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ABSTRACT

This chapter considers quantum solar energy conversion from a thermodynamic point
of view. Starting from geometrical optics, the concept of étendue is used to determine
the number of photon states in a beam of light. This naturally leads to the definition of
entropy, providing the foundation for the statistical mechanics of light beams. With
emphasis on the thermodynamic functions per photon (in particular, the chemical
potential), these concepts are illustrated first by comparing the thermodynamic limits
of the geometric concentrators with the limits obtained by traditional arguments. The
thermodynamic framework is then extended to novel applications. The fluorescent
collector is modelled as an open thermodynamic system interacting with a room-
temperature heat bath. A detailed thermodynamic description of the operation of a p-n
junction solar cell then follows, starting from energy (voltage) rather than from the
kinetic argument used by Shockley and Queisser. This provides a novel view of
fundamental losses, each identified as a specific form of irreversible entropy
generation. The chapter concludes with an analysis of a future photovoltaic device — a
hot carrier solar cell where the voltage exceeds the Shockley-Queisser limit. The
efficiency of this solar cell, obtained by thermodynamic arguments, is free from
specific mechanisms or structures such as selective energy contacts. It is argued that
this is the fundamental efficiency limit to the operation of single junction solar cells
where thermalization of electron-hole pairs has been reduced or entirely eliminated.
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1. INTRODUCTION

The application of thermodynamic principles to the conversion of solar energy into
useful work has a distinguished history, stimulated by both the academic challenge and
the immense technological potential. In the heart of the early quantitative works lies
the balance between the incident and emitted energy — entropy flows. This
methodology, leading to the celebrated Landsberg efficiency, was elaborated by
Landsberg and Mallinson (1976), Petela (1964) and Press (1976). An application of
Carnot efficiency to photothermal processes was given by Jeter (1981), with Badescu
(2008) providing a unified thermodynamic view of the different conversion
mechanisms.

An early insightful contribution by Rose (1960) showed how the photovoltaic effect
can be derived from the Carnot cycle. Virtually in parallel, Shockley and Queisser
(1961), in their celebrated detailed balance treatment, determined the limits of
photovoltaic conversion (see, however, also Trivich and Flynn, 1955). Detailed
balance here refers to the equality of the incident and emitted photon fluxes. Another,
more traditional, meaning of this term will be introduced later in this chapter,
following from the thermodynamic concept of the same name. A related thermo-
dynamic discussion of photosynthetic conversion was given by Duysens (1964), Ross
(1965), and Ross and Calvin (1967), with an elegant extension by Laverge and Joliot
(1996). Yet another approach invokes endoreversibility, based on the operation of
large scale conventional power stations (Curzon and Ahlborn, 1975; de Vos, 1992).

Closely linked to photovoltaics is the application of thermodynamic concepts to
luminescence. Building on Einstein’s ideas for a two level system (Einstein, 1917),
Kennard (1918, 1926) and later Stepanov (1957) laid down the foundations and general
principles that apply to the “thermodynamic” detailed balance of this process (see Sec.
4 of this Chapter). Other notable contributions to this field have been made by Landau
(1946), Weinstein (1960), and Payen de la Garanderie (1965).

The thermodynamic analysis of solar energy conversion is usually considered to be
synonymous with very high, even unrealistic, efficiencies, with little indication given
of the associated loss mechanisms. This Chapter shows that this need not be the case.
We shall show that a consistent and rigorous framework can be developed which can
provide a realistic description of the present single-junction solar cells, pinpoint the
thermodynamic nature of the fundamental losses in these devices, and suggest how
these can be eliminated in future generations of solar energy conversion devices such
as hot carrier solar cells.

Fundamental to this Chapter is the quantum nature of the conversion process. In the
usual terminology, the word “quantum” usually refers to the presence of an energy gap,
defining the characteristic energy of photons that play a role of “fuel” as well as
“working medium” in the conversion device. We shall show that quantum
considerations apply not only to the energy spectrum but also to the spatial coordinates
of the light beam. To this end, Sec. 2 of this Chapter provides a link between the
geometrical optics and the semi-classical limit of the wave theory of light. Key here is
the concept of étendue: a geometric characteristic of the beam but also a measure of the
phase space volume occupied by the transverse components of the photon field. Once
the number of photon modes in a beam has been determined, it is a simple matter to
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define the entropy: the principal stepping stone towards thermodynamics (Sec. 3).
Unlike the traditional thermodynamic analyses, the central element in this structure is
not the entropy of the beam but the entropy per photon. This concept provides a
powerful tool for the subsequent thermodynamic framework which unfolds with a brief
illustration of the limits to the concentration of sunlight (still within the limits of
geometrical optics). A more general illustration is also provided with the examination
of the scattering and absorption of light in Sec. 4.

Applications to solar energy conversion then follow. Section 5 gives an overview of
the fundamental efficiency limits of fluorescent collectors. Unlike concentrators based
on geometrical optics where the frequency of light is conserved, fluorescent collectors
represent an open thermodynamic system. Instead of entropy, their operation is
therefore constrained by considerations based on free energy or, more precisely, the
chemical potential - the free energy per photon.

The formalism that is developed in this Chapter covers not just monochromatic
radiation but also realistic solar cells which absorb a broad spectrum of the incident
sunlight. The mathematical tools that are needed for this purpose are developed in Sec.
6 where we show that, at moderate light intensities, the photon statistics bears a close
resemblance to an ideal two-dimensional gas. Following a brief discussion of the
energy-entropy balance in the absorption and emission of light (Sec. 7), a detailed
thermodynamic description of the operation of a solar cell is presented in Sec. 8. It is
shown that, when using arguments based on energy (voltage) rather than kinetics
(current), the electrical characteristic of the solar cell follows directly from the ideal
gas laws. This provides a novel view of the fundamental losses which can be
identified as due to specific forms of irreversible entropy generation.

Section 9 considers a hypothetical photovoltaic device, the hot carrier solar cell. The
efficiency of this device, which exceeds the Shockley-Queisser limit on account of a
higher voltage, is obtained by thermodynamic arguments, independent of specific
mechanisms or structures such as selective energy contacts. We therefore conclude that
this is the thermodynamic limit to the operation of single junction solar cells where the
thermalization of electron-hole pairs has been reduced or entirely eliminated.
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2. COUNTING SUNRAYS

Viewed in a mathematical context, geometrical optics forms the limiting solution of
the Maxwell wave equation when the wavelength of light is very short. In this limit,
light propagates along lines (rays) defined by the shortest transit time between the
source and the receiver, as embodied in Fermat’s Principle of Least Time. Light rays,
which are generally curved, become straight lines in the free space or in a medium
where the refractive index is constant. The distribution of rays is generally assumed to
be continuous, with no meaning assigned to the thickness of a ray.

