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ABSTRACT 
 
This chapter considers quantum solar energy conversion from a thermodynamic point 
of view. Starting from geometrical optics, the concept of étendue is used to determine 
the number of photon states in a beam of light. This naturally leads to the definition of 
entropy, providing the foundation for the statistical mechanics of light beams. With 
emphasis on the thermodynamic functions per photon (in particular, the chemical 
potential),  these concepts are illustrated first by comparing the thermodynamic limits 
of the geometric concentrators with the limits obtained by traditional arguments. The 
thermodynamic framework is then extended to novel applications. The fluorescent 
collector is modelled as an open thermodynamic system interacting with a room-
temperature heat bath. A detailed thermodynamic description of the operation of a p-n 
junction solar cell then follows, starting from energy (voltage) rather than from the 
kinetic argument used by Shockley and Queisser. This provides a novel  view of 
fundamental losses, each identified as a specific form of irreversible entropy 
generation. The chapter concludes with an analysis of a future photovoltaic device – a 
hot carrier solar cell where the voltage exceeds the Shockley-Queisser limit.  The 
efficiency of this solar cell, obtained by thermodynamic arguments, is free from 
specific mechanisms or structures such as selective energy contacts. It is argued that 
this is the fundamental efficiency limit to the operation of single junction solar cells 
where thermalization of electron-hole pairs has been reduced or entirely eliminated. 
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1. INTRODUCTION 
 
The application of thermodynamic principles to the conversion of solar energy into 
useful work has a distinguished history, stimulated by both the academic challenge and 
the immense technological potential. In the heart of the early quantitative works lies 
the balance between the incident and emitted energy – entropy flows.  This 
methodology, leading to the celebrated Landsberg efficiency, was elaborated by 
Landsberg and Mallinson  (1976), Petela (1964) and Press (1976). An application of  
Carnot efficiency to photothermal processes was given by Jeter (1981), with  Badescu 
(2008) providing a unified thermodynamic view of the different conversion 
mechanisms. 
 
An early insightful contribution by Rose (1960) showed how the photovoltaic effect 
can be derived from the Carnot cycle. Virtually in parallel, Shockley and Queisser 
(1961), in their celebrated detailed balance treatment, determined the limits of 
photovoltaic conversion (see, however, also Trivich and Flynn, 1955). Detailed 
balance here refers to the equality of the incident and emitted photon fluxes. Another, 
more traditional, meaning of this term will be introduced later in this chapter, 
following from the thermodynamic concept of the same name. A related thermo-
dynamic discussion of photosynthetic conversion was given by Duysens (1964),  Ross 
(1965), and Ross and Calvin (1967), with an elegant extension by Laverge  and Joliot 
(1996).  Yet another approach invokes endoreversibility, based on the operation of 
large scale conventional power stations (Curzon and Ahlborn, 1975; de Vos, 1992). 
 
Closely linked to photovoltaics is the application of thermodynamic concepts to 
luminescence. Building on Einstein’s ideas for a two level system (Einstein, 1917), 
Kennard (1918, 1926) and later Stepanov (1957) laid down the foundations and general 
principles that apply to the “thermodynamic” detailed balance of this process (see Sec. 
4 of this Chapter). Other notable contributions to this field have been made by Landau 
(1946), Weinstein (1960), and Payen de la Garanderie (1965).  
 
The thermodynamic analysis of solar energy conversion is usually considered to be 
synonymous with very high, even unrealistic, efficiencies, with little indication given 
of the associated loss mechanisms. This Chapter shows that this need not be the case. 
We shall show that a consistent and rigorous framework can be developed which can 
provide a realistic description of the present single-junction solar cells, pinpoint the 
thermodynamic nature of the fundamental losses in these devices, and suggest how 
these can be eliminated in future generations of solar energy conversion devices such 
as hot carrier solar cells.  
 
Fundamental to this Chapter is the quantum nature of the conversion process. In the 
usual terminology, the word “quantum” usually refers to the presence of an energy gap, 
defining the characteristic energy of photons that play a role of “fuel” as well as 
“working medium” in the conversion device. We shall show that quantum 
considerations apply not only to the energy spectrum but also to the spatial coordinates 
of the light beam.  To this end,  Sec. 2 of this Chapter provides a link between the 
geometrical optics and the semi-classical limit of the wave theory of light. Key here is 
the concept of étendue: a geometric characteristic of the beam but also a measure of the 
phase space volume occupied by the transverse components of the photon field. Once 
the number of photon modes in a beam has been determined, it is a simple matter to 
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define the entropy: the principal stepping stone towards thermodynamics (Sec. 3).  
Unlike the traditional thermodynamic analyses, the central element in this structure is 
not the entropy of the beam but the entropy per photon. This concept provides a 
powerful tool for the subsequent thermodynamic framework which unfolds with a brief 
illustration of the limits to the concentration of sunlight (still within the limits of 
geometrical optics). A more general illustration is also provided with the examination 
of the scattering and absorption of light in Sec. 4. 
 
Applications to solar energy conversion then follow. Section 5 gives an overview of 
the fundamental efficiency limits of fluorescent collectors. Unlike concentrators based 
on geometrical optics where the frequency of light is conserved, fluorescent collectors 
represent an open thermodynamic system. Instead of entropy, their operation is 
therefore constrained by considerations based on free energy or, more precisely, the 
chemical potential - the free energy per photon. 
 
The formalism that is developed in this Chapter covers not just monochromatic 
radiation but also realistic solar cells which absorb a broad spectrum of the incident 
sunlight. The mathematical tools that are needed for this purpose are developed in Sec. 
6 where we show that, at moderate light intensities, the photon statistics bears a close 
resemblance to an ideal two-dimensional gas. Following a brief discussion of the 
energy-entropy balance in the absorption and emission of light (Sec. 7), a detailed 
thermodynamic description of the operation of a solar cell is presented in Sec. 8. It is 
shown that, when using arguments based on energy (voltage) rather than kinetics 
(current), the electrical characteristic of the solar cell follows directly from the ideal 
gas laws. This provides a novel  view of the fundamental losses which can be 
identified as due to specific forms of irreversible entropy generation.  
 
Section 9 considers a hypothetical photovoltaic device, the hot carrier solar cell. The 
efficiency of this device, which exceeds the Shockley-Queisser limit on account of a 
higher voltage, is obtained by thermodynamic arguments, independent of specific 
mechanisms or structures such as selective energy contacts. We therefore conclude that 
this is the thermodynamic limit to the operation of  single junction solar cells where the 
thermalization of electron-hole pairs has been reduced or entirely eliminated.
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2. COUNTING SUNRAYS 
 
Viewed in a mathematical context, geometrical optics forms the limiting solution  of 
the Maxwell wave equation when the wavelength of light is very short. In this limit, 
light propagates along lines (rays) defined by the shortest transit time between the 
source and the receiver, as embodied in Fermat’s Principle of Least Time. Light rays, 
which are generally curved, become straight lines in the free space or in a medium 
where the refractive index is constant. The distribution of rays is generally assumed to 
be continuous, with no meaning assigned to the thickness of a ray. 
 
