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MODELLING OF CAPILLARY HIGH HARMONIC GENERATION

Edward Thomas Foss Rogers

High harmonic generation (HHG) is now an accepted method for laboratory based
generation of XUV and soft x-ray light. HHG produces pulses that are highly
coherent, with a pulse length in the femtosecond or attosecond timescales. To predict
the XUV output from an HHG experiment, both the emission from a single atom
and the build-up of intensity over the interaction length must be accounted for. In
addition, the propagation of the driving laser pulse in a gas-filled capillary has a
significant effect on generation. To improve the understanding of these processes,
this thesis presents a spatio-temporal phasematching model for capillary HHG, and
a modal-based model of laser propagation in an ionising gas.

The phasematching model takes into account the full spatio-temporal nature of the
capillary HHG process to determine the harmonic build-up as a function of radius,
time and harmonic number. A very simple single atom response is assumed, consist-
ing of a plateau and hard cutoff. Good agreement is shown between the theoretically
predicted and experimentally measured spectra for a number of gases. The model is
extended to gas mixtures and shows qualitative agreement with experimental results.

The spatial output of the phasematching model, together with phase information
from the semi-classical model, is used to investigate the propagation of the XUV
beam as it leaves the capillary. The divergence of the harmonic beam is predicted
and found to be in agreement with preliminary experiments.

The modal propagation model (MPM) is simple and computationally fast. The
effect of misalignment of the laser into the capillary is investigated and it is shown
that radial symmetry can be assumed within the capillary. Predictions of the ion-
isation fraction as a function of propagation distance show good agreement with
experimental measurements of fluorescence.

The MPM assumes that the time envelope of the pulse does not change and the
plasma-induced nonlinear mode coupling is weak, and so is valid in the low pressure,
low intensity regime. For extension to higher intensities and pressures, a more
sophisticated model is proposed that is currently under development.
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new discoveries, is not ‘Eureka!’ but ‘That’s funny...’ ”

Isaac Asimov



Chapter 1

Introduction

The invention of the laser by Maiman [1] and its subsequent development have

given scientists access to light intensities much higher than those from any natural

process. The interaction of these high intensity light beams with matter shows

many more complicated effects than the linear refraction and absorption that had

previously been observed. These nonlinear interactions have provided new probes

into the nature of matter and light, as well as being the source of many technological

developments.

The field of nonlinear optics (NLO) can be traced back to 1961, when Franken et

al. [2] demonstrated second harmonic generation from the ruby laser line at 694.3 nm

to produce a new wavelength in the ultraviolet. This first experiment showed ∼ 1011

second harmonic photons demonstrated from ∼ 1019 fundamental photons, an effi-

ciency of ∼ 10−8. However, shortly afterwards, significant increases in efficiency

were achieved [3] by Giordmaine [4] and Maker et al. [5]. These experiments paved

the way for a whole new field of optics investigating the nonlinear interactions of

light and matter. As well as harmonic generation, many other process have been

discovered, including four-wave mixing, sum- and difference-frequency generation,

parametric amplification, two-photon absorption, self focusing, self phase modula-

tion and stimulated Raman scattering.

Nonlinear optics has been exploited to produce many new optical devices, in-
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Chapter 1 Introduction

cluding coherent radiation sources in wavelength regions where lasing is difficult or

impossible to achieve, new pulse measurement techniques, mode-locked lasers and

pulse compression systems. On the other hand, the light pulses that show these

remarkable nonlinear properties are also difficult to control, for exactly that reason.

Controlling of unwanted nonlinear effects in laser systems is a significant challenge

as, unlike linear optical effects, changes to the pulse due to nonlinear effects are

difficult or impossible to reverse.

1.1 The origin of optical nonlinearities

When an electromagnetic wave is propagating through any material, it causes the

electrons in that material to oscillate; it is this oscillation that, in turn, generates

a new electromagnetic wave which continues to propagate. If the oscillations of the

electron in the medium are in a harmonic potential, then the optical system has a

linear response to the incoming wave. In this case the effect of the medium on the

wave is independent of the amplitude of the wave and the frequency of the wave is

unaltered. The only effects of such a linear system on wave propagation are phase

delay between the incoming and outgoing waves and damping of the wave. These

effects lead to a modified speed of propagation — refractive index — and absorption

respectively.

If, on the other hand, the electron binding potential is anharmonic, then the elec-

tron motion can exhibit oscillations with a modified frequency, and these oscillations

will generate electromagnetic waves with new frequency components.

Consider an electron bound in an arbitrary 1-dimensional potential well V (x)

(figure 1.1). If the electron has an equilibrium position at x = 0, then a Taylor

expansion about the equilibrium point gives

V (x) = V (0) +
V ′(0)

1!
x +

V ′′(0)
2!

x2 +
V ′′′(0)

3!
x3 . . . (1.1)

where ′ denotes differentiation with respect to x. V (x) has, by definition, a minimum

2



Chapter 1 Introduction

Figure 1.1: Electron bound in arbitrary potential well (black line) and a parabolic
approximation (blue line) to the potential at the equilibrium position.

at x = 0, therefore V ′(0) = 0. If V (0) is defined as the zero potential, then

V (x) ≈ 1

2
V ′′(0)x2. (1.2)

This parabolic approximation is shown as the blue line in figure 1.1. Thus for small

displacements about equilibrium, the electron can be treated as a simple harmonic

oscillator. In this case, the restoring force on the electron F is given by F = −dV
dx

=

−V ′′(0)x. The net movement of the electron cloud relative to the nucleus (assumed

to be fixed), which is called the polarisation of the medium P , is simply

P = ǫ0χE (1.3)

where the electric field E is in the plane of our 1-dimensional potential1, ǫ0 is the

permittivity of free space and χ is the susceptibility of the medium, related in this

case to V ′′(0).

When this electron is driven by an electromagnetic wave E = E0e
iωt of frequency

1In this simple example, the vector nature of E and P and the tensor nature of χ, together with
its frequency dependence, are neglected.

3
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ω, it oscillates at frequency ω, and re-radiates at that frequency. The emitted

radiation will have a phase lag with respect to the driving radiation, provided the

driving radiation is below the resonant frequency of the oscillator, which is the case

for normal atoms and optical frequencies. The bulk response of a sheet of emitters

with this phase lag gives rise to absorption and a reduced phase velocity in the

medium [6]. These quantities can be represented by the (complex) susceptibility χ

or the refractive index n =
√

1 + χ of the medium.

If the oscillations of the electron become larger, as occurs when driven by a larger

amplitude wave, then the parabolic approximation to the potential no longer holds.

This occurs as the strength of the electric field begins to be comparable to the atomic

field strength, which is why the invention of the laser, and the associated increases

in peak intensity, was necessary for the observation of most nonlinear phenomena in

optics.2 In this case the polarisation, instead of being linear in E becomes

P = ǫ0

(

χ(1)E + χ(2)E2 + χ(3)E3 + . . .
)

(1.4)

where χ(2), χ(3), . . . are derived from the higher order terms of the Taylor expansion

of V . Considering, for the moment, the simplest case of interaction between a

medium with only χ(1), χ(2) 6= 0 and an electromagnetic wave with two frequency

components E = E1(ω1) + E2(ω2):

P

ǫ0
= χ(1)E + χ(2)E2

P

ǫ0
= χ(1)

[

E1(ω1) + E2(ω2)
]

+ χ(2)
[

E1(ω1) + E2(ω2)
]2

(1.5)

(1.6)

It should be noted that in a symmetric potential V ′′′(0) ≡ 0 and, therefore, χ(2) ≡ 0

as well. This demonstrates the well-known result that it is necessary to have a ma-

terial without inversion symmetry to obtain processes based on a χ(2) nonlinearity.

2Raman scattering was first obeserved with the use of focused sunlight [7]
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Frequency component Physical process

2ω1 second harmonic generation of ω1

2ω2 second harmonic generation of ω2

ω1 + ω2 sum frequency generation
ω1 − ω2 difference frequency generation
ω1 − ω1 optical rectification of ω1

ω2 − ω2 optical rectification of ω2

Table 1.1: Summary of the frequency components generated by interaction of a two-

frequency (ω1, ω2) electromagnetic wave with a material of nonzero χ(2). The colours
correspond to the colours of the terms in equation (1.7).

