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ABSTRACT: A Matlab-FEM code has been developed for deformation analysis of sails as a MSc final 
project. Sails are modelled as isotropic homogeneous membranes reinforced with cables. The problem, fully 
non-linear, is resolved by assembling the global stiffness matrix of a mesh of membrane and cable elements 
in the Matlab™ environment to get an N-equations N-unknowns system. The solution is found with a Quasi-
Newton solver. Validation has been performed by comparing numerical results obtained from the developed 
code with analytical solutions of geometrically simple cases and with experimental data from tests carried 
out in the DINAV Ship Structures laboratory. A full Fluid Structure Interaction (FSI) analysis of a main sail 
has been carried out coupling the code with an aerodynamics panel code developed as another MSc final 
project (Vernengo, 2008). The result is in accordance with the physics of the phenomena and engineering 
judgment. 

1 INTRODUCTION 

In recent years technological innovations have 
introduced large improvements in sail design and 
construction. The work of sail-makers is more and 
more becoming a high-tech job in collaboration with 
skilled aerodynamicists and material scientists, 
especially when dealing with the most competitive 
sailing teams. Competitions like America’s Cup or 
Volvo Ocean Race are the best fields to improve 
optimisation processes. From those fields, studies 
have been developed widely and it’s often possible 
to see high-tech sails even on cruising boats used for 
local yacht club regattas. 

Furthermore, kites are nowadays becoming very 
popular, for both sport and as ships’ auxiliary 
propulsion. Implementing this technology, a 
significant decrease (10-35%) on average annual 
fuel cost is claimed (www.skysails.info). This 
system seems to gain success and many articles can 
be found in open literature. Studies are ongoing into 
wind turbines, demonstrating that their efficiency is 
increased by the kite’s ability to fly at high altitudes, 
not subjected to any wind gradient 
(www.kitegen.com). 
This kind of study is very challenging due to the 

large number of different interactions. Sails are in 
fact a typical example of Fluid-Structure Interaction 
(FSI) and need very different engineering skills to be 
merged. 

As a matter of fact, pressures generated by sails 
depend on the sail’s equilibrium shape. The 
equilibrium shape is a function of the applied load 
(sum of pre-loads and aerodynamic loads), structural 
stiffness and boundary conditions, as for example 
battens and rigging. 

The Finite Element (FE) tool described in this 
paper calculates the deformation of a sail loaded 
with a generic pressure load. The definition of loads 
has to be done by an external aerodynamic code 
analysing the wind flow over the deformed geometry 
of the sail. 

2 STRUCTURAL METHOD 

The method adopted for the sail-deformation 
calculation is the development of a finite difference 
code for 2-D beams used for teaching purposes 
(Carassale, 2007). Elements have been modified and 
are now 3D triangular isotropic homogeneous 
membranes and cable elements. Even if the 
assumptions adopted for this model are rather 
approximate, they have been considered acceptable 



as the starting point for future developments. On the 
other hand, cables can supply the lack of accuracy in 
the orthotropic materials and structural behaviour 
modelling. Actually, advanced sail-makers are using 
specific tools for sail design (e.g. Membrain - 
www.northsails.com , Relax - www.peterheppel.com 
, SA Evolution - www.smar-azure.com, SailFlex - 
www.yru-kiel.de) and the need to get more accurate 
results is represented in a continuous development of 
such codes. However, no specifically developed 
codes are available in open literature as existing 
ones are considered commercially sensitive. 

In the past, various papers have been presented on 
the modelling of sail structural behaviour, but often 
sails have been discretised with cables or beam 
systems, i.e. mono-dimensional elements (Hauville, 
2004; Fantini, 2004). However, membrane structural 
behaviour has been studied for different purposes 
and in other engineering fields. 

After a rather comprehensive literature review on 
the definition of membrane elements for FE codes, 
the elements implemented in the present work have 
been derived from the ones originally defined by Li 
and Chan (2004). In their article they further 
developed previous works by Tabarrok and Qin 
(1992) and Levy et al. (2004). Elements stiffness 
matrices are explicitly expressed in terms of 
geometric global coordinates of the nodes of the 
elements and of the material properties, so they are 
very straightforward to implement in a self-
developed FE code. 

 
Figure 1. Element geometrical definition. 
 
The basis of the FE theory is the Principle of Virtual 
Works (PVW), discretised and expressed in matrix 
form. Li and Chan’s paper proposes an element 
stiffness matrix composed by an elastic stiffness 
matrix (linear) plus a geometric stiffness matrix 
(nonlinear): 

GE KKK +=                                      (1) 
where K =Global Stiffness Matrix, EK = Elastic 
Stiffness Matrix,  GK = Geometric Stiffness Matrix. 

