2002-2006
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data base, which correspond to totals of all flows (including the counts of migrants with

unknown origins or destinations). As with the flow data, unknown counts are reported

according to local definitions and data collection methods. With the exception of Lux-

embourg, these plots demonstrate that sending data tend to have a lower proportion of

unknown destinations in comparison with the unknown origins in receiving data. For some

countries, such as Italy, Great Britain and Finland, the amount of unknown counts was

small, or zero. Larger percentages are found for sending data of Luxembourg, Spain and

the Netherlands. For Luxembourg, the large levels of unknowns are created from the non-

reporting of departures by emigrants and the non-collection of country of origin by local

municipalities (from which national level data is aggregated Perrin and Poulain (2006a)).

For Spanish data, there is a notable change in the level of unknowns between 2002 and

2003, with an increase from 69 (and 6) to 202,256 (and 38,339) received migrants (and sent

respectively). This pattern might be related to a switch in the data sources used to supply

the data requested by the Joint Statistical Questionnaire on International Migration in

2001 (Breem and Thierry, 2006b). In the Netherlands, emigrants have to deregister from

their municipal data base when they leave the country with the intention to stay abroad

for at least eight of the forthcoming twelve months. When people do not declare their
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departure, the register is later corrected without personal notification. For such adminis-

trative corrections, the country of destination is not known, creating the large unknown

counts (Erf et al., 2006a).

4.3 Methodology for Creating Comparable Data from Re-

liable Data Sources

In this section, a general methodology that allows the estimation of incomplete inter-

national migration flow tables is described. In order to provide comparable estimates,

inconsistencies in reported migration counts from differences in the production and dis-

semination, are addressed. This is undertaken in two stages

(a) correction for unknown counts,

(b) harmonization of reliable data,

Each stage is outlined in turn.

4.3.1 Counts of Unknown Migrant Origins and Destinations

As previously discussed, international migration flow data are accompanied by a count

of migrants with unknown origins or destinations. If we let migration flow tables of such

data be represented by array nijk, where i indicates migrant origin, j indicates migrant

destination and k = 1, 2 indicates receiving and sending flow tables respectively. For the

receiving flow table there exists a row nuj1 which contains the counts of unknown flows

collected in destination j. In the same respect, the sending flow table there exists a niu2

which contains the counts of unknown flows collected in origin i. In order to account for

these unknowns and thus avoiding bias towards data sources with no unknowns, corrected

migration flows, mijt can be derived as follows,

mij1 = nij1 +
(

nij1nuj1
ni+1 − nuj1

)
,

mij2 = nij2 +
(

nij2niu2

n+j2 − niu2

)
, (4.1)

where the index i, j = + denotes total flows including unknowns counts. This allocation

assumes that unknown counts are missing at random among all international origins or

destinations. If a certain type of migration, such as inter-continental moves, are more likely

to be captured and reported in the data collection dissemination then this allocation would

discriminate against more local moves whose origin or destination may not be known.

4.3.2 Constrained Optimization

Differences in counts between nations with better quality data can be considered as fixed,

where data production techniques do change over time. Thus, a distance measure of these

differences represents the non-random discordance in the collection and measurement of
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migration flows between any two national statistics institutes. Poulain (1993) took a

similar view in his attempts to harmonize migration data, whereby all reliable data were

considered to be influenced by some data source specific correction factor. As outlined

in the previous chapter, correction factors can be estimated to minimize these distances

using a constrained optimization method. Correction factors can then be used to scale

reported counts to a comparable level.

In this chapter, the constrained optimization method is extended to alternative dis-

tance measures, constraint sets and generalized across a series of migration tables. This

is implemented in five stages

(a) select reliable data and constraints on the basis of expert opinion,

(b) estimate correction factors for different distance measures and time periods,

(c) select a distance measure associated with the set of correction factors that are most

stable over time,

(d) generalize the distance measure to estimate a single correction factor for each data

source over the entire period,

(e) use the correction factors to scale reported data.

Each stage is discussed in turn.

Data sources for which distances can be considered as fixed are selected using expert

opinion. In this chapter, the rankings by characteristics outlined in Table 4.2 are used

to select data sources that provide reliable reported counts. When data sources are con-

sidered insufficient or data are not available, reported counts are ignored. This selection

criteria provides a set of migration tables (that may be non-square) of reliable sending and

receiving migration flow data. Expert opinion is also used to select a correction factor(s)

for at least one of the reliable data sources which will be constrained to equal one. This

allows other correction factors to be interpreted as the effect of different measurement and

collection methods in each data source with reference to the constrained data source(s).

Estimates of non-constrained correction factors are determined using constrained op-

timization routines in statistical software. These allow a great deal of flexibility in the

estimation of correction factors for a range of distance measures and constraint sets. In

this chapter, the nlminb function in S-Plus 6.2 is used. This routine can find a local

minimum for a twice differentiable function within a multi-dimensional bounded param-

eter space. Required arguments for the procedure are the function to be minimized and

suitable starting values for the parameters. If unrealistic starting values are used or the

function is complex, the solution may not be correctly determined. Gradient and Hes-

sian functions may also be considered by the routine to obtain solutions quicker. When

derivative functions are not available, the nlminb routine implements a quasi-Newton op-

timizer to find parameter values such that the given function is minimized. Alternative

routines such as fmincon in Matlab also employ a quasi-Newton optimizer for constrained

minimizations with multiple parameters.
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A quasi-Newton optimizer operates in a similar manner to the Newton optimizer of

(2.42), discussed in Chapter 2. When the gradient v, and Hessian, H, are not known, initial

values are calculated numerically. Approximations of v are taken using finite differencing.

Algorithms also exist to approximate the Hessian matrix and its inverses when unknown,

such as the BHHH routine of Berndt (1974) (see Nocedal and Wright (1999, p194-210) or

Skrondal and Rabe-Hesketh (2004, p181-2) for more details). These algorithms allow the

quasi-Newton optimizer to modify approximations of H in each iteration by combining

the most recently observed v and H with existing knowledge embedded in the current

Hessian approximation.

Correction factors estimated from alternative methods, such as the poulain and

poulain.direct functions discussed in the last chapter, can be compared with the nlminb

function. In this chapter, this comparison is undertaken by minimizing the Chi-Squared

distance function of (3.3) using the nlminb routine. In addition, different constraint sets

and the effect of ignoring data exchanges, such as those between Nordic countries, are

analyzed. These can provide a further insight on the effect of multiple constraints and

optimization procedures on the estimates of correction factors.

Comparisons between sets of estimated correction factors can be drawn from several

sources. Plots of correction factors over time allow a clear illustration of the effect of

different distance functions, estimation methods and constraints. As differences between

reliable reported flow data are considered fixed over time, the most effective distance

measure should provide the same correction factors in each year. This stability can be

empirically summarized by considering each set of correction factors θt = (θ1t, . . . , θpt)T =

(log(rt), (log(st))T for time period t. The variance within correction factors over time can

thus be estimated as, ∑p
d=1

∑
t (θdt − θ̄d)2

n− p
, (4.2)

where n is the total number of correction factors over all time periods. Due to the asym-

metry of scaling effects, the logarithmic transformation of correction factors are taken in

the estimation of (4.2). This allows the variation between larger correction factors to have

an equal effect as smaller correction factors.

As definitions and collection methods of all the reported data used in the estimation

are assumed fixed over time, the distance measure that possesses the smallest variation

can be regarded as the best measure for a constrained optimization of migration flow

data. For such a measure, a set of single correction factors for each data source over an

entire series of tables can be estimated. To estimate these correction factors, consider a

series of double entry migration flow tables noted as mijtk, where i indicates referee origin

countries, j indicates referee destination countries, t the time period and k = 1, 2 indicates

receiving and sending flow tables respectively. Each column of the receiving data table,

mijt1 can be assumed to be influenced by some correction factor rj that scales the value

of reported counts based on the collection methods and definitions used in the respective

data sources. In the same respect, the sending table mijt2 is influenced by row factors si.
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Estimates of these correction factors can be derived from a constrained optimization on

the selected distance measures generalized over the entire array of reliable reported data.

Final correction factors are used to scale reported data as such,

yijt =


rjmijt1 if rj and mijt1 exist at time t,

simijt2 if si and mijt2 exist at time t and rj does not,

zijt otherwise,

(4.3)

where zijt represents a subset of yijt that have missing values depending on the lack

of corresponding correction factors. The application of correction factors in (4.3) is an

alternative strategy to the approach suggested by Poulain (1999) who took an average of

the scaled data. The correction of receiving data, when sending data are available, will

result in the distribution across a given column of migration flow table being preserved

to that of the reliable reported data. This preference is undertaken for two reasons.

First, receiving data is often believed to be of better quality (Erf, 2007; Raymer, 2007).

Second, receiving data from some countries are highly regarded, and hence an alteration

in their value might lead to implausible estimates. Scaled sending data is used when no

reliable receiving data is available. Consequently, an altered distribution of flows will be

estimated across a row when compared with the original data. This alteration will be to

greater effect than under an averaging of corrected flows, but will provide estimates for

counts in destinations where no reliable receiving data are available.

4.4 Estimating Comparable Data from Reliable Data Sources

In order to estimate comparable data from reliable data sources, reported counts are ad-

justed for unknowns produced in the dissemination of data by national statistics institutes.

Non-linear optimization routines are then applied to the EU15 data. This is undertaken

in two stages. First, different constraint sets and estimation methods are tested using the

same distance measures. This provides a better understanding of the effect of the nlminb

function in comparison with other constrained optimization techniques presented in the

previous chapter. Second, a range of distance measures on the same set of constraints

(suggested by data rankings) are estimated. Comparing results over time allows the ro-

bustness of distance measures to changes in migration flows to be determined from the

within variance statistic of (4.2).

4.4.1 Correction for Unknown Counts

All unknown counts, displayed in Figure 4.3 are distributed to origins and destinations

using the equations in (4.1). This reduces the difference between some reported counts,

such as flows into Luxembourg, where reported receiving data are persistently lower than

sending data of corresponding origin countries. For Spanish data, the addition of greater

unknown counts in years previous to 2002 increased counts to similar levels as the 2002

counts.
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4.4.2 Comparison of Estimation Methods and Constraint Sets

The analysis of methods to estimate correction factors to minimize the Chi-Squared dis-

tance function was undertaken for reliable EU15 migration flow data in Figure 4.1. This

included data from all sources ranked with scores of at least reasonable, for completeness

and accuracy characteristics, in Table 4.2. Since not all data, from sources considered rea-

sonable, were available for all time periods the size of tables and consequently the number

of estimated correction factors, changed for each time period. To compare estimation

methods three sets of correction factors were estimated using

(a) A total constraint and normalization to Swedish receiving data proposed by Poulain

and Dal (2008) using the poulain function,

(b) A single constraint to Swedish receiving data using the poulain.direct function

presented in the previous chapter,

(c) A single constraint on Swedish receiving data estimated using the nlminb function.

To compare constraint sets and the effect of ignoring data exchanges, estimates from (c)

can be compared with correction factors estimated using

(d) Multiple constraints on correction factors corresponding to data sources ranked with

scores of good for timing, completeness and accuracy by Erf (2007) estimated using

the nlminb function,

(e) A repeat of (d), excluding data for flows between Nordic countries.

For the last three applications (all of which use the nlminb function) lower and upper

bounds were defined for all parameters to be between 0.1 and 10 with the exception of

correction factors with constraints where both bounds were set to 1.0. All initial parameter

estimates for the function were set to 1.0. The S-Plus/R Chi-Squared distance function is

shown in the Appendix.

Correction factors from the different estimation methods were obtained in each time

period. In all cases the function successfully converged to a minimal distance value.

Comparisons of estimated values are displayed in Figure 4.4. These plots illustrated some

clear differences in correction factors resulting from different estimation techniques.

Estimated correction factors for Swedish receiving data from all estimation methods are

unity and hence their plots overlap. Estimates from the normalization to Swedish receiving

data proposed by Poulain and Dal (2008) (calculated using the poulain function) are

comparatively higher than all other methods illustrated. This is caused by the constraint

on the summation of reported values which inflates correction factors to levels artificially

high to meet the total constraint, before the normalization to Swedish receiving data is

taken. Consequently, the minimal Chi-Squared distance in each time period is often higher

than alternative methods, as shown in Table 4.3. Estimates from the poulain.direct

function (shown by the green line of Figure 4.4), is similar to estimates from the nlminb

function (shown by the blue line). In the latter, the within data source variance (provided
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Figure 4.4: Receiving (rj) and Sending (si) Correction Factors from 2002-2006 using the

Chi-Squared Distance Function

0.5

1.0

5.0

R
e
c
e
iv

in
g

AUT

0.5

1.0

5.0

R
e
c
e
iv

in
g

AUT

0.5

1.0

5.0

R
e
c
e
iv

in
g

AUT

0.5

1.0

5.0

R
e
c
e
iv

in
g

AUT DNK
2002 2003 2004 2005 2006

DNK
2002 2003 2004 2005 2006

DNK
2002 2003 2004 2005 2006

DNK
2002 2003 2004 2005 2006

FINFINFINFIN DEU
2002 2003 2004 2005 2006

DEU
2002 2003 2004 2005 2006

DEU
2002 2003 2004 2005 2006

DEU
2002 2003 2004 2005 2006

ITAITAITAITA LUX
2002 2003 2004 2005 2006

LUX
2002 2003 2004 2005 2006

LUX
2002 2003 2004 2005 2006

LUX
2002 2003 2004 2005 2006

NLDNLDNLDNLD ESP
2002 2003 2004 2005 2006

ESP
2002 2003 2004 2005 2006

ESP
2002 2003 2004 2005 2006

ESP
2002 2003 2004 2005 2006

SWESWESWESWE

0.5

1.0

5.0

S
e
n
d
in

g

2002 2003 2004 2005 2006

0.5

1.0

5.0

S
e
n
d
in

g

2002 2003 2004 2005 2006

0.5

1.0

5.0

S
e
n
d
in

g

2002 2003 2004 2005 2006

0.5

1.0

5.0

S
e
n
d
in

g

2002 2003 2004 2005 2006 2002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 2006 2002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 2006 2002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 2006 2002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 2006

Normalized Direct Single Multiple Without Inter-Nordic

in Table 4.3) is lower whilst correction factors tend to be higher. These differences are

the result of two features. First, the direct method relies upon the solve function of

S-Plus, and hence require square matrices during the inversion process, unlike the non-

linear minimization function. As a result, this method is unable to provide correction

factor estimates for Luxembourg’s sending data in 2006 as no receiving data is reported.

This results in less distance measures considered in the poulain.direct function. Second,

the quasi-Newton method considers an estimate of the second differential of the distance

function in the estimation of correction factors, unlike the method of Lagrange Multipliers.

This allows estimates of correction factors to fully consider the curvature of distance

function when searching for minimal values.

