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Predictive Haemodynamics in a One-Dimensional
Human Carotid Artery Bifurcation. Part II:

Application to Graft Design
Vijaya B. Kolachalama, Member, IEEE, Neil W. Bressloff*, Prasanth B. Nair, and Clifford P. Shearman

Abstract—A Bayesian surrogate modeling technique is proposed
that may be able to predict an optimal bypass graft configuration
for patients suffering with stenosis in the internal carotid artery
(ICA). At the outset, this statistical technique is considered as
a means for identifying key geometric parameters influencing
haemodynamics in the human carotid bifurcation. This method-
ology uses a design of experiments (DoE) technique to generate
candidate geometries for flow analysis. A pulsatile one-dimen-
sional Navier–Stokes solver incorporating fluid–wall interactions
for a Newtonian fluid which predicts pressure and flow in the
carotid bifurcation (comprising a stenosed segment in the internal
carotid artery) is used for the numerical simulations. Two metrics,
pressure variation factor (PVF) and maximum pressure ( )
are employed to directly compare the global and local effects,
respectively, of variations in the geometry. The values of PVF and

are then used to construct two Bayesian surrogate models.
These models are statistically analyzed to visualize how each geo-
metric parameter influences PVF and . Percentage of stenosis
is found to influence these pressure based metrics more than any
other geometric parameter. Later, we identify bypass grafts with
optimal geometric and material properties which have low values
of PVF on five test cases with 70%, 75%, 80%, 85%, and 90%
stenosis in the ICA, respectively.

Index Terms—1-D blood flow, Bayesian modeling, carotid artery,
graft design, parametric studies, statistical analysis.

I. INTRODUCTION

THE CAROTID artery bifurcation is a common site for arte-
rial disease in the human body. One of the most frequently

accomplished interventional procedures in the carotids is en-
darterectomy [1], and an increasingly popular alternative in-
volves angioplasty followed by stenting [2]. However, for some
patients, bypass grafting may provide the preferred means for
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Fig. 1. Operative picture of saphenous vein bypass graft from the common
carotid artery (CCA) (on right of picture) to the internal carotid artery (ICA)
(on left). The anastomosis to the CCA is end to side and the anastomosis to the
ICA is end-to-end. The patient had atherosclerotic disease at the origin of the
ICA.

carotid artery reconstruction, especially when technical diffi-
culties are associated with endarterectomy or angioplasty [3].
Such situations can occur for patients having complex carotid
geometries with high tortuosity and in cases where the extent
of stenosis is large. In addition, extracranial–intracranial arte-
rial bypass surgery has been found to be promisingly efficacious
in the treatment of haemodynamic impairment due to unilateral
internal carotid artery occlusion [4]. Typically, when grafting,
large autogenous veins (e.g., the autologous saphenous vein) are
taken from the patient’s leg or prosthetic veins are harvested
(cf. Fig. 1). The purpose of these vascular conduits is to shunt
the blood flow around a blockage. Although all of the above
techniques are commonly used and clinically approved, signif-
icant postsurgical problems can occur inside the native vessel
often involving restenosis (neointimal hyperplasia). In the case
of grafting, graft failure may occur due to the compliance mis-
match at the junction between the native vessel and the graft [5].
In addition, there is some evidence to suggest that the geometry
of the arterial bypass can significantly influence the postopera-
tive haemodynamic environment [6], [7]. Hence, selection of an
optimal shape and a suitable material for a bypass graft could
play a critical role in inhibiting mechanical failure. With this
possibility in mind, a novel technique for designing a patient
specific bypass graft is presented, which may be able to improve
the treatment of haemodynamic compromise.

0018-9294/$25.00 © 2008 IEEE
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The present work extends the methodology developed in [8],
where the use of predictive tools highlighted the importance of a
parametric study and its subsequent potential application to pre-
dict the benefit of stenting in a diseased patient. As an alternative
to the approach in [8], statistical techniques have also been used
in a preliminary study to understand the influence of inter/intra
individual geometric differences on flow behavior [9], [10]. The
application of these techniques developed for optimizing graft
design are discussed here.

