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A numerical scheme of study is developed to model compressible two-fluid flows simulating liquid
sloshing in a partially filled tank. For a two-fluid system separated by an interface as in the case of
sloshing, not only a Mach-uniform scheme is required but also an effective way to eliminate
unphysical numerical oscillations near the interface. By introducing a preconditioner, the governing
equations expressed in terms of primitive variables are solved for both fluids �i.e., water, air, gas,
etc.� in a unified manner. In order to keep the interface sharp and to eliminate unphysical numerical
oscillations in unsteady fluid flows, the nonconservative implicit split coefficient matrix method is
modified to construct a flux-difference splitting scheme in the dual-time formulation. The proposed
numerical model is evaluated by comparisons between numerical results and measured data for
sloshing in an 80% filled rectangular tank excited at resonance frequency. Through similar
comparisons, the investigation is further extended by examining sloshing flows excited by forced
sway motions in two different rectangular tanks with 20% and 83% filling ratios. These examples
demonstrate that the proposed method is suitable to capture induced free surface waves and to
evaluate sloshing pressure loads acting on the tank walls and ceiling. © 2009 American Institute of
Physics. �doi:10.1063/1.3264835�

I. INTRODUCTION

The effect of dispersed bubbles or entrapped air in a
two-fluid sloshing flow is important when the excited surface
wave impacts on the sides or roof of a container.1 When a
wave breaks or is near to breaking as it hits a wall, air often
becomes trapped. The presence of air as a trapped bubble or
dispersed air, or most likely a combination of both, has a
cushioning effect and local pressures are then influenced by
the compressibility of the air.2–4 Therefore, investigations of
compressibility effects of gas and liquid in violent sloshing
motions provide improved insights and understanding of the
complicated hydrodynamic phenomena occurring in high-
speed impacts on tank walls, air bubble entrapment, breaking
waves, and so on.

To compute compressible multifluid flows arising in liq-
uid sloshing in a partially filled moving tank, there are two
major issues that need resolving. The first requires the devel-
opment of a unified method to solve conditions varying from
weakly compressible flows to high-speed flows. The standard
methods adopted to solve compressible flows based on the
hyperbolic conservation laws are neither numerically robust
nor efficient in the case of low Mach number or weak com-
pressibility �the incompressible limit�.5–7 For many algo-
rithms preconditioning techniques are a necessity in order to
obtain a converged solution at low speeds.7–11 Another issue
is that for any standard conservative, shock-capturing

scheme to compute multifluid systems, pressure oscillations
exist intrinsically near the interface surface.12,13 In a com-
pressible two-fluid flow computation, pressures �densities�
are used for further computations, such as the computation of
densities �pressure� from their equations of state, which give
rise to numerically based oscillations near the interface and
finally cause deterioration of the whole flow field at subse-
quent times. Such oscillations are present in first-order com-
putations and do not decrease with decreasing the mesh size
in any interface capturing method other than a tracking
method.14 The interfacial correction method based on an ex-
act Riemann solver proposed by Cocchi et al.,15 Davis,16 and
Igra,17 locally nonconservative fixes suggested by Abgrall18

and the ghost fluid method introduced by Fedkiw et al.19 are
the best known approaches to overcome the described diffi-
culties.

In this study, a preconditioner is introduced to solve mul-
tifluid flows in a unified manner. The present approach com-
bines the preconditioning technique with an implicit split
coefficient matrix method �SCMM� scheme to ensure the
generation of a numerical method applicable to both incom-
pressible and compressible flow regimes and devoid of nu-
merically induced pressure oscillations near the interface.
This requires the application of a dual-time preconditioning
technique11 to the two-fluid flows. A characteristic-based
primitive-variable flux-difference splitting method related to
the SCMM scheme20 is employed to reduce interface diffu-
sion and eliminate numerical spurious oscillations with the
level set approach adopted to capture the free surface
characteristic.21
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II. THEORETICAL FORMULATION

A. Three-dimensional governing equations

The fluid motion in liquid and gas phases are both as-
sumed to be compressible. This two-fluid system is assumed
immiscible and adiabatic, and fluid density � is only a func-
tion of pressure p, e.g., �=��p�. The basic equations describ-
ing the two-fluid system are expressed in Cartesian coordi-
nates as

��

�t
+

���uj�
�xj

= 0, �1�

���ui�
�t

+
���ijp�

�xj
+

���uiuj�
�xj

−
�

�xj
�2�

Re
sij� = −

�gi

Fn2 − �f i.

�2�

A conventional Cartesian tensor notation is adopted in
these two equations. The spatial coordinates xi �i=1,2 ,3�,
velocity components ui, and projection components of the
gravitational acceleration in the axis directions gi, respec-
tively, have been nondimensionalized for each specific prob-
lem in terms of a characteristic length L, a characteristic
velocity U0, and gravitational acceleration g. The fluid den-
sity � and viscosity � are nondimensionalized by their re-
spective water reference values �w and �w at a prescribed
state; the time t and the pressure p variables are nondimen-
sionalized by L /U0 and �wU0

2, respectively. The Reynolds
number, Re, Froude number, Fn, and strain rate tensor sij are
defined by

Re = LU0/�w, Fn = U0/�Lg ,

�3�

sij =
1

2
� �ui

�xj
+

�uj

�xi
� .

