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UNRAMIFIED REPRESENTATIONS OF REDUCTIVE GROUPS

OVER FINITE RINGS

ALEXANDER STASINSKI

Abstract. Lusztig has given a construction of certain representations of re-
ductive groups over finite local principal ideal rings of characteristic p, extend-
ing the construction of Deligne and Lusztig of representations of reductive
groups over finite fields. We generalize Lusztig’s results to reductive groups
over arbitrary finite local rings. This generalization uses the Greenberg functor
and the theory of group schemes over Artinian local rings.

Introduction

In [12] Lusztig gave a construction of certain representations of a reductive group
over a finite ring coming from the ring of integers in a local field of characteristic
p > 0, modulo some power of its maximal ideal. Such rings can equivalently be
characterized as finite local principal ideal rings of characteristic p. The construc-
tion, which is cohomological in nature and is a generalization of the construction of
Deligne and Lusztig [2], attaches irreducible representations to certain characters of
“maximal tori”. It was stated in [12] that the restriction on the ring is not essential
and that a similar method applies in the case when the ring is a finite quotient of
the ring of integers of an arbitrary non-archimedean local field. Thus the first nat-
ural problem is to realize the construction for arbitrary finite local principal ideal
rings. Unlike the characteristic p case, it turns out that for arbitrary rings of this
type it is no longer possible to stay in the realm of algebraic groups over fields, and
instead the proper setting is that of group schemes over Artinian local rings and
the theory of the Greenberg functor. Now this general setting makes it clear that
the construction does not have to be restricted to principal ideal rings, but can in
fact be carried out uniformly for reductive groups over arbitrary finite local rings.
Since any finite (commutative) ring R can be decomposed as a direct sum of finite
local rings R ∼=

⊕
i Ri, it follows that if G is an affine group scheme over R, then

the group of points G(R) can be written as a direct sum G(R) ∼=
⊕

i G(Ri). In the
study of representations of G(R) it is therefore enough to consider representations
of the points of G over finite local rings.

In this paper we generalize Lusztig’s construction to reductive group schemes
over arbitrary finite local rings. In particular, we thus go beyond the original
conception of rings of integers in local fields. Throughout the paper we shall work
with a fixed Artinian local ring A with residue field Fq. We write m for the maximal
ideal of A and denote by r the smallest positive integer such that mr = 0. Let G
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be a reductive group scheme over A. The representations we construct depend in
a sense only on the structure of the reductive group G ×A Fq and are essentially
independent of the arithmetic of the ring in question. This is a reason why we call
these unramified representations. As Lusztig remarks in [12], it seems likely that the
representations we construct (in the principal ideal ring case with r ≥ 2 andG split)
coincide with those constructed by Gérardin [5] by a non-cohomological method.
The latter are closely related to unramified maximal tori and the unramified discrete
series representations of p-adic groups, and this is another reason for our choice of
terminology. There is also some overlap with the representations constructed by
Hill [8, 9] in the case G = GLn, again by a non-cohomological method.

After we have set up the framework of group schemes over local Artinian rings
and their associated algebraic groups, and proved several auxiliary results, the
proofs of the main theorems follow closely those of Lusztig. We shall therefore give
a detailed comparison between the present paper and the contents of [12].

The first section sets up some basic notation and introduces reductive group
schemes over Artinian local rings with residue field Fq, the Greenberg functor,
and the corresponding algebraic groups. For the theory of group schemes we shall
frequently refer to SGA 3 [13], which seems to be the only complete reference
covering what we need. We sometimes also refer to Demazure’s thesis [3], which is
a convenient summary of many of the results we need from SGA 3. For definitions
and results concerning the Greenberg functor, we refer to the original papers of
Greenberg [6, 7]. In [12], group schemes could be bypassed altogether because the
base ring Fq[[ε]]/(ε

r) is an Fq-algebra, and so one can start with an affine algebraic

group G1 over Fq and consider the group of points G = G1(Fq[[ε]]/(ε
r)). By

using elementary considerations rather than the general formalism of the Greenberg
functor, one can then show that G carries a structure of an affine algebraic group
over Fq. Moreover, there is a natural inclusion G1 ⊆ G, so the whole subgroup
structure of G1 can be easily transferred to G. In the general situation considered
in the present paper, we are forced instead to work directly with the structure of G
over A. We then simply write G for the Fq-points of the algebraic group associated

to G via the Greenberg functor. Thus G is an affine algebraic group over Fq such
that G ∼= G(A). One reason why this approach is possible is that the theory of
affine smooth group schemes over strictly Henselian Artinian rings in many ways
resembles the classical theory of algebraic groups over algebraically closed fields.

In the second section, Lemmas 2.4, 2.5, 2.6, and 2.10 are due to Lusztig, although
of course stated here in our wider generality. In order to clarify some steps of the
proof of Lemma 2.5, we have given a proof using the new Lemma 2.3. Several
results in [12] were stated under the hypothesis r ≥ 2, and since the results were
already known for r = 1, this is no loss of generality. Nevertheless, we have removed
this hypothesis in order to emphasize that the proofs in fact work uniformly for all
r ≥ 1, except for the proof of Theorem 3.1 where one has to separate the case
r = 1 (where regularity of characters is not required) from the case r ≥ 2 (where
regularity is used and the proof becomes longer). This also affects Proposition 3.3
and Corollary 3.4, which we have stated in a form that includes the case r = 1.

The proofs of Lemmas 2.2, 2.3, 2.8 and 2.9 are new, although the results have
to some degree been known earlier either implicitly in unpublished form or in var-
ious special cases. In particular, Lemma 2.2 provides a commutator relation and
Iwahori decomposition for (certain) group schemes over local rings. These results
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are well-known for certain classes of groups and rings, but our results hold quite
generally and are proved by arguments which are more geometric than the classical
group theoretic approaches. Lemmas 2.8 and 2.9 were stated in [12] without proof,
and since our proofs are not obvious, we have included them here. The proof of
Lemma 2.9(c) is especially long and is an example of the extra complications that
appear in our general setting compared to the case of rings of characteristic p, where
the proof can be reduced to the case of SL2.

In the final section we have collected all the main results, including our version
of Lusztig’s Lemma 1.9 which we have given the status of Theorem since its proof is
the longest and most difficult in the entire paper and its consequences include the
most important results. The ideas of the proofs in this section are due to Lusztig,
and our presentation follows [12], except with regards to the use of the elements
ŵ (see below). We have also added some references to various results used in the
proofs, and some clarifying remarks. We have included these reworkings of Lusztig’s
proofs in order to get a complete and coherent exposition, and we believe this to
be a more satisfying solution (both logically and from the reader’s point of view)
than if we had simply stated the generalized main results and referred to proofs
appearing in a more special context.

If T and T′ are two maximal tori in G, we shall denote the corresponding closed
subgroups of G by T and T ′, respectively. Reducing modulo m we get the maximal
tori T1 = (T ×A Fq)(Fq) and T ′

1 = (T′ ×A Fq)(Fq) in G1 = (G ×A Fq)(Fq). A
remark applicable to both of the last two sections is that unlike the case where
the ring A has characteristic p, in general we cannot directly transfer elements of
the transporter N(T1, T

′
1) = {n ∈ G1 | n−1T1n = T ′

1} to elements of N(T, T ′) =
{n ∈ G | n−1Tn = T ′}. Instead we apply results from SGA 3 showing that
the transporter (or normalizer) group schemes of maximal tori are smooth, and
using this we are able to conclude that the natural map N(T, T ′) → N(T1, T1) is
surjective. For any element ẇ ∈ N(T1, T

′
1) we can thus work with a lift ŵ ∈ N(T, T ′)

under this map. It turns out that the ambiguity in the choice of lifts does not affect
the results, and this provides a sense in which the results only depend on structures
over the residue field.

1. Notation

Throughout this paper a ring will always refer to a (unital, associative) com-
mutative ring. Let A be an Artinian local ring with maximal ideal m and perfect
residue field k. Let r denote the smallest positive integer such that mr = 0. Let X
be a scheme of finite type over A (as usual, we shall speak of a scheme over the ring
A rather than over the scheme SpecA). Greenberg [6, 7] has defined a functor FA

from the category of schemes of finite type over A to the category of schemes of fi-
nite type over k, such that there exists a canonical isomorphism X(A) ∼= (FAX)(k).
It is shown in loc. cit. that the functor FA preserves affine and separated schemes,
respectively. Furthermore, it maps group schemes over A to group schemes over k,
schemes smooth over A to schemes smooth over k, and preserves subschemes (of
any kind). If X is smooth over A and X×A k is reduced and irreducible, then FAX
is reduced and irreducible ([7], 2, Corollary 2).

Suppose that G is an affine smooth group scheme over A. Thus it is in particular
of finite type over A. We take the residue field k to be an algebraic closure Fq of
the finite field Fq of characteristic p. For any integer r′ such that r ≥ r′ ≥ 0, we
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define

Gr′ = FA(G×A A/mr′)(k).

