
Supporting Reuse Mechanisms for Developments
in Event-B: Composition

Renato Silva and Michael Butler

School of Electronics and Computer Science
University of Southampton, UK
{ras07r,mjb}@ecs.soton.ac.uk

Abstract. The development of specifications often is a combination of
smaller sub-components. Focusing on reuse, an interesting perspective
is to formally define the combination of sub-components through refine-
ment steps, reusing their properties and generating larger systems. The
previous situation suggests the application of a reuse mechanism: compo-
sition. Event-B is a formal method that allows modelling and refinement
of systems. The combination and reuse of existing sub-components is not
currently supported in Event-B. We propose the development of compo-
sition by extending the Event-B formalism as an option for developing
larger models, focusing in distributed systems. A tool is developed to
support the shared event composition in the Rodin platform. Properties
and proof obligations of sub-components are reused and sufficient proof
obligations are generated to ensure valid composed models.

Key words: formal methods, composition, Event-B, specification, de-
sign techniques

1 Introduction

The development of specifications in a “top-down” style starts with an abstract
model of the envisaged system. Often that system is a combination of several
sub-components. Instead of creating a large system from scratch, interacting
sub-components can be composed. In a computer science context, (functional)
composition can be defined as the act or mechanism to combine simple functions
to build more complicated ones. It derives from an usual mathematical step
where the composition of functions results in each function to be passed as
the argument of the next; the result of the last one is the result of the whole.
In the formal methods context, in particular for specifications, composition is
the capacity to model the interaction of sub-components generating larger and
more concrete specifications. Usually the interaction between systems is based on
shared state, shared operations/events [1] or a combination of both (for example
fusion composition [2,3]). We follow the shared event approach for composition
inspired by CSP [4]. We extend Event-B to support shared event composition
including the definition of static checks and proof obligations for a composed
machine and outlining a tool extension in the Rodin platform [5], the toolset for
Event-B [6,7].

2 Renato Silva and Michael Butler

This document is structured as follows: Sect. 2 gives an overview of the
Event-B formal method. Section 3 introduces the notion and motivation for
shared event composition. The notion of composed machine and respective static
checks and proof obligations are introduced using a simple case study in Sect. 4.
Section 5 describes the tool developed to support the shared event composition
and Sect. 6 illustrates the application of composition as a reuse mechanism to
a more complex case study: a railway system. Related work, conclusions and
future work are drawn in Sect. 7.

2 Event-B Language

Event-B is a formal methodology that uses mathematical techniques based on
set theory and first order logic allowing the specification of systems. An abstract
Event-B specification is divided into two parts: a static part called context and
a dynamic part called machine. A machine SEES contexts that consist of car-
rier sets (types), constants and axioms of the system. A machine contains the
state variables whose values are assigned in events. Events can only occur when
enabled by their guards being true and as a result actions are executed. Events
can have parameters that are local variables to the event and can be used by
the guards or by the actions. An event evt with a set of parameters t, a set of
guards G and a set of actions S assigning variable v has the following shape:

evt b= ANY t WHERE G(t, v) THEN S(t, v) END

For an assignment of variable v, before-after predicate denotes the relation-
ship holding between the state variables of the model just before (denoted by v)
and just after (denoted by v′) applying a substitution, which can be deterministic
(v′ := E(v)) or non-deterministic (v′ :∈ E(v) or v′ :| E(v)), where E(v) denotes
an expression using v. The INVARIANT defines the dynamic properties of the
specification. Proof obligations (POs) are generated to verify that the invariant
is maintained before and after an event is enabled (invariant preservation PO).
POs are an important part of the definition of Event-B. Later we will extend
the standard POs to cover composition.

An abstract Event-B specification can be refined by adding more details and
becoming more concrete. Refinement of a machine consists in refining existing
events. The relation between variables in the concrete and abstract model is
given by a gluing invariant. Proof obligations are generated to ensure that this
invariant is preserved in the concrete model. New events can be introduced in a
refinement of an abstract model. Those events are not visible to the environment
as they represent internal events (hidden) that must refine skip. New events must
not prevent abstract events to be executed (divergence). This is proved if each
new event decreases a variant [8] (in first approximation, could be a natural
number but it can be lexicographic). Next we give more details on shared event
approach.