In order to compare different constraint sets, multiple correction factors for Swedish,

Finnish and Dutch sending data (as well as Swedish receiving data), were all fixed to 1.0 in

the nlminb routine, as all data sources were given ratings of good for timing, completeness

and accuracy by Erf (2007) (Table 4.2). The multiple constraints lead to a reduction in the

variance and higher minimum distances in comparison to the correction factors estimated

with a single constraint on Swedish receiving data. Higher minimum values are caused
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Table 4.3: Summary of Constrained Optimization Methods on the Chi-Squared Distance

Function
Constraints Estimation Distance at Minimum Variance

2002 2003 2004 2005 2006

Single poulain 3754 5122 3236 3252 2554 0.0850

Single poulain.direct 2240 2754 2141 2239 1951 0.1376

Single nlminb 2016 2468 1887 1965 2075 0.1154

Multiple nlminb 3827 5095 3706 3596 3489 0.0824

Multiple* nlminb 3167 4494 3282 3101 3087 0.0868

*Excluding Inter-Nordic Flows

by correction factors for Dutch and Swedish sending data becoming constrained to unity,

where previously their values were below one.

The removal of distance measures, derived from inter-Nordic data leads to a small

increase of the variance in correction factors. Correction factors with and without these

measures were very similar with the exception of Danish and Finnish (receiving) data for

which correction factors were estimated further from unity when inter-nordic flows where

ignored. Minimal distance measures (in Table 4.3) with multiple constraints were lower in

most years when inter-Nordic flows were dropped. This is due to fewer observed measures

considered in the distance function.

4.4.3 Comparison of Distance Measures

Alternative distance functions, to the Chi-Squared distance measure, could provide more

stable correction factors over time, and hence better reflect the assumption that data

collection methods and definitions remain constant. The range of distance functions con-

sidered (f(rj , si|mijk)) for the routine are shown Table 4.4.

Table 4.4: Alternative Distance Metrics and Estimated Variance from 2002-2006 Data

Distance f(rj , si|mijk) Variance

Manhattan
∑

i,j |rjmij1 − simij2| 0.0877

Euclidean (
∑

i,j |rjmij1 − simij2|2)
1
2 0.0944

Canberra
∑

i,j
|rjmij1−simij2|
rjmij1+simij2

0.0740

Clark
∑

i,j
|rjmij1−simij2|2
(rjmij1+simij2)2

0.0892

The first two measures considered were the Manhattan and Euclidean measures, (the

latter equivalent to the Euclidean distance of (3.2) used by Poulain (1993)). The general
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form of these measures are also known as Minkowski distance of order p or p-norm distance,

(
n∑
i=1

|rjmij1 − simij2|p)1/p (4.4)

where p = 1 or p = 2 for a Manhattan and Euclidean distances respectively (Deza and

Deza, 2006, p126). Both provide equal weighting for each reported flow, and hence an

optimization procedure depends solely on minimizing all distances regardless of the flow

sizes. The third and fourth distance functions are based on the Canberra and Clark

measures (Lance and Williams, 1967). These use weightings to allow differences to be

measured relative to the scaled reported data.

Figure 4.5: Receiving (rj) and Sending (si) Correction Factors, 2002-2006 for Different

Distance Functions

0.5

1.0

5.0

R
e
c
e
iv

in
g

AUT

0.5

1.0

5.0

R
e
c
e
iv

in
g

AUT

0.5

1.0

5.0

R
e
c
e
iv

in
g

AUT

0.5

1.0

5.0

R
e
c
e
iv

in
g

AUT DNK
2002 2003 2004 2005 2006

DNK
2002 2003 2004 2005 2006

DNK
2002 2003 2004 2005 2006

DNK
2002 2003 2004 2005 2006

FINFINFINFIN DEU
2002 2003 2004 2005 2006

DEU
2002 2003 2004 2005 2006

DEU
2002 2003 2004 2005 2006

DEU
2002 2003 2004 2005 2006

ITAITAITAITA LUX
2002 2003 2004 2005 2006

LUX
2002 2003 2004 2005 2006

LUX
2002 2003 2004 2005 2006

LUX
2002 2003 2004 2005 2006

NLDNLDNLDNLD ESP
2002 2003 2004 2005 2006

ESP
2002 2003 2004 2005 2006

ESP
2002 2003 2004 2005 2006

ESP
2002 2003 2004 2005 2006

SWESWESWESWE

0.5

1.0

5.0

S
e
n
d
in

g

2002 2003 2004 2005 2006

0.5

1.0

5.0

S
e
n
d
in

g

2002 2003 2004 2005 2006

0.5

1.0

5.0

S
e
n
d
in

g

2002 2003 2004 2005 2006

0.5

1.0

5.0

S
e
n
d
in

g

2002 2003 2004 2005 2006 2002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 2006 2002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 2006 2002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 2006 2002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 20062002 2003 2004 2005 2006

Chi-Squared Manhattan Euclidian Canberra Clark

Estimates for the correction factors from these measures in each time period are given

in Figure 4.5. As with the final estimates of correction factors in the previous subsection,

these were estimated on tables of reliable flows (adjusted for unknown counts) between

2002 and 2006, ignoring inter-Nordic data and using the nlminb routine. In all cases the

function successfully converged to a minimal distance value.

For the first two measures (orange and green lines respectively), estimates tend to

have similar values for each data source as they provided equal weighting for each double-

counted cell in each migration flow table. The last two measures (light and navy blue) also
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resemble each other and on occasions differ from the previous two measures, as demon-

strated by higher estimates in Luxembourg’s receiving data correction factors. This was

due to the weighting that both measures employ, allowing differences to be compared

relative to the scaled reported data.

With a few exceptions, estimated correction factors tend to be similar over time and

consistently greater or less than one. In a few cases, such as sending data from Luxem-

bourg or Austria, the choice of distance measures would not alter the direction of scaling.

Spanish estimates fluctuate greatly in comparison with others, with values for most dis-

tance measures falling for 2003. This might be related to the changes in the level of

unknowns discussed earlier.

For comparative purposes, the correction factors from the Chi-Squared distance func-

tion in Figure 4.4 are also plotted using the dashed red line. The estimates from this

distance measure are regularly between the weighted and non-weighted versions, as the

denominator is the summation of unweighed flows. Its variance, shown in Table 4.3 is sim-

ilar to estimates from the Manhattan distance function. The smallest variation over time

in correction factors, calculated using Equation (4.2), is that of the Canberra measure.

4.4.4 Constrained Optimization Over Time

For the distance measure associated with the smallest variance, a new set of time constant

correction factors (r, s) are estimated. This is undertaken by generalizing the Canberra

distance function (which had the smallest variation) for an array of migration tables over

time,

f(rj , si|mijtk) =
∑
i,j,t

|rjmijt1 − simijt2|
rjmijt1 + simijt2

. (4.5)

Thus estimates are based on a number of distance measures for each origin-destination

combinations over a series of annual flow tables. This optimization was undertaken with

constraints on correction factors for data rated as good by Erf (2007). As in the previous

section, unknown counts were used to adjust reported data, ignoring inter-Nordic flows

and using the nlminb function. The resulting estimates of correction factors are given in

Table 4.5. Comparisons of these values with past estimated correction factors estimates are

difficult due to different constraint systems used. However, their values can be considered

in general terms by their relation to unity. Correction factors greater than one result in an

increased scaling of reported counts, whereas values lower than one result in a decreased

scaling. Past estimated correction factors for the countries in Table 4.5, such as from

Poulain (1993) or Poulain and Dal (2008) have similar effects. Notable exceptions are the

values of Luxembourg for which Poulain and Dal (2008) estimated receiving and sending

correction factors to be 0.991 and 1.194. These differences may be explained by the

allocation of counts of unknown origin and destination for each data source previous to

the estimation of correction factors in Table 4.5. Differences were also found for Austrian

data where sending and receiving correction factors where estimated to be 1.039 and 1.694
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Table 4.5: Estimated Correction Factors for the Series of Migration Tables
Country rj si

AUT 0.6926 0.7594

DNK 0.6357 0.5751

FIN 1.8096 1.0000

DEU 0.5637 0.7067

ITA 1.6502 2.8339

LUX 1.9691 0.6665

NLD 0.8227 1.0000

ESP 0.7715 2.6730

SWE 1.0000 1.0000

The correction factors were applied to existing data to create a series of migration

flow tables using (4.3). The resulting harmonized flow values, for the data presented

in Figure 4.2, are shown in Figure 4.6. The black line shows the harmonized values of

yijt and red and blue lines the receiving and sending data, adjusted for unknown counts.

For selected origin-destination pairs, receiving values are scaled by their country specific

correction factors, rj , when available. An example of this is shown by the reduction in

German destination values, regardless of sending values, where a constant difference in

the harmonized and receiving values is visible. For cells in a flow table with no receiving

correction factor but in rows (from origins) with a sending correction factor, an scaling

of si was made. An example of this process is shown for harmonized data for flows from

Germany which take the same pattern as German sending data only in destinations where

no receiving correction factors are present (such as to Great Britain). All other reported

data is ignored, hence no black line is shown in cells such as Belgium-Great Britain as the

only data available are considered unreliable.

For 2006, the estimated migration flow table of harmonized data are shown in Table

4.6. In contrast to the original reported double entry table for the same year in Table

4.1, only one value is estimated for each cell. For flows to and from countries that had

correction factors constrained to unity, values are the same or have small differences from

the allocation of unknown flows.

4.5 Summary and Conclusion

In this chapter a methodology for the harmonization of data for international migration

flows tables was outlined. It commenced by considering a set of tables over time, with

adjustments to reported data for flow values that may be reported differently through data

exchanges and data dissemination problems. Comparisons of constrained optimization

methods for international migration flow data was then analyzed across time. This was

undertaken for data considered by experts to be of a reasonable quality, and resulted in
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Figure 4.6: Harmonized and Reported Migration Counts (000’s) for each available Origin-

Destination Combination of EU15, 2002-2006.
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fairly stable correction factor estimates between each time period. The Canberra distance

measure was identified as having the lowest variance across time periods, and thus was

generalized for the calculation of a single correction factor for each data set over a series

of migration flow tables. These factors were used to scale a series of migration data that

experts believed to be of reasonable quality at a harmonized level.

The constrained optimization techniques used in this chapter estimated an incomplete

set of data that can be used within an overall methodology for estimating international

migration flow tables of comparable data. In reference to the desirable criteria in Table

1.1, estimates can be considered consistent and reliable. Data sources that were ranked

with scores of good for timing, completeness and accuracy by Erf (2007) had their cor-

rection factors constrained to unity. The remaining correction factors were applied to

reported flows to allow scalings in their values towards the levels in the constrained data

sources. Reliability in some data sources was ensured by preserving the original receiving

data distributions of reasonable data and constraining good data. Other desirable criteria

suggested in Table 1.1 for the estimation of international migration flow tables of compa-

rable data, namely, completeness and an associated precision measure, were not obtained

in this chapter. However, these criteria will be addressed in the next two chapters of this

thesis.

The methodology presented allows expert opinion to determine which data sources can

be considered of reasonable quality and which should be ignored and treated as missing.

Expert opinion may also help in the treatment of counts that have an unknown origin or

destination, as will be discussed later in this section. The methodology can be relatively

easily replicated. Alternative routines such as fmincon in Matlab produced very similar

results to those from S-Plus presented in Table 4.4. The portability of the methodology

to different countries is dependent on the availability of reliable data and expert opinions

that are comparable over multiple data sources.

The harmonization methodology in this chapter relies on a number of assumptions.

First, prior to the application of a constrained optimization procedure, counts of migrants

with unknown origins or destinations were distributed evenly across all countries. This

procedure assumes that the location of the future or past residence is independent of

the missing process. This could potentially be untrue in some countries, where counts

from or to origins or destinations might be more likely to be unavailable than others.

Further expert opinion on data sources could help avoid such an issue. Second, constraints

were placed on sending data with the assumption that a ranking score of good for all

data characteristics is the same as a ranking of good for receiving data. However, it is

generally considered that receiving data is of a better quality than sending data due to the

difficulties in tracking migrants leaving a destination in comparison to arrivals. Third, it

was assumed that measurement systems in all countries with estimated correction factors

remained unchanged throughout time. In the case of Spain this might have been over

optimistic, as a volatile pattern in the counts of unknown origins or destinations is present.

However, most counts to specific origin and destinations are fairly stable over the time
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period and the literature considered (Breem and Thierry, 2006b) suggests that changes in

the measurement and collection occurred previous to the studied time period.

Future research on the methods used in this chapter may further enhance estimates

and the methodology. Improved correction factors could be obtained using data from a

longer period, such as reported counts previous to 2002. Efforts were made to attain a

longer series of origin-destination flow data collected by Eurostat in the Joint Statistical

Questionnaire on Migration. Problems appeared in the validity of reported sending values

which, when entered in a migration flow table, produced vertical patterns. After corre-

spondence with the Eurostat support office, it was discovered that this unusual pattern

was caused by the deletion of some data. If available, a greater amount of information

could be incorporated into the estimation of correction factors, given the assumption that

migration data collection methods by national statistics institutes remained unchanged.

More data could also be helpful in detecting flows that have large amounts of variation in

comparison with other collection sources. Plots of comparative flows across time, as seen

in Figure 4.1, allowed the easy discovery of some questionable data sources such as those

provided by Great Britain. With a longer series of data these plots could help inform

users as to which data sources are eligible for the estimation of a correction factor to scale

their data. In this chapter, recognition of reliable sources was taken from a single report

of Erf (2007) which created a quantitative representations of data collection techniques.

Further work in this area could have the potential to incorporate such measures into dis-

tance functions. For example, a weighting of distance measures could be implemented to

reflect different timing criteria used in each data source.

The use of non-linear optimization routines in statistical software allowed a great deal of

flexibility to change constraints and distance measures. Plots of correction factors provided

a number of useful indicators to the performance of optimization routines, constraint sets

and the effect of ignoring specific flow values. Further alterations to these manipulations

could be studied such as introducing more realistic bounds for correction factors from

expert opinion. Final estimated correction factors in Table 4.5 differed from previous

estimates from alternative methodologies, although comparisons are difficult to make due

to different constraints and data used. Final receiving correction factors tended to be

lower than those of Poulain and Dal (2008). This is partly driven by the exclusion of

inter-Nordic flows and the lack of a constraint on total flows. If required, correction

factors could be altered either directly through constraints or indirectly though estimation

boundaries. For example, if an expert judges the level of under-counting of receiving data

in Finland, a new constraint, different from one, could be imposed to reflect the missing

percentage. Alternatively, tighter bounds in the parameter space could force estimates

to be in the neighbourhood of those supplied by expert opinion. Routines might also

be easily constrained to harmonize data to an alternative set of countries that may use

different timing criteria in their migration definition, such as a six month definition, as

used by multiple migration data sources in the EU15.
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In conclusion, differences in available migration data from reliable reporting countries

represent a measure of inconsistencies between reporting data sources. By scaling counts

using correction factors, these distances can be minimized resulting in a harmonized data

set. There exist multiple methods to measure these distance and strategies to minimize

their overall levels. In this chapter, a non-linear optimization routine was used which

allows boundaries to be easily set to constrain the parameter estimates. Using sub-tables

composed on reliable data, as informed by expert opinion on various aspects of the data

collection process, correction factors were estimated in multiple time periods. This proved

a useful exercise, allowing the best distance measure to be determined for the estimation

of time constant correction factors across a series of migration tables. After applying

these correction factors the resulting data have the potential to be studied in relation to

covariates factors suggested by international migration literature. As demonstrated in the

next chapter, model based methods can be used to allow imputations for missing data.
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Chapter 5

Estimating Missing Data in

International Migration Flow

Tables

5.1 Introduction

In this chapter, model based imputations for missing data in flow tables are derived.