Note that for r′ = 0 the ring A/mr′ is the trivial ring {0 = 1}, and so G0 consists
of exactly one point. In particular, for r′ = r we write G for the group Gr =
(FAG)(k) ∼= G(A). In general, we shall write group schemes over A in boldface
type and the corresponding algebraic group over k using the same letter in normal
type. By the results of Greenberg, each group Gr′ is the k-points of an affine smooth
group scheme over k. It is thus an affine algebraic group over k, connected if G×k
is connected. Since G is smooth it follows that the reduction map A → A/mr′

induces a surjective homomorphism ϕr,r′ = ϕr′ : G → Gr′ . The kernel of ϕr′ is

denoted by Gr′ . We have

{1} = Gr ⊆ Gr−1 ⊆ · · · ⊆ G1 ⊆ G0 = G.

Let Gr′,∗ = Gr′ −Gr′+1, for r′ < r. We thus have a partition

G = G0,∗ �G1,∗ � · · · �Gr−1,∗ � {1}.
From now on, let G be a reductive group scheme over A (cf. [3], 2.1 or [13], XIX
2.7). This means that G is an affine smooth group scheme over A such that its fibre
G× k is a connected reductive group in the classical sense. We shall be interested
in the situation where G is endowed with a Frobenius endomorphism F : G → G,
which in the most general sense is just a surjective endomorphism with finite fixed
point group GF .

Remark. We show how a situation as above typically arises. Let A0 be an arbitrary
finite local ring. Then A0 is obviously Artinian with residue field Fq, for some q.
Let G0 be a reductive group scheme over A0. Then by results of Greenberg, A0 is
an algebra over the ring of Witt vectors Wn(Fq), where charA0 = pn+1. Let

A = A0 ⊗Wn(Fq) Wn(Fq).

Then by [6], 1, Prop. 4, A is a local Artinian ring with residue field Fq. The

algebra A carries an endomorphism F induced by the Frobenius map of Wn(Fq).
If we now let G = G0 ×A0

A, then G inherits a Frobenius endomorphism from
the endomorphism F on G(A) such that GF ∼= G(A)F . Note however that not all
Frobenius endomorphisms of G are of this form; there are also those that give rise
to twisted groups.

Assume henceforth thatG is an algebraic group over Fq obtained from a reductive
group scheme G as above, and provided with a Frobenius endomorphism F : G →
G. Since our base A is a local Artinian ring with algebraically closed residue field,
it is strictly Henselian, and thus maximal tori and Borel subgroups exist in G
(cf. [13], XXVI 7.15). If T is a maximal torus contained in a Borel subgroup B of
G, we have a semidirect product B = TU, where U is the unipotent radical of B
(cf. [13], XXII 5.11.4). We then have the respective associated algebraic subgroups
T,B, U of G, and a semidirect product B = TU . Note that for r ≥ 2, T will not
be a maximal torus of G in the sense of algebraic groups; nor will B be a Borel
subgroup of G.

Throughout this paper we fix a prime l �= p. If X is an algebraic variety over

Fq we write Hj
c (X) instead of Hj

c (X,Ql). For a finite group Γ, we write Γ̂ for the

group of linear characters Hom(Γ,Ql
×).
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2. Lemmas

Let T be a maximal torus of G, and let Φ = Φ(G,T) be the set of roots of G,
relative to T (cf. [13], XIX 3.6). Thus Φ consists of elements in HomA-gr(T, (Gm)A)
whose image in Homk-gr(T × k, (Gm)k) is a root in the usual sense. We write
the groups of characters additively, and denote by Uα the root subgroup of G
corresponding to the root α.

We shall consider the notion of a splitting (déploiement) of a reductive group G
with respect to a maximal torus T (cf. [13], XXII 1.13, or [3], 3.1), and we call G
split (déployé) with respect to T if such a splitting exists. A torus over a general
base S is called trivial if it is diagonalizable, that is, if it is isomorphic to some
(Gn

m)S.

Lemma 2.1. Let A be a strictly Henselian ring and let G be a reductive group
scheme over A. Then there exists a maximal torus in G, and G is split with
respect to any of its maximal tori.

Proof. By [13], XXVI 7.15 (or XIV 3.20) a maximal torus exists in G. By [13],
X 4.6, a group of multiplicative type and of finite type (in particular a maximal
torus) over a Henselian base is isotrivial, that is, it is trivial after a finite surjective
étale extension. Since SpecA does not have any non-trivial finite étale extensions,
it follows that any maximal torus of G is trivial. Since A is local, the lemma now
follows from [13], XXII 2.2. �

The existence of splitting implies that the root data of G relative to T is canon-
ically isomorphic to the root data of G×k relative to T×k (cf. [13] XXII 1.15 b)).
In particular, the map HomA-gr(T, (Gm)A) → Homk-gr(T×k, (Gm)k) is a bijection
on the roots. As for algebraic groups over fields, a choice of Borel subgroup B of G
containing T defines a set of positive roots Φ+, and the splitting of G with respect
to T implies that for some fixed but arbitrary ordering of Φ+ we have

U =
∏

α∈Φ+

Uα

(see [3], 3.3.3). On the level of groups of points this yields U =
∏

α∈Φ+ Uα, where
an element of U is expressed uniquely as a product of elements of the Uα.

From now on, let T and T′ be two maximal tori ofG such that the corresponding
subgroups T and T ′ of G are F -stable. Let U (resp. U′) be the unipotent radical
of a Borel subgroup of G that contains T (resp. T′), and let U and U ′ be the
corresponding subgroups of G. Note that U and U ′ are not necessarily F -stable.

Let N(T1, T
′
1) = {g ∈ G1 | g−1T1g = T ′

1}. Then T1 acts on N(T1, T
′
1) by left

multiplication and T ′
1 acts on N(T1, T

′
1) by right multiplication. The orbits of T1

are in natural bijection with the orbits of T ′
1. We set W (T1, T

′
1) = T1\N(T1, T

′
1)

∼=
N(T1, T

′
1)/T

′
1; this is a finite set because if a ∈ G1 is an element such that aT1 = T ′

1,
then g 	→ ga gives a bijection between N(T1, T

′
1) and the normalizer NG1

(T1) =
N(T1, T1), and this induces a bijection between W (T1, T

′
1) and the Weyl group

W (T1) = W (T1, T1). For each w ∈ W (T1, T
′
1) we choose a representative ẇ ∈

N(T1, T
′
1). Since the normalizer NG(T) is smooth over A (cf. [3], 1.5.1), the map

ϕ1 induces a surjection
NG(T)(A) −→ NG(T)(k).

By the definition of the normalizer group scheme and the fact that k is algebraically
closed, we have NG(T)(A) ⊆ NG(A)(T(A)) and NG(T)(k) = NG(k)(T(k)) (cf. [10],
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I 2.6). Thus ϕ1 also induces a surjection

NG(T ) ∼= NG(A)(T(A)) −→ NG(k)(T(k)) = NG1
(T1).

Let N(T, T ′) = {g ∈ G | g−1Tg = T ′}. It follows from the conjugacy of maximal
tori ([3], 1.5.3) that T and T ′ are conjugate in G by an element whose image in G1

conjugates T1 to T ′
1. Thus we have in the same way as above a bijection between

N(T, T ′) andNG(T ), and hence a surjectionN(T, T ′) → N(T1, T
′
1) (this also follows

from the smoothness of transporters [13], XXII 5.3.9). For each ẇ ∈ N(T1, T
′
1) we

can therefore choose a lift ŵ ∈ N(T, T ′), and throughout this paper we shall work
with a fixed set of lifts ŵ. As we shall see, the main results are independent of the
choice of these lifts.

Define the variety

Σ = {(x, x′, y) ∈ F (U)× F (U ′)×G | xF (y) = yx′}.
The Bruhat decomposition in G1 implies that there is a bijection between double
B1-B1 cosets indexed by W (T1, T

′
1), and double B1-B1 cosets indexed by W (T1).

Indeed, if w ∈ W (T1, T
′
1) and if a ∈ G1 is such that aT1 = T ′

1, then the map
B1wB1 	→ B1waB1 is injective since if B1w

′B1 has the same image as B1wB1,
then B1waB1 = B1w

′aB1. Therefore, by Bruhat decomposition, ẇa and ẇ′a have
the same image in W (T1); that is, ẇ and ẇ′ have the same image in W (T1, T

′
1). We

thus have G1 =
⊔

w∈W (T1,T ′
1)
G1,w, where G1,w = U1T1ẇU

′
1 = U1ẇT

′
1U

′
1. Let Gw

be the inverse image of G1,w under ϕ1 : G → G1 and let

Σw = {(x, x′, y) ∈ Σ | y ∈ Gw}.
This defines a partition of Σ. The group TF ×T ′F acts on Σ by (t, t′) : (x, x′, y) 	→
(txt−1, t′x′t′−1, tyt′−1). This restricts to an action of TF × T ′F on Σw for any
w ∈ W (T1, T

′
1).

If θ ∈ T̂F , θ′ ∈ T̂ ′F , and M is a TF × T ′F -module, we shall write Mθ−1,θ for the

subspace of M on which TF × T ′F acts according to θ−1 � θ′; that is,

Mθ−1,θ′ = {m ∈ M | (t, t′)m = θ−1(t)θ′(t′)m, ∀ (t, t′) ∈ TF × T ′F }.