In this paper, a deterministic numerical model which can
predict flow and pressure in the human carotid bifurcation
using a time dependent one-dimensional Navier–Stokes solver
for a Newtonian fluid is used. Furthermore, a Bayesian surro-
gate modeling technique is employed to conduct a statistical
analysis to rank the key geometric parameters which influence
pressure variation factor (PVF) and maximum pressure ( ) in
the carotid artery. Originally introduced in [8], PVF is defined
as

(1)

where and
(for ) are the instantaneous pressure in the pres-
ence of a stenosis and the instantaneous pressure when there is
no stenosis, respectively. This nondimensional metric quanti-
fies the extent of deviation of pressure from ideal behavior in
the entire cross section of a single arterial vessel. In addition,

is defined as

(2)

This metric gives an estimate of local pressure increment. The
choice of PVF and as target variables is based on the inten-
tion to provide a measure of global and local variation due to the
presence of the graft, such that a graft is sought that minimizes
these variations. While variations in pressure have been consid-
ered here, metrics could have been similarly employed based on
the flow rate.

A parameterized model of the one-dimensional human
carotid artery bifurcation is used to automatically construct a
range of different geometries. The basic idea is to use a design
of experiments (DoE) technique to generate a set of candidate
geometries (at which the flow solver is run) that not only
comprise significant variations in the levels of stenosis in the
internal carotid artery (ICA), but also have shape differences
at other locations in the bifurcation. The data generated from
these runs is then used to construct a Bayesian interpolant
which approximates the objective as a function of the geo-
metric variables. This model is subsequently employed as a
computationally cheap surrogate for further statistical analysis.
More specifically, the degree of influence of each geometric
parameter on PVF and is estimated. Later, five test cases
with different levels of stenosis in the ICA are considered and
the application of the Bayesian model to determine a graft con-
figuration that has a low value of PVF in the carotid bifurcation
is discussed. In what follows, we briefly present the theoretical

aspects of Bayesian surrogate modeling. Finally, key results are
presented and discussed.

II. BAYESIAN MODELING

This section presents the theory of Bayesian Gaussian
process interpolation/regression. Consider a deterministic com-
putational fluid dynamics (CFD) code which takes as input the
vector and returns a scalar output . Further, for
a given set of input vectors ,
the corresponding output values are
assumed to be available. This training data may typically be
obtained in practice by applying a DoE technique [11] to decide
candidate geometries at which the flow solver should be run.
Using this training data, the approximation problem involves
the prediction of the output given a new design point .

The metamodel used in Bayesian interpolation can be com-
pactly written as

(3)

where is an unknown hyperparameter to be estimated from the
data and is a Gaussian stochastic process with zero-mean
and covariance

(4)

where is a correlation function that can be tuned to the
data and is the so called process variance. A commonly used
choice of correlation function is the stationary family which
obeys the product correlation rule [12]

(5)

where and are the hyperparameters. In
the present study, we have chosen to reflect the belief
that the underlying function being modeled is smooth and infin-
itely differentiable. The hyperparameters which control the
nonlinearity of the metamodel are estimated from the data. For
example, small values of indicate that the output is a smooth
function of the th variable, and high values indicate highly non-
linear behavior. It is also possible to tune the parameters to
the data which allows for the possibility of modeling functions
which may be discontinuous. In theory, the choice of an optimal
covariance function is data-dependent. However, in practice it
has been found that the parameterized covariance function in
(4) offers sufficient flexibility for modeling smooth and highly
nonlinear functions [13].

