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ABSTRACT: A Matlab-FEM code has been developed for deformation analysis of sails as a MSc final
project. Sails are modelled as isotropic homogeneous membranes reinforced with cables. The problem, fully
non-linear, is resolved by assembling the global stiffness matrix of a mesh of membrane and cable elements
in the Matlab™ environment to get an N-equations N-unknowns system. The solution is found with a Quasi-
Newton solver. Validation has been performed by comparing numerical results obtained from the developed
code with analytical solutions of geometrically simple cases and with experimental data from tests carried
out in the DINAV Ship Structures laboratory. A full Fluid Structure Interaction (FSI) analysis of a main sail
has been carried out coupling the code with an aerodynamics panel code developed as another MSc final
project (Vernengo, 2008). The result is in accordance with the physics of the phenomena and engineering

judgment.

1 INTRODUCTION

In recent years technological innovations have
introduced large improvements in sail design and
construction. The work of sail-makers is more and
more becoming a high-tech job in collaboration with
skilled aerodynamicists and material scientists,
especially when dealing with the most competitive
sailing teams. Competitions like America’s Cup or
Volvo Ocean Race are the best fields to improve
optimisation processes. From those fields, studies
have been developed widely and it’s often possible
to see high-tech sails even on cruising boats used for
local yacht club regattas.

Furthermore, kites are nowadays becoming very
popular, for both sport and as ships’ auxiliary
propulsion. Implementing this technology, a
significant decrease (10-35%) on average annual
fuel cost i1s claimed (www.skysails.info). This
system seems to gain success and many articles can
be found in open literature. Studies are ongoing into
wind turbines, demonstrating that their efficiency is
increased by the kite’s ability to fly at high altitudes,
not subjected to any wind  gradient
(www kitegen.com).

This kind of study is very challenging due to the

large number of different interactions. Sails are in
fact a typical example of Fluid-Structure Interaction
(FSI) and need very different engineering skills to be
merged.

As a matter of fact, pressures generated by sails
depend on the sail’s equilibrium shape. The
equilibrium shape is a function of the applied load
(sum of pre-loads and aerodynamic loads), structural
stiffness and boundary conditions, as for example
battens and rigging.

The Finite Element (FE) tool described in this
paper calculates the deformation of a sail loaded
with a generic pressure load. The definition of loads
has to be done by an external aerodynamic code
analysing the wind flow over the deformed geometry
of the sail.

2 STRUCTURAL METHOD

The method adopted for the sail-deformation
calculation is the development of a finite difference
code for 2-D beams used for teaching purposes
(Carassale, 2007). Elements have been modified and
are now 3D triangular isotropic homogeneous
membranes and cable elements. Even if the
assumptions adopted for this model are rather
approximate, they have been considered acceptable



as the starting point for future developments. On the
other hand, cables can supply the lack of accuracy in
the orthotropic materials and structural behaviour
modelling. Actually, advanced sail-makers are using
specific tools for sail design (e.g. Membrain -
www.northsails.com , Relax - www.peterheppel.com
, SA Evolution - www.smar-azure.com, SailFlex -
www.yru-kiel.de) and the need to get more accurate
results is represented in a continuous development of
such codes. However, no specifically developed
codes are available in open literature as existing
ones are considered commercially sensitive.

In the past, various papers have been presented on
the modelling of sail structural behaviour, but often
sails have been discretised with cables or beam
systems, i.e. mono-dimensional elements (Hauville,
2004; Fantini, 2004). However, membrane structural
behaviour has been studied for different purposes
and in other engineering fields.

After a rather comprehensive literature review on
the definition of membrane elements for FE codes,
the elements implemented in the present work have
been derived from the ones originally defined by Li
and Chan (2004). In their article they further
developed previous works by Tabarrok and Qin
(1992) and Levy et al. (2004). Elements stiffness
matrices are explicitly expressed in terms of
geometric global coordinates of the nodes of the
elements and of the material properties, so they are
very straightforward to implement in a self-
developed FE code.
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Figure 1. Element geometrical definition.

The basis of the FE theory is the Principle of Virtual
Works (PVW), discretised and expressed in matrix
form. Li and Chan’s paper proposes an element
stiffness matrix composed by an elastic stiffness
matrix (linear) plus a geometric stiffness matrix
(nonlinear):

K=K, +K, (1
where K=Global Stiffness Matrix, K_ = Elastic
Stiffness Matrix, K = Geometric Stiffness Matrix.