Lemma 2.2. Let G be an affine group scheme over a local ring A with maximal
ideal m. For i ≥ 0, write G = G(A), Gi = G(A/mi), and Gi = Ker(G → Gi).
Then the following holds:

(a) For any integers i, j ≥ 0 we have the commutator relation [Gi, Gj ] ⊆ Gi+j.
(b) (Iwahori decomposition) Assume in addition that G is reductive and split

over A, with respect to a maximal torus T. Let T be contained in a Borel
subgroup with unipotent radical U, and let U− be the unipotent radical of
a Borel subgroup of G containing T, such that U ∩U− = {1}. Let T , U ,
and U− be the respective groups of A-points, and let T 1, U1, and (U−)1 be
the respective kernels. Then we have

G1 = (U−)1T 1U1,

and each element g ∈ G1 decomposes uniquely as g = u−tu, where u− ∈
(U−)1, t ∈ T 1, and u ∈ U1.

Proof. We prove (a) using a Hopf algebra approach. Let A[G] be the affine algebra
ofG; thus A[G] is a commutative Hopf algebra over A. Let ∆ : A[G] → A[G]⊗A[G]
and ε : A[G] → A denote its coproduct and counit, respectively. Let I = Ker ε be
the augmentation ideal. If α : A → R is an A-algebra, then the identity element of
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the group G(R) = Hom(A[G], R) is given by α ◦ ε. For any i ≥ 0, the reduction
map ϕi : G = Hom(A[G], A) → Hom(A[G], A/mi) = Gi sends any g ∈ G to ϕi ◦ g.
Now let g ∈ Gi and h ∈ Gj , for some integers i, j ≥ 0. Then

ϕi ◦ g = ϕi ◦ ε and ϕj ◦ h = ϕj ◦ ε,
respectively (recall that ϕi denotes both the map G → Gi and A → A/mi). Thus
ϕi(g(I)) = 0; that is, g(I) ⊆ mi. Similarly, we have h(I) ⊆ mj . Since a 	→
a · 1 : A → A[G] is a section of ε, we have A[G] = A · 1 ⊕ I, as A-modules.
This implies that A[G] ⊗ A[G] = A(1 ⊗ 1) ⊕ (A ⊗ I) ⊕ (I ⊗ A) ⊕ (I ⊗ I). Let
x ∈ I and write ∆(x) = a1(1 ⊗ 1) + a2 ⊗ y1 + y2 ⊗ a3 + y3 ⊗ y4, where ak ∈ A,
yk ∈ I. The Hopf algebra axiom (ε ◦ id) ◦ ∆ = id = (id ◦ ε) ◦ ∆ implies that
a1 + a2y1 = a1 + y2a3 = x ∈ I, and so a1 ∈ I; that is, a1 = 0 and x = a2y1 = y2a3.
Hence ∆(x) ∈ a2 ⊗ y1 + y2 ⊗ a3 + I ⊗ I = 1⊗ a2y1 + y2a3 ⊗ 1 + I ⊗ I, and so we
have

∆(x) ∈ x⊗ 1 + 1⊗ x+ I ⊗ I, for all x ∈ I.

The product gh ∈ G is given by the element (g ⊗ h) ◦∆ ∈ Hom(A[G], A). Hence

gh(x) ∈ g(x) + h(x) + g(I)h(I) ⊆ g(x) + h(x) +m
i+j , for all x ∈ I,

and so (ϕi+j ◦ (gh − g − h))(I) = 0. Thus the map ϕi+j ◦ (gh − g − h) factors
through ε, and since ϕi+j is the unique A-algebra map A → A/mi+j , we must have
ϕi+j ◦ (gh− g − h) = ϕi+j ◦ ε. This means exactly that the element gh − g − h ∈
Hom(A[G], A) lies in the kernel Gi+j . We thus see that gh = g + h = h+ g = hg,
modulo Gi+j , and the result follows.

We now prove (b). Let W be the group generated by simple reflections cor-
responding to the root system of G relative to T (cf. [13], XXI 1.1.8). By [13],
XXII 3.3, respectively, 3.8, we have a natural inclusion W ⊆ NG(T)(A)/T(A),
respectively, surjection NG(T)(A) → (NG(T)/T)(A). For any w ∈ W we can thus
choose a lift nw ∈ NG(T)(A). Since A is local, we have

G =
⋃

w∈W

nwU
−TU

(cf. [13], XXII 5.7.4 (ii) and also 5.7.5 (ii)). In particular, we may take n1 = 1 as a
representative for the trivial element 1 ∈ W .

Now, if ϕ1(nwu
−tu) = 1 for some w ∈ W , u− ∈ U−, t ∈ T , u ∈ U , then

B1ϕ1(nw)U
−
1 ⊆ B1U

−
1 , and the Bruhat decomposition in G1 with respect to the

Borel subgroups B1 and B−
1 implies that ϕ1(nw) ∈ T1. Hence ϕ1(u

−) = ϕ1(nwt) =
ϕ1(u) = 1. Let k be the residue field of A. The morphism NG(T) → NG(T)/T
yields a commutative diagram

NG(T)(A) −−−−→ (NG(T)/T)(A)

ϕ1

⏐⏐
 ⏐⏐
ϕ1

NG(T)(k) −−−−→ (NG(T)/T)(k).

Since G is split reductive, its root datum is canonically isomorphic to the root
datum of G × k ([13], XXII 1.15 b)), and hence the map ϕ1 : (NG(T)/T)(A) →
(NG(T)/T)(k) restricts to an isomorphism between W and the Weyl group of the
root datum of G × k considered as a subgroup of (NG(T)/T)(k). The image of
ϕ1(nw) ∈ T1 ⊆ NG(T)(k) in (NG(T)/T)(k) is trivial, and by the commutativity
of the above diagram, the image of nw in W ⊆ NG(T)(A)/T(A) is thus the trivial
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element. It follows from our choice of representatives that nw = n1 = 1, whence
G1 = (U−)1T 1U1. Uniqueness follows immediately, since if u−tu = u−

1 t1u1, then
(u−)−1u−

1 ∈ U− ∩B = {1}, and similarly, t−1t1 = u−1u1 = 1. �

Remark. For basic facts about Hopf algebras we have followed [10], 2.4. In the
present paper we apply Iwahori decomposition only in the case of a reductive group
scheme over a strictly Henselian base, and such groups are split by Lemma 2.1.

We return to our situation whereG is a reductive group scheme over the Artinian
local ring A, with residue field k. Using the isomorphism G = (FAG)(k) ∼= G(A)
together with Lemma 2.2 we get corresponding commutator relations and Iwahori
decomposition in G.

We now prove a result which is a form of Bruhat decomposition for G and is
both a strengthened and a generalized form of a result of Hill (cf. [8], 2.6). Let U−

(resp. U′−) be the unipotent radical of a Borel subgroup of G containing T (resp.
T′) such that U ∩U− = {1} (resp. U′ ∩U′− = {1}). Let U− = (FAU

−)(k) and
U ′− = (FAU

′−)(k) be the corresponding subgroups of G.

Lemma 2.3. Let U,U ′, U−, and U ′− be as above. Then G decomposes as

G =
⊔

w∈W (T1,T ′
1)

(U ∩ ŵU ′−ŵ−1)ŵT ′((U ′−)1 ∩ ŵ−1U−ŵ)U ′,

and every element g ∈ G can be written uniquely in the form g = uŵt′ku′, where
u ∈ U ∩ ŵU ′−ŵ−1, t′ ∈ T ′, k ∈ (U ′−)1 ∩ ŵ−1U−ŵ, and u′ ∈ U ′.

Proof. In the case r = 1 the result is a well-known consequence of Bruhat’s lemma.
Using the surjection ϕr we lift the decomposition to G, and so we may write

G =
⊔

w∈W (T1,T ′
1)

(U ∩ ŵU ′−ŵ−1)ŵG1T ′U ′.

Now, by Iwahori decomposition we have G1 = (U ′−)1T 1(U ′)1, so

(U ∩ ŵU ′−ŵ−1)ŵG1T ′U ′ = (U ∩ ŵU ′−ŵ−1)ŵ(U ′−)1T ′U ′.

The formula U =
∏

α∈Φ+ Uα implies that we may write

(U ′−)1 = ((U ′−)1 ∩ ŵ−1Uŵ)((U ′−)1 ∩ ŵ−1U−ŵ),

and since ŵ((U ′−)1 ∩ ŵ−1Uŵ)ŵ−1 ∈ (U ∩ ŵU ′−ŵ−1), we have

G =
⊔

w∈W (T1,T ′
1)

(U ∩ ŵU ′−ŵ−1)ŵ((U ′−)1 ∩ ŵ−1U−ŵ)T ′U ′.