A convenient characteristic of the beam in geometrical optics is the concept of 
étendue. For a narrow beam of angular spread δΩ  passing through an area element 
δA, the element of étendue is defined as 
 

θδδδ cos2 Ω= An  E          (1) 
 
where n is the refractive index of the medium and θ is the angle between the normal 
to δA and the direction of the wave vector k (Fig. 1a). For extended beams (where, for 
example, δΩ  may depend on position), the total étendue can be obtained by an 
integration of (1).  We may consider the simple case of direct (beam) sunlight which 
represents a narrow pencil of rays whose angular divergence presents a solid angle of  
Ωs = 6.85x10-5 sterad.  The étendue of such radiation passing through a planar surface 
of finite area A is easily obtained from (1), by replacing δA with A. For radiation with 
directions which extend over a complete hemisphere (for example, the diffuse 
sunlight), an integration of Eq. (1) over the angular variables gives 
 

An2π  E =            (2) 
 
The traditional application of étendue to optical instruments derives primarily from 
the fact that the étendue of a beam propagating in a clear and transparent medium is 
conserved. In more recent times, this concept has proved also a convenient vehicle for 
the discussion of optical systems that concentrate sunlight (see, for example, Welford 
and Winston, 1978 where a proof of this theorem can be found). In other applications, 
however, this theorem appears in a range of different guises,  associated with such 
distinguished names as Poincaré, Lagrange and Helmholtz (Born and Wolf, 1999) 
 
For the purposes of this Chapter, geometrical optics provides a useful vantage point 
for the description of light but refinements will be needed to extend the scope to  
include rudiments of wavelike propagation. This will enable us to consider light as 
propagating in individual quantum states, rather than as a countless continuum. A 
useful analogy that we shall follow is the parallel between the diffraction limit of 
geometrical optics and Heisenberg’s uncertainty principle.  
 
Let us consider a narrow beam of light passing through a slit of width δx which 
defines its dimension in the coordinate space. The limit of geometrical optics, 
considered by the absence of diffraction, places a constraint on the spread of this  
beam in the k space, in the form 
 

1≥xkxδδ           (3) 
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The analogy with particle mechanics can now be established by recalling de Broglie 
relationship between wave vector and particle momentum: p = hk  (for a detailed 
development of the analogy between photons and particles described by classical 
mechanics see Joyce, 1974). Multiplying  by the Planck constant h we find that (3) 
corresponds to the limit 
 

hpx x ≥δδ           (4) 
 
- in other words, the Heisenberg uncertainty principle. When applied to the six 
dimensional phase space of variables x,y,z, px, py, pz, condition (4) tells us that only 
one quantum state can occupy the volume δx δy δz δpxδpyδpz.  
 
A similar reasoning can be used to determine the volume of a quantum state in the 
phase space of rays in geometrical optics. It turns out that all we need to do is to 
transform the element of étendue into a suitable form where the result becomes 
immediately apparent. With a suitable choice of the coordinate system, the beam area 
δA becomes δxδy, where δx and δy are small increments of the coordinates x and y. 
Similarly, the appropriate projection of the angular spread corresponds to increments 
δkx and δky in the components of the wave vector transverse to the direction of 
propagation. A simple geometrical argument (Fig. 1b) then demonstrates that the 
étendue element (1) can be written as 
 

yx kkyx
k
n δδδδδ 2

2

  E =          (5) 

 
The volume element  δx δy δkx δky  in the phase space of variables x,y,kx, ky is 
therefore equal to 22 / nk  Eδ , and cannot be smaller than unity. Thus, we can also say 
that 22 / nk  Eδ  contains a single quantum state, for occupation by photons in the beam. 
The term “mode” can also be used as the present discussion has a close parallel with 
the determination of the number of optical modes in a wave guide (see, for example, 
Brooker, 2002). The argument that we have used corresponds to the semi-classical 
limit and the number of modes is therefore likely to be large. It does not take much 
effort or imagination, however, to extend similar statistical concepts to waveguides or 
systems with a smaller number of modes. 
 
We are now only a small step from being able to introduce statistical concepts to 
geometrical optics. Allowing for two directions of polarization, the above discussion 
shows that the integrated quantity  
 

E E 2

2

2

2 22
c
v

n
k

=          (6) 

 
can be interpreted as the number of quantum states within a beam with frequency 
ν = ck/n  and étendue  E . Since the wave vector is constant, the volume of a beam in 
the phase space of its transverse coordinates remains constant during the beam 
propagation in a clear, transparent medium. The conservation of étendue can therefore 
be interpreted as the Liouville theorem of classical mechanics, applied to photon 
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propagation along rays in geometrical optics. Beam propagation in clear media where 
the number of quantum states is conserved then provides a firm foundation for the 
analysis of process that transform the beam and produce useful work. Based on the 
discussion above we may anticipate that such analysis will bear close similarities with 
statistical mechanics and thermodynamics.  
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3.   STATISTICS OF MONOCHROMATIC RADIATION: LIMITS TO THE 
CONCENTRATION OF LIGHT  
 
The equivalent of Liouville theorem for light beams that we have discussed in Sec. 2 
make it an easy matter to lay down the foundations for a statistical treatment of light. 
Let us suppose that the G  =  E 22 /2 cv  states in a beam of light [see Eq (6)] contain N  
photons. A standard argument shows that the number of ways that these photons 
(which are indistinguishable) can be distributed over the G states is equal to 
 

NG

NG

NG
NG

NG
NGW

)()(
!!
)!( ++

≈
+

=        (7) 

 
where the Stirling approximation has been used to obtain the second, approximate, 
equality. This leads to the following result for the entropy of the beam: 
 

{ }ρρρρ ln)1ln()1(2ln 2

2

−++== E
c
vkWkS BB      (8) 

 
where kB is the Boltzmann constant and ρ = N/G  is the mean number of photons per 
mode.  Equation (8) has a familiar form. It can also be obtained by translating the 
number of photon states in a box into a number of states in a beam (Landau and 
Lifshitz, 1958). The new element that Eq. (8) brings in is the presence of étendue: an 
essential feature for the thermodynamic treatment that follows. 
 