Physically, the stiffness matrix expresses a 
relationship between external applied loads and 
nodal displacements caused by applied loads and is a 
linear operator. For large displacement analysis, the 

problem becomes non-linear since the structure’s 
stiffness (necessary to calculate displacements) is 
not defined a priori but it has to be calculated as a 
function of nodal displacements. The problem is 
generally solved with an iterative procedure. 

For the implemented elements the elastic stiffness 
matrix is defined as: 

GN
T
N

T
GE TTDTTK ⋅⋅⋅⋅⋅⋅= tA                    (2) 

where ijl0  are the length of the undeformed element 
sides and tA ⋅  is the undeformed element volume. 
Also, with reference to Fig. 1: 
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The geometric stiffness matrix is defined as: 
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While for cable elements: 
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

⋅⋅−
⋅−⋅

= TT

TT

CABLEe l
EA

CCCC
CCCC

K
0

                                   (4) 

where: ( )iIiIIi XX
l

−=
0

1C                                 

 

[ ] ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

−−−
−−−

= TT

TT

CABLEG l
T

CCICCI
CCICCI

K
33

33

0

            

(5)where: T is the cable tension. 



Once both element’s stiffness matrices are 
known, it is possible to assemble the global stiffness 
matrix [ ]GLOBK as the sum of EK  and GK , which is 
now able to consider both elements contributions. 
Assembly is undertaken with proper Kronecker’s 
tensors, built up in order to position nodal stiffness 
values in the correct position of the global stiffness 
matrix as follows:  
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where: Oi is the element’s Kronecker tensor.  
Once the global stiffness matrix [ ]GLOBK  is 

evaluated, it is possible to extract the stiffness matrix 
of free nodes LLK . This allows the definition of an 
N-equations N-unknowns system to be solved with a 
Quasi-Newton solver which is able to minimise the 
first term of the following equation: 

0=−⋅ LLLL PuK                                     (7) 
where: LLK = free nodes stiffness matrix; Lu = free 
nodes displacement vector; and LP = applied loads 
on free nodes vector.  

Three non-linearities are implemented in the 
Code: 
NL1_ The Geometric Stiffness Matrix GK  is non-

linear, since it is defined as a function of the 
element’s nodal displacements.  

NL2_ is due to large displacements: loads (defined 
as discretised pressure load, i.e. force on 
nodes) have to be rotated in order to remain 
perpendicular to the deformed membrane. 

NL3_ Material behaviour is non-linear, since 
membranes and cables are not reacting to 
compressive loads. In order to calculate the 
geometric stiffness matrix, when calculated 
tensions are negative they will be considered 
equal to zero in the iteration step and in the 
subsequent ones. 

As shown in Fig. 2, the calculation is stabilised 
with a relaxation routine, which is able to smoothen 
numerical instabilities affecting the calculation 
during iterations on the geometric stiffness matrix. 
The relaxation is simply obtained by averaging the 
increase of nodal displacements at each step i by: 
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where: ( )iu = Nodal displacements at i-th iteration 
In order to stabilise numerical results it has been 

observed that the convergence curve (assumed as the 
norm of nodal displacements sum) oscillates rather 
symmetrically over the final result (Fig. 3). The 
convergence has been forced imposing calculated 
displacements on the i-th iteration as an average 

between displacements calculated on the i-th and (i-
1)-th iteration. 

 

 
Figure 2. The flow chart of the calculation 
 

 
Figure 3. Convergence behaviour 

3 ANALYTICAL COMPARISON 

Code validation has been performed first 
comparing analytical results with numerical results. 
Later on, an experimental validation has been 
performed. 

The first analysis regards a holed membrane in 
tension. The analytical results are well known in 
terms of displacements and stresses and the stress 
concentration factor is 3.0 at hole’s quadrants. 
Analysis has been performed using three different 
meshes, adapting element size around the hole. A 
rather significant mesh-sensivity was experienced, 
but results are acceptable once the mesh is properly 
refined according to usual engineering judgment. 

In the test case, the membrane is 16mm wide and 
1mm thick. It is loaded with 17 concentrated loads 



of 100N each. The material Young Modulus is 
1000N/mm2.  

Therefore far-field stresses will be 
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Figure 4. Adopted mesh and results in term of tension stresses 
 

Numerical analysis gives displacements of about 
1.64mm and the error is approximately 3%. 
Calculated far-field stress is about 105.9 N/mm2 
with an error of approximately 0.3%. Neglecting 
some numerical residuals, the stress concentration 
factor is 2.9 at hole’s quadrants in tension and the 
error is approximately 3%. 