Since T ′ normalizes (U ′−)1 ∩ ŵ−1U−ŵ, we get the desired decomposition. Now
let uŵt′ku′ = u1ŵt

′
1k1u

′
1 for u, u1 ∈ U ∩ ŵU ′−ŵ−1, t′, t′1 ∈ T ′, k, k1 ∈ (U ′−)1 ∩

ŵ−1U−ŵ, and u′, u′
1 ∈ U ′. Then u′u′−1

1 = (uŵt′k)−1u1ŵt
′
1k1, and since u′u′−1

1 ∈ U ′

and (uŵt′k)−1u1ŵt
′
1k1 ∈ T ′U ′−, we must have u′ = u′

1 and uŵt′k = u1ŵt
′
1k1, or

equivalently t′kk−1
1 t′−1

1 = ŵ−1u−1u1ŵ. Since t
′kk−1

1 t′−1
1 ∈T ′ŵ−1U−ŵ = ŵ−1TU−ŵ

and ŵ−1u−1u1ŵ ∈ ŵ−1Uŵ, we conclude that t′k = t′1k1 and u = u1. Thus also
t′ = t′1 and k = k1, and the lemma is proved. �

If T is a commutative algebraic group over Fq with fixed Fq-structure and with
Frobenius map F : T → T , then for any integer n ≥ 1 we have a norm map

NFn

F : T Fn

−→ T F , t 	−→ tF (t)F 2(t) · · ·Fn−1(t).
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Lemma 2.4. Let T and T ′ be two commutative connected algebraic groups over Fq

with fixed Fq-rational structures with Frobenius maps F : T → T and F : T ′ → T ′.

Let f : T →̃ T ′ be an isomorphism of algebraic groups over Fq. Let n ≥ 1 be such

that Fnf = fFn : T → T ′; thus f : T Fn →̃ T ′Fn

. Let

H = {(t, t′) ∈ T × T ′ | f(F (t)−1t) = F (t′)−1t′}

(a subgroup of T × T ′ containing T F × T ′F ). Let θ ∈ T̂ F and θ′ ∈ T̂ ′F be such

that θ−1 � θ′ is trivial on (T F × T ′F ) ∩H0. Then θNFn

F = θ′NFn

F f ∈ T̂ Fn .

Proof. See [12], 1.1. �

From now on, let T = T r−1 and T ′ = T ′r−1. Note that in the case r = 1 we
have T = T and T ′ = T ′.

Lemma 2.5. Let w ∈ W (T1, T
′
1), and let θ ∈ T̂F , θ′ ∈ T̂ ′F . Assume that

Hj
c (Σw)θ−1,θ′ �= 0 for some j ∈ Z. Let g = F (ŵ)−1 and let n ≥ 1 be such that

g ∈ GFn

. Then Ad(g) (conjugation by g) carries T Fn

onto T ′Fn

and θ|T F ◦NFn

F ∈
T̂ Fn to θ′|T ′F ◦NFn

F ∈ T̂ ′Fn .

Proof. Put Uŵ = U ∩ ŵU ′−ŵ−1 and K = (U ′−)1 ∩ ŵ−1U−ŵ. By Lemma 2.3, we
then have an isomorphism

Σ̃ŵ := {(x, x′, u, u′, k, ν) ∈ F (U)× F (U ′)× Uŵ × U ′ ×K × ŵT ′ |
xF (u)F (ν)F (k)F (u′) = uνku′x′} −̃→ Σw,

given by (x, x′, u, u′, k, ν) 	→ (x, x′, uνku′). This isomorphism is compatible with

the TF × T ′F -actions, where TF × T ′F acts on Σ̃ŵ by

(a) (t, t′) : (x, x′, u, u′, k, ν) 	−→ (txt−1, t′x′t′−1, tut−1, t′u′t′−1, t′kt′−1, tνt′−1).

Hence we have Hj
c (Σ̃ŵ)θ−1,θ′ �= 0. By the substitution xF (u) 	→ x, x′F (u′)−1 	→ x′,

the variety Σ̃ŵ is rewritten as

{(x, x′, u, u′, k, ν) ∈ F (U)× F (U ′)× Uŵ × U ′ ×K × ŵT ′ |
xF (k)F (ν) = uνku′x′};

(b)

in these coordinates, the action of TF × T ′F is still given by (a). Let

H = {(t, t′) ∈ T × T ′ | t′F (t′)−1 = F (ŵ)−1tF (t)−1F (ŵ)}

(a closed subgroup of T×T ′). It acts on the variety (b) by the same formula as in (a)
(we use Lemma 2.2 to show that T and T ′ centralize G1). By [2], 6.5, the induced

action of H on Hj
c (Σ̃ŵ) is trivial when restricted to the connected component H0.

In particular, the intersection (TF × T ′F ) ∩ H0 acts trivially on Hj
c (Σ̃ŵ). Since

Hj
c (Σ̃ŵ)θ−1,θ′ �= 0, it follows that θ−1 � θ′ is trivial on (TF × T ′F ) ∩ H0. Let

g = F (ŵ)−1 and let n ≥ 1 be such that g ∈ GFn

. Then Ad(g) carries T Fn

onto
T ′Fn

and (by Lemma 2.4 with f = Ad(g)) it carries θ|T F ◦NFn

F to θ′|T ′F ◦NFn

F . �

With the above lemma proved for each Σw we can deduce a similar statement for
the whole variety Σ. This will be used later (in Proposition 3.2) to prove a result
which is a generalization of Theorem 6.2 of Deligne and Lusztig [2].
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Lemma 2.6. Let θ ∈ T̂F , θ′ ∈ T̂ ′F be such that

(a) Hj
c (Σ)θ−1,θ′ �= 0

for some j ∈ Z. Then there exists n ≥ 1 and g ∈ N(T ′, T )F
n

such that Ad(g)

carries θ|T F ◦NFn

F ∈ T̂ Fn to θ′|T ′F ◦NFn

F ∈ T̂ ′Fn .

Proof. It is well-known that the subvarieties G1,w of G1 have the following property:
for some ordering ≤ of W (T1, T

′
1), the unions

⋃
w′≤w G1,w′ are closed in G1. It

follows that the unions
⋃

w′≤w Gw′ are closed in G and the unions
⋃

w′≤w Σw′

are closed in Σ. The spectral sequence associated to the filtration of Σ by these
unions, together with (a), shows that there exists w ∈ W (T1, T

′
1) and j′ ∈ Z such

that Hj′

c (Σw)θ−1,θ′ �= 0. We can therefore apply Lemma 2.5 to get an element

g = F (ŵ)−1 ∈ N(T ′, T )F
n

, for some n ≥ 1, satisfying the conclusion. �
For each root α ∈ Φ(G,T) we have a unique coroot α̌ ∈ HomA-gr((Gm)A,T).

Let Tα denote the image of α̌ in T, so that Tα is a 1-dimensional torus in T
(cf. [13], XX 3). Keeping with our notational conventions, we let Uα = (FAUα)(k)
and Tα = (FAT

α)(k). We also write T α = (Tα)r−1 (a 1-dimensional subgroup of
T = T r−1; cf. [7], 3).

The following definition was introduced in [12], 1.5.

Definition 2.7. Let χ ∈ T̂ F . We say that χ is regular if for any α ∈ Φ and any
n ≥ 1 such that Fn(T α) = T α, the restriction of χ ◦NFn

F : T Fn → Ql
× to (T α)F

n

is non-trivial. If θ ∈ T̂F , we say that θ is regular if θ|T F is regular.

Lemma 2.8. Let χ ∈ T̂ F , and suppose that there exists an n ≥ 1 such that for
all α ∈ Φ, Fn(T α) = T α and the restriction of χ ◦NFn

F to (T α)F
n

is non-trivial.
Then χ is regular.

Proof. We first show some properties of the norm map. Let T be a commutative
algebraic group defined over Fq with Frobenius F . Let a and b be two positive

integers such that b = ka, for some integer k. Then clearly T Fa ⊆ T F b

. We

extend the definition of the norm map by defining the map NF b

Fa : T F b → T Fa

,

x 	→ xF a(x)F 2a(x) · · ·F (k−1)a(x). We then have

NFa

F NF b

Fa (x) =
a−1∏
j=0

F j

(
k−1∏
i=0

F ia(x)

)
=

a−1∏
j=0

k−1∏
i=0

F j+ia(x) =
b−1∏
i=0

F i(x) = NF b

F (x),

so NF b

F = NFa

F ◦ NF b

Fa . Now suppose that H is a closed connected subgroup of T
which is stable under F a and F b. The map NF b

Fa restricts to a map NF b

Fa : HF b →
HFa

, which we claim is surjective. Indeed, if x ∈ HFa

, then by the Lang-Steinberg
theorem there exists some y ∈ H such that y−1F b(y) = x. Now, F a(x) = x
implies that F a(y−1F b(y)) = y−1F b(y), and so F b(y−1F a(y)) = y−1F a(y). Thus

y−1F a(y) ∈ HF b

and NF b

Fa (y−1F a(y)) = y−1F b(y) = x.
Now letm be the minimal positive integer such that Fm(T α) = T α, for all α ∈ Φ.

Write n = gm + h with integers g ≥ 1 and 0 ≤ h < m. Then Fn(T α) = T α ∀α
implies that Fh(T α) = T α ∀α, so the minimality of m forces h = 0. If for some α
we have χ ◦NFm

F ((T α)F
m

) = 1, then NFn

F = NFm

F ◦NFn

Fm implies NFn

F ((T α)F
n

) ⊆
NFm

F ((T α)F
m

), so χ ◦NFn

F ((T α)F
n

) = 1, which contradicts the hypothesis. Thus

m is such that the restriction of χ ◦NFm

F to (T α)F
m

is non-trivial, for all α.
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Finally, suppose that m′ is an arbitrary positive integer such that Fm′
(T α) =

T α, for all α. Then as we have seen, m | m′. By the surjectivity and transitivity of

the norm map, we get NFm′

F ((T α)F
m′
) = NFm

F ◦NFm′

Fm ((T α)F
m′
) = NFm

F ((T α)F
m

).

