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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Broadband Adaptive Beamforming with Low Complexity and Frequency Invariant
Response

by Choo Leng Koh

This thesis proposes different methods to reduce the computational complexity as well as in-
creasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily
for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation
of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive
filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to
perform unconstrained adaptive optimisation.

A direct DFT implementation, by which broadband signals are decomposed into frequency bins
and processed by independent narrowband beamforming algorithms, is thought to be computa-
tionally optimum. However, this setup fail to converge to the time domain minimum mean square
error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst-
case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor,
overlap-save based GSC beamforming structures have been explored. This system address the
minimisation of the time domain MMSE, with a significant reduction in computational complexity
when compared to time-domain implementations, and show a better convergence behaviour than
the IFB beamformer. By studying the effects that the blocking matrix has on the adaptive process
for the overlap-save beamformer, several modifications are carried out to enhance both the sim-
plicity of the algorithm as well as its convergence speed. These modifications result in the GSC
beamformer utilising a significantly lower computational complexity compare to the time domain
approach while offering similar convergence characteristics.

In certain applications, especially in the areas of acoustics, there is a need to maintain constant
resolution across a wide operating spectrum that may extend across several octaves. To attain
constant beamwidth is difficult, particularly if uniformly spaced linear sensor array are employed
for beamforming, since spatial resolution is reciprocally proportional to both the array aperture
and the frequency. A scaled aperture arrangement is introduced for the subband based GSC
beamformer to achieve near uniform resolution across a wide spectrum, whereby an octave-invariant
design is achieved. This structure can also be operated in conjunction with adaptive beamforming
algorithms. Frequency dependent tapering of the sensor signals is proposed in combination with
the overlap-save GSC structure in order to achieve an overall frequency-invariant characteristic.
An adaptive version is proposed for frequency-invariant overlap-save GSC beamformer.

Broadband adaptive beamforming algorithms based on the family of least mean squares (LMS)
algorithms are known to exhibit slow convergence if the input signal is correlated. To improve the
convergence of the GSC when based on LMS-type algorithms, we propose the use of a broadband
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eigenvalue decomposition (BEVD) to decorrelate the input of the adaptive algorithm in the spatial
dimension, for which an increase in convergence speed can be demonstrated over other decorrelating
measures, such as the Karhunen-Loeve transform. In order to address the remaining temporal
correlation after BEVD processing, this approach is combined with subband decomposition through
the use of oversampled filter banks. The resulting spatially and temporally decorrelated GSC
beamformer provides further enhanced convergence speed over spatial or temporal decorrelation
methods on their own.
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Chapter 1

Introduction

This introductory chapter motivates the research reported in this thesis. Subsequently, the or-
ganization of this thesis, which defines the scope of the research, is presented. The final section
highlights what are believed to be the key contributions of this research.

1.1 Background and Motivation

Array signal processing has a growing number of important applications ranging from radar, sonar
and mobile communications to acoustic systems. In radar and sonar, the spatial diversity offered
by a sensor array is exploited for direction finding, source localization and suppression of jam-
mer signals [1, 2]. More recently, the increased demand for mobile communications capacity has
resulted in a bottleneck due to the limited radio-frequency spectrum, whereby beamforming tech-
niques have shown great promise in enhancing spectrum utilization by means of so called smart
antennas [3, 4]. By spatial selectivity, antenna arrays can minimize the effect of co-channel interfer-
ence, thus enhancing the reception of the radio signal. Through the use of spatial division multiple
access (SDMA), beamforming can allow multiple users within the same cell to operate on the same
frequency channel at the same time, or improve the re-use distance between cells [5].

For more general multiple-input multiple-output (MIMO) communications systems, spatial mul-
tiplexing — also known as transmit and receive beamforming [6] can substantially increase the data
throughput over a transmission link. In acoustic applications, beamforming for microphone arrays
can be used for speaker localisation [7] and source separation [8], while loudspeaker arrays are used
to create spatial audio impressions to optimize the man/machine interface, such as required for
tele- , video conferencing, cinemas, and concert halls [9, 10].

In all of the above applications, the systems are required to reliably receive spatially propagat-
ing signals in the presence of interference. If the desired signal and interferers occupy the same
frequency band and time slot, temporal filtering alone is unable to effectively separate the signal
of interest from the interference. However, in most instances the desired signals and interferers
originate from different spatial locations, or in the case of self-interference by means of reverber-
ation or multipath propagation, may have different angles of arrival. These differences can be
exploited to isolate the desired signal from unwanted interference by using spatially selective filter-
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ing at the receiver [2]. A spatial filter or beamformer consists of an array of sensor elements spaced
at an appropriate distance. These sensor elements are either pre-weighted to represent a desired
spatial-temporal characteristic or adaptively adjusted to maximize the suppression of interference
and noise in a suitable sense.

The principal task of a beamformer is to steer the characteristic of a sensor array towards
a signal impinging from a certain direction, while interfering signals from other spatial angles
are suppressed [2, 11]. Fig. 1.1 illustrates a linear equispaced array with M sensors where each
discretely sampled sensor signal xm[n] is processed by a digital finite impulse response (FIR) filter
with its impulse response coefficients contained in a vector wm[n]. If the desired signal impinges
onto the array from an angle ϑ, then the wavefront of this signal will reach the sensors delayed by
integer multiples of ∆τ . The purpose of wm[n] is to re-align the wavefront prior to the summation
at the output e[n] by introducing appropriate delays, thus enabling the desired signal to add
up constructively while interferers cancel out each other at the beamformer output. Note that
alternative geometries such as circular and planar arrays are also available, each serving different
purposes [12]. However, this thesis will solely be based on linear arrays, although many of the
proposed techniques can be transferred to other array geometries

ϑ

∆τ

[ ]n

w0

w1

wM−1

[

1x

]nx0

[ ]ne

[ ]nxM−1

Fig. 1.1: Beamformer structure for a linear array.

Depending on the specific application of the structure in Fig. 1.1, different approaches exist for
the correct adjustment of the filter coefficients wm. The adjustment can either be performed to
minimize interference from spatial directions other than the look direction ϑ, or by knowledge of
the signal of interest’s parameters. Knowledge can be in the form of an explicit training sequence
embedded in the data, or its probability density function due to specific phase and amplitude
constellations of the transmitted signal [13]. The latter adjustment method finds use in mobile
communications to increase the bandwidth efficiency [3, 5]. However, in this report the main
interest is on the first case of coefficient adjustment, based on spatial constraints [11, 14, 2], which
is commonly found in e.g. passive sonar applications [15, 16].

If the impinging signal of interest is narrowband, only a single complex valued coefficient is
needed per sensor, as the correct delay can be expressed by a complex gain factor implementing a
phase shift. However, broadband signals present a more complex problem as generally fractional
delays will be required to align sensor signals for constructive of destructive interference. Fractional
delay filters or filters with high spectral resolution generally require very long FIR filters. This huge
computational associated with the broadband structure makes actual implementation costly, if not
impossible, on current digital signal processors (DSP). As a result, several numerically efficient
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implementations have been proposed. One solution is the partially adaptive beamformer where
not all the number of available degrees of freedom (DOF), i.e. the number of adaptive coefficients
are utilized [17]. By minimizing the adaptive DOF in a beamformer, a significant computational
expense can be saved [2]. Additionally, reducing the adaptive dimension can result in faster con-
vergence [18, 19]. The drawback of a reduction in DOFs, generally results in a degradation of
the beamformer performance. This is because fewer filter coefficients are utilized in the adaption
process, thus reducing the beamformer’s accuracy.

Since the broadband nature of the array signals is responsible for the large computational cost of
beamformers, one solution has been to split broadband array signal into several narrowband ones,
on which narrowband beamforming algorithms can independently operate. These are generally
based on the discrete Fourier transforms (DFT) and can reduce the computational cost substan-
tially [20, 21, 22]. Likewise, the eigenvalue spread of the narrowband signals are smaller, allowing
faster convergence [23, 24]. In using traditional DFT filter banks, it has often been assumed that the
Fourier domain interactions between different frequency bins can be neglected. This approximation
offers computational optimality but also suffers from very poor worst-case performance due to spec-
tral leakage [25]. Therefore, DFT-based beamformers with an implicit independence assumption
across frequency bins demonstrate an inability to converge to the global broadband (time-domain)
minimum mean square error (MMSE) solution when interferers do not coincide exactly with the
frequency bins [25, 26, 27]. DFT-based overlap-save and overlap-add methods are known to be
able to overcome this limitation by optimizing the broadband time-domain problem [20, 28, 27].
Another popular method to enhance both computational complexity and convergence speed is the
subband technique [29, 30, 31, 32]. In deploying oversampled filter banks with high frequency
selectivity, drawbacks associated with traditional DFT processing are avoided at the expense of a
slight increase in computational cost [25, 33].

In areas such as immersive audio, a uniform spatial resolution across a wide band of frequencies,
generally several octaves, may be desirable. Thus, the ability to achieve constant resolution is
another big challenge for broadband beamforming [34, 35, 36]. Spatial resolution of uniformly
spaced linear array beamformer is reciprocally proportional to both the frequency of the signal and
the aperture of the array collecting the data. In general, if aperture size is maintained, poorer
resolution is encountered at lower frequencies [37, 38]. This discrepancy in resolution can become
very dominant in a broadband beamformer and may be undesirable for a range of applications. A
solution to this problem is to transform a broadband beamforming problem to separate octaves
with the use of harmonic nesting [39, 40, 41]. Thereby, different octaves are assigned to different
apertures, with the array size doubling when it steps from one octave to the next lower one [40, 42].
Frequency variation is now contained within an octave and thus somewhat limited. This can be
conveniently applied to subband beamforming structures resulting in a subband scaled aperture
(SSA) beamformer where near constant resolution is observed, along with the ability to place a null
at the direction of the interference across octaves. Further enhancement to the uniformity of the
resolution can be achieved by incorporating harmonic nesting with frequency dependent weighting
for sensors [43]. Placing different emphasis on the sensors for different frequencies creates DFT and
overlap-save beamformers that possessed frequency invariant property. Other alternatives such as
the application of focusing matrices [44, 45] or the judicious thinning of a uniformly spaced sensor
arrangement [36, 46] have also been proposed.
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Both the overlap-save and the subband beamforming approaches perform their decomposition
in the frequency domain to increase convergence while attaining a reduction in complexity. The
spatial dimension could also be exploited to enhance the performance of the beamformer. Through
the use of a recently proposed second-order sequential best rotation (SBR2) algorithm [47], a
broadband array signals can be strongly decorrelated in the spatial domain. This decorrelation
allows the beamformer to operate on a subspace with a reduced spatial dimension, thus reducing
the complexity and enhancing the performance. Further combination with the subband approach
to introduce temporal decorrelation allows the beamformer to achieve better convergence results
as compared to either of the decorrelation approaches on their own.

1.2 Original Contributions

The following are considered to be the novel contributions addressed in this thesis.

• Overlap-save broadband beamforming algorithms [48, 49, 50, 51, 52].
An overlap-save broadband generalised sidelobe canceller (GSC) algorithm has been derived.
This implementation is extended to the linearly constrained minimum variance (LCMV)
structure employing Frost’s adaptive algorithm. A modification to the broadband constraint
equation of the derived overlap-save GSC is introduced, resulting in an increase of the beam-
former’s convergence speed at no additional computational complexity. Further, by suitable
approximation, narrowband constraints are proposed to resolve a broadband problem, which
is shown to reduce the computational cost of the overlap-save beamformer. The inclusion of
self-orthogonalisation is then exploited to enhance the convergence speed of this technique.

• Generalised subband scaled aperture beamformer [53].
To combat poor spatial resolution at lower frequencies, a generalised subband based scaled
aperture (SSA) beamformer has been proposed, based exemplarily on the GSC. The SSA
beamformer decomposes broadband signals into subbands, which are organised into groups
that cover octave intervals. By drawing inputs from sensors with a wider aperture at lower oc-
taves, an octave invariant resolution is achieved. This effectively reduces the spatial variation
across the operating spectrum.

• Frequency invariant overlap-save broadband beamformer [54, 55].
A frequency invariant adaptive broadband beamformer based on the overlap-save frequency
domain implementation of the generalised sidelobe canceller (GSC) was proposed. Broadband
signals are decomposed into frequency bins which are grouped into octaves. Subsequently,
frequency dependent sensor weightings assigned to individual frequency bins restrict the vari-
ation in spatial resolution. The overlap-save GSC beamformer is then incorporated to achieve
adaptive nulling of interferers. However, modifications to the original constraint equation are
required to account for the frequency-dependent weighting of sensors. Simulation results
highlight the benefits of this approach.

• Broadband eigenvalue decomposition GSC beamformer.
In utilising the SBR2 algorithm, spatial decorrelation is performed on a broadband GSC
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beamformer. Apart from spatial decorrelation, SBR2 carries out spectral majorisation, which
is similar to the ordering of singular values in a singular value decomposition. This allows
the use of subspace processing since SBR2 effectively reduces the spatial dimension for the
adaptive process. Simulation results indicate the benefits of this operation in achieving better
convergence. A two dimensional decorrelation approach which utilises SBR2 in the spatial
domain and subband decomposition in the temporal domain exhibits good convergence re-
sults.

1.3 Outline of Thesis

The remaining chapters of this thesis are organized as below:

Chapter 2 reviews the fundamentals of digital broadband beamforming. Beamformer realisa-
tions of the LCMV structure and a GSC are discussed. The formulation of the constraint equation,
the optimum mean squared solutions and the evolution from LCMV to GSC are reviewed. The
application of Frost’s adaptive algorithm for the LCMV technique and the use of LMS and RLS
algorithms for the unconstrained optimization problem in the GSC are detailed. Simulations and
results for a time domain scenario are presented, motivating the research addressed in this thesis.

Chapter 3 gives a general classification of beamformers. Comparisons of low cost alternatives
– the DFT-based and the subband-based beamformers, exemplarily for the GSC, are carried out.
An overlap-save beamformer is proposed to mitigate problems of non-convergence of the DFT-
based beamformer when broadband interference is encountered. Subsequent modification of the
overlap-save GSC’s blocking matrix is proposed to enhance the convergence speed. Additionally,
based on suitable assumptions, the computational complexity of the overlap-save beamformer can
be reduced with the use of narrowband constraints when resolving a broadband problem.

Chapter 4 outlines the dependency of spatial resolution on both frequency and array aperture.
This results in non-uniform resolution for broadband signals captured by uniformly spaced linear
arrays. Harmonic nesting followed by spatial tapering is proposed to attain frequency invariant
beamformers for both DFT and overlap-save implementations. This technique leads to the use of
scaled aperture for subband GSC processing, which limits spatial variation to within an octave.
While nested arrays deployed on their own achieve octave-invariant resolution, a combination with
tapering is shown to achieve frequency invariant characteristics spanning several octaves for the
overlap-save GSC beamformers.

Chapter 5 introduces the broadband eigenvalue decomposition (BEVD) which facilitates the
spatial decorrelation of broadband, convolutively mixed signals. Applying this decomposition as
a pre-processor to a broadband GSC beamformer provide spatial decorrelation and subsequently
reduces the subspace in which the beamforming algorithms operates. As such, an increased in
convergence speed along with reduction in complexity can be achieved. To further enhance the
performance, temporal decorrelation is incorporated with the used of oversampled filter banks,
providing superior results over preprocessing for either temporal or spatial decorrelation on their
own.
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Chapter 6 summarises the main result of this thesis and provides an overview over suggested
further research.

6



Chapter 2

Beamforming

Array signal processing or beamforming attempts to extract maximum information from a propa-
gating wave field through the acquisition and processing of spatio-temporal data. We consider the
discrete case where beamforming utilises both temporal sampling and spatial sampling to extract
the desired signal from interference and background noise. In accordance with temporal sampling,
which leads to the discrete time domain, spatial sampling by sensor arrays forms the discrete space
domain. Thus, with sensor arrays, signal processing operates in a multi-dimensional space-time
domain. In the following chapter, we start with an introduction of propagating wave fields in
Sec. 2.1. This is followed by an overview of different beamforming classifications and realisations
in Sec. 2.2. Sec. 2.3 describes a space-time model that is used for the remainder of our work. The
concept of beamforming viewed from a space-time filtering perspective, together with the formu-
lations of the data-independent delay-and-sum beamformer, and data-dependent beamformer for
both narrowband and broadband scenarios are found in Sec. 2.4. The design of the data-dependent
beamformer based on the linearly constrained minimum variance (LCMV) structure which requires
constrained optimisation, and its evolution to an unconstrained problem in the generalised sidelobe
canceller (GSC) is discussed in Sec. 2.5. In Sec. 2.6, the basis of linear filtering is reviewed, along
with various standard unconstrained adaptive algorithms as well as the constrained Frost algorithm
used primarily for the LCMV implementation. Constraint designs essential to the functionality of
the beamformers are found in Sec. 2.7. These include the use of the cascaded column of differencing
(CCD) method and a technique based on singular value decomposition (SVD). Both approaches as-
sist in attaining the blocking matrix and the quiescent vector for the GSC beamformer. Simulations
of the various systems are carried out and analysed in Sec. 2.8.

2.1 Propagating Wave Fields

A wave field propagates in time and space. The spatial quantities generally, stretch, over all three
space dimensions denoted by Cartesian coordinates (x, y, z) or by spherical coordinates (φ, θ, r). In
spherical coordinates 0 ≤ φ ≤ 2π is the azimuth, 0 ≤ θ ≤ π the evaluation angle, and r the radius.
The relationship between the Cartesian coordinates and the spherical coordinates is illustrated
in Fig. 2.1. Thus, a space-time signal is written as s(r, t) with r the radius vector within the
3-dimensional coordinate system and t denotes the continuous time.
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Fig. 2.1: 3-dimensional coordinate system with Cartesian coordinates (x, y, z) and spherical coor-
dinates (φ, θ, r).

In our scenario, s(r, t) describes the input signal that impinges onto the sensor array as a
function of the sensor location r and time t. The medium within which the signal propagates is as-
sumed to be homogenous, dispersion free and lossless. Homogeneity assures a constant propagation
speed throughout space and time. Dispersion describes the degradation of the signal in a medium
because the various wave components (i.e., frequencies) of the signal have different propagation
velocities within the medium. A lossless environment occurs when the medium does not influence
the amplitude attenuation of the propagating wave. As such, the signal is governed by the wave
equation [56],

∇2s(r, t) =
1
c2

∂2s(r, t)
∂t2

, (2.1)

where ∇2 is the Laplacian and c is the speed of the wave’s propagation.

For a planar wave, a possible solution of the wave equation (2.1) is given by,

s(p, t) = X exp (j(ωt− kT r)) , (2.2)

where (·)T denotes the transpose of a matrix or a vector. The constant factor X is the amplitude
and ω the angular frequency of the plane wave. The vector quantity denoted by k is referred to as
the wave vector [56] or spatial frequency. This wavenumber vector is given by,

k = ω · a(θ, φ) , (2.3)

describing its relation to the angular frequency ω and the slowness vector a(θ, φ) that points in the
direction of propagation.

The magnitude of the slowness vector |a(θ, φ)| = 1/c, where c refers to the speed of propagation
in the specific medium. Thus, the wave vector pointing in the direction of propagation has a
magnitude

|k| = ω

c
=

2π

λ
= k , (2.4)
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with λ being the wavelength, the quantity 1/λ defines the number of wave cycles per spatial distance
similar to the angular frequency ω expressing the number of period per second. The wavenumber
vector k can therefore be interpreted as the spatial frequency variable analogously to the temporal
angular frequency variable ω. It is important to point out that k refers to a monochromatic planar
wave, i.e. spatial and temporal frequencies are coupled and cannot be chosen independently.

Alternatively, the wave equation can also be solved for monochromatic spherical waves. Gener-
ally, the spherical wave model equation is use to describe the radiation of point sources which are
close to the point of observation. The solution to (2.1) for spherical wave propagation is given by,

s(r, t) =
X

r
exp (j(ωt− |k|r)) , (2.5)

where r is the distance from the sensor origin to the source. Unlike the planar wave solution of (2.2),
the amplitude of the spherical wave decreases hyperbolically with the distance r. The common rule
of thumb for (2.5) to be valid is,

r <
2d2

λ
, (2.6)

where d is the largest array dimension, and λ is the operating wavelength [57, 58]. Otherwise,
propagation according to the planar wave solution (2.2) can be assumed.

So far in this section, all the discussions are based on continuous space-time signals. To attain
discrete-variable signals, spatio-temporal sampling is required. Although, multidimensional spatial
spectra exist and have been consider earlier, for simplicity we will restrict ourselves to linear arrays
which contain only one spatial dimension, say x, and the corresponding scalar wavenumber k.
Restriction has to be placed when sampling of a continuous-variable spatial signal s(x) to ensure
that there is no loss of information. This holds true for temporal sampling as well.

To permit reconstruction of a temporally sampled signal, the sampling frequency must exceeds
twice the highest frequency in the original signal. In spatial sampling, the signal s(x) must be
bandlimited, whereby no frequency components must be outside the domain |k| ≤ π/d, where d

is the distance between two adjacent sensors. If this condition is not met, spatial aliasing occurs.
Exploiting the link between the wavelength λ and the wavenumber k in (2.4), for λ ≤ λmax,
the spatial sampling period has to be d ≤ λmax/2, where λmax is the wavelength of the highest
frequency. Thus, to enable perfect reconstruction in the spatial domain, distance between adjacent
sensors must not exceed half of the shortest wavelength in the original signal.

Processing a spatio-temporal signal requires spatio-temporal filters, known as beamformers.
Beamforming combines spatial and temporal filtering to extract or detect a signal of interest that
impinges onto the array from a certain direction while suppressing signals from other directions.
The name beamformer steams from the fact that signal within the beam are passed through while
those outside are attenuated [2]. For processing signals in space and time, it is necessary to observe
the propagating wave at various positions of interest over time. Generally, a large number of sensor
array configurations are used. In this thesis we restrict the analysis to equally-spaced sensors
arranged along a line, also known as uniform linear array.

The sensors utilised are normally assumed to be omnidirectional, having the same sensitivity for
all frequencies of interest and for all directions. To emulate directional and frequency-dependent
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sensors, sensors’ characteristic can be incorporated into the spatial-temporal response of the trans-
mission medium.

2.2 Classification

Beamformers can be classified according to various aspects. These include the distinction between
narrowband or broadband characteristic, the closeness of the sensor array to the source as well as the
methods choosing the parameters of the beamformer. For signal with broadband characteristic,
alternative techniques could also be exploited to reduce computational complexity and improve
the convergence rate. Fig. 2.2 provides a graphical representation of the different ways in which
beamformers can be potentially classified, they will be briefly commented on in this section.

(b)Beamformer

Narrowband

(a)

Broadband

Beamformer

Farfield

Beamformer
(c)

Statistically OptimumData Independent

Subband

Beamformer

Frequency Domain

(d)

Time domain

Nearfield

Fig. 2.2: Beamforming classification.

First and foremost, according to Fig. 2.2(a), beamformers can be grouped according to the
bandwidth of the signal environment. This can be either narrowband or broadband. Narrowband
beamforming is generally less complex, and their differences to broadband beamforming will be
highlighted in Sec. 2.4. Therefore, the question arises which signals can be considered narrowband,
and where broadband characteristics have to be assumed.

According to [57, 59], if the ratio between the signal bandwidth and the mid-band frequency falls
below a specific threshold, the signal can be considered narrowband. The value of the threshold
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– typically 2.5% – depends upon the application and no fixed standard definition is available. A
similar distinction is provided by [60], where broadband (or wideband) assumptions have to be
made if the signal bandwidth is larger than the coherence bandwidth1 of the transmission channel.
A different distinction between narrow- and broadband signals is given by Zatman [61] and based
on the rank of the signal subspace. For a narrowband scenario, the rank of the signal subspace is
the same as the number of signals present, i.e. there is a rank-one representation of each signal. If
the effective rank of the signal subspace is larger than the number of signals present, broadband
scenario must be assumed.In practical terms, [61] calculates the eigenvalue decomposition of the
covariance matrix. The broadband case holds true if there are more eigenvalues than independent
sources above a threshold relative to the eigenvalues of the covariance matrix’s noise subspace.

In the classical beamforming literature, nearfield and farfield operations of beamformers are
considered separately [62] as shown in Fig. 2.2(b), and beamforming algorithms vary accordingly.
For the farfield scenario, where planar wave propagates according to (2.2), sources must originate a
long distance away from the array relative to its aperture [57]. If the source is close to the array, the
wavefronts impinging on the array are no longer planar, but spherical [63]. Special care is required
to resolve the spherical nature of the signal propagation given by (2.5). However, for this thesis we
will restrict ourselves to broadband signals in the farfield environment.

The selection of the beamformer parameters can be classified as either data independent or
Statistically optimum [2], as indicated in Fig. 2.2(c). For data independent beamformers, only the
position of the desired source is used as a-priori information for designing the beamformer, while
information on noise and interference is either not available or not utilised.

Statistically optimum beamformers have filter coefficients adjusted according to the array data,
optimizing the array response according to a design criterion such as, for example, the minimum
mean squared error (MMSE). Finer classification of statistically optimum beamformer can take into
account the knowledge utilised to adjust filter coefficients. This may be in the form of availability
of a training sequence, the knowledge of phase and amplitude constellation of the transmitted
symbols or by knowledge of the angle of arrival from where data is to be received. As an example
of a statistically optimum beamformer, the LCMV beamformer introduced in Sec. 2.5 assumes
knowledge of the desired signal’s angle of arrival, while the beamforming parameters are adjusted
such that the noise and interference power at the beamformer output are minimised in the mean
square error sense. In general, a statistically optimum beamformer places nulls in the directions of
interfering sources in an attempt to maximise the signal to noise ratio at the beamformer output [2].

The implementation of a beamformer, particularly since the type of signals considered here is
primarily broadband, is important in a number of ways, as this influences the complexity, conver-
gence speed, accuracy, and robustness of the resulting system. Fig. 2.2(d) distinguished between
time-domain, subband, and frequency-domain implementations. Generally a time-domain beam-
former implementation can be associated with high computational complexity and slow convergence
rate. Both subband [64, 65] and frequency-domain [66] implementations attempt to solve the beam-
forming problems in subbands or frequency bins which ideally can be regarded as independent for
processing. For example, the DFT-based frequency-domain implementation calculates a narrow-
band beamformer within each frequency bin. All three techniques are examined in this thesis, and

1the range of frequencies over which the channel is considered constant or flat.
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will be detailed in Chap. 3.

2.3 Space-Time Signal Model

In this section, we specify the space-time signal model that will be used throughout this thesis.

We restrict ourselves to uniform linear array with a sensor spacing equal to half a wavelength
(d = λmax/2), whereby λmax refers to the wavelength of the maximum frequency component of
any signal impinging onto the array. The sensors utilised are assumed to be ideal, i.e. they are
infinitesimally small and omnidirectional. All simulated propagation media are linear time-invariant
(LTI). Linearity means that the relationship between the input and output of the system satisfies
the scaling and superposition properties. Time invariance refers to an input affected by a time delay
only affecting a corresponding time delay at the output [67]. An LTI systems can be characterized
entirely by its impulse or frequency response, which simplifies the description of the input/output
relationship of the system.

A signal source x[n] can impinge onto the sensor array from any angle. If signals are not
from broadside (θ = 0◦), their wavefronts do not arrive at the sensor elements at the same time
instances. Instead, they are delayed by integer multiples of ∆τ as shown in Fig. 1.1. These delays
are emulated using fractional delay filters hm[n], which are implemented using the least squared
error (LS) finite impulse response (FIR) design [68]. The implementation is rather straight forward
and is formulated using the sinc function,

h[n] =
sin(π(n−D))

π(n−D)
= sinc(n−D) , (2.7)

where n is the integer sample index and D is the delay in samples with an integer part bDc and a
fractional part d. The b.c returns the greatest integer less than or equal to D. That is,

D = bDc+ d . (2.8)

For most cases, the delays incurred are normally not integer multiples of the used sample interval.
Thus, they cannot be reduced to a single impulse response, unlike those shown in Fig. 2.3(a).
Instead, the impulse response is represented by non-integer values of D that are infinitely long,
shifted and sampled version of the sinc function as indicated by Fig 2.3(b). This makes it difficult
to implement in real-time applications. The use of the least squared FIR (truncated sinc) in (2.7)
gives a reasonable approximation of the delays. However, it suffers from the Gibbs phenomenon,
which causes ripples in the magnitude response, when delays are not integer multiple of the used
sample interval [69]. This Gibbs phenomenon exhibits deterioration of the magnitude response close
to the Nyquist frequency. Additionally, the group delay 2 response suffers similar deterioration.

The imperfection of the truncated sinc function for filter length of L = 10, when modelling
the delays is shown in Fig. 2.4. The magnitude and the group delay responses in Fig. 2.4(a)
and Fig. 2.4(b) respectively indicate that oscillation occurs at higher end of the frequency band. A

2a measure of the average delay of the filter as a function of frequency
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Fig. 2.3: Impulse response of a delay filter with (a) integer delay D = 1 and (b) fractional delay
D = 1.4.

promising technique based on polynomial approximation has the ability to achieve a flatter response.
This is known as the Farrow structure [70]. However, in this thesis the truncated sinc function is
utilised. To mitigate the problem of ripples at frequency near Nyquist by the sinc function in our
analysis, band-limiting filter f [n] is required to restrict the bandwidth of the operating spectrum.

The additive white Gaussian noise (AWGN), a fundamental limiting factor in communication
systems, is also included to the beamforming system. The white Gaussian noise could be the
result of a number of phenomena that include atmosphere noise, radio frequency interference,
and thermal energy that causes random Brownian motion of electrons within the receiver circuit
elements. AWGN is characterised by a Gaussian probability density function (PDF), portrayed in
Fig. 2.5 and given by

P(ν) =
1√

2πσν

e
− (ν−ν̂)2

2σ2
ν (2.9)

where ν symbolises the amplitude of the noise samples with a variance of σ2
ν = 1 and a mean of

ν̂ = 0 [71].

The source signal model for simulating a scenario, where multiple signals illuminate the array,
is depicted in Fig. 2.6. The signal x[n] is suppose to have zero-mean, uncorrelated and wide sense
stationary (WSS) characteristic. An innovation filter f [n] is used to shape the spectral characteristic
of the signal while hm[n],m = 0(1)M − 1 are fractional delay filters that implement spatial delays.
For the inclusion of spatially unstructured noise (AWGN), an independent noise process can be
added onto each sensor signal.
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Fig. 2.4: (a) Magnitude and (b) group delay response for integer delay D = 1 and fractional delay
D = 1.4.
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2.4 Concept of Beamforming

Space-time filtering or beamforming focus the array on the desired source in order to separate signals
from different directions, which generally have overlapping frequency content. The application of
our beamformer requires the extraction of the desired signal while suppressing interference-plus-
noise. A beamformer can be viewed as a multiple input single output (MISO) system with M input
signals and L sensor weights or filter coefficients per channel. One of the oldest and simplest data-
independent structure, the delay-and-sum beamformer is reviewed in the Sec. 2.4.1 [56]. Thereafter,
the formulation of statistically optimum models for both narrowband and broadband scenarios are
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Fig. 2.6: Simulation of a signal x[n] impinging from an angle onto the array by fractional delay
filters hm[n], with f [n] acting as an bandpass filter.

m(ϑ)

ϑ

τ

x

0

x n]

[

[

n]

x [ ]n

1

0

M−1

τ

1
e[n]

τ

M−1

τ

Fig. 2.7: Delay and sum beamformer.

discussed in Sec. 2.4.2 and Sec. 2.4.3 respectively.

2.4.1 Delay-and-Sum Beamformer

A variety of information such as those mentioned in Sec. 2.2, can be utilised to assist the beamformer
in suppressing interference. For the beamformer of interest, knowledge of the direction of arrival
(DOA) from the desired signal is provided to assist the reliable recovery of the source. As the
delay-and-sum beamformer is data-independent, the beampattern which allows the desired signal
to pass through with specific gain and phase is pre-determined.

The beampattern is constructed based on the delays in which the wavefront of the signal impinges
onto the sensor element. Assuming, an uniformly spaced linear array, where a propagating signal
impinges onto the array aperture from an angle (ϑ), appropriate delays τm(ϑ) must be introduced
to align the wavefront of the signal. These delays τm(ϑ) are directly related to the difference in
time taken for the signal to propagate between different sensors. For the case of a linear equispaced
aperture delay-and-sum beamformer depicted in Fig. 2.7, the delays are computed according to,

τm(ϑ) =
md sinϑ

c
, (2.10)

where m = 0(1)M−1, M is the total number of sensors, d is the distance between adjacent sensors,
ϑ is the direction of arrival measured towards broadside, while c is the speed of the propagating
waves.
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If the correct delays are implemented, the output signal presents a constructive interference or
alignment of the signal of interest. This ensures the correct reception of the desired signal. However,
a major limitation of this beamformer is that it makes no provision to null out the interference
source.

2.4.2 Narrowband Data-Dependent Beamformer

A beamformer that possesses the ability to adaptively maximise output power subject to a con-
straint is known as statistically optimum or data-dependent. A narrowband data-dependent beam-
former processes signal with a frequency (ω). As such, the time delay for each sensor can be
represented by a phase shift. Collecting all the phase shifts form what is known as the steering
vector:

s(ϑ, ω) = [e−jωτ0(ϑ) e−jωτ1(ϑ) · · · e−jωτM−1(ϑ)]T . (2.11)

The complex coefficients in the steering vector s(ϑ, ω) define the weights wm of the beamforming
structure depicted in Fig. 2.8. The inclusion of the complex weights wm rather than fixed time delays
as in the case of the delay-and-sum beamformer gives this structure the flexibility to adaptivity
steers the sensor array towards the desired direction while nulling out interference. This is done with
the aid of suitable adaptive algorithms such as the least mean square (LMS). If only one narrowband
target illuminates the array, the coefficient vector steered towards the target will provide maximum
average power at the output e[n], given by:

e[n] =
M−1∑

m=0

xm[n]wm , (2.12)

where xm[n] is the spatially sampled input signal and wm the narrowband beamformer filter coef-
ficient.