A convenient characteristic of the beam in geometrical optics is the concept of
étendue. For a narrow beam of angular spread 642 passing through an area element
0A, the element of étendue is defined as

6 =n’6AX2cos 6 (1)

where # is the refractive index of the medium and @is the angle between the normal
to 04 and the direction of the wave vector k (Fig. 1a). For extended beams (where, for
example, 622 may depend on position), the total étendue can be obtained by an
integration of (1). We may consider the simple case of direct (beam) sunlight which
represents a narrow pencil of rays whose angular divergence presents a solid angle of
Qs = 6.85x107 sterad. The étendue of such radiation passing through a planar surface
of finite area 4 is easily obtained from (1), by replacing 64 with 4. For radiation with
directions which extend over a complete hemisphere (for example, the diffuse
sunlight), an integration of Eq. (1) over the angular variables gives

“=mn’A 2

The traditional application of étendue to optical instruments derives primarily from
the fact that the étendue of a beam propagating in a clear and transparent medium is
conserved. In more recent times, this concept has proved also a convenient vehicle for
the discussion of optical systems that concentrate sunlight (see, for example, Welford
and Winston, 1978 where a proof of this theorem can be found). In other applications,
however, this theorem appears in a range of different guises, associated with such
distinguished names as Poincaré, Lagrange and Helmholtz (Born and Wolf, 1999)

For the purposes of this Chapter, geometrical optics provides a useful vantage point
for the description of light but refinements will be needed to extend the scope to
include rudiments of wavelike propagation. This will enable us to consider light as
propagating in individual quantum states, rather than as a countless continuum. A
useful analogy that we shall follow is the parallel between the diffraction limit of
geometrical optics and Heisenberg’s uncertainty principle.

Let us consider a narrow beam of light passing through a slit of width ox which
defines its dimension in the coordinate space. The limit of geometrical optics,
considered by the absence of diffraction, places a constraint on the spread of this
beam in the & space, in the form

Sk, >1 (3)
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The analogy with particle mechanics can now be established by recalling de Broglie
relationship between wave vector and particle momentum: p = A4k (for a detailed
development of the analogy between photons and particles described by classical
mechanics see Joyce, 1974). Multiplying by the Planck constant /# we find that (3)
corresponds to the limit

Sp. > h (4)

- in other words, the Heisenberg uncertainty principle. When applied to the six
dimensional phase space of variables x,y,z, p., py, p-, condition (4) tells us that only
one quantum state can occupy the volume dx 6y & Jp.Ipydp-.

A similar reasoning can be used to determine the volume of a quantum state in the
phase space of rays in geometrical optics. It turns out that all we need to do is to
transform the element of étendue into a suitable form where the result becomes
immediately apparent. With a suitable choice of the coordinate system, the beam area
04 becomes dxdy, where ox and 9y are small increments of the coordinates x and y.
Similarly, the appropriate projection of the angular spread corresponds to increments
ok, and ok, in the components of the wave vector transverse to the direction of
propagation. A simple geometrical argument (Fig. 1b) then demonstrates that the
étendue element (1) can be written as

2
n
s

5 = &k ok, )

2

The volume element dx Jy ok, ok, in the phase space of variables x,y,k,, &, is
therefore equal to k°0</n*, and cannot be smaller than unity. Thus, we can also say

that k°5</n” contains a single quantum state, for occupation by photons in the beam.
The term “mode” can also be used as the present discussion has a close parallel with
the determination of the number of optical modes in a wave guide (see, for example,
Brooker, 2002). The argument that we have used corresponds to the semi-classical
limit and the number of modes is therefore likely to be large. It does not take much
effort or imagination, however, to extend similar statistical concepts to waveguides or
systems with a smaller number of modes.

We are now only a small step from being able to introduce statistical concepts to
geometrical optics. Allowing for two directions of polarization, the above discussion
shows that the integrated quantity

2k° 21°
nz = cz bl (6)

can be interpreted as the number of quantum states within a beam with frequency

v = ck/n and étendue ~ . Since the wave vector is constant, the volume of a beam in
the phase space of its transverse coordinates remains constant during the beam
propagation in a clear, transparent medium. The conservation of étendue can therefore
be interpreted as the Liouville theorem of classical mechanics, applied to photon
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propagation along rays in geometrical optics. Beam propagation in clear media where
the number of quantum states is conserved then provides a firm foundation for the
analysis of process that transform the beam and produce useful work. Based on the
discussion above we may anticipate that such analysis will bear close similarities with
statistical mechanics and thermodynamics.
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3. STATISTICS OF MONOCHROMATIC RADIATION: LIMITS TO THE
CONCENTRATION OF LIGHT

The equivalent of Liouville theorem for light beams that we have discussed in Sec. 2
make it an easy matter to lay down the foundations for a statistical treatment of light.

Let us suppose that the G = 2-v* /¢ states in a beam of light [see Eq (6)] contain N

photons. A standard argument shows that the number of ways that these photons
(which are indistinguishable) can be distributed over the G states is equal to

o (G+N) (G +N)T

GINt  GONV (7)
where the Stirling approximation has been used to obtain the second, approximate,
equality. This leads to the following result for the entropy of the beam:

2v°
S=kyInW =k, — {1+ p)In(L+ p) - pIn p} (8)
C

where kg is the Boltzmann constant and p = N/G is the mean number of photons per
mode. Equation (8) has a familiar form. It can also be obtained by translating the
number of photon states in a box into a number of states in a beam (Landau and
Lifshitz, 1958). The new element that Eq. (8) brings in is the presence of étendue: an
essential feature for the thermodynamic treatment that follows.

Let us now consider an optical system or instrument that accepts radiation of
wavelength A through an (entrance) aperture characterised by an étendue . Emitted
radiation leaves the system through an (exit) aperture with étendue ;. If there is no
scattering or absorption of light in the system (an assumption we shall later relax) the
étendue theorem tells us that , = “.. It is of interest to examine this result with the
use of Eq. (8) from the view point of statistical mechanics.