Let us now consider an optical system or instrument that accepts radiation of 
wavelength λ through an (entrance) aperture characterised by an étendue Ein. Emitted 
radiation leaves the system through an (exit) aperture with étendue Eexit. If there is no 
scattering or absorption of light in the system (an assumption we shall later relax) the 
étendue theorem tells us that Ein = Eexit. It is of interest to examine this result with the 
use of Eq. (8) from the view point of statistical mechanics. 
 
To this end, let us consider the change in entropy when one photon of light passes 
through the system. Since the change of photons in each of the beams is equal to one 
this is, clearly 
 

N
S

N
Ss inout

∂
∂

−
∂

∂
=Δ          (9) 

 
where Sin and Sout are the entropies (8) of the incident and emitted beams, and the 
number of photons N  is equal in both beams. Denoting the entropy per photon by s, we 
have  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

∂
∂

=
Nc
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N
Ss B

E
2

221ln         (10) 

 
and Eq. (9) gives 
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where the second equality holds if N is not too large – that is, for weak to moderate 
light intensities. We shall examine this approximation more closely in Sec. 6 of this 
Chapter.  
 
Equation (11) gives a thermodynamic interpretation of étendue conservation. For the 
system in question,  the étendue is conserved. Equation (11) then gives Δs = 0  : in 
other words, light propagation in a clear and transparent medium can be considered as  
thermodynamically reversible. It is interesting to note that this result agrees with the 
optical meaning of reversibility as each photon can be brought back through the system 
to the initial state along the same ray (or within the same quantum state) that it has 
occupied during its propagation (Jones, 1953).  
 
More generally, of course, the second law of thermodynamics tells us that entropy need 
not be conserved but it cannot decrease during the passage of photons through the 
system (Δs ≥ 0). As long as the number of photons in the beam remains constant, this 
means that  
 

outin EE ≤           (12) 
 
In other words, the étendue may increase during light propagation but it never 
decreases. For example, photons in a beam can be scattered to enlarge the volume of 
phase space which they occupy but, at least in an isolated system,  this volume can 
never decrease. 
 
This argument can be used to re-visit, within the statistical framework, the well known 
limit that optics and statistical mechanics impose on the concentration of sunlight. Let 
us consider, for the moment, a pencil of direct sunlight with angular spread ΩS  
incident onto the entrance aperture of area Aent of the instrument in Fig. 2 so that  
Ein = ΩS Aent . The concentrated light is emitted from the exit aperture within the full 
hemisphere so that Eexit = πAexit, where Aexit is the area of the exit aperture. We assume 
that the incident and emitted light propagate in a medium with n = 1 and the number of 
photons is conserved. Introducing the concentration ratio C = Aexit / Aent and applying 
Eq. (12) then easily leads to the condition 
 

000,46≅
Ω

≤
S

C π          (13) 

 
Equation (11) combined with second law of thermodynamics also tell us that, at least 
within the realm of geometrical optics, it is impossible to concentrate diffuse sunlight. 
Indeed, completely diffused sunlight is characterised by isotropic incidence where Ein = 
πAent and a similar argument as above gives C≤1: in other words, no concentration is 
possible. In the language of statistical mechanics, concentration of diffuse sunlight 
would entail the decrease of entropy by an amount equal to ΔS = kB lnC . This is, of 
course, impossible in the present isolated optical system where photons do not interact 
with other photons nor with any material substance. 
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4.  FROM OPTICS TO THERMODYNAMICS: THE SCATTERING AND 
ABSORPTION OF LIGHT 
 

The statistical formalism that we have developed allows us to move outside the realm of 
geometrical optics and consider, for example, photon scattering which changes the 
direction of propagation in a statistical manner. More generally still, we may discuss 
photons which exchange energy with an absorbing and luminescent medium. In 
thermodynamics, such systems can no longer be considered as isolated but can be 
described as closed:  the number of photons is conserved but energy is exchanged with 
an external heat reservoir. In a still more general setting, we shall later discuss 
photovoltaic or photochemical converters which produce useful work.  
 
Initially, let us consider elastic scattering of radiation which does not change the 
wavelength of light. Suppose that a volume V which emits radiation is occupied by the 
scattering medium and contains Nph  photons. The scattering process ensures that 
photons are uniformly distributed, and makes the emitted radiation isotropic. Photon 
emission from the volume thus resembles the escape of particles in the classical kinetic 
theory of gases.  Consider, for example, photons emitted in a time interval δt by a 
surface area δA, forming a thin pencil of rays within a solid angle δΩ  which subtends an 
angle θ  with the normal to the surface. These photons occupy a cylinder with base δA 
and height (c/n)δt, and the photon flux N&  emitted per unit time is thus 
 

ph
ph N

Vn
c

Vn
cN

AN Eδ
ππ

θδδ 344
cos =Ω=&       (14) 

 
where we noted that the fraction of photons with the appropriate orientation is equal to 
δΩ /4π  and we introduced the element of étendue δE   from (1). Since δE  is proportional 
to cos θ, Eq. (14) confirms that the emitted radiation complies with the Lambert law.  
 
As an illustration let us suppose that such scattering medium occupies our familiar 
optical system shown by Fig. 2 in Sec. 3. According to (14), the photon flux emitted by 
each aperture is proportional to the étendue of the respective beam. The probability that 
a photon in the system escapes through the exit aperture is then equal to  
 

exitent

exit
cQ

EE

E

+
=          (15) 

 
where Eent is the étendue of the beam emitted through the entrance aperture (which need 
not be the same as the étendue Ein of the incident beam !). Equation (15) may appear 
rather elementary but we shall see in Sec. 5 that, when generalised to light with different 
frequencies, it provides a convenient starting point for the discussion of the efficiency of 
fluorescent collectors. 
 
The optical processes considered so far conserve photon frequency, and therefore also 
photon energy. We will now bring into the picture absorption and emission of radiation 
where  photon energy need not be conserved. When the stimulated emission can be 
neglected, the rates which govern such absorption and emission processes comply with 
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the Kennard-Stepanov relation (Kennard, 1918, 1926; Stepanov, 1957) which can be 
written in the form 
 

Tkh Boe
c
nf /)(

2

228)(1 νν
νσνπν

τ
−=        (16) 

 
where τ is the natural (radiative) lifetime, σν is the absorption cross section, f(ν) is the 
fluorescence spectrum normalised to unity on the frequency scale,  hνo is the energy of 
the electronic transition responsible for the absorption or fluorescence, and T is the 
temperature of the fluorescent medium. In semiconductors, a similar relation was 
discussed in some detail by van Roosbroek and Shockley (1954). 
 
