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Abstract

Many experiments measure a response that cannot be adequately described by a linear model with
normally distributed errors and are often run in blocks of homogeneous experimental units. We
develop the _rst methods of obtaining e_cient block designs for experiments with an exponential
family response described by a marginal model _tted via Generalized Estimating Equations. This
methodology is appropriate when the blocking factor is a nuisance variable as, for example, occurs

in industrial experiments. A D- optimality criterion is developed for _nding designs robust to the
values of the marginal model parameters and applied using three strategies: unrestricted algorithmic
search, use of minimum- support designs, and blocking of an optimal design for the corresponding
Generalized Linear Model. Designs obtained from each strategy are critically compared and shown

to be much more e_cient than designs that ignore the blocking structure. The designs are compared
for a range of values of the intra- block working correlation and for exchangeable, autoregressive and
nearest neighbor structures. An analysis strategy is developed for a binomial response that allows es-
timation from experiments with sparse data, and its e_ectiveness demonstrated. The design strategies

are motivated and demonstrated through the planning of an experiment from the aeronautics industry.
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Many experiments measure a response that cannot be adequately described by a linear model with
normally distributed errors and are often run in blocks of homogeneous experimental units. We
develop the first methods of obtaining efficient block designs for experiments with an exponential
family response described by a marginal model fitted via Generalized Estimating Equations. This
methodology is appropriate when the blocking factor is a nuisance variable as, for example, occurs
in industrial experiments. A D-optimality criterion is developed for finding designs robust to the
values of the marginal model parameters and applied using three strategies: unrestricted algorithmic
search, use of minimum-support designs, and blocking of an optimal design for the corresponding
Generalized Linear Model. Designs obtained from each strategy are critically compared and shown
to be much more efficient than designs that ignore the blocking structure. The designs are compared
for a range of values of the intra-block working correlation and for exchangeable, autoregressive and
nearest neighbor structures. An analysis strategy is developed for a binomial response that allows es-
timation from experiments with sparse data, and its effectiveness demonstrated. The design strategies
are motivated and demonstrated through the planning of an experiment from the aeronautics industry.
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1. INTRODUCTION

Many experiments in science and engineering aim to understand a process by modeling a
response variable using a generalized linear model (GLM) with several explanatory variables.
Methods recently developed for constructing efficient and optimal designs for such experiments
using homogeneous experimental units include Woods, Lewis, Eccleston, and Russell (2006),
Dror and Steinberg (2006, 2008), and Russell, Woods, Lewis, and Eccleston (2009); see Khuri,
Mukherjee, Sinha, and Ghosh (2006) for a review of earlier work. Woods et al. (2006) demon-
strated the potential poor performance of standard linear model designs for GLMs. In this
paper, we develop methods for constructing designs where the heterogeneous units are grouped
into homogeneous sets or blocks to increase the accuracy of inferences made from the experi-
mental data. We focus on the exponential family of distributions and models for the marginal
response which, in the data analysis, are fitted by the method of generalized estimating equa-
tions (GEEs; Liang and Zeger, 1986). GEE models extend GLMs by allowing dependence
between observations from units in the same block, characterized through an intra-block work-
ing correlation structure, and have been widely applied in the social and medical sciences. They
are particularly appropriate when block effects are not of interest in themselves. See Robinson,
Myers, and Montgomery (2004) for the analysis of an industrial split-plot experiment, and a
comparison of the use of marginal GEE models with the alternative conditional paradigm of
Generalized Linear Mixed Models (GLMMs; Breslow and Clayton, 1993).

In common with GLMs and other nonlinear models, designing an experiment for GEE
models is complicated by the dependence of a design’s performance on the values of the model
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Figure 1: Schematic of the bearing spraying process

parameters. Local optimal designs for given values of the model parameters are effective when
strong prior information is available from pilot experiments or historical data or, where practi-
cable, as part of a sequential experiment strategy. Various approaches have been proposed to
obtain robust designs that overcome the parameter dependence for GLMs, including maximin
and Bayesian methods. The most common design selection criterion used is D-optimality which
minimizes the determinant of the (asymptotic) variance-covariance matrix of the model param-
eters, and is appropriate when the aim of the experiment is accurate parameter estimation.
We use a variant of this criterion for design selection and assess design performance through
D-efficiency.

Our approach is motivated through an example from the aeronautics industry on inves-
tigating the occurrence of cracking in a coating applied to engine bearings. As part of the
manufacturing process, a powder-form, nickel-based, bond coating is thermo-sprayed onto ma-
chined liners. In this spraying process, shown in Figure 1, two bearings are arranged in a
“dogbone” and coated simultaneously. After manufacturing, cracking of the coating on each
bearing is assessed by visual inspection with a binary outcome (pass/fail); failed bearings are
rejected.