Thus χ◦NFm′

F ((T α)F
m′
) = χ◦NFm

F ((T α)F
m

) �= 1 for all α, and so χ is regular. �

As before, U is the unipotent radical of a Borel subgroup of G containing T.
Let V be the unipotent radical of another such Borel subgroup, and let U− (resp.
V−) be the unipotent radical of a Borel subgroup of G containing T such that
U ∩ U− = {1} (resp. V ∩ V− = {1}). The corresponding subgroups of G are
denoted by U,U−, V, V −, respectively. Let

Φ+ = {α ∈ Φ | Uα ⊆ V}, Φ− = {α ∈ Φ | Uα ⊆ V−}

be the positive, respectively negative, roots corresponding to the choice of V and
V−. Then Φ = Φ+ � Φ− and Φ− = {−α | α ∈ Φ+}. For α ∈ Φ+ let ht(α) be
the largest integer n ≥ 1 such that α = α1 + α2 + · · · + αn with αi ∈ Φ+. In the
following, for two elements x, y of a group, we shall write [x, y] = xyx−1y−1 for
their commutator.

The following result was given without proof in [12], 1.6, where it is an easy
consequence of well-known facts. In our present context, the last part requires a
different and longer proof.

Lemma 2.9. Let x ∈ (Uα)
b and x′ ∈ (Uα′)c, where α, α′ ∈ Φ and 0 ≤ b, c ≤ r.

Then the following holds:

(a) If b+ c ≥ r, then xx′ = x′x.
(b) If b+ c ≤ r and α �= −α′, then

[x, x′] =
∏

i,i′≥1
iα+i′α′∈Φ

ui,i′ ,

where ui,i′ ∈ (Uiα+i′α′)b+c. (The factors in the product are written in a
fixed but arbitrary order.)

(c) If b + c ≥ r − 1, b + 2c ≥ r, and α = −α′, then [x, x′] = τx,x′u, where
τx,x′ ∈ T α and u ∈ (Uα)

r−1 are uniquely determined.

Proof. Part (a) follows immediately from Lemma 2.2(a). Part (b) is Chevalley’s
commutator formula (cf. [3], 3.3.4) applied to the various subgroups Uiα+i′α′(A)
of G(A). For each α, choose corresponding isomorphisms pα : (Ga)A → Uα as in
[13], XX 1.20. Functorial properties then imply that

pα(Ker(Ga(A) → Ga(A/mj))) = Ker(Uα(A) → Uα(A/mj)) ∼= (Uα)
j ,

for any 0 ≤ j ≤ r (note that we abuse notation since pα is really a map of group
functors rather than groups), and the formula follows. Finally, we prove (c). Let

x̃, x̃′ ∈ Ga(A) be such that pα(x̃) = x and p−α(x̃′) = x′. Then x̃ ∈ Ker(Ga(A) →
Ga(A/mb)) and x̃′ ∈ Ker(Ga(A) → Ga(A/mc)), respectively; thus 1 + ax̃x̃′ ∈
Gm(A), for any a ∈ Gm(A). The hypotheses b + c ≥ r − 1 and b + 2c ≥ r imply
that x̃x̃′ ∈ Ker(Ga(A) → Ga(A/mr−1)) and x̃x̃′2 = 0. By [13], XX 2.2 we have, for
some a ∈ Gm(A),

pα(x̃)p−α(x̃
′) = p−α(

x̃′

1 + ax̃x̃′ )α̌(1 + ax̃x̃′)pα(
x̃

1 + ax̃x̃′ ).
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From this formula we get

[x, x′] = pα(x̃)p−α(x̃
′)pα(−x̃)p−α(−x̃′)

= p−α(
x̃′

1 + ax̃x̃′ )α̌(1 + ax̃x̃′)pα(
x̃

1 + ax̃x̃′ )

× p−α(
−x̃′

1 + ax̃x̃′ )α̌(1 + ax̃x̃′)pα(
−x̃

1 + ax̃x̃′ )

= α̌(1 + ax̃x̃′)2p−α((1 + ax̃x̃′)4
x̃′

1 + ax̃x̃′ )pα((1 + ax̃x̃′)2
x̃

1 + ax̃x̃′ )

× p−α((1 + ax̃x̃′)2
−x̃′

1 + ax̃x̃′ )pα(
−x̃

1 + ax̃x̃′ )

(repeatedly using the facts that ∀ t ∈ T(A), z ∈ Ga(A), α ∈ Φ, we have

tpα(z)t
−1 = pα(α(t)z) and αα̌(z) = z2)

= α̌(1 + ax̃x̃′)2p−α(x̃
′(1 + ax̃x̃′)3)pα(x̃(1 + ax̃x̃′))

× p−α(−x̃′(1 + ax̃x̃′))pα(
−x̃

1 + ax̃x̃′ )

= α̌(1 + ax̃x̃′)2p−α(x̃
′)pα(x̃(1 + ax̃x̃′))p−α(−x̃′)pα(

−x̃

1 + ax̃x̃′ )

(using x̃x̃′2 = 0)

= α̌(1 + ax̃x̃′)2p−α(x̃
′)p−α(

−x̃′

1− ax̃′x̃(1 + x̃x̃′)
)

× α̌(1− ax̃′x̃(1 + x̃x̃′))pα(
x̃(1 + x̃x̃′)

1− ax̃′x̃(1 + x̃x̃′)
)pα(

−x̃

1 + ax̃x̃′ )

= α̌(1 + ax̃x̃′)2p−α(x̃
′)p−α(

−x̃′

1− ax̃x̃′ )

× α̌(1− ax̃x̃′)pα(
x̃(1 + ax̃x̃′)

1− ax̃x̃′ )pα(
−x̃

1 + ax̃x̃′ )

= α̌(1 + ax̃x̃′)2α̌(1− ax̃x̃′)p−α(x̃
′(1− ax̃x̃′)2)p−α(

−x̃′

1− ax̃x̃′ (1− ax̃x̃′)2)

× pα(
x̃(1 + ax̃x̃′)

1− ax̃x̃′ )pα(
−x̃

1 + ax̃x̃′ )

= α̌((1 + ax̃x̃′)2(1− ax̃x̃′))p−α(0)pα(
x̃x̃′

1− ax̃x̃′ )

= α̌(1 + ax̃x̃′)pα(
x̃x̃′

1− ax̃x̃′ ).

Now

α̌(1 + ax̃x̃′) ∈ Ker(Tα(A) → Tα(A/mr−1)) ∼= T α

and

pα(
x̃x̃′

1− ax̃x̃′ ) ∈ Ker(Uα(A) → Uα(A/mr−1)) ∼= (Uα)
r−1.

Using the canonical isomorphism G ∼= G(A), we conclude that for elements x ∈
(Uα)

b and x′ ∈ (U−α)
c we have [x, x′] ∈ T α(Uα)

r−1. Finally, because of the semidi-
rect product TU in G, the decomposition of [x, x′] as an element of T α(Uα)

r−1 is
unique. �
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The following result and its proof appear in [12], 1.7. Note that the proof uses
Lemma 2.9(c).

Lemma 2.10. We fix an order on Φ+. For any z ∈ V and β ∈ Φ+, define elements
xz
β ∈ Uβ via the decomposition z =

∏
β∈Φ+ xz

β (factors written using the given order

on Φ+). Let α ∈ Φ− and a be an integer such that 1 ≤ a ≤ r − 1. Suppose that
z ∈ V a is an element such that xz

β ∈ (Uβ)
a+1, for all β ∈ Φ+ with ht(β) > ht(−α).

Then for any ξ ∈ (Uα)
r−a−1, we have

[ξ, z] = τξ,zωξ,z , where τξ,z ∈ T α and ωξ,z ∈ (V −)r−1.

Proof. We argue by induction on Nz = #{β ∈ Φ+ | xz
β �= 1}. If Nz = 0 the result is

clear. Now assume that Nz = 1 so that z ∈ Uβ with β ∈ Φ+. If α = −β the result
follows from Lemma 2.9(c). If α �= −β and ht(β) > ht(−α), then z ∈ (Uα)

a+1 and
ξz = zξ by Lemma 2.9(b). If α �= −β and ht(β) ≤ ht(−α), then by Lemma 2.9(b)
we have [ξ, z] =

∏
i,i′≥1,iα+i′β∈Φ ui,i′ with ui,i′ ∈ (Uiα+i′β)

r−1, and it is enough to

show that if i, i′ ≥ 1, we cannot have iα+ i′β ∈ Φ+. Now if we had iα + i′β ∈ Φ+

for some i, i′ ≥ 1, then general properties of root systems imply that α + β ∈ Φ+,
and hence we would have ht(β) > ht(−α); a contradiction.