Assuming Gaussian prior over functions, and by applying
Bayes’ theorem, it can be shown that the posterior distribution is
Gaussian [14], i.e., . The pos-
terior mean and covariance can be computed as

(6)

and

(7)

where is the correlation matrix computed using the
training points; the th element of this matrix is computed as
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.
is the correlation between the new point and the training

points and . It can be observed from (6)
and (7) that the Bayesian inferencing approach leads to an ap-
proximation of the CFD code as a multidimensional Gaussian
random field. The posterior covariance given in (7) can be in-
terpreted as an estimate of the uncertainty involved in making
predictions at a new point . Note that this uncertainty arises
from the fact that only a finite set of points are used to construct
the surrogate model.

In practice, for the sake of computational efficiency, we com-
pute the Cholesky decomposition of . This allows the poste-
rior mean to be computed using a vector-vector product, i.e.,

, where . However,
the computation of the variance (or error bar) of the posterior
process (i.e., ) requires a forward and back substitution.

A. Maximum-Likelihood Estimation

The hyperparameters , , and
which arise in the correlation function defined in (4) can be
computed using a maximum-likelihood estimation (MLE) pro-
cedure. For the case of Gaussian process interpolation, the like-
lihood function is

(8)

Hence, the negative log-likelihood function to be minimized
becomes

(9)

Given the maximum-likelihood estimate of , the parameters
and can be estimated as

(10)

(11)

By substituting the value of from (11) in (9) and by removing
the term , the negative log-likelihood function becomes

(12)

Numerical optimization techniques are required for the opti-
mization of (12) to estimate the unknown hyperparameters .
Subsequently, is kept as a constant matrix during predictions,
unless new design points are added to the training data set. Once
the metamodel has been constructed, various statistics of the
output can be computed in the postprocessing phase. We now
discuss the application of the surrogate model to identify the
relative importance of each input variable.

B. Main Effects

It can be seen from (6) and (7) that the Bayesian model does
not explicitly reveal the input–output relationships in a readily
interpretable way. Consequently, this predictor is not suitable
for explaining the functional relationship between the covariates
and the response. In order to identify this relationship, the effect
of each input needs to be isolated from the others. The response
can be decomposed into main effects for each input and this
main effect of the th input variable which can be obtained by
integrating out the other factors is defined as follows:

(13)

where is the volume of the design space over which the
integration is carried out. The above integral can be numeri-
cally computed by approximating it by a sum over a grid of
points . These points can be generated using
Monte Carlo or Latin Hypercube sampling (LHS) techniques
[11]. Note that since the Bayesian surrogate also provides the
posterior variance, error bars on the main effects can be readily
computed. Similarly, the effect of two or more covariates (joint
effects) can be investigated by integrating out all the other
covariates or by fixing the other covariates at some values [12].
The graphical plots of these effects can potentially provide
useful insights into the input–output relationship.

III. GOVERNING EQUATIONS, NUMERICAL METHOD,
AND BOUNDARY CONDITIONS

The companion paper [8] discussed the details of the exact
equations governing the flow, the numerical method used to
solve this problem along with the respective boundary condi-
tions. More specific details can also be found in [15] and [16].
However, some of the details are outlined here to aid the reader.
The geometry of a systemic arterial vessel generally tapers
along its length. The radius of the vessel follows an exponential
curve of the form

(14)

where (units—cm) denotes the mean upstream cross section
of the vessel, (units—cm ) signifies the tapering factor and
the length, (units—cm), varies between 0 and , where
(units—cm) is the length of a vessel. The upstream cross section
of the artery is greater than the downstream cross section and
they are related to each other according to the tapering factor

(15)

where (units—cm) denotes the downstream cross-section of
the vessel. From the above equations, the radius of the vessel
becomes

(16)

where (units—cm) is the radius of the vessel at zero trans-
mural pressure ( ) (units—mm.Hg). The elastic proper-

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on February 2, 2010 at 12:58 from IEEE Xplore.  Restrictions apply. 