With the exception of the gravitational force, the exter-
nal forces include the translational and rotational inertia
forces, and f i takes the following form:

f i = ai + �ijk
d� j

dt
xk + �ijk�klm� j�lxm + 2�ijk� juk, �4�

where ai represents the translational acceleration components
and �i represents the rotational angular velocity components.
Here �ijk denotes the Levi-Civita symbol with repeating sub-
scripts indicating summation. The effect of surface tension is
neglected in this mathematical model.

To simulate fluid sloshing problems encountered in the
field of ship hydrodynamics, the gas and liquid are both as-
sumed adiabatic and their thermodynamic behavior is de-
scribed by an equation of state. For example, the Tait equa-
tion of state14 is employed for water and the ideal gas
equation of state for air is used with different parameter val-
ues. They have the following unified form:

p + B

p0 + B
= � �

�0
��

, �5�

where p0 and �0 are the reference pressure and density val-
ues, respectively. For example, for water, the constants B and

� are given by Bw=296.3	10+6 and �w=7.415, and for air
by Ba=0 and �a=1.4. In terms of Eq. �5�, the speed of sound
for each fluid phase is calculated from the following equa-
tion:

c =��p

��
=���B + p�

�
.

B. Free surface capturing method

The free surface is defined as the zero level set of a level
set function 
 initialized as a signed distance function from
the interface. In air, 
 is set to a positive value and in water
to a negative value as defined by

�
�x1,x2,x3;t� � 0 in air,


�x1,x2,x3;t� = 0 on surface,


�x1,x2,x3;t� � 0 in water.
	 �6�

Differentiating 
=0 with respect to time t, a transport
equation is derived to describe the free surface motion in the
form

�


�t
+ ui

�


�xi
= 0, �7�

where ui is the local fluid velocity and, at any time, moving
the interface is equivalent to updating 
 by solving Eq. �7�.

Due to the sharp change in properties of fluids at the
interface, we introduce a region of finite thickness over
which a smooth but rapid change in density and viscosity
occurs across the interface.

First, we define a smoothed Heaviside function H��x�
satisfying

H��x� = � 1 if x � � ,

0 if x � − � ,

0.5�x + ��/� + 0.5 sin�
x/��/
 otherwise,
	
�8�

where � is half the finite thickness of the interface in which
the density and viscosity change.22

Using the above function, we can define the correspond-
ing smoothed viscosity function � as

���
� = �1 − H��
�� +
�a

�w
H��
� . �9�

The density is updated by means of the equation of state. The
two nondimensional densities �1= �p / �p0+Bw�+1�1/�w and
�2=�a /�w��p / p0�+1�1/�a are evaluated from Eq. �5� using the
pressure value at a grid point and the corresponding
smoothed density function � is defined as

���
� = �1�1 − H��
�� + �2H��
� , �10�

where the constant Bw and reference pressure p0 are nondi-
mensional quantities. The gauge pressure �i.e., the reference
pressure subtracted from the absolute pressure� is used in
order to reduce the effect of round-off errors at low speed
fluid flows.
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Even if we initialize 
 as a signed distance from a wave
front, the level set function no longer remains a distance
function at later times. For numerical reasons, the level set
function is reinitialized so that 
 satisfies 
�

=1. An itera-
tive procedure is used at each time step22 by solving the
following Hamilton–Jacobi equation:

�


�t
= sgn�
0��1 − 
�

� ,

�11�

�x1,x2,x3;t� = 
0�x1,x2,x3� ,

where sgn denotes the sign function. Given a level set func-
tion, 
0, at time t, the previous equation has the property that
the steady state solution 
 has the same sign and same zero
level set as 
0, and converges to 
�

=1. Therefore, it is a
distance function to the wave front. For numerical reasons,22

this sign function is approximated by

S��
0� =

0

�
0
2 + �2

.

During the reinitialization exercise a numerical proce-
dure developed by Sussman et al.23 was introduced to pre-
serve the fluid volume in each cell to improve the accuracy
of solution of Eq. �11�. In the numerical experiments de-
scribed in Sec. IV, this improved level set method23 was
adopted and it produced a significant improvement to the
accuracy of capturing free surface waves.

C. Preconditioning dual-time technique

In solving the compressible equations for low Mach
number, the acoustic eigenvalues are much higher than the
convective ones. For the sake of stability the time step incre-
ment must be chosen inversely proportional to the highest
eigenvalue of the system to satisfy the Courant–Friedrichs–
Lewy condition.24 This implies that other waves convected at
fluid speed do not change very much over a time step and
thousands of time steps may be required for them to reach a
steady state value. Hence, the standard methods for com-
pressible flows based on the hyperbolic conservation laws
are neither numerically robust nor efficient in the case of low
Mach number or weak compressibility.

In this study, primitive variables, rather than conserva-
tive variables, are employed to evolve time-dependent
Reynolds-Averaged Navier–Stokes equations. The precondi-
tioning technique developed for compressible single phase
flows by changing the eigenvalues of the system7,11 is ex-
tended to compressible two-fluid flow problems associated
with liquid sloshing in partially filled containers. An impor-
tant feature of the proposed method is that the compressible
gas and liquid equations are unified to a single system, e.g.,
a single phase flow, and in each time step both phases are
updated simultaneously. The interface is only treated as a
variation in fluid properties.