The Kennard-Stepanov relation (16) or its van Roosbroek-Shockley equivalent (we shall 
abbreviate the full family of these relations by KSvRS) is observed, to a certain degree 
of accuracy, in most molecular or semiconductor spectra. When it does accurately agree, 
it implies that photon emission occurs from a manifold of energy levels which are in 
thermal equilibrium with the surrounding medium. We shall see presently that KSvRS 
relations can be interpreted as a statement of microscopic reversibility or detailed 
balance, in the thermodynamic interpretation of this word.  
 
In an idealised model, we shall assume that all photons that are absorbed by a certain 
volume of matter are also emitted - in other words, fluorescence occurs with a quantum 
yield of unity, and no photons are removed non-radiatively from the system.  Absorption 
then does not remove photons from the system but only redistributes them between 
different frequency (or energy) states.  
 
Let us consider the rate of photon transfer between two groups of states around 
frequencies ν and ν’ . To be specific we consider a molecular system although this 
argument can easily be applied also to semiconductors. The rate of photon removal from 
states near frequency ν by absorption is, 
  

)(νσν pho Nn
cN           

 
where No is the number of molecules in the ground state. The fraction of these photons 
that will be re-emitted within a range of frequencies δν’ near ν’  is simply f(ν’) δν’. The 
rate of photon transfer ν  ν’  is equal to the product of these two factors:  
 

')'()( δνννσν fNn
cN pho         (17) 

 
Within the limits of applicability of KSvRS relations we can approximate 
 

δννπν ν Tkh
ph

Be
c
nN /

3

238)( −=         (18) 

 
Substituting (16) and (19) into (17) we obtain the rate of photon transfer  ν  ν’  in the 
form 
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δνννσδνσνπτνσ ν
νν

νν )()'('8)( '
/)'(

'3

23

fNn
cNe

c
nNn

cN pho
Tkh

pho
Bo =−   (19) 

 
which is the same as the rate of transfer ν  ν’ ,  proving the detailed balance.  
 
The combined features of unit quantum yield and detailed balance guarantee that the 
absorption/emission events bring radiation in a sufficiently thick volume of medium into 
thermal equilibrium, at the temperature of the absorbing substance. Since the photon 
number are conserved, such ‘photon gas’ will be described by the Bose-Einstein 
distribution  
 

1
1
/)( −

= − Tkh Be μννρ          (20) 

 
where μ  is the chemical potential which, in general, is not equal to zero.  
 
Our treatment of the KSvRS relations implicitly assumes that the absorbing material is 
in complete thermal equilibrium at a single temperature To which characterises all the 
relevant degrees of freedom, including electronic and vibrational motion. Research show 
that this need not always be the case. Under some circumstances, electrons in  the 
excited state can exist at a different (higher) temperature than the material itself. This 
temperature then also describes the emitted photons. We shall see in Sec. 9 that such 
“hot carrier” materials can also potentially increase the efficiency of photovoltaic 
conversion.   
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5.   FLUORESCENT COLLECTORS 
 
Fluorescent collectors, in the shape of a plate containing fluorescent dyes with solar 
cells attached at the edge, have recently re-emerged as a promising candidate for 
reducing the cost of solar energy conversion, cutting down on the size of the area of the 
solar cell. Unlike their geometric counterparts that were discussed in Sec. 3, 
fluorescent collectors are claimed to be able to concentrate diffuse sunlight. Based on 
the statistical theory that we have developed we shall show that this is indeed possible, 
and we will determine the limit to the efficiency of this process.  
 
A schematic representation of a fluorescent collector is shown in Fig. 3. We denote by 
θc (where sin θc = 1/n) the critical angle with the normal to the front surface that 
defines the escape cone for total internal reflection (TIR). Light emitted within the 
escape cone will leave the collector directly or after a small number of internal 
reflections. Light emitted outside the escape cone remains trapped within the collector 
and is guided towards the solar cell at the edge of the collector. Light is therefore 
geometrically separated into two beams (one inside and one outside the escape cone) 
which are defined by the magnitude of the refractive index of the collector. If the 
refractive index is sufficiently large, a high proportion of the incident light (direct or 
diffuse) will be collected by the solar cell at the edge, with possibly a much smaller 
area than the front face of the  collector. 
 
A closer look at this argument, however, reveals a subtle paradox. A good collector has 
to absorb (and re-emit) a large fraction of the incident light. The absorption coefficient 
α of the collector material must therefore be substantially larger than the absorption 
length 1/d, where d is the thickness of the collector. To reach the solar cell at the edge, 
the re-emitted light should not be re-absorbed again since each re-emission entails 
some of the light leaving the collector through the front surface. This requires that α < 
1/L < 1/d, where L is the linear dimension of the front face of the collector. Clearly, 
these two conditions are incompatible. We can therefore conclude that, if the collector 
is to operate efficiently, absorption of the incident light cannot take place at the same 
wavelength as the transport of the fluorescent photon flux. In effect, the operation of a 
good collector can be described in terms of two photon fluxes which propagate in 
separate “channels”, as follows: 
 
• The absorption channel, extending over a large part of the solar spectrum where 

the absorption coefficient of the collector αabs is large. 
 
• The fluorescence / photon transport channel, formed by a narrow frequency 

interval at longer wavelengths, where the absorption coefficient αem is small. 
 
The apparent paradox concerning the size of the absorption coefficient is therefore 
resolved. The important point to note is that the two flux picture separates the beams 
by a mechanism based on different absorption coefficients at different wavelengths, 
rather than on the geometry of the collector.  
 
Although fluorescent collectors which rely on this principle can be reasonably efficient 
(Kittidachachan et al, 2007), the presence of the escape cone represents a significant 
loss mechanism. We shall see presently that fluorescent collectors cannot reach their 
maximum potential unless this loss mechanism is eliminated. This can be done by 
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means of relatively simple photonics (Markvart, 2006; Rau et al, 2005):  with a 
photonic filter (or band stop) that reflects light within a specified spectral range. If such 
filter is placed at the top face of the collector (the entrance aperture) much of the 
escaping light can be blocked, and losses to the photon transport reduced to a 
minimum. We shall see, however, that these losses cannot be eliminated entirely as we 
need to leave a “window” open for the absorption of the incident photon flux. The 
ultimate efficiency limit is imposed by microscopic reversibility, and can be evaluated 
with the use of the thermodynamic tools that we have at our disposal. 
 