Since Ej(ωj) = 1
2 |Ej| eiωjt + c.c. where c.c. is the complex conjugate

[

E1(ω1) + E2(ω2)
]2

=
1

4

[

|E1|2 ei(+ω1+ω1)t + |E1|2 ei(+ω1−ω1)t+

|E1| |E2| ei(+ω1+ω2)t + |E1| |E2| ei(+ω1−ω2)t+

|E1|2 ei(−ω1−ω1)t + |E1| |E2| ei(−ω1+ω2)t+

|E1| |E2| ei(−ω1−ω2)t + |E2|2 ei(+ω2+ω2)t+

|E2|2 ei(+ω2−ω2)t + |E2|2 ei(−ω2−ω2)t
]

.

(1.7)

This equation shows the number of different frequency components generated in

even a simple case. The colours of the terms correspond to their descriptions in

table 1.1. As higher order processes become available — i.e. χ(3), χ(4), . . . 6= 0 —

the number of frequency combinations becomes even greater. The complexity is also

increased by the fact that, in general, E and P are vectors and χ
(n) is a tensor of

rank n and dependent on the frequencies of all the fields being mixed.

This description of nonlinearity relies on the motion of the electron being small

compared to the potential well that contains it. This allows the Taylor series in V

to be truncated after a small number of terms. The next section discusses the effect

of laser fields that are strong enough for the perturbative description used here to

break down completely.
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1.2 High harmonic generation

In the previous description of nonlinearities, the discussion was confined to small

oscillations of an electron in a potential well. However, in the case of even stronger

electric fields, it is possible for the electromagnetic wave to distort the potential

barrier so that the electron is no longer fully confined and has a possiblity of ion-

ising and becoming a free electron. In this regime, the perturbative approach is no

longer appropriate, and the effect of the subsequent particle motion must be fully

considered. This is the regime of high harmonic generation (HHG).

The standard model of the generation process is the three-step, semi-classical

model [8–10]. This model describes the generation process as a series of three steps,

each of which can be considered separately: firstly, the atomic potential is distorted

by the high intensity fundamental laser field, allowing an electron to undergo quan-

tum mechanical tunnelling to an unbound state; secondly, the electron is allowed to

propagate as a classical particle under the influence of the oscillating laser field; and

thirdly, the electron can return to the nucleus, recombine with the parent ion, and

emit a photon.

Consider an isolated atom in free space where the outermost electron is bound

in a spherically symmetric potential. As the atom comes under the influence of a

strong laser field, the potential confining the electron is distorted to form a potential

barrier (figure 1.2). Some proportion of the electron wavefunction can then undergo

quantum mechanical tunnelling through this barrier into free space. This tunnelling

is most likely to occur when the distortion to the potential is strongest i.e. at the

peak of the laser field. Ionisation is treated in detail in section 2.2.

The wavefunction is now localised in two states, both spatiallly near the ion, but

one in the ground state, and one in an unbound state. The unbound part of the

wavefunction is then treated as a classical particle and is accelerated by the electric

field of the laser. Assuming a linear polarisation for the fundamental, the electron

is accelerated away from the ion, and then, as the electric field reverses direction,

the electron is slowed and accelerated back (figure 1.3). When the two parts of
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Laser field

Atomic potential

(a) (b) (c)

Figure 1.2: (a) The electron is in a bound state of the atom, the laser field is zero and
the potential is undisturbed. (b) A strong electric field is applied by the laser, tilting the
potential. (c) Part of the electron electron can tunnel through the potential barrier to
an unbound state.
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the wavefunction overlap spatially, the unbound wavefunction has been shifted in

frequency (by its change in energy) and so interferes with the bound (unshifted)

part of the wavefunction. This interference causes a dipole oscillation which emits

a photon at the beat frequency between the two parts of the wavefunction. The

energy of the emitted photon is therefore given by the difference in energy between

the bound and unbound states. This is equal to the kinetic energy of the travelling

electron plus the ionisation potential of the atom;

Ephoton =
mev

2

2
+ Ip, (1.8)

where Ephoton is the energy of the photon, me and v are the mass and velocity of

the electron respectively and Ip is the ionisation potential of the atom.

Figure 1.3: (a) After tunnelling, the electron is accelerated by the laser field. (b)
As the electric field reverses direction, the electron is slowed and then accelerated back
toward the ion. (c) When the electron returns to the ion, the bound and unbound parts
of the wavefunction can interfere, emitting a photon.

This ionisation-recollision cycle does not directly produce harmonic frequencies,

but instead produces a continuous spectrum up to the maximum energy obtainable

by the photon. This energy is given by the semi-classical cutoff formula [11,12]

Emax = Ip + 3.17Up (1.9)
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where Up =
e2E2

0

4ω2me
is the pondermotive potential. The origin of this formula is

discussed in section 2.1.

The harmonic structure is imposed on the spectrum by interference between

pulses of extreme ultraviolet (XUV) radiation generated at different times. The

ionisation-recollision process is driven by the electric field of the laser and so emits

a burst of photons associated with each maximum and minimum of the field. These

bursts in time correspond to spikes in frequency space. Since the spikes in time are

spaced at T/2 where T = 1/f is the period of the fundamental laser, the frequency

spikes are separated by 2f . Since successive time bursts are π rad out of phase (the

electron motion is in the opposite direction and therefore the dipole oscillator is

out of phase), the harmonics produced are odd, rather than even. This produces

harmonics at wavelengths

λq =
λ0

q
(1.10)

where λq is the harmonic wavelength, λ0 is the fundamental wavelength and q =

1, 3, 5, 7, . . . is the order of the harmonic (the harmonic number).

Further details and the consequences and limitations of this model are discussed

in section 2.1

A typical HHG experiment involves focusing a high intensity laser into a gas;3

either a gas jet near the focus of the fundamental laser, or a waveguide of some form

filled with the gas. The gas used in HHG experiments is usually a noble gas, as

a high ionisation potential is desirable. Argon, neon and helium are all commonly

used [18–22], although some recent work has been carried out, both within this group

and elsewhere, to investigate the possibilities of HHG in molecular gases [23–26].

3HHG experiments [13–17] have also been carried out on surfaces or thin films, although the
mechanism is different from that of HHG in gases.

9
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1.3 Motivation

1.3.1 A table-top system for XUV generation

The ultimate aim of the project of which this thesis is a part, is the development of

a table-top system for the generation of XUV pulses. The scientific uses of such a

system are widespread, and a number of these are discussed in section 1.3.2. An XUV

generation system based on high harmonic generation would provide a relatively

cheap and compact source of coherent, short pulse XUV radiation. Alternative XUV

generation sources include free electron lasers (FELs) and synchrotrons, however

these are large, expensive, multi-user facilities. A HHG system would be a fraction

of the cost to build and run, and could feasibly be deployed in a small laboratory

for the sole use of one research group.

A qualitative comparison of the specifications of synchrotrons, FELs and HHG

sources is shown in table 1.2. Although FELs and synchrotrons remain capable of

far higher fluxes of photons than current HHG sources, the HHG source is capable

of much shorter pulse lengths, and therefore more accurate time resolution in areas

such as electron dynamics that occur on the attosecond timescale [27]. An HHG

source also has the benefit of producing, as a byproduct of the generation process,

a highly synchronised laser pulse at the fundamental frequency, allowing access to a

range of highly accurate pump-probe experiments that are more complicated with

synchrotron and FEL sources due to jitter between the XUV and infra-red beams

[28].

A parallel investigation, currently being undertaken in the Optoelectronics Re-

search Centre, University of Southampton as part this project [34–36], is to develop

a fibre oscillator and amplifier system with sufficient peak intensity to replace the

current solid state oscillator and amplifiers. This would further reduce the size, cost

and complexity of the generation system and lead to the possible development of a

“black box” XUV generation system for use in laboratories where dedicated support

for a complex laser system would not be available. This system would have many

10
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Source HHG Source Flash FEL Diamond Synchrotron

Coherence Coherent Coherent Incoherent
Footprint Tabletop: ∼ 5 m2 45 000 m2 260 m long
Cost ∼ £3M ∼ e117M [29] £263M
Pulse length 10 fs–130 as [30] 10–50 fs ps
Wavelength 2.7–60 nm [20] 6.5–47 nm 0.01–15 nm
Focused spot size 1 µm [21] 25 µm 10 µm

Table 1.2: Comparison of the specifications of currently available high harmonic gen-
eration sources, the FLASH FEL at DESY in Hamburg and the UK Diamond Light
Source. FLASH specifications from [31,32]. Diamond specifications from [33].

uses in the chemical and biological sciences as described below.