In terms of generalized coordinates, Eqs. �1� and �2�
with the addition of a preconditioned pseudotime derivative
can be rewritten in a vector form as given by

��

�q

��
+

�Q

�t
+

�Fj

�� j
+

�Fj
�

�� j
= S , �12�

where vectors q, Q, Fj, Fj
�, and S are expressed as

q = J−1�p,u,v,w�T, Q = J−1���,��u,��v,��w�T,

Fj = J−1�
�Uj

��u1Uj +
�� j

�x1
p

��u2Uj +
�� j

�x2
p

��u3Uj +
�� j

�x3
p
� ,

Fj
� = J−1 ��

Re

�� j

�xm
�0,

��k

�xm

�u

��k
+

��k

�x

�um

��k
,
��k

�xm

�v
��k

+
��k

�y

�um

��k
,
��k

�xm

�w

��k
+

��k

�z

�um

��k
�T

,

S = J−1���0, f1 + g1/Fn2, f2 + g2/Fn2, f3 + g3/Fn2�T.

Here J=��� ,� ,�� /��x ,y ,z� is the Jacobian of the transforma-
tion and the contravariant velocity component Uj is defined
as

Uj =
�� j

�xm
um.

To optimize the performance of the pseudoiteration, the
pseudotime term is written in terms of the primitive vari-
ables. The preconditioning step consists of the replacement
of matrix �� by a matrix defined by

�� = �
1/Vr

2 0 0 0

u/Vr
2 �� 0 0

v/Vr
2 0 �� 0

w/Vr
2 0 0 ��

� .

Here, Vr is the reference velocity which is chosen to ensure
that the system is well conditioned at low speed and to ac-
celerate convergence. In practice, this parameter is generally
defined as some functional combination of the free stream
and the local convective velocities.7,11

III. NUMERICAL METHOD

The implementation of the preconditioned dual-time al-
gorithm is now discussed adopting two different discretiza-
tion strategies. The conservative Roe’s flux-difference split-
ting method25 is presented to solve the compressible single
phase fluid flow, whereas the nonconservative SCMM or a
hybrid combining both schemes of presentation is used for
the compressible two-fluid flow.

For the sake of simplicity in Sec. III A, only the convec-
tive flux derivative in one direction is presented, and the
viscous and source terms in Eq. �12� are omitted. For ex-
ample, we denote by F the convective flux F1 in the
�-direction.
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A. Preconditioned Roe’s flux-difference formulations

First let us consider Roe’s approximate Riemann
scheme,25 which is given by

F̃j+1/2 = 1
2 �F�Qj+1/2

L � + F�Qj+1/2
R � − 
A�Qj+1/2

L ,Qj+1/2
R �


	�Qj+1/2
R − Qj+1/2

L �� . �13�

Roe’s method provides an exact solution to an approximate
Riemann problem by evaluating the Jacobian matrix A of the
convective flux vector F as Roe-averaged variables depen-
dent on left and right states Qj+1/2

L and Qj+1/2
R at the interface

�=� j+1/2. In this expression, 
A
=T
�
T−1, where T is the ma-
trix whose columns are the right eigenvectors of A, T−1 is the
matrix whose rows are the left eigenvectors of A, and 
�
 is
a diagonal matrix whose elements are the absolute values of
the eigenvalues of A.

By implicitly discretizing Eq. �12� with a first-order fi-
nite difference scheme for the pseudotime and a second-
order backward difference approximation for the physical
time terms, we have

��

qm+1,n+1 − qm,n+1

��
+

1.5Qm+1,n+1 − 2Qn + 0.5Qn−1

�t

+ ��F
m+1,n+1 = 0. �14�

Here, the superscript n denotes the nth physical time level,
the superscript m the level of the subiteration, and �� repre-
sents a spatial difference. After linearizing terms at the �m
+1�th time level and involving some simple algebraic ma-
nipulation, the above equation becomes

��� + M
3��

2�t
+ Aq�������q + ��F

m,n+1 = rm,n+1, �15�

where �� represents the pseudotime difference, and Aq

=�F /�q, M =�Q /�q, and

rm,n+1 = −
1.5Qm,n+1 − 2Qn + 0.5Qn−1

�t
.

Let us define �d=��+M�3�� /2�t� as the nonconserva-
tive variable preconditioning matrix. Multiplying both sides
of Eq. �15� by the inverse �d

−1, we derive the result

�I + aq�������q + aq��q = �d
−1r , �16�

where it is easily verified that the preconditioned flux Jaco-
bian matrix and the Roe numerical flux expression in terms
of primitive variables are, respectively, given by

aq = �d
−1Aq,

�17�
F̃j+1/2 = 1

2 �FL + FR� − 1
2 �̂d
âq
�q .

Here the tilde over each term means that they are evaluated
using the Roe-averaged variables.

Furthermore, the transformation of Eq. �16� into conser-
vative variables gives

�I + a�������Q + a��Q = M�d
−1r . �18�

It now follows that the system matrix for the vector Q is
given by

a = MaqM−1 = M�d
−1AqM−1 = M�d

−1A

and the corresponding numerical flux at a cell interface,
analogous to Eq. �17�, is defined as

F̃j+1/2 = 1
2 �FL + FR� − 1

2 �̂dM̂−1
â
�Q , �19�

where the matrix �dM−1 is defined as the conservative vari-
able preconditioning matrix.