KOLACHALAMA et al.: PREDICTIVE HAEMODYNAMICS IN A ONE-DIMENSIONAL HUMAN CAROTID ARTERY BIFURCATION 1179

ties of the vessel can be estimated from the Young’s modulus,
(units—g cm s ), the wall thickness, (units—cm),

and the radius of the vessel, . Empirically, Olufsen [15] has
estimated a relation between them which is as follows:

(17)

The empirical estimates of the constants , and are taken
as 2 10 g cm s , cm , and 8.65 10 g cm
s , respectively. Equation (17) is used with the same values for
these constants for all branches including the stenosed cases of
the ICA. It is also used to represent the elasticity of the applied
graft, but the constants , , and are optimized for different
degrees of stenosis as described in more detail below. Effec-
tively, the material properties of the graft are allowed to vary
within 25% perturbations around the mean values of the artery
such that the range of possible grafts are close to mechanical
compatibility with the arteries to which they could be joined.

The total system of continuity and momentum equations can
be written as

(18)

where (units—cm ) is the cross-sectional area, is the flow
(units—cm s ), (units—g cm s ),

(units—cm ) is the cross-sectional area at zero transmural
pressure, (units—cm s ) is the kinematic viscosity,
(units—cm) is the boundary layer thickness, (units—g cm )
is the density of blood, and
with units of g cm s . Using (17), the pressure
(units—mm.Hg) is related in the state equation as

(19)

where is the zero transmural pressure or the diastolic
pressure.

Furthermore, a Richtmyer’s two-step version [17] of the Lax-
Wendroff explicit scheme [18] is used to solve the equations
governing the flow. As an input flow condition, a characteristic
pulse at the inlet of the common carotid artery (CCA) is used
[19]. At the bifurcation, the flow, area, and pressure are balanced
at the two time steps, giving rise to a set of 18 nonlinear equa-
tions that are solved using Newton’s method by suitably eval-
uating the Jacobian. For the outflow boundary condition at the
outlets of the ICA and external carotid artery (ECA), a three-el-
ement Windkessel model is used [20].

IV. RESULTS AND DISCUSSION

A. Identification of Key Geometric Parameters Influencing
Haemodynamics

This subsection presents preliminary studies conducted to
identify key geometric parameters that influence PVF and .

The geometry of the one-dimensional human carotid bifurca-
tion as defined in [8] is used for the analysis presented here.
The stenosis in the ICA is modeled using the Hicks–Henne
bump function [21] which is defined as

for (20)

where controls the radius of the vessel, is the max-
imum bump magnitude, is the location of the maximum point
of the bump, and controls the width of the bump. With refer-
ence to the radius of the arterial vessel ( ) defined in [8], the
effective radius of the vessel becomes

(21)

In accordance with this definition, the percentage of stenosis can
be evaluated as

10 (22)

A number of other stenosis models have been employed else-
where, some of which can be found in the review article by
Berger and Lou [22]. The closest example to the one consid-
ered here, employs a Gaussian shape to define the stenosis [23].
Also, early in vitro experiments used locally constricted models
to investigate the effect of stenosis shape and size on flow char-
acteristics [24]–[26]. In particular, Seeley and Young [26] ex-
perimentally considered a range of blunt-ended plugs to derive
an expression for pressure drop that was then adjusted for a more
realistic severe constriction. While useful results have been ob-
tained from these other stenosis models, the real attraction of
using the Hicks–Henne representation lies in its ability to gen-
erate a wide range of stenosis shapes using only three variables;
thus, facilitating an efficient procedure for exploring the effect
of shape change on haemodynamics.

The ranges of variation of and other geometry vari-
ables are shown in Table I. The geometry of the CCA is defined
using , , and denoting the radius of the upstream section,
radius of the downstream section, and the length, respectively.
For the ICA, denotes the radius of the upstream section, is
the radius of the downstream section, and signifies the length.
Similarly, for the ECA, signifies the radius of the upstream
section, is the radius of the downstream section, and de-
notes the length. By varying the parameters listed in Table I, 500
geometries (or training data) are created using an LHS technique
[11] and parametric analysis is conducted to understand the be-
havior of PVF and in the ICA. Numerical simulations are
performed on all the cases considered for the training data and
the values of the pressure based metrics are extracted at the end
of four cycles for each geometry in order to construct two sur-
rogate models with PVF and as their outputs, respectively.