Supporting Reuse Mechanisms in Event-B: Composition 3

3 Shared Event Approach

The shared event approach is suitable for the development of distributed sys-
tems [9]: sub-components interact through synchronised events in parallel; more-
over sub-components can communicate using shared parameters which is useful
for modelling message passing systems. Shared event composition is achieved
through events interaction between sub-components. Although the interacting
systems have states, the communication occurs at the event level. CSP models
parallel processing and interaction between systems [10]. Due to the stateless
CSP approach, several works try to combine state-based and event-based ap-
proaches, as are the examples of combining CSP and B [11,12,13] or combining
CSP with object oriented classes [14,15]. Butler [16] proposes a shared event
(de)composition for Event-B inspired by CSP and action systems with event
sharing as seen in Fig. 1. This kind of (de)composition partitions the variables
into sub-components and variable sharing is not permitted. We follow that work
in our approach.

(a)

(b) (c)

Fig. 1. Shared Event Decomposition of Machine S in Machines T and W with
shared event e2

In Fig. 1, machine S has events e1 to e4 and variables v1 to v3. That machine
is to be decomposed so that v1 is placed in sub-component T and v2 and v3 are
placed in W. Events using variables allocated to different sub-components (event
e2 shares v1 and v2) must be split. The part corresponding to each variable (e2’
and e2”) is used to create partial versions of the non-decomposed event.

To see how e2 is decomposed into e2’ and e2”, we first consider the compo-
sition of events. The composition of synchronised events generates a new event
whose guard is the conjunction of the original guards and the actions are exe-
cuted in parallel. An interesting situation occurs when events to be composed
have the same parameter name.

4 Renato Silva and Michael Butler

Definition 1 If both events evt1 and evt2 have a parameter t:

evt1 b= ANY t?, x WHERE t? ∈ A ∧G(t?, x, m) THEN S(t?, x, m) END
evt2 b= ANY t!, y WHERE H(t!, y, n) THEN T (t!, y, n) END

then [9]:

evt1 ‖ evt2 b=
ANY t!, x, y WHERE t! ∈ A ∧G(t!, x, m) ∧ H(t!, y, n)
THEN S(t!, x, m) ‖ T (t!, y, n) END

where x, y, t are sets of parameters from each of the events evt1 and evt2.
Event evt1 has t? as an input parameter and evt2 has t! as an output parameter
and the resulting composition is t! itself an output parameter (like in CSP).
This property can be used to model message broadcasting systems: evt2 sends a
message to evt1 using the parameter t. The types of the shared parameter must
match or be a subset of each other:

t! ∈ A ∧ t? ∈ B ⇒A ∩ B 6= ∅

where A and B are types (carrier sets). Events with shared parameters of type
input can also be composed and the shared parameter has an input behaviour.
Events with shared parameters of type output cannot be composed since this
could lead to a deadlock state [9].

Event-B has the same semantics structure and refinement definitions as ac-
tion systems. It is possible to make a correspondence between parallel compo-
sition in CSP and an event-based view of parallel composition for action sys-
tems [1,17].

Definition 2 A failure-divergence definition (CSP) can be applied to Event-B
machines:

– S ∈ Machine→FD, where FD is the set of Failure-Divergence for Machine
– PAR(P,Q) where P,Q ∈ FD and PAR defines the semantics of the process

P ‖ Q in CSP
– then S(M ‖ N) = PAR(S(M), S(N))

The semantics of the parallel composition of machines M and N corresponds
to the set of failure-divergence for each individual machine in parallel. Since PAR
is monotonic machines M and N can be refined independently and that is one
of the most important and powerful properties that shared event composition in
Event-B inherited from CSP. After the (de)composition, the individual machines
can be further refined since the composition relation holds.

Supporting Reuse Mechanisms in Event-B: Composition 5

3.1 Composition

Composition has been object of study for a long time. The possibility of exe-
cuting several actions at once in parallel is very attractive since it minimises
the effort of sequential execution and it is expected to accelerate the execution
process. We focus on shared event parallel composition of specifications applied
to Event-B using a simple case study: Simple Composition. Suppose we have ma-
chine m1 containing a variable x. After the initialisation, event dec decrements
x non-deterministically. We also have a machine m2 with a variable y that is
incremented in the event inc as seen in Fig. 2.

!m1

!1 !machine m1

!2 !

!3 !variables x

!4 !

!5 !invariants

!6 ! @inv1 x ! !

!7 !

!8 !events

!9 ! event INITIALISATION

!10 ! then

!11 ! @act1 x " 100

!12 ! end

!13 !

!14 ! event dec

!15 ! any i

!16 ! where

!17 ! @grd2 x > 0

!18 ! @grd1 i ! 1!x

!19 ! then

!20 ! @act1 x " x"i

!21 ! end

!22 !end

!23 !