Since Eqs. �16� and �18� with the corresponding Roe’s
numerical fluxes in Eqs. �17� and �19� are equivalent, the two
methods described here are conservative but do not satisfy
the discrete Rankine–Hugoniot jump conditions to ensure ex-
act recognition of isolated discontinuities such as a shock
wave.

B. Preconditioned SCMM formulation

The basic idea behind the nonconservative SCMM
scheme26 is to split the Jacobian coefficient matrix into two
submatrices, each associated with the positive or negative
eigenvalues of the Jacobian. Hence, a one-sided finite differ-
ence scheme can be applied to each split flux difference.

The multiplication of both sides of Eq. �16� by �d and
implementing the similarity transform for the Jacobian ma-
trix aq=T�T−1 leads to

��d + ���dT�T−1�����q + �dT�T−1��q = r . �20�

Here the diagonal matrix � consists of the eigenvalues of aq

and T is the matrix of its right eigenvectors.
The implementation of positive and negative decompo-

sition of the Jacobian matrix and by defining the positive and
negative nonconservative flux differences as

��F
+ = �dT�+T−1��q = �daq

+��q = āq
+��q ,

��F
− = �dT�−T−1��q = �daq

−��q = āq
−��q

allow Eq. �20� to be expressed in the form

��d + ��ā+�� + ��ā−�����q = r − ��F
+ − ��F

−, �21�

where the plus �minus� eigenvalue matrices are given by

�� = 1
2 �� � 
�
� .

The first-order upwind difference approximation to the
positive and negative flux differences at a node j is

��F
+ + ��F

− 
 āq
+�q̄j−1/2��qj − qj−1� + āq

−�q̄j+1/2��qj+1 − qj� ,

�22�

where q̄j+1/2 is the arithmetic average of the primitive vari-
ables qj and qj+1.

Higher order spatial discretizations were derived by
Lombard et al.26 For example, the second-order upwind and
third order upwind-biased methods are defined, respectively,
by
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3
2 āq

+�q̄j−1/2���q − 1
2 āq

+�q̄j−3/2���q + 3
2 āq

−�q̄j+1/2���q

− 1
2 āq

−�q̄j+3/2���q �23�

and

1
3 āq

+�q̄j+1/2���q + 5
6 āq

+�q̄j−1/2���q − 1
6 āq

+�q̄j−3/2���q

+ 1
3 āq

−�q̄j−1/2���q + 5
6 āq

−�q̄j+1/2���q − 1
6 āq

−�q̄j+3/2���q .

�24�

The SCMM scheme based on the primitive variables as
described, although it eliminates numerical spurious oscilla-
tions near the interface, is nonconservative. This implies that
this numerical scheme of study can only be applied to low
Mach number flows, transonic flow, or to a problem involv-
ing the simultaneous presence of both.

C. Eigensystem and numerical convective fluxes

The nonconservative variable preconditioning matrix �d

in Eqs. �16� and �20� has the form

�d = �� +
3��

2�t
M = �

b1 0 0 0

ub1 b2 0 0

vb1 0 b2 0

wb1 0 0 b2

� , �25�

where b1= �1 /Vr
2�+ �1.5�� /�t��1 /c2� and b2=���1

+ �1.5�� /�t��.
The preconditioned inviscid flux Jacobian matrix aq in

Eqs. �16� and �20� is expressed as

aq = �d
−1Aq = �

U1/�c2b1� ��

��

�x
/b1 ��

��

�y
/b1 ��

��

�z
/b1

��

�x
/b2 ��U1/b2 0 0

��

�y
/b2 0 ��U1/b2 0

��

�z
/b2 0 0 ��U1/b2

�
�26�

and its eigenvalues are given by

�1 = �2 = ��U1/b2,

�27�

�3,4 =
��U1

2
� 1

b2
+

1

��c2b1
� �����U1

2b2
�2

+
��

b1b2

��

�xj

��

�xj
+ � U1

2c2b1
�2

−
���U1�2

2c2b1b2
�

��U1

2
� 1

b2
+

1

��c2b1
� � � .

The eigenvectors associated with the four eigenvalues used in Eq. �20� are expressed as

T = �
0 0

�3 − ��U1/b2

2�

�4 − ��U1/b2

2�

�x

��

�x

��

1

2�b2

��

�x

1

2�b2

��

�x

�y

��

�y

��

1

2�b2

��

�y

1

2�b2

��

�y

�z

��

�z

��

1

2�b2

��

�z

1

2�b2

��

�z

� .

The inverse of the matrix T is of the form

T−1 =
1


T
�
0

��

2�b2
2� �y

��

��

�z
−

�z

��

��

�y
� ��

2�b2
2� �z

��

��

�x
−

�x

��

��

�z
� ��

2�b2
2� �x

��

��

�y
−

�y

��

��

�x
�

0
��

2�b2
2� �z

��

��

�y
−

�y

��

��

�z
� ��

2�b2
2� �x

��

��

�z
−

�z

��

��

�x
� ��

2�b2
2� �y

��

��

�x
−

�x

��

��

�y
�


T
b2

��

−
�4 − ��U1/b2

2�

��

�x
−

�4 − ��U1/b2

2�

��

�y
−

�4 − ��U1/b2

2�

��

�z

−

T
b2

��

�3 − ��U1/b2

2�

��

�x

�3 − ��U1/b2

2�

��

�y

�3 − ��U1/b2

2�

��

�z

� ,

112105-5 Numerical simulation of liquid sloshing Phys. Fluids 21, 112105 �2009�

Downloaded 22 Dec 2009 to 152.78.32.146. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



where 
T
= ��� /2�b2
2���� /�xj���� /�xj��0.