To evaluate the limits on collector operation, is it convenient to picture the collector as 
a converter which transforms the incident beam, with frequency extending over the 
absorption channel with étendue Ein  , into the emitted beam with étendue Eexit  and a 
different frequency range corresponding to the photon transport channel. The spectral 
range of each channel may be appreciable. This is particularly true for the absorption  
channel since the collector needs to absorb a broad spectrum of the  incident light. 
Although a general treatment is possible (Markvart, 2006) we shall here confine 
ourselves to a simplified approach based on two monochromatic beams at frequencies 
νabs (absorption channel), and νem (<νabs ) (emission/transport channel). The frequency 
difference Δν = νabs -νem corresponds to the Stokes shift of the fluorescent dye. In 
effect, the fluorescent collector has been replaced by a light concentrating instrument 
considered in Fig. 2 where the entrance and exit apertures have now acquired, 
alongside the étendue, also a frequency parameter.  
 
Following Sec. 4, we define the collection efficiency Qc of the collector as the 
probability that an incident photon, once absorbed, reaches the solar cell through the 
exit channel.  In contrast with Sec. 4, however, the photon gas within the collector is 
no longer an isolated system, but exchange energy with a thermal reservoir through the 
absorption emission process. The thermal reservoir (or heat bath), represented by the 
fluorescent dye of the collector, supplies or absorbs the energy difference hΔν between 
the absorbed and emitted photons. The equilibrium state is now characterised not by 
maximum entropy but maximum free energy: to be specific, it is a state with the 
maximum Helmholtz free energy F since the absorption and emission of light by the 
collector is assumed to take place at constant volume, neglecting  any pressure 
dependence of the absorption or emission wavelengths. 
 
The condition of equilibrium is equivalent to a statement that all photons in the 
collector have, in addition to the temperature, also an identical chemical potential. 
Since the chemical potential is equal to the free energy F per photon we have 
 

Tsu −=μ           (21) 
 
where,  for monochromatic photons, the energy per photon is u = hν and s , the entropy 
per photon, is given by Eq. (10). Thus   
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

Nc
Tkh

Nc
Tkh BB

EE
2

2

2

2 2ln21ln ννννμ     (22) 

 
where the second, approximate, equality applies at moderate illumination intensities. 
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We retain the notation of Sec. 4 where the étendue of beam emitted from the transport 
(emission) channel is denoted by Eexit  and the étendue of photons emitted from 
absorption channel (entrance aperture) by Eent . Substituting the relevant parameters 
into (22) and equating the chemical potentials then gives 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

exit

exitem
Bem

ent

entabs
Babs Nc

Tkh
Nc

Tkh EE
2

2

02

2

0
2ln2ln νννν     (23) 

 
where Nexit and Nent are the numbers of photons in the beams emitted from the exit and 
entrance apertures, respectively, and To denotes the temperature of the collector. Since 
the number of photons in the collector is conserved, the sum Nexit + Nent is equal to the 
number of photons in the incident (absorbed) beam, and the collection efficiency is 
given by 
 

exitent

exit
c NN

NQ
+

=          (24) 

 
Rearranging (23) then yields 
 

oBTkh

emexit

absent
c

e
Q

/
2

2

1

1
ν

ν
ν Δ−+

=

E

E
        (25) 

 
Equation (25) represents a generalization of the earlier result of Yablonovich (1980), 
and gives the ultimate collection efficiency of fluorescent collectors, as determined by 
the detailed balance.  
 
The collection efficiency Qc , of course, needs to be considered alongside the 
absorption efficiency to obtain the total optical efficiency of the collector. More 
detailed considerations (Markvart, 2006; Danos et al, 2005)  based on a similar 
argument as (25) show that, even for appreciable gain (concentration) ratios, the total 
optical efficiency of fluorescent collectors can reach some 90% for the frequency range 
of interest for photovoltaic conversion. A similar conclusion was reached with the use 
of numerical modelling by Rau et al (2005).
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6.   A MATHEMATICAL INTERMEZZO: LIGHT BEAMS COVERING A 
BROAD FREQUENCY BAND 
 
The reader may object that the theoretical analysis of fluorescent collectors in Sec. 5 
has been based on monochromatic radiation. Since most cases of interest concern the 
absorption and emission of light over a range of wavelengths, a more general 
formalism is needed to deal with thermodynamic functions for beams extending over a 
broad frequency band.  
 
For radiation in a cavity of some volume V, the appropriate entropy, energy and 
number of photons at equilibrium need no introduction. They are given by (see, for 
example, Landau and Lishitz, 1953):  
 

{ } νρρρρνπ

ν

d
c
nVkS kkkkB ∫ −++=

)(
3

23

ln)1ln()1(8      (26) 

νρννπ
ν

ν

dh
c
nVU ∫=

)(
3

238         (27) 

 

νρνπ
ν

ν

d
c
nVN ∫=

)(
3

238         (28) 

 
where (ν) denotes the frequency interval in question and ρν is the equilibrium photon 
occupation number (20). We shall now use Eq. (14), alongside the analogous relations 
for the energy and entropy flows, to translate the thermodynamic quantities per unit 
volume into the corresponding flows. More precisely, these are convective flows of 
energy, entropy and photon numbers that are carried by the beam and pass through a 
unit area per unit time:  
 

{ } νρρρρν

ν

d
c

kS kkkkB ∫ −++=
)(

2

2

ln)1ln()1(2
E&      (29) 

νρνν
ν

ν
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c
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2

22
E&         (30) 

 

νρν
ν

ν

d
c

N ∫=
)(

2

22
E&          (31) 

 
As in the discussion of the geometric and fluorescent concentrators, we shall consider 
the changes of these functions when a photon is added to or removed from a beam. We 
start with the energy and entropy change per photon removed from the volume V,  
 

( ) ( ) TVTV NSsNUu ,, // ∂∂=∂∂=        (32) 
 
As in Sec. 5, all processes are assumed to take place at constant volume. Using (14), 
the derivatives (32) can be re-written in terms of the derivatives of the flows (29) - 
(31): 
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( ) ( ) TT NSsNUu ,, // EE

&&&& ∂∂=∂∂=        (33) 
 
We note that the derivative at constant volume is now replaced by a derivative at 
constant étendue. The condition of absorption at constant volume therefore ensures that 
the absorbing substance interacts only with the transverse modes of the photon field, 
characterised by the étendue. Thus, for a broadband illumination, the energy and 
entropy per photon (33) replace the energy hν and entropy (given by Eq. (10)) per 
photon in a monochromatic beam. 
 
For a broad luminescence band,  Eqs. (33) provide a simple but convenient formulae of 
calculating the energy and entropy change of a beam by the addition or a removal of a 
photon. They can be calculated without any difficulty numerically but become 
particularly simple for radiation of weak to moderate intensity when the occupation 
numbers ρν are small. It can readily be shown that, for a semiconductor with bandgap 
hνg , absorbing in the frequency range (νg, ∞) (Markvart, 2008), 
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where  
 

)1(
22)( 2

2
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2
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ν
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hc
Tk

de
c

T BgTkh Bg      (37) 

 
and ε = 2(kBT/hνg)+ 2(kBT/hνg)2 is a small correction if  hνg>> kBT. The approximate 
expressions  (34) – (36) are accurate in what can be called the “non-degenerate limit”, 
when the Bose-Einstein statistics (20) reduces to the Maxwell-Boltzmann distribution. 
This is generally true if the difference hνg - μ is greater than about 3kBT.  
 
