
Page 1 of 2

published in: Acta Materialia 51 (2010) 3690-3700 

The influence of indenter tip rounding on the indentation size effect 

 

Xiao Guang Qiao, Marco J. Starink, Nong Gao 

Materials Research Group, School of Engineering Sciences, University of 

Southampton, Southampton SO171BJ, UK 

 

Abstract 

A m odel was develope d to interp ret the indentation size eff ect (ISE). The m odel 

considers the tip wear  effect, causing a rounded tip, th e plastic zone size and various 

strengthening contributions, including geom etrically ne cessary dislocations, pre-

existing statistically stored dislocations and grain size. It is shown that the shape of 

the worn tip can be effectively determ ined through calibration experim ents. The 

model is applied to predict dislocati on densities, and shows a good correspondence  

with published data on dislocation densities in copper single crystals. Predicted ISE is 

shown to be in good correspondence with published data on a range of metals, and an 

improvement over existing models is demonstrated.  

Key words: Ultra fine-grained (UFG) alum inium, nanoindentation, geom etrically 

necessary dislocations, tip rounding effect 

 

1. Introduction 

1.1 General approach aims 

The influence of strain gradie nt effects needs to be include d in the formulation of the 

constitutive b ehaviour o f m aterials a t m icro-scale [1,2]  a nd a  n umber o f g radient 

plasticity models accounting for these effects have been proposed (see e.g. [3,4]). One 

example of an experim ent revealing the stra in gradient effect is nanoindentation, in 

which the hardness detected has been shown to depend on the indent size, which is the 

so called in dentation size effect (ISE) [5].  The I SE is generally explained using the  

so-called ‘m echanism-based g radient p lasticity theo ry’ in which geom etrically 

necessary dislocations (GNDs) [6,7,8] gene rated in the plastic  zone underneath the 

indent due to strain gradients play a key part. Decreasing indentation size gives rise to 
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an increasing density of GNDs, and, hence, an increasing hardness.  Understanding of 

the ISE is crucial to development of FE models that incorporate GNDs. Thus, the ISE 

has received intense interest and a range of models have been presented to analyse the 

measured hardness vs indentation depth relation. 

Published work on the ISE show s that the existing f ormulations o f m odels lo ose 

accuracy in  predicting  m easured nanoinde ntation hardn ess for indentation depth 

below about 150 nm  whilst some approach es need a large num ber of fittable  

parameters to account for m easured na noindentation hardness (section 1.2). This 

range of differing models can lead to doubts on the range of validity of the theoretical 

approaches. The objectiv e of the present work  is to show that existing and new data  

on the indentation size effect can be mode lled with improved accuracy and down to a 

smaller indentation depth using a m odel in which we incorporate an accurat e 

description of a blunted inde nter tip and various additiona l strengthening effects, all 

within the m echanism-based gradient pl asticity theory. The m odel is based on 

analytical equations, and is hence computationally highly efficient.  

1.2 Existing models for the ISE 

In the Nix-Gao m odel [ 9], the GNDs are a ssumed to distribute in the he misphere 

underneath the indenter with radius of ac (projected con tact radius), and the averag e 
density of GNDs, N G

GNBρ − , is given by, 

2
0

3 tan
2

N G
GND bh

ρ θ− =                                                      Eq. 1) 

where b is the Burgers vector, h is the indentation depth and 0θ  is the angle of conical 

indent surface to the sample planar surface. From this, it follows that the indentation 

hardness is only related to the indentation depth. This approach leads to the often 

applied equation [9]: 

*

0
1H h

H h
= +                                                                      Eq. 2) 

where H is the indentation hardness, h is the indentation depth, h* and H0 are 

constants depending on the m aterial and can  be obtained by fitting the experimental 

results. The Nix-Gao m odel provided a good fit to the m easured ISE of (111) single 

crystal copper, cold worked  polycrystalline copper, (100)  single crystal silver and 

(110) single crystal silver w ith the indentation depth larg er than 150 nm  [9].  Tw o 

parameter models, such as the N ix-Gao model, show in creasing deviation from 
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measured nanoindentation hardness at low in dentation depths (typically lower than 

150 nm ) [9, 10,11 , 12 ,13]. In attem pts to  clarify these deviations, a num ber of 

modifications of the model have been proposed, see e.g. [14,15]. All of these methods 

provided so me i mprovements, but often at  the expense of introducing  new fittable 

parameters. For instance Chicot [14] cons idered the nano-inde ntation hardness and 

micro-indentation hardness sepa rately, i.e. using different H0 and h* values when 

predicting the nano-indentation hardness and micro-indentation hardness. Swadener et 

al. [10] assum ed the indentation depth is proportional to the conta ct r adius to  the  

power n (n >1). The GND density was then calc ulated following the Nix-Gao m odel. 