The numerical flux �F̃1� j+1/2,k,l in the �-direction for the
three dimensional case is given by Eqs. �22� and �23�, or Eq.
�24� in terms of different spatial accuracies. The numerical
fluxes in the other two directions can be calculated similarly
in terms of the directional split method.24

It is noticed that after adding a preconditioned
pseudotime derivative term �the first term� to the original
system in Eq. �12� and moving the difference approximation
of the physical time derivative term to the hand right side as
a source term in Eq. �15�, the time derivative preconditioned
system of equations constructed here is now hyperbolic in
pseudotime �. The physical time coordinate is used to track
the physical variation of the flow, whereas the pseudotime
coordinate is used to march this system to a steady state at
each physical time step. It is seen that Eq. �21� is expressed
in an incremental form based on the flow variable difference
between iterations �q=qn+1,m+1−qn+1,m. Therefore, provided
the solution converges in pseudotime �i.e., �q→0 as m
→��, the left-hand side term goes to zero and the computed
solution satisfies the original governing equations. In this
study, the preconditioning methods are constructed to accel-
erate the convergence to a steady state and to produce a
“better” artificial viscosity contribution �i.e., numerical dissi-
pation terms� to stabilize the numerical scheme of the study
and to improve accuracy through the upwind algorithms of
Roe’s approximate Riemann scheme and SCMM scheme.
This is achieved by introducing the preconditioning matrix in
Eq. �15� to make the speeds of all the waves ��1, �2, �3, and
�4� in Eq. �27� closer to one another with appropriate defi-
nitions of Vr and ��.

IV. NUMERICAL CALCULATIONS

To validate the mathematical model and numerical
scheme of this study, it is necessary to confirm the applica-
tion of the low Mach preconditioning dual-time stepping ap-
proach for general fluid flows in which compressibility ef-
fects range from weak to strong �e.g., 0�Ma�0.7� before
tackling two-phase compressible fluid sloshing problems. To
develop confidence in the proposed model, we briefly exam-
ine subsonic and transonic compressible flows around a cir-
cular cylinder at free stream Mach numbers �Ma=0.001, 0.2,
and 0.7� and assess the characteristics of these flows through
comparison with published results.

A. Subsonic and transonic flows
past a circular cylinder

The preconditioned Roe’s flux-difference splitting
scheme based on the primitive variables described in Sec.
III A was used to determine the flow past a circular cylinder
at free stream Mach numbers Ma=0.001, 0.2, and 0.7 and
Reynolds number Re=200 based on a cylindrical diameter D
and free stream velocity U0. In this section, an O-shape grid
size �99	81� was adopted with the computational boundary
located at 14 diameters from the cylinder’s center. Figure 1
illustrates the variation of drag coefficient against time and
Mach number computed by the proposed mathematical
model and these predictions are compared to an incompress-

ible flow result evaluated using a different numerical flow
solver.21 All the curves have similar characteristics to the
incompressible flow curve and the compressible result at
Ma=0.001 shows near coincidence to it. This implies that the
described preconditioning dual-time step method discussed
previously is applicable to low Mach number flows without
recourse to assuming the flow incompressible. Furthermore,
the result for Ma=0.2 is in close agreement with the incom-
pressible and Ma=0.001 flow calculations suggesting that if
evidence exists that a compressible flow is in the region
Ma�0.2, then compressibility effects can be ignored and
equations, methods, and numerical schemes assuming in-
compressibility flow produce solutions of suitable accuracy.
As can be seen, for Ma=0.7 the magnitude of the drag coef-
ficient is greater than observed for Ma�0.2 although an os-
cillatory nature prevails. These findings are also confirmed
by the calculations of pressure distributions �pressure coeffi-
cient Cp= p /�U0

2� around the cylinder’s surface at an instant,
as shown in Fig. 2. These results show good agreement with
similar predictions in literature,27,28 which the interested
reader may consult.
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FIG. 1. Calculated time history of drag coefficient behavior associated with
the flow past a circular cylinder at Reynolds number Re=200. The com-
pressible flow solver result at Ma=0.001 compares favorably to the numeri-
cal result calculated using a different incompressible flow solver �Ref. 21�.
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cylinder at Reynolds number Re=200. Again, the compressible flow solver
result at Ma=0.001 compares favorably to the numerical result calculated
using a different incompressible flow solver �Ref. 21�.
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B. Validation for liquid sloshing in a moving tank

To make sure that the proposed numerical method devel-
oped converges satisfactorily and to illustrate that it provides
an acceptable accuracy to simulate impact pressures induced
by sloshing, this section contains selected numerical ex-
amples of sloshing in an 80% filled tank subject to harmonic
translational motions. The numerical results derived by the
SCMM approach described in Sec. III B are compared to
experimental data. It is noted that the mathematical model
and numerical scheme of study are not restricted to a single
motion excitation but allow combinations of motions �trans-
lations and rotations� in all degrees of freedom as well as
irregular excitation inputs.