Main effect plots generated by integrating out the other co-
variates are shown in Fig. 2 for the case with PVF as the output.
It can be clearly seen from the figure that the main effect plots
of the variables , , , , and are nonlinear while the
plots of other variables are flat; as depicted for variable . We
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TABLE I
VARIABLES TAKEN FOR THE ANALYSES TO IDENTIFY THE KEY GEOMETRIC PARAMETERS THAT INFLUENCE PRESSURE VARIATION FACTOR

(PVF) AND MAXIMUM PRESSURE (p ) IN THE HUMAN CAROTID ARTERY BIFURCATION. NOTE THAT 10% PERTURBATIONS AROUND

THE MEAN VALUE ARE TAKEN FOR PARAMETERS x (i = 4; 5; . . . ; 12) IN THIS STUDY. ALL THE LOCATIONS ARE SHOWN IN FIG. 4.
THE MEAN VALUES CONSIDERED FOR THIS STUDY ARE THE SAME AS THOSE TAKEN IN THE COMPANION PAPER [8]

Fig. 2. Main effect plots for x (maximum bump magnitude), x (location of maximum bump), x (width of the bump), x (ICA inlet radius), x (ICA outlet
radius), and x (ICA length) when nondimensional pressure variation factor (PVF) is the output. The middle line is the estimated effect and the error bars are
�95% confidence limits based on the standard error. On the x-axis of each subplot, all the variables are normalized using their bounds.

can see that the degree of nonlinearity of is more than that
of the other variables. Hence, it can be concluded that the per-
centage of stenosis influences PVF more than any other param-
eter. Since the pressure increment is caused due to the presence
of the stenosis in the ICA, it is not surprising to observe that the
geometric parameters that define the stenosis shape should di-
rectly affect PVF. Indeed, it can be seen that the other geometric
parameters governing the stenosis ( and ) seem to have a
significant effect on PVF. Additionally, the other variables that
have a noticeable effect are the inlet and outlet radii ( and ,
respectively) of the ICA. The parameters governing the geom-
etry of the CCA ( , , and ) and the ECA ( , , and

) appear to have little affect on the PVF in the ICA.

In contrast to the global pressure variation, further insight is
possible by considering the local influences of geometric vari-
ables on values of maximum pressure. To do this, is ex-
tracted for each simulation and another surrogate model is con-
structed with as the objective. Fig. 3 shows the main effect
plots for this case. Interestingly, only the main effect plots for
the variables , , and are nonlinear while the others are
flat; as shown by way of example for . This suggests that the
location of the peak and the extent of the stenosis have negli-
gible effects locally on the pressure distribution when compared
to their global effect [8]. Fig. 3 re-enforces the inference made
using Fig. 2 that the percentage of stenosis is likely to be the key
geometric parameter influencing the pressure distribution in the
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TABLE II
VARIABLES TAKEN FOR THE ANALYSIS TO IDENTIFY AN OPTIMAL BYPASS GRAFT USING THE PROBABILITY OF IMPROVEMENT (POI) CRITERION. NOTE THAT 25%

PERTURBATIONS AROUND THE MEAN VALUE ARE TAKEN FOR ALL THE PARAMETERS IN THIS STUDY. ALL LOCATIONS ARE SHOWN IN FIG. 4

Fig. 3. Main effect plots for x (maximum bump magnitude), x (location
of maximum bump), x (ICA inlet radius), and x (outlet ICA radius) when
nondimensional maximum pressure (p ) is the output. The middle line is the
estimated effect and the error bars are �95% confidence limits based on the
standard error. On the x-axis of each subplot, all the variables are normalized
using their bounds.