Care needs to be exercised when applying Eqs. (34) – (36) to the conversion of solar 
radiation with TS = 6000K. Dependig on the bandgap hνg , the intensity of such 
radiation at maximum concentration may be too strong for Eqs. (34) – (36) to give 
reliable results. Notwithstanding, as a rule, these expressions hold well for 
concentration ratios of about 1000 or less and bandgaps of most interest for 
photovoltaic conversion.  
 
It is interesting to note that if the correction  ε  is neglected, Eq. (34) and the 
approximate expressions in (35) and (36) coincide with the corresponding expressions 
for a two-dimensional ideal gas. Clearly, this is a consequence of the two degrees of 
freedom, resulting from the two angular variables that are needed to specify the 
directions (or co-ordinates) of a ray in space.
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7. ENERGY-ENTROPY BALANCE FOR THE ABSORPTION AND 
EMISSION OF LIGHT 
 
We now have our disposal the necessary tools to consider a beam of light  from a 
thermodynamic viewpoint. Before turning to apply this formalism to the conversion 
of light into useful work, it is of interest to pause briefly to apply these concepts to the 
absorption and emission of light.  
 
Suppose that the an incident beam of radiation is characterised by a certain 
thermodynamic parameters, for example, temperature, étendue, or chemical potential. 
The absorption of a photon from this beam increases the energy and entropy of the 
absorbing material by some amounts that we shall denote by uin and sin. For a 
monochromatic beam, for example, uin= hν , and  sin is given by Eq. (10); for broad-
band radiation, these quantities are determined by Eqs. (35) and (36).  
 
Similarly, each emitted photon carries away some energy uout and entropy sout. For 
simplicity, we assume here that photons are absorbed and emitted through the same 
aperture although, of course, the étendues of the incident and emitted beams can be 
different. The temperature of the emitted beam is characteristic of the electronic 
degrees of freedom, and is usually assumed equal to a (single) temperature of the 
absorbing material To (see, for example, the discussion of KSvRS relations in Sec. 4). 
For the moment, however, we consider a more general situation for any temperature 
of the emitted beam.  
 
In general, the energies of the incident and emitted photons are different (uin ≠ uout), 
and each absorption/emission event rejects some heat (to be denoted by qph ) which is 
absorbed by the low-temperature reservoir at temperature To . By virtue of energy 
conservation, we have 
 

phoutin quu +=     (38)   
 
Noting now that the entropy associated with transfer of heat qph to reservoir at To is 
equal to qph /To,  we arrive at the following entropy balance in the absorption/ 
emission process 
 

iophoutin Tqss σ−+= /        (39)  
 
where σi is the entropy generated between the absorption and emission of a single 
photon (Fig. 4a).  
 
Combining (38) and (39) we obtain the entropy generated per absorbed and re-emitted 
photon in the form 
 

)()( outinooutinio ssTuuT −−−=σ      (40) 
 
The form of Eq. (40) is not coincidental. We shall see in Sec. 9 that, quite generally, 
the entropy generation per photon (40) represents a difference of  availabilities 
(Pippard, 1964) of the absorbed and emitted photons.  
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Equation (40) will form a useful starting point for the discussion of photovoltaic 
conversion. To prepare the ground, we consider briefly the important limiting cases.  
If the emitted radiation is at equilibrium with the emitted substance at To  (as is the 
case for the usual fluorescent media or solar cells), we can introduce the chemical 
potential μout of the emitted photons at temperature To, and write 
 

outinoinio sTuT μσ −−= )(       (41) 
 
If, furthermore, the incident light represents direct (beam) solar radiation which 
approximates well by a black body radiation with zero chemical potential  we have, 
from (21), sin = uin /TS, and 
 

outSoinio TTuT μσ −−= )/1(       (42) 
 
The entropy generated per photon is thus given by the difference between the incident 
energy, multiplied by the Carnot efficiency, less the chemical potential of the emitted 
photons. 
 
When the temperature and étendue of the emitted radiation are the same as for the 
incident beam,  uin =  uout , sin =  sout and no entropy is generated in the 
absorption/emission event (σi  = 0). We shall see in Sec. 9 that this limit describes the 
operation of a hot carrier solar cell: an ideal device which produces the highest 
efficiency of a single-junction solar cell, as permitted by thermodynamics.
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8. SOLAR CELL AS A HEAT ENGINE: THERMODYNAMIC ANALYSIS OF 
PHOTOVOLTAIC CONVERSION 
   
A solar cell converts an incident photon into electrical energy or another form of useful 
work, to be denoted by w. As in the case of emission of radiation, some heat (to be 
denoted  by qw ) is rejected into the low-temperature reservoir at temperature To; this is 
accompanied by the rejection of entropy equal to qw/To . Since there is no entropy 
associated with the work w,  the energy and entropy balance equations for the 
conversion process now become  
 

iowin

win

Tqs
qwu

σ−=
+=
/

      (43) 

 
For a solar cell, the work w is equal to qV, where V is the voltage generated by the 
solar cell and q is the electron charge. Combining the two equations (43) then gives 
this photogenerated voltage as 
 

ioinoin TsTuqV σ−−=       (44)

  
and if the incident photon originates from black body radiation (μin = 0),  
 

ioin
s

o Tu
T
TqV σ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 1           (45)

  
The thermodynamic expression for the solar cell voltage thus comes out in a standard 
form for the amount of work that can be produced between two reservoirs at 
temperatures TS and To – in other words, the solar cell voltage can be calculated using a 
direct analogy with the operation of a heat engine (Fig. 4b). For each photon, the 
incident energy uin  which is extracted from the high temperature reservoir is converted 
with the Carnot efficiency. The voltage is then obtained by subtracting from this ideal 
value the losses due to entropy generation σi  in the conversion process.  
 