Variables thought likely to affect the cracking of the coating are the distance between the
spray gun and the dogbone (z;), the angle through which the spray gun sweeps (z5), and the
sweep speed (z3). The smallest unit to which a combination of variable values (individual design
point or treatment) can be applied is a pair of bearings and the response variable is the number
of bearings in a pair that pass inspection. Typically, time and resource constraints allow only
small experiments to be run. The runs are carried out in sessions (mornings or afternoons)
that are regarded as blocks in the experiment, for example, four sessions of four runs. Through
taking account of any systematic differences between runs in the different sessions, the efficiency
of the design and accuracy of the findings from the subsequent analysis may be improved. As
the sessions have no intrinsic engineering meaning, estimation of the between session variation
is not of interest. Previous use of a surrogate continuous response, such as mechanical strength
of the coating, has proved inadequate in explaining the cracking mechanism. There is therefore
a need to develop methods of finding efficient block designs for non-normal data including
binary and binomial observations.

This problem has received little attention in the literature, with results restricted to condi-
tional models with (i) binary data, a logit link, and dichotomous explanatory variables (Moer-
beek, Van Breukelen, and Berger, 2001; Moerbeek and Maas, 2005; Ouwens, Tan, and Berger,
2006); (ii) longitudinal binary data with a single variable (Tekle, Tan, and Berger, 2008); and
(iii) Poisson data and a single variable (Niaparast, 2009). The current paper is an advance
on previous work as it investigates general methods for finding optimal and efficient designs



for multi-variable experiments with continuous or categorical explanatory variables and for any
form of within-block working correlation structure.

Section 2 describes the GEE model and defines the criterion for selecting a robust design
used in this paper. Three strategies are proposed for finding efficient designs in Section 3.
The strategies are evaluated and compared through their application to the bearing coating
example in Section 4 for exchangeable, autoregressive and nearest neighbor working correlation
structures. The robustness of the designs to (a) the values of the model parameters and
(b) the choice of correlation structure is investigated through simulation studies. Finally, an
adaptation of the GEE method is developed in Section 5 that provides valid inference for small
experiments, such as the bearing example, thus overcoming the problem of “separation” (Albert
and Anderson, 1984).

2. MODEL AND DESIGN CRITERION

Suppose the response Y (x) may depend on m explanatory variables 7 = (z1,...,2.,)
and the experiment has N units, where the jth unit receives treatment :I:JT = (215, .., Tmj)
The x; are chosen from a standardized design space X = [—1,1|™ and are not necessarily

distinct. Further, suppose that the units are arranged in b blocks of size k; (I = 1,...,b), so
that ky + ky + ... + ky = N. We order the entries in Y = (Y (x;),...,Y (xy))" by block and
by unit within block.

2.1. Model

We assume the marginal mean and variance of each observation is taken from an appropriate
GLM. That is, E[Y(z;)] = p(zx;) and Var [Y(x;)|] = v[u(xz;)|/¢, where ¢ is a constant scale
parameter and v(-) is the variance function for the exponential family corresponding to the
GLM (j = 1,...,N). The mean response is related to = through g[u(x)] = £ (x)3, where
g(-) is the link function and f7(x)B is the linear predictor. The respective p-vectors f(a)
and B hold known functions of @, such as main effects and interactions, and unknown model
parameters.

Liang and Zeger (1986) suggested the GEE approach for estimating 3 from dependent data.
Heterogeneity of the blocks is modeled via a “working correlation” structure for the observations
within each block, together with the assumption of independence of observations made on units
in different blocks. The generalized estimating equations are an extension of the score functions
for a GLM with independent data, and are given by

XTAVH (Y —p) =0, (1)

where X is the N x p model matrix with rows f7(zx;), A = diag{1/g[u(z;)]} and p =
(1(x1), ..., w(xn))T. The matrix V = AY2R(a)AY?, where A = diag{Var[Y (z;)]}, is an
adaptation of the usual variance matrix for a GLM, with R(a) an N x N working correlation
matrix that is assumed known up to the value of o and represents the assumed dependence
structure in the data. For block designs, structures appropriate for a wide range of applica-
tions include exchangeable, autoregressive and nearest neighbor, each of which has intra-block
correlations parameterized by a single parameter o > 0. Arbitrary dependence structures with
more unknown parameters could also be considered.