International migration flow table often contain missing data, creating difficulties in the

analysis of population behaviour and change. Data may be missing for a number of reasons.

First, national statistics institutes in some countries do not provide reported counts due

to the lack of a data collection infrastructure. Second, international migration flow data

tends to be collected to meet a domestic demand. Flows to or from certain countries, that

are not of interest to their governments, might not be measured. Third, some countries

may have insufficient data collection methods to report migration by origin or destination.

For example, in Great Britain the International Passenger Survey (IPS) is used to help

provide international migration flow data. Carried out during border crossings to and

from Great Britain, estimates for the origin or destination or migrants where low volumes

of movements exist are inadequate (Perrin and Poulain, 2006b). Finally, in some years,

migration flow data provided by countries to international organizations (the main source

of international migration flow data for multiple nations) can appear as incomplete. This

can be caused by national statistics institutes not providing, or the organizations not

publishing data, despite collection procedures being in place.

As migration flows can potentially be counted by both sending and receiving coun-

tries incompleteness for some cells in a double entry migration table may not always be

problematic. When data is not collected by one of these sources, the partner country

may provide an adequate estimate for the flow value. If the reporting partner’s data is

believed to be of good quality but uses alternative methods or definitions, there exists the

possibility that estimates can be scaled to a given definitional requirement, as discussed

in the previous chapter.
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Alternative methods to impute missing cell values into international migration flow

tables have been ad-hoc (see for example Raymer (2007) or Poulain and Dal (2007)). Al-

though not without value, there exists a limited amount of research into their theoretical

properties. A more comprehensive understanding of imputations techniques can be ex-

plored using statistical methods based on likelihood theory for analysis with missing data.

One such method is the Expectation-Maximization (EM) algorithm of Dempster et al.

(1977), a general purpose routine for maximum likelihood estimation.

In order to maximize the likelihood, a distributional assumption regarding the data

is required. This typically takes the form of a statistical model which describes the be-

haviour of a random variable, such as a migration flow. Models for migration flow tables

reside predominantly in internal migration research, for which a range of distributional

assumptions have been explored (see, for example, Congdon (1991). This chapter intends

to use similar models for the modelling of incomplete international migration flow tables.

Using covariate information drawn from international migration theory, imputations for

missing data are derived using the EM algorithm.

This chapter commences by reviewing models for population mobility tables, which

have been found to have statistical equivalences to generalized linear models (introduced

in Chapter 2). The following section outlines the EM algorithm. Models are then fitted

by implementing the algorithm on the harmonized migration flows for the EU15 between

2002 and 2006 (see previous chapter) in order to account for the missing data. This new

application of a popular statistical missing data technique allows imputations for missing

cell values often found in international migration flow tables.

5.2 Models for Migration Flow Tables

Flowerdew (1991) outlined two main approaches to the analysis of flow tables that are

commonly used for internal mobility data: the gravity model and the spatial interaction

model. The gravity model approach derives from movements between regions in a similar

manner to particle responses to two gravitational masses, as proposed by Newton in Prin-

cipia Mathematica. Stewart (1941) and Zipf (1942) framed this approach for migration

data, relying on statistical estimation of migration levels, given information on each ori-

gin, destination and a measurement of interactions between them. The spatial interaction

models, associated with Wilson (1970) are based on mathematical algorithms to calibrate

a constrained model to origin and destination totals. There are numerous formulations

of spatial interaction models such as bi-proportional adjustment, information gain mini-

mizing and entropy maximizing which include various constraints and interaction terms

(Willekens, 1983).

Poisson regression models have become a popular method for representing migration

models as they relate gravity and many spatial interaction models in a single compara-

tive framework. Flowerdew (1982) and Willekens (1983) showed that a Poisson regression

model with either row or column dummy covariates are equivalent to an origin or des-

61



tination constrained spatial interaction model, and where both covariates are present, a

doubly constrained spatial interaction is obtained. Such representations, with only cate-

gorical covariates, are also known as log-linear regression models of Birch (1963). When

row or column dummy covariates are not included, but other origin and destination specific

factors are, a gravity model with an assumed Poisson distributed response is represented

(Flowerdew, 1991).

As explained in Chapter 2, Poisson regression models are part of a range of statisti-

cal models known as generalized linear models of Nelder and Wedderburn (1972), which

link together a number of models that relate a random response variable to a systematic

linear predictor. This statistical formulation of a migration table has several important

advantages over more traditional approaches. Willekens (1983) noted that Poisson regres-

sion models enhance the structural analysis of spatial interaction, have greater clarity and

simplification of parameter estimation and open the opportunity to apply a wide range

of statistical theory. Guy (1987) expanded upon this final point for all Poisson regression

models, noting the ability to provide standard diagnostics and better model specification.

In addition, non-specialist statistical software may be used to fit generalized linear models

using efficient algorithms for obtaining maximum likelihood parameter estimate. These

also have greater flexibility for alternative functional forms to extend models beyond con-

ventional size and distance variables and with a choice of error specifications.

Flowerdew and Aitkin (1982) noted some drawbacks in implementing Poisson regres-

sion models to migration flow tables. Arguably, the most prominent of these was an

inability to provide an adequate fit to data. Previous attempts to fit log-linear models,

such as that of Flowerdew and Lovett (1988) and Flowerdew (1991), showed that the

best fitted models contained origin and destination (or table row and column) covariates.

Despite adding further interaction-based explanatory factors, which improved model fits,

the remaining deviances of models were still deemed unsatisfactory. The lack of fit was

attributed to the equivalence of the first and second moment in a Poisson distribution.

The use of a single parameter distribution assumed each movement from a given origin to

a destination occurred independently, having controlled for explanatory factors. However,

data in origin-destination tables are aggregated over individual characteristics. Congdon

(1991) noted that without the ability to disaggregate data by more individual level factors,

such as migrant age or sex, Poisson regression models fit poorly.

One solution to this problem was to fit a linear regression to the logarithm of migrant

counts. Flowerdew and Aitkin (1982) noted this approach had a number of problems when

fitted to migration count data. First, the introduction of the logarithmic scale creates

a bias in the estimate of the mean when the antilogarithm was taken. Consequently,

wrongly signed or insignificant coefficients may be included in a model. Second, a log-

normal assumption for a count response has a theoretical dissatisfaction of modelling a

discrete valued process by a continuous distribution. Finally, a log-normal regression

model presupposes a common variance for mobility table data where there is often a

wide variation in cell values. Davies and Guy (1987) suggested three alternative solutions
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for when a Poisson assumption in mobility tables was violated: a parametric approach

using negative binomial regression model, a quasi-likelihood approach of introducing a

new parameter for the mean-variance ratio and a pseudo likelihood approach of estimating

a variance-covariance matrix of parameter estimates given a misspecified model. In this

chapter the former of these three is further explored as its parameter estimates are based

on full likelihood methods. This allows missing data techniques such as the Expectation-

Maximization (EM) algorithm to be fully utilized under a negative binomial assumption

for a response variable.

5.3 The Expectation-Maximization (EM) Algorithm

The EM algorithm is an iterative algorithm for maximum likelihood estimation in incom-

plete data problems. Used in multiple statistical settings, the EM algorithm is a prominent

tool in estimation when there are missing data on random variables, such as the number

of migrants between two countries, whose realizations would otherwise be observed. De-

veloped by Dempster et al. (1977), the motivating idea behind the EM algorithm is to

augment the missing parts of a data set with temporary values to complete the data and

allow the estimation of model parameters to proceed in a cycle of simple estimation steps.

Each cycle of the EM algorithm consists of two steps.

1. If we let θr denote the current guess of the parameters at iteration r, yo be the

observed data and z denote the missing data to be augmented. The E-step (expec-

tation step) finds the expected augmented log-likelihood Q(θ) if θr were θ. This can

be expressed as

Q(θ|θr) = E(l(θ|yo, z)|yo,θr) (5.1)

where l(θ|yo, z) is the log likelihood of θ given the augmented data.

2. The M-step (maximization step) determines θr+1 by maximizing the expected aug-

mented log-likelihood.

The algorithm is iterated until
∣∣∣∣θr+1 − θr

∣∣∣∣ or
∣∣∣∣Q (θr+1 |θr

)
−Q (θr |θr )

∣∣∣∣ is sufficiently

small, and hence a maximum of the augmented log-likelihood is reached.

The EM algorithm has a number of appealing proprieties relative to other iterative

algorithms for finding maximum likelihood estimates. Little and Rubin (2002, p167) noted

that the EM algorithm is numerically stable as each iteration increases the likelihood, has

fairly reliable convergence and often easy to program as no evaluation of the observed

likelihood nor its derivatives are involved. In addition, the M-step can be easily imple-

mented in standard statistical software by performing a fit to the current complete data

at each step. Mclachlan and Krishnan (1996, p33-4) noted associated problems of the

EM algorithm including: a slow convergence rate which may occur when there is a large

fraction of missing data, the lack of a built-in procedure for producing an estimate of

the covariance matrix of parameter estimates and the lack of a guaranteed convergence
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to a global maximum. The first two problems can be alleviated by choosing appropriate

starting values and using a supplementary methodology that will be further explored in

the following chapter. The possibility of not converging to a global maximum is a problem

faced by all optimization algorithms and the EM algorithm is no different in this respect.

In some cases this can be alleviated by using multiple starting points, as used throughout

the remainder of this thesis, to check that the maximum reached is not localized. There ex-

ist other procedures such as simulated annealing to tackle more intricate situations which

tend to be complicated to apply, as discussed by Little and Rubin (2002, p167).

5.4 Modelling Incomplete International Migration Flow Ta-

bles

In this section, negative binomial regression models are fitted to incomplete international

migration flow data for the EU15 countries, presented in Figure 4.6. In order to account

for the missing data, model parameters are estimated using a EM type algorithm. In

keeping with statistical modelling, the harmonized data are treated as observed values.

Of the 1050 cells (made from a 15 × 15 × 5 non-diagonal mobility table over 5 time

periods), 819 have observed, harmonized values. In the 210 flows for which reported counts

could potentially be produced, 30 had no observations of harmonized data in any years.

This was greater than the actual reported data (20), as some values are ignored due to

their poor quality.

A function was written in S-Plus to obtain estimates of parameters in a negative

binomial regression models using a EM type algorithm (shown in the Appendix). The

function requires a fitted model object of class negbin, for which the model matrix of

the specified model is utilized in the M-step. This can be obtained by fitting a proposed

model using the glm.nb function of the MASS library (Venables and Ripley, 2003) and

omitting any missing data. Given the model matrix, parameter estimates are generated in

the routine by augmenting the missing flow counts with temporary values. These values

are estimated in the M-step of the algorithm using the glm.nb function. The routine

continues until the specified stopping criteria are met. Included in the output is a record

of parameter and imputations at each iteration.

Note, this routine is not a true EM algorithm as in the M-Step it maximizes the

negative binomial likelihood augmented with expected values of the missing data at each

step. This is opposed to taking the expectation of the augmented likelihood as presented

in the previous section. Hence, in the estimation of the parameters, the correct Q(θ|θr)
is not maximized . This is because the in the correct Q(θ|θr) requires the expectation of

the log(Γ(y+α−1)
y!Γ(α−1)

) (derived from the first terms in the probability density function shown

in (2.34)).

As a result of using the routine in the Appendix, derived estimates of α are not

maximum likelihood estimates and may further impact the calculations of other model

parameters and their associated variances. Further work is required to better understand
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these effects (which are believed to be minor), including using a more suitable EM type

algorithms. For example, the Monte Carlo EM algorithm of Wei and Tanner (1990) avoids

the direct calculation of the expected augmented likelihood in the E-Step by simulating

missing values from their condition distribution to provide maximum likelihood estimates

of parameters.

Initially, a spatial interaction model that was equivalent to a quasi-independent model

was fitted. This can be specified in a similar manner as (2.35),

logµijt = β1 + βOi Oi + βDj Dj , (5.2)

where µijt ≡ E(yijt|β, α,xTi ) and β1 is a constant parameter for the baseline category, βOi
the set of 14 origin parameters and βDj the set of 14 destination parameters, corresponding

to origin Oi and destination Dj respectively. As previously mentioned, spatial interaction

models give superior over gravity models but at the cost of aliasing out additional origin

and destination effects. They also allow a level of basic measure in the overall attrac-

tiveness of countries for migrants moving to and from each nation to be obtained. Such

measurements are commonly referred to as push and pull factors (Lee, 1966).

Figure 5.1: Exponentiated Covariate Parameter Estimates, θ (left) and Missing Data

Values, z in 000’s (right) of Quasi-Independent Fit
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All parameters are successfully estimated using the EM algorithm. Final estimates, and

standard errors (from the observed data) are shown in the first two columns of Table 5.1

(other columns are discussed later in this section). Figure 5.1 shows a trace of the iterative

estimates from the EM algorithm of this model (right plot), alongside the imputed values
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Table 5.1: Mean Parameter Estimates from EM algorithm

Parameter Spatial Interaction Main Effects French Interaction
exp(β) se(β) exp(β) se(β) exp(β) se(β)

Constant 212.7620 0.1688 0.0007 0.6737 0.0001 0.8489

Origin:
BEL 4.3495 0.1852 1.2615 0.1252 1.1555 0.1418
DEU 18.7707 0.1582 7.8271 0.8397 0.0460 2.5020
DNK 1.1711 0.1583 1.5461 0.1428 1.6387 0.1642
ESP 5.5379 0.1582 3.1334 0.4991 0.3182 1.2018
FIN 0.7756 0.1583 0.4540 0.1725 0.5433 0.1897
FRA 6.7664 0.1852 4.6928 0.7352 9.6826 3.7769
GBR 8.6948 0.1852 14.5710 0.7570 0.3648 1.7986
GRC 1.0894 0.1853 1.0140 0.1139 0.8751 0.1423
IRL 0.6916 0.1854 0.8422 0.2014 1.0365 0.2349
ITA 3.4470 0.1701 2.5763 0.6758 0.0886 1.7146
LUX 0.5038 0.1667 0.5314 0.8230 1.1143 0.8277
NLD 3.9895 0.1582 3.1579 0.2867 1.5833 0.3779
PRT 3.1251 0.1852 0.2257 0.2706 0.2041 0.2722
SWE 3.1787 0.1582 1.8473 0.1521 1.4836 0.1506

Destination:
BEL 4.6995 0.1867 0.7024 0.1193 0.6172 0.1362
DEU 11.2890 0.1582 0.1182 0.8379 0.0008 2.5082
DNK 0.9953 0.1583 2.4038 0.1439 2.5266 0.1651
ESP 6.4067 0.1582 0.8533 0.4993 0.0907 1.2055
FIN 1.4570 0.1583 6.7173 0.1740 8.2222 0.1919
FRA 5.6295 0.1866 0.1655 0.7329 0.0017 1.8192
GBR 8.0547 0.1866 0.5504 0.7529 0.0151 1.8029
GRC 1.0608 0.1868 2.0992 0.1069 1.7619 0.1379
IRL 0.8179 0.1869 4.2119 0.2068 5.1961 0.2404
ITA 3.2706 0.1710 0.4308 0.6750 0.0161 1.7195
LUX 1.5046 0.1619 1.8496 0.8655 3.2087 0.8686
NLD 2.2212 0.1583 0.5530 0.2825 0.2988 0.3763
PRT 1.6291 0.1867 5.4726 0.2283 5.0024 0.2319
SWE 3.8221 0.1582 1.7893 0.1485 1.4742 0.1471

Main Effects:
GNI 6.7608 0.3076 6.8078 0.2997
GDP 2.3310 0.3688 2.2718 0.3540
Trade 1.3431 0.0306 1.3704 0.0322
Euro 1.4333 0.0970 1.3838 0.0934
Stock 1.8190 0.0192 1.8641 0.0196
French 3.3312 0.1718 1.9649 0.1884
English 0.4017 0.2957 0.5557 0.2957
Population 0.9647 0.0142
Time 1.0689 0.0319

French Origin Interaction:
GNI 3.8759 0.4917
Euro 0.5698 0.1750
Population 1.0183 0.0052
Stock 0.7305 0.1079
Distance 0.5696 0.3278

French Destination Interaction:
Stock 125.6465 0.8586

66



for 231 missing cell values (left plot). An initial value of one was chosen for all parameter

estimates whose values all met a convergence criteria of
∣∣∣∣Q (θr+1 |θr

)
−Q (θr |θr )

∣∣∣∣ <
10−5 after 36 iterations.