1. Experimental data

The experimental data29 associated with sloshing in a
rectangular tank of dimensions 0.8	0.4	0.5 m3, subject to
harmonic sway motions of horizontal excitation amplitude
A=0.02 m, are supplied by the Daewoo Shipbuilding and
Marine Engineering Co., Ltd. Experimental results are avail-
able at all positions �P1, P2,…�, as shown in the tank model
in Fig. 3. The experimental measurements were recorded af-
ter the fluid was fully excited. Unfortunately, neither details
of sensor size, characteristics, etc., nor the manner in which
these records are obtained, i.e., filtering of signal, etc., are
known and therefore the data are accepted at face value.

2. Computational conditions

The media are assumed to be air and water with density
of water �w=1025 kg /m3, and the reference density and
pressure of air are �0=1.0 kg /m3 and p0=10+5 N /m2 in Eq.
�5�, respectively. Unless otherwise stated, it is assumed that
the fluid is inviscid and a slip boundary condition is applied
to the rigid walls of the tank including the ceiling. The effect
of surface tension is neglected in this investigation.

The initial conditions for all proceeding calculations are
based on the tank moving from rest with the velocity com-
ponents everywhere in the whole computational fluid domain
set to zero. In all cases, the initial value of the level set

function is set as the signed distance from the interface, posi-
tive in the air region, and negative in the fluid domain. The
pressure distribution is defined by its hydrostatic value in the
fluid below the interface and zero everywhere else, and the
initial density values are evaluated from Eq. �10�.

In this investigation, no special treatment is required for
the free surface due to the two-fluid flow model adopted
herein. A slip boundary condition is imposed by allowing the
normal velocity to vanish at the wall. The pressure on the
wall is obtained by projecting the momentum equation along
the normal to the wall.
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FIG. 4. Time histories of computed and measured pressure at position P1
��=1.0�0�. �a� Measured; �b� compressible flow calculation �mesh: 161
	101�; �c� compressible flow calculation �mesh: 101	71�.

FIG. 3. Sloshing tank setup where the unit of length is millimeter, the letter
P indicates the position of pressure sensor �P1, P2, …� at the center line of
the tank of breadth of 400 mm.
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Numerical experiments revealed that the convergence of
the presented numerical scheme of study is not very sensitive
to the value of the pseudotime step increment �� when of the
order of �5	10−5�− �1	10−3� for two-fluid flow computa-
tions. For this reason, the value of ��=2	10−4 was assumed
for all test cases.

3. Resonance frequency excitation

The frequency of excitation considered in this section is
set to �=1.0�0=0.945 Hz �where �0 is the natural fre-
quency of the rectangular tank� at resonance. Numerical cal-
culations were performed using a 161	101 uniform mesh

and a 101	71 nonuniform mesh. The time step increment
used for both tests is set to �t=5	10−4 s �approximately
2650 time steps in one oscillation�. Figures 4–7 illustrate the
comparisons between measured and computed pressure time
histories at pressure gauge positions on the tank wall �P1 and
P4� and ceiling �P7 and P9�, as indicated in Fig. 3. For ex-
ample, Figs. 4�a�–4�c� illustrate measured data and com-
pressible simulations using the two different resolutions of
mesh with similar findings shown in Figs. 5–7. The experi-
mental measurements were recorded after the fluid was fully
excited but the numerical simulations commenced from rest.
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FIG. 5. Time histories of computed and measured pressure at position P4
��=1.0�0�. �a� Measured; �b� compressible flow calculation �mesh: 161
	101�; �c� compressible flow calculation �mesh: 101	71�.
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FIG. 6. Time histories of computed and measured pressure at position P7
��=1.0�0�. �a� Measured; �b� compressible flow calculation �mesh: 161
	101�; �c� compressible flow calculation �mesh: 101	71�.
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In general, the computations produce the sloshing flow and
dynamic characteristics of the measured data although pres-
sure magnitudes show some discrepancies. At P1, Fig. 4, the
three sets of data are of similar magnitudes and characteris-
tics with the calculated results using the finer mesh closer to
the measured data. At P4, Fig. 5, again a similar trend is
observed. In Figs. 6 and 7 it is seen that the calculated peak
values of the impact pressure acting on the tank’s ceiling
�P7� and its symmetric position �P9� are lower than the ex-

perimental values. This may be due to the introduction of the
transition zone near the interface across which the density is
smoothed.21

In order to test the performance of the present math-
ematical model and numerical scheme of study to conserve
fluid mass during the violent sloshing, the simulation with
the 101	71 mesh was run for approximately 35 s. Figure
8�a� shows the time history of liquid mass error defined by
�M = �
M�t�−M�0�
� /M�0�, where M�t�=���1−H�
��d�. In
addition, a coarser size �81	51� mesh was used to investi-
gate the trend of mass error with a longer running time of
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FIG. 7. Time histories of computed and measured pressure at position P9
��=1.0�0�. �a� Measured; �b� compressible flow calculation �mesh: 161
	101�; �c� compressible flow calculation �mesh: 101	71�.
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FIG. 8. Time history of liquid mass loss in the tank. �a� Mesh: 101	71; �b�
mesh: 81	51 �up to 35 s�; �c� mesh: 81	51 �up to 135 s�
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135 s, as shown in Fig. 8�b� �35 s� and Fig. 8�c� �135 s�. It is
noted that the mass error in Fig. 8�c� does not increase lin-
early against time, and the growth rate of mass error de-
creases with time. The finer mesh results are of the order of
a half smaller, providing evidence that the finer the mesh the
smaller the mass error, but the computational effort greatly
increases.