This beamformer has M degrees of freedom (DOF), and a single degree freedom is used to steer
the sensors toward the desired signal direction, while the remaining DOFs are utilised to suppress
any unwanted interfering signals. However, this holds true for signal which are either sinusoidal
or narrowband. If signal passing through the adaptive weights has broadband characteristic, this
structure proves ineffective and an alternative is required.

16



,

,

,

,0 ,1 ,2

,0 ,1 ,2

,0 ,1 ,2

][nx0

][n1x

M−1 ][nx

w0 −1L

w1 −1L

M−1 M−1 M−1 M−1 −1L

][ne

w0 w0

w1 w1

w w w w

w0

w1

Fig. 2.9: Broadband beamformer.

2.4.3 Broadband Data-Dependent Beamformer

It is obvious that for signals with common speed of propagation but having broadband character-
istic, steering vector alone cannot provide a weighting such that all frequency components add up
constructively as depicted by the narrowband beamformer in Fig. 2.8. In order to resolve broadband
signals, spatial-temporal flexibility must be enhanced. A more elaborate structure with multiple
weights attach to each sensor is required. The tap-delay line architecture applies a finite impulse
response (FIR) filter to the output of each sensor. This allows the beamformer, as depicted in
Fig. 2.9 to sample the propagating wave field in both space and time. Thus, having the ability to
resolve signal with broadband characteristic.

In terms of notation, let us consider a system with M sensors and L taps per sensor. The L

coefficients of the mth FIR filters are independently adjustable, resulting in ML parameters in the
array weight vector. The array output (or signal estimate) e[n] in Fig. 2.9 can then be expressed
as

e[n] =
M−1∑

m=0

L−1∑

l=0

xm[n− l]wm,l[n] . (2.13)

For convenience, a common notation can be introduced for both narrowband and broadband beam-
forming structures. Consider a beamformer having M sensors and L taps per sensor, with L = 1
for the narrowband structure. The array output of (2.12) and (2.13) can be re-written as

e[n] = wHx[n] . (2.14)
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The weight vector w ∈ CML holds all coefficients of the broadband beamformer,

w =




w0

w1

...
wM−1




, (2.15)

where each vector wm, m = 0(1)M − 1, contains the complex conjugate coefficients of the filter
processing the mth sensor signal, which is expressed as,

wm = [w∗m,0 w∗m,1 · · · w∗m,L−1]
T . (2.16)

Similarly, the input data is accumulated in vector form,

x[n] =




x0[n]
x1[n]

...
xM−1[n]




, (2.17)

where xm[n] holds the sample values in the tap-delay line of the mth sensor at time instance n.
Therefore, xm[n] can be expressed as

xm[n] =
[
xm[n] xm[n− 1] · · · xm[n− L + 1]

]T
. (2.18)

With the above definitions, a method to judiciously select the beamformer coefficients wm will be
discussed next.

2.5 Data-Dependent Beamformer Design

Most of the optimum data-dependent beamformers can be classified either as minimum mean
square error (MMSE) design or as linearly constrained minimum variance (LCMV) design. Both
the MMSE and LCMV beamformers are based on stochastic expectation. Thus, they are ineffective
when statistic of the data are unknown. To overcome this limitation, stochastic expectation can be
replaced by time-averaging realisation. This is done using the least squared error (LSE) criteria. An
MMSE beamformer generally requires a reference of the desired signal which is often not available
or cannot be accurately estimated [72]. The LCMV design avoids this problem by constraining
the beamformer response to unity gain for the position of the desired signal. These constraints are
setup with knowledge on the direction of arrival from the signal of interest. In Sec. 2.5.1, the LCMV
beamformer is reviewed. This is followed in Sec. 2.5.2, by discussion on an efficient realisation of
the generalised sidelobe canceller (GSC) based on the LCMV structure.

2.5.1 Linearly Constrained Minimum Variance Beamformer

The linearly constrained minimum variance (LCMV) beamformer can be considered as an improve-
ment from the delay-and-sum beamformer [2]. One limitation of the delay-and-sum beamformer is
the lack of dependency on the input source. Intuitively, a more effective source selection scheme can
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be achieved by utilising information about the characteristic of the input data. This information
is introduced into the beamformer cost function to form a constrained optimisation problem.

The LCMV beamformer is a widely used method to select the weights without prior knowledge
about the desired signal, instead only the DOA of the target signal is required [11, 14]. The task
of this beamformer is to constrain the response so that desired signals which impinge onto the
array pass with specific gain and phase, while the contribution due to interfering signals and noise
arriving from other direction are attenuated. Thus, the minimisation of the output signal power
should not lead to an elimination of the signal impinging from the look-direction, but preserve it.

The LCMV problem for optimising the array weights can be formulated as,

w = arg min
w

wHRxxw subject to CHw = f , (2.19)

where w is the vector of coefficients having length ML as defined in (2.15), C is the ML × J

constraint matrix, and f is the J×1 gain vector, J being the number of constraints. The constraint
matrix C defines the directions where the constraints should be put on. The gain vector f specifies
the beamformer response for the constrained directions. The Rxx is an ML×ML autocorrelation
matrix of the input signal x, given in the form of,

Rxx = E{
xxH

}
, (2.20)

with E{·} being the expectation operator. Note that the maximum number of linear constraints J

in the LCMV beamformer must not exceed the total number of DOFs which equals ML.

The solution of the general LCMV problem (2.19) can be obtained by the method of Lagrange
multipliers [56]. The optimum solution attained from this computation is given by [2, 56],

wopt = R−1
xx C(CTR−1

xx C)−1f . (2.21)

Selection of weights is based on the statistics of the array data. Thus, the LCMV approach falls into
the category of statistically optimum beamformers. However, in numerous applications the second
order statistics of the array data are unknown or time-varying. Even if they are available and
stationary, the inversion of the autocorrelation matrix Rxx may prove computationally intensive
and numerically difficult, if not unstable. A more practical approach is to utilise a constrained
adaptive algorithm, which updates the filter coefficients iteratively based on the data acquired at
each time instance. Filter coefficients are updated until a close approximation of the optimum
solution is achieved. One such algorithm based on the LSE is derived by Frost [11] and will be
discussed in Sec. 2.6.6. Before that, an alternative formulation of the LCMV problem that facilitates
the used of unconstrained adaptive algorithms, as proposed by Griffith [1], is reviewed in the next
section.

2.5.2 Generalised Sidelobe Canceller

An efficient realisation of the LCMV beamformer is the generalised sidelobe canceller (GSC). The
GSC is especially advantageous, as it transforms a constrained minimisation problem into an un-
constrained one. Thus, allowing the used of well-known standard adaptive algorithms, such as least
mean square (LMS) or recursive least squares (RLS) algorithms [73] for solving this unconstrained
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Fig. 2.10: From the LCMV problem to the unconstraint GSC beamformer: (a) LCMV beam-
former; (b) separation of constraint output; (c) unconstrained GSC problem by projection of the
data into the nullspace of the Hermitian constraint matrix.

optimisation problem. The evolution of the GSC structure from a LCMV beamformer is depicted
in Fig. 2.10(a)-(c).

The basic idea of the GSC is to split the weight vector w of the LCMV beamformer in Fig. 2.10(a)
into two orthogonal subspaces wc and −v, as seen in Fig. 2.10(b). The first subspace wc satisfies
the constraints and ideally contains undistorted desired signal and interference, while the second
subspace −v is in the nullspace of the Hermitian transpose of the constraint matrix CH .

The matrix which serves to decompose the LCMV weight vector w into two orthogonal compo-
nents is known as the projection matrix Pcon, given by:

Pcon = C(CHC)−1CH . (2.22)

This allows the vector w from Fig. 2.10(a) to be rewritten as,

w = Pconw + (I−Pcon)w , (2.23)

where Pcon projects w onto the column space of CH and I − Pcon projects onto the nullspace of
CH . Implicitly in (2.23), the vector wc is taken as,

wc = Pconw

= C(CHC)−1CHw

= C(CHC)−1f

= (CH)†f , (2.24)

where (·)† denotes pseudo-inversion [74]. This vector wc is often referred to as the quiescent weight
vector. It must fulfill the constraint equation (2.19) in order to provide an undistorted desired
signal at the output of the GSC.
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The vector v from Fig. 2.10(b) is given by v = −(I − Pcon)w and can be further expressed as
a linear combination of the basis vectors for the null space 3 of CH . If the columns of a matrix
Ca ∈ CML×ML−r form such a basis, i.e.

CHCa = 0 , (2.25)

then we can write v = Cawa, where r is the number of linearly independent constraints in C,
r = rank(C). The matrix Ca can be obtained from C using several orthogonalisation methods such
as QR decomposition [75] or singular value decomposition (SVD) [76]. The structure demonstrating
the factorisation of v is given in Fig. 2.10(c). The matrix Ca is called the blocking matrix, since
signals with are orthogonal to Ca are rejected. Ideally, the output of Ca does not contain desired
signal components, and thus, a reference for the interference-plus-noise. The vector wa represents
the adaptive filter coefficients and has a reduced dimension of ML− r compared to ML elements
in w, wc and, v.

The choice of wc and Ca imply that the constraints are satisfied independently of wa. This
means that the optimisation is not subjected to the constraints anymore. Thus, by substituting
w = wc −Cawa into equation (2.19), the modified LCMV formulation becomes an unconstrained
optimisation problem,

wa,opt = arg min
wa

[wc −Cawa]HRxx[wc −Cawa] . (2.26)

The solution to (2.26) is given by [2]

wa,opt = (CH
a RxxCa)−1CH

a Rxxwc . (2.27)

The constraints of the GSC beamformer are designed to present a specific response of the array
to a set of signals defined by their frequencies and directions, then the column vectors of Ca will
block those frequencies and directions. The quiescent vector wc passes the desired signal, which is
protected by constraints, and has a gain response that is optimal for suppressing i.i.d white noise
on each sensors. However, interference components will remain in the quiescent vector filtered
signal d[n]. It is the responsibility of the vector wa to transform the interference terms in the lower
branch of Fig. 2.10(c), such that they cancel out as best as possible when subtracted from d[n].

Similar to the LCMV, the statistics of the array data are not usually known and may change
over time. Furthermore, matrix inversion in (2.27) is costly and may not give a correct solution due
to an ill conditioned covariance matrix Rxx [73]. Thus, the GSC favours an iterative approach in
attaining wa,opt. As such, standard iterative such as LMS and RLS could be used to minimise the
output variance as the GSC structure has removed the constraints from the optimisation process.

2.6 Linear Filtering

Discussed in Sec. 2.5, adaptive filter plays an important role in beamforming applications. The
scope of this thesis will be restricted to linear filters with finite impulse response (FIR), as infinite

3For x to lie in the null space of CH , it must fulfill CHx = 0, i.e. the null space is the space of vectors that will

be mapped by CH onto the origin.
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impulse response (IIR) filters that include a feedback causes some stability problems when adaptive
solutions are sought [2]. The section starts by addressing the filter problem in Sec. 2.6.1. There-
after, least mean squares adaptive filters which converge towards the optimal Wiener solution is
described in Sec. 2.6.2 and its normalise form in Sec. 2.6.3. Sec. 2.6.4 introduces an alternative
adaptive filtering algorithm based on the least squares error minimisation. Computational com-
plexity of these algorithms is analysed in Sec. 2.6.5. To complete the section, we review the Frost’s
solution [11] uses for the general LCMV problem in Sec. 2.6.6.

2.6.1 The Filtering Problem

The general application of filters is to model the relationship between two signals, an input signal
x[n] and a desired signal d[n]. For a fixed filter design, priori information about the statistic of the
data is needed. With this information, the filter would try to attain optimal performance by shaping
the input signal in accordance to the statistical characteristics. However, if the statistics of the input
signal to the filter are unknown or time varying, the design requirement cannot be easily specified.
An adaptive filter mitigates this limitation with the aid of suitable iterative algorithms. These
algorithms allow the filter to perform satisfactorily in an environment where complete knowledge
of the signal characteristic is unknown or non-stationary. The adaptive filter is a set of adjustable
weight coefficients w, which produces the output signal y[n] as depicted in Fig. 2.11. By observing
the error e[n] between the output of the filter y[n] and the desired signal d[n], the adaptive algorithm
updates the filter weights with the aim of minimising a cost function. If adaption is successful, the
error signal e[n] will be minimised in the case of system identification, equalisation and predication.
On the other hand, e[n] should represents a close resemblance of the source for noise cancellation
architecture.

yx w
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+

[ ]n

[ ]ne

[ ]n

[ ]nd

Fig. 2.11: Adaptive filter.

For the derivation, the filter output calculated by the discrete convolution denoted as ′∗′,

y[n] = w[n] ∗ x[n] =
La−1∑

v=0

w[v] · x[n− v] = wHx[n] (2.28)

between the coefficients w[n] of a filter length La and the input signal x[n]. This convolution can
be conveniently expressed in vector notation, whereby we define a coefficient vector w and a state
vector x[n].

w = [w∗0 w∗1 · · · w∗La−1]
T (2.29)

x[n] = [x[n] x[n− 1] · · · x[n− La + 1]T . (2.30)
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Finally, the error signal is given by,

e[n] = d[n]− y[n]

= d[n]−wHx[n] . (2.31)

The error signal represents an important component in the adaptive setup as most of the cost
functions relate to this parameter. Among the most common cost functions utilised are the mini-
mum mean squared error (MMSE) having ξMSE = E{

e2[n]
}

and the least squares (LS) given by

ξLS =
n∑

ν=0

βν |e[n]|2.

The GSC structure discussed in Sec. 2.5.2 is compared against the generic setup of the adaptive
filter in Fig. 2.12. As mentioned, at the upper branch, the quiescent vector wc allows both the signal
of interest and interference to pass through. Blocking matrix Ca, at the lower branch blocks the
desired signal, thus, only interference can be found at u[n]. With this setup, the GSC beamformer
takes the form of the noise cancellation architecture, whereby the filter parameters are continuously
adjusted until e[n] is a close replica of the desired signal, removing the interference component.

Now, ignoring the quiescent vector, wc and the blocking matrix, Ca, the two structures look
remarkably similar, with weight vector w of the adaptive setup corresponding to wa of the GSC.
Thus, the MMSE or the LS criterion can be used without loss of generality. A point to note is
that the exact structure of the vectors u[n] and w in Fig. 2.12(a) is of no direct concern. Hence,
u[n] can be either the coefficients of a narrowband beamformer as in Fig. 2.8, or the collocated
coefficients in the broadband beamformer in Fig. 2.9, as long as the structure of the weights in wa

is chosen appropriately.
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Fig. 2.12: (a) Standard adaptive filter structure, (b) Generalised sidelobe canceller.

In subsequent sections, the least mean square (LMS), the normalised LMS (NLMS) and the
recursive least squares (RLS) algorithm will be reviewed. Although, there is a wider range of LMS
and RLS versions available, we will restrict ourselves to the survey of the above mentioned adaptive
algorithms for our implementations and simulations.

2.6.2 Least Mean Square Algorithm

The least mean squares (LMS) algorithm is the most common technique used for continuous adap-
tation. It is a steepest descent technique based on the Wiener-Hopf solution. This algorithm
updates the weights at each iteration by estimating the gradient of the quadratic error surface as
seen in Fig. 2.13, and then changing the weights in the direction opposite to the gradient by a small
amount in an attempt to minimise the mean squared error (MSE).
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The MSE criterion ξMSE is given by the statistical expectation of the squared error signal,

ξMSE = E{
e2[n]

}

= E{
(d[n]−w[n]Hu[n])2

}

= E
{(

d[n]−w[n]Hu[n]
) · (d[n]−w[n]Hu[n]

)H
}

= σdd −w[n]Hp− pHw[n] + w[n]HRuuw[n] , (2.32)

where σdd = E{d[n]d[n]∗} is the variance of the input signal d[n], p = E{u[n]d[n]∗} is the cross-
correlation vector and Ruu = E{

u[n]u[n]H
}

is the auto-correlation matrix.

Taking the first derivative of ξMSE with respect to the filter coefficient and setting this derivative
to zero, gives,

∂ξMSE

∂w∗ = −p + Ruuw[n] != 0 . (2.33)

If the auto-correlation matrix Ruu is regular, the inversion of Ruu in (2.33) can be solved to attain
the optimum coefficient,

wopt = R−1
uu p , (2.34)

which is the well-known Wiener-Hopf solution. Note that if Ruu is not full rank, solution to equation
(2.34) is not unique. This results in infinite number of optimal solutions which are undesirable.

The Wiener-Hopf solution can be applied to the GSC structure, from Fig. 2.12(b), replacing
d[n] and u[n] by:

d[n] = wH
c x[n] , (2.35)

u[n] = CH
a x[n] , (2.36)

a similar solution can be derived. Substituting (2.35) and (2.36) into the the auto-correlation
matrix Ruu and the cross-correlation vector p respectively. The GSC structure’s auto-correlation
matrix and the cross-correlation vector becomes,

Ruu = E{
u[n]u[n]H

}

= E{
CH

a x[n]x[n]HCa

}

= CH
a RxxCa , (2.37)
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and

p = E{u[n]d∗[n]}
= E{

CH
a x[n]x[n]Hwc

}

= CH
a Rxxwc , (2.38)

respectively. Thus, the Wiener-Hopf solution for the GSC implementation is written as,

wa,opt = R−1
uu p

= (CH
a RxxCa)−1CH

a Rxxwc . (2.39)

This derivation coincides with the optimal solution for GSC, which is otherwise given intuitively
in (2.27).

Method of Steepest Descent. Earlier in this section, the method of steepest descent has been
briefly discussed. Here, the procedures are explained in greater details with the aid of mathematical
formulations. Due to the hyperparabola shape of the MSE cost function, a unique global minimum
can be found, as illustrated in Fig. 2.13. Gradient technique, by successive correction of the filter
coefficients are employed in search for the minimum. Updating the coefficients in the direction
negative to the gradient vector gives the expression:

w[n + 1] = w[n]− µ∇ξMSE [n] , (2.40)

where w[n] marks the current weight vector at time n and w[n + 1] denotes the new weights
computed at (n + 1)th iteration. The parameter µ is the positive step size that control the rate of
convergence and ∇ξMSE [n] is an estimate of the gradient denoted by:

∇ξMSE [n] = −p + Ruuw[n] . (2.41)

Apparently, no more inversion of the auto-correlation matrix is required, but both the auto-
correlation matrix Ruu and cross-correlation vector p have to be reliably estimated. If these
estimates are not accurate, convergence to optimum solution may not be successful. To overcome
this problem, the stochastic gradient technique is introduced.

The updated value of the tap-weight vector for the standard filter configuration is given as,

w[n+1] = w[n] + µ
(
p−Ruuw[n]

)
. (2.42)

The constant that determines the amount by which the weights are adjusted during each iteration is
the step size, µ. The choice of µ plays a significant role in the performance of the algorithm. If the
step size is sufficiently small, the process leads the estimated weights to the near-optimal solution,
with a larger step size the convergence speed improves but at the expense of larger residual MSE.
A trade-off is involved and µ must be carefully chosen according to specific needs of the system.

Stochastic Gradient Techniques. The stochastic gradient technique is a simplified version of
the steepest descent method. Rather than taking the expectation values for the covariance matrix
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GSC — LMS Algorithm

Ca = basis of nullspace of CH

wc = C(CHC)−1f
1: u[n] = CH

a · x[n]
2: e[n] = wH

c x[n]−wH
a [n]u[n]

3: wa[n+1] = wa[n] + µe∗[n]u[n]

Tab. 2.1: Initialisation and update equations for GSC adaptive beamformer employing the LMS
algorithm.

Ruu and the cross-correlation vector p, the gradient is now approximated based only on the single
sample of u[n] and d[n],

R̂uu = u[n]u[n]H (2.43)

and
p̂ = u[n]d[n]∗ . (2.44)

These estimates result in the instantaneous squared error rather than the mean squared error.
Substituting these estimates into the gradient ∇̂ξLMS of equation (2.41) yields,

∇̂ξLMS = −p̂ + R̂uuw[n]

= −(
d[n]∗ − uH [n]w[n]

)
u[n]

= −e[n]∗u[n] . (2.45)

Hence, a much simplified formula for updating filter coefficient vector of the steepest descent algo-
rithm (2.42) is attained,

w[n + 1] = w[n] + µe[n]∗u[n] . (2.46)

This update equation forms part of the well-know LMS algorithm, where weight vector are updated
based on incoming data. For the GSC problem, update equation using LMS adaptive algorithm is
given as,

wa[n + 1] = wa[n] + µe∗[n]CH
a x[n] , (2.47)

where CH
a x[n] is the output data from the blocking matrix. The steps summarising the GSC

beamformer using an LMS algorithm is found in Table 2.1.

2.6.3 Normalised Least Mean Square Algorithm

The choice of step size µ is central to the convergence and stability of the LMS algorithm. It cannot
be chosen arbitrarily and the convergence is guaranteed only if it stays within certain boundaries.
To find the convergence limits of the LMS algorithm, i.e. the range of suitable µ, we need to expand
the update equation of the steepest descent (2.42),

w[n+1] = w[n] + µ
(
p−Ruuw[n]

)

= (I− µRuu)w[n] + µp . (2.48)
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A coefficient error vector is defined as,

∆w[n] = w[n]−wopt . (2.49)

Inserting (2.48) into the coefficient error vector,

∆w[n] = (I−µRuu)w[n−1]+µp−wopt

= (I−µRuu)(w[n−1]−R−1
uu p)

= (I−µRuu)(w[n−1]−wopt)

= (I−µRuu)∆w[n−1] . (2.50)

Next the eigenvalue decomposition of the autocorrelation matrix Ruu is considered. Since the
autocorrelation matrix is hermitian, i.e. Ruu =RH

uu, the matrix may be factorized using eigenvalue
decomposition,

Ruu = QΛQH , (2.51)

where Λ = diag{λ0, λ1, · · · , λL−1} contains the real eigenvalues and Q the orthogonal eigenvector
matrix. Using eigenvalue decomposition and the fact that Q is unitary, i.e. QQH =I, yields,

∆w[n] = Q(I− µΛ)QH∆w[n−1] . (2.52)

A modal coefficient error is introduce as ∆w̄[n] = QH∆w[n] and evolves with time according to,

∆w̄[n]=(I− µΛ)∆w̄[n−1] . (2.53)

The LMS weights update is now presented in a form where coefficients are decoupled. Equation
(2.53) can also be trace to the initial coefficient vector ∆w̄0,

∆w̄[n] = (I− µΛ)n∆w̄[0] . (2.54)

The evolution of each decoupled weight can be expressed as,

∆w̄i[n] = (1− µλi)n∆w̄i[0] , for i = 0(1)La − 1 . (2.55)

In order for w[n] to converge to wopt, ∆w[n] should converge to zero, therefore ∆w̄[n] should also
converge to zero. This will occurs if and only if,

|1− µλi| < 1 for i = 0(1)La − 1 . (2.56)

The decay for each mode is dependent on the magnitude of |1− µλi| and thus, dependent on both
µ and λi. Therefore, the step-size is restricted by,

0 < µ <
2

λmax
, (2.57)

where λmax is the maximum eigenvalue of the covariance matrix Ruu [77]. Under this condition, the
algorithm is stable and the mean value of the array coefficients converges to values of the optimal
weights. Within these boundaries, the speed of adaption and also the noise contaminating the
weight vectors are determined by µ. Since Ruu has a Toeplitz structure and is positive semidefi-
nite [78], λmax cannot be greater than the trace of Ruu [79]. A standard approximation of λmax is
given by,

λmax ≤
MLa−1∑

i=0

λi = tr{Ruu} = MLa · σ2
uu , (2.58)
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GSC — NLMS Algorithm

Ca = basis of nullspace of CH

wc = C(CHC)−1f
1: u[n] = CH

a x[n]
2: e[n] = wH

c x[n]−wH
a [n]u[n]

3: µ = µ̃ · (uH [n]u[n])−1

4: wa[n+1] = wa[n] + µe∗[n]u[n]

Tab. 2.2: Initialisation and update equations for GSC adaptive beamformer employing the NLMS
algorithm.

where λi is the ith eigenvalues of Ruu, tr{·} represents the trace operator 4 and σ2
uu is the variance

of the projected inputs. Hence, we have:

0 < µ <
2

MLa · σ2
uu

. (2.59)

This is a more restrictive boundary as compared to equation (2.57), but is easier to compute,
because signal power of Ruu can be more readily estimated as compared to the eigenvalues. The
eigenvalue spread of matrix Ruu controls the rate of convergence. It has been shown that the LMS
algorithm approaches theoretical limit when the eigenvalues of Ruu are equal or nearly equal [79].
If eigenvalue-spread of Ruu are large, the highest acceptable value of the step size required to
maintained stability decreases, resulting in a slower convergence to the optimal weights. Since
eigenvalue-spread and the signal power are intertwined, it makes sense to remove the influence of
signal power during adaptation. This is especially true in non-stationary environment or where σ2

uu

is not known a priori, the worst case has to be assumed, which means that at most times rather slow
convergence arises. Therefore, a normalisation of the step size can ensure that an approximately
constant rate of adaptation is achieved at all times. Based on the estimate of (2.58),

MLa · σ2
uu ≈ uH [n] · u[n] . (2.60)

The normalization of the step size is given by,

µ =
µ̃

uH [n] · u[n] + α
, (2.61)

where α is a small constant to avoid µ̃ divided by zero.

This constituted the NLMS algorithm whose convergence is independent of the input signal
power. The update equation can be written as,

w[n + 1] = w[n] +
µ̃

uH [n] · u[n]
e∗[n]u[n] . (2.62)

The modified update equation for the GSC utilising the NLMS algorithm is summarised in Table 2.2
4for a square matrix, it is the sum of the elements on the main diagonal.
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2.6.4 Recursive Least Squares Algorithm

Rather than minimising the MSE as in the case of LMS-type algorithm, the recursive least squares
(RLS) algorithm tries to minimise a sum of squared error values for its cost function:

ξLS[n] =
n∑

ν=0

βν |d−wH [n−ν]u[n−ν]|2 . (2.63)

The factor β, (0 < β ≤ 1) is called the forgetting factor and ensures that current data is given
higher consideration and past errors are “forgotten” according to an exponential weighting.

The minimisation of the cost function is performed by solving,

∇ξLS[n] = 0 , (2.64)

which in some analogy to (2.41) leads to

Ruu[n]w[n] = p[n] . (2.65)

Referring to the adaptive filter structure in Fig. 2.12(a), the quantities Ruu[n] and p[n] are now
defined as

Ruu[n] =
n∑

ν=0

βνu[n−ν]uH [n−ν] , (2.66)

p[n] =
n∑

ν=0

βνd∗[n−ν]u[n−ν] . (2.67)

A recursive formulation for the quantities (2.66) and (2.67) is given by

Ruu[n] = βRuu[n−1] + u[n]uH [n] , (2.68)

p[n] = βp[n−1] + d∗[n]u[n] . (2.69)

Based on these recursions, the update equation for the tap weights w could be calculated by solving
(2.65) at each time instant n, involving a matrix inversion of Ruu[n] with computational complexity
of O((MLa)3).

However, by exploiting the matrix inversion lemma [73],

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1 (2.70)

and identifying A = βRuu[n−1], B = u[n], C = 1, and D = uH [n], the inversion can be computed
iteratively. Assuming that initial conditions have been chosen to ensure that Ruu[0] is not singular
and denoting S[n] = R−1

uu [n], this results in,

S[n] =
1
β

(
S[n−1]− S[n−1]u[n]uH [n]S[n−1]

β + uH [n]S[n−1]u[n]

)
. (2.71)

Inserting (2.69) and (2.71) into w[n] = R−1
uu [n]p[n] leads to,

w[n] = S[n]p[n]

= S[n]
(
βp[n−1] + d∗[n]u[n]

)

= S[n]
(
βRuu[n−1]w[n−1] + d∗[n]u[n]

)

= S[n]
(
(Ruu[n]− u[n]uH [n])w[n−1] + d∗[n]u[n]

)

= w[n−1] + S[n]u[n]
(
d∗[n]− uH [n]w[n−1]

)
. (2.72)
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GSC — RLS Algorithm

Ca = basis of nullspace of CH

wc = C(CHC)−1f
S[0] = I/δ, 0 < δ ¿ 1

1: u[n] = CH
a x[n]

2: e[n] = wH
c x[n]−wH

a [n]u[n]
3: r = uH [n]S[n−1]
4: κ = β + rHu[n]
5: g[n] = S[n−1]u[n]/κ

6: wa[n+1] = wa[n] + g[n]e∗[n]
7: S[n] = 1

β (S[n−1]− g[n]r)

Tab. 2.3: Initialisation and update equations for GSC adaptive beamformer employing the RLS
algorithm.

Therefore, the RLS update equation becomes,

w[n+1] = w[n] + g[n]
[
d[n]−wH [n]u[n]

]∗
, (2.73)

with
g[n] =

S[n−1]u[n]
β + uH [n]S[n−1]u[n]

. (2.74)

The new tap weight vector is computed by updating its old value by the product of the estimation
error (d[n]−wH [n]u[n])∗ and the time varying gain vector g[n].

The RLS algorithm can be adapted to the GSC structure in the same way as the LMS. In
accordance with Fig. 2.12, this requires u[n] = CH

a x[n], w[n] = wa[n], d[n] = wH
c x[n] and the

initialisation of Ruu[0] = δI, where δ is a small positive constant. The equations for the filter
update are summarised in Tab. 2.3.

2.6.5 Computational Complexities

One of the major problems with broadband beamforming relates to its high computational cost.
Having discussed three feasible adaptive algorithms that can be employed by the GSC, their compu-
tational efficiency is analysed. These comparisons are based on the total number of multiplications
per iteration, otherwise known as the multiple accumulates (MACs) per sampling period.

Assuming an M element sensors array with a single tapped-delay line of La filter coefficients
attached to each sensor, the LMS algorithm would required a total of 2MLa + 1 MACs. Referring
to Tab. 2.1, MLa multiplications are needed for wa[n]u[n] to obtain the error signal e[n]. A
single multiplication for µe∗[n] and another MLa for the subsequent multiplications in the update
equation wa[n + 1].

The NLMS algorithm needs MLa + 1 additional multiplications for power normalisation, com-
pared to the LMS, giving a complexity of 3MLa + 2 MACs. However, this cost can be reduced to
2M MACs if the power term is updated iteratively, whereby at each iteration xH [n−L]x[n−L] is
subtract from and xH [n]x[n] added to the iterative power estimate.
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For the RLS algorithm, MLa multiplications are required to calculate the output error. From
Tab. 2.3, it can be seen that 2(MLa)2 + 2MLa MACs are used to compute the update equation.
Finally, another (MLa)2 multiplication is needed for S[n]. This totals to 3(MLa)2 + 3MLa.

The multiplications of the input data with the quiescent vector wc and the blocking matrix Ca

for the GSC structure are not taken into account as they incur similar cost. However, it can be
easily seen that the computational cost of the the quiescent vector wc amounts to MLa, while
blocking matrix Ca cost equals (MLa − r)2. Tab 2.4 summaries the computational complexity for
the various adaptive algorithms.

Computational Costs

LMS 2MLa + 1
NLMS 3MLa + 2

RLS 3(MLa)2 + 3MLa

Tab. 2.4: Computational complexities for LMS, NLMS and RLS algorithms.

2.6.6 Constrained Adaptive Algorithm

In the LCMV problem, a constrained optimisation solution is required. This solution was proposed
by Frost [11], based on the method of steepest descent. Unlike the MSE criterion used in the LMS,
Frost’s cost function uses the Lagrange multipliers to adjoin the optimisation expression with the
constraint equation of (2.19). The constrained criterion is expressed as

ξFrost = wH [n]Rxxw[n] + λH(CHw[n]− f) + (CHw[n]− f)Hλ , (2.75)

whereby the Lagrangian term is included twice — once directly and once complex conjugated —
in order to guarantee a real valued positive semi-definite cost function ξFrost. Taking the gradient
of (2.75) with respect to w∗ and setting the derivative to zero,

∂ξFrost

∂w∗ = Rxxw[n] + Cλ
!= 0 . (2.76)

Solving this equation gives,
wopt = −R−1

xx Cλ . (2.77)

As wopt must satisfy the constraint, lambda can be determined by substituting (2.77) into the
constrained expression of equation (2.19):

λ = −(CHR−1
xx C)−1f . (2.78)

Therefore, the optimal constrained coefficient vector becomes,

wopt = R−1
xx C(CHR−1

xx C)−1f , (2.79)

which is identical to (2.21).
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Frost’s Algorithm

P = I−C(CHC)−1CH

wc = C(CHC)−1f
1: e[n] = wH [n]x[n]
2: w[n + 1] = wc + P

(
w[n]− µx[n]e∗[n]

)

Tab. 2.5: Initialisation and update equations for the general LCMV adaptive beamformer em-
ploying Frost’s algorithm [11].

Similar to the LMS steepest descent methodology. Frost’s approach replaces the gradient in the
LMS update equation (2.40) with constrained formulation of (2.76).

w[n + 1] = w[n]− µ∇ξFrost[n]

= w[n]− µ
(
Rxxw[n] + Cλ

)
. (2.80)

This update weight vector must satisfy CHw[n+1] = f . Thus, substituting the Lagrange multipliers
lambda in (2.78), the update equation becomes,

w[n+1] = wc + P
(
w[n]− µRxxw[n]

)
, (2.81)

with wc = C(CHC)−1f and P = I−C(CHC)−1CH .