For a discrete response, the values of the actual pairwise correlations, in contrast to the
working correlation, may depend on x. We therefore follow Chaganty and Joe (2004) in in-
terpreting R(«), which is independent of @, as a matrix that adjusts the weight given to each
observation in the estimation of 3, and choose the value of o according to their guidelines. For
example, under exchangeable and autoregressive (order 1) structures, a value of o between .2
and .3 is appropriate for moderately dependent data.
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For the bearing experiment of Section 1, the binomial data may result from a thresh-
olding process. Hence a plausible model for the marginal response is probit regression with
glp(x)] = @ u(x)], where ®(-) is the standard Normal distribution function. The marginal
distribution for the observation from each unit is then binomial with E[Y (z;)] = 2®[f" (z;)0]
and Var[Y (z;)] = ®[f" (z;)B]{1 — ®[f" (x;)B]}/¢. If the N = 16 units in the experiment are
divided into b = 4 blocks of £ = 4 units, then

R(a) =1, @ [(1 = a)ly + Rp(a)] (2)

where ® denotes Kronecker product and I, is the b x b identity matrix. A reasonable assumption
for the working correlation is an exchangeable structure with Rp(a) = aly 1%, and 1, a k-vector
with every entry 1.

The asymptotic variance-covariance matrix for the GEE estimator B is given by

Var(B) = (XTAVTIAX) T XTAVTIRVTIAX (xXTAVTAX) T (3)

where ¥ is the true, unknown variance-covariance matrix for Y'; see Liang and Zeger (1986).

A

It follows that Var(3) depends on 8 through A and V| and on « through V.
2.2. Design Criterion

We adopt a pseudo-Bayesian approach to constructing designs for GEE models robust to the
values of model parameters, as first suggested for single variable logistic regression by Chaloner
and Larntz (1989) and used for multi-variable GLMs by Woods et al. (2006) and Dror and
Steinberg (2006). For GEE models, a design d is found that maximizes the objective function

U(d; B, ) = /B log 4" (d; B, a) AF (B). (4)

where B C RP? is the space of possible parameter values, F(3) is a proper prior distribution
function for B, and ¥ (d; B, «) is the local D-optimality objective function for B and «. For
the purpose of selecting a design, we make the assumption that the true correlation matrix
equals the working correlation matrix R(«a), so that

¥ = AY2R(a)AY?. (5)

Often this assumption will not hold. However, it can be demonstrated that departures
from (5) have little impact on the choice of design (see Section 4.3) and hence we take

WP (d; B, ) = det [M (d, B, )] , (6)

where M (d,3,a) = XTAV~'AX is the inverse of the asymptotic variance-covariance matrix
for ,3 and X, A and V all depend on design d. In the following section we describe strategies
for constructing optimal and near-optimal designs robust to the value of 3. These strategies
are applied to the bearing example in Section 4, where the robustness of the designs to « is
also addressed.

3. DESIGN CONSTRUCTION STRATEGIES

The main emphasis in this paper is on finding exact designs robust to the values of the
model parameters, that is, designs having a pre-specified number, N, of runs. Continuous, or
approximate, designs, defined as measures across the design region, can also be found and a
general equivalence theorem established. The theorem is given in Appendix A together with
an example of its application. An exact block design d may be specified as (i) design points



Z1,..., Ty, and (ii) an ordering of these points that defines their allocation to the units in each
block.

Three strategies are proposed and investigated for finding exact robust D-optimal block
designs for GEE models.

Strategqy 1: Direct optimization of (4) via algorithmic search. We use a simulated annealing
algorithm (Haines, 1987) to find designs for a given number of blocks of fixed, but not necessarily
equal, sizes. The algorithm performs a continuous optimization through adjustment of each
design point by a random perturbation. If the adjustment gives an increased value of (4), then
it is accepted. Otherwise, the adjustment is accepted with non-zero probability, obtained from
the Boltzmann-Gibbs distribution. This probability decreases with decreasing value of (4), and
also with decrease in a “temperature” parameter. The temperature is reduced (cooled) as the
search progresses, to end with a greedy algorithm. Our experience is that the algorithm finds
efficient designs in reasonable time for an initial acceptance probability of between .5 and .9
and geometrical cooling.

To search for an exact design with a large number of large blocks can be a prohibitive
computational burden for the regular use of these designs. We therefore propose two further
methods of finding designs that require algorithmic search only for sub-problems of reduced
complexity.

Strateqy 2: Restriction to minimum-support designs. This strategy restricts the search to
designs for which the number of distinct points is equal to the number, p, of unknown parameters
in 8. Minimal-support designs allow the use of known results on optimal designs for both
GLMs and linear model block designs for the comparison of treatments. We extend the work of
Cheng (1995) on designs for linear models to robust designs for nonlinear GEE models through
similarly establishing a decomposition of the optimization problem into two smaller problems,
see Appendix B. This allows a design d}, to be constructed that is robust D-optimal for the
class of minimum-support designs by a three-step procedure:

1. find a robust D-optimal saturated design, dj, for the corresponding GLM with points

* *
xy, ..., T,

2. find a design, d5, for comparing p treatments, labeled ¢, ..., t,, that is D-optimal for the
set of designs with b blocks of sizes ky, ..., k, under the working correlation structure

3. select an allocation of the points in dj to the treatment labels of d3.