1.3.2 Uses of a short pulse XUV radiation source

A reliable HHG source of XUV radiation could have many uses in a range of scientific

fields across the physical and life sciences. Discussing all possible uses is beyond the

scope of this thesis, but selected uses are summarised here.

Nanoscale imaging

In general, to image an object with characteristic size l in the far field, it is necessary

to use light with a wavelength λ such that λ
2 < l.4 This is known as the diffraction

limit [41]. Therefore, to image objects on the nanometre scale using light, XUV or

x-ray radiation is needed. Electron microscopy [42, 43] can also be used to achieve

high resolution imaging, but this has a specific set of requirements that limit the

available samples. XUV and x-ray imaging also have requirements of the sample,

but these are different, making the two approaches complementary.

For example, scanning electron microscopy (SEM) is widely used for imaging of

nano-structures, but requires that the imaged object is electrically conducting to

avoid a build-up of electrons on the sample surface and subsequent loss of resolution

[42, 43]. Non-conductive samples can be coated with a thin layer of gold to meet

4In some cases it is possible to overcome this limit, either by imaging using the evanescent field
components [37–39], or by using negative refractive index lenses [40].
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this requirement, but this is a destructive process as the sample is changed by the

preparation. For XUV or x-ray imaging, the sample does not have to be conductive,

but it does have to be sufficiently transparent to light of the relevant wavelength

that a detectable number of photons can pass through the sample and mount (if

used in a transmission imaging geometry).

In both the electron and electromagnetic illumination cases, it is necessary that

the sample to be imaged is sufficiently resistant to the effects of the radiation that

it survives for long enough for the imaging to be completed. In the case of manufac-

tured nano structures, this is not normally a problem as the structures are relatively

robust. However, if the subject of the imaging is a large molecule, as is of interest

in the biological sciences, illumination by any particle — electron or photon — of

sufficient energy to image the shape of the molecule may cause multiple ionisation

of the molecule. As the molecule then contains several positive ions, it will undergo

Coulomb explosion [44]. Modelling has shown that the timescale of this explosion is

of the order of tens of femtoseconds, so if the entire experiment can be performed

in less than 10 fs, the shape of the molecule can be captured before it has time to

explode [44,45]. This single shot imaging experiment, where the sample is destroyed

by the illumination, has been demonstrated by Chapman et al. [46] on the FLASH

FEL using a nanostructured sample.

Currently imaging of biological molecules is carried out at synchrotrons using

crystallised molecules, but the crystallisation process can cause complex molecules

to change shape. It is also estimated that between 20–40 % of biologically important

molecules are difficult or impossible to crystallise [47,48].

In the case of imaging a sample with an HHG source, the optics required to

form a direct image of the sample are difficult to obtain. For example, currently

available focusing mirrors have low reflectivities and long focal lengths, requiring

long integration times to detect sufficient photons, and large propagation distances to

achieve magnification. It would therefore be advantageous if the observed diffraction

pattern of the object could be inverted to obtain an image of the sample. The process
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for doing this is now well understood [49–52] and has been demonstrated in several

experimental regimes [46,53].

Attosecond probes of electron dynamics

The availability of a high intensity infrared laser beam that is highly synchronised

and coherent with the XUV pulse generated by an HHG source allows access to many

pump-probe experiments. The potential for generation of a single attosecond pulse

allows physical systems to be investigated with an attosecond resolution. These

experiments have been proposed and demonstrated in several regimes.

The HHG process can, in itself, reveal considerable information about the atom

or molecule used to generate the XUV radiation. Analysis of the emitted radiation

and electron spectra has been used to investigate the shape of molecular orbitals [54]

and the dynamics of the molecule during the emission process [55].

Alternatively, the generated XUV pulse can be used probe some dynamic system

with attosecond resolution. For example, Stockman et al. [56] propose an experiment

in which a low frequency (near-UV to near-IR) pulse is used to excite a surface

plasmon in a metal surface; an attosecond XUV pulse is then used to ionise electrons

from the metal surface. The ionised electrons have a velocity that is determined by

the local electric field. If the electron energy spectrum is recorded as a function of

position, then the local plasmon field strength can be determined as a function of

position. If the delay between the pump and probe pulses is varied, the field can

determined as a function of position and time with attosecond resolution. A similar

experiment has been proposed in gas phase atoms by Hu and Collins [27] in which

a helium atom is pumped into an excited state with an ultraviolet pulse, allowed to

evolve and probed, after a varying time delay, by an XUV pulse. The energy of the

ionised electrons provides information about the relative position of the electrons

within the atom at the time of ionisation and so provides an attosecond resolution

probe of electron dynamics within an atom.

These experiments allow investigation of physical systems with unprecedented
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temporal resolution.

Electromagnetic nonlinearity in the XUV region

One possible use of the high coherence and tight focusing of an HHG source is the

investigation of electromagnetic nonlinearity in the XUV regime. For a currently

achievable experimental pulse of 107 photons/pulse centred at the 25th harmonic

of an 800 nm fundamental [57], the energy in the pulse is 3.18 × 10−7 J. Assum-

ing a 10 fs pulse length and a Gaussian focus with w = 1 µm, the peak intensity

is 1.9 × 1012 W cm−2. The assumption of a 10 fs pulse length underestimates the

intensity as the produced XUV pulses are a series of attosecond pulses under a

∼ 10 fs envelope. Even with these pessimistic assumptions, this intensity is compa-

rable to that needed to excite nonlinear effects in crystals in the infra-red. As the

nonlinearity of materials in the XUV region is not well known, further theoretical

and experimental work is needed to determine the feasibility of these experiments,

though the first steps have been taken toward this [58,59].

1.4 Thesis aims

Having discussed the aims and motivation of the project in general, the specific aims

of this thesis will now be presented.

In summary, the aims of this thesis are:

• to investigate the effect of phasematching on the high harmonic generation

process when carried out in a hollow capillary waveguide; and

• to investigate the effect of propagation of a high intensity laser pulse in an

ionising gas with reference to the use of the subsequent pulse for high harmonic

generation.

The investigation of phasematching considers the various contributions to the

static phasematching problem, namely neutral gas, plasma and waveguiding contri-
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butions, and finds the balance between these factors that allows optimum phasemat-

ching. The situation in a capillary HHG experiment, however, is more complicated

than the simple static case, as there is a spatially and temporally varying ionisation

fraction during the generation process. The next step in the modelling, therefore, is

to investigate the effect of this dynamic ionisation fraction on the generation pro-

cess, both spatially and spectrally. The model is valid for various different generation

gases and is extended to include gas mixtures. These simulations are then compared

with experimental data and used to further the understanding of the HHG process

and the factors limiting XUV generation. The model can also be used to make pre-

dictions of properties of the XUV radiation, such as the temporal and spatial profile,

that can not yet be accurately measured. These results are used to make predic-

tions of the experimental developments required to build a more efficient, tunable

and controllable source.

The propagation section looks at the effect of ionisation induced losses in a

capillary filled with ionising gas and the subsequent spatial reshaping. Coupling into

the capillary is investigated to give a greater understanding of the effect of capillary

misalignment. The model enables the investigation of previously observed [60, 61]

mode beating effects and their dependence upon the coupling conditions at the

capillary entrance. Comparison with experimental observations of the number of

ions in the capillary and experimentally measured capillary transmissions is used to

validate the model. This simple model guides the development of a more complex

model to include temporal and spectral effects that the simple model cannot include.

The output of these models can then be used as input to the phasematching model

already developed.
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Background work

Before undertaking the development of the models described in chapters 3, 4 and

5, several areas of background theory must be understood. These are discussed in

this chapter. Section 2.1 describes the semi-classical, three-step model and looks at

the predictions that can be made using it. Section 2.2 presents the models used to

predict the levels of ionisation caused by the interaction of a high intensity laser with

a gas. This is followed by a review of the modes of a hollow capillary waveguide and

their properties in section 2.3. A brief description of the experimental arrangement

is given in section 2.4, followed by a description of the gas flow and pressure profiles

in the experimental capillary (section 2.5). The last section in this chapter discusses

the methods used for determining the refractive index of gases in the infrared and

XUV spectral regions.