Both of these m odels showed i mprovements as compared to the Nix-Gao m odel, but 

regions of poor fit to data rem ained. Abu Al -Aub [15] assum ed the GND and 

statistically stored dislocation (SSD) dens ity should be coupled by a power and also 

considered the strengthening contribution by intrinsic stress. This provides: 
/ 2

y

0 y c

1
H H h
H H h

β β∗⎛ ⎞− ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

              Eq. 3) 

where Hy is the hardness contribution by the intrinsic stress, β is a constan t and 

determined as 0.77-1.2 by f itting. The latter  equation provides a better predic tion of 

the nanoindentation hardness but s till can not a ccurately predict the na noindentation 

hardness at very low  indentation de pth (s ee section  4). Feng and Nix [12] 

incorporated f in Nix-Gao m odel and assum ed f follows an exponential relation with 

indentation depth h introducing two new coefficients. Therefore, there are four fittable 

parameters in the predicting function, which adds extensive flexibility allowing fitting 

to virtually any dataset. 

Huang et al. [16] studied the ISE using the continuum  theory of m echanism-based 

stain g radient plas ticity (CMSG) [ 17] ba sed on Taylor dislocation m odel by finite 

element (FE) m ethod. This work showed a good correlation with the ISE of several 

metals, but it fails to predict the nanoindentation hardness with i ndentation depth less 

than 150 nm because the tip rounding effect has not been considered. 

In the pres ent work, we consider th at the m ain cause f or deviations f rom existing 

models is due to deviation from  the ideal pyramid shape of the tip. This tip rounding 

can be due to wear and localised nanoscale fr acture at the tip, which in practice will 

be unavoidable. A rounded ti p has been considered in som e works [10, 18], whi ch 

provide an improved fit to experiments, but  still failed to fully explain deviations. 
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Huang, Hwang, Nix and co-workers [19,20, 21] studied the tip rounding effect using 

CMSG theory in an FE analysis . They predicted tha t the ind entation hardn ess 

increases with the incr easing indentation depth when the indentation depth is lower 

than the height of the rounded tip; then de creases with the incr easing indentation 

depth when the indentation depth is larger than the height of the rounded tip. A test of 

the model reported in [21], using hardness data  of MgO, indicated that their model of 

the tip rounding effect alone can not explain these experimental results.  

Apart from the tip rad ius effect, adjust ing th e assum ed size of the plastic zon e 

underneath the indent has also been consid ered in several works to provide a m ore 

accurate hardness prediction. Feng and Nix [12] and Durst et al [22,23] considered the 

radius of the plastic zo ne under the indent is f tim es larg er than the radius of  th e 

contacted area. Feng and Nix [12] assum ed the f value is continuous factor varying 

with the contact depth in an exponential function, whilst Durst et al [22, 23] assumed f 

is fixed for specific m aterials. The m odified models provide good predictions for  

different materials at the expense of using a range of fitting parameters; with f values 

from 1 to 2.6.  

2. Model of indentation size effect for blunted tip.  

2.1 Generation of GNDs.  

In this s ection we will provide an im proved calculation of  the ISE in the case of  a 

non-perfect (rounded) indenter  tip, avoiding the m any approximations involved in 

[18]. W e will cons ider a r ounded tip with fixed radius.  It can be considered as  

comprised of two parts: a spherical cap and a conical frustum  (see Fig. 1). W e will  

take apz = fac, where f > 1 [12, 22], apz and ac are the radius of the plastic zone and the 

contact area. With reference to Fig. 1 it can be seen that: 

1 2h h h= +                                                                                    Eq. 4) 

0
0sinr

R
θ=                                                                                    Eq. 5) 

2 2
2 0h R R r= − −                                                                        Eq. 6) 

tan b
S

θ =                                                                                           Eq. 7) 

1
0

0

tan
c

h
a r

θ =
−

                                                                                  Eq. 8) 
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where h is indentation depth, h2 is the height of  the spherical cap, 0r  is the radius of 

the bottom  surface of the spherical cap as well as th e top  surface of the conical 
frustum, S i s the averag e horizon tal distan ce of dislocation s, 0θ  is th e an gle of th e 

conical surface and the sam ple top surf ace (value of which  is constan t) and θ  is the 

angle of the spherical surface and the sample top surface ( value of which is variable).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic sketch of distribution of GNDs underneath the rounded conical tip [9] 

 

From Eq. 4 to Eq. 8 follows, 

2 22
0 0 2

0

2 0
sin

hr r h
θ

− + =                                                                        Eq. 9) 

Solving the latter equation and taking into account that 0
0

2

cotr
h

θ>  (see Fig. 1) 

provides: 
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0
0 2

0

1 cos
sin

r hθ
θ

+
=                                                                               Eq. 10) 

Substituting Eq. 10 to Eq. 8 provides: 

01 1
0 2 0 2 0

0 0 0

1 cos cot / sin
tan tan sinc

h ha r h h hθ θ θ
θ θ θ

+
= + = + = +            Eq. 11) 

0 0
2 22

0 0 0

1 cos 1
sin sin 1 cos

rR h hθ
θ θ θ

+
= = =

−
                                           Eq. 12) 

b 2
0

1
cos

h h
θ

=                                                                                   Eq. 13) 

where hb is blunting distance (see Fig.  1).The total length of GND ( )hλ  comprises of 

two parts  

1 1 2 2( ) ( ) ( )h h hλ λ λ= +                                                                       Eq. 14) 

where 1 1( )hλ  stands for the length of GND undern eath the conical frustum  while the 