For Frost’s stochastically gradient algorithm, the second order statistics in equation (2.81) are
replaced by instantaneous estimates, identical to the procedure of the LMS algorithm. Exploiting
the expression for the output signal e[n] = x[n]Hw[n], Frost’s adaptive algorithm becomes,

w[n+1] = wc + P
(
w[n]− µx[n]e∗[n]

)
. (2.82)

The set of equations summarising Frost’s algorithm for the general LCMV structure are given in
Tab. 2.5.

The tools for solving the LCMV problem have been provided. In the next section, we will take
a closer look at the formulation of the constraint equation.

2.7 Constraints

The constraints for beamformers have played a central role in the LCMV and GSC implementations.
For this reason, we will review on the selection of the constraints and the formulation of the
constraint matrix C. In Sec. 2.7.1, Frost’s constraints, whereby signal of interest is assumed to
impinge onto the sensor array from broadside are discussed. Thereafter, the formulation of the
blocking matrix for the GSC beamformer by means of the cascaded columns of differencing (CCD)
and the singular value decomposition (SVD) are reviewed.

2.7.1 Frost’s Constraint Design

The Frost’s constraints generally assume that the direction of propagation of the wanted signal
is known and the array of sensors is oriented in such a way, that the signal of interest impinges
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Fig. 2.14: (a) broadband beamformer and (b) equivalent processor if a signal is received from
broadside only [11].

perpendicular to the line of sensors (i.e. from broadside, ϑ = 0). This can either be achieved
mechanically or by adding steering time delays according to (2.10), placing them immediately after
each sensor [2]. Further, it is assumed that there are no other spatial signal components illuminating
the array, i.e. no angular spread for the SOI. This results in identical signal components appearing
at the sensors simultaneously and pass in parallel through the delay lines following the sensors.
Hence, the FIR filters in Fig. 2.14(a) appear to be driven by a common input. The observations
at each tap are multiplied by the tap weights and added to form the array output. As far as the
signal of interest is concerned, the array processor is equivalent to a single tap-delay line in which
each weight f [l] is equal to the sum of weights in the M TDLs, as indicated in Fig. 2.14(b). These
summation weights in the equivalent TDL must be selected appropriately to provide the desired
frequency response characteristic in the look direction.

The selection of the weights fl in Fig. 2.14(b) can also be motivated in the frequency domain,
where the discrete Fourier transform (DFT) in temporal direction lth is stated as,

W (ejΩ) =
L−1∑

l=0

M−1∑

m=0

wm,le
−jΩl =

L−1∑

l=0

e−jΩl
M−1∑

m=0

wm,l , (2.83)
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where Ω is the normalised angular frequency. This has to equal the desired frequency response
given by,

F (ejΩ) =
L−1∑

l=0

f [l]e−jΩl , (2.84)

with
M−1∑

m=0

wm,l
!= f [l] (2.85)

for the coefficients of the beamformer.

As the lth snapshot occurs at every lth entry in xm defined in (2.18), the lth row of the constraint
matrix selects the corresponding entries from the weight vector to impose the FIR filter constraint.
Therefore, CH is defined using M identity matrices IL ∈ RL×L:

CH = [IL IL · · · IL]︸ ︷︷ ︸
M

. (2.86)

Rather than grouping them in accordance to the sensor elements M , the constraints can also be
sort according to the TDLs,

CH =




c 0
. . .

0 c




︸ ︷︷ ︸
L

, (2.87)

where

c = [1 1 · · · 1] ∈ C1×M , (2.88)

if the desired signal impinges onto the array from broadside. In this scenario the input signal x[n]
has to be arranged in,

x[n] =




x[n]
x[n− 1]

...
x[n− L + 1]




, (2.89)

where x[n− l] holds the sample values of the M sensors at the (n− l)th time instance. Therefore,
x[n− l] is expressed as

x[n− l] =
[
x0[n− l] x1[n− l] · · · xM−1[n− l]

]T
. (2.90)

In both cases, the L-dimensional vector of constraining values, the columnwise sum of coefficients
in broadside direction, is given by

f =




f∗0
f∗1
...

f∗L−1




. (2.91)

Note that the constraining vector f contains the complex conjugate of a desired gain, in analogue
to the definition of the coefficient vector wm in (2.16). The above formulation constitutes to the
constraints used in our beamforming implementations, i.e we assumed the SOI are from broadside.
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2.7.2 Blocking Matrix Design

For the LCMV beamformer, using the constraint matrix C would be sufficient. However, the GSC
structure requires the finding of proper quiescent vector wc and a blocking matrix Ca that fulfil
the constraints. The formulation of a proper blocking matrix can be obtained by invoking the
cascaded columns of differencing (CCD) [80] or singular value decomposition (SVD) [76, 75], for
the constraints specified in Sec. 2.7.1.

2.7.2.1 Cascaded Columns of Differencing

The CCD method was proposed to obtain blocking matrix for derivative constraints [1, 80]. Deriva-
tive constraints give better robustness against look-direction error by increasing the angular range
of the directional constraints [81, 82]. The higher the order of the derivative constraints, the
broader is the beam pointing at the desired direction. Fig. 2.15 shows Sth order cascaded columns
of differencing. For a 0th order constraint, the blocking matrix is given by,

CM
a =




1 −1 0
. .

. .

0 1 −1




T

∈ CM×M−1 , (2.92)

while a 1st order constraint is implemented by a M ×M −2 matrix, Ca = CM
a × CM−1

a . This
represents two column of differencing in series, as detail in Fig. 2.15, thus, has one less degree of
freedom.

According to equation (2.24), the quiescent vector wc which refers to the non-adaptive data
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independent component of the beamformer is given by,

wc = C(CHC)−1 · f = C · f =
1
M

· [fT fT · · · fT
]

︸ ︷︷ ︸
M

. (2.93)

Note that the above CCD formulation assume signal of interest impinges onto the array from
broadside, this coincides with the assumption of this thesis. Although derivative constraints are
introduced in this section, only 0th order constraint will be used, as we assume there is no mismatch
for the desired signal, i.e. SOI impinges onto the sensor array at exactly θ = 0◦.

2.7.2.2 Singular Value Decomposition

Singular value decomposition (SVD) is an extremely useful tool in Linear Algebra. The application
of SVD in the context of the GSC beamformer is to formulate the blocking matrix and the pseudo-
inverse for the quiescent vector.

The SVD theorem decomposes a matrix C ∈ RM×N into the product of two unitary matrices,
U ∈ RM×M , V ∈ RN×N , and a diagonal matrix Σ ∈ Rr×r containing the ordered positive definite
singular values of C, that are arrange in descending order [74, 78]. The variable r is the rank of C,
and represents the number of linearly independent columns in the matrix. As such, the singular
value decomposition of matrix C is given by,

C = U

[
Σ 0
0 0

]
VH , (2.94)

or alternatively it can be written as,

UHCV =

[
Σ 0
0 0

]
, (2.95)

due to the unitary of U and V.

For a better understanding of the SVD, Fig. 2.16 presents a diagrammatic interpretation of
this theorem as described by (2.95). In this diagram it is assumed that the number of rows, M ,
contained in the data matrix C is larger than the number of columns, N , and that the nonzero
singular values r is less than N [83].
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For the GSC structure, the matrix Ca, which projects the input vector onto the unconstrained
space as indicated in (2.25), can also be calculated using SVD. From Fig. 2.16, it is noted that
diagonal matrix Σ containing positive definite has a dimension of Rr×r while the rest are zeros.
This allows the separation of the SVD expansion:

U =
[
U1U2

]
, (2.96)

where U1 holds the first r columns of matrix U that lie in the range of C, i.e., the signal subspace
(or more accurately the signal-plus-noise subspace). The remaining columns U2 form a basis for
the null space of CH , sometimes called the noise subspace. This fulfills the condition of UH

2 C = 0.
Hence

Ca = U2 (2.97)

is a suitable choice for the blocking matrix [2]. However, this blocking matrix is not unique. If
Ca spans the nullspace of C, then QCH

a , where Q ∈ CML−r×ML−r is an unitary matrix of rank of
ML−r, is also a valid blocking matrix.

Referring to (2.24), pseudo-inversion is required to obtain the quiescent vector, wc. The pseudo-
inverse can be regarded as a generalisation of matrix inversion to non-square matrices. Given that
C† = (CHC)−1CH , the formal equivalence of SVD-inversion can be easily carried out by replacing

C with the SVD decomposition in (2.94). Letting D =

[
Σ 0
0 0

]
, we have C = UDVH and

CHC = VDUHUDVH

= VD2VH . (2.98)

Finally, the SVD-inversion is given as,

C† = (CHC)−1CH

= VD−2VHVDUH

= VD−1UH , (2.99)

where D−1 = diag(1/σ1 , · · · , 1/σp). The diagonal elements σi are singular values of D sorted in
desending order, with p = min(M, N). Thus, the quiescent vector, wc in equation (2.24), expressed
in term of SVD formulation becomes,

wc = (CH)†f

= UD−1VHf . (2.100)

In this section, the Frost’s constraint equation which assumes the signal of interest from broad-
side have been setup. Under the same assumption, blocking matrix and quiescent vector for the
GSC structure are formulated. Next, we discuss ways to measure the performance of a beamformer
as well as the characteristics of the various adaptive algorithms in a beamforming environment.

2.8 Simulations and Results

This section presents simulation results and comparsions of the variouss using different adaptive
algorithms. Before that, suitable measures to assess the beamformer performance are discussed
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Fig. 2.17: Flow graph to determine the residual error, ε[n] of the beamformer.

in Sec. 2.8.1. Then in Sec. 2.8.2, the simulation environments are introduced and based on these
environments, performance of the beamforming algorithms is analysed.

2.8.1 Performance Measures

For the performance of beamformers to be assessed, we employ an error criterion and a visual-
ization of the gain performance of the beamformer with respect to the spatial angles. Both these
measurements are summarized in the following.

2.8.1.1 Error Signal

Ideally, the output of a beamformer should only contain the preserved signal of interest, which for
our case is the signal from broadside. To attain error signal, the beamformer output is subtracted
from the original signal of interest with the inclusion of appropriate delays. If the beamformer is
functioning optimally, the resulting error terms should tend to zero. However, if there is insufficient
cancellation of the interference, the adaptive algorithm removes the signal of interest resulting in
a high residual error.

The signal flow graph for the calculation of the residual error, ε[n] is shown in Fig. 2.17 and
based on:

ε[n] = e[n]− xi[n−∆1 −∆2] . (2.101)

Signal e[n] is the output of the beamformer, and xi[n] is the signal from the desired direction.
The delays ∆1 and ∆2 are imposed by fractional delay filters to simulate the direction of incident
and the constrainting vector f of the beamformer.

2.8.1.2 Directivity Pattern

The ability to assess the spatial sensitivity of a beamformer at different frequencies utilises the
directivity pattern. The directivity pattern measures the gain of the beamforming structure with
respect to both the angle of incidence and the frequency of an impinging waveform. It is based on
a sequence of narrowband beamformers, which can be calculated from the broadband beamforming
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structure by applying the discrete Fourier transform (DFT) to the impulse responses of the M

beamforming filters. Concentrating on a single frequency of the narrowband beamformer, the gain
in certain directions can be calculated with the aid of the steering vector. As such, a directivity
pattern is obtained for each narrowband beamformer and the spatio/spectral gain of the array can
be characterized by a stacking of all the directivity patterns to a three-dimensional structure.

2.8.2 Fullband Beamformer Performance

In Sec. 2.3, the basic signal model of the beamformer has been described. For the simulated
scenario, the fullband beamformers utilise M = 4 sensors with a FIR filter of length L = 70
attached to each sensor. The signal of interest impinges onto the array from broadside with unit
variance measured at each sensor element, and the interfering signals from −15◦ off broadside with
a signal-to-interferer ratio (SIR) of −40 dB. Both sources are restricted to a normalised range of
Ω = [0.1π; 0.9π] as depicted in Fig. 2.18. Additionally, additive white Gaussian noise corrupts the
sensor signal at a signal-to-noise ratio (SNR) of 10 dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−20

−10

0

10

20

30

normalised angular frequency Ω/π

en
se

m
bl

e 
P

S
D

 / 
[d

B
] PSD of sensor signal

PSD of signal of interest

Fig. 2.18: PSDs of the sensor signal and the signal of interest.

The GSC beamformer driven by the different adaptive algorithms, LMS, NLMS and RLS are
assessed along with the LCMV-Frost structure in terms of the mean squared residual error (MSE).
The step-size used for the GSC-LMS was µ = 5× 10−6, µ = 0.45 for the GSC-NLMS, µ = 1× 10−5

for Frost, and a forgetting factor of β = 0.995 for the RLS algorithm. These step-sizes are chosen
to ensure that all beamformers converge approximately to the same steady state error. The MSE
plot taken over an ensemble of 50 simulations is shown in Fig. 2.19, whereby the ensemble MSE is
measured logarithmically as

ensembleMSE/[dB] = 10 log10

1
50

49∑

t=0

|et[n]|2 , (2.102)

with et[n] being the tth ensemble error. It can be clearly seen that GSC-RLS exhibits the fastest
convergence speed followed by the GSC-NLMS, with both the GSC-LMS and the LCMV-Frost
adapting at similar speed.

The directivity pattern of the GSC-LMS fullband calculated from the adapted beamformer
over the frequency range of the operating spectrum is depicted in Fig. 2.20(a). Clearly, the GSC
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Fig. 2.19: Learning curves of the various beamforming technique.

beamformer complies with the constraint of having unit gain in the look direction (broadside).
Further, the beamformer attempts to place spatial nulls at the direction of the interference, θ =
−15◦. The graph in Fig. 2.20(b) indicates the behaviour of the error signal and the signal of
interest. As can be seen, the beamformer finds it harder to adapt itself to the desired signal at
lower frequencies. This can be attributed to the decrease in spatial resolution at lower frequencies
for an uniformly spaced array, which will be address in the latter sections.
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Fig. 2.20: GSC-LMS fullband beamformer: (a) directivity pattern at frequency Ω = [0.14 ·π, 0.42 ·
π] and (b) PSDs of the various signals.

Results for identical setup with the GSC-NLMS, GSC-RLS and LCMV-Frost fullband beam-
former are depicted in Fig. 2.21-2.23. In all cases, the constraint condition from broadside is
fulfilled, with spatial nulls being placed in the direction of the interference. The high PSD for
the error signal can possibly be attributed to the step size chosen for the various algorithms, as
smaller step size will reduced the residual error at the expense of the convergence speed. Another
contributing factor is the introduction of observation noise. Naturally a higher performance can be
achieved when the noise component is removed.
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Fig. 2.21: GSC-NLMS fullband beamformer: (a) directivity pattern at frequency Ω = [0.14 ·
π, 0.42 · π] and (b) PSDs of the various signals.

−60 −40 −20 0 20
−30

−20

−10

0

10

20
(a)

angle of incident /[degree]

ga
in

 / 
[d

B
]

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

normalised angular frequency Ω/π

en
se

m
bl

e 
P

S
D

 / 
[d

B
]

(b)

PSD of error signal
PSD of signal of interest

Fig. 2.22: GSC-RLS fullband beamformer: (a) directivity pattern at frequency Ω = [0.14·π, 0.42·π]
and (b) PSDs of the various signals.

−60 −40 −20 0 20
−30

−20

−10

0

10

20
(a)

angle of incident /[degree]

ga
in

 / 
[d

B
]

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

normalised angular frequency Ω/π

en
se

m
bl

e 
P

S
D

 / 
[d

B
]

(b)

PSD of error signal
PSD of signal of interest

Fig. 2.23: GSC-Frost fullband beamformer: (a) directivity pattern at frequency Ω = [0.14 ·π, 0.42 ·
π] and (b) PSDs of the various signals.
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2.9 Discussion

This chapter provides a basic introduction to the principles of propagating wave fields. Thereafter,
different ways to classify beamformers were explored. From a space-time model, the fundamental
concept of beamforming was introduced as a spatio-temporal filtering problem. The LCMV beam-
former, a constrained optimisation structure was reviewed. Then, focusing on the GSC, which
transforms the constrained problem into an unconstrained one, various standard adaptive algo-
rithms were studied. Formulation of the constraint equation along with the blocking matrix and
quiescent vector for the GSC are discussed. Simulations were carried out to verified the perfor-
mance of these fullband beamformers. One major issue relating to broadband beamforming is the
high computational cost due to the large number of filter coefficients required in resolving the sig-
nal. DFT and subband adaptive beamformers will be introduced in the next chapter, as possible
solutions to reduced computational complexity of a broadband GSC system.
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Chapter 3

Alternative Beamforming Structures

Broadband adaptive beamformers face problems of high computational complexity and slow con-
vergence due to the large number of filter coefficients required in resolving the signal. To mitigate
these problems, several techniques have been developed. Reduction in the degrees of freedom and
therefore the adjustable parameters of the system for a time domain implementation has been sug-
gested. This method reduces the complexity of the beamformer at the expense of poorer spatial
resolution [2, 17]. The use of infinite impulse response (IIR) rather than finite impulse response
(FIR) filters for the adaptive weight vectors is another alternative. The motivation for this is the
potential decrease in the number of filter coefficients while attaining similar spectral resolution.
However, since the structure contains a feedback loop, potential algorithmic instability results,
which together with slow convergence makes IIR-based beamformers unattractive [84, 85].

Other methodologies which aim to improve computational efficiency implement the beamformers
in alternative domains, through suitable transformations. Application of the discrete Fourier trans-
form (DFT) is one such example. The DFT technique leads to a frequency bins representation, in
which independent narrowband beamformer can be used on individual bins [40, 86]. This induces
tremendous computational saving [87]. However, the sub-optimality of these narrowband solutions
with respect to the broadband problem, as established in e.g. [25, 27, 86], requires sliding window
and block processing implementations [40] to be replaced by algorithms based on overlap-add or
overlap-save techniques [20, 27, 88]. In addition, subband technique used in adaptive filtering [9]
can be applied to broadband beamforming [29, 89, 90]. There, filter banks with high frequency
selectivity produce non-critically decimated alias-free subband signals, that can be processed inde-
pendently. Although each subband still requires broadband beamforming algorithms, a considerably
reduced temporal dimension is achieved due to the reduced bandwidth of each subband [25, 29].

This chapter introduces DFT-based and subband approaches in the context of broadband beam-
forming. Comparative studies are performed to analyse the areas of computational complexity and
adaptation characteristic, by example of the generalised sidelobe canceller. In Sec. 3.1, we review
block processing and sliding window technique based on direct application of the DFT. These re-
alisations encounter problems of non-convergence as correlation between critically decimated bins
are neglected, thus making them undesirable for broadband beamforming. In Sec. 3.2 subband
beamforming is motivated. By decomposing a broadband signal into frequency bands with better
frequency selectivity by means of oversampled filter banks, it is found that subbands are still corre-
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lated but the redundancy introduced by oversampling permits subbands to be processed indepen-
dently from each other. This leads to an improvement in both convergence speed and computation
efficiency. A novel beamforming structure based on the overlap-save technique is introduced in
Sec. 3.3. This technique overcomes the problem of a sub-optimal solution associated with direct
DFT implementation. The overlap-save beamformer is analysed and a further three structures
based on similar methodology which differ in their convergence rate and computational complexity
are proposed. Finally, simulations for all the above mentioned beamformers are carried out with
their performance detailed in Sec. 3.4, while conclusions are drawn in Sec. 3.5.

3.1 Independent Frequency Bin Processing

The discrete Fourier transform (DFT) is a popular method used to enhance the computational
efficiency of a broadband beamformer. This technique effectively decomposes a broadband signal
into a number of independent frequency bins. Thereafter, each bin is processed individually by
a narrowband beamformer. Compared to a broadband scenario, in narrowband processing the
number of temporal adaptive filter coefficients is reduced to a single complex multiplier per sensor,
while attaining approximately similar resolution. This reduction of the temporal dimension of
the adaptive filter also greatly increase the speed of convergence. As such, low computational
complexity and fast convergence are two main benefits associated with independent frequency
bin processing. However, the assumption of independence between bins results in a suboptimal
solution as it neglects the correlation between frequency bins. This may result in poor convergence
if the signal of interest does not sit exactly on a bin frequency [25]. Two common classes of DFT
techniques are discussed here, namely the block processing and the sliding window method [20, 91].
They are explained in Sec. 3.1.1 under the context of a GSC beamforming structure. In Sec. 3.1.2,
the design of narrowband constraints as well as the approximation required to ensure successful
convergence to the optimum solution in a broadband scenario, is reviewed.

3.1.1 Structure

The general beamforming structure, which could be used to represent both the block processing
technique and the sliding window method is depicted in Fig. 3.1. The signal flow starts by applying
a DFT to the data segments available in each of the tap delay lines (TDLs). This transforms
the signal segments from the time domain to its DFT domain representation. Thereafter, the
transformed data is sorted according to their frequency bin indices and processed independently
by narrowband beamformers, e.g. the GSC, as shown in Fig. 3.1 [92, 86, 40]. If the time domain
signal is decomposed into L frequency bins, then a similar number of narrowband beamformers are
required. For a beamformer with M sensors a total of M DFT matrices are needed to decompose
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the signal, with each DFT matrix Tdft given by,

Tdft =
1√
L




1 1 1 . . . 1
1 W W 2 . . . WL−1

1 W 2 W 4 . . . W 2(L−1)

...
1 WL−1 W 2(L−1) . . . W (L−1)(L−1)




, (3.1)

where W = e−j2π/L. For both block processing technique and the sliding window method, the vector
xfd[n] is used to denote the input of the independent frequency bin processing GSC beamformer,

xfd[n] = Pmut ·
[
T̃dft · x[n]

]
, (3.2)

with matrix T̃dft ∈ CML×ML representing a block diagonal matrix that contains M , L-point DFT
matrices Tdft, written as

T̃dft =




Tdft 0 . . . 0
0 Tdft . . . 0
...

...
. . .

...
0 0 . . . Tdft




. (3.3)

Application of the DFT matrix, T̃dft, decomposes the time domain signal at the M TDLs,

x[n] =
[
x0[n]T x1[n]T · · · xM−1[n]T

]T with (3.4)

xm[n] =
[
xm[n] xm[n− 1] · · · xm[n− L + 1]

]T
,

into their respective DFT domain1. Thereafter, a permutation operator Pmut ∈ RML×ML orders
the vector elements such that xfd[n] contains a total of L blocks, each containing M sensor data
belonging to the same frequency bin, as indicated in Fig. 3.1. This permutation matrix is given by

Pmut =




P̃0,0 P̃1,0 . . . . . . P̃M−1,0

P̃0,1 P̃1,1
. . .

...

P̃0,2 P̃1,2
. . . . . .

...
...

. . . . . . P̃M−1,L−2

P̃0,L−1 P̃1,L−1 · · · P̃M−2,L−1 P̃M−1,L−1




, (3.5)

where P̃i,j is a M × L zero matrix with a unit element in the ith row of the jth column, whereby
i ∈ {0, 1, · · ·M − 1} and j ∈ {0, 1, · · ·L− 1}. As an example, for a matrix of dimension M = 3 and
L = 4, P̃1,2 takes the form

P̃1,2 =




0 0 0 0
0 0 1 0
0 0 0 0


 . (3.6)

Thereafter, the input signal to the narrowband GSC beamformers xfd[n] ∈ CML can be written as

xfd[n] =
[
xl[n]T xl[n− 1]T · · · xl[n− L + 1]T

]T with (3.7)

xl[n] =
[
x0[n] x1[n] · · · xM−1[n]

]T
,
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Fig. 3.1: DFT-based frequency domain beamforming structure.

where underlined variables indicate DFT-domain quantities.

For a narrowband GSC beamformer with a single constraint for the main beam, the size of
the blocking matrix is Ca,l ∈ CM×M−r. Thus, a DFT domain GSC structure that decomposes a
broadband signal into L independent frequency bins has a blocking matrix Ca,fd denoted by

Ca,fd =




Ca,0 0
. . .

0 Ca,L−1


 , (3.8)

where Ca,fd ∈ CML×(M−r)L. In accordance with the GSC structure depicted in Fig. 2.12(b), the
signal ufd[n] ∈ C(M−r)L×1 at the output of the blocking matrix is given by

ufd[n] =




CH
a,0 0

. . .

0 CH
a,L−1




︸ ︷︷ ︸
CH

a,fd

xfd[n] . (3.9)

Subsequently, ufd[n] is multiplied by the adaptive filter coefficients Wa,fd[n] ∈ C(M−r)L×L, resulting
in

y[n] = WH
a,fd[n] · ufd[n] . (3.10)

The primary objective is to adapt Wa,fd according to a pre-defined cost function, with the aim of
attaining the desired signal at the output of the beamformer.

Referring back to the upper branch of Fig. 2.12(b), a quiescent vector wc,l ∈ CM×1 is required
for each narrowband beamformer. A broadband beamformer decomposed into L frequency bins,
will have L independent quiescent vectors, which can be placed in a matrix,

Wc,fd =




wc,0 0
. . .

0 wc,L−1


 ∈ CML×L . (3.11)

1In analogy to [27], the term “DFT domain” is here preferred over “frequency domain”, since the DFT only

implements an approximation of the Fourier transform.
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Therefore, the output from the quiescent matrix of the independent frequency bin broadband GSC
beamformer is given by,

d[n] = WH
c,fd · xfd[n] . (3.12)

The subtraction of vector y[n] from d[n] provide the frequency domain beamforming output efd[n] =[
e0[n] e1[n] · · · eL−1[n]

]T ∈ CL×1. This if followed by a conversion back into the time domain,
which is carried out by the application of a suitable transform denoted by T̂. For the block
processing method, the vector e[n] contains the block of output values which is obtained by an
inverse DFT, i.e. T̂ = 1

LTH
dft. For the sliding window approach, one output per algorithm step is

calculated, which is the DC element of the inverse DFT, i.e.

T̂ =
1
L

[1 1 · · · 1] . (3.13)

Assuming, that the LMS algorithm is utilised in the adaptive process, the coefficients update
equation becomes,

Wa,fd[n + 1] = Wa,fd[n] + µufd[n]eH
fd[n] , (3.14)

where

Wa,fd[n] =




wa,0[n] 0
. . .

0 wa,L−1[n]


 , (3.15)

and wa,l[n] ∈ CM−r×1. Note that the notation in (3.14) is for convenience, and the diagonal
structure of the vector 0 in (3.15) must be enforced prior to computing the beamforming output
efd[n], at every iteration, by setting off-diagonal elements of the matrix Wa,fd[n] to zero.

In block processing, both the DFTs and the GSC operations are performed after an entire block
of data in the TDLs are updated, i.e. a single iteration is performed for every block of L samples.
An inverse DFT (IDFT) is used at T̂ of Fig. 3.1 to attain the time domain output [91]. Tab. 3.1
shows the update equations and the associate computational cost. From the table, the cost for
processing the signal in blocks of L samples, utilising the LMS algorithm accrues to

Cfb,block = (M + 1) log2 L + M(M + 1− r) + 2(M − r) + 1 , (3.16)

MACs per fullband sampling period.

A sliding window version of this algorithm computes the DFTs at each time instance n, and
replaces the IDFT at the beamformer output of the block processing beamformer by a simple
summation [40], yielding a total cost of,

Cfb,sliding = ML log2 L + ML(M + 1− r) + 2L(M − r) + L , (3.17)

MACs per fullband sampling period. A breakdown of its computational cost according to the
update equations is provided as part of Tab. 3.2.

Because of the full decimation by L, significant computational savings can be observed for the
block processing approach, which however comes at the cost of slow convergence [20]. The sliding
window method does not suffer from the same slow convergence, but exhibits a potentially much
higher computational complexity than the block processing approach.
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Block processing — LMS Algorithm

Ca,l = basis of nullspace of cH
l

wc,l = cl(cH
l cl)−1f

1: xfd[n] = Pmut ·
[
T̃dft · x[n]

]
ML log2 L

2: ufd[n] = CH
a,fdxfd[n] ML(M − r)

3: efd[n] = WH
c,fdxfd[n]−WH

a,fd[n]ufd[n] ML + (M − r)L
4: Wa,fd[n + 1] = Wa,fd[n] + µufd[n]eH

fd[n] (M − r)L + L

5: e[n] = T̂e[n] L log2 L

Tab. 3.1: Initialisation, update equations and computational cost for the block processing fre-
quency domain GSC adaptive beamformer employing the LMS algorithm. The number of MACs
refers to the calculations required for an entire block of L samples or time slices.

Sliding window — LMS Algorithm

Ca,l = basis of nullspace of cH
l

wc,l = cl(cH
l cl)−1f

1: xfd[n] = Pmut ·
[
T̃dft · x[n]

]
ML log2 L

2: ufd[n] = CH
a,fdxfd[n] ML(M − r)

3: efd[n] = WH
c,fdxfd[n]−WH

a,fd[n]ufd[n] ML + (M − r)L
4: Wa,fd[n + 1] = Wa,fd[n] + µufd[n]eH

fd[n] (M − r)L + L

5: e[n] = T̂e[n]

Tab. 3.2: Initialisation, update equations and computational cost for the sliding window frequency
domain GSC adaptive beamformer employing the LMS algorithm.

3.1.2 Constraints and Approximations

The DFT-based independent bin processing technique treats each of the decomposed narrowband
signal independently. This effectively means that the normalised angular frequency Ω is fixed and
the time delay τm indicating the direction of arrival becomes a simple phase shift at frequency
Ω. Therefore, only a single filter coefficient is required to steer the sensor to the desired direction
rather than the extended temporal dimension needed to resolve a broadband scenario.

The formulation of the narrowband constraints is based on the steering vector

cl(ϑ, Ω) = [e−jΩτ0(ϑ) e−jΩτ1(ϑ) · · · e−jΩτM−1(ϑ)]T . (3.18)

The constraining equation for each individual bin is given by,

cH
l wl = f

l
, (3.19)

where the steering vector cl ∈ CM operates as constraint vector, wl contains the filter constrained
coefficients — as opposed to the unconstrained coefficients wa,l in (3.15) — and f

l
is the gain

associated with the lth frequency bin. The formulating of both the blocking matrix Ca,l and the
quiescent vector wc,l for individual bin is done via the singular value decomposition (SVD) as
outlined in Sec. 2.7.2.2, based on the constraints of (3.19).
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Fig. 3.2: Filter bank characteristic of a 16-point DFT.

According to the GSC beamformer depicted in Fig. 2.12(b), the covariance matrix at the input
of the adaptive filter, Ruu,fd = E{

ufd[n] · uH
fd[n]

}
is given by

Ruu,fd = CH
a,fd




R0,0 R1,0 . . . RL−1,0

R0,1 R1,1 . . . RL−1,1

...
...

. . .
...

R0,L−1 R1,L−1 . . . RL−1,L−1




Ca,fd , (3.20)

where Ri,j ∈ CM×M is a correlation matrix between frequency bins i and j of the different sensor
signals prior to passing through the blocking matrix Ca,fd.

Both block processing and sliding window method neglect any correlation between frequency
bins. For this assumption to stand, the covariance matrix of the resulting independent frequency
bin (IFB) processor Ruu,fd is forced to attain the form

Ruu,ifb =




CH
a,0R0,0Ca,0 0 . . . 0

0 CH
a,1R1,1Ca,1 . . . 0

...
...

. . .
...

0 0 . . . CH
a,L−1RL−1,L−1Ca,L−1




, (3.21)

i.e. any correlation between bins i and j for i 6= j is neglected. The approximation in (3.21) makes
the IFB beamformer optimal in the sense of computational complexity. However, it suffers from
potential non-convergence to the optimal solution as there is a high probability that equation (3.21)
is not satisfied. This is due to the high sidelobes of the DFT’s frequency response characteristics
as depicted in Fig. 3.2 for a 16-point DFT. If the off-diagonal terms of the covariance matrix
Ruu,fd are to be ignored, the adaptive algorithms will suffer from spectral leakage — limiting
their convergence [93] — and potentially require a substantial amount of degrees of freedom to
approximately suppress even low rank interferers [25]. Recently, such failures have generally been
attributed to the application of essentially narrowband processing to broadband problems [27]. The
only scenario where convergence to the global minimum is not compromised occurs when the input
to the adaptive filter is a periodic signal with period L/κ, κ ∈ {1, 2, · · · , L}, i.e. if all input signal
components are narrowband and coincide with bin frequencies This is the only instance where a
diagonal covariance matrix Ruu,fd of the form (3.21) is guaranteed.
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3.2 Subband Adaptive Beamforming

The general subband adaptive filter (SAF) system as shown in Fig. 3.3, performs adaptive filtering
in frequency bands which run at a decimated sampling rate which is lower than that of the original
fullband system illustrated in Fig. 2.12(a). This is especially useful for the case of broadband
beamformer where filter responses may be required to implement fractional delays, resulting in a
large number of filter coefficients if FIR filters are employed. The lower filter order in combination
with the reduced update rate generally leads to a decrease in computational complexity even
though separate systems need to be operated across the subbands. Furthermore, the separation
into frequency bands can bring additional advantages such as parallelisation of processing tasks
and reduced spectral dynamics [9, 94].

m

m

m

m

m

mm
m

m

m

m

m

0

1

-1

0

1

-1-1

1

0
e[n]

[ ]d

[ ]d

[ ]Kd

[ ]e

[ ]e

[ ]eK[ ]xK
[ ]-1wK

[ ]w1

[ ]w0

]s[n

x[n]
[ ]x

[ ]x 

[n]d
fi

lte
r 

ba
nk

an
al

ys
is

 

fi
lte

r 
ba

nk
sy

nt
he

si
s

an
al

ys
is

fi
lte

r 
ba

nk

Fig. 3.3: SAF system with adaptive filters working independently in K decimated subbands; the
subband splitting and fullband error reconstruction is performed by filter banks.

