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Abstract
Background: Auxiliary splicing sequences play an important role in ensuring accurate and efficient
splicing by promoting or repressing recognition of authentic splice sites. These cis-acting motifs
have been termed splicing enhancers and silencers and are located both in introns and exons. They
co-evolved into an intricate splicing code together with additional functional constraints, such as
tissue-specific and alternative splicing patterns. We used orthologous exons extracted from the
University of California Santa Cruz multiple genome alignments of human and 22 Tetrapoda
organisms to predict candidate enhancers and silencers that have reproducible and statistically
significant bias towards annotated exonic boundaries.

Results: A total of 2,546 Tetrapoda enhancers and silencers were clustered into 15 putative core
motifs based on their Markov properties. Most of these elements have been identified previously,
but 118 putative silencers and 260 enhancers (~15%) were novel. Examination of previously
published experimental data for the presence of predicted elements showed that their mutations
in 21/23 (91.3%) cases altered the splicing pattern as expected. Predicted intronic motifs flanking 3'
and 5' splice sites had higher evolutionary conservation than other sequences within intronic flanks
and the intronic enhancers were markedly differed between 3' and 5' intronic flanks.

Conclusion: Difference in intronic enhancers supporting 5' and 3' splice sites suggests an
independent splicing commitment for neighboring exons. Increased evolutionary conservation for
ISEs/ISSs within intronic flanks and effect of modulation of predicted elements on splicing suggest
functional significance of found elements in splicing regulation. Most of the elements identified were
shown to have direct implications in human splicing and therefore could be useful for building
computational splicing models in biomedical research.

Background
Eukaryotic genes contain intervening sequences or introns
that need to be removed from precursor messenger RNA
(pre-mRNA) in a complex process termed splicing. During
pre-mRNA splicing, relatively short exonic sequences are

recognized by spliceosome, a large RNA-protein complex.
During splicing, introns are removed and exons are joined
together to form mature RNA. In addition to splice site
(SS) signals at the exonic 5' and 3' ends, accurate discrim-
ination of exons and introns requires additional auxiliary
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elements [1-3]. These conserved but degenerate motifs
have been termed exonic (ESEs) and intronic (ISEs) splic-
ing enhancers and exonic (ESSs) and intronic (ISSs) splic-
ing silencers that activate or repress splicing, respectively.
These elements are thought to bind splicing regulatory
factors, including the serine/arginine-rich (SR) proteins
and the heterogeneous nuclear ribonucleoproteins [1].
Consistent with this concept, splicing regulatory motifs
were shown to associate with a single stranded conforma-
tion that is more accessible to protein-RNA interactions
[2]. Combinatorial interaction of splicing factors bound
by these motifs is important for both constitutive and
alternative splicing of pre-mRNAs because they contribute
to the regulation of gene expression and proteomic diver-
sity across higher eukaryotes [3-6].

Several systematic computational approaches and in vivo
or in vitro selection methods have been employed to iden-
tify these motifs in the genomic sequences. For example,
the RESCUE-ESE (Relative Enhancer and Silencer Classifi-
cation by Unanimous Enrichment), a computational
approach used in conjunction with experimental valida-
tion, predicted specific hexanucleotide sequences as can-
didate ESEs based on significantly higher frequency of
occurrence in exons than in introns and also significantly
higher frequency in exons with weak SSs than in exons
with strong SSs [7]. The number of putative exonic
enhancer and silencer octamers were computationally
identified by their enrichment in internal non-coding
exons versus unspliced pseudoexons and 5' untranslated
regions of transcripts in intronless genes [8]. A cell-based
fluorescence-activated screen (FAS), an in vivo splicing
reporter system was used to identify ESSs that demon-
strated consistent silencing results in a splicing reporter
construct [9]. Evolutionary conserved intronic splicing
regulatory elements were found by considering intronic
boundaries surrounding orthologous exons in Homo sapi-
ens, Canis familiaris, Rattus norvegicus and Mus musculus
obtained from UCSC genome-wide multiple alignments
[10]. Putative splicing regulatory sequences were reported
based on evolutionary conserved wobble positions
between human and mouse orthologous exons, along
with overabundance of sequence motifs compared to
their random expectation [11]. Exonic and intronic ele-
ments have also been predicted based on strand asymme-
try [12]. Neighborhood Inference (NI) approach
predicted ESEs and ESSs with activity in regulating bio-
chemical processes based on the local density of known
sites in sequence space [13]. Finally, a recent study based
on deep re-sequencing of human transcriptome [14]
uncovered a new repertoire of plausible intronic hexamers
supporting the tissue-specific splicing events.