2 2( )hλ  stands for the length of GND underneath the spherical cap. 1 1( )hλ  and 2 2( )hλ  

are given by: 

0 0

2 20 0
1 0

tan tan2 2 ( )
a a

c
r r

drr r dr a r
S b b

θ π θλ π π= = = −∫ ∫                         Eq. 15)  

0 0 0 2 2 2

2 0 0 0
0 0 0

tan 2 sin2 2 ( sin cos )
r rdr R Rr r dr d

S b b b

θθ π θ πλ π π θ θ θ θ= = = = −∫ ∫ ∫     Eq. 16) 

The radius of the plastic zone is taken as f tim es of the contact rad ius, therefore, 
3 32

3 cV f aπ= . Substituting Eq. 10~Eq. 16 into ( )h
V

λρ = , provides the GND density, 

GNDρ  

( ) ( )

2 2
0 0 0 0 0 b

23 2
b 0 b

3 tan ( tan )sin cos1
2 (1 cos )GND

h
bf h h h h

θ θ θ θ θρ
θ

⎛ ⎞−
= + ⋅⎜ ⎟

⎜ ⎟+ − +⎝ ⎠
            Eq. 17) 

In Eq. 17, 0θ  is 19.7° for a Berkovich tip, which can be obtained from  indent shape 

parameters. The value of hb can be obtained by m easurement using atom ic force 

microscope (AFM) or scanning electron m icroscope (SEM). Alternatively, it can also 

be obtain ed by f itting the ind ent shape cor rection equ ation. The contac t ar ea 

according to current model is,  

2 2
c c b2

0

( )
tan

A a h hππ
θ

= = +
                                                                         

 Eq. 18) 
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The above expressions are valid for h>h2. The corresponding equations for h<h2, i.e. 

for a purely spherical indent, are given in the appendix.  

In contrast to this, Alkorta et al [18] made a range of approximations and suggested: 

 2 2 2
c f ftan 2A a h Rhπ π φ π= = ⋅ +                                                                Eq. 19) 

 i.e, 

 2
2

2tan
tanf f

Ra h hφ
φ

= +                                                                           Eq. 20) 

where a is the radius of contact area,  φ  is complementary to 0θ , hf is the depth and R 

is the radius of rounded tip.  

2.2 Strength model  

The Nix-Gao model and most of its derivatives [9,10,12] only consider the dislocation 

strengthening, whilst other strengthening c ontributions remain unspecified and are 

part of  th e f ittable p arameter Ho. In the current stu dy, the grain boundary 

strengthening including s ubgrain boundary and grain bound ary and remaining m inor 

strengthening contribution are also considered as well as the dislocation strengthening, 

using the expression [24,25,26]: 

σy =  Δσgb + M τtot  =  Δσgb + M [Δτ0 + Δτss + (ΔτD
2+ Δτppt

2)1/2]                       Eq. 21) 

where yσ is yield strength, Δσgb is the streng thening due to  the presence of  grain or 

subgrain boundaries,  M is a factor often referred to as the Taylor facto r. totτ  is the 

critical resolved shear stress (CRSS) of the grains. The hardness is expressed as 

             H = C σy                                     Eq. 22) 

where C is a constan t. To sim plify the expre ssions, the contributions to the yield 
strength by  intrins ic C RSS ( 0τ ), solid solu tion s trengthening ( Sτ ) are tak en as a 

constant term 0σ , whilst a t this stage  we will avoid precipitation hardened materials 

(ie. Δτppt=0). The value of constant C is generally taken a s 3 in the lite rature f or 

conventional hardness test. However, the nanoindentation hardness is generally 10-

30% higher than the Vickers hardness for many metals even using a large indentation 

depth to avoid the ISE [ 27]. The  differ ence between nanoindentation and Vickers 

hardness is partly due to th e former being defined by projected area while the latter is 

defined by contact area, which would i nduce a difference of about a factor 

1/sin(136°/2)=1.08 (the  vertex angle of Vickers tip is 136 °). Therefore, we allow th e 
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proportionality constant C2 for nanoindentation hardness to  be somewhat larger that 

that for Vickers hardness (see also section 2.3), ie.: 

1 y 1 0 GB 1 SSDvH C C M Gbσ σ σ α ρ⎡ ⎤= = + Δ +⎣ ⎦                                       Eq. 23) 

2 y 2 0 GB 1 GND SSDnH C C M Gbσ σ σ α ρ ρ⎡ ⎤= = + Δ + +⎣ ⎦                                          Eq. 24) 

where Hv is the Vickers hardness, Hn is the  nanoindentation hardness, 1α  is a 

constant (about 0.3 [7]), G is the shear modulus of Al.  