Substituting (40) into (44) we obtain 
 
qV = uout – To sout           (46) 
 
This expression will be discussed in a more general context in Sec. 9. Here and for the 
remainder of this section we restrict attention to the operation of standard solar cells 
where photons are emitted at temperature To. Since this is also the temperature to be 
used for the evaluation of uout and  sout , we obtain the well known result  
 
qV = μout            (47)
  
In other words, the work carried out by the conversion of a photon into electrostatic or 
chemical energy is equal to the chemical potential of the emitted photons.  This result 
is derived in many texts by invoking the theory of p-n junction solar cell but has been 
obtained here, quite generally, by an argument based solely on thermodynamics.  
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Let us now take a closer look at the losses which occur in the photovoltaic conversion 
process – in other words, those that contribute to the entropy generation σi . This 
discussion can be simplified considerably if we use the ideal-gas description of  photon 
beams, as discussed in Sec. 6. The discussion so far has focused on photons that are 
converted into work. Depending on the applied load, however, the solar cell may act as 
both as a converter and as an emitter of radiation, to produce electrical current I, say, 
which is compatible with the electrical characteristics of the load. Accordingly, the 
incident and emitted photon fluxes (to be denoted henceforth by inN& and outN& ) need not 
be equal: for an ideal solar cell where all absorbed photons are either emitted or 
converted into electrical current 
 

qIqINNNN o
out

o
inoutin // ≅+−=− &&&&       (48)

       
where o

inN& and o
outN&  are the equilibrium photon fluxes at temperature To of the 

converter which occur if the étendue of the incident beam differs from the emitted 
beam.  In the second part of (48) we have noted that the difference of the equilibrium 
fluxes can usually be safely neglected. Equation (48) represents the essence of the 
Shockley-Queisser detailed balance (Shockley and Queisser, 1961) 
 
The expressions (35) and (36) for the energy u and entropy s per photon can therefore 
be written as 
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  (49) 

 
The three terms in square brackets in the last expression of (49) represent the three 
fundamental losses in the operation of an ideal solar cell.  
 
Let us separate from (49) the last term, which we denote by σkin. This term corresponds 
to entropy generation due to finite current being extracted from the solar cell (a finite 
rate of turnover of the “heat engine”): 
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Thus  
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where ( )o

inin NNqI &&
l −=  and o

outo NqI &=  correspond to the photogenerated and dark 
diode saturation current, respectively. By writing 
 

kinooc TqVqV σ−=          (52) 
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it is not difficult to show that σkin (51) gives the usual I-V characteristic of the solar 
cell (Markvart, 2008b).  This I-V characteristic is thus a direct consequence of the 
thermodynamic ideal-gas laws for the photon gas. 
 
We now return to (49). The first and second terms on the right hand side of the last 
expression have been aired in some length (Markvart, 2007, 2008b) and only a brief 
discussion will be given here. The second term arises as a results of étendue expansion 
between the incident and emitted beams, with étendues Ein  and Eout: 
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A  related topic of angularly selective solar cells has recently been discussed by 
Badescu (2005) and by Peters et al in this volume. By microscopic reversibility (the 
quantum states that allow photons to enter the solar cell can also be used to emit them), 
Eout ≥ Ein ,  and σexp is always greater than or equal to zero.  
 
Finally, the first term on the right hand side of (49) is the entropy generation by 
“photon cooling” from temperature  TS  to temperature To , 
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Since TS > To, σi > 0 . This photon cooling term will be the subject of a more detailed 
examination in the next section where we discuss hot carrier conversion. 
 
Thus, the open circuit voltage Voc can be written as 
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Substituting from (53) and (54) then gives  
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Equation (56) is the thermodynamic analogue of the Shockley ideal solar cell equation 
to which it can be reduced by straightforward algebra.  Various approximate forms of  
(56) have been obtained on a number of occasions in the past. In the more general form 
presented here, it shows that the maximum energy (voltage) produced in photovoltaic 
conversion is described completely by the temperatures of the two beams (considered 
here as thermal reservoirs) and their étendues. Similarly to an ideal heat engine, no 
specific details are needed for the engine (converter) nor the working medium.
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9.       HOT CARRIER SOLAR CELLS 
 

Equation (56) gives the open circuit voltage of an ideal single-junction solar cell, in 
terms of the fundamental losses and their precise thermodynamic origins. Here we 
wish to consider in more detail one of these loss terms: the entropy generation  σc 
which describes the irreversible cooling of the beam from solar temperature TS to the 
ambient temperature To .  This loss – which corresponds to the “thermalization” of 
electron-hole pairs in a semiconductor immediately after light absorption  –  is usually 
thought to be one of the two fundamental losses in the operation of an ideal solar cell. 
This question has been examined by Ross and Nozik (1982) who proposed a “hot 
carrier” solar cell where this loss is reduced or even eliminated. The formalism which 
we have developed allows us to consider this concept from a more fundamental point 
of view based on a thermodynamic argument, without resorting  to specific conversion 
structures. 
 
To prepare the ground for this more general analysis we note that the photon cooling 
loss and the associated entropy generation σc will be reduced if photons are emitted 
from the solar cell at a temperature Ta which is higher than the temperature To of the 
“cold” reservoir (TS  ≥ Ta > To ). Equations (38) – (46) then still hold since heat is 
rejected at the ambient temperature To and no assumption has been made about the 
temperature of the emitted photons. Highlighting explicitly the temperature argument 
in the energy and entropy of the emitted photons, 
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and substituting into (46) we obtain the voltage in the form 
 

),,(),,( outoutaooutouta NTsTNTuqV && EE −=       (58) 
 
Thus, the work qV is equal to the availability (or exergy) of the emitted photon, 
calculated for a process at constant volume (see, for example, Pippard, 1964).  
 
Those familiar with classical thermodynamics will not be surprised at this result. 
Notwithstanding, it is instructive to digress for a moment and calculate directly the 
maximum amount of work that can be carried out by a photon, by using a standard 
thermodynamic argument based on availability.  To this end, we consider a cavity or 
“box” filled with photons at temperature Ta which are to be converted into electricity.  
Denoting by po the equilibrium pressure and v  the volume per photon we can define 
the availability per photon of radiation in the box as 
 

voo psTua +−=          (59) 

The maximum work w per photon is then equal to the difference of availability Δa 
between a photon in the box and a photon in thermal equilibrium at temperature To:  

vΔ+Δ−Δ=Δ= oo psTuaw         (60) 
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Throughout this Chapter we have assumed that photovoltaic conversion takes place at 
constant volume,  and therefore Δv = 0.  Equation (60) provides a recipe how this 
analysis can be modified for a conversion process under different conditions, for 
example, at constant pressure (Markvart, to be published). Since the final product of 
the conversion process is equilibrium black body radiation at ambient temperature To 
(with energy and entropy uo and so, respectively)  which has a zero chemical potential 
(μ = uo - To so = 0), we have 

( ) ( ) )()( aoaoooo TsTTusTusTuw −=−−−=       (61) 

Noting the equality of the energy and entropy for “photons in a box” and “photons in a 
beam” (see Sec. 6), it is immediately observed that Eq. (61) is identical to Eq. (58). 
This argument shows that the voltage, generated by a hot carrier solar cell, is equal to 
the difference in availability of an emitted photon and a photon in thermal equilibrium 
at the temperature of the cold reservoir -  in other words, it is equal to the maximum 
amount of work that can be produced by a photon at temperature Ta which reaches 
equilibrium at temperature To. 
 