Physically, the stiffness matrix expresses a
relationship between external applied loads and
nodal displacements caused by applied loads and is a
linear operator. For large displacement analysis, the

problem becomes non-linear since the structure’s
stiffness (necessary to calculate displacements) is
not defined a priori but it has to be calculated as a
function of nodal displacements. The problem is
generally solved with an iterative procedure.
For the implemented elements the elastic stiffness
matrix is defined as:
K,=At- T -T]-D- T - T, )
where |; are the length of the undeformed element

sides and A-t is the undeformed element volume.
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The geometric stiffness matrix is defined as:
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Once both element’s stiffness matrices are
known, it is possible to assemble the global stiffness
matrix [K]*as the sum of K. and K, which is

now able to consider both elements contributions.
Assembly is undertaken with proper Kronecker’s
tensors, built up in order to position nodal stiffness
values in the correct position of the global stiffness
matrix as follows:

Ni

K] =3 0 (K} +K¢)-0, (6)
=)

where: Oj is the element’s Kronecker tensor.

Once the global stiffness matrix [K]*® is

evaluated, it is possible to extract the stiffness matrix
of free nodes k. This allows the definition of an
N-equations N-unknowns system to be solved with a
Quasi-Newton solver which is able to minimise the
first term of the following equation:
K, u -P =0 (7)
where: K, = free nodes stiffness matrix; u = free
nodes displacement vector; and P = applied loads
on free nodes vector.

Three non-linearities are implemented in the
Code:

NL1_ The Geometric Stiffness Matrix K, is non-
linear, since it is defined as a function of the
element’s nodal displacements.

NL2 is due to large displacements: loads (defined
as discretised pressure load, i.e. force on
nodes) have to be rotated in order to remain
perpendicular to the deformed membrane.

NL3  Material behaviour is non-linear, since

membranes and cables are not reacting to
compressive loads. In order to calculate the
geometric stiffness matrix, when calculated
tensions are negative they will be considered
equal to zero in the iteration step and in the
subsequent ones.

As shown in Fig. 2, the calculation is stabilised
with a relaxation routine, which is able to smoothen
numerical instabilities affecting the calculation
during iterations on the geometric stiffness matrix.
The relaxation is simply obtained by averaging the
increase of nodal displacements at each step i by:
u(i) = (u(i - |2) +u(i)) )
where: u(i)= Nodal displacements at i-th iteration

In order to stabilise numerical results it has been
observed that the convergence curve (assumed as the
norm of nodal displacements sum) oscillates rather
symmetrically over the final result (Fig. 3). The
convergence has been forced imposing calculated
displacements on the i-th iteration as an average

between displacements calculated on the i-th and (i-
1)-th iteration.
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Figure 2. The flow chart of the calculation
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Figure 3. Convergence behaviour

3 ANALYTICAL COMPARISON

Code validation has been performed first
comparing analytical results with numerical results.
Later on, an experimental validation has been
performed.

The first analysis regards a holed membrane in
tension. The analytical results are well known in
terms of displacements and stresses and the stress
concentration factor is 3.0 at hole’s quadrants.
Analysis has been performed using three different
meshes, adapting element size around the hole. A
rather significant mesh-sensivity was experienced,
but results are acceptable once the mesh is properly
refined according to usual engineering judgment.

In the test case, the membrane is 16mm wide and
Imm thick. It is loaded with 17 concentrated loads



of 100N each. The material Young Modulus is
1000N/mm”.

Therefore far-field stresses will be
o =106.25 Lz and maximum nodal displacement
mm
Al o
& =—=E=O.10567 = Al =0.10567-¢,=1.69mm .
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Figure 4. Adopted mesh and results in term of tension stresses

Numerical analysis gives displacements of about
1.64mm and the error is approximately 3%.
Calculated far-field stress is about 105.9 N/mm’
with an error of approximately 0.3%. Neglecting
some numerical residuals, the stress concentration
factor is 2.9 at hole’s quadrants in tension and the
error is approximately 3%.

Instability of elements in compressed areas of the
hole is also noted (Fig. 5).