2.1 Semi-classical model

As described in the introduction, the most intuitive model of the HHG process is the

semi-classical model where the electron undergoes quantum-mechanical tunnelling1

in which a proportion of the electron wavefunction is ionised to free space. The

ionised electron is then treated as a classical particle in free space and is accelerated

1The probability of tunnelling is discussed quantitatively in section 2.2.
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by the laser field. Depending on the instantaneous properties of the driving laser

at the time of emission, the electron can return to its parent ion and interfere with

the part of the wavefunction that remains in the atom. This interference produces a

dipole oscillation at the beat frequency of the two wavefunctions and emits a photon.

The energy of this photon is determined by the kinetic energy of the electron at

recombination plus the ionisation energy of the atom. Since ionisation is localised

in time at the peak of the laser field, this ionisation-recollision process generates a

burst of x-rays associated with each peak of the driving electric field. Consequently,

one burst is generated every half cycle of the driving laser pulse. The interference

between these bursts produces the characteristic HHG spectrum consisting of odd

harmonics of the fundamental laser.

The semi-classical model can provide useful information about the phase of emis-

sion from a single atom, and qualitative information about the emitted spectrum.

However, he model cannot make quantitative predictions of the efficiency of gener-

ation or the strength of the electric field, as that requires knowledge of the strength

of the dipole oscillator created at recombination. This dipole strength can only

be obtained from quantum mechanical modelling of the system. The model also

conceptually fails to explain coherent processes, such as phasematching effects, if

the recombination process is described as ‘emitting a photon’. To explain these ef-

fects, the coherent summation of field over all the created dipole oscillators must be

considered.

This section presents calculations within the limitations of the semi-classical

model to provide an understanding of the factors affecting HHG. All calculations in

this section are carried out under the adiabatic approximation; that is, the envelope

of the electric field varies slowly on the timescale of an optical cycle. This approx-

imation has been shown to be valid for pulses with a central wavelength of 810 nm

(or less) and durations longer than 27 fs [62]. For the case of the 35 fs Gaussian

pulse used here, the fractional change in electric field over any 1 optical cycle is less

than 1 %.
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2.1.1 Free space motion

This section considers the motion of the electron after tunnelling. The laser field as

a function of time E(t) is assumed to be linearly polarised in the x direction with

angular frequency ω and amplitude E0. This gives

E(t) = E0 cos(ωt)x̂. (2.1)

By integrating the (classical) equations of motion, a classical position and ve-

locity for the electron as a function of time is obtained (assuming that the electron

tunnels into free space at time t0 with x(t0) = 0 and v(t0) = 0):

v(t) =

∫ t

t0

a(t′) dt′

=

∫ t

t0

−eE(t′)
m

dt′

v(t) = v0

[

sin(ωt) − sin(ωt0)
]

x̂ (2.2)

x(t) =

∫ t

t0

v(t′) dt′

x(t) =
{

x0

[

cos(ωt0) − cos(ωt)
]

+ v0 sin(ωt0)
[

t0 − t
]}

x̂, (2.3)

where e and m are the electronic charge and mass respectively, v0 = −eE0/mω and

x0 = −eE0/mω2. Note that the nucleus of the atom/ion is defined to be at position

x = 0.

For HHG to occur, the electron must be accelerated away from the nucleus, then

return to its original position, x = 0, in order to recombine and emit the required

high energy photon (as in figure 1.3). Therefore, the interesting property of the

electron is its kinetic energy as it returns to the nucleus. Only the first return of

the electron to the nucleus is considered here as a) for most tunnelling times, the

electron only passes the nucleus once (figure 2.1) and b) if the electron does pass
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Figure 2.1: Electron position as a function of time for varying tunnelling times.
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Figure 2.2: Time spent in the continuum τ and kinetic energy of the electron as it
returns to its parent ion for the first time as a function of tunnelling time t0.

the nucleus a second time, the recombination probability is greatly reduced. This

reduction in probability can be thought of as being due to the spreading of the

electron wave-packet over time [8,63].

Figure 2.1 illustrates the paths of electrons for various different tunnelling times

(calculated from equation (2.3)). The return time t1 is found by solving equa-

tion (2.3) for t given x = 0. Following the approach of Lindner et al. [64], the

following relationship is found (plotted in figure 2.2(a)) between the tunnelling time

t0 and the time spent in the continuum τ = t1 − t0

tan (ωt0) =
ωτ − sin (ωτ)

1 − cos (ωτ)
. (2.4)

To calculate the kinetic energy, the return time is calculated by solving equa-

tion (2.4), and this is used to calculate the velocity using equation (2.2). This gives

the graph in figure 2.2(b). The energy unit in this graph is the pondermotive energy

given by

Up =
e2E2

0

4ω2me

, (2.5)

which is the average kinetic energy of an electron oscillating in an electromagnetic

field of amplitude E0 and angular frequency ω. This graph shows the peak value of
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the kinetic energy at 3.17 Up, and the time at which this peak occurs, 0.05 T (where

T = 2π/ω is the laser period). This peak in energy gives the maximum possible

energy of the emitted photon. From equation (1.8) it can be deduced that

Emax = Ip + 3.17Up. (2.6)

The factor 3.17 is found to be independent of the properties of the atom or laser

involved, as has been shown previously in, for example, [11, 12]. In this way a

simple expression for the maximum value of the frequency of the emitted photon is

obtained, based only on the ionisation potential of the atom used for generation and

the field strength and frequency of the fundamental laser.

The other significant feature of figure 2.2(b) is that for each return energy, there

are two possible tunnelling times and therefore two possible trajectories for the

electron to follow. Physically, the two trajectories occur because electrons tunelling

early and late in the pulse can reeturn with the same velocity, and hence emit the

same frequency photon. By comparison with figure 2.2(a), it is seen that all those

trajectories where tunnelling occurs after 0.05 T spend less time in the continuum

than those tunnelling before 0.05 T . It is conventional therefore to divide the possible

trajectories of the electron into two groups: short trajectories, with t0 > 0.05 T ; and

long trajectories, with t0 < 0.05 T . It will be seen in section 2.1.3 that the phase

acquired during electron propagation can be very different for these two trajectories,

so single atom models of HHG must consider possible interference between these two

paths [65].

It has been shown [9,12] that full quantum mechanical modelling of the ionising

and travelling electron in a laser field recovers the semi-classical approximation. It

is shown the most significant contributions to the dipole oscillator come from those

electrons that tunnel into the continuum with momentum equal to 0 and return at

the times predicted by the semi-classical model. This demonstration of equivalence

gives greater weight to the predictions of the semi-classical model and allows them

to be used with greater confidence.
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Figure 2.3: (a) Schematic of XUV intensity as a function of time, with one spike
every half cycle of the fundamental laser. (b) An idealised high harmonic spectrum;
only odd harmonics are seen. The typical pattern is a sharp drop over the first few
orders followed by a plateau region of constant intensity, then a sharp cutoff as the
maximum energy limit (equation (2.6)) is reached.

2.1.2 Semi-classical predictions of emitted spectrum

Considering only the semi-classical model, qualitative predictions of the high har-

monic spectrum can be made, but quantitative predictions are limited by lack of

knowledge of the dipole oscillator properties, which can only be determined by

quantum mechanical modelling. The XUV intensity in the time domain is a se-

ries of spikes, one every half laser cycle (figure 2.3(a)). When the Fourier transform

of this time domain signal is taken, the result in the frequency domain is a series of

harmonics of the fundamental frequency. Since the spikes occur twice in a laser cy-

cle in the time domain, they are at double the expected frequency spacing (i.e. only

even or odd harmonics are produced). Since alternate XUV emission events have

a π phase shift with respect to each other (the returning electrons are recombining

from opposite directions), the odd harmonics are produced. The phenomenon of the

sharp cutoff in figure 2.3(b) is explained by the maximum photon energy derived in

equation (2.6). The probabilities of obtaining energies up to this value are roughly

equal, but any energy greater than Emax is not attainable.
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2.1.3 Semi-classical predictions of phase

The semi-classical model can be used to obtain accurate predictions of the phase

of the dipole oscillator created at recombination [65], and hence of the emitted

harmonic photon. The phase is given by the integral of the classical action [9].