The exponentiated origin parameter estimates from the quasi-independent model mea-

sure the level of attraction over the entire time period, in comparison to Austria, which

was used as a reference category. Values varied from 18.7707 and 8.6948 for Germany

and Great Britain to 0.5038 and 0.6916 for Luxembourg and Ireland, respectively (with

reference to unity for Austria). Exponentiated destination parameter values (where Aus-

tria was again the reference category) varied from 11.2890 and 8.0547 for Germany and

Great Britain to 0.8179 and 0.9953 for Ireland and Denmark, respectively. The dispersion

parameter was estimated as 1.2863 (using the glm.nb function), which is equivalent to the

inverse, 0.7774 for α in equation (2.34). A Z-test provided strong evidence that α > 0,

suggesting the data was overdispersed and hence the negative binomial model was more

appropriate than an equivalent Poisson model.

5.4.1 Additional Information

In order to provide more reasonable imputations, the quasi-independent model was ex-

panded upon. There are many theories that explain international migration, see for exam-

ple Massey et al. (1993) or Greenwood and Hunt (2003). Data for economic, geographical

and demographic factors suggested by these theories are often comparable across multi-

ple nations and available from data bases of international organizations. Data on nine

of these factors were chosen. Where possible, information across time was taken to help

reflect trends in migration flow counts seen in Figure 4.6.

Four covariates on economic systems were constructed: the origin-destination ratio

of Gross National Income (GNI) per capita and Gross Domestic Product (GDP), the

logarithm of the total value of trade for each corresponding flow and a dummy variable

for the circulation of the Euro currency in both origin and destination countries.

Data for GNI and GDP were obtained from the World Bank, World Development

Indicators Database (http://www.worldbank.org/data). Measures with a purchasing

power parity adjustment, to account for differences in relative living costs and inflation,

were used. A per capita measure for GNI was taken to reflect a macro measurement of the

differences in wages between origins and destinations. GDP was measured on a national

level (rather than per capita) to reflect differences in economies income and output. The

logarithm of this ratio was taken due to the high level of asymmetry created by the

comparison of large economies such as Germany, France and Great Britain to smaller

nations such as Luxembourg. A covariate measure on trade was collected in order to

reflect economic linkages between nations. Data for the value of all commodities imported

into each country for all origin nations was obtained from the UN Commodity Trade

Statistics Database (http://comtrade.un.org/). A final economic covariate measure

was constructed to represent countries using the Euro, to potentially explain higher flows
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between countries where levels of economic and political integration may be even greater

than flows from other EU15 nations due to a common currency.

Two measurements of geographical links were created: distance and contiguity. A

weighted distance between two countries was obtained from Mayer and Zignago (2006).

Measurements are calculated in kilometres between the principal cities of countries weighted

by their population size and thus account for the uneven spread of population across a

country. A separate dichotomous measure for contiguity was taken as internal migration

studies have sometimes shown its impact to be distinct from that of distance (Flowerdew

and Lovett, 1988). Data for this variable was obtained from Stinnett et al. (2002) where

countries separated by land, river border or 12 or less miles of water are considered con-

tiguous.

Three covariates on population were considered: size, migrant stocks and language. A

covariate for population was used to control for higher migration flows between countries

with large populations such as Germany and France. For each flow, a measure from the

sum of origin and destination populations was calculated. Hence, the same covariate value

is obtained regardless of the flow direction. Data was obtained from the World Bank, World

Development Indicators Database. An origin-destination migration stock table was derived

from Parsons et al. (2005) who complied a global bilateral data base from the 2000 round

of population censuses. Covariates on languages were considered to further reflect social

and linguistic similarities. These were derived from a European Commission’s Eurobarom-

eter survey on European’s and their Language (http://ec.europa.eu/public_opinion).

Variables for the official languages used in more than one of the EU15 (English, French and

German) were based on the surveys estimates of the knowledge of each tongue as a foreign

language in each nation. The product of origin and destination language prevalence were

then calculated, after setting values for foreign languages levels in countries, where it was

officially spoken, to 100 percent (lower levels were recorded as a non-native speaking sur-

vey respondent considered the official language as a foreign tongue). For example, values

representing the commonality of English and French for the Netherlands to Great Britain

flow were 0.8700 (from 0.87 × 1.00) and 0.0667 (from 0.29 × 0.23) respectively, indicating

a higher overall level of English in the two nations. An additional continuous covariate for

time was also added to account for changes in the level of migration flows and correlation

amongst repeated counts of the same origin-destination pair, over the time period.

5.4.2 Main Effects Model

In order to attain a better model fit and more realistic imputation the Akaike Information

Criterion (AIC) was used to select the most suitable variables for a main effects model.

AIC = −2l(θ|yo) + 2p, (5.3)

where l(θ|yo) is the log likelihood of θ given the observed data, yo, and p is the dimension

of θ. Comparisons of potential models were undertaken using the stepAIC function in

the MASS library (Venables and Ripley, 2003). The function operates by examining the
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inclusion of potential covariates by their contribution to the AIC of the model, performing

a stepwise search in both directions, adding and dropping variables. Included in a pre-

condition in the scope of models to be searched were origin and destination covariates.

The final model selected by the stepAIC function can be specified as,

logµijt = β1 + βOi Oi + βDj Dj (5.4)

+β2GNIijt + β3 logGDPijt + β4 log TRADEijt + β5EUROij

+β6 logSTOCKij + β7FRENCHij + β8ENGLISHij

where all covariates are flow specific, and GNI, GDP and trade were time-varying. Co-

variates for distance, contiguity and the German language were found to be ineffective in

reducing the AIC. The remaining covariates were included in the final main effects model

which had an AIC statistic of 12,101 in comparison to 13,548 of the quasi independent

model (shown in Table 5.2). Convergence when fitted with the EM algorithm was obtained

after 43 iterations with stopping criteria of 10−5. Fitted values are shown by the solid

red line where original data existed, and by red marks for the imputations on previously

missing data in Figure 5.2.

Table 5.2: Dispersion Parameter Estimates from EM algorithm and AIC

Spatial Interaction Main Effects French Interaction

α 0.7774 0.1557 0.1432

se(α) 0.0573 0.3168 0.3460

AIC 13547.69 12101.26 12047.97

Parameter estimates for the selected covariates are shown in the third and forth

columns of Table 5.1. Origin and destination effects strayed from their values found in the

quasi-independent as additional factors were controlled for. The estimated exponentiated

parameters effects for economic factors (6.7608 for the ratio of GNI per capita, 2.3210 for

the logarithm of the ratio of GDP, 1.3431 for the logarithm of trade volume and 1.4333 for

Euro region), logarithm of migrant stocks (1.8190) and French prevalence (3.3312) were all

greater than unity implying higher levels of these covariates were associated with higher

migration flows, conditional upon the value of all other covariates. Exponentiated coeffi-

cients estimates for English prevalence (0.4017) was less than unity indicating higher levels

in their covariates were associated with lower migration flows, given all other variables are

controlled for. This might be due to low covariate values being determined between coun-

tries with high migration flows. For example, the value of English prevalence for a migrant

moving from Sweden to Great Britain is 0.8900, compared to 0.5607 for (more popular)

moves from Sweden to Finland. Similar problems did not occur with other languages,

which tended to have much smaller levels throughout most origin-destination pairs. The

dispersion parameter was estimated to be 0.1557 with standard error 0.3168 (as displayed
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Figure 5.2: Data and Main Effects Model Fits of Migration Flows (000’s) from each

Origin-Destination Combination of EU15, 2002-2006.
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in Table 5.2). This was noticeably smaller than the quasi-independent fit indicating evi-

dence for a control on overdispersion in the main effects models.

5.4.3 Interaction Models

To gain a further superior fit the stepAIC function was run once more with an extended

scope of models to consider all two-way interactions, with one exemption, the origin-

destination interaction. This was not included as for some levels, such as the flows between

Britain and France, no data existed and hence such a parameter could not be identified.

The fitting function selected two new main effects (German and distance) and 24 new

interaction covariates. From the total of 26 new covariates many involved origin or des-

tination interactions and hence multiple levels. This resulted in producing a total of 243

new parameters (not shown in Table 5.1). Many of these parameters were unidentified

and imputations were unreasonable as large shares of available information in the observed

data are used to fit model parameters for the complete data. Consequently, the observed

value all had extremely good fits in all years (not shown on Figure 5.2). This was reflected

by AIC statistics as low as 11,072 (not shown in Table 5.2) a large reduction from the

main effects model (12,101). In addition to these problems, different parameter values

are estimated for different starting values. This is also due to the lack of observed data

relative to the number of parameters

Whilst a single model with many interactions and multiple parameters may not be

plausible for a migration table involving many countries, interactions for single countries

can be constructed to improve model imputations where deemed necessary. Analysis of

the fits from the main effects model in Figure 5.2 showed reasonable imputations for

most previously missing cells. Clear exceptions are selected flows to and from France. For

example, the number of migrants sent from France to Belgium was higher than movements

to other neighbouring countries of greater population size and economic power, such as

Spain or Germany. For these countries, fitted values to and from France tended to be

greater than the harmonized values, creating large residuals. This might be caused by

the general nature of the main effects to model, where effects of some factors may vary

substantial for migration flows to or from individual nations.

A closer fit was obtained by considering interactions for the 11 covariate parameters

(including 3 languages effects) outlined in Subsection 5.4.1 with France as both an origin

and destination. The 22 additional covariates where considered by the stepwise model

fitting algorithm. The final model selected by the stepAIC function was,

logµijt = β1 + βOi Oi + βDj Dj (5.5)

+β2GNIijt + β3 logGDPijt + β4 log TRADEijt + β5EUROij

+β6 logSTOCKij + β7FRENCHij + β8ENGLISHij + β9POPijt

+β10TIMEt

+β11OFRA : GNIijt + β12OFRA : EUROij + β13OFRA : POPij

+β14 logOFRA : STOCKij + β15OFRA : DISTij + β16 logDFRA : STOCKij ,
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where covariates are flow specific, and are equal to zero in non-French rows (or columns)

corresponding to interaction terms with France as a origin (or destination). The AIC of

final selected interaction model was 12,047 (as displayed in Table 5.2) a further reduction

in comparison to the main effects model but with more parameters (from 37 to 45), see

Table 5.1. Of these, six were new interaction covariates and two more main effects for

population and time. Additional main effect covariates are included, partly as higher level

interactions with other covariate with France were effective and hence its main effects

are also useful. Alternatively, these have been included as parameter estimates from the

original main effects model are altered by the inclusion of interactions and thus more or

less factors might be added to cover the change in model fit.

Of the six new interactions, five (GNI ratio, population sum, the Euro zone, stock and

distance) were with France as an origin and one (stock) were with France as a destination.

Their inclusion indicated evidence for different effects for a French origin (or destination)

on the expected migration flows leaving (or arriving) in comparisons with a general effect

for all nations. All parameters were identifiable and led to a noticeable change in the fit

on flow values in the French row and column. These are shown in Figure 5.2, where fitted

values are shown by the solid blue line where original data existed, and by blue marks for

the imputations on previously missing data. For flows from Italy to France, imputations in

later years follow neatly from harmonized data in the first two time periods. In addition,

flows from Belgium, which were considered unusually high have fallen, whilst flows to and

from larger countries such as Great Britain have increased. The dispersion parameter was

estimated to be 0.1432 (shown in Table 5.2), again noticeably smaller than the previous

model, indicating further control on overdispersion in the interaction model.

For 2006, the complete migration flows table is shown, where bolded values are from

scaled reported flows in Table 4.6 and non-bolded values are imputations from the model.

For all cells in the table there exists an estimate. The non-bold estimates are fixed in the

EM algorithm, as observed values, are unchanged regardless of the model used. Estimates

for cells that were previously missing are dependent on the model used to base imputations

on.

5.5 Summary and Discussion

In this chapter, a complete set of estimates of international migration flow tables are

created, using a spatial interaction model fitted using the EM algorithm on the harmonized

flows from the previous chapter. The choice of model was, for the most part, left to an

stepwise model selection program, although some form of expert opinion was used to

allow consideration of further parameters for models where imputations were initially

unreasonable.

In reference to the desirable criteria in Table 1.1, estimates for the international migra-

tion tables in Figure 5.2 are now considered complete, consistent and reliable. Complete-

ness and consistency of estimates was achieved using the EM algorithm to fit negative
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binomial regression models based on the harmonized flows from the previous chapter.

Hence, the resulting imputations share the characteristics of the data sources that were

ranked with scores of good for timing, completeness and accuracy by Erf (2007). Further

checks for reliability of the estimates were taken in this chapter by comparing imputa-

tions over time. For flows to and from countries with only partially available harmonized

data (Austria, Italy and Luxembourg) checks across time helped further inform the model

fitting process. Using a model based imputation method based, in statistical theory, mea-

sures of estimates precision can potentially be found. One such technique to obtain these

measures is the Supplemented EM algorithm of Meng and Rubin (1991) which will be

further explored in the next chapter.

The techniques shown in this chapter have also addressed the suggested criteria for the

methodology to be used in international migration flow table estimation. As Willekens

(1994) suggested, a model based method has been used for the estimation of missing data.

This allowed some substantive understanding of flows and imputations to be based on

likelihood methods. For the EU15 region studied in this chapter parameter effects for the

selected covariates predominantly had the expected direction suggested by international

migration theory. This could be considered to further enhance the justification for esti-

mates to be deemed reliable, as unlike more ad-hoc impaction techniques, their values are

based on the relationship with factors that are believed to influence migration. Expert

opinion can be used in the model building process. In this chapter model selection was

in the most part left to an automated procedure, where the covariates considered were

based on past literature of international migration. Alternative covariates and modelling

strategies may be pursued as and when an expert deems necessary, as discussed later on

in this section.