A large fraction of spliceosomal components are highly
conserved across eukaryotes, including Tetrapoda (four-

footed) organisms [1,6,15-17], where the genes encoding
well-known RNA binding proteins involved in splicing
regulation are enriched with ultraconserved elements
[18]. Three quarters of RESCUE-ESEs are shared between
humans and mice [17]. Most of the human RESCUE-ESEs
[7] have a pronounced bias towards exonic boundaries in
more distantly related vertebrate organisms [17]. A
number of experimental reports showed that genes from
distantly related Tetrapoda organisms were correctly
expressed and post-transcriptionally modified in trans-
genic animals [19,20]. These observations suggest that
splicing regulatory motifs shared by tetrapods may further
enrich known elements for functionally important
sequences. However, no systematic studies have been car-
ried out.

In this work, we predict an extensive set of cis-acting ele-
ments identified in a large set of Tetrapoda exons and char-
acterize their overlap with previously identified silencers/
enhancers. Unlike in previous methods, we did not
restrict the size of ESE/ISE/ESS/ISSs oligomers unless they
are longer than 8 nt. Our prediction is based on the
assumption that auxiliary splicing elements have pro-
nounced statistically significant density increase/decrease
towards the exonic boundaries compared to the deep
intronic or exonic sequences. This assumption allows
using the identified elements to improve performance of
splicing prediction methods. Predicted ISEs/ISSs close to
the annotated exons were examined for increased evolu-
tionary conservation as compared to oligos with no pre-
dicted functionality. Finally, we investigated association
of the elements placed in context with the single-stranded
configuration of local pre-mRNA structure.

Results and Discussion
Identification of splicing regulatory elements in tetrapods
Using 2,333,379 extended Tetrapoda exons, we predicted
2,546 unique splicing regulatory elements that have statis-
tically significant density increase/decrease in the vicinity
of SS compared to the deep intronic or exonic sequences.
A total of 75 ESEs/ESSs and 1,846 ISEs/ISSs were found to
support 3'SS, whereas 54 ESEs/ESSs and 652 ISEs/ISSs
were found to influence 5'SS. Clusters of predicted ele-
ments could be found in [see Additional File 1 Section 4].

In primates, we predicted a total of 95 5'SS-related and
157 3'SS-related ISEs/ISSs [see Additional File 1 Section
5], whereas in the outgroup [see Subsection Collection and
validation of Tetrapoda exons] we have found 88 5'SS-
related and 330 3'SS-related ISEs/ISSs [see Additional File
1 Section 6]. Among the predicted elements for the pri-
mates and outgroup 21 5'SS ISEs/ISSs and 82 3'SS ISEs/
ISSs were common between two clades. Splicing regula-
tory elements predicted for these two distant clades heav-
ily overlapped with the elements ascertained for the entire
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Tetrapoda superclass (Table 1), suggesting a remarkable
conservation of cis-acting splicing regulatory factors in
vertebrate evolution.

We compared groups of the predicted exonic and intronic
enhancers/silencers to better understand the "splicing
code" supporting the exon definition. As could be seen in
[see Additional File 1 Table S1] groups of ISEs supporting
5'SS and 3'SS sides intersect only half as expected by a ran-
dom chance. This observation supports a hypothesis that
independent mechanisms define neighboring exons and
they do not share intronic enhancers located within com-
mon introns. On the contrary, ISSs are approximately four
times more likely to be shared by the 5'SS and 3'SS sides,
compared to a random chance expectation, and seem to
play an active role in creating a "silencing" background
within introns [21]. The group of 5'SS ISEs has substantial
intersection with the 5'SS ESSs. This finding is consistent
with previous observations that 5'SS ISEs frequently play
silencing role if misplaced within exons [22]. This is fur-
ther supported by a pronounced antagonism between
5'SS supporting ISEs and ESEs [see Additional File 1 Table
S1].

Table 2 puts the motifs we have found in retrospective
context of previously reported elements shown in Table 3.
Many of these elements were confirmed by the splicing
reporter constructs. After excluding previously identified
elements [10-12,14-18] from our Tetrapoda identified ele-
ments, a set of 373 novel oligomers was identified [see
Additional File 1 Section 7]. Statistical significance for the
motifs found along with LOD scores is shown in [see
Additional File 1 Section 8].

Higher conservation of intronic elements
A higher evolutionary conservation of the elements found
in the proximity of exonic flanks compared to the back-
ground sequences would be an important indicator of

their functional importance in splicing regulation [10,14].
Within 12,000 multiple intronic flank sequence align-
ments we found a significantly higher conservation of the
predicted intronic cis-acting octamers as compared to all
other possible motifs (Table 4). Here we considered only
the predicted octamers for uniform estimates of conserva-
tion scores, which would not be possible for elements of
different sizes. Conservation degrees of ISSs and ISEs
shown in Table 4 are similar, which suggests the impor-
tance of both enhancers and silencers in splicing defini-
tion.