Figure 5. Zoom on the hole and principal stresses

Such results can be explained bearing in mind
that in the code no model for wrinkling has been
included. This assumption has been made in order to
simplify the code in a first step of its development.
On the other hand in the future a wrinkling model
will be included in order to increase the accuracy of
the calculation. In fact, as it is possible to see in Fig.
6, wrinkling can be significant in membrane
deformation. In the literature many interesting
references can be found, both in theoretical papers
(Stanuszek, 2003; Lee, 2006; Diaby, 2006) and in
some sail analysis devoted papers (Heppel, 2002).

Figure 6. Wrinkling test

Without a wrinkling model able to deal with out-of-
plane deformations, elements at the upper and lower
quadrant of the hole are compressed but unable to
react. This happens since the definition of the
element’s stiffness matrix does not deal with
negative stresses (NL3). Therefore, compressed
elements are “collapsed” in the plane and this can
cause a large nodal displacement, as shown by the
test of Fig. 6.

In the following, a sphere loaded with internal
pressure has been analysed. The analytical solution
is known and it is reported in the following. The
increase in sphere-radius can be calculated as:

R'-R=——Y_.p.R" (9)
2-E-t

Due to the sphere symmetry, circumferential and
tangential stresses will be equal and calculated as:

P-R?
0y =0, = (10)

In the test case it has been assumed:

R=5mm ; t=1 mm

P=100 N/ .

_ N
E =1000 /nmz

Therefore expected results will be:

R'=5.94mm

o=yo; +a, =354 N/,

As far as both deformation and stress is
concerned, the numerical calculation gives rather
accurate results: radius R’ is in fact 5.97mm. The
error is approximately 0.5%.
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Figure 7. Nodal displacements



The stress value oscillates between 350 _360 Lz

mm

with the corresponding error being about 2.5%.
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The error value increases (up to 5%) on the
clamped node at the base of the sphere (Fig. 8).
Even if the sphere is not loaded by any own-weight
load, the symmetry of the stress increase in this zone
is noticeable. Actually, the explanation is that some
numerical residuals would have brought the
structure to a deformation which is not exactly
symmetrical. The following reaction is supported by
the only clamped node at the base, thus correcting
the error caused by residuals. This causes a small
distortion in the stress field. In fact, the value of the
boundary reaction is 326 N, i.e. 4% of total load.
This value is in agreement with the error already
found for stresses.

Thereafter, a cylinder has been loaded with
internal pressure as follows:R=2.5mm;t=1mm;

—100N - E = N
P =100 /nmz . E =1000 /nmz
From the analytical solution it was found that:

_P-R-(1-v?)
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=0.568 mm
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Numerical results obtained are again acceptable,
in fact radial displacements are about 0.562mm. The
error is 4%.
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Figure 8. Nodal displacements

Calculated stress is 245 l\y , » the error is 2%.
mm

Figure 9. Principal stresses

4 EXPERIMENTAL MEASUREMENTS

Validation is continued comparing numerical data
with experimental measurements. Two different
experimental campaigns have been carried out. The
first one was intended to measure the material’s
mechanical properties to be used in the calculation.
The second one was intended to measure
deformation of a flat membrane loaded with constant
pressure.

Some tension tests have been carried out in order
to find the stress-strain curve, i.e. the Young
Modulus for 5 different sail materials. The weight of
the sail fabric is generally measured in “sail maker’s

ounces” (smOz) where 1smOz = 4339 , . For
m

fibre-reinforced material, the currently adopted unit
is the Denier per Inch (Dpi). This is the number of
fibres per every inch in the warp direction. A second
value is sometimes reported for the fill direction. In
the present case, tested materials are: Dacron (7.5
smOz, 0° and 90°); Spinnaker’s Nylon (1.5 smOz,
0° and 90°); Mylar and Kevlar (19 Dpi). The latter
has been assumed isotropic.

-ﬁ'ﬁq
Figure 10. Traction tests

Measurements have been performed with
laboratory machines for tension tests, able to obtain
the force-displacement curve (Fig. 10).