Now assume that Nz ≥ 2 and that the assertion is true for all z′ such that
Nz′ ≤ Nz. We can write z = z′z′′, where z′, z′′ ∈ V a, Nz′ < Nz, Nz′′ < Nz. Using
the induction hypothesis, we have

ξz = ξz′z′′ = τξ,z′ωξ,z′z′ξz′′ = τξ,z′ωξ,z′z′τξ,z′′ωξ,z′′z′′ξ,

where τξ,z′ ∈ T α and ωξ,z′ ∈ (V −)r−1. Since a+r−1 ≥ r, we have z′τξ,z′′ = τξ,z′′z′

and z′ωξ,z′′ = ωξ,z′′z′, by Lemma 2.2. Hence

ξz = τξ,z′ωξ,z′z′τξ,z′′ωξ,z′′z′′ξ = τξ,z′ωξ,z′τξ,z′′ωξ,z′′z′z′′ξ = τξ,z′τξ,z′′ωξ,z′ωξ,z′′zξ,

and so

[ξ, z] = τξ,zωξ,z,

where τξ,z = τξ,z′τξ,z′′ and ωξ,z = ωξ,z′ωξ,z′′ . �

Let Z = U− ∩V, Z = (FAZ)(k) = U− ∩ V , and Φ′ = {β ∈ Φ | Uβ ⊆ Z}. We
obviously have Φ′ ⊆ Φ+. Let X be the set of all subsets I ⊆ Φ′ such that I �= ∅,
and ht : Φ+ → N is constant on I.

To any z ∈ Z1−{1} we associate a pair (a, Iz), where a is an integer 1 ≤ a ≤ r−1,
and Iz ∈ X , as follows. We define a by the condition that z ∈ Za,∗. If xz

β ∈ Uβ

are defined as in Lemma 2.10 in terms of a fixed order on Φ+, then xz
β ∈ (Uβ)

a for

all β ∈ Φ′ and xz
β = 1 for all β ∈ Φ+ − Φ′ (this is a consequence of the formula

Za =
∏

β∈Φ′ Ua
β ). We define the set Iz as

Iz = {α′ ∈ Φ′ | xz
α′ ∈ (Uα′)a,∗ and xz

β ∈ (Uβ)
a+1 ∀β ∈ Φ+ s.t. ht(β) > ht(α′)}.

The definition of Iz does not depend on the choice of order on Φ+. For any integer
1 ≤ a ≤ r−1 and I ∈ X , let Za,∗,I be the set of all z ∈ Z1−{1} such that z ∈ Za,∗

and I = Iz. Thus we have a partition

(∗) Z1 − {1} =
⊔

1≤a≤r−1
I∈X

Za,∗,I .
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3. The main results

Recall the definitions of the groups T, T ′, U, U ′, T , T ′ and the variety Σ from
Section 2. After having set up the general framework, we are now ready to give
results generalizing those in [12], with the structures of the proofs remaining more
or less the same. All the ideas of the proofs in this section are due to Lusztig. The
only thing that requires a comment here is the use of the elements ŵ. In [12], the
inclusion G1 ⊆ G (in our notation) allows one to view the elements of N(T1, T

′
1) as

elements of N(T, T ′). However, in the general case which we consider here there
is no such inclusion, and instead we have to use lifts ŵ ∈ N(T, T ′) of the elements
ẇ ∈ N(T1, T

′
1). The following theorem does not depend on the choice of lift ŵ for

each ẇ. This can be seen from the proof, because we show that∑
j∈Z

(−1)j dimHj
c (Σw)θ−1,θ′ =

∑
j∈Z

(−1)j dimHj
c (Σ̂ŵ)θ−1,θ′ ,

where Σ̂ŵ is the variety defined below, ŵ is an arbitrary lift of ẇ, and the latter
sum is equal to 1 if F (w) = w and Ad(ŵ) : T ′F → TF carries θ to θ′, and equals

0 otherwise. Thus, if ŵ′ is another lift of ẇ, then
∑

j∈Z
(−1)j dimHj

c (Σ̂ŵ)θ−1,θ′ =∑
j∈Z

(−1)j dimHj
c (Σ̂ŵ′)θ−1,θ′ , and so whenever F (w) = w, we see that Ad(ŵ) :

T ′F → TF carries θ to θ′ if and only if Ad(ŵ′) : T ′F → TF carries θ to θ′.

Theorem 3.1. Let θ ∈ T̂F and θ′ ∈ T̂ ′F . If r ≥ 2, assume that θ′ is regular. Then∑
j∈Z

(−1)j dimHj
c (Σ)θ−1,θ′ is equal to the number of w ∈ W (T1, T

′
1)

F such that

Ad(ŵ) : T ′F → TF carries θ to θ′.

Proof. Using the partition Σ =
⊔

w Σw and the additivity of Lefschetz numbers
(cf. [4], 10.7), we see that it is enough to prove that

∑
j∈Z

(−1)j dimHj
c (Σw)θ−1,θ′

is equal to 1 if F (w) = w and Ad(ŵ) : T ′F → TF carries θ to θ′, and equals 0
otherwise. We now fix w ∈ W (T1, T

′
1). We have

Σw = {(x, x′, y) ∈ F (U)×F (U ′)×G | xF (y) = yx′, y ∈ UG1ŵT ′U ′ = UZ1ŵT ′U ′},
where Z1 = (U−)1 ∩ ŵ(U ′−)1ŵ−1 (the equality UG1ŵT ′U ′ = UZ1ŵT ′U ′ follows
from Lemma 2.3). Let

Σ̂ŵ = {(x, x′, u, u′, z, τ ′) ∈ F (U)× F (U ′)× U × U ′ × Z1 × T ′ |
xF (u)F (z)F (ŵ)F (τ ′)F (u′) = uzŵτ ′u′x′}.

The map Σ̂ŵ → Σw given by (x, x′, u, u′, z, τ ′) 	→ (x, x′, uzŵτ ′u′) is a locally trivial
fibration with all fibres isomorphic to a fixed affine space. This map is compatible
with the TF × T ′F -actions where TF × T ′F acts on Σ̂ŵ by

(t, t′) : (x, x′, u, u′, z, τ ′)(a)

	−→ (txt−1, t′x′t′−1, tut−1, t′u′t′−1, tzt−1, ŵ−1tŵτ ′t′−1).

Hence, by [11], 1.9 it is enough to show that
∑

j∈Z
(−1)j dimHj

c (Σ̂ŵ)θ−1,θ′ is equal

to 1 if F (w) = w and Ad(ŵ) : T ′F → TF carries θ to θ′, and equals 0 otherwise.

By the change of variables xF (u) 	→ x, x′F (u′)−1 	→ x′ we may rewrite Σ̂ŵ as

Σ̂ŵ = {(x, x′, u, u′, z, τ ′) ∈ F (U)× F (U ′)× U × U ′ × Z1 × T ′ |
xF (z)F (ŵ)F (τ ′) = uzŵτ ′u′x′},
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with the TF × T ′F -action still given by (a). We have a partition Σ̂ŵ = Σ̂′
ŵ � Σ̂′′

ŵ,
where

Σ̂′
ŵ = {(x, x′, u, u′, z, τ ′) ∈ F (U)× F (U ′)× U × U ′ × (Z1 − {1})× T ′ |

xF (z)F (ŵ)F (τ ′) = uzŵτ ′u′x′},
Σ̂′′

ŵ = {(x, x′, u, u′, 1, τ ′) ∈ F (U)× F (U ′)× U × U ′ × {1} × T ′ |
xF (ŵ)F (τ ′) = uŵτ ′u′x′}

are stable under the TF × T ′F -action. It is then enough to show that∑
j∈Z

(−1)j dimHj
c (Σ̂

′′
ŵ)θ−1,θ′ is equal to 1 if F (w) = w(b)

and Ad(ŵ) : T ′F → TF carries θ to θ′, and equals 0 otherwise.

Hj
c (Σ̂

′
ŵ)θ−1,θ′ = 0, for all j.(c)

We first prove (c). For r = 1 we have Σ̂′
ŵ = ∅, so in this case (c) is clear. Suppose

now that r ≥ 2. If M is a T ′F -module we shall write M(χ) for the subspace of M on

which T ′F acts according to χ; that is, M(χ) = {m ∈ M | t′m = χ(t′)m, ∀t′ ∈ T ′F }.
Now T ′F acts on Σ̂′

ŵ by

t′ : (x, x′, u, u′, z, τ ′) 	−→ (x, t′x′t′−1, u, t′u′t′−1, z, τ ′t′−1).

Hence Hj
c (Σ̂

′
ŵ) becomes a T ′F -module. Since Hj

c (Σ̂
′
ŵ) =

⊕
χ Hj

c (Σ̂
′
ŵ)(χ), it is

enough to show that Hj
c (Σ̂

′
ŵ)(χ) = 0. We shall use the definitions and results

in Lemmas 2.9, 2.10, and the partition (∗) at the end of Section 2, relative to
U,U−, V, V −, where we take U,U− as above, and V = ŵ(U ′)−ŵ−1, V − = ŵU ′ŵ−1.
The partition (∗) gives rise to a partition

Σ̂′
ŵ =

⊔
1≤a≤r−1

I∈X

Σ̂a,I
ŵ , where Σ̂a,I

ŵ = {(x, x′, u, u′, z, τ ′) ∈ Σ̂′
ŵ | z ∈ Za,∗,I}.

It is easy to see that there is a total order on the set of indices (a, I) such that the

union of the Σ̂a,I
ŵ for (a, I) less than or equal to some given (a0, I0) is closed in Σ̂′

ŵ.