Ideally, critical decimation where decimation ratio N equals the number of subbands K should be
most computationally efficient. However, due to the non-ideal frequency characteristic of the filter
banks, cross-terms at least between adjacent frequency bands [94], which compensate for the infor-
mation loss in the region of spectral overlap, or gap filter banks [95, 96], which introduce spectral
loss to avoid problems with aliasing are required. The drawbacks are that inclusion of cross-terms
require multichannel adaptive algorithms with generally slower convergence and again increased
computational cost, while the distortion produced by gap-filter banks may not be acceptable.

Another solution are oversampled SAF systems. These systems have a decimation ratio N < K,
and are designed such that after decimation the alias level within the subband is kept sufficiently
low. Differences arise for the decimation of complex and real valued frequency bands, where a
complex valued bandpass signal is generally easier to decimate as compared to a real valued signal.

In Sec. 3.2.1, the basic theory of multirate signal processing is introduced. A brief description
of subband decomposition is given in Sec. 3.2.2. This is followed by an explanation of oversampled
modulated filter banks to be employed for the subband decomposition in Sec. 3.2.3. Finally, in
Sec. 3.2.4, the implementation of the subband GSC beamformer along with the required approxi-
mations are detailed. In addition, the computational cost of the structures is analysed.
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Fig. 3.4: Basic multirate operations for sampling rate alteration: (a) decimation; (b) expansion
of signal x[n] by a factor of N .

3.2.1 Multirate Operations

In subband adaptive filtering [9, 90], it is advantages to decompose the input signal into a set of
subband signals prior to application of specific processing. The decomposition into multiple spectral
bands allows a change in sampling rate which facilities the manipulation of information contained
within each subband. This type of system whereby different sampling rate coexists within the
same structure is known as a multirate system. Sec. 3.2.1.1 will introduce the basic operations
and building blocks of a multirate system, while Sec. 3.2.1.2 gives an insight into the alteration of
sampling rates for subband signals.

3.2.1.1 Decimation and Expansion

Digital signal processing systems that operate at more than one sampling rate are referred to as
multirate systems. The sampling rate alterations are performed by two main operations, decimation
and expansion, which are shown in Fig 3.4.

A decimator as depicted in Fig. 3.4(a) is utilised to reduce sampling rate by performing down-
sampling. The decimator retains only every N th sample of the input signal x[n] while the remaining
samples are discarded. In the time domain, the downsampling operation can be expressed as,

y[m] = x[Nm] , (3.22)

where N denotes the decimation factor. The decimated sequence y[m] has a sampling rate N times
lower than the input sequence x[n]. In the frequency domain, the spectrum of the output signal
can be expressed as

Y (ejω) =
1
N

N−1∑

n=0

X(ej(ω−nω
N

)) , (3.23)

where X(ejω) and Y (ejω) are the Fourier transforms of the input and output signals respectively. As
illustrated in Fig. 3.5(b), the spectrum of Y (ejω) is stretched by a factor of N and superimposed
with N − 1 image spectra. The spectral overlap of these scaled and repeated image spectra is
undesirable and referred to as aliasing. Special care must be taken to appropriately limit the
bandwidth of the input signal in order to avoid potential loss of information through aliasing.

To restore the original sampling rate, an expander as shown in Fig. 3.4(b) is required, which
inserts N − 1 zeros samples in between every sample of the input signal x[n] to yield an output
signal y[m],

y[m] =

{
x[m

N ] : m = λN , λ ∈ Z
0 : otherwise

. (3.24)
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(c) frequency domain of expanded signal.

In the frequency domain, expansion of the signal can be expressed by,

Y (ejω) = X(ejωN ) . (3.25)

This means the spectrum Y (ejω) can be gained by rescaling the frequency axis of X(ejω) by a
factor of N as shown in Fig. 3.5(c). Both decimators and expanders are linear but periodically
time-varying (LPTV) operators.

3.2.1.2 Bandpass Sampling

Avoiding aliasing in the decimation process is essential, hence in the following, the selection of
an admissible decimation ratio N for a general bandpass signal will be considered. There are
differences between the decimation of analytic or generally complex values signals and real valued
signals, which will be addressed separately. The overview below follows the approach in [97].

Complex Valued or Analytic Signals. An analytic signal, x(a)[n] is a complex valued signal
given by,

x(a)[n] = Re
{
x[n](a)

}
+ jIm

{
x[n](a)

}
, (3.26)

where the real and the imaginary part are related by the Hilbert transform, Im
{
x[n](a)

}
=

H{Re
{
x(a)[n]

}}. The Fourier representation of the complex signal X(a)(ejΩ) is given by

X(a)(ejΩ) =





X(ejΩ) Ω ∈ [0;π]
X(1) Ω = 0
0 Ω ∈ [−π; 0]

, (3.27)

which is characterized by the absence of a negative frequency spectrum, as shown in Fig. 3.6.
Although X(a)(ejΩ) has only been defined for the interval [−π;π], it is in fact periodic with 2π.
Therefore, a complex bandpass signal of bandwidth B can be decimated by a factor,

N =
[2π

B

]
, (3.28)

without causing spectral overlaps due to aliasing.
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Fig. 3.6: Spectrum of an analytic signal with bandwidth B.

Real Valued Signals. A real signal x[n] processes symmetry to the frequency origin in the
frequency domain, and relates to an analytic signal x(a)[n] by

x[n] = Re
{
x[n](a)

}
, (3.29)

X(ejΩ) =
1
2
X(a)[ejΩ + e−jΩ] , (3.30)

as shown in Fig. 3.7. Similar to a complex valued signal, critical decimation is limited by (3.28).
However, decimation is further restricted by the band position of the spectrum, since spectral
repetitions of scaled components of both X(a)(ejΩ) and X(a)(e−jΩ) must not overlap if aliasing is
to be avoided. The selection of a valid decimation ratio, with restriction imposed by the band
position in addition to the (3.28) is according to [98] imposed by

k

m
≤ 2π

N ·B ≤ k − 1
m− 1

, k =
2Ωu

B ·m, m ∈ N , (3.31)

where the sampling frequency is normalised by 2π, Ωu is the upper bound of the passband and B

is the bandwidth, and N the decimation factor by which the sampling frequency may be lowered.

−
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Ω
0 ππ

Fig. 3.7: Symmetric spectrum of a real valued signal with bandwidth B.

The additional restriction makes decimation of real valued bandpass signals difficult. In practice,
real valued bandpass signals are therefore either modulated into the baseband prior to decimation
by, for example, single sideband modulation [88], or their bandwidth and decimation ratio chosen
according to equation (3.31), leading to non-uniform filter banks [99]. In contrast, the decimation of
complex valued bandpass signals with any integer factor N < K is straightforward. Therefore, the
focus is on an SAF system that is based on generalized DFT (GDFT) filter banks [88], performing a
particular type of complex valued subband decomposition. In general, complex valued filter banks
can be shown to be at least as efficient to implement as their real valued counterparts [100].
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3.2.2 Subband Decomposition

The basic idea of subband decomposition is to decompose a fullband signal by means of a filter bank
into a number of frequency bands. This is very similar to the discrete Fourier transform discussed
in Sec. 3.1, with the exception that the filter bank can be designed with better frequency selectivity
than the DFT. Due to the reduced bandwidth, the subband signals can run at a lower sampling
rate, thus, allowing computationally costly processing be performed in the decimated subband at
a lower update rate.

N N[n]K−1a [n]K−1s

N N[n]a1 [n]1s

NNn[ ]

n[ ]x
n[ ]x̂

a0 [n]0s

Fig. 3.8: Decomposition of a signal x[n] by an analysis bank into K subbands decimated by
N ≤ K; a fullband signal x̂[n] can be reconstructed by a synthesis bank.

The flow graph of an analysis filter bank implementing a subband decomposition is illustrated
in Fig 3.8. The input signal x[n] is decomposed into subbands by an analysis filter bank with K

bandpass filters. Subsequently, each subband is decimated by a factor of N ≤ K. A dual operation
is performed by the synthesis bank in Fig 3.8, which restores the signal at the original sampling
rate. Assuming perfect reconstruction filters, summation over the various branches yields an output
signal x̂[n], which is ideally only a delayed but otherwise undistorted version of the input x[n].

3.2.3 Oversampled Modulated Filter Banks

Distinct from critically sampled subband structures the non-critical decimation of oversampled
structures can avoid the problem of aliasing within subbands, which has been shown to limit
the achievable minimum mean square error of subband-independent adaptive filters [93]. In non-
critically decimated or oversampled filter banks, the aliasing level is reduced to the stopband energy
of the filter bank — or the prototype filter in the case of a modulated filter bank — thus enabling
adaptation. As an illustration, a K = 8 subband filter is sketched in Fig. 3.9. It can be seen that
the filter bank has a passband width of 2π/K, while the bandwidth of the passband and transition
bands together is 2π/N . If N is chosen to be sufficiently small, no spectral overlap of image spectra
will occur in the decimation process, and the adaptive filter matrix of the subband adaptive system
shown in Fig. 3.3 takes a diagonal form [101]. The use of modulated filter banks where both
the analysis and the synthesis filter share the same prototype filter p[n] reduces the design and
implementation complexity. Popular methods for this purpose include the cosine modulation [102]
and DFT modulation [88]. In the following, we will limit our discussion to DFT modulated filter.

The analysis filters ak[n] of a DFT modulated filter bank are derived from a real valued prototype
lowpass FIR filter p[n] by

ak[n] = p[n].ej 2π
K

kn , n = 0(1)Lp−1 and k = 0(1)K−1 , (3.32)
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Fig. 3.9: Oversampled generalised modulated filter banks.

where Lp is the length of the prototype filter with a passband width B = 2π/K. For an even
number of subbands, K/2 + 1 frequency bands are required to be processed for real input signals
as illustrated in Fig. 3.10. In this case the bands centered around Ω = 0 and Ω = π are real valued,
while the remaining subbands are complex valued.
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Fig. 3.10: DFT modulated filter bank for K =8, N =7.

By introducing frequency and time offsets, a generalised DFT (GDFT) modulated filter bank
emerges according to

ak[n] = p[n].ej 2π
K

(k+ko)(n+n0) , n = 0(1)Lp−1 and k = 0(1)K−1 , (3.33)

where k0 and n0 are the frequency and time offset indices. The spectrum of the GDFT analysis
filter ak are spectrally shifted version of the prototype filter p[n] along the frequency axis. For a
frequency index k0 = 1/2, bands are shifted such that for an even K, K/2 subbands can cover
the frequency interval Ω ∈ [0;π] as illustrated in Fig. 3.11. Thus, for a real input signal x[n] only
K/2 subbands need to be processed while the rest are complex conjugated copies and therefore
redundant. Compared to the DFT modulated filter bank, the processing cost is similar, but in the
GDFT modulated case, all subbands are complex valued and can therefore be treated the same.
Further, a suitable choice of time offset n0 can enable the system to maintain linear phase, ensuring
that the filter output does not suffer from phase distortion [103]. The synthesis filters sk[n] can be
obtained by time reversion and complex conjugation of the analysis filter,

sk[n] = a∗k[Lp− n + 1] . (3.34)

The modulation approach allows both low memory consumption for storing filter coefficients and
an efficient polyphase implementation. The latter even works for non-integer oversampling ratios
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Fig. 3.11: GDFT modulated filter bank for K =8, N =7.

K/N , and allows a factorization of the filter bank into real valued polyphase network depending
on the prototype filter [77].

Through the above modulation, the filter bank design reduces to an appropriate choice of the
prototype filter, which has to fulfill two criteria. Firstly, the prototype filter’s attenuation in the
stopband, Ω ∈ [π/N ; π], has to be sufficiently large, since every frequency of the input signal lying
within the interval [π/N ;π] will be aliased into the baseband after decimation. A second constraint
on the design is the perfect reconstruction condition. If stopband attenuation of the prototype
filter is high enough to sufficiently suppress aliasing, this condition reduces to the consideration of
inaccuracies in power complementarity [104]:

K−1∑

k=0

|Ak(ejΩ)|2 != 1. (3.35)

This can be related back to the characteristics of the prototype filter. A prototype filter approx-
imating the resulting constraints can be constructed by, for example, an iterative least-squares
method [100, 99] or dyadically iterated halfband filters [77].

3.2.4 Subband Beamforming Structure

The structure of a subband adaptive beamformer is given in Fig 3.12, whereby all M sensor signals
xm[n] are split into K subbands by analysis filter banks, and a beamformer is applied to each
subband independently. The subband beamformer can take in any structure or algorithm that is
applicable in the fullband. For our application, the generalised sidelobe canceller (GSC) is utilised.
After processing by the GSCs, beamformer outputs for the various subband are sent into a synthesis
filter bank to reconstruct a fullband output signal.

The signal vector xT
sub[v] fed into the processor is given by,

xT
sub[v] =

[
x0[v] x1[v] · · · xK−1[v]

]
with (3.36)

xT
k [v] =

[
x0,k[v] x1,k[v] · · · xM−1,k[v]

]
,

xT
m,k[v] =

[
x̂m,k[v] x̂m,k[v] · · · x̂m,k[v − L/N + 1]

]
,

where the vector xT
m,k[v] contains data inside a TDL formed from the mth sensor signal in the

kth subband, with v being the decimated time index, v = n
N . Different from the DFT domain
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Fig. 3.12: Subband beamforming structure with analysis (A) and synthesis banks (S), and adaptive
beamformers (BF) operating in the decimated subbands.

processing, the subband signals still have to be considered broadband - although with a reduced
bandwidth as evident from Fig. 3.11. Due to the reduced bandwidth, the length of the TDL for
each subband channel is now approximately N times shorter than the fullband case.

The precise filter length LSAB of a subband adaptive beamformer (SAB) with similar modelling
capabilities as a fullband beamformer of length L, however, is not only determined by the decimation
ratio N , but also an offset term introduced by transients cause by the filter banks [105]. Thus,

LSAB =
L + Lp

N
(3.37)

is a good approximation, where Lp is the length of the prototype filter. Therefore, whereas SAB is
expected to bring considerable benefits for high resolution broadband beamforming, an application
to the beamforming with a short temporal dimension, L ¿ Lp, could not be motivated from a
computational aspect.

The essence for computational efficiency in subband-based beamforming is the independent
processing of subband signals. Due to the high sidelobe attenuation of the analysis filter bank as
illustrated in Fig. 3.11, the resulting subbands only overlap with one adjacent band. The covariance
matrix of the subband beamformer Rxx,sub = E{

xsub · xH
sub

} ∈ CKML/N×KML/N approximately
takes the structure of,

Rxx,sub=




R0,0 R1,0 0 . . . 0 RK−1,0

R0,1 R1,1 R2,1 0 0

0 R1,2 R2,2
. . .

...
...

. . . . . . . . . 0

0
. . . RK−2,K−2 RK−1,K−2

R0,K−1 0 . . . 0 RK−2,K−1 RK−1,K−1




, (3.38)

where sub-matrices Ri,j , i, j ∈ {0;K − 1} are spatio-temporal covariance matrices between the ith

and jth subband. Although adjacent subband signals are still correlated, the redundancy introduced
by oversampling effectively doubles the information situated in the overlap regions of Fig. 3.11.
Therefore, different from critically decimated DFT domain processing, the off-block-diagonal terms
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in (3.38) can be neglected without incurring a penalty, and a separate beamforming algorithm can
operate in each subband [29, 90].

The covariance matrix seen by the adaptive filter input is given by,

Ruu,sub = CH
a,sub Rxx,sub Ca,sub , (3.39)

with a block diagonal blocking matrix,

Ca,sub =




Ca,0 0
. . .

0 Ca,K−1


 , (3.40)

consisting of the blocking matrices Ca,k, k = 0(1)K−1. Hence, Ruu,sub retains the structure
of Rxx,sub and its redundancy. This effectively implies that off-diagonal terms of Ruu,sub can be
ignored, and independent subband processing can be carried out without incurring a penalty.

The computational complexity for a subband structure is assessed exemplarily by a GSC beam-
former utilising an LMS algorithm. A fullband GSC beamformer consists of a fixed part, given by
the calculation of the desired signal with the quiescent vector wc ∈ CML and a blocking matrix
Ca ∈ CML×ML−r, and an adaptive part wa. The fixed GSC part results in,

Cfixed
FB = ML + ML(ML− r) = ML(ML + 1− r) , (3.41)

real valued multiplication per sampled period. The complexity of the adaptive part wa ∈ CML−r

is based on the adaptive algorithm employed. Assuming the LMS algorithm is utilised,

C lms
FB = 2(ML− r) + 1 . (3.42)

Thus, the total computational cost incurred for a fullband beamformer employing the LMS algo-
rithm accrues to,

CFB = ML(ML + 1− r) + 2(ML− r) + 1 , (3.43)

MACs.

For a subband implementation, the reduction in computational complexity can be attributed to
two factors. Firstly, due to the longer sampling period, the temporal dimension of the beamformer,
L, can be reduced as given in (3.37). This translates to a decrease in the size of the subband
blocking matrix Ca,k ∈ CMLSAB×(M−r)LSAB and the quiescent vector wc,k ∈ CMLSAB . Thus, the
computational cost of the fixed part in the GSC beamformer is given as

Cfixed
SAB = MLSAB(MLSAB + 1− r) (3.44)

real valued multiplication per sampling period. Similarly, the complexity of the adaptive part of
the GSC to adjust the vector wa,k ∈ CMLSAB−r, based on the used of the LMS adaptive algorithm,
equates to

C lms
SAB = 2(MLSAB − r) + 1 . (3.45)
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Secondly, for real valued input data, only K/2 subbands need to be processed while the remaining
K/2 are complex conjugate copies. In addition, the update rate is also lowered by a factor of N .
Therefore, the computational cost of the subband solution is given by,

CSAB =
K

2N
· Ck

SAB , (3.46)

with
Ck

SAB = Cfixed
SAB + C lms

SAB . (3.47)

From (3.37), it is noted that under normal circumstances, L is generally much larger than the
prototype filter Lp, as such Lp can be neglected. The above calculation excludes the cost incurred
by the filter bank operation, i.e. the splitting into subbands and subsequent reconstruction. The
cost of the filter bank implementation can be kept reasonably low by the use of a polyphase
implementation, whereby the complexity of a single filter bank is given by,

Cbank =
1
N

(4K log2 K + 4K + Lp) (3.48)

MACs per fullband sampling period. For a subband beamformer a total of (M +1) filter banks are
required, with M filter banks for subband decomposition of the various sensors data followed by a
synthesis bank for subsequent fullband reconstruction.

The steady-state performance of a subband processor is generally limited by the filter bank’s
error in perfect reconstruction, which will introduce a distortion into the overall system of Fig. 3.12.
Further, the alias level in the subband will limit the adaption of the broadband beamformer such
that the possible dynamic range of the subband processing is approximately given by the stopband
attenuation of the filter banks [93]. Both prefect reconstruction and aliasing can be controlled by
the filter bank design [99]. Hence, implicit limitation in the subband structure can be kept below
any specifications imposed by an application.

3.3 Overlap-Save Beamformer

The application of the DFT to a broadband signal followed by independent processing of each
frequency bin results in optimal computational efficiency. However, by neglecting inter-bin correla-
tions, problems associated with non-convergence occur when the signal does not coincide with the
frequency bins. This restricts the performance of the independent frequency bin (IFB) beamformer
for a broadband scenario. However, overlap-save and overlap-add methods can be applied to accu-
rately implement a broadband problem in the DFT domain [27, 88, 20]. Both techniques exploit
the Toeplitz nature of the data matrix, transforming it to a circulant form by increasing the DFT
length to at least 2L points. Unlike the circular convolution between the signals xm[n] and the
filters following each sensor, as implemented by the IFB process, overlap-save and overlap-add now
realize a linear convolution [88]. By rigorously minimising time domain criteria, such as the mean
square error, that are expressed in the DFT domain, exact broadband DFT domain solutions can
be derived and, if required, subsequently simplified [28, 27].

Both overlap-add and overlap-save are equivalent but show slight differences in the implementa-
tion of frequency domain adaptive algorithms [20]. While overlap-add could also be utilised, in the
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following only the overlap-save technique will be applied to DFT domain beamforming. A direct re-
alisation of an overlap-save GSC beamformer offers considerably reduced complexity compared to a
time domain broadband GSC, but suffers from slow convergence. This is caused by the application
of block processing which inherently reduces convergence [20] but can also be traced to the large
eigenvalue spread at the output of the blocking matrix. Here, we demonstrate that modification
of the constraint setup can reduce the eigenvalue-spread, improving the convergence speed with-
out sacrificing other performance parameters. A computationally optimum beamforming solution
which allows a narrowband approach to solve a broadband problem was also proposed 3.3.3.2. In
this approach, by suitable approximation of the overlap-save covariance matrix, correlation between
frequency bins can be neglected, thus, allowing narrowband beamforming algorithms to successfully
null out broadband interference.

In Sec. 3.3.1, circulant matrices and their properties will be introduced. Thereafter, the deriva-
tion of the novel overlap-save beamformers for both the GSC and Frost implementations can be
found in Sec. 3.3.2. To further improve the computational efficiency and the convergence speed of
this beamformer, modification to the constraints are discussed in Sec. 3.3.3. In the same section,
with the aid of a suitable approximation, the use of narrowband constraints to solve a broad-
band problem for the overlap-save GSC beamformer is motivated. Sec. 3.3.4, a self-orthogonalizing
component is introduced into the adaptive algorithm of the narrowband constraints overlap-save
GSC. This inclusion reduces the eigenvalue spread of the covariance matrix across the operating
spectrum, thereby increasing the convergence speed.

3.3.1 Linear Convolution and Circulant Matrix Property

To motivate the overlap-save approach, we consider a convolution in the DFT domain and subse-
quently explore the circulant matrix property.

Linear Convolution. The idea of DFT domain processing stems from the equivalence of a time
domain convolution — considered cumbersome — with a simpler multiplication in the frequency
domain. For a convolution between a signal x[n] and a filter with impulse response h[n], in matrix
notation

y = H · x = XT · h (3.49)

the vector x contains the input data, H is a convolutional matrix in Hankel form, and y contains
the convolution result:

y =
[
y[n] y[n + 1] . . . y[n + L− 1]

]T (3.50)

H =




0 h0 . . . hL−1

h0 . . . hL−1

. . . . . .

h0 . . . hL−1 0




(3.51)

x =
[
x[n + L− 1] x[n + L− 2] . . . x[n− L + 1]

]T
. (3.52)
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Alternatively in (3.49), the filter impulse response can be gathered in a vector h, and the input
signal needs to be collected in an appropriate data matrix X:

h =
[
h0 h1 . . . hL−1

]T (3.53)

XT =




x[n] x[n− 1] . . . x[n−L+1]
x[n+1] x[n] . . . x[n−L+2]

...
. . . . . .

...
x[n+L−1] x[n + 1] x[n]




, (3.54)

i.e. X contains a series of TDL vectors as columns. If we aim to write the convolution (3.49) in
terms of the DFT approximated Fourier transforms of y and h, y = Tdfty and h = Tdfth, then

y = TdftXTh = TdftXTTH
dftTdfth

= TdftXTTH
dfth . (3.55)

For (3.55) to implement an element-wise multiplication in the frequency domain, the term TdftXTTH
dft

must be diagonal. This however is fulfilled only if XT is circulant [78], a property attained by the
data matrix X in (3.54) only in very rare circumstances. Thus, DFT transformation does not yield
a multiplication in the frequency domain. Conversely, if the term TdftXTTH

dft was approximated
by a diagonal matrix containing the Fourier coefficients of x, then the time domain equivalent is
a circular convolution rather than the desire linear one [20, 88]. We next explore the circulant
property for the data matrix, which guarantees a simple multiplication of the DFT transforms
according to (3.55) in order to implement a linear convolution.

Circulant Matrices. A circulant matrix is a Toeplitz matrix, whereby each row is right-shifted
with a wrap-around at the margins of the matrix, e.g.

Acir =




a0 aL−1 . . . a2 a1

a1 a0 a2

a2 a1 a0

...
. . . . . . . . .

...
aL−1 a2 a1 a0




. (3.56)

A DFT matrix will diagonalise such a circulant matrix, such that

TdftAcirTH
dft =

√
Ldiag{Tdfta} (3.57)

whereby a is the first column vector of the circulant matrix Acir,

a =




a0

a1

...
aL−1




. (3.58)

A Toeplitz matrix A of the type in (3.54) can be completed to form a circulant matrix Acir.
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Recalling the form of (3.54) as

Atoep =




an an−1 . . . an−L+1

an+1 an an−L+2

...
...

an+L−1 an+L−2 . . . an




, (3.59)

a second Toeplitz matrix

Âtoep =




v an+L−1 . . . . . . an+2 an+1

an−L+1 v
. . . an+2

an−L+2 an−L+1
. . . . . .

...
...

. . . . . . . . .
...

an−2
. . . v an+L−1

an−1 an−2 . . . . . . an−L+1 v




(3.60)

with an arbitrary element v but otherwise reused elements of Atoep will complete Atoep to a circulant
form

Acir =

[
Âtoep Atoep

Atoep Âtoep

]
. (3.61)

The arbitrary element v could be omitted by condensing Acir ∈ C2L×2L to a (2L−1)×(2L−1) matrix
by removing the main diagonal. However, the completion according to (3.61) offers simplicity, and
the selection v = an−L will ensure that the first column represents a time-reversed TDL vector.

3.3.2 Overlap-Save Implementations

An overlap-save implementation is a block processing technique that utilises the DFT to decompose
the data. As such, we motivate this approach from the perspective of a time domain beamformer
that processes data in blocks. For a conventional time domain broadband beamformer having M

sensors and a TDL of length L attached to each sensor, as shown in Fig. 2.9, the output e[n] is
expressed as,

e[n] = wHx[n] , (3.62)

with

w =
[
wT

0 wT
1 · · · wT

M−1

]T
,

wm =
[
w∗m,0 w∗m,1 · · · w∗m,L−1

]T
,

x[n] =
[
x0[n]T x1[n]T · · · x[n]TM−1

]T
,

xm[n] =
[
xm[n] xm[n− 1] · · · xm[n− L + 1]

]T
. (3.63)

The block processing notation is introduced by stacking the error output of the beamformer into a
vector e[n] =

[
e∗[nL] e∗[nL + 1] · · · e∗[nL + L− 1]

]T ∈ CL×1. This gives

e[n] =
M−1∑

m=0

XH
m[n]wm , (3.64)
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where
Xm[n] =

[
xm[nL] xm[nL + 1] · · · xm[nL + L− 1]

]
. (3.65)

Expanding the convolution matrix Xm[n] to circulant form [78], as outlined in Sec. 3.3.1, the output
of the beamformer is written as

[
v

e[n]

]
=

M−1∑

m=0

[
X̂H

m[n] XH
m[n]

XH
m[n] X̂H

m[n]

]
·
[

wm

0

]
, (3.66)

where X̂H
m[n] is a Toeplitz matrix using the data samples of Xm[n] according to (3.61), 0 is an

L-element zero vector, and v ∈ CL is a part of the output which does not contribute to the linear
convolution and is therefore discarded.

The overlap-save beamformer is based on the discrete Fourier transformation. As such, a 2L-
point DFT matrix Tdft is applied to the DFT-domain error vector e[n] ∈ C2L leading to,

e[n] = Tdft

[
0

e[n]

]

= Tdft

[
0 0
0 I

]
TH

dft

︸ ︷︷ ︸
G

Tdft

[
v

e[n]

]

= G
M−1∑

m=0

Tdft

[
X̂H

m[n] XH
m[n]

XH
m[n] X̂H

m[n]

]
TH

dftTdft

[
wm

0

]

= G
M−1∑

m=0

Γm[n]wm = G Γ[n] w , (3.67)

in dependency of the frequency domain coefficients w ∈ C2ML, with G ∈ Z2L×2L and Γm[n] ∈
C2L×2L. The obtained Γm[n] is diagonal and can be alternatively formulated by applying the
Fourier transform to the first column of the circulant matrix,

Γm[n] = Tdft

[
X̂H

m[n] XH
m[n]

XH
m[n] X̂H

m[n]

]
TH

dft

= diag

{
Tdft

(
J

[
xm[nL + L]

xm[nL]

])}
, (3.68)

where J denotes a reverse identity matrix. This effectively means that the overlap-save technique
requires 2L input data samples per processing block, whereby L samples stem from the previous
data block, while the rest are current data. That is, the data are overlapped by L points such that
only L new samples are introduced prior to performing a 2L-point DFT on each block. Referring
to (3.67), matrix Γ[n] ∈ C2L×2ML is attained by stacking the input data in the TDLs for the M

sensors,
Γ[n] =

[
Γ0[n] Γ1[n] · · · ΓM−1[n]

]
(3.69)

Of the data obtained from the error output, e[n], only L elements arise from linear convolution,
while the remaining L elements corresponds to circular convolution. Thus, they need to be masked
by the matrix G.
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Constraints Formulation. For the time domain LCMV beamforming problem, the constraint
equation that projects the signal of interest with specific gain and phase is expressed as,

CHw =
M−1∑

m=0

CH
m ·wm = f , (3.70)

whereby the original matrix equation CHw can be separated into M additive component. Note
that Cm ∈ CL×r has an arbitrary form (in particular not Toeplitz), where r is the number of
linearly independent constraints. If the r constraints are directly translated from the time domain
to the DFT domain according to the overlap-save characteristic, then

M−1∑

m=0

[
CH

m V0,m

V1,m V2,m

][
wm

0

]
=

[
f
f̂

]
. (3.71)

where f̂ is a zero vector. Thus, matrix V1,m must be a zero matrix. This left us with V0,m and
V2,m, that could be selected to improve the rank/eigenvalue spread of the constraint matrix. For
simplicity at this point we set V0,m = 0 and (3.71) becomes,

M−1∑

m=0

[
CH

m 0
] [

wm

0

]
= f . (3.72)

Thereafter, application of the DFT matrix results in,

M−1∑

m=0

[
CH

m 0
]
TH

︸ ︷︷ ︸
Cm

T

[
wm

0

]

︸ ︷︷ ︸
wm

= CHw = f , (3.73)

where C ∈ C2ML×r is the overlap-save constraint matrix given by

C =

[ [
C0

0

]H

TH
dft

[
C1

0

]H

TH
dft · · ·

[
CM−1

0

]H

TH
dft

]H

(3.74)

applicable to the DFT domain coefficient vector.

Writing the output energy per block as E{
eH[n]e[n]

}
= E{

eH[n]e[n]
}
, the equivalent formulation

of the time domain LCMV beamformer in the overlap-save context can be expressed as

w = argmin
w

wHRosw subject to CHw = f , (3.75)

where the 2ML× 2ML autocorrelation matrix Ros is given by

Ros = E{
ΓH [n]GHGΓ[n]

}

= E{
ΓH [n]GΓ[n]

}
, (3.76)

with GΓ[n] representing the input data of the overlap-save beamformer.

Overlap-save GSC (OS-GSC). In the time domain, the LCMV beamforming structure, requir-
ing constrained optimisation, can be implemented by a GSC that allows unconstrained optimisation,
as is depicted in Fig. 2.10. The evolution from an overlap-save DFT domain LCMV beamformer to
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an overlap-save DFT-based GSC beamformer is analogous to the reasonably straightforward time
domain derivation and will be outlined in the following.

The constrained adaptive filter coefficients w of the overlap-save LCMV can be separated into
two orthogonal components, w = wc − v, with quiescent vector wc ∈ C2ML projected onto the
constraints, and v away from the constraints. Further, vector v can be decomposed

v = Ca wa , (3.77)

where Ca ∈ C2ML×2ML−r is the frequency domain blocking matrix, which spans the nullspace
of the constraint matrix C, while wa contains the unconstrained adaptive filter coefficients. The
resulting overlap-save GSC beamformer is depicted in Fig. 3.13.
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Fig. 3.13: Overlap-save GSC.

According to (3.67), the vector output of an overlap-save GSC beamformer can be written as

e[n] = G Γ[n] w

= G Γ[n] (wc −Cawa) , (3.78)

whereby w of the LCMV structure is replaced by wc −Cawa. If the LMS is the utilised adaptive
algorithm, the overlap-save GSC beamformer is derived from the cost function of the instantaneous
squared error, given by ξoslms = eH [n]e[n]. As such, the stochastic gradient obtained from this cost
function is given by

∇̂ξoslms =
∂ξoslms

∂w∗
a

=
∂ξoslms

∂w∗
a

(
(wc −Cawa)

HΓH [n]GHGΓ[n](wc −Cawa)
)

= −CH
a ΓH [n]e[n] , (3.79)

whereby the relationship GHG = G is exploited. From this gradient, the LMS-style update
equation

wa[n + 1] = wa[n] + µCH
a ΓH [n] e[n] (3.80)

results for the overlap-save GSC.
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Overlap-save GSC — LMS Algorithm

Ca = basis of nullspace of CH

wc = C(CHC)−1f
1: w[n] = wc −Cawa[n] 2ML(2ML− r)
2: Γm[n] = diag

{
Tdft

(
J
[
xT

m[n + L] xT
m[n]

]H)}
2ML log2(2L) + 2L

3: e[n] = G Γ[n] w[n] 2ML + 4L log2(2L)
4: ∇̂ξoslms[n] = −CH

a ΓH [n] e[n] 2ML + 2ML(2ML− r)
5: wa[n + 1] = wa[n]− µ∇̂ξoslms[n] 2L

6: e[n] = [0L×L IL×L]TH
dft e[n] 2L log2(2L)

Tab. 3.3: Algorithms steps and computational cost for a exact overlap-save GSC applying broad-
band constraints.

Finally, to attain a time domain output, an inverse DFT is applied to the error output e[n] ∈ C2L,
converting it from the DFT domain back to 2L time domain data samples. However, only the latter
L data points are valid, while the rest — stemming from circular convolution — must be discarded.
This can be attributed to the fact that for every 2L data block, only L samples correspond to a
linear convolution.