To this end, let us consider the change in entropy when one photon of light passes
through the system. Since the change of photons in each of the beams is equal to one
this is, clearly

as. oS,
ou (9)

S = —
ON ON

where S;, and S, are the entropies (8) of the incident and emitted beams, and the
number of photons N is equal in both beams. Denoting the entropy per photon by s, we
have

oS V%
Szazkb, In(l'i'c—zNj (10)

and Eq. (9) gives
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C C c

2v° 4, 2 4,
As = Sout “ S = kB In[1+_27j _kB |n{l+—2 NJ = kB In(T;] (11)
where the second equality holds if NV is not too large — that is, for weak to moderate
light intensities. We shall examine this approximation more closely in Sec. 6 of this
Chapter.

Equation (11) gives a thermodynamic interpretation of étendue conservation. For the
system in question, the étendue is conserved. Equation (11) then gives 4s = 0 :in
other words, light propagation in a clear and transparent medium can be considered as
thermodynamically reversible. It is interesting to note that this result agrees with the
optical meaning of reversibility as each photon can be brought back through the system
to the initial state along the same ray (or within the same quantum state) that it has
occupied during its propagation (Jones, 1953).

More generally, of course, the second law of thermodynamics tells us that entropy need
not be conserved but it cannot decrease during the passage of photons through the
system (As > 0). As long as the number of photons in the beam remains constant, this
means that

{{in - ?IO/Mt (12)
In other words, the étendue may increase during light propagation but it never
decreases. For example, photons in a beam can be scattered to enlarge the volume of
phase space which they occupy but, at least in an isolated system, this volume can
never decrease.

This argument can be used to re-visit, within the statistical framework, the well known
limit that optics and statistical mechanics impose on the concentration of sunlight. Let
us consider, for the moment, a pencil of direct sunlight with angular spread (2
incident onto the entrance aperture of area 4.,, of the instrument in Fig. 2 so that

“in = £25 Aony . The concentrated light is emitted from the exit aperture within the full
hemisphere so that «,,;; = 7A4..t, Where 4., IS the area of the exit aperture. We assume
that the incident and emitted light propagate in a medium with » = 1 and the number of
photons is conserved. Introducing the concentration ratio C = A4, / A..; and applying
EqQ. (12) then easily leads to the condition

< ~46,000 (13)
Q

N

Equation (11) combined with second law of thermodynamics also tell us that, at least
within the realm of geometrical optics, it is impossible to concentrate diffuse sunlight.
Indeed, completely diffused sunlight is characterised by isotropic incidence where -, =
74..and a similar argument as above gives C<1: in other words, no concentration is
possible. In the language of statistical mechanics, concentration of diffuse sunlight
would entail the decrease of entropy by an amount equal to A4S = kg InC . This is, of
course, impossible in the present isolated optical system where photons do not interact
with other photons nor with any material substance.



Ch.2 in: V. Badescu and M. Paulescu, Physics of Nanostructured Solar Cells, Nova Science, 2009.

4. FROM OPTICS TO THERMODYNAMICS: THE SCATTERING AND
ABSORPTION OF LIGHT

The statistical formalism that we have developed allows us to move outside the realm of
geometrical optics and consider, for example, photon scattering which changes the
direction of propagation in a statistical manner. More generally still, we may discuss
photons which exchange energy with an absorbing and luminescent medium. In
thermodynamics, such systems can no longer be considered as isolated but can be
described as closed: the number of photons is conserved but energy is exchanged with
an external heat reservoir. In a still more general setting, we shall later discuss
photovoltaic or photochemical converters which produce useful work.

Initially, let us consider elastic scattering of radiation which does not change the
wavelength of light. Suppose that a volume ¥ which emits radiation is occupied by the
scattering medium and contains N,, photons. The scattering process ensures that
photons are uniformly distributed, and makes the emitted radiation isotropic. Photon
emission from the volume thus resembles the escape of particles in the classical kinetic
theory of gases. Consider, for example, photons emitted in a time interval o by a
surface area 04, forming a thin pencil of rays within a solid angle 62 which subtends an
angle @ with the normal to the surface. These photons occupy a cylinder with base 04

and height (¢/n) &, and the photon flux N emitted per unit time is thus

. cN
N = 54X cos § —2 ¢

= o°N
AnVn  AnVn®

ph

(14)

where we noted that the fraction of photons with the appropriate orientation is equal to
002 /47 and we introduced the element of étendue & from (1). Since &~ is proportional
to cos 6, Eq. (14) confirms that the emitted radiation complies with the Lambert law.

As an illustration let us suppose that such scattering medium occupies our familiar
optical system shown by Fig. 2 in Sec. 3. According to (14), the photon flux emitted by
each aperture is proportional to the étendue of the respective beam. The probability that
a photon in the system escapes through the exit aperture is then equal to

Qc _ “exit (15)

Xeﬁt + /exit
where ~,, is the étendue of the beam emitted through the entrance aperture (which need
not be the same as the étendue «;, of the incident beam !). Equation (15) may appear
rather elementary but we shall see in Sec. 5 that, when generalised to light with different
frequencies, it provides a convenient starting point for the discussion of the efficiency of
fluorescent collectors.

The optical processes considered so far conserve photon frequency, and therefore also
photon energy. We will now bring into the picture absorption and emission of radiation
where photon energy need not be conserved. When the stimulated emission can be
neglected, the rates which govern such absorption and emission processes comply with
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the Kennard-Stepanov relation (Kennard, 1918, 1926; Stepanov, 1957) which can be
written in the form

2.2
8m°y h(v,—v)l kT
oe

1= (16)
T

& 7
where zis the natural (radiative) lifetime, o, is the absorption cross section, f(v) is the
fluorescence spectrum normalised to unity on the frequency scale, v, is the energy of
the electronic transition responsible for the absorption or fluorescence, and T'is the

temperature of the fluorescent medium. In semiconductors, a similar relation was
discussed in some detail by van Roosbroek and Shockley (1954).

The Kennard-Stepanov relation (16) or its van Roosbroek-Shockley equivalent (we shall
abbreviate the full family of these relations by KSvRS) is observed, to a certain degree
of accuracy, in most molecular or semiconductor spectra. When it does accurately agree,
it implies that photon emission occurs from a manifold of energy levels which are in
thermal equilibrium with the surrounding medium. We shall see presently that KSVRS
relations can be interpreted as a statement of microscopic reversibility or detailed
balance, in the thermodynamic interpretation of this word.