From [64] we have

φ =
S (t0, t1)

~
+ qωt1, (2.7)

where φ is the phase of the emitted photon and

S (t0, t1) =

∫ t1

t0

(

mev(t)2

2
+ Ip

)

dt. (2.8)

The first term in equation (2.7) comes from the phase advance of the electron

between emission and recombination. The angular frequency ω of the electron is

given by ω = E

~
where E is the total energy of the photon. The phase advance is

then given by the integral of ω over time. The second term comes from the phase

advance of the fundamental from time t = 0 to the emission time t1. This equation

has been shown to be valid by the qunatum mechanical models of Lewenstein et

al. [9, 65].

Given equation (2.7) and the electron energies and times calculated above, it

is possible to produce plots of harmonic phase as a function of tunnelling time

(figure 2.4(a)) and return energy (figure 2.4(b)). The result of this dependence of

phase on photon energy — via the return time — and on momentum, is that the

phase of the emitted photon is dependent on both the harmonic energy and the

driving laser intensity.

The dependence of electron phase on energy and driving intensity is transferred

to the emitted photon, and so each harmonic generated by the laser has a different

radial phase profile induced by radial variation of driving intensity. These intensity

profiles are discussed in more detail in section 4.4.1. As seen in figure 2.5, the phases

are approximately linear with intensity, but more importantly, the short trajectory

has a much weaker intensity dependence than the long trajectory. This means
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Figure 2.4: Phase of the emitted photon as a function of (a) time and (b) electron

return energy. These are calculated for a laser intensity of 2.5 × 1014 W cm−2.
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Figure 2.5: Phase acquired by the electron, during motion, as a function of driving
laser intensity. This is calculated for generation of the 19th harmonic in argon.
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that the variation of phase with radius will be smaller for the short trajectories.

Therefore, the XUV radiation generated by the short trajectories will have flatter

phase fronts and a lower divergence than that generated by the long trajectories.

2.2 Ionisation theory

As described in section 2.1, HHG can only occur when an atom of the generation

medium is ionised. Also, ionisation of the medium changes the refractive index and

so affects the propagation characteristics of electromagnetic fields in the medium.

Therefore, to understand the HHG process, it is necessary to be able to calculate

the ionisation of the medium at a given time during irradiation by a laser pulse.

There are three regimes of ionisation for an atom (or ion) in a strong field: mul-

tiphoton ionisation (MPI), where the absorption of multiple photons causes ejection

of an electron; tunnelling ionisation, in which the potential barrier of the atom is

distorted by the applied electric field so that quantum mechanical tunnelling is pos-

sible; and barrier suppression ionisation (BSI), in which the potential barrier is so

distorted that the electron can simply pass over the top of it (causing ionisation

within about one optical cycle [66]).

2.2.1 Tunnelling ionisation

The theoretical study of ionisation of atoms in a high intensity, oscillating electro-

magnetic field has been underway for many years, and is covered exhaustively in

the literature. The work starts with that of Keldysh [67], and a comprehensive re-

view of the development is given by Popov [68]. Here, the equations used are taken

from [68] as they are relatively simple to apply to the experiment described. Much of

the other work in this area uses the ‘ADK’ ionisation theory [69], but there are some

doubts as to the accuracy of this method (see Appendix 13.3 of [68]). In actual fact,

the two calculations give similar results (figure 2.6), so the choice is not particularly

significant.
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Figure 2.6: Comparison of ionisation fraction as calculated using ADK theory [69] and

Keldysh theory [68] for a 40 fs pulse with a peak electric field of 4.1 × 1010 V m−1 and
peak intensity of 2.2 × 1014 W cm−2. These parameters are in the tunnelling regime,
but below the threshold for BSI. The black dotted line shows the normalised intensity
of the pulse. The results of the two calculations are similar, particularly in the 1–10 %
region where HHG is phasematched.
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In order to determine whether the dominant regime is that of tunnelling ionisa-

tion or MPI, it is necessary to consider the value of the Keldysh parameter γ, given

by [70]:

γ =
ω
√

2meIp

eE
, (2.9)

where ω and E are the angular frequency and field strength of the driving laser

respectively; me and e are the electron mass and charge; and Ip is the ionisation

potential of the atom in question. The Keldysh parameter is the ratio of the optical

frequency to the tunnelling frequency. If the optical frequency is high and the field is

weak (γ ≫ 1), the electron oscillations in the potential well must be considered and

MPI is a more appropriate description of the ionisation process. If the frequency

is low compared to the field strength (γ ≪ 1), then the electron can be treated as

a particle in a quasi-static field and tunnelling ionisation is the more appropriate

description.

For argon, γ = 1 at an electric field strength of 3.2 × 1010 V m−1, which is lower

than the peak field of the experimental pulses. Therefore, in the experimental regime

used in the project, the dominant ionisation effect is that of tunnelling ionisation

with γ ≪ 1. The contribution to the ionisation rate from MPI is negligible and so is

not modelled. As shown experimentally in, for example, [71], the ionisation rates in

the MPI regime are at least an order of magnitude lower than those in the tunnelling

regime.

From [68] we have the rate of tunnelling ionisation:

w(F,ω) = κ2C2
κl

√

3

π
(2l + 1)

(l + m)!

2mm! (l − m)!
×

22n∗−mFm+1.5−2n∗

exp

[

− 2

3F

(

1 − 1

10
γ2

)]

(2.10)

where:

• Z is the charge of the ion after ionisation,

• κ =
√

Ip/IH ,
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• F = E/κ3Ea is the reduced field,

• l and m are the angular momentum and magnetic quantum numbers of the

atom respectively,

• n∗ = Z/κ is the effective principal quantum number,

• and Cκl, which is of order unity, is the dimensionless asymptotic coefficient of

the atom wavefunction away from the nucleus. This modifies of the ionisation

rate based on the shape of the bound electron wavefunction at large distances

from the nucleus. (This can be taken from a handbook [72], or from the table

for common atoms and ions given in [68].)

The constants in the above equations are: IH = 13.6 eV, the ionisation potential

of the hydrogen atom and Ea = 5.14 × 109 V m−1, the atomic unit of field strength.

The ionisation rate is given in the atomic unit of frequency, 4.13 × 1016 s−1. As

stated above, this is the equation for tunnelling ionisation, and so is valid only in

the regime γ ≪ 1.

2.2.2 Barrier suppression ionisation

The intensity threshold for barrier suppression ionisation (BSI) is given, in W cm−2,

by [73]

Ic = 4 × 109

(

I4
p

Z2

)

(2.11)

where Z is the residual charge on the ion after ionisation, and Ip is the ionisation

potential in eV. This equation can be derived by finding the combined potential

of the laser and the atom, assuming that the attraction between the electron and

residual ion is purely Coulombic. This potential has a barrier which is equated to

the ionisation potential of the atom. When the laser intensity is greater than Ic, the

potential barrier falls below the ionisation potential.

This effect is included in the ionisation calculations by setting the ionisation

fraction to 1 when an intensity greater than Ic is reached. For argon, this intensity

is 2.5 × 1014 W cm−2, and so is reached by the experimental pulse. However, regions
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of space and time where BSI has occurred do not contribute to XUV generation.2

2.2.3 Applicability of Keldysh theory to molecules

Keldysh theory as described above has been derived for atoms, and so is not generally

applicable to molecules. Tong et al. [74] have proposed a method for extending

Keldysh theory to molecules. However, for the experiments presented here, the

two molecules of interest are nitrogen (N2) and nitrous oxide (N2O). The theory

proposed in [74] is applicable only to diatomic molecules, and so does not apply

for nitrous oxide. When Tong et al. compare the predictions of their theory to the

experiments of Guo et al. [75], they find that the agreement is poor for nitrogen.

From examination of the data presented in [74] it is seen that, for pulse lengths of

∼ 30 fs, as used here, a better approximation is made by assuming that the ionisation

rate of nitrogen is the same as that of argon. Therefore, the ionisation properties of

nitrogen in the Keldysh model will be assumed to be the same as argon, with the

exception of the well known [76] ionisation potential.

For nitrous oxide, the situation is complicated by the fact that no suitable theory

has been found. Here it is assumed the Keldysh theory can be applied to nitrous

oxide, with the appropriate ionisation potential. This is not ideal, and will introduce

errors into the calculations for nitrous oxide, but it is hoped that useful information

about the phasematching in more easily ionised gases will still be obtained.

