
On an Extensible Rule-based Prover for Event-B

Issam Maamria, Michael Butler, Andrew Edmunds, and Abdolbaghi Rezazadeh

ECS, University of Southampton, Southampton SO17 1BJ, UK
{im06r, mjb, ae2, ra3}@ecs.soton.ac.uk

1 Motivation

The Rodin platform [3] provides the practical setting to carry out modelling in
Event-B. It seamlessly integrates modelling and proving, and provides an exten-
sible and configurable mechanism that can be adapted to different application
domains and development methods [1]. The Rodin platform provides a prov-
ing infrastructure that has certain limitations. Extending the prover with proof
rules (rewrite and inference rules) requires a certain level of competence using
the Java programming language as well as good knowledge of the toolset’s in-
ternal architecture. A further complication of this approach is that it became
non-trivial to verify the soundness of the prover after adding new rules. This pa-
per presents our approach when dealing with prover extensibility and soundness
in the context of Event-B.

2 The Theory Construct

Theories will provide a mechanism by which the user can extend the proof ca-
pabilities of the Rodin platform by specifying rewrite rules. Proof obligations
will be generated to verify the soundness of the prover augmented with the new
rules. In essence, the theory construct will allow a degree of meta-reasoning to
be carried out within the same platform in a similar fashion to Event-B reason-
ing. Figure 1 outlines the structure of the theory construct. In what follows, we
briefly describe each of the elements of the theory construct:

1. Sets. A theory can define a number of given sets on which it is parametrised.
2. Metavariables. A theory can define a number of metavariables each of which

has a type.
3. Rewrite Rules. Rewrite rules are one-directional equations that can be used

to rewrite formulas to equivalent forms. As part of specifying a rewrite rule,
the theory developer decides whether the rule can be applied automatically
without user intervention or interactively following a user request.

3 Rewrite Rules

A rewrite rule defines how a formula lhs may be rewritten to one of several for-
mulae rhsi provided condition Ci holds. The following two definitions formalise
the concept of rewrite rules within theories. Note the use of the well-definedness
operator D [2].



Theory theory name

Sets s1, s2, ...

Metavariables v1, v2, ...

Rewrite Rules r1, r2, ...

End

Fig. 1. The Theory Construct

Definition 1 (Rewrite Rule). A rewrite rule is of the form

lhs→ C1 : rhsi

...

Cn : rhsn

where:

1. n ≥ 1,
2. lhs is not a meta-variable but may contain metavariables,
3. lhs and rhsi (for all i such that 1 ≤ i ≤ n) are formulas of the same syntactic

class i.e., both expressions or both predicates,
4. Ci (for all i such that 1 ≤ i ≤ n) are predicates,
5. Ci and rhsi (for all i such that 1 ≤ i ≤ n) only contain free variables from

lhs,
6. lhs and rhsi (for all i such that 1 ≤ i ≤ n) have the same type if lhs is an

expression.

Note. In this paper, we only consider rewrite rules whose left hand side is a basic
predicate (e.g., ⊆) or is an expression not involving binding. More generally, we
do not consider rules that require side conditions (i.e., non-freeness conditions).

Definition 2 (Sound Rewrite Rule). A rewrite rule

lhs→ C1 : rhsi

...

Cn : rhsn

is said to be sound if the following sequents are valid:

1. H,D(lhs) ` D(Ci) for all i such that 1 ≤ i ≤ n,
2. H,D(lhs), Ci ` D(rhsi) for all i such that 1 ≤ i ≤ n,



3. (a) H,D(lhs), Ci ` lhs = rhsi for all i such that 1 ≤ i ≤ n if lhs is an
expression, or;

(b) H,D(lhs), Ci ` lhs⇔ rhsi for all i such that 1 ≤ i ≤ n if lhs is a
predicate,

where H is a predicate providing typing information for all free variables occur-
ring in lhs.

The previous definition ensures that rewrite rules are both validity-preserving
and WD-preserving.

4 The Theory Prototype Plug-in

A theory prototype plug-in has been developed as an extension to the Rodin
platform. The plug-in offers the following capabilities:

1. Users can develop and validate theories in the same way as contexts and
machines.

2. Users can deploy theories to a specific directory where they become available
to the interactive and automatic provers of Rodin.

3. Users can use rewrite rules defined within the deployed theories as a part
of the proving activity. A pattern matching mechanism is implemented to
calculate applicable rewrite rules to any given sequent.

5 Further Work

This work can be extended to enable the specification and validation of inference
rules within theories. It can also be extended by providing a clear set of guide-
lines to help the theory developer with deciding whether a rule can be applied
automatically. Finally, the verification of the pattern matching mechanism will
give more confidence in this approach.

References

1. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool envi-
ronment for Event-B. In International Conference on Formal Engineering Methods
(ICFEM), 2006.

2. Jean-Raymond Abrial and Louis Mussat. On using conditional definitions in formal
theories. In ZB ’02: Proceedings of the 2nd International Conference of B and Z
Users on Formal Specification and Development in Z and B, pages 242–269, London,
UK, 2002. Springer-Verlag.

3. Michael Butler and Stefan Hallerstede. The Rodin Formal Modelling Tool. BCS-
FACS Christmas 2007 Meeting - Formal Methods In Industry, London., December
2007.