Secondary structure association with the elements
According to [2] splicing enhancers and silencers are pref-
erentially located in a single stranded region of RNA as
compared to the controls, especially in the vicinity of SSs.
This has been explained by the higher probability of trans-
acting factors, such as SR proteins, to bind local single-
stranded regions. We therefore determined the Probabil-
ity Unpaired (PU) values for the predicted elements [see
subsection Statistical analysis]. We considered only pre-
dicted octamers to obtain the PU values on the same scale
which would be problematic for elements of different
sizes. We examined sequences composed of predicted
octamers surrounded with ± 30 nt context located in vari-
ous segments of exons and introns as shown in Figure 1.
PU values are known to be strongly associate with GC
content of the motifs and the surrounding context [2],
therefore it would be most informative to evaluate the dif-
ference in the distribution of PU values for the same group
of elements surrounded by wild type and dinucleotide
reshuffled contexts. Table 5 presents the average PU values
for the elements located in the different segments before
and after reshuffling.

Having the numerical series of PU values in various seg-
ments for different types of elements, we estimated if their
distribution changes after dinucleotide reshuffling with

Table 1: Intersection between putative intronic enhancers found separately for primates and outgroup clades and for the entire 
Tetrapoda superclass.

Outgroup 5'SS ISEs/
ISSs

Outgroup 3'SS ISEs/
ISSs

Vertebrates 5'SS ISEs/
ISSs

Vertebrates 3'SS ISEs/
ISSs

Primates 5'SS ISEs/ISSs 62/4.96 59/18.84 577/24.73 105/65.14

Primates 3'SS ISEs/ISSs 25/7.68 278/28.46 58/47.67 1,687/130.76

Vertebrates 5'SS ISEs/ISSs 622/33.35 327/130.27 2,428/101.57 297/231.66

Vertebrates 3'SS ISEs/ISSs 127/93.11 3,166/366.87 297/231.66 6,436/480.96

Here is shown the ratio between the actual intersection and the expected intersection of the sets under the null hypothesis (expected intersection 
between the same number of randomly generated oligos). An intersection between the two sets of elements is calculated as the number of all the 
possible longest common substrings LCS of the two compared elements a and b, with the size | LCS| ≡ min(|a|,|b|), in ordered pairs (a, b) coming 
from the Cartesian product of the sets.
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the two-sided Wilcoxon rank-sum test as shown in Table
5. Our working hypothesis was that if predicted enhanc-
ers/silencers are preferentially supported by a single-
stranded configuration then average PU values should go
down after contextual reshuffling as it would most proba-
bly disrupt the naturally occurring local secondary struc-
tures. We did not find statistically significant
discrepancies in the distribution of PU values after reshuf-
fling the contexts of elements located in segments associ-
ated with SS regulatory functions ('Next to 5'SS', 'Next to
3'SS' and 'Inside exon') as shown in Figure 1. The only

exception was the insignificant reduction of PU values for
both 5' and 3' ISSs located in deep intronic segments as
could be seen in Table 5. This statistical significance is
highly reproducible and holds even for reduced size sub-
sets of 600 ISSs examined deep inside intron (P = 0.0072
for 5'SS ISSs and P = 0.027 for 3'SS ISSs).

Implication of elements found in splicing reporter 
experiments
In order to investigate the implications of elements found
in splicing regulation, we considered systematic mutation

Table 2: Intersection of predicted elements with the systematically identified elements reported in Table 1.

RESCUE- 
ESEs [7]

Wang 
et al. 
decamers 
[24]

Yeo et al. 
5'SS ISEs 
5-mers 
[10]

Yeo et al. 
3'SS ISEs 
5-mers 
[10]

Zhang 
et al. 
PESEs [8]

Zhang 
et al. 
PESSs [8]

Zhang 
et. al. 
EIEs [12]

Zhang 
et. al. IIEs 
[12]

Wang 
et.al. 
ISEs/ISSs 
[14]

Goren 
et. al. 
ESRs [11]