!Page 1

(a)

!m2

!1 !machine m2

!2 !

!3 !variables y

!4 !

!5 !invariants

!6 ! @inv1 y ! !

!7 !

!8 !events

!9 ! event INITIALISATION

!10 ! then

!11 ! @act1 y " 0

!12 ! end

!13 !

!14 ! event inc

!15 ! any i

!16 ! where

!17 ! @grd1 i ! !

!18 ! then

!19 ! @act1 y " y+i

!20 ! end

!21 !end

!22 !

!Page 1

(b)

!cm

!1 !machine cm

!2 !

!3 !variables x y

!4 !

!5 !invariants

!6 ! @inv1 x ! !

!7 ! @inv2 y ! !

!8 ! @inv3 x+y = 100

!9 !

!10 !events

!11 ! event INITIALISATION

!12 ! then

!13 ! @act1 x " 100

!14 ! @act2 y " 0

!15 ! end

!16 !

!17 ! event transfer

!18 ! any i

!19 ! where

!20 ! @grd1 x > 0

!21 ! @grd2 i ! 1!x

!22 ! then

!23 ! @act1 x " x"i

!24 ! @act2 y " y+i

!25 ! end

!26 !end

!27 !

!Page 1

!cm

!1 !machine cm

!2 !

!3 !variables x y

!4 !

!5 !invariants

!6 ! @inv1 x ! !

!7 ! @inv2 y ! !

!8 ! @inv3 x+y = 100

!9 !

!10 !events

!11 ! event INITIALISATION

!12 ! then

!13 ! @act1 x " 100

!14 ! @act2 y " 0

!15 ! end

!16 !

!17 ! event transfer

!18 ! any i

!19 ! where

!20 ! @grd1 x > 0

!21 ! @grd2 i ! 1!x

!22 ! then

!23 ! @act1 x " x"i

!24 ! @act2 y " y+i

!25 ! end

!26 !end

!27 !

!Page 1

(c)

Fig. 2. Machines m1, m2 and cm resulting from the composition of m1 and m2

We compose these two machines using shared event composition. The out-
come of this composition is a new machine where events INITIALISATION of
machines m1 and m2 are composed in parallel, the variables of each of the
machines are merged and the invariants are conjoined. In addition,we add an
invariant combining both variables: x + y =100. Event dec from machine m1
(represented as m1.dec) and the event inc from machine m2 (m2.inc) are com-
posed using Def. 1:

m1.dec b= ANY i! WHERE x > 0 ∧ i ∈ 1 .. x THEN x := x− i END
m2.inc b= ANY i? WHERE i ∈ N THEN y := y + i END

m1.dec ‖ m2.inc b=
ANY i! WHERE x > 0∧i ∈ 1..x ∧ i ∈ N THEN x := x−i ‖ y := y+i END

Figure 2(c) shows the machine resulting from composing m1 and m2 where
m1.dec ‖ m2.inc is named transfer. Although it is interesting to have achieved

6 Renato Silva and Michael Butler

the composition of individual machines, in general we construct models using a
“top-down” approach starting from a simple, abstract model and refining it to
become more concrete and closer to an implementation [18]. Therefore a more
interesting option is to use the composed machine as a refinement of an abstract
model. Having ensured the refinement link between abstract and concrete model
(usually by discharging refinement POs), one could use the monotonicity prop-
erty to refine the initial sub-components without “breaking” the composition
link, which is one of the greatest advantages of this kind of composition. Based
on this simple example, next section introduces the notion of composed machine
as a way to reuse existing sub-components to build larger components.

4 Composed Machines

Instead of having to manually compose m1 and m2 in Figs. 2(a) and (b) to get
cm of Fig. 2(c), we introduce a new construct, a composed machine representing
the shared event composition. Next we describe the structure of a composed
machine, the required static checks and proof obligations to validate the com-
position.

4.1 Structure of Composed Machines

We shall describe the structure of a composed machine using the Simple Com-
position example depicted in Fig. 2. The corresponding composed machine cm
can be seen in Fig. 3.

COMPOSED MACHINE cm
REFINES cm0
INCLUDES

m1
m2

INVARIANTS
x + y = 100

EVENTS
transfer refines cm1.transfer

Combines Events m1.dec ‖ m2.inc
END

Fig. 3. Composed Machine cm2

Composed machine cm refines an abstract machine cm0 and includes ma-
chines m1 and m2. An invariant “connecting” the two machined is added. Event
cm0.transfer is refined as the parallel composition (interaction) of m1.dec and
m2.inc. The outcome of this composition is similar to Fig. 2(c).