We note that, using the chemical potential μout = uout – Ta sout, Eq. (58) can be re-written 
in the form 
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The first expression on the right hand side of (62) resembles the voltage of hot-carrier 
solar cells in the paper by Ross and Nozik (1982). Ross and Nozik have argued that 
carriers can be cooled without generating entropy if they are extracted from the hot 
reservoir at a single energy, through so-called selective energy contacts. The present 
approach is independent of a specific conversion mechanism, and  the energy u and 
entropy s in (58) or (62) have been derived by a direct thermodynamic argument from 
the energy and entropy of the emitted photon beam. We are not aware of a detailed 
comparison between results obtained by the two theoretical approaches at the present 
time but work towards this aim is currently in progress (Markvart, to be published). 
 
It is of interest to consider the important limiting cases. As expected,  Eq. (58) or (62) 
reduce to (47) for Ta = To . For  Ta = TS and Ein = Eout when μout =μin = 0 and uin = uout , 
these equations become  
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as discussed by  Markvart (2007). In this case, only the entropy generation term σkin 
remains. No entropy is then generated near the open circuit when the conversion  
process becomes reversible.  
 
Using the obtained results for the voltage, it is not difficult to determine the 
improvement in solar cell efficiency from hot carrier conversion. For simplicity, we 
restrict attention to the case of non-degenerate statistics,  equivalent to the “ideal gas” 
approximation discussed at the end of Sec. 6. Figure 5 shows the I-V characteristic of a 
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hot carrier solar cell with Ta = 3000K for a semiconductor with as bandagap of 1.4 
(close to the bandgap of gallium arsenide). For one-sun illumination, the open circuit 
voltage in this case is equal to 1.39V, as compared with the maximum value of 1.15V 
for a standard solar cell operating at the ambient temperature of 300K. This can be 
contrasted with the thermodynamic energy of a photon absorbed at this bandgap of 
2.22 eV, and the maximum open-circuit voltage for a hot-carrier solar cell operating at 
6000K, equal to 2.11V.  
 
The conversion efficiency as a function of the bandgap is shown in Fig. 6. The 
efficiency limit under one-sun illumination rises from about 31% for standard solar cell 
(Ta = To = 300K) to 33 % for a hot carrier cell operating at Ta = 1,500K, 40% at Ta = 
3,000K, and to 52% at Ta = 4,500K. Under fully concentrated sunlight, these 
efficiencies  become 41% for a standard solar cell, 44 % at Ta = 1,500K, 53% at Ta = 
3,000K,  approaching 70% at Ta = 4,500K. 
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9. CONCLUSION 
 
In this chapter we have shown how photovoltaic and photochemical conversion can be 
understood in thermodynamic terms. Starting from the concept of étendue within the 
realm of geometrical optics, we have moved into the parallel world of waves and 
quantum mechanics, and shown how the perception of a ray of light then coexists with 
the notion of mode, or photon state. 
 
The discrete nature of light beams has then made it possible to develop statistical ideas 
in a similar fashion than in standard statistical mechanics. We have seen in Sec. 2 that 
photons in a beam behave similarly to particles of a two-dimensional ideal gas with 
étendue corresponding to the volume of the gas. The energy and entropy exchanged 
between the incident and emitted photon beams can then be rigorously defined, and 
used to determine the ultimate limits to the efficiency of quantum solar energy 
conversion devices such as fluorescent collectors and solar cells. The thermodynamic 
approach used in this Chapter justifies the conclusion that these limits depend solely on 
the parameters of the incident and emitted beams and not on the material parameters of 
the solar cell.     
 
A detailed identification of the thermodynamic origins has allowed a full analysis of 
the fundamental losses in detail, and has made it possible to contemplate how the 
operation of these devices can be further improved. We were able to determine the 
ultimate limit to the efficiency which can be reached by the application of photonic 
structures to fluorescent collectors. We have also seen that the detailed balance limit of 
Shockley and Queisser is significantly lower than the maximum thermodynamic limit 
of a single junction solar cell. This limit can, in principle, be achieved with a hot-
carrier solar cell.  Such device converts the free-carrier heat acquired by electron-hole 
in the absorption of light into voltage at the terminals of the solar cell in a manner 
similar to the operation of a thermoelectric device. The practical demonstration of such 
a solar cell represents one of the exciting challenges to photovoltaics of the third 
millennium.
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Figure captions 
 
Fig. 1. The definition of étendue. (a) The usual geometric definition in terms of a 

cross sectional area δA (not necessarily perpendicular to the beam) and the 
angular divergence δΩ. (b) Étendue as an element of volume in the phase 
space of transverse coordinates of the beam. Note that the projection δΩ. cos θ 
of the area on the unit sphere that corresponds to the solid angle δΩ. onto the 
xy plane now becomes δkxδky/k2. 

 
Fig. 2 Schematic diagram of an optical instrument for concentrating sunlight, 

considered as the transformation of étendue from Ein to Eexit . 
 
Fig. 3 The cross section of a fluorescent collector based on total internal reflection. 

Photons propagating along rays outside the escape cone are trapped and reach 
the solar cell at the edge, unless reabsorbed. Photons emitted within the escape 
cone leave through the front face of the collector and are lost from the system. 

 
Fig. 4. A schematic diagram depicting the thermodynamic processes involved in the 

absorption/emission of light (a) and in photovoltaic conversion (b). 
 
Fig. 5 The I-V characteristic of a hot-carrier solar cell with bandgap 1.4eV, at one 

sun illumination (denoted by V(3000K)). For clarity, this characteristic is 
plotted in the form of a function of current, normalised to the photogenerated 
current Iℓ. For comparison, the graph also shows the thermodynamic energy 
per photon uin, and losses by entropy generation through kinetic nature of this 
process (σkin), étendue expansion (σexp), and photon cooling from 6000K to 
3000K. The V-I characteristic of an ideal conventional solar cell, denoted by 
V(300K), is also shown. The shaded region indicates the difference between 
the voltage of hot carrier and conventional solar cells. 

 
Fig. 6 The efficiency of a hot carrier solar cell as a function of the bandgap, for three 

absorber temperatures, as well as the Shockley-Queisser efficiency limit at 
300K, under one-sun illumination and fully concentrated sunlight. 
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