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1. Abstract
Dimension reduction in design optimization is an extensively researched area. The need arises in design
problems dealing with very high dimensions, which increase the computational burden of the design pro-
cess because the sample space required for the design search varies exponentially with the dimensions.
This work describes the application of a latent variable method called Generative Topographic Mapping
(GTM) in dimension reduction of a data set by transformation into a low-dimensional latent space. The
attraction it presents is that the variables are not removed, but only transformed and hence there is
no risk of missing out on information relating to all the variables. The method has been tested on the
Branin test function initially and then on an aircraft wing weight problem. Ongoing work involves finding
a suitable update strategy for adding infill points to the trained GTM in order to converge to the global
optimum effectively. Three update methods tested on GTM so far are discussed.
2. Keywords: dimension reduction, GTM, response-surface, global optimization, exploration, weighted
lower bound.

3. Introduction
In the design industry, the use of high-fidelity simulation models for optimization places a high demand
on the computational cost. Though the advent of new advances in computing has tended to reduce the
cost, the complexities of design problems, i.e. considering non-linearity in the model, using more complex
solvers, etc., have proportionally increased, demanding such computations to be faster and more reliable.
Hence the need for approximate models (also called surrogate models, meta models or response surface
models) for design optimization arises. These can act as cheap alternatives to the original model and
reduce the computational burden, whilst still providing improved designs [1]. The idea behind surrogate
modeling is to analyze a set of initial designs to generate data points, using which an approximate model
is constructed to fit the objective function and constraints. Optimization is then conducted using the
approximate model. When the design problem includes a large number of design variables, say > 50,
building useful surrogate models may require vast quantities, of the order of thousands, of data points
to sample the search space. For an accurate prediction of the surrogate model, if the sample density is
n-locations for one-dimension, then for k-dimensions, nk observations are required, making a design of
experiment (DOE) sample a costly affair. This has been referred to as ‘curse of dimensionality’(Forrester
et.al. [10]). Often, in high-dimensional functions, not all the measured variables are equally relevant
in understanding the underlying objective function. Though predictive models can be constructed with
high accuracy from high-dimensional data, it is still desirable to reduce dimensionality and to find ways
of expressing the objective function with fewer dimensions. Many methods have been tried in the past
towards this goal, but none stands as being suitable for all design problems. Moreover,the common
approach in most of the ‘screening’ methods is to identify the variables relevant for design problem and
discard the rest by fixing them at constant values during the optimization. This may not always be
an attractive feature since the relevance of the fixed variables may emerge later during design process.
Hence, the need for a technique which takes into account the effect of all the variables, whilst still reducing
dimensionality. Towards this end, latent variable models, which represent the probability distribution
of high-dimensional data in a low-dimensional space of latent variables without removing any variable
information, have been found to be useful. Among the considerable number of latent models listed in
the literature, are principal component analysis (PCA)[11], factor analysis (FA)[2], probabilistic PCA
(PPCA)[3], elastic nets[8] and Kohonen’s Self Organizing Map (SOM)[12]. The model which drew most
attention from researchers and engineers was Generative Topographic Mapping (GTM)[4]. GTM is, in
principle, similar to FA and PPCA, but the significant difference is that GTM allows a non-linear relation
between the latent set and training dataset. Moreover, as compared to SOM, the method has a rigorous
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mathematical formulation. GTM is not a new approach in design optimization since it has been used as
an effective visualization tool. This work, however, explores the possibilities of using GTM in reducing
the design search space for global numerical optimization.
A sparse sample fails, in most cases, to find the global optimum unless effective update strategies have
been applied. The update methods add infill points to the initial training sample set so that consecutive
cycles of training lead to the global optimum of the function. In most cases, there are issues of the
search getting stuck in a local optimum. This can be avoided by well-planned updates. In this work,
we examine some update methods for GTM. The paper is divided into four sections: section 4 discusses
the method of GTM applied to optimization, section 5 discusses the update strategies examined by the
authors, section 6 shows results of the method applied to test problems and section 7 discusses the scope
of ongoing research.