5'SS ISEs 3/9.87 8/202.52 118/330.24 450/206.73 16/83.80

5'SS ISSs 105/9.46 68/54.19 46/27.40

5'SS ESEs 3/2.90 4/5.75 8/13.81 14/8.64 2/3.47

5'SS ESSs 4/0.84 0/4.61 38/22.64 19/14.17 4/5.70

3'SS ISEs 0/30.64 183/173.03 662/614.92 337/384.94 422/156.04

3'SS ISSs 156/34.31 25/35.42 83/190.50 213/164.59

3'SS ESEs 32/8.89 2/29.87 68/42.25 28/26.45 13/10.65

3'SS ESSs 0/0.21 1/1.10 19/12.98 6/8.12 5/3.27

Here is shown the ratio between the actual intersection and the expected intersection of the sets under the null hypothesis (randomly generated 
oligos). An intersection between the two sets of elements is calculated as the number of all the possible longest common substrings LCS of the two 
compared elements a and b, with the size | LCS| ≡ min(|a|, |b|), in ordered pairs (a, b) coming from the Cartesian product of the sets.

Table 3: Splicing regulatory elements previously predicted by systematic studies.

Publication Number of elements predicted

Fairbrother, W.G., et al. [7] 238 hexamers as candidate ESEs

Zhang, X.H. and L.A. Chasin [8] Putative 2,069 octamers as exonic splicing enhancers and 974 octamers as exonic splicing 
silencers

Wang, Z., et al. [24] 133 ESS-containing decanucleotides

Yeo, G.W., E.L. Van Nostrand, and T.Y. Liang [10] 133 5'SS ISEs and 299 3'SS ISEs pentamers

Goren, A., et al. [11] 285 hexamers putative exonic splicing regulatory sequences

Zhang, C., et al. [12] Putative 1131 hexamers Exon-Identity Elements (EIEs) and 708 Intron-Identity Elements (IIEs)

Stadler, M.B., et al. [13] 380 hexamers as new candidate ESEs and 132 hexamers as new candidate ESSs

Wang, E. T., et. al. [14] 187 5'SS ISEs/ISSs and 175 3'SS ISEs/ISSs hexamers supporting the tissue-specific splicing events
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experiments presented in [23] (Figures Eight, Nine). The
results of these experiments are interpreted through the
mutation induced changes in the predicted 3'SS regula-
tory elements [see Additional File 1 Table S3]. Original
experimental design [23] considered the influence of
exonic silencers on selection of competing 3'SSs in human

gene coding for proinsulin (INS) and hepatic lipase
(LIPC). Here we noticed that according to [see Additional
File 1 Table S1] predicted 3'SS ISSs are three times more
likely to overlap with 3'SS ESSs compared to overlap by
random chance, which indicates that most of the 3'SS ISSs
elements also act as 3'SS ESSs. This is further supported by

Table 4: Counting number of conserved octamers in the exonic proximity

Intronic flanks next to 5'SS Intronic flanks next to 3'SS

5'SS ISEs 3'SS ISEs

Conserved Non-Conserved Conserved Non-Conserved

Elements 4,024 6,800 Elements 4,272 8,363

Non-
elements

251,842 518,369 Non-
elements

261,387 578,106

Fisher 2-tail test: 1.81 × 10-22 Fisher 2-tail test: 1.59 × 10-10

5'SS ISSs 3'SS ISSs

Conserved Non- Conserved Conserved Non- Conserved

Element 399 648 Element 6,537 11,385

Non-
elements

251,842 518,369 Non-
elements

261,387 578,106

Fisher 2-tail test: 0.00025 Fisher 2-tail test: 3.46 × 10-51

Set of all other possible elements was obtained by excluding the ISEs and ISSs supporting either 5' or 3' SSs from the set of all possible octamers. 
We counted cases where oligonucleotides stay entirely conserved versus changing in at least one nucleotide position between the pairs of 
sequences from multiple sequence alignments, where only the motifs containing no gaps were considered. In case of 5'SS elements we considered 
window of size 20 nt starting 16 nt downstream from 5' exonic boundary in human sequence, where in case of elements supporting 3'SS we 
considered 20 nt window ending 63 nt upstream of 3' exonic boundary.

Table 5: Average PU for the predicted octamer elements surrounded by ± 30 nt context analyzed in various segments as shown in 
Figure 2.