In an idealised model, we shall assume that all photons that are absorbed by a certain
volume of matter are also emitted - in other words, fluorescence occurs with a quantum
yield of unity, and no photons are removed non-radiatively from the system. Absorption
then does not remove photons from the system but only redistributes them between
different frequency (or energy) states.

Let us consider the rate of photon transfer between two groups of states around
frequencies vand v’ . To be specific we consider a molecular system although this
argument can easily be applied also to semiconductors. The rate of photon removal from
states near frequency v by absorption is,

UVNO %Nph (V)
where N, is the number of molecules in the ground state. The fraction of these photons

that will be re-emitted within a range of frequencies ov’ near v’ is simply f{(v’) ov’. The
rate of photon transfer v = v’ is equal to the product of these two factors:

oN, Y N, 1) f () 6V (17)
Within the limits of applicability of KSVRS relations we can approximate

3, 2
N, (v)= 872723‘/ e T Sy (18)

Substituting (16) and (19) into (17) we obtain the rate of photon transfer v = v’ in the
form
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8mv?

o, N, Y N, (V) o, S =N, S N, (V) f(v) SV (19)

CS
which is the same as the rate of transfer v =2 v’, proving the detailed balance.

The combined features of unit quantum yield and detailed balance guarantee that the
absorption/emission events bring radiation in a sufficiently thick volume of medium into
thermal equilibrium, at the temperature of the absorbing substance. Since the photon
number are conserved, such ‘photon gas’ will be described by the Bose-Einstein
distribution

1
P = i (20)

where 1 is the chemical potential which, in general, is not equal to zero.

Our treatment of the KSVRS relations implicitly assumes that the absorbing material is
in complete thermal equilibrium at a single temperature 7, which characterises all the
relevant degrees of freedom, including electronic and vibrational motion. Research show
that this need not always be the case. Under some circumstances, electrons in the
excited state can exist at a different (higher) temperature than the material itself. This
temperature then also describes the emitted photons. We shall see in Sec. 9 that such
“hot carrier” materials can also potentially increase the efficiency of photovoltaic
conversion.

10
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5. FLUORESCENT COLLECTORS

Fluorescent collectors, in the shape of a plate containing fluorescent dyes with solar
cells attached at the edge, have recently re-emerged as a promising candidate for
reducing the cost of solar energy conversion, cutting down on the size of the area of the
solar cell. Unlike their geometric counterparts that were discussed in Sec. 3,
fluorescent collectors are claimed to be able to concentrate diffuse sunlight. Based on
the statistical theory that we have developed we shall show that this is indeed possible,
and we will determine the limit to the efficiency of this process.

A schematic representation of a fluorescent collector is shown in Fig. 3. We denote by
6. (where sin 6. = 1/n) the critical angle with the normal to the front surface that
defines the escape cone for total internal reflection (TIR). Light emitted within the
escape cone will leave the collector directly or after a small number of internal
reflections. Light emitted outside the escape cone remains trapped within the collector
and is guided towards the solar cell at the edge of the collector. Light is therefore
geometrically separated into two beams (one inside and one outside the escape cone)
which are defined by the magnitude of the refractive index of the collector. If the
refractive index is sufficiently large, a high proportion of the incident light (direct or
diffuse) will be collected by the solar cell at the edge, with possibly a much smaller
area than the front face of the collector.

A closer look at this argument, however, reveals a subtle paradox. A good collector has
to absorb (and re-emit) a large fraction of the incident light. The absorption coefficient
«a of the collector material must therefore be substantially larger than the absorption
length 1/d, where d is the thickness of the collector. To reach the solar cell at the edge,
the re-emitted light should not be re-absorbed again since each re-emission entails
some of the light leaving the collector through the front surface. This requires that « <
1/L < 1/d, where L is the linear dimension of the front face of the collector. Clearly,
these two conditions are incompatible. We can therefore conclude that, if the collector
is to operate efficiently, absorption of the incident light cannot take place at the same
wavelength as the transport of the fluorescent photon flux. In effect, the operation of a
good collector can be described in terms of two photon fluxes which propagate in
separate “channels”, as follows:

. The absorption channel, extending over a large part of the solar spectrum where
the absorption coefficient of the collector o, is large.

. The fluorescence / photon transport channel, formed by a narrow frequency
interval at longer wavelengths, where the absorption coefficient «,, is small.

The apparent paradox concerning the size of the absorption coefficient is therefore
resolved. The important point to note is that the two flux picture separates the beams
by a mechanism based on different absorption coefficients at different wavelengths,
rather than on the geometry of the collector.

Although fluorescent collectors which rely on this principle can be reasonably efficient
(Kittidachachan et al, 2007), the presence of the escape cone represents a significant
loss mechanism. We shall see presently that fluorescent collectors cannot reach their
maximum potential unless this loss mechanism is eliminated. This can be done by

11
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means of relatively simple photonics (Markvart, 2006; Rau et al, 2005): with a
photonic filter (or band stop) that reflects light within a specified spectral range. If such
filter is placed at the top face of the collector (the entrance aperture) much of the
escaping light can be blocked, and losses to the photon transport reduced to a
minimum. We shall see, however, that these losses cannot be eliminated entirely as we
need to leave a “window” open for the absorption of the incident photon flux. The
ultimate efficiency limit is imposed by microscopic reversibility, and can be evaluated
with the use of the thermodynamic tools that we have at our disposal.

To evaluate the limits on collector operation, is it convenient to picture the collector as
a converter which transforms the incident beam, with frequency extending over the
absorption channel with étendue ~, , into the emitted beam with étendue ~;; and a
different frequency range corresponding to the photon transport channel. The spectral
range of each channel may be appreciable. This is particularly true for the absorption
channel since the collector needs to absorb a broad spectrum of the incident light.
Although a general treatment is possible (Markvart, 2006) we shall here confine
ourselves to a simplified approach based on two monochromatic beams at frequencies
vaps (@bsorption channel), and v, (< viss ) (emission/transport channel). The frequency
difference Av= v, - V.., COrresponds to the Stokes shift of the fluorescent dye. In
effect, the fluorescent collector has been replaced by a light concentrating instrument
considered in Fig. 2 where the entrance and exit apertures have now acquired,
alongside the étendue, also a frequency parameter.