2.3 Model predictions  

To evaluate the presen t m odel and com pare it to other models, the GND density 

predicted by the Nix-Gao m odel, Alkorta et  al [18] m odel and the current model are 

calculated and presen ted in Fig. 2 ( b is taken as 0.286 nm , the value for Al). F ig. 2 

shows that the current model (taking h2 = 110 nm ) predicts a m uch milder ISE than 

the Nix-Gao m odel. For large indentation depth (typically h> 400 nm ) the GND 

density predictions in  current m odel and Nix-Gao m odel with f=1.76 converge. The 

current model predicts an ISE that is clearly very different from the Alkorta et al [18] 

model. This is due to the approximations made in the latter model. 
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Fig. 2 Co mparison of GND densi ty predicted by vari ous models. See Ref [9, 18 ] for 

Nix-Gao model and Alkorta et al model, respectively. 
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The cal culated GND de nsity (see Fi g. 2) a nd nanoi ndentation hardness (see Fi g. 6) 

predict a reverse ISE when the indentation depth is lower than h2. Both experimental 

and finite element modelling results have proved the reverse ISE using a spherical tip 

[10,28]. W hen the indenta tion depth is larger than h2 the current m odel shows a 

slower ISE than the Nix-Gao model because of the blunt tip (see Fig. 2). 

The Nix-Gao m odel and its derivatives in cluding the cu rrent m odel calculate the 

average GND densi ty underneath the indent by assum ing the GNDs are bei ng stored 

in a hemisphere with a specific radius. The radius of the pl astic zone in current model 

is assumed to be f times the radius of the origina l Nix-Gao model. This is broadly in 

line with experim ents [29] and finite elem ent modelling [30,31]. The finite elem ent 

modelling has determ ined that valu e of f ranges from  0 to 3.5, which depends on 

material and other parameter values such as M and C2 [30].  

 

 

 

 

 

 

 

Fig. 3 Illustration of contacted area, residual area, assumed residual area and projected 

area during nanoindentation. 
 

C2 is defined as the ratio of nanoindent ation hardness to yield strength, whilst C1 is  

the ratio of Vickers hardness to yield strength.  This difference can be attributed to the  

nanoindentation and Vickers hardness being calculated using di fferent areas. As  

shown in Fig. 3, Vickers hardness is obtained by dividing applied force by the 

residual contacted area whilst nanoindenta tion hardness is cal culated using the 

projected area which is calculated using contact depth hc (alternately referred to as the 

plastic depth, hp).  If the residu al projected area is used to calcu late the Vickers 

hardness, the Hv value would be 8% higher than the real Hv value but still lower than 

the nanoindentation hardness. It is assumed that unloading from hmax to residual depth 

(see Fig. 3) is pure elastic [32], and then the projected area is underestimated by using 

Unloading 
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hc, which is calculated using hmax by the Hertz equations [33]. In fact, the unloading is 

elastic and plastic [27], therefore the res idual area is larger than the assumed residual 

area used for nanoindentation calculation (see  Fig. 3). The reverse plasticity is  

different for different materials so that Hn/Hv depends on material. 
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Fig. 4 Influence of rounded tip on the GND density created under different 

indentation depth. Se e Ref [9, 18] for Ni x-Gao m odel and Alkorta et al m odel, 

respectively. 

 

Determination of h2 is critical in current model. As shown in Fig. 4, the GND density 

predicted by the cur rent model is clo se to that predicted by th e Nix-Gao model with 

the sam e f value when  h2 val ue i s cl ose t o zero, whi lst the GND densi ty at  l ower 

indentation depth dram atically decreases  with  increasing  h2 value. The blunting 

distance hb of different commercial nanoindenters has been determ ined to be 6.1 nm 

to 28.8 nm [34,35,36]. Using Eq. 13 this is equal to a range of values for h2 of 5.7 nm 

~ 27 nm . The h2 va lue of  a new  tip produced by pr ecision polish ing w ill be  at the  

lower end of this range, but it will increas e due to wear of th e tip. Therefore, the h2 

value that will be determined in the curr ent work (see section 4.1) is o nly correct for 

our nanoindenter at the time the experiments were performed.  
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3. Materials and experimental methods 

For this work hardness nanoindentation e xperiments were carried out on ultrafine 

grained (UFG) Al-1050, which is commercial purity aluminium with composition Al-

0.18Fe-0.12Si (in wt. %) with further m inor impurities. Al-1050 was s upplied as an 

extruded rod of 4 m le ngth and 9.53 mm di ameter and UFG material was obtained  

through processing by equal channel angular  pressing (ECAP) for two  passes by 

route BC (further details in [37, 38]). Nanoindentation experiments on UFG Al-1050 

were performed using indentation depth from 100 nm to 800 nm. 

The nanoindenter used is m anufactured by Micro Materials Ltd, UK, equipped with a 

Berkovich tip. The ins trument is positioned on an anti-v ibration base and is enclosed 

in a tem perature con trolled cab inet which provides a therm ally stable environm ent. 

The temperature is con trolled at 25  ºC (w ith expected s tability ± 0.1 ºC) inside the  

cabinet, and about 24 ºC outside.  The indentation depths were set as 100 nm, 200 nm, 

300 nm , 400 nm  and 800 nm . The loadin g/unloading rate was 3 mN/s. The 

topography of the sample after nanoindentation test was observed by an Olympus BH-

2 optical microscope (OM) equipped with a Prosilica dig ital CCD cam era. Micro 

hardness was tested on an MHT-1 model m icro Vickers h ardness tester. A force of 

300 g was applied and holding time was 15 second. 