The methodology can be relatively easily replicated given replicated in S-Plus/R given

the data and function supplied in the Appendix of this thesis. The use of the EM type

algorithm, for incomplete migration flow tables can be applied to models for alternative

international migration tables. This can include both smaller or larger tables and ad-

ditional data for previous or subsequent time periods. In this study a restriction to 15

nations was used to enable effective models for flows between politically similar countries

with only a few main effects. In a more diverse set of countries, political differences be-

tween nations that may influence migration, would require additional care to obtain more

reasonable estimates. The EM algorithm may also be used to estimate missing cells in

international migration tables based on other types of data and populations. For example,

Abel (2008) modelled incomplete tables of the stock of student migrants present in nine

countries spread across the globe.

When missing data was present, the success of imputations from the spatial interaction

model fitted using the EM algorithm is dependent on amount of data available. As a pre-

requisite for a quasi-independent model, some data on the number of flows to and from

each country must be present to identify all parameters. In this study, this was achieved

by combining harmonized sending and receiving data from the last chapter and analyzing

74



trends over multiple time periods. The spatial interaction model was chosen in order to

provide the best fit to the data.

Better fits for spatial interaction model could be further achieved by considering al-

ternative covariates or redefining existing ones. For example, the time covariate was

considered to be continuous for ease of interpretation, but it could have been considered

as a categorical factor. This would allow time-specific effects to be estimated in the same

manner as origin-specific and destination-specific resulting in a superior fitting model, but

at the cost of more parameters. Interactions terms between these covariates would lead

to a saturation of the model but effects may not always be identifiable in incomplete data

situations if no counts exist in a given time period for a given origin or destination. It is

useful to note that if interest lay in controlling for specific origin-destination combinations,

such as the migration flow from Great Britian to Spain, a covariate could be built to in-

clude this term and induce a better model fit in that cell. Further covariates may improve

model fits. For example, large flows such as from Germany to Italy or from Great Britain

to Spain were underestimated by the main effects model. These flows may have involved

moves for retirements. Covariates on related factors such as climate or migrant age could

be beneficial for model fits, including imputations for missing data. The negative bino-

mial regression model proved an effective tool to deal with overdispersion of the data. The

use of an alternative error assumptions, such as a Poisson distribution, would have lead

to worse fitting models and non robust standard errors in the presence of overdispersion

(Davies and Guy, 1987).

The inclusion of interaction covariates with multiple levels can lead to unidentifiable

parameters and unrealistic imputations for unobserved cells when implementing the EM

algorithm. An alternative strategy was explored by adding interaction terms only with

country specific levels, where better model fits were obviously needed. This was done for

flows to and from France, resulting in improved imputed values. Better fits could have

also been obtained using a similar framework for other countries where expert opinion

may deem imputations unrealistic. Alternatively, a more automated approach would be

to consider all levels of interactions individually for inclusion into a model via a stepwise

modelling approach. However, this would require a considerable amount of computations,

as the number of potential models would become very large. In addition, the inclusion

of further levels of interactions for countries where existing model fits are poor may not

be of great use when estimating missing values. For example, country-level interaction

parameters were tentatively estimated for all flows originating from Germany and all flows

into Spain. The resulting model from a stepwise model selection enhanced the fits for flows

from Germany and into Spain, but only slightly altered imputations in non-German and

non-Spanish flows.

The use of expert opinion in selecting covariates in the modelling process may be

beneficial when the harmonized data are heavily reliant on the selected distance measure.

Although the distance measures studied in Chapter 4 produced correction factors that

were alike in most time periods, for different data the choice of distance measure might be
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very influential on the estimated harmonized data. In such a case, an alternative model is

likely to be selected for the imputation of missing flows by a stepwise routine. However,

expert opinion can help inform the selection process if the resulting estimates for missing

cells are judged to be unrealistic. As discussed, this might involve the addition of new

covariates or interaction terms to help improve model fits.

Alongside modifying interactions to country-specific levels further improvements to

modelling international migration flow tables could be explored. The building of models in

this chapter relied upon comparisons of competing AIC calculated using the log-likelihood

of the observed, rather than, complete data. As Cavanaugh and Shumway (1998) noted it

is more desirable to fit a model based on the complete data for which models are originally

postulated. Criteria, such as the AICcd of Cavanaugh and Shumway (1998) and KICcd of

Seghouane et al. (2005), allow the calculation of the separation between the fitted model

for the complete data and the true or generating model. Both criteria require models to be

fitted by implementing the Supplemented-EM algorithm of Meng and Rubin (1991) which

requires further computations during the EM algorithm. This will be further explored in

the succeeding chapter.

An alternative approach for modelling data across time when estimating missing data

is to consider origin-destination combinations in a marginal model, which are typically

fitted using the Generalized Estimating Equation of Zeger et al. (1988). Marginal models

would enable the exclusion of origin and destination specific parameters, allowing more

complex categorical covariates to be fitted. These methods have been used in previous

panel data studies of international migration data by Pedersen et al. (2004) and Mayda

(2007). Both studies used unbalanced receiving migration flow counts from the SOPEMI

reports of the OECD, where procedures to handle inconsistencies in data sources are

not used. The use of marginal models for imputing missing data would require more

complex parameter estimation techniques in the M-step of the EM algorithm and an

assumption for the correlation structure of data. Cohen et al. (2008) used a log-normal

regression model (involving origin, destination, geographic and demographic factors) to

project future migration between two countries. This was based on inconsistent data from

11 countries between 1960 and 2004. Missing data was not accounted for in the estimation

of parameters; however, covariates to account different data sources were included to

account for differences in collection and measurers. Such covariates could be identified,

despite the including of origin and destination covariates, due to the unbalanced nature

of the data.

Despite the common occurrence of missing data in international population mobility

tables, the application of the EM algorithm is sparse. Willekens (1999) suggested the EM

algorithm as a possible method to fit spatial interaction models to constrained margins.

This model was further expanded by Raymer et al. (2007) where we found the EM al-

gorithm to be equivalent to a conditional maximization given the marginal constraints.

Imputations for missing cells in international tables have tended to focus on mathematical

relationships of different data sets rather then statistical solutions. Parsons et al. (2005)
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used an entropy measure between different migrant stock definitions, whilst Poulain (1999)

and Raymer (2007) applied more ad-hoc methods outlined in Chapter 3.

In conclusion, the EM algorithm allows missing values in international migration flow

tables to be estimated. These are based on statistical assumptions and covariate infor-

mation from international migration theory. There exist a number of options for building

models. In this chapter, negative binomial regression models were compared using their

AIC statistics. This proved an effective strategy to deal with overdispersion and help in

the model selection procedure.
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Chapter 6

Estimating Measures of Precision

for Missing Data in International

Migration Flow Tables

6.1 Introduction

In this chapter, estimates for the measures of precision of missing cells in international

migration flow tables are derived. These measures allow data users to obtain a better

understanding of the possible variation of missing data estimates. As demonstrated in

the previous chapter, likelihood based methods for imputing missing data allow the most

likely estimates to be obtained given the data. In incomplete data situations, the Expecta-

tion Maximization (EM) algorithm allows maximum likelihood estimates to be calculated.

However, unlike fitting methods readily used in complete data situations (such as IRLS

or the Newton optimizer), the asymptotic variance-covariance matrix for parameter esti-

mates is not an automatic by-product of its procedure. These matrices are useful when

conducting statistical inference, allowing test statistics and standard errors to be derived.

More detailed routines exist that may account for missing data in the estimation

of the variance-covariance matrix. One such method is the Supplemented EM (SEM)

algorithm of Meng and Rubin (1991). The SEM algorithm, unlike alternative estimation

methods, such as that of Louis (1982), do not require extra analytical calculations beyond

those needed to calculate maximum likelihood estimates. This property is of considerable

benefit when models include many parameters, as used in spatial interaction models with

multiple regions. A further contribution of the SEM algorithm is the ease to calculate the

AIC complete data (AICcd) criteria of Cavanaugh and Shumway (1998), which can enable

the selection of models having accounted for missing data.

This chapter commences by reviewing the convergence properties of the EM algorithm.

The SEM algorithm is based upon the rate of convergence of an EM algorithm being

governed by the fraction of missing information. As explained, this principle is used to

find the increased variation due to missing information which is then incorporated into the

estimate of the complete data variance-covariance matrix. The following section outlines
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the algorithm for which a measure of the missing information can be computed. A review

is then given of the AICcd which uses output from the SEM algorithm in its calculation.

The SEM algorithm and AICcd are then applied to the fitting and selection of main effects

models using the parameters discussed in the previous chapter. This new application of

statistical techniques to international migration flow data enables both a model selection

based on the observed and missing information, and the appropriate variance-covariance

matrix for parameter estimates in such a model, to be determined. The latter of these

results will thus allow confidence intervals for fitted values, including the imputed missing

data estimates, to be obtained.

6.2 Properties of the EM Algorithm

The derivation of the SEM algorithm is dependent on both analytical expressions for the

rate of convergence of the EM algorithm and manipulations of the asymptotic variance-

covariance matrix of parameter estimates. Both of these are further outlined in the fol-

lowing subsections.

6.2.1 Rate of Convergence in the EM Algorithm

For the EM algorithm described in Section 5.3, the mapping θ →M(θ) from the parameter

space of θ, to itself is implied. Consequently for every iteration,

θr+1 = M(θr), for r = 0, 1, . . . . (6.1)

Hence, when the parameters converge to a stationary point θ∗ and a given M(θ) is con-

tinuous,

θ∗ = M(θ∗). (6.2)

As Meng and Rubin (1991) noted, in the neighbourhood of θ∗ by a Taylor series expansion

θr+1 − θ∗ ≈ (θr − θ∗)DM, (6.3)

where

DM =
(
∂Mj(θ)
∂θi

)∣∣∣∣
θ=θ∗

(6.4)

is a p × p Jacobian matrix for M(θ) = (M1(θ), . . . ,Mp(θ)), known as the rate matrix.

Thus the EM algorithm converges in a linear fashion in the neighbourhood of θ∗. The rate

of convergence is governed by the rate matrix which, as shown in the following subsection,

represents the fraction of missing information.

6.2.2 Asymptotic Variance-Covariance Matrix

The distribution of the complete data, y, can be factored into components of observed

data, yo, and missing data, z:

f(y|θ) = f(yo, z|θ) = f(yo|θ)f(z|yo,θ), (6.5)
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where f(yo|θ) is the density of observed data and f(z|yo,θ) is the density of missing data

given the observed data. Thus the log likelihood of θ given y is

l(θ|y) = l(θ|yo) + logf(z|yo,θ). (6.6)

When working with complete data it is common practice to use the asymptotic variance-

covariance matrix, V of (θ − θ∗) based on y. This can be found using the inverse of the

observed information matrix,

V = I−1(θ∗|y), (6.7)

where I(θ) = ∂2logf(y|θ)

∂θ∂θT
. However, in the presence of missing data this function can

be difficult to evaluate directly using methods based solely on the observed data. With

incomplete data the observed component of the complete data information, Ioc, can be

deduced as

Ioc = E[Io(θ∗|yo)|yo,θ)]|θ=θ∗ , (6.8)

This can be obtained from the inverse of the variance-covariance matrix when θ = θ∗

using standard methods as in (6.7). In order to deduce the missing information consider

the second derivatives of (6.6) averaged over f(z|yo,θ) and evaluated for θ = θ∗ as

Io(θ∗|yo) = Ioc − Im, (6.9)

where Io = −E
[
∂2logf(yo|θ)

∂θ∂θT
|y,θ

]∣∣∣
θ=θ∗

and Im = −E
[
∂2logf(z|yo,θ)

∂θ∂θT
|yo,θ

]∣∣∣
θ=θ∗

. Im can be

thought of as the missing information and thus (6.9) can be interpreted neatly as

observed information = complete information - missing information, (6.10)

otherwise known as the missing information principle of Orchard and Woodbury (1972).

The above equation may also be written as

Io(θ∗|yo) = (I − ImI−1
oc )Ioc, (6.11)

where I is an identity matrix. As Dempster et al. (1977) noted, if Q(θ|θr), the augmented

log likelihood of (5.1), is maximized in the M step by setting its first derivative to zero,

then the differential of the parameter mappings in (6.4) is

DM = ImI−1
oc . (6.12)

This property can be substituted into (6.11) and inverted to give an expression for the

asymptotic variance-covariance matrix of the parameter estimates from incomplete data,

V = I−1
oc (I −DM)−1

= I−1
oc + ∆V (6.13)

where ∆V = I−1
oc DM(I −DM)−1, and V is a symmetric matrix.
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6.3 Supplemented EM algorithm

The estimation of ∆V in (6.13) can be obtained using the SEM algorithm introduced by

Meng and Rubin (1991). The SEM algorithm consists of three parts, the evaluation of I−1
oc ,

the computation of DM and the evaluation of V. I−1
oc can be obtained relatively easily

using the standard complete data variance-covariance matrix evaluated at θ = θ∗. Hence,

I−1
oc can be determined from the final imputations in the E step. Computations of the DM

matrix are often more complicated. As described in the previous section, the DM matrix

represents the differential of parameter mappings during the EM algorithm. Hence, each

element of the matrix represents a component wise rate of convergence of iterations in the

EM algorithm. This can be derived numerically by considering the (i, j)th element of the

DM matrix to be aij and defining θr(i) to be a semi-active parameter set:

θ(r)(i) = (θ∗1, . . . , θ
∗
i−1, θ

(r)
i , θ∗i+1, . . . , θ

∗
p), (6.14)

where only the ith component in θr(i) takes a value different from its maximum likelihood

estimate. Thus from (6.4) we can define aij as

aij =
∂Mj(θ∗)
∂θi

(6.15)

= lim
θi→θ∗i

Mj(θ∗1, . . . , θ
∗
i−1, θi, θ

∗
i+1, . . . , θ

∗
d)−Mj(θ∗)

θi − θ∗i

= lim
r→∞

Mj(θ(r)(i))− θ∗j
θ

(r)
i − θ∗i

≡ lim
r→∞

a
(r)
ij .

As M(θ) is obtained automatically by the output of the EM algorithm, all elements of

aij can be estimated using a record of M-step iterations, including the converged set of

estimates θ∗ (which could have been estimated from another procedure) and a set of

starting points θ(1) not equal to θ∗ in any component. These are used in each cycle of the

SEM algorithm consisting of three steps:

1. Run a single iteration of the EM algorithm given θ(r) to obtain θ(r+1).

Repeat steps 2 and 3 for i = 1, . . . , p.

2. Calculate a semi-active parameter set θ̃
(r)

(i) from (6.14) to be used as a current

estimate of θ. Run a single iteration of the EM algorithm to obtain θ̃
(r+1)

(i).

3. Calculate the ratio

arij =
θ̃

(r+1)
j (i)− θ∗j
θ

(r)
i − θ∗i

, for j = 1, . . . , p. (6.16)

After a single cycle, estimates of θ(r+1) and {a(r)
ij , i, j = 1, . . . , d} are obtained. The

algorithm repeats for r cycles until the sequence of a(r∗)
ij , a(r∗+1)

ij is stable for some r. As

different parameters in the initial θ(r) may be closer to θ∗ than others for any θ
(r)
i , the

number of iteration steps taken for stability of given elements of DM may vary. Hence,

when all elements of the ith row of DM have been obtained, there is no need to repeat
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steps 2 and 3 for that parameter in subsequent iterations. Given the value of the converged

DM matrix and I−1
oc the asymptotic variance-covariance matrix for parameter estimates

can be obtained using the expression of V in (6.13) where the resulting matrix should be

numerically symmetric.