4. GTM for optimization
The method of GTM models the probability density of N data points of high dimensional D–space,
T = {t1, . . . , tN}∀t = {t1, . . . , tD}, in terms of a grid of K latent variables X = {x1, . . . ,xK}∀x =
{x1, . . . , xL} of lower dimension L. The probability distribution in data space is assumed to be based
on Gaussian mixture distributions having a variance β−1 and centres as a function y(x,W), W being
weights. W and β are the parameters to be determined through the maximization of the log-likelihood
of the model using an E-M or other suitable training algorithm. The Gaussian centres y(x,W),which are
assumed to be a regression equation of the weights W and a grid of basis functions Φ(x), map every point
in latent space to a point in data space. The latent points are confined to an L–dimensional manifold non-
linearly embedded in the D–dimensional data space. GTM uses Bayesian inference to provide posterior
information about the latent points responsible for the data points based on the observation of maximized
log-likelihood, for which the prior considered is that all the data points are accounted for by the same
latent point. A detailed derivation and explanation of the GTM method is available in Bishop ([4]).
Figure 1 shows how a 1D GTM manifold resides in the 2D countour space of the 2D Branin function
f(t1, t2), in which the dimension reduction was from 2D data space to 1D latent space. Each point on
the manifold is coloured with the corresponding function value obtained from GTM training and they
match, in most places, with the contour colours,i.e., the actual function value. The manifold points are
hence encircled in white to be differentiated from the contour. Note that the training points shown by
red crosses in the contour may not exactly lie on the manifold, they only determine the shape of the
GTM manifold since GTM estimation is similar to a neural network training.
Our GTM-based optimization algorithm is shown in Figure 2. This method follows a response-surface
based approach, starting with an experimental design (DOE) and the trained GTM being used as the
surrogate. The benefits of GTM as a surrogate is that the linear combination of basis functions which it
uses can be tuned and it has a statistical interpretation since it uses Bayesian inference for the training.
Hence,we combine statistical analysis of data along with optimization methods. Data samples are gener-
ated by DOE and trained using GTM. The validation data-set was taken from the sample and the rest
used for training. The optimization update search is performed in the latent space and the best point
obtained is transformed to data space and augmented to the training data set. Iterations are continued
until there is no further improvement in the design. This follows the ‘two-stage’ response surface based
optimization approach([7]). It was found useful to obtain a set of best points rather than one, from the
latent space as infill points to be appended to the training set. The DOE was also conducted for different
sets of samples and the optimum obtained averaged.
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Figure 1: GTM on the Branin function – points on 1D latent space (left) are confined to a manifold lying
in 2D data space (right).
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Figure 2: Algorithm of reduction process using GTM.

4.1. Selection of parameters
There are a number of hyper-parameters involved in the GTM method and an intelligent choice of these
parameters is essential for the method to accurately model the distribution of the dataset. Some of them,
like the basis functions to be used, the number of basis functions, the choice of prior over weights W
during regularization and the number of latent points have already been investigated in the detailed work
on GTM by Markus [13]. In this work, interest is focused on optimization of the objective function in
the reduced latent space generated by GTM and hence we examine the parameters that may be crucial
in getting a reasonable optimum.
The best number of the E-M cycles for training the GTM can be determined by plotting the error function
of the model which is to be minimized, negative of the log-likelihood in this case, for a training data-
set and a validation data-set against the number of cycles [3]. The validation data set can be either
independant or taken from the training data itself in the case of limited available data. The number of
cycles which give the least value of error function for the validation data is selected as the number of
E-M cycles. Choosing more cycles may lead to over-fitting and less, in under-fitting the model.
The latent space is a uniformly spaced mesh of points. The choice of the number of these points
(meshsizelatentspacedimension) determines the resolution of the model in the latent space. A denser mesh
of points may be able to capture the distribution more accurately, but at the cost of computational time
and burden. GTM has mainly been used for visualization so far and hence the latent space dimension
does not normally exceed two, but in the case of dimension reduction, we wish to deal with latent space
dimensions slightly more than two in order to be able to capture the optimum design effectively. Hence
it would be useful to test different mesh sizes for different samples and different latent space dimensions
to decide on the best choice. The metric used for deciding this criterion is the Root Mean Sqaure Error
(RMSE). It is calculated with validation data-set as follows:

RMSE =

√∑nv

i (yi − ŷi)2

nv
, (1)

where y is the function value calculated from the validation data set having nv data points and ŷ is the
predicted function values retrieved from the GTM training. The number of latent points having least
value of RMSE or which does not further reduce RMSE considerably is chosen.