4. Results and Model verification 

4.1 Determining the blunted tip radius. 

To apply the above m odel in the anal ysis of nanoindentation data first hb for t he 

indenter needs to be obtained. A n eff ective way of achieving this is through 

calibration experiments on a calibration material with known properties. In this work, 

this calib ration was achieved  by perform ing a series of indentations w ith load s 

varying from 0.5 mN to 500 m N on fused silica. The elastic m odulus, hardness and 

Poission’s ratio of this calibration material are known, and from these experiments the 

area values at specific depth were o btained and plotted in Fig. 5. By fitting the area  

and depth data using Eq. 18, hb is determined as 117 nm . The fit (Fig. 5) is excellent  

(root m ean square error (RMSE) 0.090 × 10 6 nm  2) providing confidence that the 

treatment of the rounded tip (section 2.1) is at least an accurate approximation.  
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Fig. 5 Fitting of hb. The blue cubes are the area function measured by experiments; the 

dash line is ideal function for the sharp tip; the red line is fitting curve using Eq. 18. 

 

4.2 Predicting nanoindentation hardness of UFG Al-1050. 

To provide a critical ass essment of the model we decided to perfor m nanoindentation 

tests on a m aterial f or w hich the  ISE has n ot been tes ted prev iously, w ith a 

microstructure that contains substantial strengthening contributions besides the GNDs, 

whilst the parameters in the m odel are known to a good accuracy. UFG Al-1050 was  

selected. We will first show that all parameters are (essentially) known.  

It was shown before that the C1 value for worked Al-1050 ranges from 3.05 to 3.28 

[37], we wi ll here t ake C1 as the average over that rang e, ie. C1=3.16. W ork on a 

range of alloys [27] has shown that nanoi ndentation hardness is 10-30% higher than 

the Vickers hardness, in  the cu rrent work we will take C1/C2 of Al-1050 as equal to 

that of Cu (0.8 [27]). The Vickers hardness of the present UFG Al-1050 was  
measured to be 44 Hv. The 0σ  of Al-1050 is taken as 28 MPa [39], which is the yield 

strength of Al-1050 in fully annea led condition. The value of Δσgb is calculated using 

the approach outlined in [24], whic h provides Δσgb= 5 MPa (see also [37]). M and G 

are taken as 2.6 [40] and 26 GPa [41] , respectively. This leaves just f to be f itted. We 
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would expect f is close to the value of 1.9 det ermined for  single crystalline copper, 

annealed polycrystalline copper, UFG copper and polycrystalline iron [22]. 

The predicted nanoinde ntation hardness with a f itted value f = 1.76, is presented in 

Fig. 6. A very good correspondence is found with RMSE of 0.011GPa. The measured 

and predicted nanoindentation values are plotted in Fig. 7. 
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Fig. 6 Measured and predicted nanoindenta tion value  again st the indentation dep th. 

The error bars represent standard deviations.  

 

Fig. 6 show s the m easured and predicted nanoindentation hardness as a function of 

the indentation depth. The predicted values successfully captured the measured trend. 

The nanoindentation hardness decreases with increasing indentation depth but the rate 

of decrease is slow when the depth is larger than 400 nm. 

The present data shows a highe r scatter than experimental data on polycrystalline and 

single crystal m aterials reported in a range  of papers. This is due to the m ore 

inhomogeneous nature of the present UF G Al-1050 (see Ref [37]). This, however, 

does not impinge on the m ain conclusion here, i.e. the good predictions of th e 

nanoindentation hardness. 
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Fig. 7 Measured and predicted nanoi ndentation value of UFG Al-1050. The 

indentation depth ranges from 100 nm to 800 nm. 

 

4.3 Predicting dislocation densities 

In a further test for the model we will predict dislocation densities and compare those 

against measured values by De mir e t al [ 42] for (111) copper single crystals. In the 

latter work dislocation densities w ere obtai ned from  analysis of cross sections of 

deformed material under a rounded tip with diameter of 1 µm using 3-D EBSD. (Note 

that in Fig 2 in Ref [42] depth are mislabelled). The average values of measured GND 

densities at different indentat ion depths have been replotted in Fig. 8,  and various 

model predictions are i ncluded in the figure. The GND dens ity shows i ncreases with 

the indentation depth, and this is captured well by the present model if the value of f is 

set to 1.4. (The slightly larger deviation between predicted and measured value for the 

data point at the larger indentation d epth could be because the radius value (reported 
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to be R = 1 µm  [42]) of the tip having increas ed due to  wear. The cu rrent m odel 

would give good predictions for all the four GND densities if R = 1.3 µm.) 
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Fig. 8 Evolution of m easured and pred icted GND density of (111) copper single 

crystal w ith the indenta tion depth. The m easured data  are t aken fro m [42 ]. A 60 o 

conical tip with a rounded tip in diameter of 1 µm was used. 