Following Sec. 4, we define the collection efficiency Q. of the collector as the
probability that an incident photon, once absorbed, reaches the solar cell through the
exit channel. In contrast with Sec. 4, however, the photon gas within the collector is
no longer an isolated system, but exchange energy with a thermal reservoir through the
absorption emission process. The thermal reservoir (or heat bath), represented by the
fluorescent dye of the collector, supplies or absorbs the energy difference 2Av between
the absorbed and emitted photons. The equilibrium state is now characterised not by
maximum entropy but maximum free energy: to be specific, it is a state with the
maximum Helmholtz free energy F since the absorption and emission of light by the
collector is assumed to take place at constant volume, neglecting any pressure
dependence of the absorption or emission wavelengths.

The condition of equilibrium is equivalent to a statement that all photons in the
collector have, in addition to the temperature, also an identical chemical potential.
Since the chemical potential is equal to the free energy F per photon we have
u=u—Ts (21)

where, for monochromatic photons, the energy per photon is u = Avand s , the entropy
per photon, is given by Eq. (10). Thus

2 ., 2
y:hv—kBTln(lJrZLZ;Vj;hv—kBTln(ZCLz N) (22)

C

where the second, approximate, equality applies at moderate illumination intensities.

12
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We retain the notation of Sec. 4 where the étendue of beam emitted from the transport
(emission) channel is denoted by ~.,.;, and the étendue of photons emitted from
absorption channel (entrance aperture) by ;. Substituting the relevant parameters
into (22) and equating the chemical potentials then gives

2, 2 .,

BV — Ty |n(2v—;—j —hv,, —k,T, |n(2v—2—j (23)
¢® N, ¢ exit

where N,,;; and N,,, are the numbers of photons in the beams emitted from the exit and
entrance apertures, respectively, and 7, denotes the temperature of the collector. Since
the number of photons in the collector is conserved, the sum N..;; + N, is equal to the
number of photons in the incident (absorbed) beam, and the collection efficiency is
given by

— Nexit (24)
N, +N,

exit

0.

Rearranging (23) then yields

1
Qc = - 2 (25)
1+ CentV abs e—hAV/kBTu
L 2

[
exit” em

Equation (25) represents a generalization of the earlier result of Yablonovich (1980),
and gives the ultimate collection efficiency of fluorescent collectors, as determined by
the detailed balance.

The collection efficiency Q. , of course, needs to be considered alongside the
absorption efficiency to obtain the total optical efficiency of the collector. More
detailed considerations (Markvart, 2006; Danos et al, 2005) based on a similar
argument as (25) show that, even for appreciable gain (concentration) ratios, the total
optical efficiency of fluorescent collectors can reach some 90% for the frequency range
of interest for photovoltaic conversion. A similar conclusion was reached with the use
of numerical modelling by Rau ez a/ (2005).
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6. AMATHEMATICAL INTERMEZZO: LIGHT BEAMS COVERING A
BROAD FREQUENCY BAND

The reader may object that the theoretical analysis of fluorescent collectors in Sec. 5
has been based on monochromatic radiation. Since most cases of interest concern the
absorption and emission of light over a range of wavelengths, a more general
formalism is needed to deal with thermodynamic functions for beams extending over a
broad frequency band.

For radiation in a cavity of some volume V, the appropriate entropy, energy and

number of photons at equilibrium need no introduction. They are given by (see, for
example, Landau and Lishitz, 1953):

8/miv?

S:kBV.[ I {(1+pk)|n(1+pk)_pk Inpk}dv (26)
(v)
3.2
U:VJ.BﬂngV hvp, dv (27)
v €
3.2
N:VISMBV p, dv (28)
c

()

where (v) denotes the frequency interval in question and p, is the equilibrium photon
occupation number (20). We shall now use Eq. (14), alongside the analogous relations
for the energy and entropy flows, to translate the thermodynamic quantities per unit
volume into the corresponding flows. More precisely, these are convective flows of
energy, entropy and photon numbers that are carried by the beam and pass through a
unit area per unit time:

. 21?2
S=ky | A0+ p)In@+ p,) - pyInpyfdv (29)
)
2
U = J'ZVZ & hV,OV dV (30)
C
(v)
: v
N = '[ 7 “ p,dv (31)
(v)

As in the discussion of the geometric and fluorescent concentrators, we shall consider
the changes of these functions when a photon is added to or removed from a beam. We
start with the energy and entropy change per photon removed from the volume 7,

u=(UION),, s=(3SIoN),, (32)

As in Sec. 5, all processes are assumed to take place at constant volume. Using (14),
the derivatives (32) can be re-written in terms of the derivatives of the flows (29) -
(31):
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u=0U/IoN) , s=(SIoN), (33)

We note that the derivative at constant volume is now replaced by a derivative at
constant étendue. The condition of absorption at constant volume therefore ensures that
the absorbing substance interacts only with the transverse modes of the photon field,
characterised by the étendue. Thus, for a broadband illumination, the energy and
entropy per photon (33) replace the energy 4 vand entropy (given by Eq. (10)) per
photon in a monochromatic beam.

For a broad luminescence band, Egs. (33) provide a simple but convenient formulae of
calculating the energy and entropy change of a beam by the addition or a removal of a
photon. They can be calculated without any difficulty numerically but become
particularly simple for radiation of weak to moderate intensity when the occupation
numbers p, are small. It can readily be shown that, for a semiconductor with bandgap
hv, , absorbing in the frequency range (v, «) (Markvart, 2008),

N
u=E, + kBTIn{xy(T)} (34)
s(/,T,N):kBIn{@}+kBT@;kB{In[M}+l} (35)
N y(T) N
u(-,T,N)=hv, +kBT2M; hv, +kyT (36)
y(T)
where

2v: o vk, T
y(T) = Lzeh( < )/kBTd 2B

V:T(1+8) (37)

v €

and & = 2(kgT/hvy)+ 2(kgT/h vg)2 is a small correction if hv,>> kgT. The approximate
expressions (34) — (36) are accurate in what can be called the “non-degenerate limit”,
when the Bose-Einstein statistics (20) reduces to the Maxwell-Boltzmann distribution.
This is generally true if the difference &, - u is greater than about 3k5T.

Care needs to be exercised when applying Egs. (34) — (36) to the conversion of solar
radiation with 7s = 6000K. Dependig on the bandgap %, , the intensity of such
radiation at maximum concentration may be too strong for Egs. (34) — (36) to give
reliable results. Notwithstanding, as a rule, these expressions hold well for
concentration ratios of about 1000 or less and bandgaps of most interest for
photovoltaic conversion.