4.2. GTM algorithm
The GTM procedure described above has been implemented in MATLAB as a GTM toolbox by Markus
[14], which provides a detailed description of the steps involved and the program subroutines. Using these
subroutines, the optimization has been implemented in the following steps.
Steps:

1. Generate data sets. The data set matrix (T) contains normalized variables and the objective
function and is of dimension N × (D+1). A space-filling Morris-Mitchell Latin hypercube [16] with
maxi-min criterion is used for the DOE. The validation data-set is chosen randomly from the DOE
and the rest of the data points used as the training set.
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2. GTM training. As described in the literature of GTM, the set-up and training of GTM is performed
using the toolbox subroutines. There were two changes made in this routine for the purpose of
optimization. The width of the basis function, σ was considered constant throughout the training
process for a data-set. This is now a hyper-parameter which has to be estimated apriori to GTM
training. Since there was no specific method to determine σ, a range of values from [2−2 − 22]
is considered and for each value, the GTM trained and the value which gave the maximum log-
likelihood while training is taken as the best value of σ [5]. Another improvement in training is the
use of a genetic algorithm(GA) for further training the GTM after it has been trained using the
E-M cycles. This was found to increase the likelihood further and hence make the GTM model the
data-set more accurately.

3. Search in latent space. The latent space is searched for suitable update (as per update methods
discussed in next section) points using a GA on latent variables x with bounds [−1, 1]L and the
search function being the regression equation y(x,W) = Φ(x)W where W is the GTM trained
weight matrix and Φ is the basis function matrix. This equation maps any latent point x to data
point y. Hence, similar to t, y has D columns of data variables and a D + 1th column of function
values, given by GTM training. The actual function value is then evaluated using the variables into
y and this value used by the GA.

4. Viewing the posterior means of the data set and getting back to real space. The data points in T
can be viewed in latent space by evaluating the posterior means as xmean =

∑K
k xkp(xk|t) [4].

These positions of data points in latent space {xmean1, . . . xmeanN} can be substituted in Φ in the
regression equation to get their corrsponding values in data space.

5. Updating the training set. The update point is added to the training data-set and the above steps
from step 2 continued for a set number of iterations.

5. Update strategies for GTM
The optimum obtained from the trained GTM of the initial training data set will not necessarily be the
global optimum of the design problem. It is essential to add more points to the data set so that the
subsequent GTM training has more information about the data to model it better. Adding these infill
points to the data set, called updating, must be in such a way that the global optimum is reached with
the minimum number of additions/iterations. There are many update methods available in the literature
of surrogate models, e.g., prediction based exploitation[10], error based exploration[10], the expected
improvement method[15], a weighted statistical lower bound method[9] which balances prediction based
exploitation and error based exploration by some weights, conditional likelihood approaches[10] and so
on. As is the case for standard surrogate model based optimization, the most efficient method is unclear.
The following sections describe two of the above methods and an additional exploration method imple-
mented here for GTM.

5.1. Exploitation
This is the most common update strategy followed in surrogate modelling. The infill point added at
each iteration is the minimum of prediction f̂ obtained from each re-trained GTM. The minimum of the
prediction is found by a GA search (Step 3 of section 4.2). This prediction based exploitation does not
in some cases converge to the global minimum, indeed sometimes not even to a local minimum. Hence
there is a need to introduce an effective algorithm which would lead to the global minimum, coupled with
the exploitation method. For this purpose, an exploration method was tested.