As all allocations in the final step give designs that are equivalent under (4), the choice of
allocation may be made using a secondary selection criterion, such as A- or D,-optimality
(Section 4).

Established algorithmic methods can be applied in steps 1 and 2 to obtain a minimal support
design. Strategy 2 may also allow an appropriate design to be derived analytically through the
use of known optimal designs at each step. For example, for first order Poisson regression with
log link, the minimum-support designs of Russell et al. (2009) have been shown to meet the
step 1 requirements by McGree, Eccleston, and Russell (2009). For step 2, balanced incomplete
block designs can be used for exchangeable correlation structures, and the universally optimal
designs of Azzalini and Giovagnoli (1987) for autoregressive structures.

Strategy 3: Allocation to blocks of runs from an optimal unblocked design. ~We now restrict the
search procedure to finding a block design whose design points are those of a robust D-optimal
design for the corresponding GLM:

1. find a robust D-optimal design for the GLM with design points &;,...,ZxN
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2. find an allocation of &1, ..., &y to b blocks with sizes kq, ..., k, that maximizes (6) for a
given value of 3.

Both steps can be achieved using available algorithms: for step 1, the methods of Woods
et al. (2006) or Dror and Steinberg (2006), and for step 2, a standard interchange algorithm.
A natural choice of 8 in step 2 is a measure of location of the prior distribution F'(3), and ex-
pectation is used in this paper. This strategy has the advantage of not restricting to minimum-
supported designs and the disadvantage that computation must generally be used for both
steps.

4. EVALUATION OF THE DESIGN STRATEGIES

We investigate the performance of robust D-optimal exact designs found by each of the three
strategies of Section 3 through examining designs for the bearing experiment in four blocks of
size four and a probit regression model with linear predictor

3 3 3
glu@)] = Bo+ Y Biwi+ Y > By, (7)
i=1 i=1 j>i

We use a uniform prior distribution for 3 across the parameter space B given by the product
of the intervals in Table 1. The calculation of (4) involves a seven-dimensional integral that
can be approximated by the average across a 21-point discrete Latin Hypercube sample; a
recent alternative was given by Gotwalt, Jones, and Steinberg (2009). Throughout this section,
designs are evaluated through their efficiencies under a given criterion, relative to an appropriate
reference design. The D-efficiency of a design d relative to an optimal design d* is

[P (d; B, ) [P (d"; B, )] 7. (8)
4.1. Exchangeable working correlation structures

Figures 2 and 3 show the designs, d, and d,, found by maximizing (4) for an exchangeable
working correlation structure with a = .2 using Strategies 1 and 3 respectively. Each design
has 16 distinct points including two points in the interior of the design region; the two interior
points are different for the two designs.

The three components required for Strategy 2 are given in Table 2: a balanced incomplete
block design for 7 treatments, the points of a minimum-support robust D-optimal GLM design
and two allocations of design points to treatment labels. The first allocation produces an
optimal design, d,,,, under a robust version of A-optimality; the second, d,,,, is optimal under
a robust Dg-criterion for estimating the three interaction parameters in (7). The objective
functions for these criteria are given by

W (6 B.a) = [ er[M(d.8,0)7] dF(B),

B
and

Table 1: Parameter space B for linear predictor (7)

Parameter (3 o3t Bo Bs Bz, i3, B3
Range  [2,0] [1,3] [0.2] [-2,0] [-0.5,1.5]




o o
o ) o o X
10 10
o (<3
N =]
XS 22
o Xz=-1
A X3=-0.31
0 = 0
@ | + X3 =0.55 2
T X X3=1 T
o o
- o X - qo A
! T T T T T ! T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X1 X1
3 qo0 3 B X o
X
0 n |
o [=}
~N o =]
X o 7 X o 7 °
—+ X
1} 0
S o
T T
o <
— o —
! T T T T T ! T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X1 X1

Figure 2: Design points in each block of design d, for a = .2 found by algorithmic search.
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Figure 3: Design points in each block of design d, for a = .2 found by D-optimal allocation of
points from a GLM design to blocks.