 

Fig. 8 shows that the models for a sharp indenter (the Nix-Gao model [9], the Abu Al-

Rub model [15] and the  Durst et al model (the Nix-Gao model with an adjustable f 

[22,23]), predict dislocation densities that are very different from  the ones m easured 

underneath the spherical inde nter. The Huang et al m odel [21] assumes the GND 
density is constant when the indentation d epth is less than a spec ific value nanoh∗ . If 

taking the height of the tip in spherical cap part (500 nm ) as the nanoh∗  value, the GND 

densities predicted by Huang et al model [21] are 5-12 times larger than experimental 

results (not shown i n Fi g. 8 because they are out  of range). The GND densi ty 

predicted by the or iginal Alkorta et al m odel [18], i.e. w ith f =1, is much larger than 

the experimental results. Adjusting f will bring values broadl y within range but this 

model will fail to predict that the GND density increases with the indentation depth at 
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lower depth. The reason  for this is tw o fold. Firstly, th e Alkorta et al m odel assume 

the contact area and indentation depth follo ws Eq. 19, which causes the GND densi ty 

predicted to  be m uch low er than that  predicted by current m odel (except for h 

approaching 0 where the two m odels converge, but that is not a realistic indentation). 

Secondly, Alkorta et al [ 18] calculate the total lengt h of the GND based on the 

approximation: 

f f 2

0 0

2 2 tan( )d d
h h

r h h h h h
b b
π π φλ δ= = +∫ ∫ ,  2

2
(tan )

Rδ
φ

=                                 Eq. 25) 

i.e, 

 2
2

2( ) tan
tan

Rr h h hφ
φ

= +                                                                                  Eq. 26) 

Eq. 25 is correct only when the depth is large, i.e, 0( )r h r>  (see Fig. 1). However, 

without justification Alkorta et al extend Eq. 25 to apply at lower indentation depth, 
i.e. 0( )r h r< . The second assumption leads to the Alkorta et al m odel predic ting an 

incorrect trend at lo wer indentation de pth. As a result of these inaccu rate 

approximations the Alk orta et al model is only  accurate for h=0 and for the limit for 

high h, typically h>>500 μm, leaving the m odel to be ina ccurate in the range tha t is 

relevant.  

From this section we conclude that where other models fail, our m odel predicts the 

correct magnitude and trend in dislocation densities under a spherical indenter. 

4.4  ISE of several FCC materials 

As a final test for ou r m odel we will compare its pred ictions aga inst published 

nanoindentation ISE data for a range of materials. 

ISE in Ir-0.3wt%W 

Swadener et al. [10] m easured nanoinde ntation hardness and m icrohardness of 

annealed Ir-0.3wt%W (with 60 ppm Th by weight) at the indentation depth from 150 

nm to 50000 nm. The nanoindentation hardness was measured using the Oliver-Pharr 

method [32], i.e. through determining the contact depth (hc) by Hertz elastic equations 

during loading and unloa ding, then converting hc to projected contact area using an 

area function. In Fig. 9 the m easured data [10] are compared with model predictions. 

In the current model, G and b were taken as 217 GPa [ 10,21] and 0.271 nm  [10, 21].  

The yield s trength of th e Ir-0.3wt%W is 338 MPa (determ ined from data in [10,21])  
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and the value of 0 GBσ σ+ is estimated as 0.8 σy, which is reasonable for an annealed 

alloy. The other param eters, including C1, C2 and M, were taken as the sam e values 

with Al-1050. The radius of rounded tip, R, plastic zo ne factor, f, and Vickers 

hardness H v were determ ined as 288 nm , 1.94 and 3.0 GPa by fitting to the 

experimental nanoindentation data. As shown in Fig. 9 and Fig. 10, the predicted 

nanoindentation hardness by the current m odel fits the experimental results to a very  

high accuracy and within the standard deviation of the experimental data. Furthermore, 

the value s f or the 3 par ameters as determ ined by f itting ar e reasonab le. Firstly, the  

value of R (determined to be 288 nm , which corresponds to a blunting distance of 18 

nm) is between the radius of a new  Ber kovich tip (about 50 nm ) and the value at  

which a worn tip will generally be reported as a defective tip (~500 nm ) [14].  

Secondly, the f value of Ir-0.3wt%W determined by the present model (1.94) is closed 

to the f value of Al-1050 (1.76). Furthermore, Durst et al [23] determined f for coarse-

grained copper, UFG copper, coarse-grained  aluminium and UFG alum inium as 1.9,  

which is also close to current determination. Finally, the  Hv value determined by the 

present model (3.0 GPa) is close to the measured microhardness (2.6GPa) determined 

at large depth by Swadener et al [10].  
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Fig. 9 Comparison of the prediction of th e nanoindentation hardness of annealed Ir-

0.3wt%W by Huang et al model [21], Abu Al-Rub model [15] and current model. The 

nanoindentation hardness data are taken from [10]. 
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Fig. 9 also shows nanoindentation hardness of  Ir-0.3wt%W predicted by the Huang et 

al [21] m odel and the Abu Al-Rub m odel [1 5]. In their model, Huang et al [21] 

assume the GND density reaches a m aximum value, which is called m aximum 
allowable GND density when the indentation depth h is less than a specific value nanoh∗ . 