5.2. Exploitation with exploration
The design space can be explored beyond the GTM manifold to see if any optimal points have been left
untouched by the GTM manifold. Prediction based search methods are confined to the manifold created
by the GTM. Hence if the manifold fails to pass through global basin of attraction, then the optimum
may lie in an unexplored region. To avoid this, a slight amount of noise is supplied to the manifold
so as to allow the search to pass through a neighbourhood of the manifold rather than strictly on the
manifold. But this did not improve the solution and how much noise to be added for a given data-set
was uncertain. We found that a technique is required to search other parts of the design space away from
the manifold. Towards this end, a small number of updates are performed using the exploitation method
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and the GTM trained each time is stored. Then, points away from all the GTM manifolds created so
far are found by an exploration method and are used as the next infill points. This method follows the
principles of the dynamic hill climbing method [6], in which, after a few searches in the design space, if
the search gets stuck in some local optimum, a point far away from the previous point is used as the next
update so as to start a new search in unexplored regions of the space. In the case of GTM, the real space
is searched for regions where the manifolds haven’t passed through and the centroid of such clusters of
points is found using a k-means algorithm. These centroids are taken as the next updates. This method
was found to be useful to make the manifold take a different path altogether and hence to visit unex-
plored areas of the design space. After an exploration, more cycles of exploitation updates are performed.

5.3. Weighted Lower bound
The weighted lower bound(WLB) method provides a balance between a local and global search. The
predictor and some space-filling measure are combined using a weighing factor as

WLB(t) = wf̂(t)− (1− w)s(t) (2)

The prediction f̂ is obtained from the GTM , w is a weight metric and s is a space filling metric which
is calculated as the product of the range of observed function values and the Euclidean distance of the
prediction point to the nearest training data point. Here, w=1 results in a local search using the predic-
tion based exploitation and w=0 gives a space-filling global search analogous to error based exploration.
The WLB is then optimized using a GA (Step 3 in Section 4.2).

6. Illustrative examples and Results
The test functions used to implement the method descibed above are the 2D Branin function, for visual-
ization of the working of GTM method and the different update strategies, and an engineering application
problem of an aircraft wing weight function with 10 independent variables. These are next discussed in
detail with figures illustrating the results of GTM on each of them.

6.1. Branin function
The modified form of the Branin function[10], having just one global optimum instead of three (as in the
ordinary Branin function), is given by

f(x) =
(
x2 −

5.1
4π2

x2
1 +

5
π
x1 − 6

)
+ 10

[(
1− 1

8π

)
cosx1 + 1

]
+ 5x1, x1ε[−5, 10], x2ε[0, 15] (3)

The function contours and the trained GTM manifold are shown for five exploitation updates in Figure
4 (a)-(e). The crosses in the figure represents the training points along with update points. The GTM
manifold is visibly spreading out over the contours. It is coloured according to the function values that
the GTM training gives and the update points are found on this manifold for each iteration. To search in
the neighbourhood of the manifold, adding a Gaussian noise ranging from magnitude of 0.01(very close
to manifold) to 0.1(away from manifold) was tested, but none of the noise values gave a better solution
than the optimum value obtained on the manifold. So the exploration method was tested to change
the shape of manifold and the manifold was indeed found to follow a different path covering previously
unexplored regions of the design space. The selection of ten exploration updates is shown in Figure 4(f).
Five exploitation updates after adding the exploration points are shown in Figure 5 (a)-(e). These plots
were for one DOE of the Branin function. The method was repeated over fifty different DOE’s and a
global optimum of -16.12 was obtained. Figure 5 (f) shows the averaged runs. The WLB method was
tested for different values of the weight metric w and the observation was plotted as the average function
value obtained after ten runs against w, shown in Figure 3. The best value for w was found to be 0.9.
This value could differ based on the problem.