6.4 Akaike Information Criterion for Incomplete Data

Finding a suitable dimension for parameters θ can be undertaken by comparing several

models based on their values of an information criteria, such as the Akaike Information

Criterion (AIC) of (5.3). This criterion can be thought of as a measure of separation

between a fitted model for the incomplete data, f(yo|θ̂) and the true or generating model

which gave rise to the incomplete data, say f(yo|θg). Shimodaira (1994) noted that it

may be more natural to use a criteria based on the complete data, assessing the separation

between the fitted model f(y|θ̂) and the generating model f(y|θg). Such an approach is

advantageous for a number of reasons. Firstly, model families fitted by the EM algorithm

are postulated for the complete data, and thus the model selection should reflect both

observed and missing data. Secondly, as Meng and Rubin (1991) noted, the EM algorithm

utilizes the computing power and complete data tools in handling missing data. Thus, the

use of complete data tools can be incorporated to calculate a selection criteria based on

these quantities rather than an analogous incomplete data criteria. Finally, as illustrated

in (6.6) the complete data is a product of observed and missing densities. If the missing

density is substantially affected by deviations of the true parameters then a model selection

criteria based on incomplete observed data may not account for these alterations effectively.

In order to address these problems Cavanaugh and Shumway (1998) developed a cri-

terion based on the complete data. The AIC of (5.3) when typically considered in an the

complete data setting can be represented as

AIC = −2l(θ|y) + 2p, (6.17)

where the first and second terms on the right hand side are commonly referred to as the

goodness of fit and penalty terms respectively. When the observed data is incomplete

Cavanaugh and Shumway (1998) derived a equivalent statistic to (6.17) for the complete

data as

AICcd = −2Q(θ|θ) + 2p+ 2 trace[Ioc(θ|yo)I−1
oc (θ|yo)DM(I−DM)−1]

= −2Q(θ|θ) + 2p+ 2 trace(DM(I−DM)−1), (6.18)

where the goodness of fit in the first term is twice the augmented log likelihood of

(5.1). The penalty term is formed by the summation of the AIC penalty term and

I−1
oc (θ|yo)DM(I − DM)−1. As seen in (6.13), the latter term represents the increase

in variance of θ due to missing information when θ = θ∗. Thus the trace of the penalty

term in (6.18) can be conveniently viewed as a measure on the amount of data which is

missing in y, or more precisely as a measure of the extent to which the missing data affects
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the fitted model. It is useful to note that if there was no missing data the trace of this

term would be zero (as DM = 0) and also, as the amount of missing data increases, so

will the penalty term.

6.5 Estimates of Precision for Missing Data in International

Migration Flow Tables

The SEM algorithm can be utilized in the estimation of international migration flow

tables. In the remainder of this chapter, the analysis of the algorithms application to

the EU15 data (where the harmonized data were treated as observed values) is divided

into two parts. First, the convergence of the aij elements is studied in order to obtain

a better understanding of the SEM algorithm for which a careful monitoring is required

when considering large parameter vectors. Second, the AICcd statistics is used to select a

model using the complete data, rather than the incomplete observed data (as used in the

previous chapter). This is undertaken using a systematic fitting of a range of main effects

models.

6.5.1 Convergence

In order to calculate the asymptotic variance-covariance matrix for parameter estimates,

three functions were written in S-Plus for

(a) the calculation of a single step in the EM algorithm,

(b) the numerical calculation of a Jacobian matrix of model parameters,

(c) the SEM algorithm.

These functions are displayed in the Appendix. The first function (em) is a general routine

for a single step of the EM algorithm to be called in other functions. This requires

values of the initial set of parameters, a negbin model from the MASS library of S-Plus

Venables and Ripley (2003) and a data frame. This function can be run inside a loop

routine until the difference in consecutive parameter values (beta) or the augmented log

likelihood (m$twologlik) given by the function are less than a desired stopping criteria. A

routine for the numerical calculation of the Jacobian matrix (jac) was used to cacluate the

DM matrix from (6.16) for a given initial set of parameters (b.init) and the maximum

likelihood estimates (b.star). The SEM algorithm is implemented using the sem function.

Initially two consecutive Jacobian matrices from a given set of initial parameter values

are calculated in order to deduce all elements of a two initial rate matrices a
(1)
ij and

a
(2)
ij . In further iterations of aij , calculations are performed within a loop in the sem

function, calculating elements for rows where the maximum difference in elements are

above the stopping criteria. Excluding further calculations in rows where all elements have

already converged is beneficial from two standpoints. First, computing speed is increased,

which is particulary relevant for the spatial interactions models with large numbers of
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Figure 6.1: Trace of DM Matrix for Selected Main Effects Model Parameters
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parameters used. Second, without a row-dependent stopping criteria, previously converged

components of the DM matrix can become unstable and hence convergence would not

obtained.

A trace of iterations in the DM matrix is displayed in Figure 6.1 for the main effects

model found in Section 5.4 with a tolerance level of 10−3. Excluded are row and columns

for the dispersion, intercept, and origin and destination terms. The traces demonstrate

how for the selected parameters, convergence of elements in the DM matrix is dependent

on the row, whereby some rows converge quickly to a stable values whilst others, such as

trade and stock, take longer. For the element of DM matrix representing the covariance

between French and GNI parameters only a very small change occurred before convergence

at the third iteration, which could not be illustrated effectively by graphics in S-Plus 6.2.

Using the converged values of the DM matrix an estimated asymptotic variance-covariance

matrix for parameter estimates was obtained using (6.13). The lower right hand corner of

the final matrix corresponding to the main effects parameters is
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

. . .
...

...
...

...
...

...
...

· · · 0.12811 −0.02132 0.00329 −0.00153 −0.00253 0.00696 0.00511

· · · −0.02051 0.18688 −0.00067 0.00083 0.00037 −0.00676 −0.00102

· · · 0.00353 −0.00080 0.00148 −0.00031 −0.00053 −0.00335 −0.00535

· · · −0.00130 0.00061 −0.00032 0.01184 −0.00054 0.00187 −0.01236

· · · −0.00274 0.00046 −0.00051 −0.00055 0.00064 −0.00073 0.00133

· · · 0.00706 −0.00635 −0.00353 0.00176 −0.00059 0.06145 0.01853

· · · 0.00344 −0.00025 −0.00544 −0.01187 0.00143 0.01811 0.13682


,

(where parameters are arranged in the order given in Figure 6.1). The square of diagonal

elements represents the variance of parameter estimates. These can be compared to the

standard errors for the main effects model in Table 5.1.

This matrix is symmetric when rounded to two decimal places. A more precise measure

of the variance-covariance matrix could not be obtained. A tolerance level of 10−10 was

taken for an estimate of b.star from the EM algorithm. Meng and Rubin (1991) suggest

that the square root of the EM algorithms stopping criteria should be used (i.e. 10−5).

However, with such a tolerance level the convergence for all elements of the DM matrix

is never obtained.

This feature is displayed in Figure 6.2 where the traces from Figure 6.1 are also plotted,

but on the larger vertical axes appear flat. For most rows, convergence takes longer under

a higher tolerance level, and for GNI, GDP and the Euro parameters slightly different

values are obtained. Rows in the DM matrices for trade and stock parameters never

converge. Only the first 12 iterations are shown in Figure 6.2 but the divergence of trade

and stock parameters values continues until the number of iterations equals that of the

EM algorithm. This ultimately creates an asymmetry in the respective rows and columns

of the asymptotic variance-covariance matrix. This failure may be due to the large size of

the DM matrix in comparison to examples used by Meng and Rubin (1991). Most plots

in rows where convergence is not obtained have some degree of flatness in early estimates

and hence convergence of their individual elements may have been obtained using a less

stringent tolerance level. However, new values for a complete row are estimated if any

element in the selected row fall short of the stopping criteria and thus elements that may

have appeared stable continue to be estimated. An example of this process is illustrated in

selected plots in Figure 6.2. For the DM elements related to the covariance of stock and

GDP and the variance of stock, consecutive estimates do not stabilize below the stopping

criteria, shown by the traces becoming nearly horizontal, but not completely flat, unlike

other elements in the same row. With a lower tolerance level, the algorithm would have

stopped estimating elements in this row when the troubled elements were nearly horizontal.

6.5.2 Modelling of Complete Data

As no implementable stepwise model selection routine existed for incomplete data, a fit

all models function was written to run the SEM algorithm on the complete range of main
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Figure 6.2: Trace of DM Matrix for Selected Main Effects Model Parameters for Low

(10−3) and High (10−5) Tolerances
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effects models from the covariate set proposed in Section 5.4.1. Included as a prerequisite

in all models were origin and destination covariates. Consequently, from the 12 possible

parameters (including time), there existed
∑12

p=0
12!

p!(12−p)! = 4096 different models. For

each of these models the EM algorithm was run to obtain estimates for b.star in the sem

algorithm. Converged estimates of the DM matrix from the sem algorithm were then used

to calculate the AICcd statistic of (6.18). This was performed with a stopping criteria of

10−10 for the EM algorithm and 10−3 for the SEM algorithm.

Table 6.1: AIC, AICcd and Number of Parameters (p) for Selected Models

Selection AIC AICcd p

stepAIC 12101.26 15366.02 36

Minimum AICcd 12102.10 15363.04 38

Minimum AIC 12098.02 15365.23 38

The model found with the lowest AICcd included the same covariates of the model

found by the stepAIC function in the previous chapter (GNI, GDP the Euro currency area,
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trade, migrant stocks and the level of French and English), as well as, time and distance

parameters. The value of the AICcd statistic, shown in Table 6.1 is higher than the AIC

for the same model due to the expansion of the penalty term in (6.18). Imputation for

model with the lowest AICcd were very similar to that from the original main effects model

in Table 5.1 as the exponentiated estimates for time and distance were both near unity

(0.9808 and 1.0699, respectively) whilst values for other parameters altered only slightly.

For comparative purposes, the AIC for the observed data was also found for each model.

The model with smallest AIC included parameters for time and population (again with

exponentiated values close to unity 0.9630 and 1.0789, respectively) in addition to the

main effects model in Table 5.1. The model selected using the stepAIC function had the

tenth smallest AIC of all possible models. The number of parameters in the model with

the smallest AIC is equal to that of the model with the smallest AICcd. Cavanaugh and

Shumway (1998) found in a simulation study on models for bivariate normal data that this

result is reasonable, noting that the AICcd tended to overfit (select more parameters than

the true model) to a comparable or to a slightly lesser degree than the AIC. This property

was attributed to be a result of incorporating the missing data into the penalization term,

lacking in the AIC statistics.

The estimated asymptotic variance-covariance matrix of the parameter estimates from

the SEM algorithm can be used to create measures of precision for a vector of imputations,

z. These can be expressed as confidence intervals, where

Var(log z) = Var(Xβ) (6.19)

= Var(XVXT)

Hence, scaling covariate values in the model matrix by the estimated asymptotic standard

errors and a Z-value based on a 95% confidence level imputation is

log z± 1.96XV̂XT, (6.20)

where the logarithmic transformation is applied component wise. Exponentiated confi-

dence limits are shown for imputations given under the model selected by the AICcd

in Figure 6.3 for the EU15 flows. To allow a clearer illustration, flows between the six

countries of the European Coal and Steel Community (ECSC), a forerunner of the EU

are shown in Figure 6.4. The width of intervals in these plots is greater for larger flows.

These bounds demonstrate that with a 95% confidence level the flow value under the main

effects model (in Table 5.1) lies within this interval. Note, these intervals only represent

the variability of the mean response, derived from the parameter estimates. An additional

term is required to fully represent the variability of the predicted flows.

6.6 Summary and Discussion

The SEM algorithm provides a useful technique when applied to international migration

flow tables, where data is often incomplete. Obtaining an estimate of the asymptotic
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Figure 6.3: Imputations and 95% Confidence Bounds of Estimated Migration Flows (000’s)

from each Origin-Destination Combination of EU15, 2002-2006.
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Figure 6.4: Imputations and 95% Confidence Bounds of Estimated Migration Flows (000’s)

from each Origin-Destination Combination of ECSC, 2002-2006.
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variance-covariance is beneficial in gaining a better understanding of the variance of im-

puted values, allowing a confidence interval to be constructed. In addition, the SEM

algorithm estimates the rate of convergence matrix, DM, which is used in the AICcd

statistics to select models based on the complete data.

The SEM algorithm can be performed using only the code for an EM algorithm, com-

putations for asymptotic complete data variance-covariance matrix and standard matrix

procedures. More complicated methods for estimation of asymptotic variance-covariance

matrices such as that of Louis (1982), require the observed information to be approximated

using conditional expectations of first and second moments of the gradient and curvature

of the complete data introduced within the EM framework. However, as Meng and Rubin

(1991) noted this method (along with others such as Carlin (1987) and Meilijson (1989)),

besides requiring evaluation of the likelihood, are subject to the inaccuracies and difficul-

ties of any numerical differentiation procedure with large matrices. The SEM algorithm is

also more stable than alternative methods which rely on pure numerical differentiation. In

the SEM algorithm, the rate of change matrix is being added to an analytically obtained

matrix (Ioc), rather than the whole covariance matrix. This allows a degree of stability, as

when missing data is plentiful, the convergence of EM algorithm is slow and hence a long

sequence of iterates is provided from the linear rate of convergence leading to high levels

of accuracy. When there is less missing data, the convergence of the algorithm is quick

but the estimate of Ioc is fairly accurate. Hence, the increase in variance from missing

data does not dominate the calculation the complete variance-covariance matrix.

The stability of the SEM algorithm and the ease of implementation were exploited in

this chapter by fitting all possible model formulations when choosing from 12 different pa-

rameters. This resulted in a model fairly similar to that obtained using the observed data.

This is predominantly explained by the automatic inclusion in all models of the origin and

destination terms. These provide a lot of information on the push and pull effects for each

country, which limits the other parameters to modify the interaction between countries,

conditional on the inclusion of the country specific variables. Alternatively these terms

could be excluded and hence a gravity model formulation for international migration flow

tables would be used. However, as Flowerdew and Lovett (1988) and Flowerdew (1991)

noted for internal migration tables, these often provide worse fits. Another alternative

would be to search amongst all interaction models for the lowest AICcd. With a 15× 15

table this would lead to a vast amount of covariates with parameters for multiple levels to

be estimated. As seen in the previous chapter with such models parameter identification

with only five time periods becomes an issue. Further consideration could be taken for

selecting models based on the AICcd for interactions between countries with incomplete

data and unsatisfactory imputations from a main effects model (as performed in the last

chapter using the AIC for selecting interactions with France as an origin and destination).

A routine to fit all models with the 22 extra covariates would involve fitting approximately

6.87×109 potential models using the SEM algorithm. A suitable model could be more effi-
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ciently found using a stepwise search algorithm such as stepAIC adapted to select models

based on the AICcd.