Elements Next to 5'SS Next to 3'SS Inside intron Inside exon

Number Average PU Number Average PU Number Average PU Number Average PU

5'SS ISEs 3,946 0.100/0.100 3,954 0.185/0.191 4,014 0.189/0.196 4,017 0.148/0.154

5'SS ISSs 1,361 0.174/0.184 700 0.241/0.247 3,993 0.182/0.173
(P = 0.0064)

1,744 0.157/0.144

3'SS ISEs 3,930 0.165/0.165 4,061 0.205/0.206 3,989 0.190/0.187 3,984 0.182/0.174

3'SS ISSs 3,954 0.144/0.163 3,987 0.120/0.127 4,039 0.194/0.185
(P = 0.0063)

4,050 0.133/0.132

All Other elements 4,004 0.128/0.130 3,966 0.163/0.160 4,053 0.152/0.146
(P = 0.0083)

4,024 0.134/0.123

We classified the predicted elements surrounded by ± 30 nt context according to segments of their location. The mean PU values calculated 
according to [2] for wild type and dinucleotide reshuffled contexts are followed by significant P-values obtained with the Wilcoxon two-sided rank-
sum tests. Only the P-values rejecting the null hypotheses (P < 1%) that the distribution is similar in the two groups of PU values are shown.
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noticing that FAS-ESS elements AGGGGT and GGAGGG
[9] are similar to our predicted 3'SS ISSs GGAGGGG (A.IE
-2.00) and TGGAGGG (A.IE -2.08) and a substantial over-
lap between predicted 3'SS ISSs and FAS-ESS decamers
[24] as could be seen in Table 3. As could be seen in [see
Additional File 1 Table S3] removal of our 3'SS ISSs gen-
erally results in increased inclusion of isoform 4 (rows 4
⇒ 5, 12 ⇒ 13, 14 ⇒ 15) and newly introduced 3'SS ISSs
result in increased inclusion of isoform 3 (rows 3 ⇒ 4, 6
⇒ 7, 11 ⇒ 12). Same tendency is observed in [see Addi-
tional File 1 Table S4], where removal of 3'SS ISSs
increases level of IVS-78 isoform inclusion (rows LIPC -
WT ⇒ ESS - 1, ESS - 3 ⇒ ESS - 4, ESS - 6 ⇒ ESS - 7 and ESS
- 10 ⇒ ESS - 11) newly introduced 3'SS ISSs result in an
opposite effect (rows ESS - 2 ⇒ ESS - 3, ESS - 5 ⇒ ESS - 6,
ESS - 9 ⇒ ESS - 10). Introduction of 3'SS ESE signal TAG-
GTC (A.EE 1.72) results in increased IVS-78 isoform inclu-
sion as expected (row ESS - 13 ⇒ ESS - 14). These findings
suggest an active role of the predicted elements in SSs reg-
ulation.

Comparison of newly identified elements with known 
binding sites for RNA binding proteins
To further support the functional importance of the pre-
dicted elements we compared elements found with the
oligonucleotides already known to attract RNA binding
factors actively involved in splicing.

CA repeats bound by hnRNP L [25] are located in clusters
D.IE.14 and A.IE.9 (here and further in this section we
refer to [see Additional File 1 Section 4] listing the clusters
of elements predicted). Clusters D.IE.4, A.IE.10, A.IE.12
are enriched with elements YCAY that bind the NOVA
family of neuron specific splicing factors [22]. Poly-G sig-
nal has been reported simultaneously as an ISE signal [26]
when located downstream of a 5' splice site (clusters
D.IE.6, D.IE.12 and D.IE.15 are enriched with these ele-
ments) and play a role of an exonic silencer (cluster
A.EE.5) when located inside exon [22]. The G-run-bind-
ing factor hnRNP H is known to participate in exon defi-
nition [27,28]. Compact cluster A.EE.3 contains hnRNP

A1 SELEX predicted binding domain TAGGTC [27] and
clusters A.IE.7 and A.IE.4 contain hnRNP A1 binding ele-
ments TAGGG(A/T) [27]. Clusters A.IE.6 and A.IE.7 con-
tain elements AGGAGGA, CAGAGGA, CAGAGGG that
were identified by SELEX procedure as binding targets for
SF2/ASF enhancer [28]. Clusters A.IE.8 and A.IE.12 are
enriched with consensus binding motif ACTAAC of STAR
family RNA-binding factors, in particular quaking homo-
logue (QKI) [29].

Elements TGTGT and TGTT were established as active
cores of primary binding sites of ETR-3 splicing regulator
after five rounds of SELEX procedure [30] where many
clusters, such as A.IE.8 and A.IE.15, are enriched with such
elements. From AEDB database http://www.ebi.ac.uk/
asd/aedb/[31] 77 motifs were selected known to influence
splicing in their natural context [2], many of these ele-
ments are similar to our predicted elements. We have
identified 42 out of 71 confirmed splicing modulating
motifs of size greater than 4 nt to intersect with our pre-
dicted elements as shown in [see Additional File 1 Table
S2].