Instability of elements in compressed areas of the 
hole is also noted (Fig. 5). 

 

 
Figure 5.  Zoom on the hole and principal stresses 
 

Such results can be explained bearing in mind 
that in the code no model for wrinkling has been 
included. This assumption has been made in order to 
simplify the code in a first step of its development. 
On the other hand in the future a wrinkling model 
will be included in order to increase the accuracy of 
the calculation. In fact, as it is possible to see in Fig. 
6, wrinkling can be significant in membrane 
deformation. In the literature many interesting 
references can be found, both in theoretical papers 
(Stanuszek, 2003; Lee, 2006; Diaby, 2006) and in 
some sail analysis devoted papers (Heppel, 2002). 

 
Figure 6. Wrinkling test 
 
Without a wrinkling model able to deal with out-of-
plane deformations, elements at the upper and lower 
quadrant of the hole are compressed but unable to 
react. This happens since the definition of the 
element’s stiffness matrix does not deal with 
negative stresses (NL3). Therefore, compressed 
elements are “collapsed” in the plane and this can 
cause a large nodal displacement, as shown by the 
test of Fig. 6.  

In the following, a sphere loaded with internal 
pressure has been analysed. The analytical solution 
is known and it is reported in the following. The 
increase in sphere-radius can be calculated as:    
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Due to the sphere symmetry, circumferential and 
tangential stresses will be equal and calculated as:  
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In the test case it has been assumed: 
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As far as both deformation and stress is 
concerned, the numerical calculation gives rather 
accurate results: radius R’ is in fact 5.97mm. The 
error is approximately 0.5%. 
 

 
Figure 7. Nodal displacements 



The stress value oscillates between  
2360350

mm
N

−  

with the corresponding error being about 2.5%. 
 

 
Figure 8. Stress values 

 
The error value increases (up to 5%) on the 

clamped node at the base of the sphere (Fig. 8). 
Even if the sphere is not loaded by any own-weight 
load, the symmetry of the stress increase in this zone 
is noticeable. Actually, the explanation is that some 
numerical residuals would have brought the 
structure to a deformation which is not exactly 
symmetrical. The following reaction is supported by 
the only clamped node at the base, thus correcting 
the error caused by residuals. This causes a small 
distortion in the stress field. In fact, the value of the 
boundary reaction is 326 N, i.e. 4% of total load. 
This value is in agreement with the error already 
found for stresses. 

Thereafter, a cylinder has been loaded with 
internal pressure as follows: mmR 5.2= ; mmt 1= ; 

2100 mm
NP = ; 21000 mm

NE =                   

 
From the analytical solution it was found that: 
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Numerical results obtained are again acceptable, 

in fact radial displacements are about 0.562mm. The 
error is 4%. 

 

 
Figure 8.  Nodal displacements 

 

Calculated stress is 2245 mm
N , the error is 2%. 

 
Figure 9.  Principal stresses 

 

4 EXPERIMENTAL MEASUREMENTS  

Validation is continued comparing numerical data 
with experimental measurements. Two different 
experimental campaigns have been carried out. The 
first one was intended to measure the material’s 
mechanical properties to be used in the calculation. 
The second one was intended to measure 
deformation of a flat membrane loaded with constant 
pressure. 

Some tension tests have been carried out in order 
to find the stress-strain curve, i.e. the Young 
Modulus for 5 different sail materials. The weight of 
the sail fabric is generally measured in “sail maker’s 

ounces” (smOz) where 1smOz = 43.3 2m
g . For 

fibre-reinforced material, the currently adopted unit 
is the Denier per Inch (Dpi). This is the number of 
fibres per every inch in the warp direction. A second 
value is sometimes reported for the fill direction. In 
the present case, tested materials are: Dacron (7.5 
smOz, 0° and 90°); Spinnaker’s Nylon (1.5 smOz, 
0° and 90°); Mylar and Kevlar (19 Dpi). The latter 
has been assumed isotropic.  

 

 
Figure 10.  Traction tests 

 
Measurements have been performed with 

laboratory machines for tension tests, able to obtain 
the force-displacement curve (Fig. 10).  

From those tests, the Young Modulus of fabrics 
has been estimated considering the linear part of the 
plot and disregarding the initial and final parts of the 
curves, as reported in Fig. 11 and Table 1.  