Figure 4 represents some standard machines that will be used to outline a
generic structure for a composed machine. Machines M1 to Mm are composed
and the resulting composed machine CM1 (Fig. 5) is a refinement of an abstract
machine CM0. Contexts seen by the included machines are implicitly seen by the

Supporting Reuse Mechanisms in Event-B: Composition 7

MACHINE M1
VARIABLES . . .
INVARIANTS . . .
EVENTS

INITIALISATION
evt11
. . .
evt1p

END

(a)

MACHINE M2
VARIABLES . . .
INVARIANTS . . .
EVENTS

INITIALISATION
evt21
. . .
evt2q

END

(b)

. . .

MACHINE Mm
VARIABLES . . .
INVARIANTS . . .
EVENTS

INITIALISATION
evtm1
. . .
evtmr

END

(c)

Fig. 4. Generic machines M1 to Mm

composed machine. Additional contexts can be added using the SEES section
and gluing invariants can be added in the INVARIANT section. Afterwards, the
generated machine CM1 can be further refined.

COMPOSED MACHINE CM1
REFINES CM0
INCLUDES

M1
. . .
Mm

SEES - /*Additional contexts*/
INVARIANT - /*further invariants and/or gluing invariant*/
EVENTS

evt01 refines CM0.evt01
Combines Events M1.evt11 ‖ M2.evt21 . . . ‖ Mm.evtm1

evt02 refines CM0.evt02
Combines Events M1.evt12 ‖ M2.evt22 . . . ‖ Mm.evtm2

. . .
evt0n refines CM0.evt0n

Combines Events M1.evtmp ‖ M2.evt2q . . . ‖ Mm.evtmr

END

Fig. 5. A generic Composed Machine

Next we present more details about the composed machine by introducing
the static checks that are required to validate composed machines.

4.2 Static Checks

Composed machines need to be validated against some well-formedness condi-
tions. Some of those conditions are defined as follows:

– Variables of included machines cannot be shared.
– In a refinement, the composed events must refine all abstract events.
– A composed machine is defined by including at least one machine.
– Gluing invariants use variables, sets and constants from included machines.
– A composed event is defined by at least one single event.
– When several events are combined into a composed event, those events must

be from different included machines.

Next we present the POs that need to be generated for composed machines.

8 Renato Silva and Michael Butler

4.3 Proof Obligations

POs play an important role in Event-B developments. We use context Ctx,
machines CM0, M1, M2 and composed machine CM1 in Fig. 6 to express the
POs that need to be generated for composition.

CONTEXT Ctx
CONSTANTS c
SETS s
AXIOMS A(s, c)

(a)

MACHINE CM0 SEES Ctx
VARIABLES v
INVARIANT I(s, c, v)
EVENT evt b=

ANY x WHERE
G(x, s, c, v)

THEN
v :| BAP (x, s, c, v, v′)

END

(b)

MACHINE M1 SEES Ctx
VARIABLES v1
INVARIANT I1(s, c, v1)
EVENT evt1 b=

ANY x1 WHERE
G1(x1, s, c, v1)

THEN
v1 :| BAP1(x1, s, c, v1, v′

1)
END

(c)

MACHINE M2 SEES Ctx
VARIABLES v2
INVARIANT I2(s, c, v2)
EVENT evt2 b=

ANY x2 WHERE
G2(x2, s, c, v2)

THEN
v2 :| BAP2(x2, s, c, v2, v′

2)
END

(d)

COMPOSED MACHINE CM1
REFINES CM0
INCLUDES

M1
M2

INVARIANT J(s, c, v1, v2)
EVENTS

evt refines CM0.evt
Combines Events M1.evt1 ‖ M2.evt2

END

(e)

Fig. 6. Context Ctx, abstract machine CM0, included machines M1 and M2 and
composed machine CM1

Context Ctx is characterised by the constants c, the carrier sets s and the
axioms A(s,c). This context is seen by all the involved machines. The abstract
machine CM0 contains a set of variables v, a list of invariants I(s,c,v) and an
event evt defined by the parameter x, guard G(x,s,c,v) and before-after predicate
BAP (x, s, c, v, v′) over the set of variables v. Similarly machines M1 and M2 are
defined with their respective events. Finally composed machine CM1 refines
CM0, includes machines M1 and M2, contains a set of additional invariants
J(s, c, v1, v2) and composes event evt. For simplicity we define the POs in terms
of a composition of 2 machines. The rules generalise easily to composition of n
machines. A proof obligation is a sequent of the shape:

Hypothesis
` Goal

[19] defines a list of standard POs for contexts and machines. We extend
some of those POs, in particular the ones related with refinement: invariant
preservation (INV), guard strengthening (GRD), simulation (SIM) and well-
definedness (WD) to composed machines using CM1. For instance, invariant
preservation PO of an invariant “inv” in event “evt1” in a standard machine

Supporting Reuse Mechanisms in Event-B: Composition 9

like M1 in Fig. 6(c) is given by (1). i(s, c, v′1) is one of the invariants in the set
I1(s, c, v1) where v1 is replaced by the after-state v′1.

evt1/inv/INV:

A(s, c)
I1(s, c, v1)
G1(x1, s, c, v1)
BAP1(x1, s, c, v1, v

′
1)

` i(s, c, v′
1)

(1)

Following the previous, the POs that need to be generated for a composition
machine CM1 are:

Invariant Preservation (INV): The invariant of the composed machine is
the conjunction of the invariants of each included machine. We assume that
the invariant preservation proof obligation in the included machines are al-
ready discharged so we just need to deal with the gluing invariants that
are added to the composed machine [J(s, c, v1, v2)]. It is just necessary to
discharge the POs related with the additional gluing invariant for each com-
posed event. In Fig. 6(e), for event “evt” and one of the invariants “inv” in
J(s, c, v1, v2) the “INV” PO is represented by (2).

evt/inv/INV:

A(s, c)
J(s, c, v1, v2) ∧ I1(s, c, v1) ∧ I2(s, c, v2)
G1(x1, s, c, v1) ∧G2(x2, s, c, v2)
BAP1(x1, s, c, v1, v

′
1) ∧BAP2(x2, s, c, v2, v

′
2)

` j(s, c, v′
1, v

′
2)

(2)

Guard Strengthening (GRD): In a refinement, it is necessary to ensure that
when concrete events are enabled then the corresponding abstract ones are
also enabled. For event “evt” of Fig. 6(e) and abstract guard “grd” in the
corresponding abstract event in Fig. 6(b), the “GRD” PO is represented by
(3).

evt/grd/GRD:

A(s, c)
I(s, c, v)
J(s, c, v1, v2) ∧ I1(s, c, v1) ∧ I2(s, c, v2)
G1(x1, s, c, v1) ∧G2(x2, s, c, v2)
` G(x, s, c, v)

(3)

Simulation (SIM): Ensures that each action in a concrete composed event
simulates the corresponding abstract action. The goal to be proved requires
that exists an abstract action (BA) in the abstract before-after predicate
(BAP) such that when a concrete event is executed, the corresponding ab-
stract event is not contradicted. In Fig. 6(e), for event “evt” and action “act”
in both abstract and concrete event, the simulation proof obligation “SIM”
is represented by (4).

10 Renato Silva and Michael Butler

evt/act/SIM:

A(s, c)
I(s, c, v)
J(s, c, v1, v2) ∧ I1(s, c, v1) ∧ I2(s, c, v2)
G1(x1, s, c, v1) ∧G2(x2, s, c, v2)
BAP1(x1, s, c, v1, v

′
1) ∧BAP2(x2, s, c, v2, v

′
2)

` ∃BA·BAP (x, s, c, v, v′)

(4)

Well-Definedness(WD): Ensures that a potential invariant(inv) is indeed
well-defined. This proof obligation is only generated for the added gluing
invariants in the composed machine as we assume the invariants in the in-
cluded machines are already discharged and can be reused.

Feasibility POs (FIS) ensure that each non-deterministic action is feasible.
Composed machines use the actions of the composed events, so the respective
POs generated in the included machine are reused. Besides the above POs, we
would like to add the enabledness proof obligation thus ensuring that an event
disabled in the concrete model is also disabled in the abstract model. Currently
Rodin platform does not support these kind of POs. Enabledness POs are not
only applicable for composition and it is a subject that has been studied already.
Further study is required to support this kind of the enabledness properties in
the Rodin platform before we can apply it to the shared event composition. It
is possible to reuse machines POs because these are the POs that would result
from expanding CM1 as explained in Sect. 3. Note that to discharging POs, the
order in which the hypotheses are presented is relevant. That is why we can
reuse some of the POs that are already discharged in the included machine.