For liquid sloshing in a rectangular tank with a high
filling ratio, air cavities are often formed especially at the top
corners of the tank. The trapped air acts like a mass-spring
system �i.e., the air taking time to compress and then to
expand� producing an underlying process that extends the
duration of a pressure peak, decreases the magnitude of a
pressure peak, and further causes a pressure oscillation fol-
lowing the peak. This oscillating pressure behavior is ob-
served both experimentally29 and numerically using the
present model. For example, typical pressure signals inside
air pockets recorded in the model test and in the numerical
simulation at positions P8 and P9 at several instants are pre-
sented in Fig. 9 �measured� and Fig. 10 �calculated�, respec-
tively. It is noted that the amplitude and duration of impact
pressure vary and have a random characteristic in different
runs and even at different impact events in one run, depend-
ing on the free surface wave shape, liquid flow speed, and
the size of the air cavity. A comparison of these figures

shows similarities. For example, Figs. 9�a� and 10�a� demon-
strate an implosion/explosion followed by an impact whereas
Figs. 9�b� and 10�b� illustrate an impact only. The character-
istics are similar although magnitude and duration of mea-
surements and prediction are different.

As can be seen from these illustrative examples, the
tracking or capturing of the interface, conservation of mass,
etc., are of great importance to predict accurately fluid-
structure interaction phenomena. For these reasons, other
techniques30,31 are under investigation by the authors to im-

FIG. 11. Experimental setup of the rectangular tank �unit: millimeter�.
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FIG. 9. �Color online� Time histories of measured pressures �Ref. 29� during
impact inside the air pocket generated at two different times. �a� Impact
pressure oscillation �the third measured impact event in Fig. 7�a��; �b� im-
pact pressure oscillation �the eighth measured impact event in Fig. 7�a��.
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FIG. 10. �Color online� Time histories of calculated pressures during impact
inside the air pocket generated at two different times �mesh: 101	71�. �a�
Impact pressure oscillation �the second impact event in Fig. 7�c��; �b� impact
pressure oscillation �the fifth impact event in Fig. 7�c��.
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prove the proposed numerical scheme of the study that has
shown versatility in evaluating a wide of range of sloshing
phenomena.

C. Sloshing induced impact against a vertical wall

The damage to tank walls by waves inside a tank has not
been fully explained in fluid mechanical terms. High-speed
photography reveals that the plume of water begins its up-
ward motion from the water line with great acceleration. This
rapidly rising motion of the free surface forming a jet was
described by Peregrine32 as flip through. In this section we

TABLE I. Computational conditions for sloshing simulation inside a rect-
angular tank with 20% filling level.

Case Mesh size
Time step

�s�

A 95	51 �t=5	10−4

B 121	61 �t=1	10−3

C 145	75 �t=5	10−4
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FIG. 12. �Color online� Comparison of time histories of pressure between
measurement and calculation �case A�. �a� P1; �b� P2; �c� P3.
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FIG. 13. �Color online� Comparison of time histories of pressure between
measurement and calculation �case B�. �a� P1; �b� P2; �c� P3.
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carried out numerical simulation of water sloshing in a rect-
angular tank at a low filling level of 20%. The experimental
data provided by Hinatsu et al.33 are compared to calculated
data derived by the discussed mathematical model herein.
The experimental setup is sketched in Fig. 11. The tank is
subject to an oscillating sway motion of the form A sin��t�.
Here, the amplitude of forced motion is A=60 mm and the
excited frequency is set to �=1.74 s at resonance. In order
to demonstrate the efficiency of the developed method to
simulate the complex impact phenomena, three test cases

were performed to analyze the first impact event. The
computational conditions for these three cases are listed in
Table I.

The comparisons of calculated time histories of pressure
with experiment at positions P1, P2, and P3 are shown in
Fig. 12 �case A� and Fig. 13 �case B�. These figures demon-
strate very close agreement between experimental measure-
ments and calculated results. In a more detailed analysis in-
volving calculations at fixed times, Fig. 14 illustrates the first
impact event for case B in which a wave is excited and
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FIG. 14. �Color online� Wave motion snapshots during the first impact event at five different instants of time �case B�. �a� Time=2.21 s; �b� time=2.50 s; �c�
time=2.52 s; �d� time=2.60 s; �e� time=2.85 s.
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travels from left to right in the tank �i.e., Fig. 14�a�� breaking
and trapping air �i.e., Fig. 14�b�� due to wave overturning in
a violent motion before it impacts on the right wall. After the
impact �i.e., Fig. 14�c��, water flows upward along the wall
and then falls down due to gravity. Figure 14�c� shows the
highest impact pressure occurring when the incident wave
crest is almost parallel to the wall, and approaches with a
velocity normal to the wall, whereas Figs. 14�d� and 14�e�
provide evidence of the complex fluid motion after impact.

The overturning wave traps a pocket of air against the
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FIG. 15. �Color online� Time histories of the first impact pressure using
different mesh size and time step increment. �a� Case A �mesh: 95	51; time
step increment: �t=5	10−4 s�; �b� case B �mesh: 121	61; time step in-
crement: �t=1	10−3 s�; �c� case C �mesh: 145	75; time step increment:
�t=5	10−4 s�.
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FIG. 16. �Color online� Time histories of measured pressure at two different
impact events. �a� Corresponding to the second measured impact event in
Fig. 12�c�; �b� corresponding to the fifth measured impact event in Fig.
12�c�.
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FIG. 17. �Color online� Experimental setup of tank used by Rognebakke and
Faltinsen �Ref. 1� �unit: millimeter�.