The complete steps of overlap-save GSC beamformer utilising the LMS algorithm are detailed
in Tab. 3.3. The computational cost associated with the algorithmic steps is also provided and it
accrues to

Coslms = 4M [(2ML− r) + 1] + log2 2L(2M + 6) + 2 (3.81)

multiply accumulates (MACs) per sampling period.

Overlap-save Frost (OS-Frost). Having derived the overlap-save GSC beamformer based on
the LMS algorithm, in the following a novel overlap-save Frost constrained adaptive algorithm is
formulated in the context of the LCMV beamformer. As mentioned in Sec. 2.6.6, the time domain
derivation of the Frost algorithm is based on the method of Lagrange multipliers to adjoin the
minimisation of the instantaneous output power of the beamformer with the constraint equation.
We follow the same procedure for the overlap-save DFT based Frost algorithm, yielding

ξosfrost = wH [n]Rosw[n] + λH(CHw[n]− f) + (CHw[n]− f)Hλ . (3.82)

This cost function is exactly the same as that found in (2.75), except that it is based on DFT-domain
quantities.

Differentiating Frost’s cost function ξosfrost in (3.82) with respect to w∗ gives

∂ξosfrost

∂w∗ = Rosw[n] + Cλ . (3.83)

For the constrained adaptive algorithm, the weight vector is set to w[0] = wc for initialisation.
This satisfies the constraint in (3.73) with wc = C(CHC)−1f . At each iteration, the vector w[n] is
updated in the direction of the largest negative gradient, expressed in (3.83), by a step proportional
to the scaling factor µ according to

w[n + 1] = w[n]− µ
(
Rosw[n] + Cλ

)
. (3.84)
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Overlap-save — Frost Algorithm

P = I−C(CHC)−1CH

wc = C(CHC)−1f

1: Γm[n] = diag
{
Tdft

(
J
[
xT

m[n + L] xT
m[n]

]H)}
2ML log2(2L)

2: e[n] = G Γ[n] w[n] 2ML + 4L log2(2L)
3: w[n + 1] = wc[n]−P

(
w[n]− µΓHe[n]

)
2L + 2ML + 4M2L2

4: e[n] = [0L×L IL×L]TH
dft e[n] 2L log2(2L)

Tab. 3.4: Algorithms steps and computational cost for an overlap-save based Frost beamformer.

Since w[n + 1] must satisfy the constraint, the Lagrange multiplier λ is solved by substituting
(3.84) into (3.73), yielding a form similar to (2.78). Thereafter, by substituting λ into the update
equation (3.84), we arrive at

w[n + 1] = w[n]− µ
(
I−C(CHC)−1CH

)
Ros w[n] + C(CHC)−1

(
f −CH w[n]

)
. (3.85)

Defining P = I−C(CHC)−1CH , equation (3.85) can be rewritten as

w[n + 1] = wc[n]−P
(
w[n]− µRosw[n]

)
. (3.86)

If the second order statistics of (3.86) are unavailable, then they can be approximated by instanta-
neous estimates, leading to a stochastic gradient descent algorithm with an update equation

w[n + 1] = wc[n]−P
(
w[n]− µΓH [n] e[n]

)
. (3.87)

The algorithm steps and their associated cost in terms of multiply accumulate operations (MACs)
are detailed in Tab. 3.4.

3.3.3 Alternative Constraint Formulations

In the derivation of the overlap-save GSC (OS-GSC), particular focus was placed on the constraint
equation. Below, modifications to the constraint setup are carried out in order to increase the
convergence speed while seeking further reduction in complexity. The modified constraint overlap-
save GSC (mOS-GSC) is discussed in Sec. 3.3.3.1. Further, Sec. 3.3.3.2 motivates the restriction to
narrowband constraints to address a broadband problem, improving the computational efficiency
of the overlap-save beamforming algorithm.

3.3.3.1 Modified Constraints Overlap-Save GSC (mOS-GSC)

The convergence speed of the derived overlap-save beamformer in Sec. 3.3.2, utilising the LMS
algorithm, is influenced by the eigenvalue-spread of the input signal [73]. Following Fig. 3.13,
the adaption is carried out by wa. The input data to the adaptive coefficients comes direct from
the blocking matrix rather than the original signal Γ. This implies that the blocking matrix
Ca ∈ C2ML×2ML−r has a major influence on the eigenvalue-spread. As such, it is the correlation
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matrix seen at the output of the adaptive coefficients,

Ruu,os = E{
UH [n] U[n]

}

= CH
a E

{
ΓH [n] Γ[n]

}
Ca , (3.88)

that influences the convergence of the beamformer if the gradient-based algorithm is utilised.

The original overlap-save constraint equation in (3.71) sets the arbitrary matrix Vm = 0. This
is deemed acceptable when Vm is irrelevant to the constraints, as it will be eventually eliminated
under the influence of 0. However, with Vm = 0, the constrained equation (3.72) utilised to
compute the blocking matrix Ca via the SVD will allow certain components of the signal of interest
(SOI) to pass through. This creates a larger spectral dynamic range compared to one whereby SOI
has been totally blocked by Ca.

To address the problem, a larger constraint matrix with the number of constraints increased
from r to 2r is proposed,

M−1∑

m=0

[
CH

m 0
0 ĈH

m

]
TH wm =

[
f
f̂

]
, (3.89)

where ĈH
m and f̂ are appropriately selected. For the simple scenario where SOI impinges from

broadside, ĈH
m is identical to CH

m while f̂ = 0. The new constraints setup create a blocking matrix
which blocks all SOI that attempts to enter the adaption process, thus achieving a lower spectral
dynamic spread which in turns lower the eigenvalue spread. This is illustrated by comparing the
eigenvalue spread of mOS-GSC in Fig. 3.14 against the OS-GSC in Fig. 3.15 at the output of the
blocking matrix, for the scenario whereby M = 3 and L = 4. The eigenvalue spread of mOS-GSC is
approximately a magnitude lower than the OS-GSC. Further proof is given by the condition number
of the covariance matrix (3.88) for mOS-GSC = 1.8292e3 and OS-GSC = 2.5877e4 respectively.
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Fig. 3.14: Eigenvalue spread of mOS-GSC beamformer.

Apart from the reduced spectral dynamic range, the increase in the number of constraints from r

to 2r translates to a smaller blocking matrix, as such fewer coefficients are required for the adaption
process, further enhancing the convergence speed.

Except for changes to the constraint matrix, which results in the blocking matrix having reduced
dimension that directly leads to adaptive filters wa having fewer coefficients, all other formulations
related to the derived overlap-save GSC beamformer in Sec. 3.3.2 are preserved. Thus, we would
expect the modified constraints overlap-save GSC (mOS-GSC) beamformer to demonstrate similar
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Fig. 3.15: Eigenvalue spread of OS-GSC beamformer.

performance characteristic but having faster convergence speed compared to the original overlap-
save model.

3.3.3.2 Narrowband Constraints Overlap-Save GSC (nbOS-GSC)

In a direct DFT domain implementation, for the narrowband assumption to be valid, the cross-
correlation between different frequency bins must be zero, i.e. requiring the covariance matrix to
be block diagonal. However, the covariance matrix of the overlap-save GSC beamformer,

Ros = E{
ΓH [n]GHGΓ[n]

}

= E{
ΓH [n]GΓ[n]

}
, (3.90)

does not fulfil this condition and correlation between bins still exists as G 6= I. A closer examination
of the matrix, as shown by the three-dimensional plot in Fig. 3.16, however, reveals that the off-
diagonal elements of G are much smaller in magnitude than the diagonal elements. Accordingly,
it can be argued that an identity matrix, more precisely I/2 can be used to approximated G [28].
With this simplification, the covariance matrix of the overlap-save beamformer can be re-written
as,

Rnbos = E{
ΓH [n]Γ[n]

}
, (3.91)

where frequency bins for individual sensors are independent, but correlation between sensors still
exists.

The application of a suitable permutation matrix to Rnbos gives

Rpnbos =




R0,0 0 . . . 0
0 R1,1 . . . 0
...

...
. . .

...
0 0 . . . R2L−1,2L−1




, (3.92)

where Ri,j are M ×M correlation matrices between frequency bins i and j of the different sensor
signals. Thus, a block diagonal covariance matrix has been obtained, which enables the use of
narrowband constraints in resolving a broadband problem based on an overlap-save implementation.
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Fig. 3.16: Magnitude of the elements, |Gi,j | of matrix G for L = 8.

The narrowband constraints overlap-save GSC (nbOS-GSC) treats each of the 2L frequency
component independently, As such, the formulation of the narrowband constraints is similar to
that of the DFT-based independent bin processing technique described in Sec. 3.1.2. The blocking
matrix of each bin

Ca,fd =




CH
a,0 0

. . .

0 CH
a,2L−1


 , (3.93)

is computed individually, achieving total decoupling between bins. The blocking matrix Ca,fd when
applied to the permuted narrowband overlap-save covariance matrix Rpnbos gives,

Ruu,pnbos =




CH
a,0R0,0Ca,0 0 . . . 0

0 CH
a,1R1,1Ca,1 . . . 0

...
...

. . .
...

0 0 . . . CH
a,2L−1R2L−1,2L−1Ca,2L−1




, (3.94)

which is identical to that of (3.21). Thus, the same assumption for independent frequency bin
processing is implied.

The overlap-save GSC formulation attained under the implementation of narrowband constraints
is therefore

ŵ = arg min
ŵ∗

ŵHRpnbosŵ subject to CH
fd ŵ = f . (3.95)

Unlike the filter coefficients w in (3.63), the nbOS-GSC filter coefficients ŵ ∈ C2ML×1 must be
oriented according to frequency bins corresponding to the constraint equation, such that

ŵ = [wT
0 wT

1 · · · wT
2L−1]

T ,

wl = [w0,l w1,l · · · wM−1,l]T . (3.96)

Likewise, a suitable permutation must be applied to the data matrix Γ[n],

Γ̂[n] = Γ[n]PT
mut , (3.97)
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Narrowband Constraints Overlap-save — LMS Algorithm

Ca,l = basis of nullspace of cl
H

wc,l = cl(cH
l c)−1

l f l

1: w[n] = wc,fd −Ca,fd wa,fd 2ML(M − r)
2: Γm[n] = diag

{
Tdft

(
J
[
xT

m[n + L] xT
m[n]

]H)}
2ML log2(2L)

3: Γ̂[n] =
[
Pmut ΓT [n]

]T 2ML

4: e[n] = G Γ̂[n] w[n] 2ML + 4L log2(2L)

5: ∇̂ξnbos[n] = −CH
a,fdΓ̂

H
[n] e[n] 2ML(M − r) + 2ML(2L)

6: wa,fd[n + 1] = wa,fd[n]− µ∇̂ξnbos[n] 2L

7: e[n] = [0L×L IL×L]TH
dft e[n] 2L log2(2L)

Tab. 3.5: Steps and computational cost of the nbOS-GSC algotithm.

attaining Γ̂[n] ∈ C2L×2ML, which is sorted with respect to their frequency representation.

With Ca,fd ∈ C2ML×2L(M−r) representing the block diagonal blocking matrix, where r is the
number of linearly independent constraint, and wc,fd ∈ C2ML the quiescent vector, covering all 2L
frequency bins. The output of the nbOS-GSC beamformer is

e[n] = GΓ̂[n]ŵ

= GΓ̂[n] (wc,fd −Ca,fd wa,fd) . (3.98)

Similar to the approach of the LMS algorithm, the instantaneous squared error, ξnbos = eH [n]e[n]
is used as the cost function for a gradient technique, whereby the stochastic gradient becomes

∇̂ξnbos =
∂ξnbos

∂wH
a

= −CH
a,fdΓ̂

H
[n] e[n] . (3.99)

The update equation of this beamformer operating under the LMS criterion is therefore written as

wa,fd[n + 1] = wa,fd[n] + µCH
a,fd Γ̂

H
[n] e[n] . (3.100)

The equations summarising the narrowband constraints overlap-save GSC beamformer are complied
in Tab. 3.5. Note that the computational cost for the overlap-save structure is provided for a block
of L samples, and must be reduced by a factor of L if it is to be compared against a sample based
cost of a fullband beamformer implementation.

Approximation. The approximation G ≈ 1
2I as assumed by Benesty [28] is central to the for-

mulation of the narrowband constraints overlap-save GSC and will therefore be detailed here.

From (3.67) recall G = TH
dftWTdft, whereby

W =

[
0 0
0 I

]
. (3.101)
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Since W ∈ Z2L×2L is a diagonal matrix, the matrix G is circulant. Therefore, the inverse Fourier
transform on the diagonal of W gives the first column of G,

g = TH
dft[0 · · · 0 1 · · · 1]T

= [g0 g1 · · · g2L−1]T . (3.102)

Since G is circulant and subsequent columns will only be circularly shifted versions of g, it is
sufficient to concentrate on g, whose elements are given by,

gk =





0.5 k = 0
0 k = even
−1
2L [1 + jcot(πk

2L)] k = odd
. (3.103)

Note that the vector g contains L−1 zero elements for k = even. Analysing the real part of (3.103),
it can be seen that if L is sufficiently large then g0 will be the dominant element. The imaginary
part of the first L elements of g decreases rapidly to zero as k increase. However, due to conjugate
symmetry, the last few elements of g are not negligible. This however is of little concern, as the
circulant nature of G means that with the exception of the first and last column, all other columns
have the non-negligible terms concentrated near the main diagonal, as depicted in Fig. 3.16. Thus,
the effect to the above approximation is minimal and can be ignored [28]. To summarise, for large
L only the very first (few) off-diagonal elements of G will be non-negligible while the others can
be omitted. Therefore, approximating G by an identity matrix g0I appears to be justified.

3.3.4 Self-Orthogonalising Narrowband Constraints Overlap-Save GSC (SnbOS-

GSC)

The nbOS-GSC beamformers employs an adaptive algorithm based on the LMS [79] with which
it shares similar properties, such as factors influencing the convergence rate. This means that
the convergence speed of the beamformer is highly dependent on the conditioning of the auto-
correlation matrix. A large eigenvalue spread in the matrix would result in slow convergence, while
having identical eigenvalues for the covariance matrix implies optimum convergence speed.

As the overlap-save technique processes data in blocks, convergence speed would be slower com-
pare to a time domain implementation where updates are performed at every time instance [20].
The convergence rate further decreases when larger block size is selected. To attain better conver-
gence characteristic for the nbOS-GSC, a Newton based adaptive algorithm [79, 106] is incorporated
into the narrowband constraints overlap-save structure.

The adaptive weight equation using the Newton method can be easily derived if we recall the
gradient estimate of the steepest descent (2.41);

∇ξMSE = −p + Ruuw . (3.104)

First, multiply the above equation by R−1
uu ,

R−1
uu p = w −R−1

uu∇ξMSE (3.105)

72



thereafter, substituting the Wiener-Hopf solution (2.34) to attain,

wopt = w −R−1
uu∇ξMSE . (3.106)

As such, the incremental updates of coefficients for the adaptive Newton algorithm is expressed as,

w[n + 1] = w[n]−R−1
uu∇ξMSE . (3.107)

The Newton algorithm usually converges much faster towards a local maxima or minima compared
to the gradient descent methodology. This is because Newton method corrects the search always
pointing to the minimum, while the gradient descent method points to the maximum direction
of change. Same convergence speed of the two algorithms occurs only when the largest and the
smallest eigenvalue of the correlation matrix are the same. Thus, the Newton method essentially
compensate for the eigenvalue spread that restricts the convergence speed of the gradient descent
technique.

Better convergence performance associated with the Newton’s method does not come as a sur-
prise, as more information about the performance surface is required. Additionally, implementation
of the Newton’s algorithm is more costly compare to the LMS for it requires the inverse of the cor-
relation matrix. The iterative Newton’s method update equation is written as,

w[n + 1] = w[n]− µR−1
uu∇ξMSE . (3.108)

where the constant µ to is used to regulate the convergence rate.

A problem with the Newton’s method relates to the fact that R−1
uu is normally unavailable and

must be estimated. The Gauss-Newton algorithm mitigated this problem, by performing searches in
the Newton direction to minimised the objective function [106]. It basically computes an estimate
of R̂−1

uu that generally improves with each iteration, approaching the ideal R−1
uu . To develop this

algorithm, we must first estimate Ruu,

R̂uu[n + 1] = (1− α)R̂uu[n] + αu[n]uH [n] , (3.109)

whereby, α is the forgetting factor. Thereafter, pre-multiplied by R̂−1
uu [n + 1] and post-multiplied

R̂−1
uu [n], we get;

R̂−1
uu [n] = (1− α)R̂−1

uu [n + 1] + αR̂−1
uu [n + 1]u[n]uH [n]R̂−1

uu [n] . (3.110)

This equation is further multiple by u[n] and 1
α ,

1
α
R̂−1

uu [n]u[n] =
1− α

α
R̂−1

uu [n + 1]u[n] + R̂−1
uu [n + 1]u[n]uH [n]R̂−1

uu [n]u[n]

= R̂−1
uu [n + 1]u[n]

(
1− α

α
+ uH [n]R̂−1

uu [n]u[n]
)

. (3.111)

Thereafter, multiplication to both side by uH [n]R̂−1
uu [n] attains,

1
α
R̂−1

uu [n]u[n]uH [n]R̂−1
uu [n] = R̂−1

uu [n + 1]u[n]uH [n]R̂−1
uu [n]

(
1− α

α
+ uH [n]R̂−1

uu [n]u[n]
)

,

1
αR̂−1

uu [n]u[n]uH [n]R̂−1
uu [n](

1−α
α + uH [n]R̂−1

uu [n]u[n]
) = R̂−1

uu [n]u[n]uH [n]R̂−1
uu [n] . (3.112)
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Substituting (3.110) for the right side of (3.112),

1
αR̂−1

uu [n]u[n]uH [n]R̂−1
uu [n](

1−α
α + uH [n]R̂−1

uu [n]u[n]
) =

1
α
R̂−1

uu [n]− 1− α

α
R̂−1

uu [n + 1] , (3.113)

and rearranging, we have,

R̂−1
uu [n + 1] =

1
1− α

[
R̂−1

uu [n]− R̂−1
uu [n]u[n]uH [n]R̂−1

uu [n]
1−α

α + uH [n]R̂−1
uu [n]u[n]

]
. (3.114)

Finally, we now have (3.114) an iterative procedure for computing R̂−1
uu in (3.108).

Having discussed the Gauss Newton algorithm, we adapt it into the nbOS-GSC beamformer with
the aim of achieving faster convergence speed. In accordance with (3.93), the narrowband overlap-
save blocking matrix Ca,fd is of dimension 2L× 2L(M − r), multiplying against the permuted data
matrix Γ̂[n] (3.97) gives the output,

UH [n] = CH
a,fdΓ̂

H
[n]

=




u0 0
. . .

0 u2L−1


 , (3.115)

whereby ul ∈M−r×1 is the data matrix for individual bins that are fed directly into the adaptive
block, for this case, the Gauss Newton algorithm.

To compute the inverse covariance matrix R̂−1
uu [n], equation (3.114) must be modified slightly,

allowing the inverse covariance matrix to be approximated for each bin,

R̂−1
l [n + 1] =

1
1− α

[
R̂−1

l [n]− R̂−1
l [n]ul[n]uH

l [n]R̂−1
l [n]

1−α
α + uH

l [n]R̂−1
l [n]ul[n]

]
. (3.116)

Thereafter, they placed in a matrix,

R̂−1
uu [n] =




R̂−1
0 [n] 0

. . .

0 R̂−1
2L−1[n]


 , (3.117)

which is then applied to the narrowband overlap-save update equation (3.100),

wa,fd[n + 1] = wa,fd[n] + µR̂−1
uu [n]CH

a,fd Γ̂
H

[n] e[n] . (3.118)

This is the main difference between the nbOS-GSC algorithm in Sec. 3.3.3.2 and the Gauss New-
ton based self-orthogonalising narrowband constraints overlap-save GSC (SnbOS-GSC), whereby
the addition information R̂−1

uu [n] is utilised to enhance the convergence speed of the overlap-save
beamformer at the expense of increased complexity.

3.4 Simulations and Results

This section will demonstrate and compare the performance of the various beamforming structures
discussed in this chapter. Performance measures employed for this assessment include both the
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convergence characteristic and the computational complexity. To start with, in Sec. 3.4.1, we
analysed the effects that narrowband interferers residing on frequency bins as well as off frequency
bins have on the IFB approach, and compare it against both the time domain and the subband
approaches. Thereafter, simulations on the novel overlap-save LCMV and GSC structures are
presented in Sec. 3.4.2. This aims to demonstrate the ability of these new techniques to resolve
broadband interference, whereby an optimal solution cannot be achieved through IFB processing. In
addition, the convergence behaviour of the various overlap-save structures is analysed. In Sec. 3.4.3,
the fastest converging overlap-save beamformer is compared against the subband implementation,
with a time domain GSC beamformer serving as a benchmark. Finally, the computational efficiency
of the different techniques are illustrated in Sec. 3.4.4.

3.4.1 Independent Frequency Bin DFT Implementations

The primary objective of this section is to determine the effects that narrowband interference have
on the direct DFT-based implementation, the subband method and the time domain approach.
An array with M = 4 linear uniformly spaced sensors followed by TDLs of length 64 are utilised
by all beamformers under test. For subband implementation, a filter bank with prototype length
Lp = 448, decomposing a signal into K = 16 subbands decimated by N = 14. The signal of interest
is at the array’s broadside, while 10 narrowband interferers of different frequencies impinge from
−20◦ at an SIR of −40 dB. Additionally, the array is corrupted by uncorrelated noise at an SNR
of 10 dB. Two different interference scenarios are considered.

Scenario 1. All interferers coincide with the frequency bins, i.e. at integer multiples of Ω = 2π/L.
The mean squared residual error (MSE), i.e. the beamformer output minus the signal of interest,
over an ensemble of 100 simulations is shown in Fig. 3.17. For the DFT-based independent bin
processing methods, the interferers sit on frequency bins and can be nulled out fast, and with a
single degree of freedom (DOF). In this case, the data covariance matrix at the blocking matrix
output is diagonal, and no approximation error is made by neglecting correlations between different
frequency bins. The sliding window method exhibits a much faster convergence compared to
blocking processing, as adaptive coefficients are updated after every samples rather than after
every block of L samples. By having GSCs processing each of the frequency bins, for the IFB
beamformer requires only one DOF for each bin where an interferer is present. The subband
method converges somewhat faster than the time domain approach due to the reduced bandwidth
and prewhitening achieved by the subband decomposition.

Scenario 2. In this case, all interferers are located at frequencies which are not bin frequencies
in the DFT and coincide with the overlap region of the filter banks used for subband processing.
As can be seen in Fig. 3.18, the time domain algorithm is unaffected by the spectral relocation of
the interferers. In the oversampled and therefore redundant subband scheme each interferer will
appear in the two subbands sharing the overlap region, and two DOFs are required to suppress
each rank-one interferer [25] — one DOF in each of the two subbands. Since the order of the
subband beamformer is large enough to provide the DOFs, the convergence characteristic is not
substantially different from Fig. 3.17. For the DFT-based approaches, block processing and sliding
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Fig. 3.17: Learning curves for Scenario 1.

window methods does not converge as they neglect the correlations between frequency bins. For
a single narrowband interferer, due to spectral leakage the beamformer has to suppress a signal
component in every frequency bin. Therefore, an interferer for narrowband processing takes up
all temporal DOFs, and with M = 4 and only a broadside constraint, a maximum of M − 1 = 3
narrowband interferers can be suppressed perfectly. Since the number of interferers in Scenario 2
exceeds this limit, only a very modest level of interference cancellation can be achieved.
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Fig. 3.18: Learning curves for Scenario 2.

3.4.2 Overlap-Save Comparisons

The IFB beamforming approach especially, the block processing technique is thought to be compu-
tationally optimal. Therefore, retaining this computational advantage while giving the DFT-based
beamformer the ability to resolve broadband interference, i.e interferers that can have components
sitting off the frequency bins, has given rise to overlap-save beamforming structures. The first set
of simulations attempts to determine the effectiveness of the rigorously derived overlap-save GSC
and the equivalent Frost beamforming structure in solving the broadband problem. The simulation
scenario is as follows: both beamformers deploys M = 4 sensors with TDLs of length 2L = 32 at-
tached to each individual sensor. A broadband source of interest arrives from broadside, corrupted
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by a broadband interference that impinges onto the array from an angle 20◦ off broadside. The
signal-to-interferer ratio is −34 dB. Both broadband sources are restricted to a normalised range
of Ω = [0.2π; 0.8π]. In addition, the sensor signals are further corrupted by uncorrelated noise at
10 dB SNR. Departing from the normal use of the NLMS adaptive algorithm in the GSC, the LMS
algorithm is utilised to ensure a fair comparison with the Frost setup. This is due to the fact that no
normalisation of step-size µ is undertaken within the constrained adaptive beamforming algorithm.
The step-sizes chosen for both overlap-save algorithms are similar to ensure same steady-state error.
As depicted in Fig. 3.19 over an ensemble of 100 iterations, both beamforming structures exhibit
exactly the same convergence characteristic. This mirrors that of the time domain comparison in
Fig. 2.19.
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Fig. 3.19: Overlap-save Frost and GSC comparison.

From the derived overlap-save GSC (OS-GSC) beamformer, subsequent modifications were ap-
plied in order to improve the convergence speed and reduce the computational complexity. This
include having a blocking matrix that reduces the eigenvalue-spread of the covariance matrix as
discussed in Sec. 3.3.3.1, therefore, enabling the modified overlap-save (mOS-GSC) beamformer to
converge at a faster rate. Improvement to the computational efficiency was achieved by suitable
approximation, which enables the used of narrowband constraints to solve a broadband beam-
forming problem. This is known as the narrowband overlap-save GSC (nOS-GSC) beamformer,
as detailed in Sec. 3.3.3.2. To improve the adaption rate of the nbOS-GSC, a self-orthogonalising
component, as described in Sec. 3.3.4 was added into the adaptive algorithm, resulting in the
the self-orthogonalising nbOS-GSC (SnbOS-GSC) beamformer. Simulations for these overlap-save
beamformers were carried out with M = 4 sensors and TDL length 2L = 32, comparing it against
a time domain GSC implementation having the same number of sensors but TDL length L = 16.
The signal of interest impinges onto the array from broadside with an interferer having, as before
an SIR of −34 dB at 20◦ off broadside and covering a frequency range Ω ∈ [0.125π; 0.875π]. The
array data is further corrupted by additive white Gaussian noise at 10 dB SNR.

Results as depicted in Fig. 3.20 indicate that the OS-GSC beamformer mitigates the problem
of non-convergence faced by the original DFT-based implementation. However, due to the large
dynamic range in the excitation across various frequency bins caused by spectral leakage, conver-
gence is slow. With the mOS-GSC beamformer, significant improvement in convergence speed is
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Fig. 3.20: Learning curves of different overlap-save beamforming implementations.

attained, making it comparable to the time domain structure. The nbOS-GSC beamformer ex-
hibits the ability to converge to a satisfactory MSE for a broadband scenario, while having an
adaption speed comparable to the OS-GSC beamformer. By implementing the self-orthogonalising
component on the nbOS-GSC structure, an improvement in convergence speed for the SnbOS-GSC
is clearly visible from Fig. 3.20.

3.4.3 Subband Comparison

Next, the fastest converging overlap-save beamformer, the modified overlap-save GSC is compared
against the subband and the time domain implementations. For all beamformers, a uniformly
spaced linear array with M = 4 sensors is utilised. Temporal dimension of the time domain
beamformer is set to L = 64 while the mOS-GSC has filter coefficients of length 2L = 128. Doubling
in temporal dimension for the overlap-save technique is required, because only half the data output
from the beamformer is useful while the rest must be discarded in order to implement a linear
convolution with a filter length of L. Meanwhile, the subband beamformer utilises a prototype
filter of length Lp = 448 that decomposes a broadband signal into K = 16 complex value subband
signals decimated by N = 14. The subband based beamformer is set to a filter length LSAB = 38,
approximated according to the decimated temporal dimension of the time domain implementation
L
N and the length of the decimated prototype filter Lp

N .

The simulation scenario has the signal of interest arriving from broadside with broadband inter-
ferers impinging onto the array from 20◦. The signal to interference ratio is −33 dB SIR. Further,
independent and identically distributed white Gaussian noise is added to the sensor at an SNR of
10 dB. Both the source and the interference are active over the normalised angular frequency range
of Ω = {0.125π; 0.875π}. It should be noted that as the input signal is of real value, only K/2
subbands are required.

The learning characteristics of the three different beamforming structures are characterised in
Fig. 3.21. The subband technique converges much faster compared to both the time domain and the
overlap-save implementations. This can be attributed to the pre-whitening effect of the subband
decomposition. The modified overlap-save beamformer converges at roughly the same speed as the
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Fig. 3.21: Learning curves of mOS-GSC, subband and time domain beamformers.

time domain approach, due to blocking processing. However, it does presents large computational
savings as compared to both subband and the time domain beamformer. Issues with regards to
the computational efficiency of the various beamformers will be discussed in the next section.

3.4.4 Complexity Issues

In our context, the computational complexity of the GSC beamformer is of great concern and
the primary aim is to find low-complexity implementations. As the computational complexity
of the beamforming technique is also dependent on the processor, either fixed point or floating
processors, we here only consider the number of multiplications in each step as an indication of the
computational complexity of the various beamforming structures.

The IFB DFT-based GSC beamformer comes in two structures namely the sliding window and
block processing, and their computational cost can be found in Tab. 3.2 and Tab. 3.1. The subband
GSC beamformer has its cost detailed in Sec. 3.2.4, while the overlap-save GSC and the overlap-save
Frost implementation have their computational cost tabulated in Tab. 3.3 and Tab. 3.4 respectively.
The mOS-GSC has a complexity similar to that of the OS-GSC with the exception of a larger r,
and the multiple accumulates of the nbOS-GSC beamformer can be found in Tab. 3.5. Based on
the above, the computational efficiency of the beamformers were examined, with Fig. 3.22 depicting
the MACs of the beamformers plotted against temporal dimension over the range L ∈ [1 : 10000],
where M = 10 is the number of sensor elements utilised

As expected for large L the time domain beamformer is most costly, with the DFT-block process-
ing beamformer incurring the least computational cost. Amongst the overlap-save beamformers,
nbOS-GSC is most efficient while the OS-GSC is most computationally intensive. For small L,
time domain is a cheaper alternative compare to the subband processor, this can be attributed to
initial cost of implementing the oversampled filter bank.
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3.5 Discussion

In this chapter, we have sought alternative techniques to overcome the high computational cost
associated with broadband beamforming. The use of independent frequency bin DFT-based im-
plementations proofed to be computationally most efficient. However, its drawback is the inability
to converge to the optimal time domain MSE solution if interferers do not coincide exactly with
frequency bins, creating an often unworkable worst case error. Subband beamforming avoids the
problem faced by the IFB implementation with the use of oversampled filter banks with better
frequency selectivity, thereby reducing the sidelobe level affecting adjacent bands. The proposed
overlap-save techniques mitigate the problem of non-convergence, and can be implemented at a
considerably lower cost compared to the time domain beamformer. However, their convergence
speed is generally poor, as indicated in Fig. 3.20, with the fastest overlap-save beamformer, i.e. the
mOS-GSC, having an adaptation rate only comparable to the time domain method. This is consid-
erably slower compared to subband processing, thus making the subband approach an attractive
alternative if the rate of adaptation is critical to an application. The other advantage for subband
beamforming is the lower computational cost compared to the time domain implementation.

The next chapter will address the problem of non-uniform resolution encountered by broadband
beamformers having equispaced linear array. Solutions to limit this variation in the context of
both frequency-domain and subband beamforming techniques are present, ensuring near uniform
resolution across the entire operating beamwidth. This requirement may be essential to certain
applications such as audio acquisition with microphone arrays.
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Chapter 4

Frequency Invariant Beamformer

In certain beamforming applications, mainly in the area of acoustics, it is desirable to have uniform
resolution across the entire operating spectrum [107, 108, 109]. This could not be achieved if a uni-
form sensor array is utilised, since for an array with fixed aperture spatial resolution is proportional
to frequency [107]. The resulting differences in spatial resolution may not be obvious when the op-
erating spectrum is narrowband. However, for broadband signal spanning a few octaves, this may
prove detrimental. To mitigate this problem, various frequency invariant beamformers have been
proposed in the past [108, 36, 41]. These are generally used in speech and audio acquisition with
microphone arrays, where a uniform spatial resolution across a wide band of frequencies, generally
spanning several octaves, may be desired.

Various approaches have been suggested to achieve frequency invariant or near frequency invari-
ant characteristics for broadband beamforming. One of the earliest recommendations is to limit
the beamformer’s operation to an octave frequency interval [86, 110]. Alternative suggestions in-
clude the use of a non-uniformly spaced array which may be obtained by judiciously thinning an
uniformly spaced sensor arrangement [36, 46], the application of focusing matrices that transform
data in each bin to a reference frequency bin [44, 45], as well as the use of dilation filters at the
array elements before weighting [41]. Another recommendation is the implementation of harmonic
nesting, whereby the sensor array is composed of a set of nested subarrays, each of which operates
within a single octave [40, 111]. Therefore this approach reduces the extend of beamwidth varia-
tion to within an octave as demanded in [86, 110]. To further improve spatial variation within an
octave, frequency bin dependent tapering can be applied, which leads to a broadband beamformer
having constant beamwidth [40, 39, 41, 43]. The tapering process can be carried out directly on
individual frequency bins [40, 43] or by the use of appropriately designed lowpass filters in the time
domain [39, 41].