human carotid bifurcation. As observed for the previous metric,
the parameters defining the CCA and the ECA ( , , , ,

, and ) have least influence on .
It should also be observed in Fig. 3 that the values of

are unexpectedly high. Scrutiny of a number of the stenosis
solutions reveals that the exponential relationship between the
Young’s modulus and the radius at zero transmural pressure

generates increasingly large values of as the radius
decreases through the stenosed regions. The associated pres-
sure rise predicted by (19) causes the vessel to expand, and
this further increases the pressure due to the area ratio term in
(19). While (17) and (19) have been recently used elsewhere
[27], these results suggest that an alternative representation of
elasticity of the vessel should be used through the constric-
tions. Notwithstanding the need to further investigate this short-
coming, the method described so far is now applied to the design
of an optimal graft, anastomosed to the bifurcation.

B. Optimal Graft Design

In this section, we illustrate the application of Bayesian surro-
gate modeling to predict a graft configuration (cf. Fig. 4) which

Fig. 4. Schematic of the one-dimensional human carotid artery bifurcation with
a stenosis at the ICA along with the bypass graft.

has minimum PVF in the human carotid bifurcation. A straight-
forward way to do this would be to directly minimize the PVF
predicted by the surrogate model—by performing a search pro-
cedure on the surrogate predictor—as a function of the vari-
ables governing the geometric and material properties of the
graft. Alternatively, the error bar predicted by the surrogate can
be employed to maximize the probability of improvement (PoI)
criterion

(23)

where denotes the lowest value of PVF among all the ge-
ometries in the training data set used to construct the surro-
gate model. Note that since the surrogate prediction is a
Gaussian random field, the PoI can be computed exactly.

As a test case, a geometry having 80% stenosis is consid-
ered with fixed at 0.5, fixed at 4.4 cm, and the variables

fixed at their mean values (cf. Table I). The
six parameters which govern the geometric and material proper-
ties of the bypass graft (cf. Table II) are varied to create training
data for constructing the surrogate model. Note that con-
trols the upstream cross section, controls the downstream
cross-section, and controls the length of the bypass graft,
respectively. The material properties of the graft are governed
by (17) such that the constants , , and are allowed to vary
in the search for an optimum. Intrinsically, it is assumed that the
material properties of the bypass graft closely match to that of a
systemic elastic artery. Furthermore, for a tapering graft, it can
be seen from (17) that the elasticity increases along its length.

Fig. 5 shows the main effects plots generated for the variables
, , , , , and . It can be seen that the degree of

nonlinearity of the variable is more than that of any other
variable. In addition, it is clearly evident that the influence of
the variables and on PVF is more considerable than ,
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Fig. 5. Main effect plots for the case with 80% stenosis at the ICA. (x , x , and x are, respectively, the graft inlet radius, outlet radius, and length. k , k
and k denote the constants defining the material properties of the graft as defined in (17)). The middle line is the estimated effect and the error bars are �95%
confidence limits based on the standard error. Nondimenional PVF is shown on the y-axis of each subplot. On the x-axis of each subplot, all the variables are
normalized using their bounds.

, and . This observation may directly suggest that the ma-
terial properties of the bypass graft have a greater influence on
the pressure distribution than the geometric properties in this
one-dimensional study. Although this statement contradicts the
general consensus that the shape of the arteries is the most im-
portant factor influencing the haemodynamics [28], quantifying
the overall effect of the pressure increment in terms of a scalar
metric for this one-dimensional study highlights the importance
of the material properties as well.