VP (d;8,a) = /log det [XJAVTIAX,
B
— XTAVTIAX, (XTAVTIAX,) T XTAVTIAX,| dF(8),
where X = [X;|X,], X; is the model matrix for the subset of parameters of interest and
X, is the model matrix for the nuisance parameters. The integrals were approximated by

averaging the integrand across the parameter values from the sample used to evaluate (4). For
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Figure 4: Boxplots of D-efficiencies of robust block designs, d,, d,, d,,,, for 4 values of «.

this small example, the designs were obtained by evaluating all possible 5040 distinct block
designs; for larger examples, an interchange algorithm may be used. The maximum differences
in efficiency between the best and worst of these designs are 8% and 12% for A- and D,-
optimality, respectively. The two optimal designs have no blocks in common.

To investigate the performance of these designs across the parameter space B, the designs
found for a = .2, .4,.6,.8 were assessed via a simulation study in which a random sample of
10,000 parameter vectors was drawn from B, as in all simulation studies in this paper. A local
(near) D-optimal design for the GEE model was found for each vector using algorithmic search
and the D-efficiencies (8) of d,, d, and d,,, were calculated. (d,,, has the same D-efficiency
as dp, ). Figure 4 shows boxplots of the D-efficiency distributions. Designs d, and d, perform
similarly, and are fairly robust for all four values of «, with median efficiencies between .70 and
.76, and lower quartiles between 0.64 and 0.70. For larger values of «, where the advantage
of blocking is greatest, d, offers a small but consistent improvement over d,; for the smaller «

Table 2: Components of the two minimum-support block designs d,,, and d,,, for o = .2: (a)
Balanced incomplete block design for 7 treatments in blocks of size 4; (b) Robust D-optimal
minimum-support GLM design for 3 variables, with mappings of design points to treatment
labels to obtain a design using A- or D,-optimality as a secondary criterion

(a) (b)

Treatment Mapping for Variables
block 1 tl t2 t3 t4 A Ds I ) XT3
block 2t to t5 6 131 i3 43 .64 —.90
block 3 tl t4 t5 t7 tQ tl 35 —.44 .53
block 4 t2 tg t6 t7 t3 t6 1 -1 —-.74

ts ts 49 -1 -1
ts ty —.61 1 -1
ts t 1 —.05 1
tr T4 .06 1 1




Table 3: D-efficiencies (minimum, median) for 5 values of a for designs found for o = .2: D-
optimal design from algorithmic search (d,); allocation of a D-optimal GLM design to blocks
(d,); minimum-support designs (d,,,, dm,)

Design Q
0 2 4 .6 .8
d, (.27,.67) (.31,.70) (.30,.71) (.34,.73) (.36, .75)
dg (.30, .68) (.30, .70) (.28,.70) (.30,.72) (.30, .74)
dmyy dmy (.00, .56) (.00, .56) (.00, .55) (.00, .54) (.00, .53)
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Figure 5: Smoothed density estimates of D-efficiencies of 10,000 randomly selected allocations
of a 16-point robust D-optimal GLM design to 4 blocks of 4 points, for 4 values of a and 3 as
for the aeronautical example; curves for a = 0.4 and a = 0.6 almost coincide.

values, this relationship is reversed.

The minimum-support design, d,,,, has the worst performance of the three designs, with
median efficiencies of .53-.56, and lower quartiles of .45-.48. For stronger prior information on
(3, other studies (not presented) show that the lack of distinct points is less of a problem. In
the extreme when F'(3) is the point prior at the centroid of B, local optimal designs from all
three strategies perform similarly.

Robustness to the value of « of designs d,, d, and d,,, found for a = .2 was assessed by
simulation from B with a = 0, .2, .4,.6,.8. Table 3 indicates that, for a # 0.2, the D-efficiency
of the designs from all three strategies is at least maintained relative to a = .2; for d, and
d,, efficiency actually improves for & = .6 and .8 in agreement with results from the previous
simulation (Figure 4). This is evidence that, for designs with stronger intra-block dependency
(larger «), the values of 3 have less impact on design performance.

The strong performance of d, across all values of « raises the question of whether any
allocation of the points to blocks will suffice in Strategy 3. This issue was investigated by an
assessment of 10,000 allocations chosen at random from the 2.63 million possible allocations
for each of @ = .2,...,.8. Figure 5 shows the D-efficiency of these allocations for a point-mass
prior on 8 = (—1,2,1,—-1,0.5,0.5,0.5). An arbitrary allocation can be inefficient, particularly
for large o. For example, when a > .4, the median efficiency is more than 10% lower than
the highest efficiency, and for @ = .8 (.6), the minimum efficiency is less than .5 (.6). This
demonstrates the importance of careful choice of blocking scheme.