2.3 Modes of a hollow capillary

To generate high harmonics in our experiments, the nonlinear medium used is a gas-

filled capillary waveguide. The details of the capillary are discussed in sections 2.4

and 2.5. Use of the capillary gives an extended interaction length between the laser

and the gas at high intensity, and adds an extra means to control the generation

process. In order to understand the propagation of the laser in the capillary, it is

2If BSI is reached, the plasma fraction becomes large, so that phasematching is not possible. See
section 3.3 for details.
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necessary to know the properties of the modes of the capillary in which the laser

travels.

The eigenmodes of a hollow capillary waveguide were first reported by Marcatili

and Schmeltzer [77]. In this work, our interest is in the electric field profiles and

(complex) propagation constants of those modes which are excited in the experi-

mental arrangement. Since the laser used here is linearly polarised, only linearly

polarised capillary modes will be excited [78, 79]. Marcatili divides the modes into

three categories: transverse circular electric (TE0m), those with radial and axial

components of electric field equal to zero; transverse circular magnetic (TM0m),

those with radial and axial magnetic field components equal to zero; and hybrid

modes (EHnm) with all field components non-zero. Linearly polarised modes must

have both radial and azimuthal components. Therefore, neither the TE nor the TM

modes can be linearly polarised.

For the EHnm modes, [77] gives

Eθ,nm = Jn−1

(

unm
r

a

)

cos (nθ + φ) (2.12a)

Er,nm = Jn−1

(

unm
r

a

)

sin (nθ + φ) , (2.12b)

where Eθ,nm and Er,nm are the electric field components in the azimuthal and radial

directions respectively, Jp is the pth order Bessel function of the first kind, unm is

the mth root of the equation Jn−1(unm) = 0, φ is an arbitrary constant, and a is

the capillary radius. Converting into Cartesian coordinates

Ey,nm = Jn−1

(

unm
r

a

)

cos ([n − 1] θ + φ) (2.13a)

Ex,nm = Jn−1

(

unm
r

a

)

sin ([n − 1] θ + φ) . (2.13b)

For the case of n = 1 these are seen to give a linearly polarised mode. However, the

mode is not linearly polarised for any single mode EHnm for n 6= 1. If φ is chosen

to be zero, the modes a polarised in the y direction (Ex,1m = 0). However, since
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any choice of φ is valid, the polarisation direction of the modes will be set by the

polarisation of the input beam.

The boundary conditions necessary to derive equations (2.12) and (2.13) are

the that the mode be finite in the centre of the capillary and E(r) → 0 as r →
∞, together with the condition that the tangential components of the electric and

magnetic fields must be continuous at the waveguide boundaries. Two simplifying

assumptions have also been made:

2πλ

a
≪ νunm (2.14a)

∣

∣

∣

γ

k
− 1
∣

∣

∣
≪ 1 (2.14b)

where ν is the refractive index of the guide, λ is the wavelength of the guided light,

k = 2π/λ is the vacuum wavenumber and γ is the complex propagation constant

of the guided mode. Inequality (2.14a) restricts the wavelength of the light to be

much smaller than the capillary radius. Inequality (2.14b) restricts the analysis to

low-loss modes: those where the propagation constant is nearly equal to that of free

space.

In this work the only capillary modes of interest are the hybrid EH1m modes.3

For these modes the electric field profile is given by

Ey,1m = J0

(

u1m
r

a

)

(2.15a)

Ex,1m = 0. (2.15b)

The intensity profiles of the first four of these modes are shown in figure 2.7.

For the EHnm capillary modes in a non-absorbing dielectric waveguide with

refractive index ν, the complex propagation constant γnm = βnm + iαnm is given

3There also exist combinations of degenerate modes that are linearly polarised, these are dis-
cussed in section 2.3.1.

31



Chapter 2 Background work

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

r/a

E
le

ct
ric

 fi
el

d 
/a

rb
.

(a) EH11

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

r/a

E
le

ct
ric

 fi
el

d 
/a

rb
.

(b) EH12

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

r/a

E
le

ct
ric

 fi
el

d 
/a

rb
.

(c) EH13

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

r/a

E
le

ct
ric

 fi
el

d 
/a

rb
.

(d) EH14

Figure 2.7: Intensity distributions (images) and electric field profiles (lines) for the
EH1m modes of a capillary.
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by [77]:

βnm = ℜ (γ) = k0

[

1 − 1

2

(

unmλ

2πa

)2
]

(2.16a)

αnm = ℑ (γ) =
(unm

2π

)2 λ2

a3

(

1
2

(

ν2 + 1
)

√
ν2 − 1

)

. (2.16b)

The propagation constants βnm, attenuation constants αnm and transmission

through a typical capillary length are shown in figure 2.8. We see that βnm is

slightly less than k0, and thus each mode of the capillary propagates with a phase

velocity slightly greater than that in vacuum, with this difference increasing with

the value of m. The guiding process in the capillary is a series of grazing incidence

reflections from the capillary walls, and so, since reflection from a surface with higher

reftracive index is not perfect, the modes are lossy. From equation (2.16b) it is seen

that α is proportional to u2
nm , so the propagation loss also increases with mode

order. The lowest loss, linearly polarised mode of a hollow capillary waveguide is

therefore the EH11 mode. In fact, for materials with refractive index ν < 2.02, the

EH11 mode has the lowest loss of all — arbitrarily polarised — capillary modes [77].

2.3.1 Degenerate combinations of modes

From the definition of the propagation constants in equations 2.16, it is found that

the only dependence of γnm on n and m is through the factor unm. From [80] we

have the identity

J−n(x) = (−1)nJn(x). (2.17)

Therefore, Jn and J−n must have the same roots. As unm is the mth root of the equa-

tion Jn−1(unm) = 0, it follows that that u−|n|,m = u|n|+2,m. Therefore, the modes

EH−|n|,m and EH|n|+2,m are degenerate, and can be combined to produce composite

modes. If the field components for these modes are added with equal amplitude and
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(b) Imaginary part of the propagation constant
αnm.
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(c) Transmission through a 7 cm length of capil-
lary.

Figure 2.8: Mode propagation constants and transmissions of the EHnm modes though
a 7 cm length of 75 µm radius glass capillary. In each plot, the radial order m is
represented on the x axis, and the azimuthal order n is represented by the line colour.
The wavelength of the light is 780 nm.
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zero phase, then we obtain, after conversion into Cartesian coordinates,

Ey,|n|+2,m = 2Jn+1

(

un+2,m
r

a

)

cos ([n + 1] θ) (2.18a)

Ex,|n|+2,m = 0. (2.18b)

These modes are linearly polarised (as Ex,|n|+2,m = 0) and so are of interest

here, but the intensity profiles of these composite modes — as opposed to those of

the non-composite modes — are not radially symmetric. Sample intensity profiles

for some of these modes are shown in figure 2.9. If the relative amplitude of the

two modes is varied, then the composite mode is no longer linearly polarised. If

the phase of the two modes is changed, then a phase shift of nπ rad for odd integer

n causes a rotation of the field profiles by 45◦ relative to the polarisation of the

field. Any phase shift that is not a multiple of π rad causes the composite mode to

lose its linear polarisation. The propagation constants for composite modes are, by

definition, identical to those for their constituent modes.

These composite modes together with the TE0m, TM0m and EHnm modes form

a complete set [77,81]. Here we are interested only in the subset of these modes that

are linearly polarised: the composite modes and the EH1m modes.

2.4 Experimental arrangement

Figure 2.10 shows a schematic of the HHG experimental arrangement used in the

experiments described in this thesis. As the work reported here is theoretical, the

experimental arrangement will not be covered in great detail, but a summary is

given below.4 Additional detailed aspects of the experimental arrangement will be

discussed as they become relevant.

The output of a titanium sapphire chirped pulse amplifier (CPA) system is fo-

cused with a long focal length (∼ 50 cm) lens through a thin fused silica window into

a vacuum chamber held at low pressure (less than 10−3 mbar). The laser system is

4Further details of the experimental arrangement can be found in refs. [57,82,83].
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(a) EH−1,1 and EH3,1 (b) EH−1,2 and EH3,2 (c) EH−1,3 and EH3,3

(d) EH−2,1 and EH4,1 (e) EH−2,2 and EH4,2 (f) EH−2,3 and EH4,3

(g) EH−3,1 and EH5,1 (h) EH−3,2 and EH5,2 (i) EH−3,3 and EH5,3

Figure 2.9: Intensity distributions for composite capillary modes composed of EH−|n|,m

and EH|n|+2,m modes.
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Figure 2.10: Schematic of a typical experimental arrangement. Figure adapted
from [57].

currently5 capable of producing a 3 mJ pulse at a 1 kHz repetition rate with a pulse

length of 35–40 fs. In the experiments reported here, pulses with an energy of no

more than 1 mJ were used. The M2 parameter of the beam from the CPA system

was measured to be ∼ 1.8.