The value o f G ND density is r elated to nanoh∗ , the value of  w hich is  deter mined by 

fitting. As seen in Fig. 9, predictions using the Huang et al [21] model broadly capture 

the trend, but the increasing deviation be tween prediction and m easured values for  

decreasing depth suggests that this model will  fail for depths less than 100 nm. Huang 

et al [21] did not provide predictions for the nanoindentation with depths less than 100 

nm. The Abu Al-Rub model [15] also fails to accurately captur e the trend producing 

an overestim ate at indentation depths under 100 nm  but  an underestim ate at the  

indentation depths larger than 100 nm. A summary of the accuracies achieved by th e 

various models is presented in Table 1. 
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Fig. 10 The m easured nanoindentation ha rdness of ann ealed Ir-0.3 wt%W and  

predicted nanoindentation by th e current m odel. The experim ental data were taken 

from [10]. 
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It is worth noting that in Ref [10] microhardness was measured using a microhardness 

tester equipped with a Berkovich tip for lower depths and a Rockwell hardness tester  

for larger depths. The indent area was m easured by a video m icroscope system, i.e. 

the measured area is res idual area, which is different with the pr ojected contact area 

determined in nanoindentation hardness. As a result, the m icrohardness measured in 

Ref [10] can not be si mply considered as  the nanoindentation hardness with a higher 

indentation depth because the ratio of hardness to yield strength ( C) i s di fferent i n 

nanoindentation hardness and microhardness.  

ISE in single crystal MgO 

Feng and Nix [12] m easured nanoindentat ion hardness of single crystal MgO. The 

experimental data are replotted in Fi g. 11. In the current m odel, a fixed f value was 

used. The value of b, G and intrinsic stress of MgO were taken from [12, 21] as 0.298 

nm, 126 GPa and 0.18 GPa The rem aining parameters were taken as the sam e values 

used for Al-1050. The prediction curve is  shown in Fig. 11. The values of f, Hv and R 

were determined as 1.13, 6.9 GPa and 764 nm by fitting. The exponential relationship 

between f and h determined by Feng and Ni x [12] provides an average f value for  

0<h<500 nm of 1.11, which is close to current f value. The current Hv value (6.9 GPa) 

is 25% lower than the nanoindentation har dness with large indentation depth (9.19 

GPa, see Fig. 11), which is reasonable because the n anoindentation hardness is 10-

30% higher than Vickers hardness using th e sam e load [27]. The radius of the  

blunting tip was determ ined as 764 nm  in current model, i.e. the blunting distance hb 

is 47 nm (see Eq. 12 and Eq. 13), which has been proved by the e xperimental data in 

Fig. 11 whe re the nanoindentation hardness st arts to decreas e when the indentation  

depth is lower than 50 nm. Thus the va lues of all three fitted param eters, f, Hv and R, 

are very close to values that can be experimentally determ ined through direct 

experiments. 

Predictions by Huang et al m odel [21] and Abu Al-Rub model [15] are also shown in 

Fig. 11. For both m odels, predictions are close to the exp erimental data, but the fit is  

not perfect, especially when it is considered that 3 or 4 para meters are fitted, in many 

cases with little justif ication provided for the values obtained. In contrast, the current 

model fits the experimental data near perfectly, whilst, as  shown above, the values of 

the 3 f itted parameters can be jus tified to within a few percent. RMSE of the fits are 

presented in Table 1. At low indentati on depth, the current m odel predicts the 
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indentation hardness decreases with decreasing depth because of the tip  radius effect. 

For the whole range of the experim ental indentation depth, the hardness predicted by 

the current model fits the m easured hardness to a very hig h accuracy (see Fig. 12), 

with root mean square error of 0.068 GPa (2.5% of the range of values).  
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Fig. 11 Comparison of the prediction of the nanoindentation hardness of single crystal 

MgO by Huang et al m odel [21], Abu Al-Rub model [15] and the current m odel. The 

nanoindentation hardness data are taken from [12]. 

 

Summary of ISE data  
We further m ade m odel predictions for si ngle crystal Cu and work hardened  Cu 

(experimental data are from Ref [43]),  and the RMSE values are reported in Table 1. 

The predictions are good over the entire range  (80 nm to 2000 nm).  Nix and Gao [9] 

excluded the nanoindentation hardness with indentati on depth less than 150 nm 

because the Nix-Gao model substantially deviates from the experimental data at lower 

depth. (We did not attempt to fit the experim ental data of single crystal Ag in Ref [6], 

replotted by  Nix and  Gao [9], because th e residual pro jected area was used to 

calculate the nanoindentation hardness in original paper.) 
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Fig. 12 The m easured nanoindentation har dness of single crysta l MgO and predicte d 

nanoindentation by the current model. The experimental data were taken from [12]. 