 



 
Figure 11.  Force-Displacement curves 
 
Table 1.  Material properties 

E    2mmN  
Dacron (ortotropic) tested @ 0° 1667 
Dacron (ortotropic) tested @ 90° 1712 
Spinnaker (ortotropic) tested @ 0° 294 
Spinnaker (ortotropic) tested @ 90° 458 
Kevlar (isotropic) 1935 

 
In order to test the accuracy of the code, the 

deformation of an initially flat Dacron membrane 
loaded with constant pressure has been measured. 
This test has been designed in order to assess the 
code’s behaviour in a limit case, where the expected 
error is rather large. In fact, since the initial structure 
is flat, the elastic stiffness matrix is singular. The 
accuracy of the solution for very small deformations 
can therefore be expected not to be very accurate. 
On the other hand, the curvature of the structure is 
dramatically changing, from zero to larger values. 
 

 
Figure 12.  Box for deformation test 
 
A wooden box has been built and a Dacron 
membrane has been fixed on the top (Fig. 12). The 
box has been made air-proof by a gasket and a 
special paper on the edges, normally used for the 
construction of church organs. The Dacron fabric 
has been fitted onto the box with fibres oriented 
along the box directions. 

Compressed air has been pumped into the box 
and the pressure has been measured by water 

columns, providing very accurate measurements 
(Fig. 13) in the range of interest (11 to 88 OcmH 2  
i.e. 10 – 80 mbar). 
 

 
Figure 13.  Measurement System 

 
A laser device, able to measure distances, has 

been used to obtain the fabric deformations. 
Measurements have been carried out for 6 pressures 
in the range of interest. For some pressure values, 
deformation of 6 box’s sections has been measured 
from the centre of the box. The data oscillations 
reported in Fig. 14 are probably due to noise 
(vibrations of the compressor, electromagnetic 
interferences on the measurement system, etc.). It 
has however been judged acceptable and have been 
smoothed by a 2nd order polynomial interpolation. 

 

 
Figure 14.  Measured deformed sections 

 
Once the deformed shapes and material elastic 

properties were known, a comparison between 
numerical and experimental results was carried out. 
This was done for two sections (see Fig. 15) and for 
six different pressures in the range of interest. 

A 784 element mesh has been adopted (Fig. 15) 
and the FE deformed shape seems rather different 
compared to the experimentally deformed one, 
especially at midspan. The calculated shape doesn’t 
look smooth as in the experimental one, as the 



sections remain flat near the edges and suddenly 
bend in the centre. Also, caused by the low value of 
the initial curvature, vertical displacement of the 
nodes is magnified in the centre of the membrane, 
providing an important source of error. 

 
 

 
Figure 15.   Numerical results of box test 

 
In Fig. 16 (left) the comparison for the central 

section loaded with an 88cm water column (0.086 
bar) is reported. The error is maximum at 
membrane’s centre, i.e. in the most distant point 
from fixed edges and where curvature is smallest. 

 

 
Figure 16.  Measured vs computed results and error values 

 
In Fig. 17 the graph reports a response surface of 

the error for six different tested pressures at central 
section and at @0,25L section. Therefore Fig. 17 
reports the same values as Fig. 16 (right), but for 
many different tested pressures. This graph shows 
the error value is largest at the centre and it takes 
larger values for section @0,25L where final-
curvature is lower. The error does not show a strong 
dependency on applied pressure. 

It is worth pointing out that such error is not due 
to the Quasi-Newton solver converging to a local 
minimum. In fact, modifying the initial curvature of 
the membrane does not appear to be relevant for the 
final result. Similarly, the mesh refinement does not 
seem to influence the results: using an 1196 element 
mesh, finer in the central zone of the membrane, the 
error values decreases by about 1%. It is not easy to 
explain the origin of such an error, and in the future 
this subject will need more attention. 

 
Figure 17.  Error value for different pressures 

5 QUALITATIVE RESULTS  

In the following, some additional comparisons are 
reported for cases whose analytical solution is not 
known. Validation is based on qualitative judgment 
of results. A cylinder loaded with very high internal 
pressure is studied first. In the first iteration of the 
calculation, Loads are radial and deformation is 
consequently found to be radial: 

 

 
Figure 18.  First iteration of cylinder in high pressure 

 
Loads are rotated in subsequent iterations according 
to large displacement theory and the deformation 
shown in Fig. 19 seems to be consistent. Lateral 
edges are in fact rotated as shown: 

 

Figure 19.  Equilibrium shape of cylinder in high pressure 
 
Then, a spinnaker in sailing conditions has been 

analysed. The fabric has been loaded with a constant 
pressure equivalent to a 14 knots wind speed 
(3mbar). The Young's modulus is calculated as the 



average of the 2 measured values (Table 1, @0° and 
@90°) i.e. 375 N/mm2. In the “design shape” the sail 
is 6000 mm high, the chord is 3750 mm and the max 
camber is 1670 mm. Some cable elements have been 
assembled on the foot, leech and luff of the sail. The 
results can be considered globally consistent, but the 
uncertainty is rather high, especially in the area of 
clew and tack. In those zones the increase in fabric 
thickness, due to additional layers sewn as 
reinforcement, has not been taken into account. 