Conclusion
Using the orthologous exons currently available for 23
Tetrapoda organisms we have identified 2,546 unique
splicing regulatory elements. Among these elements 203
(7.97%) 3'SS and 177 (6.95%) 5'SS supporting motifs are
novel and have not been previously reported in systematic
screens detecting such elements. Among our predicted ele-
ments, 51.81% were octamers and 41.08% of sequences
were heptamers as compared to only 6.76% hexamers and
0.35% pentamers, suggesting that motifs of larger size
play important role in splicing regulation. We detected
intersections with some of the cis-acting elements
reported in the previous studies, but not nearly as dra-
matic as we saw between the intronic elements predicted
for primates and Tetrapoda non-eutherian (an outgroup)
clades. It demonstrates high reproducibility of our results
obtained for various vertebrate lineages and supports the
existence of highly conserved splicing regulatory code

Four segments for testing PU values for the predicted elementsFigure 1
Four segments for testing PU values for the predicted elements. Next to the 5'SS and 3'SS segments were chosen to 
extend 50 nt context, not including ± 30 nt, inside intron from the corresponding exonic boundaries.
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across vertebrates. This result also suggests the implica-
tions of elements found in regulating human splicing and
may help explaining human hereditary disorders caused
by mutations modulating such elements. We have estab-
lished the higher evolutionary conservation for the pre-
dicted intronic cis-acting elements within mammalian
intronic flanks which indicates their functional signifi-
cance in exon definition. The elements found contain
many of the known cis-acting factor binding sites with
functionality supported by experiments with splicing
reporter constructs. All these lines of evidence suggest
active involvements of the predicted elements in control
gradient directing spliceosome to the proper exons in the
process of pre-mRNA splicing [23].

We did not observe statistically significant association for
the predicted groups of cis-acting elements with the sec-
ondary pre-mRNA local structure in the vicinity of the SSs,
except for slightly increased single strandedness detected
for 5' and 3' ISSs deep inside introns. This observation is
in contrast to the earlier reported [2], where known splic-
ing regulatory motifs were identified as more single
stranded compared to controls in exonic vicinity. Our
result may indicate a potential mechanism of how ISSs-
mediated silencing background keeps spliceosomal com-
ponents inactive in the deep intronic sequences by provid-
ing stronger than normal binding affinity to preferentially
single-stranded ISSs.

A remarkable intersection between the 5'SS ISSs and the
5'SS ESSs [see Additional File 1 Table S1] is explained by
the highly improbable chances of having elements con-
taining a core fragment of a strong 5'SS competitor con-
sensus in vicinity of a 5'SS. We have also established that
many 3'SS ISSs act as 3'SS ESSs. These observations sug-
gest that discovered splicing regulatory elements have
broad functionality spectrum spreading beyond genomic
segments where they have been originally found, such as
possible regulatory role in 3'UTR [14].

Methods
Collection and validation of Tetrapoda exons
We parsed and extended blocks of orthologous with
human reference exons from multiple sequence align-
ment of 17 vertebrate genomes obtained from UCSC
genome browser http://genome.ucsc.edu/[32]. The fol-
lowing tetrapods were processed: Human (Homo sapiens),
Chimpanzee (Pan troglodytes), Rhesus (Macaca mulatta),
Mouse (Mus musculus), Rat (Rattus norvegicus), Rabbit
(Oryctolagus cuniculus), Dog (Canis familiaris), Cow (Bos
taurus), Armadillo (Dasypus novemcinctus), Elephant (Loxo-
donta africana), Tenrec (Echinops telfairi), Opossum (Mon-
odelphis domestica), Chicken (Gallus gallus), Frog (Xenopus
tropicalis). The "threaded blockset alignments" [33], built
under the assumption that all matching segments occur in

the same order and orientation in the given sequences,
were projected onto human reference exons predicted by
the spliced alignment of human reference sequences ftp:/
/ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot against
reference human chromosomal assemblies
http:hgdownad.cse.ucsc.edu/goldenPath/hg18/chromo
somes/ using the BLAT program [34]. Having the chromo-
somal sequences of corresponding organisms, the blocks
from the multiple genome alignments were extended to
include splicing signals and 205 nt intronic flanks. We
collected functionally important regions of intronic flanks
normally located no further than 100 nt from the exons
[14,35] and deep intronic sequences which we used as
background model located beyond 100 nt from the SSs.
The splicing signals flanking the extended exons have
been double checked with the Bayesian SSs sensor [36] to
make sure the extension yielded the correct exonic bound-
aries and the splicing signals flanking the exons have sta-
tistically significant score indicating their splicing
competence. We kept only one isoform per gene with the
largest number of predicted exons.