 

5. Discussion 

In the above we have shown that a com putationally friendly analytical model for the 

ISE can be derived which in corporates a blunted nanoinde nter tip and  an effectiv e 

plastic zone size that scales wi th the indent size. It is show n that the indenter size can 

be determ ined through calibration expe riments. The model is tested again st 

nanoindentation data and disloc ation density d ata, and is shown to be substantially 

more accurate th an ex isting m odels. Model param eters can in m any cases b e 

determined from  independent experim ents, and where fitting is neces sary they a re 

within ranges that can be jus tified. We thus conclude that the present model is  very 

useful in analysis nanoindentation ISE data, and can solve som e of the issues 

regarding the ISE that have  hith erto rem ained unexplain ed. Specifically, the m odel 

demonstrates that where several existi ng m odels showed (l argely unexplained) 

deviations with measured data at small indentation depths (typically 30 – 150 nm), the 



Page 22 of 25 

present m odel does provide good fits in that  range. This shows quantitatively that 

deviations from earlier models can be (largely) due to the tip rounding artefact.  

It is f urther noted that if  we consider th at the effects for even sm aller indentations,  

which involve a pop-in event occurring during the transition from elastic to plastic 

loading, are reasonably well understood (see Durst et al [23]), it t hus appears that the  

entire ISE o ver all indentation sizes can be fully explained on the basis of the strain 

gradient plasticity and GNDs. 

 

Table 1 RMSE of nanoindentation hardness predictions by three models.  
RMSE of prediction 

 Huang et al 
model [21] 

Abu Al-Rub 
model [15] 

Present 
model 

Source of exp 
data 

Ir-0.3wt%W 201 MPa a) 412 MPa 92 MPa [10] 
MgO 141 MPa 137 MPa 68 MPa [12] 

Single crystal Cu - - 45 MPa [43] 
Cold worked Cu - - 22 MPa [43] 

Al-1050 - - 11 MPa Present work 
Fitted parameters 3 4 1 b), 2 c), 3 d)  
a) Model only predicts 100-1000 nm range. RMSE error is for that limited range. 
b) Only the value of f is fitted for Al-1050 and single crystal Cu. 
c) f and R are fitted for work hardened Cu.  
d) f, Hv and R are fitted for Ir-0.3wt%W and MgO. 

 

The current m odel uses a l inear superpos ition rel ation of GNDs and SSDs (see Eq.  

24), which was used by m any researchers [8 ,9,16,21,42,44,45] and provided fairly 

good predictions for single crystal m aterials and annealed m etals. However, it has  

been shown [43] that at lower indentat ion depths cold worked Cu has lower  

nanoindentation hardness than single cr ystal Cu (using area corrected by SE M 

measurements [43]). Thi s can not be cap tured through a simple linear superposition 

relation of GNDs and SSDs. Henc e, we bel ieve that a further refi nement of m odels 

will be needed to acco unt for the interact ion of pre-stored di slocations, GNDs a nd 

SSDs generated during nanoinde ntation, especially when high densities of SSDs are  

present due to prior working. This  is b ecause th e large am ount of newly generated 

dislocations (GNDs and SSDs) and pre-stored dislocations increase t he possibility of 

annihilation of dislocations on the sam e slip plane with different signs. Further, 

significant am ount of GNDs and SSDs genera ted during nanoindentation of cold  

worked metals, especially for severely plastically deformed metals, will form new cell 
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walls/grain boundaries or are absorbed by existing cell walls/grain boundaries [38]. 

As a result,  the tota l disloc ation d ensity decreases and grains are refined. These 

effects will cause dev iations from  a  lin ear superposition relation of GND and SSD 

densities.  

 

6. Conclusions 

A m odel e mploying the concept of geom etrically necessary dislocations was  

established to interpret the indentation size effect for an indenter with a tip worn to a 

rounded shape. Conclusions are drawn as follows:  

• The blunting distance hb (and tip ra dius) can be determined by fitting the area 

function. 

• The ratio of nanoindentation ha rdness to the yield strength ( C2) is large r than 

that of the Vickers (micro) hardness to the yield strength (typically, C1=3.16). 

• The current m odel successful ly predi cts t he GND densi ty i ncreases wit h t he 

increasing indentation depth at lower depth under the rounded conical tip. 

• The current model for indenter with worn tip a ccurately fits the exper imental 

ISE data of a range of ma terials in a range where other models have proved to 

be inaccurate. 

 

Appendix 

Eq. 17 and Eq. 18 are valid when h>h2. If h<h2, the  indent shap e w ill b e pu re 

spherical and the total length of GNDs are as follows: 
2 2 2

0 0 0

2 2

tan 2 sin( ) 2 2 ( sin cos )

arccos(1 / ) ( ) 2

r rdr R Rh r r dr d
S b b b

R h R R h Rh h
b

θθ π θ πλ π π θ θ θ θ

π

= = = = −

⎡ ⎤= − − − −⎣ ⎦

∫ ∫ ∫
   Eq. 27) 

where, arcos(1 / )h Rθ = −  and R=1883.5 nm  (see Eq. 12). Substitu ting Eq. 27 

in ( )h
V

λρ = , provides the GND density as: 

2 2

GND 3 3 3 2 2

3 arccos(1 / ) ( ) 23( sin cos )
2 sin 2 (2 ) 2

R h R R h Rh h

bf R bf Rh h Rh h
θ θ θρ

θ

⎡ ⎤− − − −− ⎣ ⎦= =
− −
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Eq. 28) 

In this case the projected contact area is given by 
2 2 2 2sin 2c cA a R Rh hπ π θ π π= = = −              Eq. 29) 
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