Table 4: D-efficiencies (minimum, median) for robust D-optimal designs for an autoregres-
sive (nearest neighbor) working correlation structure under exchangeable and nearest neighbor
(autoregressive) structures. Note that the NN correlation matrix is not positive definite for
a=0.8

Autoregressive Nearest neighbor
Exchangeable Nearest neighbor Exchangeable Autoregressive

2 (.25, .68) (27, .70) (125, 67) (29, .69)
4 (.26, .68) (.33, .68) (.31, .64) (.35, .69)
6 (.30, .70) (.26, .64) (.31, .62) (.37, .70)
8 (.36,.72) - - -

4.2.  Autoregressive and nearest neighbor working correlation structures

GEE designs are investigated for experiments that produce dependent observations in which
unit labels are ordered in one dimension, for example, by time in a longitudinal study, or by
transact of land in an agricultural experiment. In contrast to the exchangeable correlation
structure, units are no longer exchangeable within block, and hence the allocation of treat-
ments to units within each block affects design efficiency. The models considered have working
correlation matrices for an autoregressive order 1 (AR) and a nearest neighbor (NN) correlation
structure. The strategies of Section 3 and methods of Section 4.1 may be used to find and com-
pare designs. For brevity, we present results for Strategy 1 for the bearing experiment, linear
predictor (7), and a uniform prior distribution across the parameter space of Table 1. The work-
ing correlation matrix is given by (2) with Rp(«) having diagonal entries o, with off-diagonal
entries a/"~7 for AR, and « for |i — j| = 1 (and 0 otherwise) for NN (3,7 = 1,...,4; i # j).

The robustness of an optimal design for each working correlation structure is evaluated
(i) under the other working correlation structure, and (ii) under an exchangeable working
correlation structure, using the approach of Section 4.1. From Table 4, the AR design performs
well under the exchangeable structure, and also well under the NN structure provided « is
small. Although the NN design performs well under the AR structure, it is inefficient under
the exchangeable structure particularly for larger o values. These results are intuitive since,
for small o, AR and NN working correlation structures are quite similar, while for larger « the
exchangeable working correlation structure is closer to the AR than the NN structure.

4.3. Robustness of design selection to the assumed correlation matrix

We now assess the impact on the choice of design of departures from the assumption that
the true correlation matrix is equal to the working correlation matrix, R(«), and, in particular,
that it may depend on the treatments applied. To achieve this for an exchangeable working
correlation structure we make an alternative assumption that the true correlation matrix is
R* in which observations in different blocks are uncorrelated and the intra-block correlation
between responses Y (x;) and Y (x;) does not depend on the block in which they are observed.
This correlation is given by pj, = min(rj;,y) > 0, where 0 < v < 1 and

= min \/ pl,)[1 — ()] \/ 1= s(@)lnles) o
Ik Tk (1 — p(x) () \| ()1 — plzp)] [

is the maximum achievable correlation between Y (x;) and Y (z;) (Joe, 1997, p. 210). We con-
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Figure 6: log P against log k” for selected o and ~ values, 3 as for the aeronautics example,
and three sets of designs: set I (o); set II (A); set 111 (H).

sider different values of v > a to evaluate the impact of having maximum pairwise correlations
as large or larger than specified in the working correlation matrix. This form of R* introduces
a dependence of correlation on treatments x; and x; and typically will not have the same
structure as R(«). A similar approach can be applied to AR and NN correlation structures.

We now compare designs for the bearing experiment by comparing values of the local ob-
jective functions ¥ (d; B, «), defined in (6), and

kP (d; 8,0, 5%) = det | XTAVTIAX (XTAVT'SVIAX) T XTAVIAX |, (10)

obtained from (3) using ¥* = AY2R*AY2. For each value of o considered, three sets of 16-run
designs are assessed: (I) 1000 local D-optimal designs for 3 = (—1,2,1,—1,0.5,0.5,0.5), found
via simulated annealing, resulting in most designs having different design points but equivalent
performance under (6); (II) 500 randomly generated designs with x;; = —1 or 1; and (III)
500 randomly generated designs with z;; € [—1,1] (i=1,2,3). Figure 6 enables a comparison
of objective functions (6) and (10) for each set of designs. For 7 = «, the working correlation
matrix is as close as possible to the true correlation matrix. Figure 6(a) shows that each design
has near identical performance under (6) and (10) for a = v = 0.2. For larger a = 7 = 0.8, R*
may still differ greatly from R(a) but the designs have similar rankings under each objective
function (Figure 6(c)). For v = 0.9, Figures 6(b) and 6(d), the ranking of designs is also mostly
maintained. Similar results were obtained for « = .4 and .6 (not shown). The D-optimal
designs (set I) have a greater spread in the values of k” for larger v. However, under both
objective functions and for all o and v values, each of these designs is the best or close to the
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Figure 7: Simulation study results: true values (A) of [y, ..., a3 (labeled 1,...,7); average
estimates (®); average asymptotic 95% confidence intervals; achieved coverage (as a proportion).

best, and the optimal design under both criteria from the 2000 designs belongs to this set for
each case. Hence, in this study, design selection is little affected by departures of the working
correlation matrix from the true correlation matrix.