A capillary waveguide is placed at the focus of the laser. This capillary is filled

with gas as detailed in section 2.5. In the capillary, the laser interacts with the gas

and generates high harmonics, and these harmonics are separated from the driving

laser with a 200 nm aluminium foil. This foil reflects the fundamental laser while

allowing approximately 10 % of the harmonics to pass through. The beam can then

propagate to either an Andor CCD camera to record the spatial profile, or an XUV

spectrometer to record the spectrum. Alternatively, the fundamental beam can be

directed out of the capillary using a turning mirror, for measurement of its properties

after propagation through the capillary. This arrangement is discussed further in

section 4.1.

2.5 Pressure profile in a gas-filled capillary

The modelling of the gas flow described in this section was performed

within this group by Matthew Praeger. Here I describe the results, and

5The laser system was upgraded during the course of the project from a 1 mJ to a 3 mJ output.
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Reservoir − 
Held at known pressure

Vacuum − 
Held at  < 10−3 mbar

Vacuum − 
Held at  < 10−3 mbar

Figure 2.11: Schematic of the capillary, showing the gas filling method.

their application to the models I have developed.

The waveguides used in the harmonic generation experiments in this group are

thick-walled, fused silica capillaries. These capillaries have holes drilled in the sides,

through which gas flows in, and both ends of the capillary are held at a pressure

less than 10−3 mbar (figure 2.11). Typically the capillaries used have a internal

diameter of 150 µm and external diameter of 1.5 mm. The holes in the side vary from

300 − 500 µm depending upon the method used to drill them. A typical capillary

has a length of 7 cm with two holes, 3 cm apart and 2 cm from each end. Capillaries

with different lengths and/or with only a single inlet hole have also been investigated.

To model the processes occurring in the capillary, it is necessary to know the

pressure profile as a function of position. As shown in figure 2.11 there is a reservoir

of gas held at a known pressure on the outside of the holes. In our group, Matthew

Praeger created a computational fluid dynamic model of the capillary given the
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conditions described. A sample output is shown in figure 2.12. The general features

of this model are a constant pressure region in the centre of the capillary at the

pressure of the reservoir, a very sharp change in pressure over the width of the holes

and then a linear pressure gradient falling to the background pressure at the ends of

the capillary. Here the sharp change over the 500 µm hole diameter is modelled as

a step change. This approximation will not have a large effect on any of the models

presented in this thesis, as the phasematching model is valid only for the constant

pressure region and the propagation model is sensitive only to the pressure at a

given point, and not the rate of change of pressure. The error in the pressure values

over the hole regions will be negligible. Given this information, the entire pressure

profile can be calculated for any two-hole capillary for which the dimensions are

known, with only the knowledge of a single parameter, the size of the step change

in pressure at the holes. If the size of this step is plotted as a function of nominal

pressure, it is seen that the relationship is linear with a gradient of 0.205. It is then

possible to calculate the pressure profile for any given two-hole capillary for a known

reservoir pressure.

2.6 Calculation of gas refractive indices

In the previous section, the pressure in the capillary was determined as a function

of position. In order to determine how the presence of that gas affects the propaga-

tion of light in the capillary, it is necessary to know the refractive index of all the

gases that are present in the capillary during any experiment. In the case of high

harmonic generation, there are two very widely spaced wavelength regimes in which

the refractive index must be determined: the near infrared, at around 800 nm; and

the XUV at 10 - 40 nm. These two regions must be treated separately, so we will

consider each in turn.
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Figure 2.12: Pressure as a function of position in a typical two-hole capillary for a
reservoir pressure of 10 , 70 and 200 mbar. Dotted line: output of CFD model. Solid
line: fits used to determine pressure profiles for use in modelling of processes within the
capillary.
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Gas Reference Model Constants

A = 6.9270 × 10−05, B = 224000
Helium C = 5.9400 × 1010, D = 1.7200 × 1016

E = 0, F = 0
A = 1.3350 × 10−04, B = 224000

Neon [84] Eqn 2.19 C = 8.0900 × 1010, D = 3.5600 × 1016

E = 0, F = 0
A = 5.5470 × 10−04, B = 515000

Argon C = 4.1900 × 1011, D = 4.0900 × 1017

E = 4.3200 × 1023, F = 0

Nitrogen [85] Eqn 2.20 A = 5109702.9, B = 183.69459,
C = 212.949, D = 7.74396

Nitrous Oxide [86] Eqn 2.21 A = 5.6685 × 1027, B = 11416 × 1027

A = 154.489, B = 0.0584738
Carbon Dioxide [87] Eqn 2.23 C = 8309192.7, D = 210.92417

E = 287641.90, F = 60.122959

Table 2.1: Sources and parameters used to calculate the refractive index of various
gases in the near infrared spectral region.

2.6.1 Refractive indices in the near infrared

The refractive indices of various gases have been measured in the visible and near

infrared regions and various models are presented in the literature. Table 2.1 shows

a summary of the models used, and the source of data, for each of the gases used in

the experiment. All these models are semi-empirical fits to experimental data. As

such, each of the references quoted use slightly different equations that the authors

see as best fitting their data. These data give only the real part of the refractive

index. For the purposes of this work, the imaginary part of the refractive index —

and therefore absorption of the laser by the gas — is assumed to be zero.

For noble gases, the refractive index model used is that of Dalgarno and Kingston

[84],

n2 = 1 + A

(

1 +
B

λ(Å)2
+

C

λ(Å)4
+

D

λ(Å)6
+

E

λ(Å)8
+

F

λ(Å)10

)

, (2.19)

where λ(Å) is the wavelength in angstroms. The measurements were taken at room

temperature and pressure (RTP), and so conversion to room temperature is not
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necessary.

For nitrogen, the model of Peck and Khanna [85] is used,

n = 1 + 10−8

(

A

B − σ2
+

C

D + σ2

)

, σ =
1

λ(µm)
, (2.20)

where λ(µm) is the wavelength in microns. The measurements were taken at 288 K,

and so must be converted to RTP as detailed below.

For nitrous oxide, the model was taken from Cuthbertson and Cuthbertson [86]

n = 1 +
A

B − f2
, f =

c

λ
. (2.21)

Here the refractive index is given at 273 K and 1 bar, but at the number density of

hydrogen gas. Thus a correction factor of

κ =
MN2O

MH2

ρH2

ρN2O
=

44.02

2.00
× 0.089489

1.997
= 0.9903 (2.22)

is required to give a real refractive index for nitrous oxide at 273 K and 1 bar. Sub-

sequent modification for room temperature and experimental pressures is required.

For carbon dioxide, the model is taken from Ciddor [87]

n = 1 + 10−8

(

A

B − σ2
+

C

D − σ2
+

E

F − σ2

)

, σ =
1

λ(µm)
. (2.23)

As with Cuthbertson and Cuthbertson, these values are for a refractive index at

273 K and 1 bar.

Conversion of index values to required temperature and pressure

To convert refractive index from one temperature and pressure to another, two

assumptions are made. The first is that all the gases used behave as ideal gases,

which is a good approximation for the monatomic and small molecular gases at the

low pressures used here [88]. The second is that δ = ℜ(n) − 1 and α = ℑ(n) are

proportional to the number density of atoms present [87]. These two assumptions
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Figure 2.13: Refractive index of various gases as a function of wavelength in the near
infrared region.

give the following expressions:

n = 1 + (n0 − 1)
T0

T
(2.24a)

n = 1 + (n0 − 1)
P

P0
, (2.24b)

where n is the refractive index at the required temperature T or pressure P and n0

is the refractive index at some reference temperature T0 or pressure P0.