Next we present the tool that was developed as a plug-in in the Rodin plat-
form to support the shared event composition for Event-B.

5 Shared Event Composition Plug-in

The Rodin platform is an extensible open source tool, based on Eclipse [20] where
it is possible to add components/funtionalities using “add-on” plug-ins. Rodin
supports a static checker that validates system properties (lexical analyser, syn-
tactic analyser and type checker) and automatically generates proof obligations
for machines and contexts. A plug-in for composed machines was developed to
support the shared event composition. We extend the Rodin static checker to
validate composed machine based on checks defined in Sec. 4.2. POs should be
automatically generated over the composed machines similarly to what happens
to machines and contexts. Currently this is not done but we will address this
issue in the future. The current solution to address POs is to generate a standard
machine from the composed machine properties (expand) as seen in Fig. 7(a)
(machine M2′) and then use the existing proof obligation generation.

In the future, we would like to still have the option to generate a new machine
but the POs should be discharged at the composed machine as depicted in Fig.

Supporting Reuse Mechanisms in Event-B: Composition 11

(a) (b)

Fig. 7. Composition structure: current and future

7(b). Generating a new machine allows the further development of the composed
model. Moreover it allows the visualisation of the composed events which it is
beneficial based on the experience of using the tool. Next section presents the
application of the shared event composition and tool to a more complex case
study whose architecture is a typical distributed system.

6 RailWay System

The railway system case study describes a formal approach for the development
of embedded controllers for a railway based on [21]. The railway system is char-
acterised by trains, tracks (also called sections or cdv) and a communication
entity between trains and tracks. The trains are in sections and whenever a
train enters/leaves a section, a notification is sent to the track entity. In case of
an potential hazard, the track entity orders the trains to brake. The track en-
tity is responsible for controlling the sections, changing switch directions (switch
are special tracks that can be divergent or convergent) and sending signalling
messages to the trains through the communication entity. Figure 81 shows an
schematic representation of the railway system decomposed into subsystems.

The abstract model of the railway system does not have notion of sub-
components and the system is seen as a single component. After a refinement,
the system is manually decomposed. Our goal is to be able to refine the sub-
components independently. Nevertheless, we need to prove that the composition
of the sub-components is a refinement of the abstract model. The shared event
composition plug-in is used to compose the sub-components and by discharging
the POs in the generated composed machine it is ensured that it is a refinement
of the abstraction model. The composed machine corresponding to the composi-
tion of Trains, Track and Comms is depicted in Fig. 9. All RailWay M1 events
are refined as composition of events from sub-components Track M0, Trains M0
and Comms M0.
1 Image extracted from [21]

12 Renato Silva and Michael Butler

 AcceptMsg DeliverMsg

ChangeSwitchDiv

ChangeSwitchCnv

EnterSection

LeaveSection

SendTrainMsg

COMMS

TRACK TRAINS

Check

Brake

Fig. 8. Components of railway system

COMPOSED MACHINE Railway M2
REFINES Railway M1
INCLUDES

Track M0
Trains M0
Comms M0

EVENTS
SendTrainMsg refines SendTrainMsg

Combines Events Track M0.SendTrainMsg ‖ Comms M0.Send
RecvTrainMsg refines RecvTrainMsg

Combines Events Trains M0.RecvTrainMsg ‖ Comms M0.Recv
ChangeSpeed refines RecvTrainMsg

Combines Events Trains M0.ChangeSpeed
Brake refines Brake

Combines Events Trains M0.Brake
EnterCDV refines enterCDV

Combines Events Trains M0.EnterCDV ‖ Track M0.EnterCDV
LeaveCDV refines LeaveCDV

Combines Events Trains M0.LeaveCDV ‖ Track M0.LeaveCDV
SwitchChangeDiv refines SwitchChangeDiv

Combines Events Track M0.SwitchChangeDiv
SwitchChangeCnv refines SwitchChangeCnv

Combines Events Track M0.SwitchChangeCnv
END

Fig. 9. Composed machine RailWay M2 for the railway system

A summary of the POs for the development can be seen in Fig. 10. From
the overall 124 generated POs, only 9 have to be interactively discharged. The
most abstract model RailWay M0 has the majority of the POs resulting from
the definition of the important events that constitute the railway system. Rail-
Way M1 has only 9 POs due to the introduction of the communication layer.
RailWay M2 is the expanded version of the composed machine and has mostly
refinement POs due to the manipulation of the events in each sub-component.