It is interesting to note that if the correction & is neglected, Eq. (34) and the
approximate expressions in (35) and (36) coincide with the corresponding expressions
for a two-dimensional ideal gas. Clearly, this is a consequence of the two degrees of
freedom, resulting from the two angular variables that are needed to specify the
directions (or co-ordinates) of a ray in space.
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7. ENERGY-ENTROPY BALANCE FOR THE ABSORPTION AND
EMISSION OF LIGHT

We now have our disposal the necessary tools to consider a beam of light from a
thermodynamic viewpoint. Before turning to apply this formalism to the conversion
of light into useful work, it is of interest to pause briefly to apply these concepts to the
absorption and emission of light.

Suppose that the an incident beam of radiation is characterised by a certain
thermodynamic parameters, for example, temperature, étendue, or chemical potential.
The absorption of a photon from this beam increases the energy and entropy of the
absorbing material by some amounts that we shall denote by u;, and s;,. For a
monochromatic beam, for example, u;,= Av, and s;, is given by Eq. (10); for broad-
band radiation, these quantities are determined by Eqgs. (35) and (36).

Similarly, each emitted photon carries away some energy u,,; and entropy s,,;. For
simplicity, we assume here that photons are absorbed and emitted through the same
aperture although, of course, the étendues of the incident and emitted beams can be
different. The temperature of the emitted beam is characteristic of the electronic
degrees of freedom, and is usually assumed equal to a (single) temperature of the
absorbing material 7, (see, for example, the discussion of KSVRS relations in Sec. 4).
For the moment, however, we consider a more general situation for any temperature
of the emitted beam.

In general, the energies of the incident and emitted photons are different (u;, # tous),
and each absorption/emission event rejects some heat (to be denoted by ¢, ) which is
absorbed by the low-temperature reservoir at temperature 7, . By virtue of energy
conservation, we have

uin = uout + Qph (38)

Noting now that the entropy associated with transfer of heat g, to reservoir at Ty, is
equal to ¢,, /T,, we arrive at the following entropy balance in the absorption/
emission process

Sin = Sout + qph /T;) - O-i (39)

mn

where o; is the entropy generated between the absorption and emission of a single
photon (Fig. 4a).

Combining (38) and (39) we obtain the entropy generated per absorbed and re-emitted
photon in the form

]:)O-i = (uin - uout) - T'o (Sin - Sout) (40)

The form of Eqg. (40) is not coincidental. We shall see in Sec. 9 that, quite generally,
the entropy generation per photon (40) represents a difference of availabilities
(Pippard, 1964) of the absorbed and emitted photons.
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Equation (40) will form a useful starting point for the discussion of photovoltaic
conversion. To prepare the ground, we consider briefly the important limiting cases.
If the emitted radiation is at equilibrium with the emitted substance at 7, (as is the
case for the usual fluorescent media or solar cells), we can introduce the chemical
potential 14, of the emitted photons at temperature 7,, and write

T;)Gi = (uin _T:)Sin) - luout (41)

If, furthermore, the incident light represents direct (beam) solar radiation which
approximates well by a black body radiation with zero chemical potential we have,
from (21), si, = ui, /Ts, and

To, =u,1-T,1T)-u,, (42)

The entropy generated per photon is thus given by the difference between the incident
energy, multiplied by the Carnot efficiency, less the chemical potential of the emitted
photons.

When the temperature and étendue of the emitted radiation are the same as for the
incident beam, u;, = tou , Sin = Sou @Nd NO eNtropy is generated in the
absorption/emission event (o; = 0). We shall see in Sec. 9 that this limit describes the
operation of a hot carrier solar cell: an ideal device which produces the highest
efficiency of a single-junction solar cell, as permitted by thermodynamics.
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8. SOLAR CELL AS A HEAT ENGINE: THERMODYNAMIC ANALYSIS OF
PHOTOVOLTAIC CONVERSION

A solar cell converts an incident photon into electrical energy or another form of useful
work, to be denoted by w. As in the case of emission of radiation, some heat (to be
denoted by ¢, ) is rejected into the low-temperature reservoir at temperature 7,; this is
accompanied by the rejection of entropy equal to ¢,./T, . Since there is no entropy
associated with the work w, the energy and entropy balance equations for the
conversion process now become

uin =w+ QW (43)
Sin = qw /1—; - O-l'

For a solar cell, the work w is equal to gV, where V' is the voltage generated by the
solar cell and g is the electron charge. Combining the two equations (43) then gives
this photogenerated voltage as

gV =u,~Tgs,-To, (44)

m

and if the incident photon originates from black body radiation (x4, = 0),

qV :[l_%]”m -T,0, (45)

N

The thermodynamic expression for the solar cell voltage thus comes out in a standard
form for the amount of work that can be produced between two reservoirs at
temperatures 7s and T, — in other words, the solar cell voltage can be calculated using a
direct analogy with the operation of a heat engine (Fig. 4b). For each photon, the
incident energy u;, which is extracted from the high temperature reservoir is converted
with the Carnot efficiency. The voltage is then obtained by subtracting from this ideal
value the losses due to entropy generation o; in the conversion process.

Substituting (40) into (44) we obtain

qV = ttows — T Sour (46)
This expression will be discussed in a more general context in Sec. 9. Here and for the
remainder of this section we restrict attention to the operation of standard solar cells

where photons are emitted at temperature 7,. Since this is also the temperature to be
used for the evaluation of u,,, and s,,, , we obtain the well known result

qV = Hour (47)

In other words, the work carried out by the conversion of a photon into electrostatic or
chemical energy is equal to the chemical potential of the emitted photons. This result

is derived in many texts by invoking the theory of p-n junction solar cell but has been

obtained here, quite generally, by an argument based solely on thermodynamics.
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Let us now take a closer look at the losses which occur in the photovoltaic conversion
process — in other words, those that contribute to the entropy generation o; . This
discussion can be simplified considerably if we use the ideal-gas description of photon
beams, as discussed in Sec. 6. The discussion so far has focused on photons that are
converted into work. Depending on the applied load, however, the solar cell may act as
both as a converter and as an emitter of radiation, to produce electrical current /, say,
which is compatible with the electrical characteristics of the load. Accordingly, the

incident and emitted photon fluxes (to be denoted henceforth by N, and N, ) need not

out
be equal: for an ideal solar cell where all absorbed photons are either emitted or
converted into electrical current