From those tests, the Young Modulus of fabrics
has been estimated considering the linear part of the
plot and disregarding the initial and final parts of the
curves, as reported in Fig. 11 and Table 1.
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Figure 11. Force-Displacement curves

Table 1. Material properties

E N/mm?
Dacron (ortotropic) tested @ 0° 1667
Dacron (ortotropic) tested @ 90° 1712
Spinnaker (ortotropic) tested @ 0° 294
Spinnaker (ortotropic) tested @ 90° 458
Kevlar (isotropic) 1935

In order to test the accuracy of the code, the
deformation of an initially flat Dacron membrane
loaded with constant pressure has been measured.
This test has been designed in order to assess the
code’s behaviour in a limit case, where the expected
error is rather large. In fact, since the initial structure
is flat, the elastic stiffness matrix is singular. The
accuracy of the solution for very small deformations
can therefore be expected not to be very accurate.
On the other hand, the curvature of the structure is
dramatically changing, from zero to larger values.

Figure 12. Box for deformation test

A wooden box has been built and a Dacron
membrane has been fixed on the top (Fig. 12). The
box has been made air-proof by a gasket and a
special paper on the edges, normally used for the
construction of church organs. The Dacron fabric
has been fitted onto the box with fibres oriented
along the box directions.

Compressed air has been pumped into the box
and the pressure has been measured by water

columns, providing very accurate measurements
(Fig. 13) in the range of interest (11 to 88 cmH,O
i.e. 10 — 80 mbar).

Figure 13. Measurement System

A laser device, able to measure distances, has
been used to obtain the fabric deformations.
Measurements have been carried out for 6 pressures
in the range of interest. For some pressure values,
deformation of 6 box’s sections has been measured
from the centre of the box. The data oscillations
reported in Fig. 14 are probably due to noise
(vibrations of the compressor, electromagnetic
interferences on the measurement system, etc.). It
has however been judged acceptable and have been
smoothed by a 2" order polynomial interpolation.
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Figure 14. Measured deformed sections

Once the deformed shapes and material elastic
properties were known, a comparison between
numerical and experimental results was carried out.
This was done for two sections (see Fig. 15) and for
six different pressures in the range of interest.

A 784 element mesh has been adopted (Fig. 15)
and the FE deformed shape seems rather different
compared to the experimentally deformed one,
especially at midspan. The calculated shape doesn’t
look smooth as in the experimental one, as the



sections remain flat near the edges and suddenly
bend in the centre. Also, caused by the low value of
the initial curvature, vertical displacement of the
nodes is magnified in the centre of the membrane,
providing an important source of error.
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Figure 15. Numerical results of box test
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In Fig. 16 (left) the comparison for the central
section loaded with an 88cm water column (0.086
bar) is reported. The error is maximum at
membrane’s centre, i.e. in the most distant point
from fixed edges and where curvature is smallest.
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Figure 16. Measured vs computed results and error values

In Fig. 17 the graph reports a response surface of
the error for six different tested pressures at central
section and at @0,25L section. Therefore Fig. 17
reports the same values as Fig. 16 (right), but for
many different tested pressures. This graph shows
the error value is largest at the centre and it takes
larger values for section @0,25L where final-
curvature is lower. The error does not show a strong
dependency on applied pressure.

It is worth pointing out that such error is not due
to the Quasi-Newton solver converging to a local
minimum. In fact, modifying the initial curvature of
the membrane does not appear to be relevant for the
final result. Similarly, the mesh refinement does not
seem to influence the results: using an 1196 element
mesh, finer in the central zone of the membrane, the
error values decreases by about 1%. It is not easy to
explain the origin of such an error, and in the future
this subject will need more attention.

NUMERICAL-EXPERIMENTAL ERROR FOR INITIALLY FLAT MEMBRANE
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Figure 17. Error value for different pressures

5 QUALITATIVE RESULTS

In the following, some additional comparisons are
reported for cases whose analytical solution is not
known. Validation is based on qualitative judgment
of results. A cylinder loaded with very high internal
pressure is studied first. In the first iteration of the
calculation, Loads are radial and deformation is
consequently found to be radial:

100

Figure 18. First iteration of cylinder in high pressure

Loads are rotated in subsequent iterations according
to large displacement theory and the deformation
shown in Fig. 19 seems to be consistent. Lateral
edges are in fact rotated as shown:

N 1

Figure 19. Equilibrium shape of cylinder in high pressure

Then, a spinnaker in sailing conditions has been
analysed. The fabric has been loaded with a constant
pressure equivalent to a 14 knots wind speed
(3mbar). The Young's modulus is calculated as the



average of the 2 measured values (Table 1, @0° and
@90°) i.e. 375 N/mm®. In the “design shape” the sail
is 6000 mm high, the chord is 3750 mm and the max
camber is 1670 mm. Some cable elements have been
assembled on the foot, leech and luff of the sail. The
results can be considered globally consistent, but the
uncertainty is rather high, especially in the area of
clew and tack. In those zones the increase in fabric
thickness, due to additional layers sewn as
reinforcement, has not been taken into account.