The manual decomposition partition of the system into sub-components also
partition the POs which are less for each sub-component and expected to be
easier to discharge. The manual POs are mostly related with finiteness of sets
and are easily discharged. Having ensured the validity of the composition, sub-
components can be further refined which is one of the most important objectives
of using composition in large system specifications.

Supporting Reuse Mechanisms in Event-B: Composition 13

Fig. 10. Proof obligation statistics for the railway system development

7 Conclusions

Composition allows the interaction of components and usually occurs through
variable sharing, event sharing or a combination of both like fusion composi-
tion [2,3]. Back [22], Abadi and Lamport [23] studied the interaction of com-
ponents through shared variable composition. Jones [24] also proposes a shared
variable composition for VDM by restricting the behaviour of the environment
and the operation itself in order to consider the composition valid using rely-
guarantee conditions. In classical B the composition [18,25,26] uses keywords
like Includes to extend a machine, not allowing writing access to variables in the
included machine or keyword Sees used to complement machines. Bellergarde et
at [27] suggests a synchronised parallel composition of event systems in B where
subsystems are specified as isolated. The interaction is achieved by synchronised
events under feasibility conditions and the component composition is seen as
a labelled transition system. The objective is to verify the refinement of syn-
chronised parallel composition between components. This approach is limited
to finite state components but under these conditions avoids all the variant re-
quirements for design and proof. That work uses the B event system framework
while our composition follows synchronisation and communication in the CSP
style. [28] discusses a combination of action systems and classical B by compos-
ing machines using parallel systems in an action system style and preserving
the invariants of the individual machines. This approach allows the classical B
to derive parallel and distributed systems and since the parallel composition of
action system is monotonic, the subsystems in a parallel composition may be
refined independently. Still using classical B in [29] a global view of the system
is refined by the manual (de)composition of sub-components. Event parameters
are use for interaction between sub-components. However the refinement rela-
tion it is not easy to achieve because distributed systems are not a refinement
machine in the B sense. We untangled this problem in Event-B showing that is
possible to prove that refinement relation. Abrial et al [6,30] propose a state-
based (de)composition for Event-B introducing the notion of shared variables
and external events.

14 Renato Silva and Michael Butler

Our composition has an event-based behaviour inspired by CSP and action
systems [1]. Shared event composition is monotonic and the used sub-components
can be further refined independently. Thus refinement as a “top-down” style for
creating specifications is allowed including the generation of the respective POs.
The interaction of components with value-passing is possible through the use
of event parameters. We extend Event-B to support shared event composition,
allowing combination and reuse of existing sub-components through the intro-
duction of composed machines. Required static checks are developed and POs
are generated to validate the composition. Composed machines can be further
refined independently from the refinement of sub-components. Such approach
seems suitable for modelling distributed systems, where the system can be seen
as a whole (composed component) or a combination of interacting parts (sub-
components). A tool is developed to support composition in the Rodin platform.
A railway case study defining a classic distributed system is modelled using the
composition tool. With the developed work, we expect to have the necessary
conditions to develop another reuse technique that can be seen as the inverse
operation of composition: decomposition.

References

1. Butler, M.J.: A CSP Approach to Action Systems. PhD thesis, Oxford University
(1992)

2. Back, R.J.R., Butler, M.J.: Fusion and Simultaneous Execution in the Refinement
Calculus. Acta Informatica 35(11) (1998) 921–949

3. Poppleton, M.: The composition of Event-B models. In: ABZ2008: Int. Conference
on ASM, B and Z. Volume 5238., Springer LNCS (September 2008) 209–222

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science (1985)

5. Rodin: RODIN project Homepage. http://rodin.cs.ncl.ac.uk (September
2008)

6. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Technical report, Deliv-
erable 3.2, EU Project IST-511599 - RODIN (May 2005)

7. Abrial, J.R., Butler, M.J., Hallerstede, S., Voisin, L.: An Open Extensible Tool
Environment for Event-B. In: ICFEM. (2006) 588–605

8. Abrial, J.R., Cansell, D., Méry, D.: Refinement and Reachability in Event B. ZB
2005: Formal Specification and Development in Z and B (2005) 222–241

9. Butler, M.: An Approach to the Design of Distributed Systems with B AMN. In:
Proc. 10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM),
LNCS 1212. (1997) 221–241

10. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8) (1978)
666–677

11. Butler, M.J.: csp2B: A Practical Approach to Combining CSP and B. Formal
Aspects of Computing 12 (2000) 182–196

12. Butler, M., Leuschel, M.: Combining CSP and B for Specification and Property
Verification. In Fitzgerald, J., Hayes, I., Tarlecki, A., eds.: Formal Methods 2005.
Number 3582 in LNCS, Springer (January 2005) 221–236

13. Treharne, H., Schneider, S.: Using a Process Algebra to Control B Operations.
In: IFM ’99: Proceedings of the 1st International Conference on Integrated Formal
Methods, London, UK, Springer-Verlag (1999) 437–456

http://rodin.cs.ncl.ac.uk

Supporting Reuse Mechanisms in Event-B: Composition 15

14. Fischer, C.: CSP-OZ: a combination of object-Z and CSP. In: FMOODS ’97:
Proceedings of the IFIP TC6 WG6.1 international workshop on Formal methods
for open object-based distributed systems, London, UK, UK, Chapman & Hall,
Ltd. (1997) 423–438

15. Olderog, E.R., Wehrheim, H.: Specification and (property) inheritance in CSP-OZ.
Sci. Comput. Program. 55(1-3) (2005) 227–257

16. Butler, M.: Synchronisation-based Decomposition for Event-B. In: RODIN Deliv-
erable D19 Intermediate report on methodology. (2006)

17. Butler, M.: Stepwise Refinement of Communicating Systems. Science of Computer
Programming 27(2) (September 1996) 139–173

18. Abrial, J.R.: The B-Book: Assigning programs to meanings. Cambridge University
Press (1996)

19. Abrial, J.R.: Summary of Event-B Proof Obligations. http://www.docstoc.com/

docs/7055755/Summary-of-Event-BProof-Obligations (March 2008)
20. Eclipse: Eclipse homepage. http://www.eclipse.org (September 2008)
21. Butler, M.: A System-based Approach to the Formal Development of Embedded

Controllers for a Railway. Design Automation for Embedded Systems 6 (2002)
355–366

22. Ralph-Johan R. Back: Refinement calculus, part II: parallel and reactive programs.
In: REX workshop: Proceedings on Stepwise refinement of distributed systems:
models, formalisms, correctness, New York, NY, USA, Springer-Verlag New York,
Inc. (1990) 67–93

23. Abadi, M., Lamport, L.: Composing Specifications. In de Bakker, J.W., de Roever,
W.P., Rozenberg, G., eds.: Stepwise Refinement of Distributed Systems - Models,
Formalisms, Correctness. Volume 430., Berlin, Germany, Springer-Verlag (1989)
1–41

24. Woodcock, J., Dickinson, B.: Using VDM with Rely and Guarantee-Conditions.
In: Proceedings of the 2nd VDM-Europe Symposium on VDM—The Way Ahead,
New York, NY, USA, Springer-Verlag New York, Inc. (1988) 434–458

25. Potet, M.L., Rouzaud, Y.: Composition and Refinement in the B-Method. In: B
’98: Proceedings of the Second International B Conference on Recent Advances in
the Development and Use of the B Method, London, UK, Springer-Verlag (1998)
46–65

26. Schneider, S.: The B method: an introduction. Palgrave (2001)
27. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized Parallel Composition

of Event Systems in B. In: ZB ’02: Proceedings of the 2nd International Conference
of B and Z Users on Formal Specification and Development in Z and B, London,
UK, Springer-Verlag (2002) 436–457

28. Butler, M., Waldén, M.: Distributed System Development in B. Technical Report
TUCS-TR-53, Turku Centre for Computer Science (14, 1996)

29. Papatsaras, A., Stoddart, B.: Global and Communicating State Machine Models in
Event Driven B: A Simple Railway Case Study. In: ZB 2002:Formal Specification
and Development in Z and B. Volume 2272. Springer Berlin / Heidelberg (2002)
77–100

30. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of
Discrete Models: Application to Event-B. Fundam. Inf. 77(1-2) (2007) 1–28

http://www.docstoc.com/docs/7055755/Summary-of-Event-BProof-Obligations
http://www.docstoc.com/docs/7055755/Summary-of-Event-BProof-Obligations
http://www.eclipse.org

	Supporting Reuse Mechanisms for Developments in Event-B: Composition
	Renato Silva and Michael Butler
	Introduction
	Event-B Language
	Shared Event Approach
	Composition

	Composed Machines
	Structure of Composed Machines
	Static Checks
	Proof Obligations

	Shared Event Composition Plug-in
	RailWay System
	Conclusions