The objective of this optimization study is to predict a bypass
graft configuration which produces a low value of PVF in the
original bifurcation. The motivation for minimizing PVF arises
from the fact that this metric quantifies the extent of pressure
build up relative to normal behavior in the entire vessel. Al-
though changes in flow leaving the ICA and ECA can have an
effect on the graft configuration, the main concern is to obtain
an optimal design with respect to variations in pressure. The un-
derlying assumption is that the most suitable configuration for
the bypass is the one which has minimum PVF. Hence, by min-
imizing the PoI criterion on the training data set, better designs
of the bypass graft are obtained, compared to the initial config-
urations. For the case with 80% stenosis, a graft configuration
is predicted which has a lower value of PVF compared to the
values in the training data set. Note that the minimum value of
PVF in the training data set is 12.5454, while the PVF value
predicted by the surrogate model for the optimal graft config-
uration was found to be 12.1367. Numerical simulations were
later performed on this optimal case and it was found that the
CFD predicted value of PVF was 12.1721. Thus, the configu-

ration presented in Table III for the case with 80% stenosis in
the ICA denotes a design which is better than any of the cases
belonging to the training data. Note that this criterion can also
be used for updating the surrogate model to find a better optima.
The new point obtained can be appended to the initial training
data set and the criterion can be applied in an iterative fashion to
find optimal bypass graft configurations. Alternative strategies
for finding an optimal design can be found in [29]. Furthermore,
the capability of using the PoI criterion to predict better graft
designs has been harvested for cases with different degrees of
stenosis. Table III shows optimal graft configurations predicted
using the PoI criterion for cases with 70%, 75%, 80%, 85%,
and 90% stenosis, respectively, all for a single update. In each
stenosis case, the values to defining the shape of the un-
derlying bifurcation are held fixed at their mean values.

V. CONCLUSION

In this paper, a Bayesian surrogate modeling technique has
been presented for predicting optimal arterial bypass graft
configurations for a model of the human carotid bifurcation
with stenosis in the internal carotid artery. A one-dimensional
time dependent Navier–Stokes solver incorporating fluid–wall
interactions was implemented for studying blood flow through
this model. A design of experiments technique was used to
create geometries for a parametric study in order to identify key
geometric parameters that influence pressure variation factor
and maximum pressure in the human carotid bifurcation. A
Bayesian surrogate model was constructed for statistically an-
alyzing how each geometric parameter influences the pressure
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TABLE III
OPTIMAL BYPASS GRAFT CONFIGURATIONS OBTAINED USING THE PROBABILITY OF IMPROVEMENT (POI) CRITERION FOR FIVE TEST CASES

variation factor and maximum pressure. Percentage of stenosis
was found to influence these metrics more than any other
variable. Furthermore, a probability of improvement criterion
was used to predict bypass grafts having optimal geometric and
material properties, for a given degree of stenosis.

Although this work employs a one-dimensional model and
other simplifications to simulate the flow in the carotid bifur-
cation, the research presented in this paper and in [8] has suc-
cessfully demonstrated the possibility of designing optimal ar-
terial grafts and stents using nondeterministic and deterministic
techniques, respectively. Further confidence in these techniques
should be provided using more accurate methods obtainable
from higher dimensional models (e.g., three-dimensional CFD
[30]) and/or improved representations of arterial material prop-
erties. Nonetheless, it is hoped that these techniques could also
be applied to the design of a wide range of interventional de-
vices at different locations in the human anatomy.

This optimal design strategy could be used to handle pa-
tient-specific geometric design of arterial grafts and stents.
More specifically, using this paradigm, it may be possible to
predict the efficacies of stenting or grafting on an individual
patient. In practice, diagnostic information could be provided
for a human subject with a certain degree of stenosis by first
evaluating PVF and in a model of the stenosed geometry.
Later, a graft or a stent could be selected only if the corre-
sponding metrics were reduced following simulation through
the reconstructed model [8]. Additionally, a representation of a

patient’s geometry could be appended to the training data for
reconstructing the surrogate model. As a consequence, it may
be possible to design patient-specific optimal grafts or stents
using the Bayesian surrogate modeling technique that can then
be manufactured using materials that are mechanically and
biologically compatible with the arteries they are designed to
treat.
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