Since the subsets Σ̂a,I
ŵ are stable under the action of T ′F , we see that in order to

prove (c) it is enough to show that

(d) Hj
c (Σ̂

a,I
ŵ )(χ) = 0, for any fixed (a, I).

We choose α′ ∈ I, and let α = −α′. Then Uα ⊆ U ∩ V − = U ∩ ŵU ′ŵ−1.
For any z ∈ Za,∗ and ξ ∈ (Uα)

r−a−1 we have

[ξ, z] = τξ,zωξ,z,

where τξ,z∈T α and ωξ,z ∈ ŵ(U ′)r−1ŵ−1 are uniquely determined (cf. Lemma 2.10).
Moreover, the map (Uα)

r−a−1 → T α, ξ 	→ τξ,z factors through an isomorphism

λz : (Uα)
r−a−1/(Uα)

r−a −̃→ T α.

Let π : (Uα)
r−a−1 → (Uα)

r−a−1/(Uα)
r−a be the canonical homomorphism. Since

Uα is an affine space, there exists a morphism of algebraic varieties

ψ : (Uα)
r−a−1/(Uα)

r−a −→ (Uα)
r−a−1
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such that π ◦ ψ = Id and ψ(1) = 1. Let

H′ = {t′ ∈ T ′ | t′−1F (t′) ∈ ŵ−1T αŵ}.

This is a closed subgroup of T ′. For any t′ ∈ H′ we define ft′ : Σ̂
a,I
ŵ → Σ̂a,I

ŵ by

ft′(x, x
′, u, u′, z, τ ′) = (xF (ξ), x̂′, u, F (t′)−1u′F (t′), z, τ ′F (t′)),

where

ξ = (ψλ−1
z−1(ŵF (t′)−1t′ŵ−1))−1 ∈ (Uα)

r−a−1 ⊆ U ∩ ŵU ′ŵ−1,

and x̂′ ∈ G is determined by the condition that defines the variety Σ̂a,I
ŵ ; that is,

xF (ξ)F (z)F (ŵ)F (τ ′F (t′)) = uzŵτ ′F (t′)F (t′)−1u′F (t′)x̂′.

In order for this to be well defined we must check that x̂′ ∈ F (U ′). Thus we must
show that

xF (ξ)F (z)F (ŵ)F (τ ′F (t′)) ∈ uzŵτ ′u′F (t′)F (U ′).

By Lemma 2.10 we have

ξz = (z−1ξ−1)−1 = (ω−1
ξ−1,z−1τ

−1
ξ−1,z−1ξ

−1z−1)−1 = zξτξ−1,z−1ωξ−1,z−1 .

Thus the above condition is equivalent to

xF (z)F (ξ)F (τξ−1,z−1)F (ωξ−1,z−1)F (ŵ)F (τ ′F (t′)) ∈ uzŵτ ′u′F (t′)F (U ′).

Since xF (z) = uzŵτ ′u′x′F (τ ′)−1F (ŵ)−1, it is enough to show that

uzŵτ ′u′x′F (τ ′)−1F (ŵ)−1F (ξ)F (τξ−1,z−1)F (ωξ−1,z−1)F (ŵ)F (τ ′F (t′))

∈ uzŵτ ′u′F (t′)F (U ′)

or that

x′F (τ ′)−1F (ŵ)−1F (ξ)F (τξ−1,z−1)F (ωξ−1,z−1)F (ŵ)F (τ ′F (t′)) ∈ F (t′)F (U ′).

Since x′ ∈ F (U ′) and F (ŵ)−1F (ωξ−1,z−1)F (ŵ) ∈ F (U ′) it is enough to check that

F (τ ′)−1F (ŵ)−1F (ξ)F (τξ−1,z−1)F (ŵ)F (τ ′F (t′)) ∈ F (t′)F (U ′).

Since F (ŵ−1)F (ξ)F (ŵ) ∈ F (U ′) it is enough to check that

F (τ ′)−1F (ŵ)−1F (τξ−1,z−1)F (ŵ)F (τ ′F (t′)) ∈ F (t′)F (U ′)

or that

F (ŵ)−1F (τξ−1,z−1)F (ŵ)F (F (t′)) ∈ F (t′)F (τ ′)F (U ′)F (τ ′)−1 = F (t′)F (U ′),

which is equivalent to

F (ŵ)−1F (τξ−1,z−1)F (ŵ)F (F (t′)) = F (t′).

That is, ŵ−1τξ−1,z−1ŵ = F (t′)−1t′ or λz−1(π(ξ−1)) = τξ−1,z−1 , which holds because
of the definitions of the element ξ and the map λz−1 .

Thus, ft′ : Σ̂
a,I
ŵ → Σ̂a,I

ŵ is well defined and has an obvious inverse, so it is clearly
an isomorphism for any t′ ∈ H′. Note however that this does not define an action

of the group H′ on Σ̂a,I
ŵ , since ft′1t′2 �= ft′1 ◦ ft′2 in general. Nevertheless, ft′ is in

particular a well-defined isomorphism for any t′ ∈ H′0, where H′0 is the connected
component of H′, and by general principles (cf. the proof of Proposition 6.4 in [2])

the induced map f∗
t′ : H

j
c (Σ̂

a,I
ŵ ) → Hj

c (Σ̂
a,I
ŵ ) is constant when t′ varies in H′0. In

particular, it is constant when t′ varies in T ′∩H′0. Now T ′F ⊆ H′ and for t′ ∈ T ′F ,
the map ft′ coincides with the action of t′−1 in the T ′F -action on Σ̂a,I

ŵ (we use the
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fact that ψ(1) = 1). We see that the induced action of T ′F on Hj
c (Σ̂

a,I
ŵ ) is trivial

when restricted to T ′ ∩H′0.
Now let n ≥ 1 be an integer such that Fn(ŵ−1T αŵ) = ŵ−1T αŵ. Then

t′ 	−→ t′F (t′)F 2(t′) · · ·Fn−1(t′)

is a well-defined morphism ŵ−1T αŵ → H′. Its image is a connected subgroup
of H′, hence contained in H′0. If t′ ∈ (ŵ−1T αŵ)F

n

, then NFn

F (t′) ∈ T ′F ; thus

NFn

F (t′) ∈ T ′F ∩ H′0. We see that the action of NFn

F (t′) ∈ T ′F on Hj
c (Σ̂

a,I
ŵ ) is

trivial for any t′ ∈ (ŵ−1T αŵ)F
n

.

If we assume that Hj
c (Σ̂

a,I
ŵ )(χ) �= 0, it follows that t′ 	→ χ(NFn

F (t′)) is the trivial

character of (ŵ−1T αŵ)F
n

. This contradicts our assumption that χ is regular. Thus
(d) holds, and hence (c) holds.

We now prove (b). Let

H̃ = {(t, t′) ∈ T × T ′ | tF (t)−1 = F (ŵ)t′F (t′)−1F (ŵ)−1}.
This is a closed subgroup of T×T ′ containing TF ×T ′F . Now the action of TF×T ′F

on Σ̂′′
ŵ extends to an action of H̃ given by the same formula. To see this, consider

(t, t′) ∈ H̃ and (x, x′, u, u′, 1, τ ′) ∈ Σ̂′′
ŵ. We must show that

(txt−1, t′x′t′−1, tut−1, t′u′t′−1, 1, ŵ−1tŵτ ′t′−1) ∈ Σ̂′′
ŵ.

That is,

txt−1F (ŵ)F (ŵ−1)F (t)F (ŵ)F (τ ′)F (t′−1) = tut−1ŵŵ−1tŵτ ′t′u′t′−1t′x′t′−1

or that

xt−1F (t)F (ŵ)F (τ ′)F (t′−1) = uŵτ ′u′x′t′−1

or that

xt−1F (t)F (ŵ)F (τ ′)F (t′−1) = xF (ŵ)F (τ ′)t′−1

or that t−1F (t)F (ŵ)F (t′−1) = F (ŵ)t′−1, which is clear. Let T∗ (resp. T ′
∗) be

the reductive part of T (resp. T ′) (thus T∗ is a torus isomorphic to T ). Let

H̃∗ = H̃ ∩ (T∗ × T ′
∗). Then H̃0

∗ is a torus acting on Σ̂′′
ŵ by restriction of the H̃-

action. The fixed point set (Σ̂′′
ŵ)

H̃0
∗ is stable under the action of TF × T ′F , and by

[4], 4.5 (compare 11.2) and 10.15 we have∑
j∈Z

(−1)j dimHj
c (Σ̂

′′
ŵ)θ−1,θ′

= |TF × T ′F |−1
∑

(t,t′)∈TF×T ′F

L((t, t′), Σ̂′′
ŵ)θ(t)θ

′(t′)−1

= |TF × T ′F |−1
∑

(t,t′)∈TF×T ′F

L((t, t′), (Σ̂′′
ŵ)

H̃0
∗ )θ(t)θ′(t′)−1

=
∑
j∈Z

(−1)j dimHj
c ((Σ̂

′′
ŵ)

H̃0
∗ )θ−1,θ′ .

