The University of Southampton
University of Southampton Institutional Repository

Modelling near-bank flow hydraulics

Modelling near-bank flow hydraulics
Modelling near-bank flow hydraulics
River bank erosion models are a fundamental requirement for understanding the migration and evolution of river meanders, estimating the potential for land-loss and threat to floodplain infrastructure, and predicting the delivery of contaminated floodplain sediments to aquatic ecosystems. While progress has recently been made in understanding and modelling processes controlling large-scale mass failure, less attention has been paid to the role that fluvial erosion plays in bank retreat. This project aims to address this gap by developing a new fluvial erosion model. Recent developments in bank erosion monitoring technology, and in the quantification of the bank erodibility parameters using jet-testing devices, offer the means of determining fluvial erosion rates and bank erodibility. However, the missing link remains the need to obtain highresolution, spatially distributed, flow data to characterize the near-bank fluid shear stresses that drive bank erosion. One possible solution is to use Computational Fluid Dynamics (CFD) models as a substitute for empirical data.
Herein I evaluate a series of three-dimensional CFD simulations for a meander loop on the River Asker at Bridport in southern England. CFD models under specific steady peak flow conditions were developed using Fluent 6.2, with peak flow discharge estimates obtained from an adjacent gauging station. All the models obtained from the three examined flow events were successfully verified and validated using clearly defined and structured procedures. The modelling results indicated that the main qualitative features of the flow remain even as flow discharge varies. However, notable differences were observed between the examined flow events, such as, a general increasing of velocity and shear stress throughout the reach as flow stage is gradually increased, a slight reduction in the size and extent of separation zones at bank full stage, a movement of impingement points further downstream, and a continuation of the secondary flow within the fast streamtube further towards the bends exits. Bed/bank shear stress is mostly seen to decrease at shallow riffles as discharge approaches bankfull, while pools experience an increase in bed/bank shear stress with increase in discharge. Zones of higher bed/bank shear stress extend and combine, while marginal recirculation zones and areas of relatively low bed/bank shear stress generally reduce in area to form discrete locations for erosion and deposition phenomena. At bank full stage, the magnitudes of velocity and simulated shear stresses within the inner bank separation zones are found to be higher than those observed under low flow conditions and they may be sufficient to result in the removal of accumulated sediments into the main downstream flow. The presence of regions of high velocity in the form of a streamtube, especially along the outer banks, creates high shear stresses within these areas. As a result, outer bank migration rates are likely to be relatively high in bends with inner bank separation zones.
Spyropoulos, Emmanouil
a7fb82e8-eb2b-4492-a15d-b1b240f1f87b
Spyropoulos, Emmanouil
a7fb82e8-eb2b-4492-a15d-b1b240f1f87b
Darby, Stephen
4c3e1c76-d404-4ff3-86f8-84e42fbb7970

Spyropoulos, Emmanouil (2009) Modelling near-bank flow hydraulics. University of Southampton, School of Geography, Doctoral Thesis, 385pp.

Record type: Thesis (Doctoral)

Abstract

River bank erosion models are a fundamental requirement for understanding the migration and evolution of river meanders, estimating the potential for land-loss and threat to floodplain infrastructure, and predicting the delivery of contaminated floodplain sediments to aquatic ecosystems. While progress has recently been made in understanding and modelling processes controlling large-scale mass failure, less attention has been paid to the role that fluvial erosion plays in bank retreat. This project aims to address this gap by developing a new fluvial erosion model. Recent developments in bank erosion monitoring technology, and in the quantification of the bank erodibility parameters using jet-testing devices, offer the means of determining fluvial erosion rates and bank erodibility. However, the missing link remains the need to obtain highresolution, spatially distributed, flow data to characterize the near-bank fluid shear stresses that drive bank erosion. One possible solution is to use Computational Fluid Dynamics (CFD) models as a substitute for empirical data.
Herein I evaluate a series of three-dimensional CFD simulations for a meander loop on the River Asker at Bridport in southern England. CFD models under specific steady peak flow conditions were developed using Fluent 6.2, with peak flow discharge estimates obtained from an adjacent gauging station. All the models obtained from the three examined flow events were successfully verified and validated using clearly defined and structured procedures. The modelling results indicated that the main qualitative features of the flow remain even as flow discharge varies. However, notable differences were observed between the examined flow events, such as, a general increasing of velocity and shear stress throughout the reach as flow stage is gradually increased, a slight reduction in the size and extent of separation zones at bank full stage, a movement of impingement points further downstream, and a continuation of the secondary flow within the fast streamtube further towards the bends exits. Bed/bank shear stress is mostly seen to decrease at shallow riffles as discharge approaches bankfull, while pools experience an increase in bed/bank shear stress with increase in discharge. Zones of higher bed/bank shear stress extend and combine, while marginal recirculation zones and areas of relatively low bed/bank shear stress generally reduce in area to form discrete locations for erosion and deposition phenomena. At bank full stage, the magnitudes of velocity and simulated shear stresses within the inner bank separation zones are found to be higher than those observed under low flow conditions and they may be sufficient to result in the removal of accumulated sediments into the main downstream flow. The presence of regions of high velocity in the form of a streamtube, especially along the outer banks, creates high shear stresses within these areas. As a result, outer bank migration rates are likely to be relatively high in bends with inner bank separation zones.

Text
Spyropoulos_-_PhD_Thesis.pdf - Other
Download (33MB)

More information

Published date: June 2009
Organisations: University of Southampton

Identifiers

Local EPrints ID: 69710
URI: http://eprints.soton.ac.uk/id/eprint/69710
PURE UUID: a82bfe93-eefb-42ec-8bcc-725950cddb38
ORCID for Stephen Darby: ORCID iD orcid.org/0000-0001-8778-4394

Catalogue record

Date deposited: 27 Nov 2009
Last modified: 14 Mar 2024 02:41

Export record

Contributors

Author: Emmanouil Spyropoulos
Thesis advisor: Stephen Darby ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×