In this chapter, we seek to incorporate frequency invariant behaviour into the various compu-
tationally efficient broadband adaptive beamformers proposed in the previous chapter. The aim
is to develop new beamforming structures that are to be both computationally viable for current
embedded system implementation as well as possess frequency invariance. For subband based
beamformers, we attempt to realise a near uniform beamwidth across the operation spectrum by
utilising harmonically nested arrays with scaled aperture. This will enable the scaled aperture
subband beamformer to have octave invariant resolution. For the direct DFT and the overlap-save
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beamformers, apart from the use of harmonic nesting, spatial tapering will be applied such that
even within an octave,uniform resolution can be achieved [40].

This chapter is organised as follows, Sec. 4.1 discusses the use of harmonic nesting array to over-
come variation of spatial resolution in a broadband scenario. Spatial tapering, which attempts to
model a particular beampattern by introducing different weighting to the sensors for each frequency
bin, within an octave is introduced in Sec. 4.2. This is first implemented in conjunction with a data
independent beamformer, such as e.g. a delay and sum beamformer. To allow adaptive nulling of
interference, Sec. 4.3 proposes a subband scaled aperture beamformer based on the previously dis-
cussed subband structure in Sec. 3.2.4. This beamformer has the ability to restrict spatial variation
to within a single octave, while performing interference and noise cancellation as required. Based
on the spatial tapering methodology, a frequency invariant direct DFT beamformer is derived in
Sec. 4.4 based of the beamforming technique of Sec. 3.1.1. A similar implementation based on the
overlap-save technique 3.3 ia also proposed, allowing the beamformer to achieve frequency invari-
ancy. Simulation results to verify the performance of individual beamformers are found in Sec. 4.5,
while conclusions are drawn in Sec. 4.6.

4.1 Harmonic Nesting

In many cases the signals impinging onto an array cover a width bandwidth, speech and sonar
signals, for example, typically cover several octaves. When using a beamformer to discriminate
between broadband signals, it is desirable to have constant spatial resolution over the bandwidth of
interest. An example is speech acquisition with a microphone array, in which several speech signals
may be received by the array, but only one should be passed by the beamformer. Beamwidth
variation would cause distortion to the desired signal, if the angle of arrival from the different
signals are near to one another.

Linear uniformly spaced array broadband beamformers are unable to resolve this as spatial
resolution is frequency dependent. Apart from proportionally related to the frequency of the
target signal, it also follows a similar relationship with the size of the array’s aperture [42, 40].
Thus, spatial resolution of a fixed aperture array would decreases with frequency. This effect is
indicated by the directivity pattern, recording the beamformer’s gain |A(Ω, ϑ)| in dependency of
the normalised angular frequency Ω and DOA ϑ, as is shown in Fig. 4.1. A wider beamwidth is
clearly noticeable at lower frequencies, which translates to poorer resolution at lower frequencies.
Additionally, it can be seen in Fig. 4.1 that spatial resolution is not constant across the entire
operating spectrum.

The most common solution to mitigate the problem of poor resolution at low frequencies is
to increase the size of the aperture. By doing so, the number of sensors utilised will increase
as a minimum distance between adjacent sensors must be maintained. This is to prevent spatial
aliasing. The minimum distance is governed by the smallest wavelength — and therefore the highest
frequency component — of the broadband signal, and must be kept at least half a wavelength apart.
Recall that taking at least two spatial samples per wavelength is analogous to temporal sampling
according to the Nyquist theorem. This results not only in poor resolution at low frequencies when
the aperture is small, but also in a large number of sensors to satisfy the spatial Nyquist condition
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Fig. 4.1: Directivity pattern of beamformer with fixed aperture.

if the aperture is selected to be large.

Increasing the aperture size helps to improve spatial resolution across the entire operating spec-
trum, but does not address the variation of resolution within the spectrum. A common solution
to this problem is the use of a harmonic nested array [39]. The harmonic nesting approach can
cover a large frequency range with several sets of subarrays, each covering an octave. Each set
of the subarray have their sensors equally spaced, whereby subarrays covering higher frequencies
have sensors spaced closed to each other. This technique reduces a broadband problem to a set
of octaves beamforming problems, where beamwidth variation is restricted within an octave. As
shown in Fig. 4.2, for the case of a broadband beamformer spanning three octaves, a more uniform
resolution is achieved compared to the fixed aperture beamformer 4.1.

The harmonic nesting structure allows different sensor spacing for individual subarray. That is,
rather than having sensor spacing governed by the highest frequency in the operating spectrum,
it is now restricted to the highest frequency within an octave. The higher frequency bands are
fed from subarray with closely spaced sensors of small aperture while low frequency bands operate
on a wider spaced array [40]. In fact, aperture of the subarray doubles (halves) with respect to
the next lower (higher) octave band. The sensor count of this array is logarithmical rather than
linearly related to the ratio of highest to lowest operating frequencies, enhancing computational
complexity. This structure will be closer examined in Sec. 4.3. It should be noted that harmonic
nesting and scaled aperture refers to similar structure.

The harmonically nested structure exhibits octave-invariant behaviour. However, it is still fre-
quency dependent within each octave. To further enhance uniformity of the resolution, additional
processing is required. This can be performed by spatial tapering, whereby at higher frequen-
cies, sensor elements close to the array’s end are deemphasized [43]. The next section will discuss
the implementation of spatial tapering which results in a constant beamwidth data independent
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Fig. 4.2: Directivity pattern of a harmonic nesting beamformer spanning three octaves.

beamformer.

4.2 Data Independent Constant Beamwidth Beamformer

The solution that ensures constant beamwidth across a wide spectrum for a data independent
beamformer combines harmonic nesting with spatial tapering [39, 40, 41, 43]. The harmonic nesting
methodology reduces a broadband beamforming problem to a set of octave based problems, with
each octave having a different aperture. The directivity pattern of the octave invariant beamformer
is shown in Fig. 4.2, whereby spatial variation within each octave is still visible. To mitigate
this problem, frequency dependent weighting is applied to the sensors. These weighted sensors
allow a beamformer to achieve constant beamwidth across an octave. Thus, the combination of
harmonic nesting and frequency dependent weighted sensors would achieve constant beamwidth
over a broadband operating scenario covering several octaves.

Constraining the discussion to all processing within an octave, spatial tapering, as reported
in [40, 43] is based on extending the poorest spatial resolution, i.e. the array’s largest beamwidth
at the lowest frequency bin within the considered octave. As a result a beamformer with uniform
resolution can be expected to have poorer resolution compared to an untapered beamformer. For
a linear array with M uniformly spaced sensors, the rectangular aperture r[m] of width (M − 1)d
corresponds to a periodic sinc function R(α) •—◦ r[m] in beamspace [43], given by,

R(α) =
1
M

sin(π(M−1)d
λl

α)

sin(πd
λl

α)
, (4.1)

where λl represents the wavelength of the lowest frequency (longest wavelength) component within
the octave, d is the distance between adjacent sensors. As mention previously, to avoid spatial
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Fig. 4.3: Spatial weighting for the: (a) lowest frequency and (b) highest frequency bin within the
octave.

aliasing d must be kept at least half a wavelength of the highest frequency λu. In addition, knowing
the relation between the longest wavelength and the shortest wavelength within an octave is λu =
1
2λl, the distance d can effectively be written as 1

4λl. This simplifies (4.1) to,

R(α) =
1
M

sin(πM
4 α)

sin(π
4 α)

. (4.2)

According to the scaling property of the Fourier transform [67], scaling the aperture r[mf̃ ] by a
factor f̃ leads to a Fourier transform 1

|f̃ |R(α/f̃) •—◦ r[mf̃ ]. By sampling the beamspace at M

spatial frequencies with index k,

R[k, l] = R(
α

f̃l

)|α=αk
with αk =

k

Md
, (4.3)

with k = 0, 1, . . . (M − 1) and the frequency index l = 0, 1, . . . (L − 1), the resulting aperture
is inversely proportional to the frequency f̃l, with L being the length of the beamformer’s TDL.
Applying an inverse DFT to the spatial dimension of R[k, l] yields a spatial weighting of the
sensors for each of the L frequency bins. As illustrated in Fig. 4.3(b), at the higher frequencies, the
weighting of sensors close to the array’s end position are deemphasized. For the lowest frequency
bin, the weighting assigned to all sensors, as shown in Fig. 4.3(a) are almost similar. This assignment
helps to maintain a constant beamwidth across the octave.

Based on the combination of harmonic nesting and spatial weighting, a frequency invariant envi-
ronment is created for a broadband data independent beamformers that can span multiple octaves.
This is demonstrated by the directivity pattern in Fig. 4.4. However, a frequency invariant beam-
former does not have the ability to adaptively null out interference that impinges onto the sensor
array. This may lead to poor reception of the desired signal. In order to overcome this limitation,
an approach that incorporates the frequency invariant characteristic into the generalised sidelobe
canceller, achieving the dual benefits of maintaining constant resolution across the operating spec-
trum while placing nulls at directions of the interference is proposed in Sec. 4.4. Before that, we
will discuss an octave invariant data dependent beamformer based on the subband beamforming
methodology.

85



0.2

0.4

0.6

0.8

1

−60
−40

−20
0

20
40

60

−60

−50

−40

−30

−20

−10

0

ϑ / °Ω / π

|A
(Ω

,ϑ
)|

 / 
[d

B
]

Fig. 4.4: Directivity pattern of a constant beamwidth data independent beamformer.

4.3 Subband Based Scaled Aperture Beamformer

In this section, we derive a generalised subband based scaled aperture (SSA) beamformer, exem-
plarily using the subband generalised sidelobe canceller (GSC) discussed in Sec. 3.2. This structure
is useful for broadband beamforming where near-constant spatial resolution over a wide range of
frequencies is desired. The derived beamformer also possesses the ability to adaptively null out
interference, a property that is absent in the data independent constant beamwidth beamformer of
Sec. 4.2. The generalised SSA beamformer decomposes broadband signals into subbands, which are
subsequently grouped into octave intervals. By drawing inputs from the sensors with a wider aper-
ture for the lower octave bands, an octave invariant resolution is achieved. Through simulations,
it is demonstrated that the SSA operates well across octave boundaries. Additionally, it attains
benefits of better convergence speed and a reduction in complexity when compared to the fullband
beamforming structure.

4.3.1 Structure

Subband based beamforming requires filter banks to decompose the broadband sensor signals by
means of analysis filter banks into K different frequency bands, which can operate at an N times
lower sampling rate due to their reduced bandwidth. However, for critical decimation, N = K,
spectral aliasing limits the performance of any processing in the subband domain, which can be
mitigated by taking inter-subband correlations explicitly into accounts when designing subband
based algorithms [94]. A simpler approach is to oversample subbands, i.e. decimate by a factor of
N < K [9], which can efficiently suppress aliasing and permit subbands to be processed indepen-
dently.
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Subband decompositions are performed by analysis filter banks such as those shown in Fig. 3.8,
consisting of a series of analysis filters ak[n], k = 0(1)K − 1, and decimation by a factor N .
Synthesis is achieved by upsampling by a factor of N followed by appropriate interpolation filters
sk[n]. For oversampled filter banks (OSFBs) with N < K, which are considered here, the filters
ak[n] and sk[n] can be efficiently designed and implemented based on the modulation of a single
prototype lowpass filter. In our work, we employ the generalised discrete Fourier transform (GDFT)
for modulation, which admits a straightforward design according to [99]. As an example, the
magnitude characteristics for Ak(ejΩ) ◦—• ak[n] of an OSFB with K = 16 and N = 14 using a
filter length of Lp = 448 coefficients is given in Fig. 4.5. The reconstruction error and aliasing level
in the subband domain can be controlled in the design, and both are approximately -55 dB for the
depicted prototype example.
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Fig. 4.5: Magnitude response of filter bank showing half of the bands covering the spectrum [0;π];
the octave grouping is indicated.

The block diagram of a standard subband beamformer processing fixed aperture array data is
shown in Fig. 3.12 [29, 112]. The analysis OSFBs, labelled A, decompose the broadband array
signals into subbands. Within each subband, an independent broadband beamformer, here exem-
plarily a GSC, is operated. The beamformer outputs form the basis of a reconstructed fullband
beamformer output by means of a synthesis OSFB denoted by S.

Different from the subband beamformer discussed in Sec. 3.2, the scaled aperture approach uses
a different aperture for each octave, i.e. progressively lower frequency octaves are processed by
progressively wider arrays. Considering the filter characteristic in Fig. 4.5, if input to the filter
bank is real valued, only the first K/2 = 8 subbands need to be processed, as the remaining bands
will only be complex conjugate and therefore redundant. From the depicted 8 subbands, three
octaves can be formed, containing subband #1, subbands #2 and #3, and subbands #4 to #7
respectively. The structure of an SSA beamformer spanning three octaves with M = 4 sensors per
octave is depicted in Fig. 4.6, whereby the array signal is drawn from a total of 8 nested sensors.
For the three octave groups of subband adaptive beamformers (here GSC), processor #1 operates
on the lowest frequency band and draws the signal from the largest aperture, processors #2 and #3
form the second octave, with the remaining four processors are responsible for the highest octave
band covered by four subbands. The aperture size for the three octave bands are D=3d, D=6d and
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D =12d respectively, with d being the distance between adjacent sensors satisfying the criteria to
avoid spatial aliasing within the octave. Note that the lowest band containing the non-steerable DC
component is omitted from operation. A graphical illustration detailing the utilisation of different
sensor elements for each octave is found in Fig. 4.7 – 4.9.
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Fig. 4.6: Proposed adaptive beamformer with scaled aperture.

As indicated in Figs. 4.7 – 4.9, the GSC beamformers for individual subbands are not required
to process all sensors. For example, only x0[n] , x4[n] , x6[n] and x7[n] contribute to GSC #1
operating at the lowest band, where the largest aperture is utilised. The use of a nested array is
clearly economical as sensors can be reused and be part of several subarrays, such as the sensor
signals x0[n] , x2[n] and x4[n] in the above example, which requires a total of Mtotal = 8 nested
array elements. If these sensor positions were extracted from a linear uniformly spaced array, it
would have to contain Muniform = 13 such elements before thinning.

4.3.2 Generalisation of Design

As a generalisation to the above example, it is straightforward to see that the sensor signals need
to be decomposed into,

K = 2F , (4.4)

uniform subbands in order to set up a subband beamformer which can resolve F octaves. Further
generalisation for Mtotal, which equates to the total number of sensors required for a scaled aperture
array, and Muniform, which represents the number of sensors required for an uniformly spaced linear
array can also be derived, with respect to the number of sensors operating in an octave M and the
total number of octaves F involved. Fig. 4.10 demonstrates two different combinations of M and
F in relation to Mtotal and Muniform. For both cases, the different sets of arrows represent data
extraction for individual octaves under the scaled aperture scenario. The total number of active
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Fig. 4.7: Processing of the highest octave of a scaled aperture beamformer with different apertures
per octave.
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Fig. 4.8: Processing of the second octave of a scaled aperture beamformer with different apertures
per octave.
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Fig. 4.9: Processing of the lowest octave of a scaled aperture beamformer with different apertures
per octave. The DC component is not processed.

sensors utilised for a scaled aperture beamformer equals to the sum of all the ”X” markers, while
the combination of ”X” and ”O” markers is the total number of sensor elements required for a
uniform array.
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Fig. 4.10: Sensor elements required for both scaled and uniformed aperture a predefine number
of octaves and the number of sensors with the octave.

An exhaustive search leads to Tab. 4.1, which shows that Mtotal and Muniform obey the formu-
lations,

Muniform = M +
[
(M − 1)(2(F−1) − 1)

]
, (4.5)
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XXXXXXXXXXXXXXOctave
M sensors

2 3 4 5

1 Muniform = 2 Muniform = 3 Muniform = 4 Muniform = 5
Mtotal = 2 Mtotal = 3 Mtotal = 4 Mtotal = 5

2 Muniform = 3 Muniform = 5 Muniform = 7 Muniform = 9
Mtotal = 3 Mtotal = 4 Mtotal = 6 Mtotal = 7

3 Muniform = 5 Muniform = 9 Muniform = 13 Muniform = 17
Mtotal = 4 Mtotal = 5 Mtotal = 8 Mtotal = 9

4 Muniform = 9 Muniform = 17 Muniform = 25 Muniform = 33
Mtotal = 5 Mtotal = 6 Mtotal = 10 Mtotal = 11

Tab. 4.1: Relationship between octaves and sensors.

and
Mtotal = b(M

2
)c(F + 1) + mod2(M) , (4.6)

where b·c is the floor operator and modn represents the modulo-n operation. With (4.5) and (4.6),
san SSA beamformer for any number of octaves having M number of sensor elements per octave
can be implemented by simply changing the parameters F and M . Note that K stated in (4.4) is
the minimum number of subbands required to resolve the desired number of octaves; employing an
integer multiple of this K is permissible and is likely to enjoy the advantages in terms of algorithmic
complexity and convergence speed of an adaptive algorithm, that are commonly associated with
subband adaptive filtering.

Three simulations were carried out to assess the effectiveness of the proposed generalised SSA
beamformer. The directivity patterns of the various SSA beamformers having different number of
sensors M and octaves F are depicted in Fig. 4.11. The number of octaves covered by each SSA
beamformer cab be easily observed. It can also be seen from Fig. 4.11 how a narrowing of the
aperture by decreasing the number of sensors from M = 30 to M = 15 and finally M = 11 reduces
the spatial resolution, which is evident form the widened main lobe at broadside.

The proposed SSA beamformer demonstrates the ability to maintain approximately constant
resolution across a wide frequency range. Poor resolution encountered by fixed aperture beam-
formers at low frequencies can be overcome by drawing sensors input from a nested array, such
that lower octaves correspond to an array of increased aperture. From Fig. 4.11, it can be seen
that the constraint is fulfilled across the octave band margins. It can be shown that the frequency
response function towards broadside has an error which is limited by the filter bank’s distortion
function. In additional, subband based scaled aperture scheme inherits the low computational
complexity of general subband approaches.

4.4 Data Dependent Constant Beamwidth Beamformer

The methodology of achieving a constant beamwidth beamformer by decomposing the broadband
signal into frequency bins, which are subsequently grouped into octaves and tapered individually has
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Fig. 4.11: Directivity patterns of subband beamformer with scaled aperture (a) M = 30, F = 2
(b) M = 15, F = 3 (c) M = 11, F = 4.
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been detailed in Sec. 4.2. Further incorporation of the GSC allows adaptive nulling of the interfer-
ence while attaining uniform resolution across the spectrum. In the following Sec. 4.4.1, the general
structure of a constant beamwidth GSC beamformer is presented. Thereafter, Sec. 4.4.2 describes
the mechanism that allows to incorporate spatial tapering to the direct DFT GSC beamformer,
thereby achieving frequency invariant property. Similar integration to the mOS-GSC beamformer
and the nbOS-GSC beamformer, whereby the former is derived from the direct realization of a
broadband beamformer, while the latter is formulated based on certain suitable approximation of
the overlap-save covariance matrix, are discussed in Sec. 4.4.3 and Sec. 4.4.4 respectively.

4.4.1 Structure

The implementation of a DFT-based frequency invariant GSC beamformer is somewhat similar
to the SSA approach, and is based on the inclusion of weighted sensor signal. This technique
starts with decomposing broadband signals that impinge onto the sensor array into frequency bins,
utilising the discrete Fourier transform. Thereafter, we are subdividing them into frequency bands
that span no more than an octave. For each octave, sensor signals are extracted from different
apertures of a non-uniformly spaced array, whereby higher frequency bands will be fed from closely
spaced sensor forming a small aperture, while low frequency bands operate on wider spaced array
with larger aperture. The frequency bins in each octave are subsequently tapered according to the
weighting computed in (4.2), enabling the beamformer to achieve frequency invariant response. A
constant beamwidth structure which decomposes a broadband signal into two octaves is depicted
in Fig. 4.12, with beamformer #1 processing signal of the higher octave and #2 processing signal
of the lower band. Each beamformer utilised M = 5 sensor elements with d being the distance
between adjacent sensors. Spatial tapering, i.e. the weighting assigned to the sensors for individual
frequency bin to achieve constant beamwidth is denoted by Ψ.

The effect of spatial tapering is illustrated in Fig. 4.13 for the case of a broadband beamformer
with two octaves and M = 11 sensors per octave. If the sensors have uniform weighting a constant
beamwidth due to tapering can be observed for each octave, see Fig. 4.13(a). To enhance the
uniformity of spatial resolution, signals from individual frequency bins are assigned different weight
factors, Ψ in accordance with the sensors’ positions. These weights emulate a specific beampattern
and ensure constant beamwidth is maintained, as shown in Fig. 4.13(b). DFT-based GSC beam-
formers then process each frequency bin separately in an attempt to null out interfering signals
while preserving the signal of interest.

4.4.2 Frequency Invariant direct DFT-based GSC (FIdft-GSC)

The proposed frequency invariant beamformer incorporates spatial tapering into the independent
frequency bin processing GSC discussed in Sec. 3.1. For this frequency invariant IFB-based GSC
(FIdft-GSC), the independent frequency bins are grouped into octaves, whereby the lowest portion
of the spectrum containing the non-steerable DC component is neglected. Each octave group of
frequency bins is fed by a fixed aperture array; however, going from one octave to the next lower
octave, the array aperture is doubled using a structure akin to the SSA beamformer.

For complex array data and a DFT length of 32, we can extract the highest octave by considering
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Fig. 4.13: A broadband beamformer covering two octaves: (a) scaled aperture with uniform sensor
weighting; (b) scaled aperture with spatial tapering.
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the upper 16 frequency bins. These may be used to process an array of M = 11 sensors with a
sensor spacing d, thus processing an aperture of 10d. The next octave is formed by the next
lower 8 frequency bins, which are also drawing array data from M = 11 sensor, whereby these are
now spaced 2d apart providing a double aperture of 20d. The distance d would be selected such
that spatial aliasing is avoided. Since frequency bins are assumed to be independent, no special
processing will be required at the octave boundaries.

Within an octave, spatial tapering is performed by assigning different sets of weights to the
sensors in accordance to their respective bins. These weights are calculated as described in Sec. 4.2.
The resulting structure is a frequency invariant beamformer having uniform spatial resolution across
the operating spectrum. For this GSC beamformer to effectively null out interferers while preserving
the signal of interest, modifications to the constraint equation of the standard GSC is required to
account for the frequency-dependent weighting applied to the sensors. This will be addressed below.

The formulation of the FIdft-GSC starts with the definition of the sensor array data

x[n] =
[
x0[n]T x1[n]T · · · xMtotal−1[n]T

]T with (4.7)

xm[n] =
[
xm[n] xm[n− 1] · · · xm[n− L + 1]

]T
,

where Mtotal is the total number of sensors required for a scaled aperture frequency invariant
beamformer. The application of a DFT matrix T̃dft, followed by the permutation matrix Pmut

(3.5),

xfd[n] = Pmut ·
[
T̃dft · x[n]

]
︸ ︷︷ ︸

x[n]

, (4.8)

decomposes the time domain signal into frequency bins. The permutation matrix re-arranges the
DFT-domain array data in terms of frequency bins, i.e. spatial samples from the same frequency
bin will be grouped together.

xfd[n] =
[
xl[n]T xl[n− 1]T · · · xl[n− L + 1]T

]T with (4.9)

xl[n] =
[
x0[n] x1[n] · · · xMtotal−1[n]

]T
.

For an individual octave, the frequency invariant beamformer does not utilise all Mtotal sensors, as
only signal from the required M elements are extracted. This is done by a methodology similar to
the SSA beamformer discussed in Sec. 4.3.2 and the extracted M elements are given as

x̂fd[n] =
[
xl[n]T xl[n− 1]T · · · xl[n− L + 1]T

]T with (4.10)

xl[n] =
[
x0[n] x1[n] · · · xM−1[n]

]T
.

Limiting to an octave, we extract an octave section x̂fd,L̂[n] ∈ CML̂ from x̂fd[n] ∈ CML, whereby
the considered octave has a support of L̂ < L frequency bins. This output is then weighted

x̃fd,L̂[n] = ΨL̂ · x̂fd,L̂[n] , (4.11)

where ΨL̂ ∈ CML̂×ML̂ is the weighting computed according to Sec. 4.2, and has the form of

ΨL̂ =




Ψ0 0 . . . 0
0 Ψ1 . . . 0
...

...
. . .

...
0 0 . . . ΨL̂−1




, (4.12)
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with

Ψl =




Ψ0[l] 0 . . . 0
0 Ψ1[l] . . . 0
...

...
. . .

...
0 0 . . . ΨM−1[l]




. (4.13)

After the weighted process, all octaves are concatenated, resulting in x̃fd[n] ∈ CML

As the FIdft-GSC beamformer assumes zero correlation between frequency bins, the narrowband
constraints detailed in Sec. 3.1.2 are utilised. However, modification to the constraint equation is
necessary to account for the weighting given to the sensors at individual bin. This will enable
the signal of interest to pass through the beamformer with the desired gain. Given that the
constraining vector of the uniformly weighted sensors is cl ∈ CM , the FIdft-GSC requires this
vector to be multiplied by the frequency dependent weighting,

c̃ =




Ψ0 0 . . . 0
0 Ψ1 . . . 0
...

...
. . .

...
0 0 . . . ΨM−1




cl . (4.14)

The new blocking matrix, computed from the modified constraint vector via SVD is C̃a,l ∈ CM×M−r.
This matrix only covers a single frequency bin. In order for the blocking matrix to be effective
across the entire operating spectrum, weighting that corresponds to the sensors’ tapering must be
applied to the constraining vector for each bin and subsequently computed. Thereafter, placing
all the narrowband blocking matrices together, a broadband blocking matrix of L frequency bins
covering all octaves can be written as

C̃a,fd =




C̃a,0 0
. . .

0 C̃a,L−1


 , (4.15)

where C̃a,fd ∈ CML×(M−r)L. Since this frequency invariant beamformer utilises the GSC, following
the beamforming structure of Fig. 2.10(c), output of the blocking matrix is denoted by,

ũfd[n] = C̃
H
a,fd · x̃fd[n] . (4.16)

Subsequently, ũfd[n] ∈ C(M−r)L is multiplied by the adaptive filter coefficients Wa,fd[n] ∈ C(M−r)L×L.
This results in

ỹ[n] = WH
a,fd[n] · ũfd[n] . (4.17)

The quiescent matrix of the FIdft-GSC beamformer operating with L frequency bins is,

W̃c,fd =




w̃c,0 0
. . .

0 w̃c,L−1


 ∈ CML×L , (4.18)
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with w̃c,l ∈ CM representing the quiescent vector of the lth frequency bin. Thus, from Fig. 2.10(c),
the output of the quiescent matrix becomes,

d[n] = W̃
H
c,fd · x̃fd[n] . (4.19)

Similar to the blocking matrix, the quiescent vectors are computed using the modified constraints 4.14.
The computation of both the blocking matrix and the quiescent vector for individual bin follows
that of Tab. 3.1. In fact, if the LMS algorithm is utilised for adaptation, mathematical formulation
of the FIdft-GSC beamformer is almost similar to those found in Tab. 3.1, under the assumption
that the selection of sensors from where the signal are drawn has already been done. Only a slight
change of the input signal (4.11) and the constraining vector (4.14) are required to account for the
spatial tapering which is used to achieve frequency invariance.

This derived FIdft-GSC beamformer has the ability to maintain a uniform resolution across
a wide spectrum as well as to perform adaptive suppression of interference. However, due to
independent bin assumption, only when interferers coincide with frequency bins, this beamformer
have the ability to converge to a satisfactory solution. When there is interference, this IFB-
based beamforming structure is deemed to be ineffective (Sec. 3.4.1). This shortfall motivates
the integration of spatial tapering into the overlap-save beamformers, for which previous analysis
and simulations have demonstrate the ability of achieving time domain optimality, i.e. correctly
addressing narrowband interferers not located on the frequency bins as well as wideband signals.

4.4.3 Frequency Invariant mOS-GSC (FImOS-GSC)

The overlap-save GSC discussed in Sec. 3.3.2 is a block processing beamformer that utilise a 2L point
DFT to mitigate the problem associated with circular convolution. This DFT-based beamformer
has an error output vector e[n] given by,

e[n] = Tdft

[
0

e[n]

]

= Tdft

[
0 0
0 I

]
TH

dft

︸ ︷︷ ︸
G

Tdft

[
v

e[n]

]

= G
Mtotal−1∑

m=0

Tdft

[
X̂H

m[n] XH
m[n]

XH
m[n] X̂H

m[n]

]
TH

dftTdft

[
wm

0

]

= G
Mtotal−1∑

m=0

Γm[n]wm = G Γ[n] w , (4.20)

Due to the scaled aperture architecture, this beamformer draws its input from a total of Mtotal

sensors rather than utilising only the M sensors required in (3.67). This also implies that the
input signal Γ[n] has a dimension of 2L× 2MtotalL, which may be considerably larger than the M

sensors utilised in a standard uniformly spaced linear array. However, not all of the Mtotal sensors
are required when processing individual octave, as only M sensor signals are utilised per octave.
Therefore, after completion of the discrete Fourier transform on the Mtotal input signal, a matrix
Γ̌[n] ∈ C2L̂×2ML̂ is created to hold signal components that contribute towards an octave, whereby
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L̂ < L frequency bins are utilised. For each octave spatial tapering is applied to Γ̌m[n] ∈ C2L̂×2L̂

for all the 2L̂ bins,

Γ̃m[n] =




Ψ0 0 . . . 0
0 Ψ1 . . . 0
...

...
. . .

...
0 0 . . . Ψ2L̂−1




︸ ︷︷ ︸
Ψm

Γ̌m[n] , (4.21)

where the diagonal matrix Ψm contains the weighted coefficients of the mth sensor covering 2L̂
frequency bins and Γ̌m[n] is the data from the mth element. Concatenating the M sensors signals
that contribute towards different octave gives Γ̃ ∈ C2L×2ML. Thus, the error output of the FImOS-
GSC beamformer is attained by replacing Γ[n] with Γ̃[n] of (4.20).

The constraint equation of the modified overlap-save GSC beamformer from Sec. 3.3.3.1, is given
as,

M−1∑

m=0

[
CH

m 0
0 ĈH

m

]
TH

︸ ︷︷ ︸
Cm

T

[
wm

0

]

︸ ︷︷ ︸
wm

=

[
f
f̂

]
, (4.22)

where CH
m ∈ CL×L and f̂ ∈ CL×1 are appropriately selected to increase the number of independent

linear constraints. Since the input signal of the FImOS-GSC beamformer, depicted in Fig. 4.14,
has been weighted, the constraints Cm must reflect similar weighting to ensure that Ca blocks the
correct signal of interest (SOI) while wc passes the desired signal protected by the constraints.
Therefore, the new constraint matrix becomes,

C̃m = ΨmCm , (4.23)

with the full constraint equation given as,

C̃ = [C̃
H
0 C̃

H
1 · · · C̃

H
M−1]

H . (4.24)

The blocking matrix Ca can be derived from the nullspace of C̃H by means of an SVD, and the
quiescent vector wc by pseudo-inversion of C̃H , both with respect to f̂ .

From (4.20), the FI-OS GSC beamformer output is given by,

e[n] = G Γ̃[n] wc −Cawa . (4.25)

Analogously to the time domain LMS algorithm [73], by using the instantaneous squared error as
a cost function ξ = eH [n]e[n], a stochastic gradient is obtained as,

∇̂ξ =
∂ξ

∂w∗
a

=
∂ξ

∂w∗
a

(
(wc −Cawa)

HΓ̃
H

[n]GHGΓ̃[n](wc −Cawa)
)

= −CH
a Γ̃

H
[n]e[n] , (4.26)

where GHG = G is exploited. The update equation for wa can thus be written as

wa[n + 1] = wa[n] + µCH
a Γ̃

H
[n]e[n] . (4.27)

This is similar to the overlap-save GSC beamformer algorithm derived in Sec. 3.3.2.
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Fig. 4.14: The frequency invariant modified overlap-save GSC beamformer.

4.4.4 Frequency Invariant nbOS-GSC (FInbOS-GSC)

An alternative to the FImOS-GSC is the frequency invariant narrowband overlap-save GSC beam-
former (FInbOS-GSC). This alternative possesses similar ability to maintain constant resolution,
but operates with lower computational complexity at the expense of slower convergence speed com-
pared to the FImOS-GSC beamformer. This beamforming structure incorporates spatial tapering
into the narrowband constraints overlap-save GSC dervied in Sec. 3.3.3.2.

The FInbOS-GSC utilises a total of Mtotal sensor elements across the entire operating spectrum,
but for each octave only M sensors are active. The weighted input signal of the mth sensor is given
by,

Γ̃m[n] =




Ψm,0 0 . . . 0
0 Ψm,1 . . . 0
...

...
. . .

...
0 0 . . . Ψm,2L̂−1




Γ̆m[n] , (4.28)

where Γm[n] ∈ C2L̂×2L̂ is computed according to (4.20). For each octave, the data input of the M

active sensors are stacked, forming a matrix,

Γ̃L̂[n] =
[
Γ̃0[n] Γ̃1[n] · · · Γ̃M−1[n]

]
(4.29)

of dimension 2L̂ × 2ML̂. This is subsequently concatenated across all octaves, Γ̃[n] ∈ C2L×2ML.
Due to the application of the weighted narrowband constraints discussed in Sec. 4.4.2, which are
assigned according to frequency bins, the FInbOS-GSC beamformer requires these weighted signal
to possess the same structure. This is done by the application of a permutation matrix Pmut (3.5)

Γ̂[n] =
[
Pmut Γ̃

T
[n]

]T
. (4.30)

The output of the FInbOS-GSC beamformer is given as

e[n] = GΓ̂[n]ŵ

= GΓ̂[n] (wc,fd −Ca,fd wa,fd) . (4.31)
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When using of the LMS algorithm, the stochastic gradient becomes

∇̂ξ =
∂ξ

∂w∗
a

= −CH
a,fdΓ̂

H
[n] e[n] . (4.32)

The update equation of this beamformer operating under the LMS criterion can therefore be written
as,

wa,fd[n + 1] = wa,fd[n] + µCH
a,fd Γ̂

H
[n] e[n] , (4.33)

which is identical to the narrowband constraints overlap-save beamformer algorithm found in
Tab. 3.5.