 

 
Figure 20.  Spinnaker’s design shape 
 

 
Figure 21.   Nodal horizontal displacements 

 

 
Figure 22.  Principal stresses on spinnaker 

 
Finally, a mainsail has been loaded with constant 

pressure equivalent to a 15 knots wind. Deformation 

seems to be consistent both in terms of nodal 
displacement and tension. It should be remarked that 
at this stage of the analysis the sail has not been pre-
loaded, thus explaining the low value of tension on 
the head of the sail:  

 

 
Figure 23.  Nodal displacement and principals stresses  

 

6 FLUID-STRUCTURE INTERACTIONS 

An aerodynamic method has been developed to 
estimate loads on sails in a parallel MSc final project 
(Vernengo, 2008). It consists of a Vortex Lattice 
Method, able to calculate the circulation field, i.e. 
the pressure over a sail subjected to a wind flow. As 
a potential code, its validity is limited “close hauled 
course”. The Fluid Structure Interaction (FSI) 
analysis has been carried up over a mainsail 12m 
high, with a chord of 5m, sailing upwind with a 
wind speed of 15 knots. 

Coupling has been performed as follows: once the 
initial sail geometry 0X  (design shape) is defined, 
the aerodynamic code calculates pressure 0p  
assuming a rigid profile. Pressure values are then 
passed to the structural code (present work) which 
defines the deformed geometry 1X . The latter is 
introduced again in the aerodynamic code, in order 
to calculate new pressures 1p , used in turn to 
deform the initial design shape 0X  and to calculate a 
new deformed geometry 2X . It is worth noting that 
structural analysis is always performed for the same 
initial geometry 0X , loaded by an updated pressure’s 
field. 0X  is in fact the “design shape”, i.e. the sail 
shape as built by the sail maker. 
The procedure continues until achievement of a 
convergence criterion, based on the evaluation of the 
nodal displacement modulus, as in Fig. 26. In the 



present case, the sail was subjected to a parabolic 
wind profile, reaching a maximum velocity value of 
20kts. The wind velocity vector presents a linear 
twist from the sea surface to the mast head, where it 
reaches its maximum value (45°). Since the sail has 
a variable geometric twist, the angle of attack has 
locally variations along the mast, given by the 
combination of geometric and aerodynamic twist. 
From a structural point of view, the fabric is 
described as:  
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A very satisfactory convergence has been achieved 
in 13 iterations (error less than 1%):  
 

 
Figure 26.  FSI convergence 

 

 
Figure 27.  Aerodynamic Calculation 
 
In Fig. 27, the behaviour of the wake developed 
from the sail in the equilibrium configuration is 
shown, and in Fig. 28 the corresponding sail 
deformation, shown laterally, from top and from aft, 
rotated 90° clockwise. Nodal loads deriving from 
calculated pressures are represented by arrows. 

 
Figure 28.   Final deformed shape (color map of deflections) 

 

7 FUTURE DEVELOPMENT 

The developed FEM method adopts many 
assumptions, which have been accepted as a starting 
point for future development. 

Implemented elements are membranes and 
cables. In the future, battens will be included as a 
very important element for sail deformation analysis. 
In the present code, battens have been neglected 
since the implementation would require large 
programming effort but only offers small conceptual 
improvements. In fact, membranes and cables are 
both defined with three degrees of freedom at nodes, 
i.e. no bending strength. In order to include battens 
all nodes will have to pass from three to six degrees 
of freedom (DOF), thus modifying the architecture 
of the whole code. Moreover, the additional DOF 
should be coupled with membranes’ nodes which by 
definition do not have bending DOF. On the other 
hand, completing the code makes it possible to take 
into account the rigging, which has a large influence 
on sail deformation. 

The elements used are isotropic homogeneous 
membranes. In the future, an important development 
will be to implement some anisotropic elements with 
variable thickness, in order to simulate more 
accurately sail-making materials and the stiffened 
zones close to the sail's corners. Cable elements will 
be used also for the correct modelling of fibres 
included in the sail, as in modern sail materials (Fig. 
10). 

As described in Section 3, no wrinkling model 
has been included into the code, even if wrinkling is 
a quite important phenomenon in thin laminate 
analysis (Fig. 6). 

As the structural model gets closer to physical 
reality another experimental tests campaign will be 
necessary.  
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