The stopping criteria for the SEM algorithm, when fitting spatial interaction models,

were taken to be lower than that recommended. This was necessary for convergence

and, in some cases, resulted in different values in the DM matrix than under more strict

stopping criteria. When such differences occurred, they were very small and did not effect

the symmetry of the variance-covariance matrix in their respective rows and columns. For

some parameters, their elements in the DM did not converge for high tolerance levels.

Parameter estimates are from a model distribution not in the exponential family and

thus the estimate of the dispersion parameter depended on asymptotic approximations in

M-Step, using the glm.nb function. Consequently, estimates are based on linearizations

using the Newton-Raphson routine, which as noted may create numerical inaccuracies in

comparison to parameter estimates of V, from distributions in the exponential family,

using for example, IRLS. These inaccuracies may have affected the calculation aij in later

iterations, which after a certain amount of iterations begin to use ever smaller numbers in

both the numerator and denominator leading to the divergent behaviour shown in Figure

6.2.

In conclusion, the SEM algorithm is a powerful tool when modelling international

migration flow tables. It allows information on the second moment to be derived from

the complete data asymptotic variance-covariance matrix for parameter estimates and for

the selection of a model to account for missing data. This facilitates the creation of a

confidence interval for model based imputations and thus provides added information to

data users to gain a better understanding of the reliability of estimated flows where no

previous data exist.
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Chapter 7

Conclusion

7.1 Summary

This study applied computationally intensive mathematical and statistical techniques to

develop a methodology to estimate international migration flow tables of comparable data.

Such tables commonly suffer from problems of inconsistent and incomplete data which

previous estimation frameworks outlined in Chapter 3 failed to fully address.

The methodology developed in this thesis can be judged against the desirable crite-

ria for estimating international migration flow tables introduced in Table 1.1. Complete

estimates were obtained in Chapter 5 by modelling incomplete migration flow tables. Pa-

rameters for these models were estimated using the EM algorithm which also provided

imputations for unknown migration flow counts. Consistent migration flows across mul-

tiple nations were obtained using estimated correction factors to scale reported data. In

Chapter 4, constrained optimization techniques were used to estimate correction factors

alongside expert opinion on the quality of migration statistics produced by national statis-

tics institutes. The calculations of these correction factors required that reported flows

were of a reasonable quality and hence the scaling of reported data was only performed

for data from reliable sources. Checks for reliability were made throughout each stage of

the methodology. These were partly undertaken by considering data across multiple time

periods, which is discussed further in this chapter. Reliability checks for inconsistent data

were made by comparing observed distributions for reported data from reliable sources

with estimates. As discussed in Chapter 4, for receiving data these distributions remain

unchanged as the estimates were a scaled version of reliable reported data. Reliability

checks for missing data considered estimates in relation to expected results under interna-

tional migration theory. As demonstrated, in Chapter 5 models were expanded to include

further covariates to help improve estimates of flows to and from France which were ini-

tially believed to be unreliable. In Chapter 6, measures of precision for missing data were

derived by estimating the asymptotic variance-covariance matrix of parameter estimates

using the SEM algorithm. Combined, the procedures for dealing with inconsistencies and

incompleteness, introduced in this thesis, allowed the estimation of migration flow tables

that are comparable across nations and time.
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The methods in this thesis used a number of the desirable properties for estimation

techniques introduced in Table 1.1. In Chapter 5, Missing data estimates were based

on models, selected from fits on the observed data, for which parameters were estimated

using the EM algorithm. In Chapter 6, the AICcd was used to select a main effect

model based on the complete data. Model based techniques for imputations allowed a

great deal of flexibility to ensure missing data are of reasonable quality. For example,

complex models were fitted in Chapter 5 that included interaction terms to allow more

realistic imputations to be estimated. However, the use of multiple interactions caused

issues with parameter identification due to the limited amount of observed data. Expert

opinion was used in estimating consistent and complete flows. This included selecting data

to be unchanged, scaled (or ignored) in the constrained optimization procedure and the

collection of appropriate covariate factors for model based imputations. The latter of these

may be beneficial when the harmonized data are heavily reliant on the selected distance

measure. Although the distance measures studied in Chapter 4 produced correction factors

that were alike in most time periods, for different data the choice of distance measure might

be very influential on the estimated harmonized data. In such a case, an alternative model

is likely to be selected for the imputation of missing flows by a stepwise routine. However,

expert opinion can help inform the selection process if the resulting estimates for missing

cells are judged to be unrealistic. As discussed, this might involve the addition of new

covariates or interaction terms to help improve model fits.

The methodology presented in this thesis can be relatively easily replicated in S-Plus/R

given the data and the functions supplied in the Appendix. The constrained optimization

techniques and modelling of incomplete migration flow tables using the EM algorithm can

be applied to models for alternative international migration tables. This can include both

smaller or larger tables and additional data for previous or subsequent time periods. In

this thesis, EU15 nations were used to enable effective models for flows between politically

similar countries with only a few main effects. In a more diverse set of nations (or a longer

time period) additional care would be required to obtain more reliable estimates. This

might be in the form of more correction factors to account for changes in data sources, or

additional covariates to account for more diverse sets of nations.

The remainder of the current chapter summarizes some of the key results of this thesis.

These will be discussed alongside some of the selected contributions found in this thesis

and recommendations for potential future research. This will be broken into five areas:

estimating tables over time, accounting for counts of known migrants with unknown origin

and destinations, ignoring poor quality data, model selection and variation measures. A

more general discussion on the conclusions from this thesis is then put into the context of

international migration estimation from the modelling and data perspectives.

7.1.1 Estimation Over Time

The relative stability in migration definitions and data collection systems provides a basis

for harmonizing international migration flow data. These can be visualized through plots
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of selected flows, as demonstrated by Kupiszewska and Nowok (2008) or through plots of

migration flow tables over time as shown in Figure 4.1. Previous methods for harmoniza-

tion of reported data used differing methods and typically concentrated on tables for a

single year (with the exception of Raymer and Abel (2008)).

In Chapter 3 of this thesis two existing frameworks (which incorporated systems for

estimating missing data as well) were outlined. The framework of Poulain (1993) used a

constrained optimization to minimize a single distance function of scaled flow data, whilst

the methodology of Raymer (2007) relied upon the demographic accounting equations in

each nation. The latter of these methods proved difficult to evaluate due to manipulations

in marginal estimates and interpolation methods for missing data. The former of the

previous frameworks provided a useful basis for further analysis. Chapter 4 of this thesis

explored different measures and alternative constrained optimization techniques. Compar-

isons of estimates were undertaken through evaluations based on the variance within the

set of correction factors across time. Plots of estimates also allowed an easy comparison

of different constraint systems. The most stable distance function was generalized over

time to allow single correction factors for each data source to be estimated, under the

assumption that definitions and data collection systems were unchanged.

Modelling only a single flow table could potentially restrict the number of model pa-

rameters to be identified, especially when data are incomplete. Including multiple tables

for analysis and controlling for time allows a far greater number of parameters to be

estimated. In addition, flows for which only partial data were available provided useful in-

formation in the estimation of parameters and comparison of imputations for flows where

no data were present. Within the modelling framework outlined, such imputations could

be further improved by controlling for specific origin-destination combinations that are

partially observed by including the relevant dummy covariate in a potential model.

The benefits of expanding migration flow tables over time could be improved by using

a longer series of migration data if available. Reported flows between the EU15 previous to

2002, provided by Eurostat, appeared incorrect. In this data, the presented sending data

appeared to be reported by destinations (forming vertical patterns when arranged into a

migration table) rather than origins. If such values were corrected, a greater amount of

information could be used in the estimation of correction factors and imputations, given

the assumptions of constant methods of migration data collection and definitions hold.

If changes did occur in the data collection or definitions for a given country, additional

parameters for before and after any structural break can be included in the estimation

of the correction factor in place of a single parameter for the entire time period. Such

modifications are easy to implement in the non-linear optimization routines outlined in

Chapter 4. Further data across time may also help inform judgment of experts on the

quality of data sources and inform the eligibility criteria for the estimation of harmonized

values. From a modeling perspective longer time series could be alternatively handled

using marginal models which may allow more complex categorical covariates to be fitted.

Imputations for missing data under such models would require more intricate parameter
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estimation techniques in the M-step of the EM algorithm and an assumption for the

correlation structure of data.

7.1.2 Accounting for Data Dissemination Problems

As a prelude to the estimation of correction factors, counts of known migrants with un-

known origins or destinations were accounted for by distributing these flows according

to the existing distributional patterns. For some countries, the addition of these values

altered the reported flows greatly. Consequently distance measures for the harmonization

process were modified. Previous constrained optimization procedures for migration data

had not considered such values. Comparisons of these values across time in Figure 4.3

revealed some notable insights. For Spanish data the number of known migrants with un-

known origin and destinations were extremely different in 2002 than in subsequent years.

However, most counts to specific origin and destinations are fairly stable over the time

period once the unknowns were accounted for, and the literature considered (Breem and

Thierry, 2006b) suggested that changes to the data measurement occurred previous to the

studied time period.

More widespread documentation of the unknown counts in international migration flow

data and the use of expert opinion could help account for the allocation of these flows. For

example, if large portions of the unknown counts were to or from countries in a different

continent the assumption of an equal distribution should be altered to reflect this failure.

7.1.3 Ignoring Poor Quality Data

Careful consideration was taken in deciding the eligibility of countries for the estimation

of correction factors to scale reported data. This decision was based on recent literature

by Erf (2007) that gave a quantifiable comparisons between migration sources. As a re-

sult, data which were judged to be of poor quality are ignored to enable a more effective

estimation of parameters. Replacement values for ignored data were provided by impu-

tations from a spatial interaction model estimated using the EM algorithm. The ratings

of Erf (2007) were also used to select data sources, for which correction factors would be

constrained to be one, and hence act as a reference for all estimates. Before correction

factors were estimated, sending data from countries with migration data exchanges were

also ignored as they are repetitions of data collected by receiving partner countries.

Further research into the comparison of migration definitions and data collection tech-

niques may further inform the decision to ignore lesser rated data sources. For example,

ratings for sending and receiving data were treated equally although literature suggests

that this is not the case. As comparable ratings are only provided within data types, no

distinction could be made between sending and receiving data qualities. Ratings provided

across all data sources may enhance the decisions for which data sources should be ig-

nored, require a correction factor to be estimated or constrained. They may help inform a

preference system to obtain a single flow value in each cell, where for example, a particular

sending data source might be considered better than any other receiving data.
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Alterations in the eligibility of data sources for the application of correction factors

due to new expert opinions or further documentation can be easily incorporated. The use

of non-linear optimization routines in statistical software allowed a great deal of flexibility

to change constraints and use alternative distance measures. In addition, more realistic

bounds for correction factors could be introduced. For example, tighter bounds in the

parameter space could force estimates to be no lower or greater than a value supplied

by expert opinion. Routines might also be easily constrained to harmonize data to an

alternative set of countries’ reported flows, which may use different timing criteria in their

migration definition, such as a six month definition as used by multiple migration data

sources in the EU15. Models might then be fitted to the new harmonized level of data

using the EM algorithm to provide comparable data for shorter timing criteria.

Additional data on sending flows between countries that currently have data exchange

agreements would enable more measures of data discrepancies to be obtained. For example,

reported sending counts of movements from Denmark to other Nordic nations, which may

already be collected but not published, would be valuable in estimating correction factors

for all concerned countries. The inclusion of extra migration flow data from countries with

reliable sources but outside the migration table of study could also be used to provide more

distance measures in the estimation of parameter values. For example, receiving data from

Norway is regarded to be of good quality and uses a one year definition (Erf, 2007). A

distance measure between its estimates and other countries sending data may further

improve the credibility of correction factor estimates.

7.1.4 Model Selection

The EM algorithm was used to impute missing migration flow values. An underlying

negative binomial regression model in Chapter 5 was selected using a stepwise search

routine to compare the AIC of models. This routine was initially run to select main ef-

fects parameters only, followed by a wider consideration for interaction terms. Although

computationally fast this procedure was based on observed data, and hence made no con-

sideration for the missing data. In addition, when parameters were fitted by implementing

the EM algorithm problems occurred with identification for some levels of interaction co-

variates. This was due to the limited amount of observed data being used to estimate a

large number of parameters. In Chapter 6, new main effects models were selected based on

the complete data through comparisons of the AICcd. This required models to be fitted

by implementing the SEM algorithm, slowing the computational time. No implementable

stepwise routine existed to compare models based on the AICcd and hence an all models

routine was used.

Interaction terms to improve imputations can be added by considering expert opinion.

In Chapter 5, for flows to and from France considered interactions of origin and destina-

tions with other covariates. Further improvements to the model fit, and hence imputations,

could be undertaken by including other country specific interactions where recommended

from data experts. Additional main effects and redefining the origin-destination rela-

96



tionships in existing covariates may also improve a models fit if selected. For example,

comparative measures of unemployment or climate could be utilized if comparative mea-

sures for the duration of the time period studied are available. Information on population

groups, such as students, may also be beneficial to model fits. Its inclusion might be

interacted with a dummy covariate to indicate if the population group has or has not been

included in the data collection process. Analysis of lagged or quadratic relationships may

also provide useful contributions to models. Negative binomial regression models were

used throughout the modelling process in this study. This was undertaken to account for

the overdispersion in aggregate level migration data.

The selection of a main effects model based on the AICcd required a far greater number

of calculations, and hence computational time than the stepwise model selection routine.

A suitable model could be found more efficiently using a stepwise search algorithm adapted

to select models based on the AICcd.

7.1.5 Measures of Variation

The SEM algorithm was used in Chapter 6 to obtain an estimate for the asymptotic

variance-covariance matrix for parameter estimates, using only the code for an EM algo-

rithm, computations for asymptotic complete data variance-covariance matrix and stan-

dard matrix procedures. This allowed a better understanding of the possible variation of

imputed values under a selected model, allowing a confidence interval to be constructed.

The stopping criteria for the SEM algorithm, when fitting spatial interaction models, were

taken to be lower than those recommended. This was necessary for convergence as the dis-

persion parameter in the negative binomial distribution depended on a Newton-Raphson

routine which created numerical inaccuracies in comparison to parameter estimates of

distributions in the exponential family.

More accurate measures of the asymptotic variance for a selected model could be de-

rived using alternative methods, such as Louis (1982), although the generalisability is more

limited than the SEM, whereby conditional expectations of first and second derivatives of

the complete data are required. This would prove problematic if fitting multiple models

with different numbers of parameters.

Imputations and their confidence intervals assume that there exists no error in the

estimation of correction factors. As shown in Figure 4.5 estimates are not constant across

time, where some correction factors fluctuate greatly. In such situations, the assumption

that a distance measure for the discordance between data collection and definitions from

reliable data sources are fixed, may not be valid. Methods exist in the Bayesian paradigm

(see the next section) that may allow this assumption to be relaxed and hence measures

of variation to be more fully obtained for imputed values.
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7.2 Context of Study

7.2.1 Modeling International Migration

There exists a wide range of literature on modeling migration (see for example, Massey

et al. (1993) or Greenwood and Hunt (2003)). Due to data limitations, most empirical

studies concentrate on internal migration or flows in or out of single countries. The use

of migration flow tables allows comparisons of data sources to be analyzed and differences

to be addressed. In this thesis, comparisons were extended over time to further analyze,

correct for inconsistencies and enable the estimation of complex models for incomplete in-

ternational migration tables. Such procedures relied on modern computationally intensive

mathematical and statistical methodologies.