5. ANALYSIS OF SMALL EXPERIMENTS

For sparse binary data with small numbers of Bernoulli trials at each design point, the issue
of separation may arise in the analysis (Albert and Anderson, 1984). This complication results
in infinite estimates of model parameters (with infinite standard errors), fitted values near 0 or
1, and the solution to the estimating equations lying on the boundary of the parameter space.

The problem has been overcome for GLMs through alternative analyses which are mainly
Bayesian in flavor, including the penalized methods of Clogg, Rubin, Schenker, Schultz, and
Weidman (1991) and Firth (1993). We adopt a similar approach for GEE models through the
addition of a penalty to (1) to give new estimating equations

XAV Y —p) + XA (V) (mE—pu)=0,. (11)

The N-vector m is a vector of pseudo-observations mj; (j = 1, ..., N) constructed by assuming
that m* additional, hypothetical Bernoulli trials have been made at each design point. Here
m* is not necessarily an integer, and A* and V* are defined analogously to A and V in (1) for
the “prior” data. This adjustment is equivalent to placing a shrinkage prior on 3. Empirical
evidence from simulation studies (not presented) suggests the use of m* = p/n and m}; = 0.5m*.
These values provide p additional Bernoulli trials in total and shrink the model parameters
towards zero (Clogg et al., 1991). This choice of “pseudo-prior” ensures the existence of unique
estimates for the model parameters under the prior estimating equations X'A* (V*)_1 (m} —
@) = 0,, and hence leads to a unique solution of (11).

A variety of simulation studies have been carried out to validate this adjustment. One study
is presented here for illustration, based on the bearing example. Binomial data were generated
according to a probit model with linear predictor (7) and 8 = (—1,2,1,—1,0.5,0.5,0.5) for
an experiment with 16 binomial observations, each for two trials, arranged in four blocks of
four. The exchangeable working correlation structure was adopted with a = .2. A local D-
optimal design was used, with data generated from the discretization into two classes of partial
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sums of independent Poisson random variables (Park, Park, and Shin, 1996) with a constant
pairwise correlation of .12, the largest possible value for this design; see (9). The results from
10,000 simulations are summarized in Figure 7 which shows the average point estimates and
asymptotic 95% confidence intervals for 3. The method performs well with average estimates
close to the values from the model used for data generation, and confidence intervals having
close to nominal coverage. In addition, the average confidence interval does not contain zero
for each parameter § with |3| > 1.

Two issues arise from the adjustment. The adjusted data are underdispersed, as the constant
added to the mean does not change the variance. Hence the scale parameter ¢ < 1 and must
be estimated from the data. In addition, the adjustment may result in differing degrees of
shrinkage of the coefficients, dependent on the number of prior observations employed. Finding
an optimal choice of the number of prior observations is an area for future research.

6. DISCUSSION

There is an increasing recognition of the need to design experiments for non-normal data.
This paper has developed the first general methods for block designs and distributions from the
exponential family, and has investigated their efficiency by finding designs for an aeronautical
application. Three strategies have been proposed for finding efficient designs robust to the
model parameters, and an assessment made of the robustness to block-to-block heterogeneity
of the designs produced. The methods can be extended to incorporate uncertainty in the
functional form of the linear predictor and the link function, see Woods et al. (2006) for GLM
designs. The methods also apply to linear response surface models with random block effects.

The comparison of the strategies shows clearly the need for additional support points in a
robust design. We conclude that a minimum-support design should not be used when there is
substantial uncertainty in the model parameters. Strategies 1 and 3 produce similarly robust
designs, with Strategy 3 offering some computational advantages, particularly for local optimal
designs where a closed form, optimal unblocked design may be available (Russell et al., 2009;
Yang et al., 2009). We have also assessed the robustness of local optimal designs to the value of
B. For the bearing example, exchangeable working correlation structure and a = .2, the local
optimal design for 8 = (—1,2,1,—1,0.5,0.5,0.5) has minimum efficiency over the parameter
space of Section 4 that is approximately half that of the robust design d,. The impact on
the ranking of designs of the assumption that the true and working correlation matrices are
identical was found to be minimal. Further simulation studies (not presented) show that the
block designs found using asymptotic theory still outperformed non-blocked optimal designs
under the empirical variance-covariance matrix for o # 0. Also, the asymptotic and empirical
parameter variances were found to be close, even for 16-run designs.