This exon set was extended with exons derived from
processing of 28 vertebrates multiple genome alignments
obtained from UCSC genome browser [37] from the fol-
lowing tetrapods: Bush Baby (Otolemur garnetti), Tree
Shrew (Tupaia belangeri), Guinea Pig (Cavia porcellus),
Shrew (Sorex araneus), Hedgehog (Erinaceus europaeus),
Cat (Felis catus), Horse (Equus caballus), Platypus (Ornitho-
rhynchus anatinus), Lizard (Anolis carolinensis). The blocks
from a total of 28 vertebrates multiple genome align-
ments are normally shorter than blocks from 17 verte-
brates multiple genome alignments, therefore chances are
higher that the block extension may not produce the cor-
rect exonic boundaries. Only the exons associated with
the species not obtained through the first round should be
processed in the second round.

To establish the firm ground for using sequences from dis-
tantly related organisms in predicting common SS proxi-
mal elements and to estimate implication of elements
found in modeling human splicing we conducted inde-
pendent search for the elements in two distantly related
clades of primates and non-eutherian Tetrapoda organ-
isms. For these purposes we have examined 489,668
extended exons in primates clade (Human (Homo sapiens),
Chimpanzee (Pan troglodytes), Rhesus (Macaca mulatta),
Bush Baby (Otolemur garnetti)) and 476,218 extended
exons from non-eutherian Tetrapoda organisms (Opos-
sum (Monodelphis domestica), Chicken (Gallus gallus), Frog
(Xenopus tropicalis), Platypus (Ornithorhynchus anatinus),
Lizard (Anolis carolinensis)) taken as the most distant out-
group (a group of species known to be phylogenetically
outside the primates clade) among Tetrapoda organisms
relative to primates.
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To estimate the increased conservation of the intronic ele-
ments found within the intronic flanks we have used the
Prank [37] tool to built multiple sequence alignments of
the orthologous intronic flanks (12,000 for 5' and 3'
sides) including primates (Human (Homo sapiens), Chim-
panzee (Pan troglodytes), Rhesus (Macaca mulatta), Bush
Baby (Otolemur garnetti)) and rodents (Mouse (Mus mus-
culus), Rat (Rattus norvegicus), Guinea Pig (Cavia porcellus))
clades.

Through the literature search we collected the test set of
185 human genes previously linked to autism spectrum
disorder and genes implied in environmental response
[38]. A set of extended exons obtained through the spliced
alignment of human reference sequences for the test set
against the reference chromosomal assemblies, as
described previously, was used as a sample representative
collection of important human genomic regions with
potential implication in medical practice. The set
included 4,650 canonical 5' and 3' SSs flanking internal
exons and was used to estimate association of local pre-
mRNA secondary structures with the predicted elements.

Statistical analysis
We measured a statistically significant bias for all the pos-
sible oligonucleotides of size equal or less than 8 bp in the
vicinity of true 5' and 3' SSs compared to distant "back-
ground" locations as shown in Figures 2 and 3. Our
assumption is that enhancers are more common and
silencers are less frequent in vicinity of SSs compared to
"background". For the convenience of representation all
the elements were scored using prefix tree structure as
shown in [see Additional File 1 Figure S1] to determine
statistical significance. The tree structure of height 8 has
65,536 leaves associated with any possible octamer where
each internal node and root have out-degree 4 corre-
sponding to the number of possible nucleotides at a next
position. When octamers get inserted in the tree the
counts associated with the traversed internal nodes and
the destination leaf node increase. The scores associated
with an internal node of certain depth correspond to the
density of an oligonucleotide of size depth present at a cer-
tain positions within genome. A significant deviation of
an oligo density in the proximity of SSs as compare to
background locations is strongly indicative of important
functionality of elements related to splicing [10,15,33].

Comparing oligo counts at the significance level of α =

0.011 using χ2 test involved 87,380 statistical hypotheses
testing for all possible oligos of size less or equal to 8 bp
located at certain position relative to a SS. Following the
Bonferroni correction for multiple hypothesis testing we

reduced the significance level to  for

individual tests. All the χ2 tests for the SS vicinity counts ≥
63 or deep intronic/exonic counts ≥ 63 are statistically signif-
icant

under conditions

or

Comparative measurements between the regions shown
in Figure 3 were made in 3 rounds according to experi-
mental schemas shown in Figure 2. Every round of scoring
involved all the sequences from the exonic set, elements
predicted in any of these 3 scoring rounds were reported.
The second comparative measurement for the Skip value
29 nt, as shown in Figure 3(A), was necessary to detect
intronic enhancers/silencers that have maximum impact
on splicing when located at certain optimal distance from
the exonic flanks, which is the known fact in case of polyG
signals [26]. Elements detected in the first comparative
measurement (for Skip = 0 nt in Figure 3(A)), in the sec-
ond measurement (for Skip = 29 nt in Figure 3(A)) and for
the third differential measurement as shown in Figures
2(C) and 3(B)) were merged in one prediction.