Nin_Nout:Ni(r)l out+1/q I/q (48)

where N?and N’, are the equilibrium photon fluxes at temperature 7, of the

converter which occur if the étendue of the incident beam differs from the emitted
beam. In the second part of (48) we have noted that the difference of the equilibrium
fluxes can usually be safely neglected. Equation (48) represents the essence of the
Shockley-Queisser detailed balance (Shockley and Queisser, 1961)

The expressions (35) and (36) for the energy u and entropy s per photon can therefore
be written as

m

=) —u(@)} -1, 151 4 N, = (T, N (49)
5@, N = (T s N+ [SCT s N ) = (T, 0 N

T,o, = Ty, 4, Ny ) = (T, s No) =T 45T s N ) = 5(T, 0 N, ) =

The three terms in square brackets in the last expression of (49) represent the three
fundamental losses in the operation of an ideal solar cell.

Let us separate from (49) the last term, which we denote by oy;,. This term corresponds
to entropy generation due to finite current being extracted from the solar cell (a finite
rate of turnover of the “heat engine”):

ka S(T7 out’N ) S(T' “out 1 out) k In[]]vv j (50)
Thus
I, +1
o, =k, In| ——2— 51
kin B [1/ +10 _IJ ( )

where /, = q(N N;’,) and I, = gN°,, correspond to the photogenerated and dark

diode saturation current, respectively. By writing

out

qV = qV T O-km (52)

oc
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it is not difficult to show that oy, (51) gives the usual I-V characteristic of the solar
cell (Markvart, 2008b). This I-V characteristic is thus a direct consequence of the
thermodynamic ideal-gas laws for the photon gas.

We now return to (49). The first and second terms on the right hand side of the last
expression have been aired in some length (Markvart, 2007, 2008b) and only a brief
discussion will be given here. The second term arises as a results of étendue expansion
between the incident and emitted beams, with étendues ;, and

Cin

G =y In(—j (53)

A related topic of angularly selective solar cells has recently been discussed by
Badescu (2005) and by Peters et al in this volume. By microscopic reversibility (the
quantum states that allow photons to enter the solar cell can also be used to emit them),
Cour = “n, ANA Ogyp, 1S always greater than or equal to zero.

Finally, the first term on the right hand side of (49) is the entropy generation by
“photon cooling” from temperature 75 to temperature 7, ,

T, T
0. =k3[?j_1}k3m[?jj (54

Since Ts > T,, o; > 0. This photon cooling term will be the subject of a more detailed
examination in the next section where we discuss hot carrier conversion.

Thus, the open circuit voltage 7, can be written as

q Voc = (1 - %) U, — ]:> (Gc + Gexp) (55)

N

Substituting from (53) and (54) then gives

quc = [l_%Jth +k3710 In{%J_kBT:’ In(/(:—mj (56)

K o Cin

Equation (56) is the thermodynamic analogue of the Shockley ideal solar cell equation
to which it can be reduced by straightforward algebra. Various approximate forms of
(56) have been obtained on a number of occasions in the past. In the more general form
presented here, it shows that the maximum energy (voltage) produced in photovoltaic
conversion is described completely by the temperatures of the two beams (considered
here as thermal reservoirs) and their étendues. Similarly to an ideal heat engine, no
specific details are needed for the engine (converter) nor the working medium.
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9. HOT CARRIER SOLAR CELLS

Equation (56) gives the open circuit voltage of an ideal single-junction solar cell, in
terms of the fundamental losses and their precise thermodynamic origins. Here we
wish to consider in more detail one of these loss terms: the entropy generation o
which describes the irreversible cooling of the beam from solar temperature T to the
ambient temperature 7, . This loss — which corresponds to the “thermalization” of
electron-hole pairs in a semiconductor immediately after light absorption — is usually
thought to be one of the two fundamental losses in the operation of an ideal solar cell.
This question has been examined by Ross and Nozik (1982) who proposed a “hot
carrier” solar cell where this loss is reduced or even eliminated. The formalism which
we have developed allows us to consider this concept from a more fundamental point
of view based on a thermodynamic argument, without resorting to specific conversion
structures.

To prepare the ground for this more general analysis we note that the photon cooling
loss and the associated entropy generation o will be reduced if photons are emitted
from the solar cell at a temperature 7, which is higher than the temperature T, of the
“cold” reservoir (Ts > T, > T, ). Equations (38) — (46) then still hold since heat is
rejected at the ambient temperature T, and no assumption has been made about the
temperature of the emitted photons. Highlighting explicitly the temperature argument
in the energy and entropy of the emitted photons,

w, =u(l,~ N,
out ( a out ) [) (57)
Sout = S(Ta ! d}ut ! Nout)
and substituting into (46) we obtain the voltage in the form
qV = M(Ta"(out’Nout) _T:)S(]Ta'/out’Nout) (58)

Thus, the work gV is equal to the availability (or exergy) of the emitted photon,
calculated for a process at constant volume (see, for example, Pippard, 1964).

Those familiar with classical thermodynamics will not be surprised at this result.
Notwithstanding, it is instructive to digress for a moment and calculate directly the
maximum amount of work that can be carried out by a photon, by using a standard
thermodynamic argument based on availability. To this end, we consider a cavity or
“box” filled with photons at temperature 7, which are to be converted into electricity.
Denoting by p, the equilibrium pressure and v the volume per photon we can define
the availability per photon of radiation in the box as

a:u—TOS+p0V (59)

The maximum work w per photon is then equal to the difference of availability da
between a photon in the box and a photon in thermal equilibrium at temperature 7.

w=Aa=Au—-T As+ p,Av (60)
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Throughout this Chapter we have assumed that photovoltaic conversion takes place at
constant volume, and therefore Av = 0. Equation (60) provides a recipe how this
analysis can be modified for a conversion process under different conditions, for
example, at constant pressure (Markvart, to be published). Since the final product of
the conversion process is equilibrium black body radiation at ambient temperature 7,
(with energy and entropy u, and s,, respectively) which has a zero chemical potential
(u=u,-T,s,=0), we have

w=u-T,s)-(u,—-T,s,)=u(T,)-T,s(T,) (61)

Noting the equality of the energy and entropy for “photons in a box” and “photons in a
beam” (see Sec. 6), it is immediately observed that Eq. (61) is identical to Eq. (58).
This argument shows that the voltage, generated by a hot carrier solar cell, is equal to
the difference in availability of an emitted photon and a photon in thermal equilibrium
at the temperature of the cold reservoir - in other words, it is equal to the maximum
amount of work that can be produced by a photon at temperature 7, which reaches
equilibrium at temperature 7,.