112105-13 Numerical simulation of liquid sloshing Phys. Fluids 21, 112105 �2009�

Downloaded 22 Dec 2009 to 152.78.32.146. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



wall and this results in an increase in the duration of the
pressure peak, with related reduction in peak pressure, and
oscillations of pressure following the peak. Figure 15 pre-
sents short time histories of pressure oscillation at positions
P1, P2, and P3 �see Fig. 11� during the first impact event for
the three test cases. Figure 16 plots two time histories of
measured pressure oscillation. Although mesh configurations
and time steps are chosen differently, the characteristics of
the signals show similarity with the finest mesh and shorter
time step, i.e., Fig. 15�c�, showing the highest peak
pressures.

FIG. 18. Pictures of impact �Ref. 1� with air cavity at four instants �from top
to bottom�.
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FIG. 19. �Color online� Pictures of computed free surface profile at five instants of time during an impact event �mesh: 151	151�. �a� Time=0.0 s; �b�
time=0.045 s; �c� time=0.0475 s; �d� time=0.05 s; �e� time=0.13 s.
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D. Sloshing induced impact on tank roof with air
cavity in a high filling ratio

In this section, the sloshing problem studied by Rog-
nebakke and Faltinsen,1 which involves an 83% full rectan-
gular tank, is investigated. Figure 17 illustrates the dimen-
sions of the tank and the distribution of pressure sensors
inside the tank. Numerical simulations were conducted for
the tank filled to a water depth of 500 mm and excited by a
horizontal sway sinusoidal motion of amplitude A=15 mm
and frequency f =1.2 Hz. In the numerical scheme of study,
two uniform meshes with resolutions �121	121 and 151
	151� are distributed inside the tank and both time steps are
set to �t=5	10−4 s.

Figure 18 illustrates the images1 caught by a high-speed
camera at four different time instants and these show an air
cavity being trapped at the right top corner of the tank. It
appears that this kind of impact with air cavity occurs fre-
quently for a high filled ratio rectangular tank subject to
regular translational motion. The calculated pressure exerted
on the tank walls and roof, free surface profile, and flow
velocity vector at several different instants are shown in Fig.
19 �fine mesh�. They demonstrate the process of how a small
air pocket at the right top corner of the tank is formed �see
Figs. 19�a�–19�e�� and develops during the impact process.
The numerical experiment indicates that the highest impact
pressures occur when a small amount of air is trapped be-
tween the impacting wave and the tank top corner. It is also
noted that for this case, where the air cavity is very small,
most of the air leaks before it is completely enclosed. Figure
20 illustrates a comparison of the time histories of measured
and calculated pressures using two size meshes during an
impact. The simulations �Figs. 20�b� and 20�c�� correctly
predict the amplitude of pressure oscillation but the oscilla-
tions exhibit more damped characteristic than observed in
the experiment �Fig. 20�a��. A further investigation is needed
to understand the reason for this discrepancy as it appears
dependent on mesh sensitivity �Figs. 20�b� and 20�c�� but
overall, the proposed mathematical model and numerical
scheme of study provide realistic descriptions of reality.

V. CONCLUSIONS

A mathematical model and numerical scheme of study
are developed to examine single and two-fluid flows with the
principal focus to simulate liquid sloshing in a partially filled
tank. A successful scheme is devised based on the develop-
ment of a low Mach number preconditioning dual-time step-
ping approach, a modified nonconservative implicit SCMM
combined with a local level set method to capture free sur-
face disturbances. This is demonstrated briefly by an inves-
tigation of the compressible flow around a circular cylinder
at a range of Mach numbers �i.e., very weak flow to transi-
tion� and predictions compared to findings derived from
adopting an incompressible flow solver21 using a different
numerical scheme. At Mach number Ma=0.001 �i.e., very
weak subsonic flow� the compressible model produced re-
sults in very close agreement with those determined from the
incompressible model demonstrating the applicability of the
preconditioning dual-time stepping approach.

Predictions of sloshing in a partially filled tank assuming
both fluids compressible were compared to experimental
data.28 The predicted characteristics of the time history data
demonstrated reasonable agreement although absolute mag-
nitudes indicated some discrepancies because of the appear-
ance of more spikes in the calculated data than found experi-
mentally. This requires further investigation both
numerically and experimentally. Nevertheless, the predicted
values were of the correct order of magnitude and of suffi-
cient accuracy for preliminary design purposes.

The development of the theory described herein does not
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FIG. 20. �Color online� Time histories of pressure both measured and cal-
culated during impact with air pocket formed. �a� Measured; �b� calculated
�mesh: 121	121�; �c� calculated �mesh: 151	151�.
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necessitate an a priori assumption of incompressibility since
it has been shown to adequately replicate this condition from
the standpoint of compressibility. Furthermore, if and when
strong compressibility effects occur in the sloshing problem
�i.e., entrapped air arising in violent motions�, it is able to
take them into account and hence the developed dynamic
mathematical model describes such physical phenomena and
their influences with greater accuracy. This is demonstrated
in comparisons of experimental observations1,29,33 and nu-
merical predictions.
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