Alternative statistical approaches to the modelling of international migration data have

been undertaken in a Bayesian framework. Brierley et al. (2008) proposed one such method

using similar model component methodology of Raymer (2007) to estimate posterior dis-

tributions of both internal and international migration flows. For international data, prior

distributions were assigned to parameters in a model similar to (3.11) under the assump-

tion that receiving data took a log-normal distribution, allowing posterior distribution for

a complete migration flow table to be obtained. As with the Raymer (2007) their analysis

of Northern European receiving flow data produced final estimates for Lithuania which

were too high and altered patterns in original good data such as Sweden. These problems

had been driven by the assumption that all marginal data were complete and consistent.

As discussed in Chapter 3, this is not the case with international migration where prob-

lems of both inconsistencies and incompleteness also appear in the marginal totals. In

addition, simple models with only a single parameter to explain spatial interactions were

used.

A Bayesian modelling framework for international migration flow tables could provide

a number of advantages. Using a similar approach to the methodology outlined in this

thesis we may express the distribution of migration flow data as observations from a true

negative binomial distribution yijt ∼ NB(µijt, α) where µijt and α are the mean and

dispersion parameters, respectively. Observations from this distribution, yijtk in receiving

and sending countries are subject to a scaling dependent on the data source,

yijt1|rj , α,β,xTi ∼ NB(rjµijt, α) (7.1)

yijt2|si, α,β,xTi ∼ NB(siµijt, α), (7.2)

where logµijt = xTi β. Hence, if individual level covariates exist in xTi , the true model can

be modified to set α = 0, and thus a Poisson distribution is derived. Appropriate prior

distributions for the parameters, p(rj), p(si), p(α) and p(β), where the dimension of β is

already known, can also be expressed. This allows the joint posterior distribution for all

parameters,

p(si, rj , α,β|yijt1, yijt2,xTi ) = p(rj)p(si)p(α)p(β)p(yijt1|rj , α,β,xTi )p(yijt2|si, α,β,xTi ),

(7.3)
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to be estimated. This can be computed using Markov Chain Monte Carlo methods, given

some crude initial estimates for parameters; see for example Gelman et al. (2003, p283-

307). Once obtained, estimates for the entire distributions of flows in each cell of a series

of migration tables can be deduced.

Such an approach provides a number of advantages. As discussed previously, correction

factor estimates may posses some element of error. A Bayesian model can provide a more

realistic account for fluctuations in their estimates shown in Figure 4.5. As a result,

variation in estimates of rj and si can be accounted for in the estimation of the marginal

distributions of β, and thus the imputations for missing data. If an analyst assumes that

there is no error in the difference between reported values, as was taken in this study, prior

distributions for p(rj) and p(si) may be defined with very low or zero variances. In the

latter case, this would allow reported values from countries with excellent data collection

methods and using the desired definition to be preserved.

7.2.2 International Migration Data

International migration flow data is often incomparable across multiple nations. The

increasing concern of governments in the production of international migration statistics

may in future lead to data provided by statistics institutes becoming more readily available

and of higher quality. In Europe this process may become reality due to recent regulations

agreed by the European Parliament for member states to provide migration statistics that

comply with a harmonized definition. However, within Europe and other parts of the world

an increase in population mobility, a reduction in administrative and regulatory barriers

to movement and an increase in irregular migration have created greater pressures on the

current ability for statistical systems to measure migration effectively. Inconsistencies are

likely to occur for the foreseeable future and data collection methods may continue to

struggle to capture movements.

In the context of the framework of this study, a greater amount of good quality data

provided by national statistics institutes may improve both the estimation of correction

factors for the harmonization of reliable flows and provide a more complete data set to

estimate missing counts. Alongside better migration statistics, more documentation of

summaries and comparisons of data, further improvement in the estimation of comparable

migration flow data may be gained. The methodology presented in this thesis allows a

great deal of flexibility for the estimates of comparable data from alternative regions and

different size tables. Caution should be taken for flow tables of migration between nations

that are very different, as models may struggle to explain all moves, especially those for

political or legal factors. Additional dimensions for migrant characteristics such as age

and sex might also be incorporated, if and when data become available. In addition,

the methods developed in this thesis could be used for other measurement of transition

between regions or states in which problems in inconsistencies and incompleteness occur.

This thesis has developed an estimation methodology for migration flow tables of com-

parable flow data between a set of countries. A concentration on two predominant factors,
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inconsistencies and incompleteness, were discussed and addressed via computationally in-

tensive mathematical and statistical techniques. This allowed estimates of a complete

table of comparable international migration flows that can be used by regional policy

makers and social scientists alike to better understand population behaviour and change.
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Appendix A

S-Plus/R Code

A.1 Poulain Constrained Minimization

poulain <- function(M, nr, base)
{

if(dim(M)[3] != 2)
stop("M must be a array of dimensions n x n x 2")

#tidy up data to exclude non-referee (nr) regions
M[is.na(M)] <- 0
x <- matrix(NA, dim(M)[1], 2)
dimnames(x) <- list(dimnames(M)[[1]], c("r", "s"))
M <- M[ - nr, - nr, ]
n <- dim(M)[1]
#create A
A <- matrix(NA, c(n * 2 + 1), c(n * 2 + 1))
A[c(n + 1):c(2 * n), 1:n] <- -2 * M[, , 1] * M[, , 2]
A[c(n + 1):c(2 * n), c(n + 1):c(2 * n)] <- 2 * diag(rowSums(M[, , 2]^2))
A[c(n + 1):c(2 * n), 2 * n + 1] <- -0.5 * rowSums(M[, , 2]) *
(rowSums(M[, , 1]) + rowSums(M[, , 2]))

A[1:n, 1:n] <- 2 * diag(colSums(M[, , 1]^2))
A[1:n, c(n + 1):c(2 * n)] <- -2 * t(M[, , 1] * M[, , 2])
A[1:n, 2 * n + 1] <- -0.5 * colSums(M[, , 1]) * (colSums(M[, , 1]) +
colSums(M[, , 2]))

A[2 * n + 1, 1:n] <- 0.5 * colSums(M[, , 1])
A[2 * n + 1, c(n + 1):c(2 * n)] <- 0.5 * rowSums(M[, , 2])
A[2 * n + 1, 2 * n + 1] <- 0
#set up vector for constraints for corrections
b <- c(rep(0, 2 * n), sum(apply(M, c(1, 2), max)))
#calulate initial corrections
xx <- solve(A, b)
#correction factors by r and s
x[ - nr, 1] <- xx[1:n]
x[ - nr, 2] <- xx[c(n + 1):c(2 * n)]
#normalisation setting a r value (base) to 1
if(is.integer(base) == T) x <- x/x[base, 1] else x <- x
y <- (matrix(x[is.na(x[, 1]) == F, 1], n, n, byrow = T) * M[, , 1] +
matrix(x[is.na(x[, 2]) == F, 2], n, n) * M[, , 2])/2

#average values for refereed countries
n <- dim(M)[1]
r <- matrix(x[ - nr, 1], n, n, byrow = T)
s <- matrix(x[ - nr, 2], n, n)
list(A = A, b = b, y = y, x = x, dist = sum((r * M[, , 1] - s * M[, , 2])^2/
(M[, , 1] + M[, , 2]), na.rm = T))

}
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poulain.comp <- function(M, nr, base)
{

#obtain correction factors for refereed countries
p <- poulain(M, nr, base)
n <- dim(M)[1]
x <- p$x
r <- matrix(NA, n, n)
s <- matrix(NA, n, n)
r[, - nr] <- rep(x[ - nr, 1], each = n)
s[ - nr, ] <- rep(x[ - nr, 2], times = n)
#obtain correction factors for non-refereed countries
x[nr, 1] <- apply(s[, nr] * M[, nr, 2], 2, sum, na.rm = T)/
apply(M[ - nr, nr, 1], 2, sum, na.rm = T)

x[nr, 2] <- apply(r[nr, ] * M[nr, , 1], 1, sum, na.rm = T)/
apply(M[nr, - nr, 2], 1, sum, na.rm = T)

r[, nr] <- rep(x[nr, 1], each = n)
s[nr, ] <- rep(x[nr, 2], times = n)
#averages of scaled data
y <- (r * M[, , 1] + s * M[, , 2])/2
list(y = y, x = x)

}

poulain.direct<-function(M, nr, base)
{

#get original A from poulain function
temp <- poulain(M, nr, base)
#remove lagrange partial derivative
A <- temp$A
A <- A[ - dim(A)[1], - dim(A)[2]]
#replace with 0’s and a constant (not too small)
A[base - sum(nr < base), ] <- 0
A[base - sum(nr < base), base - sum(nr < base)] <- max(A)
#obtain b
b <- temp$b
b <- b[ - length(b)]
b[base - sum(nr < base)] <- max(A)
#obtain x
x <- temp$x
n <- dim(M)[1] - length(nr)
#calcualte r and s
xx <- solve(A, b)
x[ - nr, 1] <- xx[1:n]
x[ - nr, 2] <- xx[c(n + 1):c(2 * n)]
r <- matrix(x[ - nr, 1], n, n, byrow = T)
s <- matrix(x[ - nr, 2], n, n)
list(A = A, b = b, x = x,
dist = sum((r * M[ - nr, - nr, 1] - s * M[ - nr, - nr, 2])^2/
(M[ - nr, - nr, 1] + M[ - nr, - nr, 2]), na.rm = T))

}

A.2 Distance Functions for Constrained Optimization

ChiSq <- function(x, M1, M2)
{

n <- length(x)
a <- matrix(x[1:c(n/2)], dim(M1)[1], dim(M1)[2], byrow = T)
b <- matrix(x[c(1 + n/2):n], dim(M2)[1], dim(M2)[2])
sum(abs(a * M1 - b * M2)^2/(M1 + M2), na.rm = T)

}
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Man<-function(x, M1, M2){
n<-length(x)
a<-matrix(x[1:c(n/2)], dim(M1)[1], dim(M1)[2], byrow=T)
b<-matrix(x[c(1+n/2):n], dim(M2)[1], dim(M2)[2])
sum(abs(a*M1-b*M2),na.rm=T)

}

Euc<-function(x, M1, M2){
n<-length(x)
a<-matrix(x[1:c(n/2)], dim(M1)[1], dim(M1)[2], byrow=T)
b<-matrix(x[c(1+n/2):n], dim(M2)[1], dim(M2)[2])
sqrt(sum(abs((a*M1-b*M2)^2),na.rm=T))

}

Can<-function(x, M1, M2){
n<-length(x)
a<-matrix(x[1:c(n/2)], dim(M1)[1], dim(M1)[2], byrow=T)
b<-matrix(x[c(1+n/2):n], dim(M2)[1], dim(M2)[2])
sum( abs(a*M1-b*M2)/(a*M1+b*M2) ,na.rm=T)

}

Cla<-function(x, M1, M2){
n<-length(x)
a<-matrix(x[1:c(n/2)], dim(M1)[1], dim(M1)[2], byrow=T)
b<-matrix(x[c(1+n/2):n], dim(M2)[1], dim(M2)[2])
sum( abs(a*M1-b*M2)^2/ (a*M1+b*M2)^2 ,na.rm=T)

}

A.3 EM Algorithm for Negative Binomial Regression Model

glm.nb.EM <- function(model, data, tol, max.it, z0)
{

if(all(is.missing(pmatch(names(data),"y")))==T)
stop("data must have a response column named y with some missing data")

data$original <- data$y
#Initial E-step with some unknown parameter set
data$y[is.na(data$original)] <- z0
z <- data$y[is.na(data$original)]
#Initial M-step
m <- glm.nb(formula(model), data, maxit = max.it)
fit <- m$fit
#Record convergence
lik <- cbind(model$twologlik/2, m$twologlik/2)
beta <- cbind(c(model$coef, model$theta), c(m$coef, m$theta))
#Second E-step before loop
data$y[is.na(data$original)] <- c(fit)[is.na(data$original)]
i <- 2
while(any(c(abs(beta[, i] - beta[, i - 1])) > tol, na.rm = T)) {

m <- glm.nb(formula(model), data, maxit = max.it)
fit <- m$fit
data$y[is.na(data$original)] <- c(fit)[is.na(data$original)]
z <- cbind(z, data$y[is.na(data$original)])
lik <- cbind(lik, m$twologlik/2)
beta <- cbind(beta, c(m$coef, m$theta))
i <- i + 1

}
return(list(z = z, beta = beta, beta.se = beta.se,
final.model = m, final.data = data, lik = lik, it = i))

}
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A.4 Supplemented EM Algorithm

em <- function(beta0, model, data)
{

#E step
fit <- exp(model.matrix(model, data) %*% beta0)
data$y[is.na(data$original)] <- c(fit)[is.na(data$original)]
#M step
m <- glm.nb(formula(model), data, maxit = 100)
beta <- c(m$coef)
list(beta=beta, m=m)

}

jac<-function(b.star, b.init, model, data)
{

dm <- matrix(0, length(b.init), length(b.init))
for(i in 1:length(b.init)) {

#sequential replace each element of b.star with b.init
b.temp <- b.star
b.temp[i] <- b.init[i]
#run one iteration of em with altered beta (a mix of b.star,
with one element of b.init)
u <- em(b.temp, model, data)
#fill in the relevant dm row with rate of change
dm[i, ] <- c(u$beta - b.star)/(b.init[i] - b.star[i])

}
list(dm = dm)

}
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sem<-function(b.star, b.init, model, data, tol)
{

#get first and second dm for comparison
b.star <- em(b.star, temp.mod, data)$beta
dm <- jac(b.star, b.init, model, data)$dm
storedm <- array(c(dm), c(dim(dm), 1))
b <- em(b.init, temp.mod, data)$beta
dm <- jac(b.star, b, model, data)$dm
storedm <- array(c(storedm, dm), c(dim(dm), 2))
#set up monitoring objects
r <- 2
err <- apply(abs(storedm[, , r - 1] - storedm[, , r]), 1, max)
converge <- c(err > tol)
print(converge)
#estimate mapping differential depending on row (i) until all
errors less than tolerance

while(any(err) > tol) {
for(i in 1:dim(dm)[1]) {

#if given row is not converged estimate the mapping differential
if(err[i] > tol) {

#sequential replace each element of b.star with current b
b.temp <- b.star
b <- em(b, temp.mod, data)$beta
b.temp[i] <- b[i]
u <- em(b.temp, model, data)
dm[i, ] <- c(u$beta - b.star)/(b[i] - b.star[i])

}
if(err[i] < tol) {

#if given row has converged, set row of dm to previous values
dm[i, ] <- storedm[i, , r]

}
}
r <- r + 1
storedm <- array(c(storedm, dm), c(dim(dm), r))
err <- apply(abs(storedm[, , r - 1] - storedm[, , r]), 1, max)
converge <- rbind(converge, c(err > tol))
print(converge[r - 1, ])

}
return(list(dm = dm, dm.it = storedm, converge = t(converge)))

}
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