We note that, using the chemical potential i, = ttou: — T Sous, EQ. (58) can be re-written
in the form

T T
q V= U [1_ Foj + FOIL!OIH (62)

a a

The first expression on the right hand side of (62) resembles the voltage of hot-carrier
solar cells in the paper by Ross and Nozik (1982). Ross and Nozik have argued that
carriers can be cooled without generating entropy if they are extracted from the hot
reservoir at a single energy, through so-called selective energy contacts. The present
approach is independent of a specific conversion mechanism, and the energy u and
entropy s in (58) or (62) have been derived by a direct thermodynamic argument from
the energy and entropy of the emitted photon beam. We are not aware of a detailed
comparison between results obtained by the two theoretical approaches at the present
time but work towards this aim is currently in progress (Markvart, to be published).

It is of interest to consider the important limiting cases. As expected, Eg. (58) or (62)
reduce to (47) for 7, =T, . For T, = Tsand i, = “,u When i, =1, = 0 and uz, = iy
these equations become

T
V= 1--2 63
q u( TSJ (63)
as discussed by Markvart (2007). In this case, only the entropy generation term oy,

remains. No entropy is then generated near the open circuit when the conversion
process becomes reversible.

Using the obtained results for the voltage, it is not difficult to determine the
improvement in solar cell efficiency from hot carrier conversion. For simplicity, we
restrict attention to the case of non-degenerate statistics, equivalent to the “ideal gas”
approximation discussed at the end of Sec. 6. Figure 5 shows the 1-V characteristic of a
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hot carrier solar cell with 7, = 3000K for a semiconductor with as bandagap of 1.4
(close to the bandgap of gallium arsenide). For one-sun illumination, the open circuit
voltage in this case is equal to 1.39V, as compared with the maximum value of 1.15V
for a standard solar cell operating at the ambient temperature of 300K. This can be
contrasted with the thermodynamic energy of a photon absorbed at this bandgap of
2.22 eV, and the maximum open-circuit voltage for a hot-carrier solar cell operating at
6000K, equal to 2.11V.

The conversion efficiency as a function of the bandgap is shown in Fig. 6. The
efficiency limit under one-sun illumination rises from about 31% for standard solar cell
(T, =T, = 300K) to 33 % for a hot carrier cell operating at 7, = 1,500K, 40% at T, =
3,000K, and to 52% at 7, = 4,500K. Under fully concentrated sunlight, these
efficiencies become 41% for a standard solar cell, 44 % at 7, = 1,500K, 53% at 7, =
3,000K, approaching 70% at 7, = 4,500K.
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9. CONCLUSION

In this chapter we have shown how photovoltaic and photochemical conversion can be
understood in thermodynamic terms. Starting from the concept of étendue within the
realm of geometrical optics, we have moved into the parallel world of waves and
guantum mechanics, and shown how the perception of a ray of light then coexists with
the notion of mode, or photon state.

The discrete nature of light beams has then made it possible to develop statistical ideas
in a similar fashion than in standard statistical mechanics. We have seen in Sec. 2 that
photons in a beam behave similarly to particles of a two-dimensional ideal gas with
étendue corresponding to the volume of the gas. The energy and entropy exchanged
between the incident and emitted photon beams can then be rigorously defined, and
used to determine the ultimate limits to the efficiency of quantum solar energy
conversion devices such as fluorescent collectors and solar cells. The thermodynamic
approach used in this Chapter justifies the conclusion that these limits depend solely on
the parameters of the incident and emitted beams and not on the material parameters of
the solar cell.

A detailed identification of the thermodynamic origins has allowed a full analysis of
the fundamental losses in detail, and has made it possible to contemplate how the
operation of these devices can be further improved. We were able to determine the
ultimate limit to the efficiency which can be reached by the application of photonic
structures to fluorescent collectors. We have also seen that the detailed balance limit of
Shockley and Queisser is significantly lower than the maximum thermodynamic limit
of a single junction solar cell. This limit can, in principle, be achieved with a hot-
carrier solar cell. Such device converts the free-carrier heat acquired by electron-hole
in the absorption of light into voltage at the terminals of the solar cell in a manner
similar to the operation of a thermoelectric device. The practical demonstration of such
a solar cell represents one of the exciting challenges to photovoltaics of the third
millennium.
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Figure captions

Fig. 1.

Fig. 2

Fig. 3

Fig. 4.

Fig. 5

Fig. 6

The definition of étendue. (a) The usual geometric definition in terms of a
cross sectional area 64 (not necessarily perpendicular to the beam) and the
angular divergence 802 (b) Etendue as an element of volume in the phase
space of transverse coordinates of the beam. Note that the projection 6£2. cos 6
of the area on the unit sphere that corresponds to the solid angle 6£2. onto the
xy plane now becomes ékxéky/kz.

Schematic diagram of an optical instrument for concentrating sunlight,
considered as the transformation of étendue from i, to %, .

The cross section of a fluorescent collector based on total internal reflection.
Photons propagating along rays outside the escape cone are trapped and reach
the solar cell at the edge, unless reabsorbed. Photons emitted within the escape
cone leave through the front face of the collector and are lost from the system.

A schematic diagram depicting the thermodynamic processes involved in the
absorption/emission of light (a) and in photovoltaic conversion (b).

The I-V characteristic of a hot-carrier solar cell with bandgap 1.4eV, at one
sun illumination (denoted by V(3000K)). For clarity, this characteristic is
plotted in the form of a function of current, normalised to the photogenerated
current /,. For comparison, the graph also shows the thermodynamic energy
per photon u;,, and losses by entropy generation through kinetic nature of this
process (oxin), eétendue expansion (o), and photon cooling from 6000K to
3000K. The V-I characteristic of an ideal conventional solar cell, denoted by
V(300K), is also shown. The shaded region indicates the difference between
the voltage of hot carrier and conventional solar cells.

The efficiency of a hot carrier solar cell as a function of the bandgap, for three

absorber temperatures, as well as the Shockley-Queisser efficiency limit at
300K, under one-sun illumination and fully concentrated sunlight.
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