We have used marginal models and generalized estimating equations, and proposed a data
adjustment that overcomes separation in binary data and ensures finite parameter estimates.
We believe marginal modeling is an appropriate strategy for a range of designed experiments,
particularly from industry, in the situation when blocks can be regarded as nuisance variables.
For other experiments, such as clinical trials and longitudinal studies where the blocks are
human subjects, conditional models may be more appropriate (Lee and Nelder, 2004). An area
for future research is the robustness of designs to the chosen modeling method.
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APPENDIX A

The use of continuous, or approximate, designs allows the possibility of establishing nec-
essary and sufficient conditions for a design to be optimal, as well as guaranteeing a convex
optimization problem for D-optimality. When blocks have equal size k, a continuous block
design can be defined as a probability measure on the space of blocks X* (see, for example,

Cheng, 1995). That is,
52{ G G o G }’ (12)

wl w2 DY wb

where (; € X* is the set of k points which form the [th block, 2?21 w;=1,and 0 < w; < 1.
The sets (; (I =1,...,b) form the support of the block design.

Let ¢ € X* denote a set of points from a single block which may or may not be included
in the design. Then the sum of the asymptotic standardized variances for the predicted re-
sponses at the points in ¢ is v ((,&;8,a) = tr [K ((;8,a) M(f;,@,a)fl}, with K ((;8,a) =
X! Ag‘/{lAch and X, A¢ and V¢ defined as in (1). The robust D-optimality of a given con-
tinuous block design &* for a GEE model can be verified from the following general equivalence
theorem.

Theorem. For a GEE model with given linear predictor, link function and working correlation,
the following conditions on a continuous design £* with blocks of equal size k are equivalent:

1. & maximizes V(&; B, a).

2. & minimizes the maximum of Y (¢, &; B, a) over X* where

T(CEB.0) = [0(C.&Pa) AFB)—p.
B
3. T (¢, £ 8, a) attains its maximum value of 0 over X* at the support points (; of &£*.

The proof is similar to that of Chaloner and Larntz (1989) for completely randomized designs;
see also Atkinson (2008) for local optimal designs for nonlinear models with random effects.

Ezample 1. Consider a Poisson regression model with log link, linear predictor By + 312 + Ba22,
and a design in blocks of size k& = 2 with exchangeable working correlation. A robust D-
optimal continuous design for a = .5 and a uniform prior distribution on the parameter space
[—1,1] x [4,5] x [0.5,1.5], found by quasi-Newton computer search, is

. [ (03,1) (1,.60) (—.40,.78)
£ 355 310 335 !

where, for example, block 1 has the two design points z = .03 and = 1. Objective function (4)
was calculated using a product Gauss rule (Evans and Swartz, 2000, chap. 5). The theorem
confirms the D-optimality of this design, with the maximum value of Y (¢, {*; 3, ) being 0 and
occurring at the support points (;, (o, (3 of £*, shown in Figure 8.

The theorem is most useful for designs with small block sizes. For large blocks, the need to
evaluate Y (¢, &; B, «) for an arbitrary block can lead to a considerable combinatorial problem.
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Figure 8: Y((, &% 8, ) surface for Example 1; xq1; and z12 are the values of the variable z

assigned to the same block. Diamonds identify the pairs of values for the three blocks (i, (5
and (3 of the robust D-optimal design.

APPENDIX B

The decomposition is established by expressing the objective function (4) for minimum-
support designs as the sum of two independent functions, namely

W(dy: B,a) — /B log det [Mi (dy: B)] dF(8) + log det [Ms (ds: )] | (13)

where M, (dy; 8) = XT A1 A7'A X is the information matrix for the GLM; X, A; and A, are

defined as in (1) for design dy; My(dy; ) = Z7 [R(e)]”" Z is proportional to the information

matrix for the p-vector T of treatment effects under the linear model E(Y') = Z7 and Var(Y') =

o0?R(«). Here Z = (ZI:---:Z')T where Z; is the k; X p unit-treatment incidence matrix for

block [ whose (7, j)th element is 1 if the ith unit is allocated to } and 0 otherwise (i =
Skyg=1,...p;l=1,...b).

The derivation of (13) from (4) follows from using A~Y/2AX = ZAl_l/zAle to show that
_1 1
XTAATY2[R (o)) 'ATV2AX = XTAVA 2 ZT[R ()] ZA P AL X,
1
and the fact that A; 2A;X; and ZT[R(a)]"'Z are square matrices. The maximization of

Ms(dy; o) through choice of a D-optimal block design for comparing treatment effects was
established by Cheng (1995, lemma 2.1).
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