6.2. Aircraft wing weight function
The wing weight function∗ is given by

W = 0.036S0.758
w W 0.0035

fw (
A

cos2 Λ
)0.6q0.006λ0.04(

100tc
cos Λ

)−0.3(NzWdg)0.49 + SwWp. (4)

where Sw - wing area (ft2), Wfw - weight of fuel in the wing (lb), A - aspect ratio, Λ - quarter-chord
sweep (deg), q - dynamic pressure at cruise (lb/ft2),λ - taper ratio, tc - aerofoil thickness to chord ratio,

∗formula adapted from Raymer’s aircraft conceptual design [17]
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Nz - ultimate load factor (1.5 x limit load factor), Wdg - flight design gross weight (lb), Wp - paint weight
(lb/ft2).
For this function, the variables Nz, Wdg, A, Sw and tc are more dominant than the rest of the variables.
GTM also gave similar results when the 2D latent space plots of the variables and the function were
examined in Figure 6 (a). While Nz, Wdg, A, Sw show direct similarity in pattern with the function, tc
shows a close inverse relation – which is evident from Eq.4. The number of E-M cycles required to train
the GTM was found to be 12 and the mesh size of latent space for each dimension were found from plots
of RMSE against varying mesh sizes. The contour plot of RMSE with varying latent space dimension(L)
and varying sample sizes(N) in Figure 6 (b) shows that RMSE decreases with increasing sample sizes and
increasing dimension, as expected. Statistical t-tests were carried out to determine the most appropriate
value of (N), which was found as 110. Optimization was performed in the latent space using 1D, 2D,
3D and 4D GTM, each averaged over 115 runs and the function values are plotted against sample size in
Figure 6 (c)-(f). The exploitation coupled with exploration updates and updates using WLB were then
tested on the function. Table 1 shows the values of number of latent space points (K = meshsizeL)
and the number of basis function (M) used for each L, the optimum averaged over 115 DOEs for the
different update schemes and the time taken per DOE for the simple exploitation scheme. The simple
exploitation scheme used 100-point DOE with 10 exploitation updates. The exploitation with exploration
scheme used 70-point DOE with 30 exploration updates and 10 exploitation updates, 5 each before and
after exploration. In the WLB update scheme, w=0.9 and w=1.0 (simple exploitation itself) was found
to perform better, indicating that the predictor cannot be improved by further exploration of the GTM
manifold. But neither of the update strategies gave the global optimum of 124.9. The most probable
reason for this is that the dimension reduction is not accurate in the case of 2D and 3D and for 4D, the
hyperparameters can be tuned better to improve the solution, but at the cost of computational time.
The amount of time taken for a 4D GTM for higher values of M and K was considerable.

Table 1: Comparison of GTM for different L

K M L Averaged optimum wing weight (lb) Time taken/DOE (sec)
with simple exploitation with exploration with WLB,w=0.9 in simple exploitation

240 110 1 159.42 161.13 160.01 31.9
202 92 2 157.2 155.49 156.86 47.9
153 73 3 146.98 151.15 152.16 287.4
104 44 4 151.2 151.1 156.26 750.4
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Figure 3: Weighted lower bound update on Branin function
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Figure 4: GTM manifolds for Branin function. The white crosses show update points and red crosses
are training points. (a-e) Initial 5 exploitation updates, (f) exploration with k-means algorithm, the red
circles are exploration update points.
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Figure 5: GTM manifolds for Branin function.(a-e) 5 more exploitation updates after adding exploration
points, (f) All runs of 50 DOEs with 5 exploitation updates, 10 exploration points and 5 more exploitation
updates, averaged optimum function value = -16.12

8



(a) Plot of variables and function in 2D latent space
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(d) 2D GTM
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(e) 3D GTM
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(f) 4D GTM
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Figure 6: Optimization using GTM on the wing weight function

7. Future scope of research
This paper discusses the application of GTM in numerical optimization. The method developed using
GTM followed a response surface based algorithm. The hyper-parameters of the method have to be
carefully chosen for each problem as the GTM training was found to be sensitive to their selection. It was
observed that GTM could give optimal results even with a small sample size if the dimension reduction is
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effective and the update method robust. In this work, three update methods were tested, but they were
not found robust in the case of a ten dimensional function and hence, there is a need to seek out improve-
ments in the schemes. Also the latent space dimension,L, which would be most efficient for a particular
problem needs to be found with some care, in which case L can also be considered a parameter to be
determined prior to GTM training. The aim is to find the least latent space dimension (best dimension
reduction possible) for accurate prediction of the global optimum (best optimizer) with least amount of
function evaluations (least computational effort). GTM certainly seems a promising step towards this
goal.
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