Extended orthologous exons associated with the same
multiple genome alignment block frequently contain
identical conserved oligonucleotides at certain positions
relative to SSs, especially within exons. These conserved
elements violate our assumption of independence of the
sequences used for analysis of statistical significance;
therefore within a block we counted unique element at
certain position relative to SSs only once, disregarding all
other identical motifs conserved since speciation from a
common ancestor. To prevent substantial element under-
scoring in a counting round, since many of the elements
at a certain position relative to a SS were sorted out due to
evolutionary conservation, we shifted an element posi-
tion by one within a counting region for each consecutive
sequence as shown in Figure 3(C), where element coordi-
nate within a region were calculated according to formula

0 011
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where mod is a modulo operation, counting round could
be 0,1 or 2 and the sequence index goes from 1 to
2,333,379. Elements shifted by one position within the
region are normally different and therefore not sorted out
for being similar, which allows combining more elements
in the region associated with a block under the same evo-
lutionary pressure.

These predicted groups of elements were clustered with
the Mixture of Hidden Markov Models (MHMM), an
unsupervised clustering method capable of modeling
dependencies between neighboring positions in active
motif cores [see Additional File 1 Section 3].

The PU values for the predicted octamers surrounded by ±
30 nt context were calculated as described in [39] using

Position within region region start counting round sequence in= + +( ddex)mod ,3

Location of genomic regions used for comparative analysisFigure 2
Location of genomic regions used for comparative analysis. (A) Statistical significance tests for intronic enhancing/
silencing elements surrounding exon. Blue is the null-hypothesis region and red is the region of statistical significance associated 
with the exon proximity. The red region is specifically located outside the area associated with donor or acceptor signal con-
sensuses [36]. (B) Statistical significance test for the ESEs/ESSs elements supporting the exonic definition. This strategy allows 
canceling the statistical biases associated with the protein coding potential best characterized by the hexamer statistics [41] 
and focusing at the essential difference between the exonic flanks, normally enriched with ESEs [42], and the middle section 
supposedly depleted of such elements. (C) The differential strategy allows detecting enhancing and silencing elements that have 
substantially different concentration in vicinity of a strong vs. weak SS as defined by the Bayesian SS sensor [36]. The score 
from the sensor is measured on a discrete scale from 1 to 5, where 1 stands for a weak signal and 5 stands for strong.
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RNAfold [40] program from Vienna RNA package http://
www.tbi.univie.ac.at/RNA/. To accelerate finding average
PU value for an element we calculated them only for the
contexts of 11, 15, 20, 25 and 30 nt according to [2], a
method which produced consistent results for perfect
loop configuration (PU = 1), perfect stem configuration
(PU = 0) and a very similar PU value for the example in
[2] (Figure 1) for natural pre-mRNA structure supporting

TCTCTCT element. We have also confirmed that 77
known enhancer/silencer elements are more single
stranded since average PU values were going down after
dinucleotide contextual reshuffling (the control) as
reported in [2]. The dinucleotide reshuffling procedure
[41] were making 10,000 iterations equally distributed
between the non-overlapping dinucleotides swapping
within or across flanking segments, excluding the ele-

Location of the counting regions used for oligonucleotide scoring relative to exonic flanksFigure 3
Location of the counting regions used for oligonucleotide scoring relative to exonic flanks. All short exons that 
were not able to accommodate the regions are disregarded. (A) The region arrangement for the counting strategies shown in 
Figures 2 (A) and (B), where the Skip value is set to 0 nt for the first comparative measurement and 29 nt for the second. The 
second comparative measurement is necessary to predict active intronic elements that have maximum enhancing/silencing 
potential at certain optimal distance from the exonic boundary, such as polyG signals [26]. The second measurement also 
trades the smaller number of longer exons considered for the greater chance of detecting element density discrepancy 
between the middle of the exons and the flanks. (B) The region arrangement corresponding to differential test strategy shown 
in Figure 2 (C). (C) The tiling strategy within a region increases the variety of elements sampled in a counting round. Tree dif-
ferent colors used to show which oligo within a region gets sampled in a three consecutive statistical tests (red in the first test, 
green in the second test, blue in the third test). This strategy reduces chances for multiple sampling of the same oligo con-
served at a certain position in closely related organisms.
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ments. This way we kept the same GC content which is
essential for proper PU values comparison in case/control
studies [2].
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