Figure 20. Spinnaker’s design shape
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Figure 22. Principal stresses on spinnaker

Finally, a mainsail has been loaded with constant
pressure equivalent to a 15 knots wind. Deformation

seems to be consistent both in terms of nodal
displacement and tension. It should be remarked that
at this stage of the analysis the sail has not been pre-
loaded, thus explaining the low value of tension on
the head of the sail:
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Figure 23. Nodal displacement and principals stresses

6 FLUID-STRUCTURE INTERACTIONS

An aerodynamic method has been developed to
estimate loads on sails in a parallel MSc final project
(Vernengo, 2008). It consists of a Vortex Lattice
Method, able to calculate the circulation field, i.e.
the pressure over a sail subjected to a wind flow. As
a potential code, its validity is limited “close hauled
course”. The Fluid Structure Interaction (FSI)
analysis has been carried up over a mainsail 12m
high, with a chord of 5m, sailing upwind with a
wind speed of 15 knots.

Coupling has been performed as follows: once the
initial sail geometry X, (design shape) is defined,

the aerodynamic code calculates pressure p,

assuming a rigid profile. Pressure values are then
passed to the structural code (present work) which
defines the deformed geometry X,. The latter is
introduced again in the aerodynamic code, in order
to calculate new pressures p,, used in turn to
deform the initial design shape X, and to calculate a

new deformed geometry X,. It is worth noting that

structural analysis is always performed for the same
initial geometry X, loaded by an updated pressure’s

field. X,

shape as built by the sail maker.

The procedure continues until achievement of a
convergence criterion, based on the evaluation of the
nodal displacement modulus, as in Fig. 26. In the

is in fact the “design shape”, i.e. the sail



present case, the sail was subjected to a parabolic
wind profile, reaching a maximum velocity value of
20kts. The wind velocity vector presents a linear
twist from the sea surface to the mast head, where it
reaches its maximum value (45°). Since the sail has
a variable geometric twist, the angle of attack has
locally variations along the mast, given by the
combination of geometric and aerodynamic twist.
From a structural point of view, the fabric is
described as:

: N
Young Modulus: 1700 /nmz
Fabric Thickness : 0.32 mm
Poisson Ratio : 0.3
Cable Section (over the Leech):1 mm?

A very satisfactory convergence has been achieved
in 13 iterations (error less than 1%):
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Figure 26. FSI convergence

Figure 27. Aerodynamic Calculation

In Fig. 27, the behaviour of the wake developed
from the sail in the equilibrium configuration is
shown, and in Fig. 28 the corresponding sail
deformation, shown laterally, from top and from aft,
rotated 90° clockwise. Nodal loads deriving from
calculated pressures are represented by arrows.
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Figure 28. Final deformed shape (color map of deflections)

7 FUTURE DEVELOPMENT

The developed FEM method adopts many
assumptions, which have been accepted as a starting
point for future development.

Implemented elements are membranes and
cables. In the future, battens will be included as a
very important element for sail deformation analysis.
In the present code, battens have been neglected
since the implementation would require large
programming effort but only offers small conceptual
improvements. In fact, membranes and cables are
both defined with three degrees of freedom at nodes,
i.e. no bending strength. In order to include battens
all nodes will have to pass from three to six degrees
of freedom (DOF), thus modifying the architecture
of the whole code. Moreover, the additional DOF
should be coupled with membranes’ nodes which by
definition do not have bending DOF. On the other
hand, completing the code makes it possible to take
into account the rigging, which has a large influence
on sail deformation.

The elements used are isotropic homogeneous
membranes. In the future, an important development
will be to implement some anisotropic elements with
variable thickness, in order to simulate more
accurately sail-making materials and the stiffened
zones close to the sail's corners. Cable elements will
be used also for the correct modelling of fibres
included in the sail, as in modern sail materials (Fig.
10).

As described in Section 3, no wrinkling model
has been included into the code, even if wrinkling is
a quite important phenomenon in thin laminate
analysis (Fig. 6).

As the structural model gets closer to physical
reality another experimental tests campaign will be
necessary.
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