It is then enough to show that∑
j∈Z

(−1)j dimHj
c ((Σ̂

′′
ŵ)

H̃0
∗ )θ−1,θ′ is equal to 1 if F (w) = w(e)

and Ad(ŵ) : T ′F → TF carries θ to θ′, and equals 0 otherwise.
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Let (x, x′, u, u′, 1, τ ′) ∈ (Σ̂′′
ŵ)

H̃0
∗ . By the Lang-Steinberg theorem the first projection

H̃∗ → T∗ is surjective. It follows that the first projection H̃0
∗ → T∗ is surjective.

Similarly the second projection H̃0
∗ → T ′

∗ is as well. Hence for any t ∈ T∗, t
′ ∈ T∗

we have

txt−1 = x, t′x′t′−1 = x′, tut−1 = u, t′u′t′−1 = u′,

and hence x = x′ = u = u′ = 1. Thus (Σ̂′′
ŵ)

H̃0
∗ is contained in

(f) {(1, 1, 1, 1, 1, τ ′) | τ ′ ∈ T ′, F (ŵτ ′) = ŵτ ′}.

The set (f) is clearly contained in the fixed point set of H̃. Note that (f) is
empty unless F (w) = w, by Bruhat decomposition in G1. If (f) is empty, then∑

j∈Z
(−1)j dimHj

c ((Σ̂
′′
ŵ)

H̃0
∗ )θ−1,θ′ = 0. We can therefore assume that F (w) = w.

Now (f) is stable under the action of H̃ . Indeed, if τ ′ ∈ T ′ is such that F (ŵτ ′) = ŵτ ′

and (t, t′) ∈ H̃ , then

F (ŵŵ−1tŵτ ′t′−1) = F (ŵ)F (t′)t′−1F (ŵ)−1tF (ŵ)F (τ ′)F (t′−1)

= tF (ŵ)F (t′)t′−1F (τ ′)F (t′−1) = tF (ŵ)F (τ ′)t′−1 = ŵŵ−1tŵτ ′t′−1.

Thus in particular, (f) is stable under H̃0
∗ . Since (f) is a finite set and H̃0

∗ is

connected, we see that H̃0
∗ must act trivially on (f). Thus, (f) is exactly the fixed

point set of H̃0
∗ , and hence (Σ̂′′

ŵ)
H̃0

∗ ∼= (ŵT ′)F . Since

#((Σ̂′′
ŵ)

H̃0
∗ )(t,t

′) = #{ŵτ ′ ∈ (ŵT ′)F | ŵ−1tŵτ ′t′−1 = τ ′}

= #{ŵτ ′ ∈ (ŵT ′)F | ŵ−1tŵ = t′} =

{
|(ŵT ′)F | = |T ′F | if ŵ−1tŵ = t′,

0 otherwise,

it follows from the facts quoted above together with [11], 1.10 that∑
j∈Z

(−1)j dimHj
c ((Σ̂

′′
ŵ)

H̃0
∗ )θ−1,θ′

= |TF × T ′F |−1
∑

(t,t′)∈TF×T ′F

L((t, t′), (Σ̂′′
ŵ)

H̃0
∗ )θ(t)θ′(t′)−1

= |TF × T ′F |−1
∑
t∈TF

|T ′F |θ(t)θ′(ŵ−1tŵ)−1

= 〈θ, ŵ
−1

θ′〉TF =

{
1 if ŵθ = θ′,

0 otherwise.

Thus we have established (e), and so the theorem is proved. �

We finish by giving some important consequences of the preceding results. Let
R(GF ) be the group of virtual representations of GF over Ql. Let 〈·, ·〉 be the
standard inner product R(GF )×R(GF ) → Z. Let

ST,U = {g ∈ G | g−1F (g) ∈ F (U)}.

The finite group GF × TF acts on ST,U by (g1, t) : g 	→ g1gt
−1. For any i ∈ Z

we have an induced action of GF × TF on Hi
c(ST,U ). For θ ∈ T̂F we denote by
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Hi
c(ST,U )θ the subspace of Hi

c(ST,U ) on which TF acts according to θ. This is a
GF -submodule of Hi

c(ST,U ). Let

Rθ
T,U =

∑
i∈Z

(−1)iHi
c(ST,U )θ ∈ R(GF ).

Note that the definition of Rθ
T,U is formally identical to that of [12], 2.1, even

though the objects involved (such as the groups G and U , and the variety ST,U )
are in general not isomorphic to their analogues in [12].

The following result appears in [12], 2.2.

Proposition 3.2. Let the notation be as before. Then the following holds:

(a) Assume that there exist integers i and i′ and an irreducible GF -module that
appears in the GF -module (Hi

c(ST,U )θ−1)∗ (dual of Hi
c(ST,U )θ−1) and in

the GF -module Hi′

c (ST ′,U ′)θ′ . Then there exists n ≥ 1 and g ∈ N(T ′, T )F
n

such that Ad(g) carries θ ◦NFn

F |T Fn ∈ T̂ Fn to θ′ ◦NFn

F |T ′Fn ∈ T̂ ′Fn .
(b) Assume that there exists an irreducible GF -module that appears in the vir-

tual GF -module Rθ
T,U and in the virtual GF -module Rθ′

T ′,U ′ . Then there ex-

ists n ≥ 1 and g ∈ N(T, T ′)F
n

such that Ad(g) carries θ ◦NFn

F |T Fn ∈ T̂ Fn

to θ′ ◦NFn

F |T ′Fn ∈ T̂ ′Fn .

Proof. We prove (a). Consider the free GF -action on ST,U × ST ′,U ′ given by g1 :
(g, g′) 	→ (g1g, g1g

′). The map

(g, g′) 	−→ (x, x′, y), x = g−1F (g), x′ = g′−1F (g′), y = g−1g′

defines an isomorphism from GF \(ST,U × ST ′,U ′) to Σ (the fact that it is an iso-
morphism and not merely a bijective homomorphism is proved in [1], pp. 221–222
in the situation where r = 1; the same argument works in general). The action of
TF × T ′F on ST,U × ST ′,U ′ given by right multiplication by t−1 on the first factor
and by t′−1 on the second factor, becomes an action of TF × T ′F on Σ given by
(x, x′, y) 	→ (txt−1, t′x′t′−1, tyt′−1). Our assumption implies that the GF -module

Hi
c(ST,U )θ−1 ⊗Hi′

c (ST ′,U ′)θ′ contains the trivial representation with non-zero mul-

tiplicity; that is, (Hi
c(ST,U )θ−1 ⊗Hi′

c (ST ′,U ′)θ′)G
F �= 0. By [4], 10.9 and 10.10(i) we

have an inclusion

(Hi
c(ST,U )θ−1 ⊗Hi′

c (ST ′,U ′)θ′)G
F

↪−→ Hi+i′

c (GF\(ST,U × ST ′,U ′))θ−1,θ′ ,

and so Hi+i′

c (GF \(ST,U × ST ′,U ′))θ−1,θ′ �= 0. By the above isomorphism we thus

have Hi+i
c (Σ)θ−1,θ′ �= 0. We now use Lemma 2.6, and (a) follows.

We prove (b). By [4], 11.4 we have∑
i

(−1)i(Hi
c(ST,U )θ−1)∗ =

∑
i

(−1)iHi
c(ST,U )θ.

Hence the assumption of (b) implies that the assumption of (a) holds. Hence the
conclusion of (a) holds. The proposition is proved. �

The following result and its corollary correspond to 2.3 and 2.4 in [12].

Proposition 3.3. Assume that θ or θ′ is regular (see Definition 2.7). Then

〈Rθ
T,U , R

θ′

T ′,U ′〉 = #{w ∈ W (T1, T
′
1)

F | ŵθ = θ′}.
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Proof. We may assume that θ′ is regular. We have

〈Rθ
T,U , R

θ′

T ′,U ′〉

=
∑
i,i′∈Z

(−1)i+i′ dim(Hi
c(ST,U )θ−1 ⊗Hi′

c (ST ′,U ′)θ′)G
F

=
∑
j∈Z

(−1)j dimHj
c (G

F\(ST,U × ST ′,U ′))θ−1,θ′

=
∑
j∈Z

(−1)j dimHj
c (Σ)θ−1,θ′ .

It remains to use Theorem 3.1. �

Corollary 3.4. Assume that θ ∈ T̂F is regular. Then

(a) Rθ
T,U is independent of the choice of U .

(b) Assume in addition that there is no non-trivial element w ∈ W (T1)
F such

that ŵ fixes θ. Then ±Rθ
T,U is an irreducible GF -module.

Proof. We prove (a). Let V be the subgroup of G associated with the unipotent
radical V of another Borel subgroup of G containing T. By Proposition 3.3 we
have

〈Rθ
T,U , R

θ
T,U 〉 = 〈Rθ

T,U , R
θ
T,U ′〉 = 〈Rθ

T,U ′ , Rθ
T,U 〉 = 〈Rθ

T,U ′ , Rθ
T,U ′〉.

Hence 〈Rθ
T,U −Rθ

T,U ′ , Rθ
T,U −Rθ

T,U ′ 〉 = 0, and so Rθ
T,U = Rθ

T,U ′ . This proves (a). In

the setup of (b), we see from Proposition 3.3 that 〈Rθ
T,U , R

θ
T,U 〉 = 1, which proves

(b). �
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