This section presents three constant beamwidth adaptive beamformers to complement the scaled
aperture subband based GSC structure discussed in Sec. 4.3. Simulations will be carried out in the
next section to demonstrate their effectiveness in attaining uniform spatial resolution across a wide
spectrum while nulling out interference.

4.5 Simulations and Results

Various beamforming techniques with the capability to achieve constant beamwidth or near con-
stant beamwidth for signal spanning more than one octave have been discussed in this chapter.
Extensive simulations were carried out to verify their frequency invariant property as well as eval-
uating their convergence behaviour. Before the discussion of the various simulation scenarios, the
methodology of plotting the directivity pattern, a three dimensional diagram which assesses the
spatial sensitivity of a beamformer at different frequencies is detailed in Sec. 4.5.1. Thereafter,
based on the subband beamforming technique, the scaled aperture subband beamformer which has
the ability to achieve octave invariant characteristic is simulated with results presented in Sec. 4.5.2.
Although, the subband scaled aperture beamformer shows vast improvement in attaining near uni-
form spatial resolution, it is only octave invariant and not frequency invariant. In Sec. 4.5.3, spatial
weighting is incorporated into a direct DFT GSC beamformer, giving constant beamwidth across
a wide spectrum. Similar weighting is also applied to the overlap-save GSC beamforming struc-
ture to circumvent the problem of non-convergence when interference does not coincide exactly
with frequency bins. Their simulation scenarios along with the results obtained can be found in
Sec. 4.5.4.

4.5.1 Directivity Pattern

In Sec. 2.8.1.2, the directivity pattern was mentioned as a method used to measure and depict
the performance of the beamformer in terms of spatial sensitivity. Here, the steps to compute the
directivity pattern are elaborated.

Assume a linear equispaced array of of M sensors with sensor index m ∈ [0, (M − 1)]. Each
sensor signal is processed by an FIR filter, whose coefficients are collected in a vector,

wH
m =

[
wm,0 wm,1 · · · wm,L−1

]
. (4.34)
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Fig. 4.15: A complex exponent signal x[n] = ejΩn of normalised frequency Ωi from angle
ϑ of broadside exciting a narrowband beamformer with M coefficients taken from Ŵ(Ωi) =
[W 0M×(NΩ−L)] · t(Ωi).

The coefficients of the M sensors are collected in a matrix W,

W =




wH
0

wH
1
...

wH
M−1




, (4.35)

where individual column of W represent each discrete time slice of the beamformer’s tap delay
line. To calculate a narrowband beamformer Ŵ (Ωi) at frequency Ωi = 2π

NΩ
i via an NΩ-point DFT

requires

Ŵ (Ωi) =
[
W 0M×(NΩ−L)

]




1
e−jΩi

e−j2Ωi

...
e−j(NΩ−1)Ωi




= W · t(Ωi) (4.36)

whereby NΩ ≥ L is assumed. If a complex exponential signal x[n] = ejΩin excites the array from
an angle ϑ, then the signals measured at the M sensors are given by




x0[n]
x1[n]

...
xM−1[n]




=




ej(0)Ωiκ(ϑ)

ej(1)Ωiκ(ϑ)

...
ej(M−1)Ωiκ(ϑ)




︸ ︷︷ ︸
s∗(ϑ,Ωi)

x[n] , (4.37)

where κ(ϑ) is the normalised time delay and s∗(ϑ,Ω) holds the complex conjugate entries of the
steering vector in (2.11). Ignoring the input signal x[n], from Fig. 4.15, the gain of the beamformer
for a specific angle and frequency is given by

A(ϑ, Ωi) = sH(ϑ, Ωi) ·
[
W 0M×(NΩ−L)

] · t(Ωi) . (4.38)

The directivity pattern requires the gain to be evaluated for T discrete samples across angles
ϑt ∈ [−π/2;π/2], t = 0 . . . (T − 1) and NΩ frequency bins Ωi = 0 . . . (NΩ − 1).
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Numerically, the beampatterns based on T×NΩ discrete points can be most efficiently calculated
by first taking an NΩ-point FFT of the M beamforming filters wH

m, implementing (4.36). This is
then followed by the set-up and application of T individual steering vectors to each of the NΩ

narrowband beamformers according to (4.38).

Directivity patterns presented throughout this thesis are based on the above formulation in
attaining matrix A(ϑ, Ωi), the beamformer’s gain response with respect to both frequencies and
angles.

4.5.2 Performance of Subband Scaled Aperture Beamformer

The incorporation of adaptive filters enables the subband scaled aperture (SSA) beamformer to
steer nulls towards interferers, illuminating the array from directions other than the look direction.
To demonstrate this effect, two broadband interferers were applied, impinging onto the array from
angles of −10◦ and 30◦ respectively, while the signal of interest lies at broadside. The simulation
utilises F = 3 octaves with M = 11 sensors per octave and subsequently K = 16. The filter banks
are the ones characterised in Fig. 4.5, based on a prototype filter of length Lp = 448, permitting
a decimation factor of N = 14. For the SSA system, the octave behaviour is clearly visible from
Fig. 4.16. In addition, the beampattern in Fig. 4.16 illustrates the successful nulling of the two
interferers as well as the fulfilment of the broadside constraint. This contrasts with the various
directivity pattern in Fig. 4.11, where no adaptation is applied and the quiescent beam pattern is
not set to suppress any specific interferers.
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Fig. 4.16: Directivity pattern of the subband scaled aperture beamformer with the signal of
interest from broadside in the presence of broadband interferers from −10◦ and 30◦.

A performance comparison between fullband fixed aperture, fullband non-uniformly spaced,
subband fixed aperture and subband scaled aperture systems in terms of the mean squared residual
error is carried out. The residual error is defined as the difference between the beamformer output
e[n] and the signal of interest from broadside. Therefore, any remaining interference and noise as
well as any distortion imposed on the signal of interest is capture by this measure. In the simulated
scenario, the signal of interest is at the array’s broadside, while a broadband interferer impinge
from −20◦ at an SIR of −40 dB, corrupted by uncorrelated noise at 10 dB SNR.
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The fullband aperture beamformer represents a traditional time domain implementation where
no decomposition of the broadband signal is carried out. For the fixed aperture architecture,
it utilises a total of M = 5 uniformly spaced sensors. The number of sensors applied to the
non-uniformly spaced beamformer equates to Mtotal = 9, which corresponds to the total number
of sensors used by the subband scaled aperture beamformer. Both fullband beamformers have
a tap delay line of length L = 140 attached to each sensor. The subband beamformers use a
K = 16 channel filter bank with decimation ratio with N = 14 and prototype length of Lp =
448 as characterised in Fig. 4.5. The temporal dimension of the subband beamformers decreases
approximately by a factor of N with respect to a fullband implementation. In all cases, the GSC
is operated in combination with an NLMS algorithm [79]. The adaption of the beamformers starts
at n = 0 with a step-size of µ̃ = 0.5, and at n = 20000 the step-size is reduced to µ̃ = 0.05 in order
to combine both fast initial convergence and good steady-state behaviour.

The learning curves depicted in Fig 4.17 indicate that the SSA outperforms the fixed aperture
subband based beamformer in terms of a lower steady state mean squared residual error. Although
the fullband fixed aperture exhibits an initially faster convergence, the subband fixed aperture
has a better steady state performance. The non-uniformly spaced fullband beamformer reaches
similar performance level as achieved by the scaled aperture array, however the number of sensors
is effectively doubled.
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Fig. 4.17: Learning curves of subband scaled aperture beamformers compared to a fullband
beamformer with both fixed aperture and non-uniform sensor spacing without thinning.

To further analyse the characteristic of the beamformer, power spectral densities (PSD) of the
various steady state errors are presented in Fig. 4.18. For fixed aperture arrays with M = 4 sen-
sors, the low resolution at low frequencies makes interference cancellation difficult, and the residual
error is large. The non-uniform array shows a good performance, although the best cancellation is
achieved at mid-frequency range. Finally, the scaled aperture array provides a fairly even distribu-
tion of the error over frequency due to its octave-invariant behaviour.

Fig. 4.19 shows the gain response of the SSA beamformer from broadside. This figure indicates
that the 0 dB constraint towards broadside is fulfilled and that the ripple of the beamformer
gain is fairly small despite the subband edges and the integration of various apertures within the
beamformer. This also highlights that peaks in the PSD of the subband approaches in Fig 4.18 are
not due to distortion effects at the octave margins but are a result of slow convergence at the band
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Fig. 4.18: PSD of residual error at steady state for the various beamformers shown in Fig. 4.17.

edges of individual subbands caused by low input power to the adaptive algorithm [113].
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Fig. 4.19: Gain response of the SSA beamformer toward broadside representing the distortion
imposed on the signal of interest.

4.5.3 Performance of Frequency Invariant direct DFT-based Beamformer

In the following, the proposed frequency invariant direct DFT-based (FIdft-GSC) beamformer is
simulated for both sliding window and block processing. Results are compared against beamformers
that use similar processing but are based on linear uniformly spaced sensor arrays. Additionally,
a fixed aperture fullband structure is used as a benchmark. Both the sliding window and the
block processing approaches directly utilise the discrete Fourier transform (DFT) in attaining their
frequency representations, whereby the silding window method processes the data at every time
instance, while updating is done only after a predefined block size for the block processing approach.
As such, a computational advantage can be expected from the block processing technique.

The FIdft-GSC beamformers utilise a total of Mtotal = 16 non-uniformly spaced sensors, with
each octave having M = 11 sensors. The fixed aperture structure extracts signals from M = 11
uniformly spaced elements. All the simulated beamformers have filter lengths of L = 64 spanning
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two octaves. For the simulated scenario, a broadband source of interest impinges onto the array
from broadside, ϑ = 0◦, corrupted by a set of narrowband interferers that coincides with frequency
bins. Their direction of arrival is ϑ = −10◦ at a signal to interference ratio (SIR) of −45 dB. In
addition, spatially and temporally uncorrelated noise corresponding to a SNR of 10 dB is inserted.
The NLMS adaptive algorithm with the step size selected as in Fig 4.17 is used to update the
various beamformers.

The directivity pattern of the FIdft-GSC for the scenario outline previously is given in Fig. 4.20.
Clearly a null is placed in the direction of interference coming from a DOA of−10◦. Furthermore the
0 dB constraint towards broadside is fulfilled. Most importantly a constant beamwidth is observed
across the simulated frequency spectrum. Having uniform resolution does not always lead to a lower
SNR output, rather it implies that the SNR across the frequency span is constant. This can be seen
by comparing the beampattern of the scaled aperture depicted in Fig 4.13(a) with the frequency
invariant beamformer of Fig. 4.13(b). It reveals that the constant beamwidth beamformer applies
the overall worst resolution across the entire operating spectrum, i.e. the largest beamwidth or
shortest aperture is applied to each octave.
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Fig. 4.20: Directivity pattern of frequency invariant direct DFT beamformer (block processing)
in the presence of broadband interference from −10◦.

The learning characteristic of the five different beamforming structures considered — namely
the proposed frequency invariant beamformers for both block and sliding window processing, the
uniformly spaced linear array with DFT based block and sliding window technique and a fix aperture
fullband beamformer — are depicted in Fig. 4.21. The step-size for all the beamformers are set
empirically such that they converge to approximately similar steady state errors. The results are
averaged over an ensemble of 50 simulations. The mean square value of the residual error signal
shows that DFT-based beamformers converges much faster than the time domain realisation. This
is due to the simulated scenario, where signal components happen to coincide with frequency bins.
If a different input signal is utilised, the result will change dramatically. In general sliding window
techniques demonstrate a faster convergence speed compared to block processing. This is not
surprising because the adaptive coefficients are updated block by block while the updating process
for sliding window is carried out at every time instance. It can also be seen that the addition of
the tapering process does not degrade the performance of the frequency invariant beamformer for
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both convergence speed and residual mean square error when compared against their corresponding
direct DFT implementations.
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Fig. 4.21: Learning curves of frequency invariant direct DFT beamformers.

4.5.4 Performance of Frequency Invariant Overlap-Save Beamformer

In this section, the proposed frequency invariant modified overlap-save GSC (FImOS-GSC) and
the frequency invariant narrowband constraints overlap-save GSC (FInbOS-GSC) will be examined
in order to determine if they exhibit a constant beamwidth property over a wide frequency range.
In addition, their convergence speed will be scrutinized against a direct DFT GSC beamformer as
well as the fullband structure. Both FImOS-GSC and FInbOS-GSC utilise M = 11 sensors per
octave, with the total number of sensors covering the two octaves equating to Mtotal = 16 for a
nested array aperture. This contrasts to Mtotal = 22 sensors required if separate aperture arrays
are used for each individual octave. The direct DFT implementation and the fullband beamformer
utilise the same sensor array set-up as the frequency invariant overlap-save beamformer.

For the simulated scenario, the signal of interest impinges onto the array from broadside, cor-
rupted by a spectrally coloured broadband interferer from a direction of arrival (DOA) of ϑ = 40◦

at −30 dB SINR and spatially and temporally uncorrelated noise at 10 dB SNR. The colouring
of the broadband interferers is due to a bandpass characteristic restricting signals to a normalised
frequency range Ω = {0.3π; 0.9π}. The adaptive algorithm utilised for all the beamformers is the
NLMS with the step size selected as in Fig 4.17 [73].

The directivity pattern of the FImOS-GSC beamformer shown in Fig. 4.22 illustrates the beam-
former gain response after convergence as a function of frequency and DOA. A fairly constant
beamwidth is observed across the operating spectrum, highlighting the frequency invariance of the
proposed scheme. In addiiton, a null has also been placed in the direction of the interference coming
from DOA of 40◦. Lastly, the 0 dB constraint from broadside is fulfilled. A similar observation can
also be made for the FInbOS-GSC beamformer as illustrated in Fig. 4.23.

The convergence speed of the four beamformers is assessed in Fig. 4.24, with the step size of
the adaptive algorithm µ chosen empirically such that all of the systems converge to approximately
the same steady-state error. The direct DFT GSC beamformer demonstrates poor steady state
MSE performance due to its incorrect narrowband assumption. This mirrors the results obtained
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Fig. 4.22: Directivity pattern of frequency invariant modified overlap-save GSC (FImOS-GSC)
beamformer in the presence of broadband interference from 40◦.
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Fig. 4.23: Directivity pattern of frequency invariant narrowband constraints overlap-save GSC
(FInbOS-GSC) beamformer in the presence of broadband interference from 40◦.

in Sec. 3.4.1, making it ineffective in resolving broadband interference. In contrast, both the
frequency invariant overlap-save techniques successfully converge to a steady-state error similar to
that achieved by the fullband beamformer. As can be seen, FImOS-GSC has convergence speed
equal to the fullband beamformer, with the FInbOS-GSC exhibiting a slightly slower adaption rate.

4.6 Discussion

Motivated by the desire for uniform resolution across a wide spectrum for applications e.g. in
acoustics, this chapter has proposed suitable modification to several novel beamforming algorithms
discussed in Chap. 3, allowing the new beamformers to possess a frequency invariant beampattern.
Based on the relationship between spatial resolution, the frequency of the signal and size of the
aperture, frequency invariance across octaves is attained by utilising a nested array such that an
octave invariant broadband beamformer is achieved. Thereafter, application of a spatial weighting
to the sensor elements assists in realising frequency invariance within each octave.
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Fig. 4.24: Learning curves of frequency invariant overlap-save DFT beamformers.

Having different apertures restricts spatial variation within each octaves for the subband scaled
aperture beamformer is illustrated in Fig. 4.16. Though this approach limits spatial variation from
spreading beyond an octave, constant resolution across a broadband spectrum is still not achieved.
As such, this technique is useful for applications where only near-constant resolution is required. By
applying different weighting to the sensors, the frequency invariant direct DFT-based beamformer
enables constant resolution across the entire operating bandwidth. However, this technique can
converge to the optimum time domain MSE solution only if interferers sit exactly on frequency
bins, which also means that interferers must be narrowband. The frequency invariant overlap-save
beamformer allows the nulling of broadband interference as well as achieving uniform resolution
across the operation spectrum, but application of the adaptive weighting to the sensor for individual
frequency bin might destroy some of the exact frequency invariance.
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Chapter 5

Pre-whitening for GSC Beamformers

The convergence speed of popular LMS-type algorithms used for adaptive beamforming depends
on the eigenvalue spread of the input to the adaptive filter. For LMS algorithms to attain best
convergence properties, this input components must be perfectly uncorrelated and have equal pow-
ers [79]. This effectively means that all eigenvalues must be equal. Transform-domain approaches
are well known methods that attempt to improve the eigenvalue distribution of the input autocor-
relation matrix by first preprocessing with a unitary transformation to approximately diagonalise
the covariance matrix, followed by a power normalisation stage [114].

In a narrowband scenario, spatial correlation arises due to the instantaneous mixing of otherwise
independent signals. Therefore, a singular value decomposition (SVD) applied to the data matrix,
or an eigenvalue decomposition (EVD) applied to the covariance matrix that is derived from the
data can measure and remove this correlation, providing a diagonalised covariance matrix. However,
in broadband beamforming, signals exhibit correlation that arises from convolutive mixing, which
extends over spatial and temporal dimensions. Therefore, previously independent signals after
convolutive mixing are not just spatially correlated at the same time instance but also in time over
a range of lag values. As such, neither EVD or SVD is sufficient to achieve strong decorrelation,
which indicates that signals have been decorrelated not just for the zero lag, but for all lag values.
This chapter therefore focusses on a range of decorrelation approaches, and utilises a recently
introduced broadband eigenvalue decomposition (BEVD) [47, 115] to improve the convergence
behaviour of an LMS adaptive beamformer, for which the generalised sidelobe canceller is selected
as an example.

This chapter is organised as follows: Sec. 5.1 discusses the GSC beamformer which is exemplarily
investigated here, and introduces the Karhunen-Loeve transform (KLT), which can be determined
via SVD or EVD and is a well-known and optimum method for decorrelating instantaneously mixed
signals. It is shown that due to this limitation, the KLT is not useful for broadband signal that result
from convolutive mixing. Sec. 5.2 sets out to describe the idea of the BEVD and its implementation
by means of the second order sequential best rotation (SBR2) algorithm for strong decorrelation.
The BEVD is subsequently incorporated to spatially decorrelated data of a GSC beamformer, with
further enhancement by means of subband decomposition to achieve spatio-temporal decorrelation
detailed in Sec. 5.3. To demonstrate the performance of various beamformer implementations,
simulation results are conducted in Sec. 5.4. A summary is provided in Sec. 5.5.
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5.1 Spatial Pre-whitening

In this section, we will introduce the beamformer under test, the generalised sidelobe canceller
(GSC) in Sec. 5.1.1. This GSC beamformer utilises the cascaded columns of differencing (CCD)
to formulated the blocking matrix under the assumption that signal of interest (SOI) impinges
onto the array from broadside. The Karhunen Loeve transform (KLT), a well-known decorrelation
technique used in both signal and image processing is discussed in Sec. 5.1.2. Thereafter, Sec. 5.1.3
explains the hybrid KLT-GSC beamforming structure.

5.1.1 GSC with CCD Constraints

The general setup of a GSC beamformer is shown in Fig. 5.1. If the signal of interest impinges
onto the linear sensor array from broadside and covers the entire spectrum, implementation of the
blocking constraints can be simplified to the cascaded columns of differencing (CCD) method. The
CCD method removes the signal of interest (SOI), which for an arrival from broadside is aligned
in term across the array, by subtracting the data collected by adjacent array elements. This leads
to a simplified blocking matrix design,

CM
a =




1 −1 0
. .

. .

0 1 −1




T

∈ CM×M−1 , (5.1)

with a suitable quiescent vector

wc =
1
M

[1 1 · · · 1]︸ ︷︷ ︸
M

∈ RM×1 . (5.2)

This arrangement leads to Fig. 5.1, whereby the output of the CCD blocking matrix

uS[n] = CH
a x[n] ∈ CM−1 , (5.3)

is fed into TDLs in order to create the temporal data window uST[n] ∈ C(M−1)L that is presented
to the vector of adaptive weights wa ∈ C(M−1)L. After suitable processing, the output signal of
the adaptive filter is subtracted from the output of the quiescent beamformer, d[n], shown in the
upper branch of Fig. 5.1.

Ca TDL wa

y

wc

x u u

−

+ ][d n][

n ]n
[ ]n

] [

ne

[ ]n [S ST

Fig. 5.1: Generalised sidelobe canceller.
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The speed of convergence for this GSC beamformer is influenced by the covariance matrix of
the data entering the adaptive filter wa, which according to Fig. 5.1 can be written as

Ruu,ST = E{
uST[n]uH

ST[n]
}

. (5.4)

This covariance matrix is formulated from the spatio-temporal arrangement of input data uST[n]

uST[n] =




uS[n]
uS[n− 1]

...
uS[n− L + 1]




, (5.5)

which is concatenated from the spatial vectors uS[n] in Fig. 5.1.

Alternatively, the covariance matrix Ruu,ST can be express in terms of the covariance of the
blocking matrix output, whereby lag values are taken into account, i.e.

Ruu,s[τ ] = E{
uS[n]uH

S [n− τ ]
}

, (5.6)

and

Ruu,ST =




Ruu,s[0] Ruu,s[−1] Ruu,s[−2] . . . Ruu,s[−L + 1]

Ruu,s[1] Ruu,s[0] Ruu,s[−1]
. . .

...

Ruu,s[2] Ruu,s[1] Ruu,s[0]
. . . Ruu,s[−2]

...
. . . . . . . . . Ruu,s[−1]

Ruu,s[L− 1] . . . Ruu,s[2] Ruu,s[1] Ruu,s[0]




, (5.7)

with Ruu,s[τ ] = RH
uu,s[−τ ]. The remainder of this chapter will address solutions to decorrelate the

input data of the adaptive filter, i.e. aim to diagonalise the covariance matrix Ruu,ST in order to
increase the convergence speed of LMS-type algorithms applied to a GSC beamformer.

5.1.2 Karhunen Loeve Transform

The KLT is a well known technique in signal processing, playing an important role in narrowband
sensor array processing, in the context of separating signals that are otherwise correlated. The KLT
is based on the EVD of Hermitian covariance matrices or the SVD of data matrices, and performs
instantaneous decorrelation, i.e. it does not take into account that signals might be correlated for
lag values other than lag zero.

The spatial decorrelation of array signals can be achieved by calculating the EVD of the Her-
mitian sample covariance matrix from the blocking matrix output uS[n] shown in Fig. 5.1,

Ruu,s[0] = UΛUH , (5.8)

where

Λ = diag[λ0 λ2 · · · λM−1] , (5.9)

is an M×M diagonal matrix containing the eigenvalues of Ruu,s[0],

λ0 ≥ λ1 · · · ≥ λM−1 ≥ 0 . (5.10)
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The unitary matrix

U = [u0 u2 · · · uM−1] (5.11)

contains the eigenvectors of Ruu,s[0] in its columns and forms the Hermitian transpose of the KLT
matrix.

Postprocessing the blocking matrix output us[n] by UH , a new spatial array signal u′s[n] is
obtained, resulting in a covariance matrix

Ru′u′,s[0] = UHRuu,s[0]U = Λ (5.12)

that has been diagonalised.

Thus, the application of the KLT to the covariance matrix of the GSC adaptive filter provides

Ruu,ST =




Λ UHRuu,s[−1]U UHRuu,s[−2]U . . . UHRuu,s[−L + 1]U

UHRuu,s[1]U Λ UHRuu,s[−1]U
. . .

...

UHRuu,s[2]U UHRuu,s[1]U Λ
. . . UHRuu,s[−2]U

...
. . . . . . . . . UHRuu,s[−1]U

UHRuu,s[L− 1]U . . . UHRuu,s[2]U UHRuu,s[1]U Λ




,

(5.13)
which indicates that the KLT is effective in removing correlation due to instantaneous mixing,
i.e. the KLT fails to provide decorrelation of signals for lag values other than zero.

5.1.3 KLT-Based GSC

The setup of a GSC using the KLT to perform spatial decorrelation for a broadband beamforming
scenario is shown in Fig. 5.2. The KLT acts as a pre-processor in an attempt to decorrelate the
array signals prior to the adaptive process. However, as the KLT is only effective for instantaneous
spatial decorrelation, decorrelation is only achieved for zero-lag, while signals remain correlated
at other lags as indicated by the off-diagonal blocks of UHRuu,S[τ ]U for −L < τ < L, τ 6= 0 in
equation (5.13). As such, the KLT-based GSC structure in Fig. 5.2 is not expected to be optimal
in terms of convergence speed unless the data collected by the arrays is limited to the narrowband
case.

C KLT wa

wc

x u

a

y

−

+n

[ ]n [ ]n
[ ]n

[ ]ned[ ]

S

Fig. 5.2: KLT-based GSC beamformer.
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5.2 Strong Spatial Decorrelation

In the previous section, the spatial decorrelation of the array signals lead to only Ruu,s[0] being
diagonalised. For broadband sensor arrays it is necessary to impose decorrelation not just for zero
lag but over a range of time delays and across all signals. Since it has been shown that the KLT
cannot be considered effective in this respect, this section will focus on a recently proposed method
to achieve strong decorrelation, such that the covariance Ruu,s[τ ] will be diagonalised for all lag
values. In Sec. 5.2.1, the idea of a broadband eigenvalue decomposition (BEVD) is introduced. This
is followed by a brief description of the sequential best rotation (SBR2) algorithm which can be used
to calculate an approximate BEVD, and is illustrated by a worked example to demonstrate strong
decorrelation. A BEVD based GSC beamformer which incorporates a strongly decorrelated input
signal is proposed in Sec. 5.2.2, thus enhancing the rate of convergence for LMS-based adaptive
filters as well as reducing the complexity of the adaptive algorithm.

5.2.1 Broadband Eigenvalue Decomposition

The idea of the BEVD is to extend the EVD for Hermitian matrices to para-Hermitian polynomial
matrices. The BEVD aims to diagnonalise this para-Hermitian matrix by means of a paraunitary,
i.e. lossless matrix. Therefore this section commences with a number of definitions to underpin
these extended properties before stating the BEVD of a matrix and its approximation by the SBR2
algorithm.

5.2.1.1 Parahermitian and Paraunitary Matrices

The parahermitian and the paraunitary property of a polynomial maxtrix are defined below.

Parahermitian. Parahermitian requires distinction between the parahermitian operator and the
parahermitian property of a polynomial matrix, akin to the scalar matrix case. For the scalar
matrix, the Hermitian transpose operator {·}H performs a transposition and complex conjugation,
such that for an arbitrary matrix UH = (U∗)T = (UT )∗. For the polynomial case, the parahermi-
tian operator {̃·} is applied such that

Ũ(z) =
(
UH

)
(z−1) , (5.14)

i.e. the coefficients are all complex conjugated and transposed, while z is replaced by z∗ = z−1. For
the time domain of a matrix of FIR filters, this implies a time reversal of the responses represented
by each matrix element.

A Hermitian matrix is the complex valued generalisation of a symmetric matrix and fulfills
UH = U. The parahermitian property means that for a matrix U(z), Ũ(z) = U(z) must hold, i.e.
incorporate an additional symmetry with respect to time over the scalar matrix case.

The covariance matrices introduced earlier fulfill the parahermitian property. For example,
equation (5.6), Ruu,s(z) •—◦ Ruu,s[τ ] will satisfy R̃uu,s(z) = Ruu,s(z). Alternatively, in the time
domain the parahermitian property manifests itself as R̃uu,s(z) •—◦ R̃uu,s[τ ] = RH

uu,s[−τ ].
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Paraunitary. Paraunitarity is the extension of the unitary property of a scalar matrix, where a
unitary matrix U implies that UUH = UHU = I. Specifically, a unitary matrix U only performs
a rotation of a vector but does not change its Euclidean norm, ‖Ux‖2 = ‖x‖2, i.e. it will preserve
the power of the input vector.

For the polynomial case, paraunitarity of the matrix U(z) implies U(z)Ũ(z) = Ũ(z)U(z) = I.
It can be interpreted as the polyphase matrix of a filter bank applied to an input X(z) producing
an output Y(z), whereby the power of signals again is preserved. Therefore, paraunitary matrices
are often referred to as lossless matrices or lossless filter banks.

5.2.1.2 Idealistic BEVD

When the EVD is applied to a Hermitian matrix R, the decomposition yields R = UΛUH with a
unitary matrix U and a diagonal matrix Λ containing real valued positive semidefinite eigenvalues.
If we extend the EVD to a polynomial EVD (PEVD) or broadband eigenvalue decomposition of
a paraunitary matrix R(z), then we expect a decomposition such that R(z) = U(z)Λ(z)Ũ(z),
with U(z) being paraunitary and Λ(z) to be a power spectral density, i.e. real valued and positive
semidefinite.

Applied to a parahermitian matrix

R(z) =
τmax∑

τ=−τmax

Ruu,s[τ ]z−τ , (5.15)

of (5.6), the challenge of an ideal BEVD for broadband scenario is to compute a paraunitary matrix
U(z) such that

Λ(z) = Ũ(z)R(z)U(z) , (5.16)

whereby Λ(z) is a diagonal matrix

Λ(z) = diag{Λ0(z), Λ1(z), . . .ΛM−1(z)} , (5.17)

with eigenvalues values of polynomial order. Additionally, in order to eliminate ambiguity towards
permutations, an SVD-like ordering can be imposed,

Λ0(ejΩ) ≥ Λ1(ejΩ) ≥ . . . ≥ ΛM−1(ejΩ) , ∀Ω . (5.18)

which is referred to as spectral majorisation. Note that the equations (5.17) and (5.18) reduce to
those of (5.9) and (5.10) respectively when covariance matrix (5.6) is non-zero only for zero lag.

To date, no algorithm exists to achieve the decomposition of a parahermitian matrix R(z) as
described by (5.16), (5.17), and (5.18). However, an approximation is achieved by the second order
sequential best rotation (SBR-2) algorithm reported in [116], which is outlined in the next section.

5.2.1.3 Sequential Best Rotation Algorithm

In order to achieve the factorisation in (5.16) fulfilling spectral majorisation according to (5.18),
we use the second order sequential best rotation (SBR2) algorithm [115]. In the following, only a

114



brief description of the algorithm is provided, while for an in-depth treatment the reader is referred
to [115, 116].

SBR2 is an iterative broadband singular value decomposition technique, which is based on a
paraunitary matrix UI(z), after iteration I,

UI(z) =
I∏

i=0

Λi(z)Qi (5.19)

whereby Qi is a Givens rotation and the matrix Λi(z) a paraunitary matrix of the form

Λi(z) = I− vivH
i + z−∆ivivH

i (5.20)

with vi = [0 · · · 0 1 0 · · · 0]H containing zeros except for a unit element in the δith position. Thus
Λi(z) is an identity matrix with the δith diagonal element replaced by a delay z−∆i .

At the ith step, SBR2 will eliminate the largest off-diagonal element of the matrix Ũi−1(z)R(z)
Ui−1(z), which is defined by the two corresponding sub-channels and by a specific lag index. By
delaying or advancing the two contributing sub-channels appropriately with respect to each other
by selecting the position δi and the delay ∆i, the lag value is compensated. Thereafter a Givens
rotation Qi can eliminate the targeted covariance matrix element such that the resulting two
terms on the main diagonal are ordered in size, leading to a diagonalisation and at the same time
accomplishing a spectral majorisation.

Hence, each step comprises of optimising the parameter set {δi, ∆i, θi}. While the largest off-
diagonal element in Ũi−1(z)R(z)Ui−1(z) is eliminated, the remainder of the matrix is also affected.
However, in extensive simulations, SBR2 has proven very robust and stable in achieving both a
diagonalisation and spectral majorisation of any given covariance matrix, whereby the algorithm is
stopped either after reaching a certain measure for suppressing off-diagonal terms or after exceeding
a defined number of iteration [47, 115].

5.2.1.4 Application Example

This section will illustrate the operation of the SBR2 algorithm by means of a simple example.
The SBR2 algorithm will be applied to a parahermitian matrix given by,

R(z) =




1 0.4z2 − 0.2z 0.7z

0.4z−2 − 0.2z−1 1 0.5z−2

0.7z−1 0.5z2 1


 . (5.21)

Setting the number of iteration to 30, the convergence of the SBR2 algorithm is shown in Fig. 5.3,
whereby at each iteration step the metric is the maximum off-diagonal element. Before starting
SBR2, the largest off-diagonal value is ε0 = 0.7, which shrinks with every iteration. After 30
iterations, the largest off-diagonal value is now ε30 = 0.0127. The polynomial matrices obtained
through this factorisation, Λ(z) and U(z), are depicted in Figs. 5.4 and 5.5 respectively. The results
indicate that the application of the paraunitary matrix onto R(z) (5.21);

Λ(z) ≈ Ũ(z)R(z)U(z) , (5.22)

115



will yield a new Λ(z) that has negligible values across the entire matrix, except for elements along
the diagonal. This is a close approximation of the idealistic BEVD formulation given in (5.16).

Thus, strong decorrelation can be attained through the use of the SBR2 algorithm on paraher-
mitian matrices. For further improved accuracy, the number of iterations could be further increased
and ε is able to reach of magnitude of 10−4 after 100 cycles.
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Fig. 5.3: Convergence of SBR2 algorithm for R(z) of (5.21).
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Fig. 5.4: Diagonalised polynomial matrix Λ(z) obtained from SBR2.

Apart from obtaining strong decorrelation, SBR2 aims to achieve spectral majorisation by or-
dering the elements in the Givens rotation in every algorithm step. This has been demonstrated to
generally lead to spectral majorisation [117], which provides a useful ordering according to (5.18)
and similar to the SVD. Spectral majorisation shown for the example matrix of (5.21) in Fig. 5.6,
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Fig. 5.5: Paraunitary matrix U(z) obtained using SBR2.

depicting the power spectral densities on the main diagonal of the polynomial matrix Λ(z).

5.2.2 BEVD Based GSC Beamformer

In Sec. 5.2.1.3, the SBR2 algorithm is introduced as an approach to perform a broadband eigen-
value decomposition (BEVD) to strongly decorrelate the broadband sensor array signals. In the
following, we want to exploit this strong decorrelating property in connection with a broadband
GSC beamformer. The aim is therefore to apply the SBR2 algorithm on the power spectral matrix

Ruu,S(z) =
∞∑

τ=−∞
Ruu,s[τ ]z−τ , (5.23)

which is related to the covariance matrix by a z-transform. In practise, the polynomial covariance
matrix R̂uu,S(z) needs to be estimated over a finite set of data, and for a finite set of lag values,
i.e.

R̂uu,S(z) =
L∑

τ=−L

R̂uu,s[τ ]z−τ . (5.24)

The covariance estimates is calculated from a series of data vectors

uS[n] =




us,0[n]
us,1[n]

...
us,M−2[n]




, (5.25)

117



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

10

normalised angular frequency Ω/π

|Λ
m

|(
ejΩ

)/
[d

B
]

m = 0
m = 1
m = 2

Fig. 5.6: Power spectral density of Λ(z).

which are outputs of the blocking matrix Ca as shown in Fig. 5.7. Based on (5.25), the space-time
covariance matrix is given by

R̂uu,s[τ ] = E{
uS[n]uH

S [n− τ ]
}

τ ∈ Z , (5.26)

and forms the basis of (5.24).

A block diagram of the proposed BEVD based GSC beamformer is depicted in Fig. 5.7, showing
the blocking matrix Ca and its output uS[n]. Previously, this data vector would have been directly
fed into the adaptive algorithm. Here we will first perform some decorrelation prior to passing
strongly decorrelated signals on to the adaptive filter wa via the TDLs as shown in Fig. 5.1. The
strong decorrelation is approximated by the SBR2 algorithm applied to the estimated polynomial
covariance matrix (5.24).

Based on the estimated polynomial covariance matrix (5.24), the SBR2 is used to generate a
paraunitary matrix U(z);

U(z)R̂uu,S(z)Ũ(z) = Λ̂(z) , (5.27)

whereby Λ̂ is approximately diagonal such that

Λ̂(z) = diag{Λ̂0(z), Λ̂1(z), · · · Λ̂M−2(z)} , (5.28)

with an approximate spectral majorisation

Λ̂m(ejΩ) ≥ Λ̂m+1(ejΩ) ∀Ω, m = 0, 1, . . . M−2 . (5.29)

118



y
C aw

x

H
uu uu

a

wc
−

+

(

]n

d[ ]n [ ]ne

[ ]n

[

z)
[ ]n (z) (z) [ ]nSTS STS

Fig. 5.7: BEVD-based GSC, which uses the SBR2 algorithm to calculate a paraunitary prepro-
cessor H(z) to achieve a strong spatial decorrelation for the inputs to the adaptive filter, wa.

For the GSC beamformer, if the number of independent broadband interferers is P ≤ M − 2, it
can be expected that only the first P elements of Λ̂(z) contain power. As such, the U(z) is only
required to extract P signals that relate to these interferences. This is indicated by the block
H(z) = [IP 0P×(M−P−2)]U(z) in Fig. 5.7. This reduced filter H(z) is subsequently applied to the
blocking matrix output uS(z), producing a transformed sequence according to

uST(z) = H(z)uS(z) , (5.30)

where uS(z) and uST(z) are denoted by

uS(z) =
∞∑

τ=−∞
uS[n]z−τ , (5.31)

and

uST(z) =
∞∑

τ=−∞
uST[n]z−τ . (5.32)

To a good approximation, the signals contained in uST(z) have been strongly decorrelated and
spectrally majorised by the application of H(z), because of

Ruu,ST(z) = H(z)R̂uu,S(z)H̃(z) = Λ̂(z) , (5.33)

where

Ruu,ST(z) =




Λ̂0(z) 0 . . . 0
0 Λ̂1(z) . . . 0
...

...
. . .

...
0 0 . . . Λ̂P−1(z)




. (5.34)

Further, the polynomial covariance matrix (5.34) can be expressed in a format similar to that of
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equation (5.7),

Ruu,ST =




Λ̂[0] Λ̂[−1] Λ̂[−2] . . . Λ̂[−L + 1]

Λ̂[1] Λ̂[0] Λ̂[−1]
. . .

...

Λ̂[2] Λ̂[1] Λ̂[0]
. . . Λ̂[−2]

...
. . . . . . . . . Λ̂[−1]

Λ̂[L− 1] . . . Λ̂[2] Λ̂[1] Λ̂[0]




. (5.35)

From (5.35) it can be seen that Ruu,ST is still not diagonalised, but all sub-matrices for −L < τ < L

are diagonal. This implies that the array signals have been strongly decorrelated in the spatial
dimension by the application of SBR2, but each of them remains temporally correlated. This is
also indicated by the diagonal values Λ̂m(z) being polynomials in z rather than scalar quantities.

5.3 Spatio-Temporal Decorrelation

For the BEVD-GSC beamformer depicted in Fig. 5.7, it can be expected that in the presence of P

broadband interferers, there will be P spatially decorrelated outputs from H(z). These outputs are
strongly decorrelated in the spatial domain according to (5.35), however, temporal correlation is
still present. To achieve better convergence property, this section addresses two methods to mitigate
the remaining temporal correlation of the strongly decorrelated array signals in the BEVD-GSC.
The two methods differ in the sequence in which temporal and spatial decorrelation are performed.

5.3.1 Additional Temporal Decorrelation

The subband methodology described in Sec. 3.2.2 will form the basis to remove temporal correlation
found in the BEVD-GSC beamformer. A subband based system requires filter banks to decompose
the broadband sensor signal into K different frequency bands, which can be operated at an N times
lower sampling rate due to their reduced bandwidth. However, for critical decimation N = K,
spectral aliasing limits the performance of any processing in the subband domain, which can be
mitigated by taking inter-subband correlations explicitly into account when designing subband
based algorithms [94]. A simpler approach is to oversample subbands, i.e. decimate by a factor of
N < K [9], this can efficiently suppress aliasing in subbands and permit subbands to be processed
independently.

Such subband decompositions are performed by oversampled filter banks (OSFBs), which can
be efficiently designed and implemented based on the modulation of a prototype lowpass filter. In
our work, we employ the generalised discrete Fourier transform (GDFT) for modulation, where
redundancy introduced by non-critical decimation is located around the band-edges. Aliasing is
restricted to the stopband region of the analysis filters and can therefore be precisely controlled by
the prototype filter design. The OSFBs used in this thesis have been designed according to [99],
with the magnitude response of an example filter bank for K = 8 and N = 7 depicted in Fig. 5.8.
The designed filter banks have been implemented at a very low cost [64].
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Fig. 5.8: GDFT modulated oversampled filter bank for K = 8 subbands decimated by N ≤ 7.

5.3.2 BEVD Subband GSC Beamformer

The first approach relies on the BEVD to first perform a strong spatial decorrelation of the signals
contained in the blocking matrix output uS[n], by passing through the SBR2 generated system
H(z). The filtered output uST[n], which consist of P channels of spatially decorrelated interferers
buffered in an L-element tap delay line forms a covariance matrix Ruu,ST as characterised in (5.35).
While strong spatial decorrelation is achieved, there are several off-diagonal bands contained in
(5.35) due to the polynomial nature of Λ̂m(z).

Instead of applying the adaptive filter wa directly to uST[n], the BEVD subband GSC beam-
former depicted in Fig. 5.9 passes each of the P signals along with the quiescent response d[n] to
an analysis filter bank as described in Sec. 5.3.1. This filter bank decomposes each signal into K

subbands, in each of which the covariance matrix exhibits the structure

Ruu,bevdsub =




Λ̂0,0 Λ̂1,0 0 . . . 0 Λ̂K−1,0

Λ̂0,1 Λ̂1,1 Λ̂2,1 0 0

0 Λ̂1,2 Λ̂2,2
. . .

...
...

. . . . . . . . . 0

0
. . . Λ̂K−2,K−2 Λ̂K−1,K−2

Λ̂0,K−1 0 . . . 0 Λ̂K−2,K−1 Λ̂K−1,K−1




, (5.36)

where the sub-matrices Ri,j , i, j ∈ {0;K − 1} are spatio-temporal covariance matrices between the
ith and jth subband. The high sidelobe attenuation of the analysis filter as shown in Fig. 5.8, will
cause directly adjacent bands to remain correlated while further spaced subbands can be considered
uncorrelated. However, redundancy introduced by oversampling allows off-diagonal elements of
(5.36) to be neglected without incurring a penalty. Due to the redundancy, the covariance matrix
is not full rank, and any correlation that is removed from the main diagonal will also result in the
off-diagonal correlation values to disappear.

Thus, spatio-temporal decorrelation is achieved through the BEVD subband GSC beamforming
structure. Reconstruction to the fullband signal can be performed by the synthesis filter bank at the
end of the adaption process. This structure is expected to have faster convergence speed compared
to the BEVD based GSC beamformer due to the additional temporal decorrelation and the reduced
number of coefficients due to the restriction onto P input signals to the adaptive process.
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Fig. 5.9: BEVD Subband GSC Beamformer.

5.3.3 Subband BEVD GSC Beamformer

The subband BEVD GSC beamformer utilises an OSFB similar to that of the BEVD subband
GSC described in Sec. 5.3.2, but differs in the sequence in which spatial and temporal decorrelation
are imposed. As shown in Fig. 5.10, the subband decomposition achieving temporal decorrela-
tion to some extend is performed prior to the application of the SBR2 algorithm, which leads to
approximately strong spatial decorrelation.

The signals from each of the M sensor elements are decomposed into K subbands by the analysis
filter bank denoted by ”A” in Fig. 5.10. This reduces the spectral dynamics and therefore reduces
the temporal correlation of the broadband signals, attaining a covariance matrix

Ruu,sub =




R0,0 R1,0 0 . . . 0 RK−1,0

R0,1 R1,1 R2,1 0 0

0 R1,2 R2,2
. . .

...
...

. . . . . . . . . 0

0
. . . RK−2,K−2 RK−1,K−2

R0,K−1 0 . . . 0 RK−2,K−1 RK−1,K−1




. (5.37)

The non-zero off-block-diagonal terms in (5.37) arise from the spectral overlap between adjacent
bands. The redundancy due to oversampling is located in these overlap regions of (5.37), and if
on-diagonal terms are reduced, they will be coupled to off-diagonal terms which will be reduced at
the same time.

This redundancy allows individual bands to be processed by an independent beamformer, which
in this case is the BEVD based GSC beamformer shown in Fig. 5.7 in order to complement the
temporal decorrelation by a spatial decorrelation. Subsequent application of the paraunitary matrix
generated from SBR2 applied to each of the K bands will lead to the signals being spatially strongly
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decorrelated, with a covariance matrix of the form

Ruu,subbevd =




Λ̂0,0 0 0 . . . 0 0
0 Λ̂1,1 0 0 0

0 0 Λ̂2,2
. . .

...
...

. . . . . . . . . 0

0
. . . Λ̂K−2,K−2 0

0 0 . . . 0 0 Λ̂K−1,K−1




. (5.38)

Following the adaption process, reconstruction to fullband representation is carried out by the
synthesis filter ’S’.
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Fig. 5.10: Subband processing followed by BEVD GSC.

Instead of applying the SBR2 to the full covariance matrix Ruu,S(z), the subband BEVD beam-
former calculates the paraunitary matrix Hk(z) based on individual subbands. Covariance matrices
Rk,S(z) are based on decimated subband signals and will therefore have a smaller support, which
results in both more accurate and faster computation. This also has the benefit of reducing the
complexity of the SBR2 algorithm, since the number of iterations required to achieve the desired
smallest value for off-diagonal elements is reduced.

Another difference between the BEVD subband and the subband BEVD beamformer is the
number of analysis filter bank operations required. In case of the subband BEVD beamformer, the
number of required analysis filter bank operations is linked to the number of received antennas,
M , while for the BEVD subband beamformer, the count of analysis filter bank operations depends
on the number of independent interferers P . If the number of independent broadband interferers
P is very small compared to the number of array sensors, this translates into lower complexity
requirements for the BEVD subband beamformer compared to the subband BEVD beamformer.
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5.4 Simulations and Results

The benefit of the proposed decorrelation for a broadband adaptive beamformer is demonstrated
below in a simulation. The simulated scenario contains a signal of interest which impinges onto a
M = 4 linear equispaced sensor array from broadside. The array is corrupted by an independent
broadband interferer covering the spectral interval Ω ∈ [π

8 , 7π
8 ], with a signal to interference ratio

of −35 dB and located at −20◦ off broadside.

The spatially decorrelated BEVD based GSC beamformer (GSC-S) described in Sec. 5.2.2 re-
quires an estimation of the polynomial covariance matrix Ruu,S(z). The number of samples used
to estimate this covariance matrix was chosen to be 1000, with the range of time delays set to
|τ | ≤ 25. The polynomial covariance matrix R̂uu,s[τ ] estimated from this data is characterised in
Fig. 5.11, from which the SBR2 algorithm generates a paraunitary matrix H(z) shown in Fig. 5.12
to strongly decorrelate in the spatial dimension. The computed polynomial matrix H(z) was used
to produce signals uST(z) as indicated by (5.30). The polynomial covariance matrix Ruu,ST(z)
estimated from the signals uST(z) is depicted in Fig. 5.13. As only one broadband interferer is
present in the simulated scenario, all the output power is concentrated in the first diagonal element
of Ruu,ST(z) in Fig. 5.13.
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Fig. 5.11: Estimated polynomial covariance matrix, R̂uu,S(z).

The above BEVD based GSC beamformer (GSC-S) is benchmarked against the conventional
time-domain CCD-GSC (GSC) setup without any prewhitening as described in Sec. 5.1.1 as well as
the KLT-based GSC beamformer (KLT) of Sec. 5.1.3. All three beamformers operate using filters
with L = 140 coefficients for the adaptation process. Similar to the GSC-S, the KLT beamformer
requires estimation of the covariance matrix prior to the operation of the beamformer in order to
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Fig. 5.12: Paraunitary matrix produce by SBR2 to diagonalised R̂uu,S(z).
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Fig. 5.13: Polynomial covariance matrix after the application of SBR2.
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generate the unitary matrix that serves as a KLT transform pre-processor to decorrelates the array
signals in the spatial domain. The number of samples chosen for this estimation is set to 1000.
Covariance matrix used have a size of 2(M − 1)τ × 2(M − 1)τ . This matrix includes both spatial
and temporal information for KLT decomposition via EVD. The eigen-spectrum of the resulting
covariance matrix on which the KLT is calculated, is depicted in Fig. 5.14.
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Fig. 5.14: Eigen values spread of KLT beamformer.

The CCD-GSC (GSC) beamformer was further enhanced by the introduction of temporal decor-
relation through subband decomposition. This subband CCD-GSC (GSC-T) structure utilises a
prototype filter of length Lp = 448 to decompose the received data into K = 16 subband signals
decimated by N = 14. Due to the N times increased sampling period, a reduced TDL of length
L/N = 10 filter coefficients has been applied for each subband. For this simulation scenario, a total
of M = 4 analysis filter banks are required for subband decomposition. The subband approach was
also incorporated onto the spatially strongly decorrelated BEVD based GSC beamformer (GSC-S),
giving it spatio-temporal decorrelation. Two different methods were explored for this integration
in Sec. 5.3.2. The first method, the BEVD subband GSC beamformer (GSC-ST1), performs a
subband decomposition of the P = 1 broadband interferer by means of a single analysis filter bank,
after the data has been spatially decorrelated, as well as a decomposition of the desired signal.
The second method described in Sec. 5.3.3 — the subband BEVD GSC beamformer (GSC-ST2)
— decomposes the input signals into subbands prior to strong spatial decorrelation. As such, the
GSC-ST2 beamformer requires an analysis filter bank for each of the M = 4 sensor elements.

Using an NLMS adaptive algorithm to adjust the adaptive filter coefficients, the step sizes
were chosen empirically for each of the beamformers discussed above to achieve approximately the
same steady state mean squared error (MSE) across the various simulations. The performance in
term of residual MSE, i.e. the beamformer output minus the signal of interest, over an ensemble
of 50 simulations is shown in Fig. 5.15. Results indicate that the BEVD beamformer achieves
better convergence speed compared to the direct implementation of the GSC structure. The two
beamformers which utilise both temporal and spatial decorrelation (GSC-ST1 and GSC-ST2) out-
perform the remaining beamformers that only contain a decorrelation in maximally one dimension.
The GSC-ST2 which performs subband processing prior to the BEVD operation converges slightly
faster due to better diagonalisation of the covariance matrix in the spatial domain as compared
to the GSC-ST1 structure. The KLT beamformer proofs to be less effective in our simulation sce-
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nario with convergence rate comparable to the time domain CCD-GSC beamformer. This could
be attributed to the limitation of instantaneous decorrelation provided by the EVD as well as the
absence of power normalisation stage, similar to that of the transform domain adaptive filter [114].
It should be noted that for all BEVD-based beamformers the number of iterations set to generate
the paraunitary matrix is 100.
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Fig. 5.15: Learning curves for the GSCs, beamformer with only spatial decorrelation (GSC-S)
by means of BEVD, beamformer with temporal decorrelation (GSC-T) by means of the subband
approach, beamformer with spatio-temporal decorrelation (GSC-ST1) by means of BEVD and
subband decomposition, beamformer which performs subband decomposition before spatial decor-
relation (GSC-ST2), and the KLT GSC beamformer (KLT): (top) initial and (bottom) long-term
convergence.

5.5 Discussion

This chapter has motivated the use of decorrelation techniques in order to prewhiten the input
to LMS-type adaptive beamforming algorithms and therefore increase their convergence speed.
A number of different decorrelation approaches have been provided, and the benefit of a novel
broadband EVD decomposition has been discussed and applied to a GSC as an example for a
broadband beamforming algorithm. The BEVD can achieve strong spatial decorrelation of the
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array signal. This decomposition technique for a polynomial covariance matrix is calculated by
means of the recently proposed SBR2 algorithm, which has been briefly outlined.

Strong spatial decorrelation by means of the SBR2 algorithm has been shown to increase the con-
vergence speed of both a standard GSC implementation as well as a GSC beamformer whose input
is preprocessed by a KLT for spatial and temporal decorrelation, akin to transform domain adap-
tive filtering but without power normalisation. The remaining temporal correlation after applying
SBR2 has motivated to combine the BEVD-based GSC with a subband decomposition in order
to realise decorrelation in both temporal and spatial domains. This hybrid system was proposed
in two variations. Firstly, BEVD-based preprocessor was followed by a subband implementation
of the beamforming algorithm. Secondly, the subband decomposition was directly applied to the
antenna signals, whereby the spatial decorrelation stage benefitted from shorter polynomial covari-
ance matrices that can be diagonalised with fewer iterative steps at a supposedly better accuracy.
In simulations, the combined BEVD-subband GSC beamformers exhibited significantly faster con-
vergence than the other reviewer approaches.

This paper has addressed a number of decorrelation approaches, in both space and time, to
decorrelate the inputs to an adaptive beamformer, for which we have exemplarily used the GSC.
We have shown that recently developed broadband EVD can help to improve the convergence
speed with respect to standard implementations as well as a KLT implementation without power
normalisation. The BEVD approach can be complemented by a spatial decorrelation by means of
subband processing, for which additional benefits in terms of convergence speed were demonstrated
in simulations. We have suggested two approaches, which differ in the order in which temporal (T)
and spatial (S) decorrelations are imposed, and for which slight and scenario-dependent trade-offs
between complexity and convergence speed exist.
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Chapter 6

Conclusion

This chapter summarises the findings reported in this thesis, and outlines possible routes for further
research.

6.1 Concluding Summary

The general aim of the research reported in this thesis has been to design and implement adaptive
beamforming for broadband scenarios. The thesis first reviewed the basics of digital beamform-
ing, highlighting the differences between the narrowband and broadband cases. Although many
of the results in this thesis can be generalised to arbitrary beamforming algorithms, the linearly
constrained minimum variance (LCMV) beamformer and one of its specific implementations — the
generalised sidelobe canceller (GSC) — have been used as an example for an adaptive beamforming
algorithm. The LCMV minimises the output power of a beamformer subject to preserving a signal
impinging onto the array with specified spatial and spectral characteristics, which are protected by
constraints. Various ways of formulating constraints are reviewed. As a specific LCMV algorithm,
the GSC projects the array data onto the unconstrained subspace, where unconstrained optimisa-
tion based on standard adaptive filters is possible. For the GSC, various designs have been derived
aiming at low computational cost, fast convergence, and constant spatial resolution when operating
in a broadband situation.

In order to achieve high spatial resolution and interference rejection for broadband signals, a
large number of sensors and filter coefficients are needed for a time domain implementation of the
GSC. The resulting broadband beamformer is potentially very costly for real time implementation.
In addition, the large number of adaptive coefficients compromises the convergence speed of the
broadband beamformer, prompting extensive research on more efficient alternatives. The two main
techniques investigated here were the DFT-based approach and processing in subbands.

The DFT-based broadband beamformer has been shown to suffer from major limitations. By
decomposing a broadband signal into independent frequency bins and processing them individually,
a reduction in complexity could be achieved. However, poor frequency selectivity of the DFT filter
bank means that the assumption of zero correlation between bins is invalid. Convergence of this
beamformer to its optimal solution is only guaranteed if the input signal components coincide
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with frequency bins. In the GSC context, interference must be narrowband to ensure successful
convergence. To mitigate this constraint, an overlap-save GSC beamformer was proposed to resolve
the scenario where broadband interference is involved. This technique was tested and proved to
be effective. However, convergence speed was slower compared to the time-domain beamformer.
Subsequent modification was carried out to the overlap-save beamformer blocking matrix, resulting
in a modified overlap-save (mOS-GSC) system that exhibits improvement in adaptation, leading
to a performance comparable to the time-domain beamformer. Both overlap-save beamformers are
computationally more efficient compared to the time-domain setup. An alternative overlap-save
beamformer — the nbOS-GSC, which is based on narrowband assumptions — was also proposed.
The complexity of the nbOS-GSC is lower than that of the mOS-GSC, but at the expense of a
slower convergence speed.

As a second technique, alternative to the DFT-base beamformer, subband beamforming has
been evaluated. Subband signals are produced by filter banks with a generally considerably higher
selectivity compared to the DFT. Oversampling enables the independent processing of subband
signals and leads to simple low cost implementations that offer parallelism for execution on a hard-
ware platform. The subband beamforming technique achieves a reduction in complexity and shows
a better convergence characteristic than the time-domain implementation. Subband beamformers
are computationally more expensive compared to the overlap-save setup. However, of all the evalu-
ated implementations including overlap-save and time-domain, the subband GSC shows the fastest
convergence rate under broadband scenarios.

Further work was concerned with the spatial resolution of a broadband beamformer. Broadband
beamformers for an equispaced linear array suffer from non-uniform resolution across the operating
bandwidth. This is attributed to the reciprocal relationship between resolution, frequency and
aperture size, and can be undesirable in areas such as immersive audio. The use of harmonic nesting
with subsequent application of frequency dependent weighting on the sensor array is proposed for
both the direct DFT and overlap-save beamforming structures. This allows the GSC beamformers
to attain a frequency invariant property where constant beamwidth is observed across a wide
operating spectrum. Based on the subband technique, scaled aperture subband processing was
introduced. The technique has the ability to constrain the variation of resolution to within an
octave. Simulations carried for these frequency invariant structures indicate that uniform resolution
can be achieve without compromising the convergence speed.

In order to address slow convergence of LMS-type adaptive beamforming algorithms, various
methods of decorrelating the input signal were investigated. The correlation of the input to the
adaptive filter was formulated in both temporal and spatial dimensions. Optimum data dependent
spatio-temporal decorrelation by means of the Karhunen-Loeve transform was compared to a novel
strong spatial decorrelation approach by means of a recently proposed broadband eigenvalue de-
composition (BEVD) applied to the polynomial covariance matrix of the adaptive beamformer’s
input. This approach was complemented by an oversampled filter bank-based subband approach
to perform temporal whitening in order to remove the remaining temporal correlation. Compared
to other decorrelation methods — such as the KLT, or either BEVD or subband decorrelation on
their own — the combined subband / BEVD approach was demonstrated to provide a considerably
increased convergence speed.

130



6.2 Future Work

Based on the findings presented in this thesis, the following topics are of interest for future in-depth
research:

Design of the GSC Blocking Matrix to Cater for Different beamforming Structures
and Scenarios. The current design of the GSC beamformer is based on linear arrays, but could
potentially be extended to planar, circular or arbitrary array geometries. This could be achieved
by applying suitable changes to the design of the blocking matrix for the time-domain GSC beam-
former, thereafter extending it to both overlap-save and subband methodology. Challenges can also
be found in the design of the GSC beamformer to deal with more complicated propagation models
whereby source of the ideal far-field assumption no longer holds, such as e.g. nearfield propagation
whereby wavefronts impinging onto the array are no longer planar but spherical.

Angular Spread of Array Signals and Uncertainty. The current design assumed perfect
knowledge of the angle of arrival from which the signal impinges onto the array. However, mis-
matches due to imperfect array calibration, environment nonstationarities and source spreading are
likely to occur in real-world beamforming systems. The GSC beamformer is known to be prone to
signal cancellation if these mismatches cause the signal of interest to breach the blocking matrix.
Thus, a robust design of the blocking matrix to widen the angular spread of the GSC beamformer,
catering for potential imperfection between the presumed and the actual signal steering vectors
could be conducted. For SOIs from broadside, this can be achieved by e.g. using higher orders for
the cascaded columns of differencing method.

Shortening of the Polynomial Matrices in the BEVD. The SBR2 algorithm, which has
been used to achieve strong decorrelation of array signals, yields potentially polynomial matrices of
high orders. In other contexts, such as for broadband communications, ideas have been pursue to
shorten these systems in order to reduce the effort in both design and implementation [118, 119].
While the application of a BEVD was introduced to increase the convergence speed, computational
complexity has been an important metric throughout this work, and any saving that could be
achieved with no or little loss in performance would be considered very worthwhile.
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Glossary

Abbreviations

AWGN additive Gaussian white noise
BEVD broadband eigenvalue decomposition
CCD cascaded column of differencing
DFT discrete Fourier transform
DOA direction of arrival
DOF degrees of freedom
DSP digital signal processor
EVD eigenvalue decomposition
FFT fast Fourier transform
FIR finite impulse response
GDFT generalised discrete Fourier transform
GSC generalised sidelobe canceller
IFB independent frequency bin
IIR infinite impulse response
LCMV linearly constrained minimum variance
LMS least mean square
LSE least squared error
LTI linear time invariant
MACs multiple accumulates
MISO multiple inputs single output
MMSE minimum mean square error
MSE mean square error
NLMS normalised least mean square
OSFB oversampled filter banks
PDF probability density function
PSD power spectral density
RLS recursive least squares
SAB subband adaptive beamformer
SAF subband adaptive filter
SBR2 second-order sequential best rotation
SDMA spatial division multiple access
SIR signal to interference ratio
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Glossary 133

SINR signal to interference and noise ratio
SNR signal to noise ratio
SOI signal of interest
SSA subband scaled aperture
SVD singular value decomposition
TDL tapped delay lines
w.r.t. with respect to
WSS wide sense stationary

General Notations

h scalar quantity
h vector quantity
H matrix quantity
h vector quantity in frequency domain
H matrix quantity in frequency domain
h(t) function of a continuous variable t

h[n] function of a discrete variable n

H(ejω) discrete Fourier spectrum (PSD) of a discrete function h[n]
H(z) z-transform of a discrete function h[n]
H(ejω) PSD matrix
H(z) matrix of polynomial (z-transform of h[n])

Relations and Operators

•—◦ transform pair, e.g. H(ejΩ) •—◦ h[n] or H(z) •—◦ h[n]
∗ convolutional operator
(·)∗ complex conjugate
(·)H Hermitian (conjugate transpose)
(·)T transpose
(·)† pseudo-inversion
H̃(z) paraconjuate transpose H̃(z) = HH(1/z)
E{·} expectation operator
Re{·} real valued operator
Im{·} imaginary valued operator
H{·} Hilbert transform
∇ gradient operator
amodb modulo operator: remainder of a/b
b·c floor operator (round off)
| · | magnitude operator
trace[·] operator that computes the sum of the diagonal elements of a matrix
diag[·] operator that takes the vector to a diagonal matrix
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rank{H} rank of H (number of linearly independent rows)

Sets and Spaces

C set of complex numbers
CM×N set of M ×N matrices with complex entries
R set of real numbers
RM×N set of M ×N matrices with real entries
Z set of integer number

Symbols and Variables

β forgetting factor for the RLS algorithm
λ wavelength and also eigenvalues of covariance matrix
Γ[n] input data for the overlap-save beamformer
µ step size parameter of the LMS and NLMS algorithm
ω (angular) frequency
Ω nomalised (angular) frequency
σ variance
τ delay / lag
ϑ angle of incident
ξ cost function
B bandwidth
c speed of the propagating waves
C constraint matrix
Ca blocking matrix
Ccir circulant matrix
d distance between adjacent sensors
d[n] desired signal
e[n] output signal from the beamformer
I identity matrix
J number of constraints
J reverse identity matrix
K number of subbands
L length of TDL
Lp length of prototype filter
M number of sensors
N decimation ratios
Pc projection matrix, C(CHC)−1CH

Pmut permutation matrix,
r number of linearly independent constraints
R covariance matrix
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s steering vector
w adaptive filter
wa adaptive filter for the GSC beamformer
wc quiescent vector
wopt optimum filter coefficients
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[13] G L. Stüber, Principles of Mobile Communication, Kluwer Academic Publishers, Boston,
MA, 1996.

[14] K.M. Buckley, “Spatial/Spectral filtering with linearly constrained minimum variance beam-
formers,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 3, pp.
249–266, March 1987.

[15] R.J. Vaccaro, “The past, present, and the future of underwater acoustic signal processing,”
IEEE Signal Processing Magazine, vol. 15, no. 4, pp. 21–51, July 1998.

[16] H. Song, W.A. Kuperman, W.S. Hodgkiss, P. Gerstoft, and Jea Soo Kim, “Null broadening
with snapshot-deficient covariance matrices in passive sonar,” IEEE Journal of Oceanic
Engineering, vol. 28, no. 2, pp. 250–261, April 2003.

[17] H. Yang and M.A. Ingram, “Design of partially adaptive arrays using the singular-value
decomposition,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 5, pp. 843–
850, May 1997.

[18] D. Morgan, “Partially adaptive array techniques,” IEEE Transactions on Antennas and
Propagation, vol. 26, no. 6, pp. 823–833, November 1978.

[19] D.J. Chapman, “Partial adaptivity for large array,” IEEE Transactions on Antennas and
Propagation, vol. 24, no. 9, pp. 685–696, September 1976.

[20] J.J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Processing
Magazine, vol. 9, no. 1, pp. 14–37, January 1992.

[21] M. Joho and G.S. Moschytz, “Adaptive beamforming with partitioned frequency-domain
filters,” in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
New York, USA, October 1997.

[22] R.T. Compton, “The relationship between tapped delay-line and FFT processing in adaptive
arrays,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 1, pp. 15–26, January
1988.

[23] W. Liu, S. Weiss, and L. Hanzo, “Low-complexity frequency-domain GSC for broadband
beamforming,” in International Conference on Signal Processing, Bejing, September 2002,
pp. 386–389.

[24] Y.H. Chen and Fang H.D., “Frequency-domain implementation of griffiths-jim adaptive
beamformer,” Journal of the Acoustic Society of America, vol. 91, no. 6, pp. 3354–3366, June
1992.

[25] S. Weiss and I.K. Proudler, “Comparing efficient broadband beamforming architectures
and their performance trade-offs,” in International Conference on Digital Signal Processing,
Santorini, Greece, July 2002, vol. 1, pp. 417–423.



BIBLIOGRAPHY 143

[26] L. Pelkowitz, “Frequency domain analysis of wraparound error in fast convolution algo-
rithms,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 3, pp.
413–422, June 1981.

[27] W. Kellermann and H. Buchner, “Wideband algorithms versus narrowband algorithms for
adaptive filtering in the DFT domain,” in Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, USA, November 2003, vol. 2, pp. 1278–1282.

[28] J. Benesty and D.R. Morgan, “Frequency-domain adaptive filtering revisited, generalization
to the multi-channel case, and application to acoustic echo cancellation,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, Istanbul, June 2000,
vol. 2, pp. 789–792.

[29] S. Weiss, R.W. Stewart, M. Schabert, I.K. Proudler, and M.W. Hoffman, “An efficient
scheme for broadband adaptive beamforming,” in Asilomar Conference on Signals, Systems,
and Computers, Monterey, CA, November 1999, vol. 1, pp. 496–500.

[30] G.M. Raz, “An approach to adaptive beam-forming for wide-band systems using a subband
decomposition,” in Proc. IEEE Sensor Array and Multi-channel Signal Processing Workshop,
Cambridge, USA, March 2000, pp. 300–305.

[31] W. Liu, S. Weiss, and L. Hanzo, “Subband adaptive generalized sidelobe canceller for broad-
band beamforming,” in IEEE Workshop on Statistic Signal Processing, Singapore, August
2001, vol. 1, pp. 591–994.

[32] N. Grbic, X.J. Tao, S.E. Nordholm, and I. Claesson, “Blind signal separation using overcom-
plete subband representation,” IEEE Transactions on Speech and Audio Processing, vol. 9,
no. 5, pp. 524–533, July 2001.
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