Figure 2.13 shows the refractive index of each of the gases used over a wavelength

range of 700 - 900 nm at room temperature and pressure. For all the gases the

change in refractive index over the range plotted is small. In all cases δ is small and

positive, and generally increases with number of electrons in the atom or molecule.
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2.6.2 Refractive indices in the XUV

In contrast to the situation for the infrared region described above, the refractive

index of substances in the XUV region is far from well known. There are two

tabulations [89,90] of the atomic scattering factors over wide energy ranges, but both

suffer from large inaccuracies in the wavelength/energy range of interest (20 - 60 eV,

20 - 62 nm). Henke et al. [90] provide the atomic scattering factors, f1 and f2,

from which the refractive index can be obtained, as calculated from experimentally

measured photoabsorption data with interpolations over atomic number and energy

where data is not available. The photoabsorption data allow direct calculation of

f2, while f1 is calculated from modified Kramers-Kronig relations. In addition,

although [90] provides values of f2 from 10 - 30 000 eV, the values for f1 are limited

to energies above 40 eV. Chantler et al. [89], on the other hand, provide f1 and

f2 obtained from theoretical calculations for energies down to 10 eV, but estimate

uncertainties for energies below 200 eV of 50–100 %. The two data sets are compared

below, after the method of converting atomic scattering factors to refractive index

has been discussed

Conversion of atomic scattering factors to refractive index

Henke et al. [90] define the atomic scattering factor f = f1 + if2 as the factor by

which one must multiply the amplitude scattered by a single free electron to yield

the total amplitude coherently scattered by a particular atom. Thus,

E = −E0
r0

r
P (φ)f, (2.25)

where E0 is the incident electric field, r is the distance from the atom to the ob-

servation point, r0 = e2/
(

4πǫ0mec
2
)

is the classical electron radius and P (φ) is the

polarisation factor, which is unity for the case of forward scattering that is of interest

here.

For wavelengths that are long compared with the atomic dimensions, atoms in
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a material scatter electromagnetic radiation as dipoles, and the scattering can be

described by the complex refractive index n. The refractive index is related to the

atomic scattering factor by [89,90]

n = 1 − r0

2π
λ2
∑

j

njfj, (2.26)

where nj is the number density of atoms of type j and fj is the atomic scattering

factor of the jth atom.

With relation 2.26 we can now investigate the differences between data sets [89]

and [90]. Figures 2.14 and 2.15 show the real and imaginary parts of the refractive

index, as calculated from each of the two references, for four sample gases. While

the overall trends are generally the same, there are significant differences in the

structure and scaling of the refractive index components. As neither data set is

particularly more accurate than the other, the choice was made to use the data of

Chantler et al. [89] because the data from Henke et al. [90] does not cover the whole

region of experimental interest.

Uses of the XUV refractive index

The XUV refractive index data are used in the phasematching calculations described

in chapter 3, and in calculating the absorption of generated harmonics in subsequent

— non-generating — regions of the experimental arrangement. The same method

can also be used to calculate the transmission of various metal filters that are used

in the experiment to separate the harmonics from the fundamental light (see section

2.4. Figure 2.16 shows the absorption depths of various gases used for generation

as a function of energy. It is seen that even for the most transmissive gases at the

relatively low pressure of 50 mbar, the absorption depth is no greater than a few

millimetres.
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Figure 2.14: Real part of the refractive index, δ = ℜ(n) − 1, as a function of photon
energy at 50 mbar for (a) argon, (b) nitrogen, (c) nitrous oxide, (d) neon.
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Figure 2.15: Imaginary part of the refractive index, α = ℑ(n), as a function of photon
energy at 50 mbar for (a) argon, (b) nitrogen, (c) nitrous oxide, (d) neon.
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Figure 2.16: Absorption depths of various gases at 50 mbar as a function of photon
energy.
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2.7 Summary

A number of pieces of information are needed to develop the models presented in

this thesis. This chapter has presented a discussion of the semi-classical model,

along with the qualitative predictions of the emitted spectrum and phase that can

be obtained from this model. A description is given of the model of ionisation to

be used in subsequent chapters, including a discussion of the treatment of BSI and

extension of ionisation theory to molecules.

The modes of a hollow capillary have been investigated, and set of linearly po-

larised modes found. The radial profiles and propagation constants of each mode

have been determined. A brief outline of the experimental arrangement is given and

a summary of previous work on the modelling, together with the methods used to

include this profile in the subsequent models, is presented.

The final part of this chapter presents the equations used to determine refractive

indices of gas in the infrared region, and discusses the published values of refractive

index in the XUV. The data of Chantler et al. [89] is chosen for use here as it spans

the experimentally interesting range of energies.

These various pieces of information will be used to develop the models in chapters

3, 4 and 5.
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Chapter 3

Development of a

spatio-temporal phasematching

model

3.1 Phasematching in HHG

As in any optical nonlinear frequency conversion process, the efficiency of harmonic

generation is dependent on the degree of phasematching achieved between the gen-

erating and generated light.

Consider the simple case (shown in figure 3.1) of second harmonic generation

at two locations, P and Q, in a nonlinear medium. In the case of figure 3.1(a),

second harmonic radiation generated at Q is in phase with that generated at P; in

figure 3.1(b) the two generation events produce light that is π rad out of phase. For

the second harmonic light to build up over the length of the medium, the generation

from multiple events must interfere constructively. Therefore, in case (a) light will

build up over the length of the generation medium, but in case (b) the subsequent

events will interfere destructively and efficient build-up will not occur.

This can be expressed physically as an application of the principle of conservation
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P Q

(a)

(b)

Figure 3.1: Schematic showing the basic principles of phasematching; a fundamental
field (blue line) generates a second harmonic component (red line). (a) Emission at P
and Q is in phase; phasematching is achieved. (b) Emission at P and Q is out of phase.

of momentum. If N photons of momenta pi are converted to M photons with

momenta pj, where i = 1, . . . ,N , j = 1, . . . ,M then, by conservation of momentum,

N
∑

i=1

pi =
M
∑

j=1

pj (3.1)

and, as photon momentum is given by p = ~k,

N
∑

i=1

ki =

M
∑

j=1

kj. (3.2)

For the case of qth order harmonic generation, q fundamental photons (N = q)

of wavevector kf = ki, are converted to 1 photon (M = 1) with wavevector kq = kj.

Therefore the phasematching requirement for general qth order harmonic generation

is

kq = qkf . (3.3)

Since phasematching is generally non-perfect, it is useful to have a measure of how

close to perfectly phasematched a particular system is. The measure normally used

is the phase mismatch ∆k defined as

∆k = kq − qkf . (3.4)
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For a homogenous non-absorbing medium, the total intensity output from a non-

linear medium of length L is proportional to sinc2(∆kL/2) [93] where sinc(x) ≡
sin(x)/x.

For the special case of collinear harmonic generation, as considered here, the

vector equation (3.4) can be reduced to the scalar form

∆k = kq − qkf . (3.5)

This chapter presents a new model of capillary phasematching that extends pre-

vious work to take into account the full spatio-temporal nature of the HHG process.

Section 3.2 is concerned with the motivation for the study of phasematching in cap-

illary HHG, what it can tell us, and what its limitations are. This is followed by a

discussion of the factors affecting HHG phasematching and its application to a static

scenario (section 3.3). The development of a time- and space-dependent model of

phasematching is then shown in section 3.4. The output from the model is presented

in section 3.5, with discussion of interesting features in section 3.6. The conclusions

to the chapter are given in section 3.7.

3.2 Motivation

Since the first recorded high harmonic generation experiments [94–97], much work

has been done both on optimising the experimental conditions for generation, and

on the development of theory for understanding the generation process. Although,

as described in section 2.1, many aspects of harmonic generation can be understood

using the semi-classical, three-step model, full quantum mechanical modelling of the

electron in the laser field provides a more accurate model of the single atom emission

process. The first models of this nature [98–106] were developed shortly after the

first experiments, and used various methods to predict the harmonic emission from

a single atom in a strong laser field. For example, the model of Kulander and Shore

[98–100] used a numerical integration of the time-dependent Schrödinger equation
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(TDSE) to determine the time-dependent dipole moment of a xenon atom exposed

to a high intensity (∼ 1013 W cm−2) laser field. The model assumes a single active

electron (SAE); that is, only one electron is significantly affected by the laser and

all others remain in their ground states. This approximation is widely used in later

models [12,107,108]. The envelope of the field used in this case is not the exact laser

field, but a simplified profile that consists of a slow ramp (over 5 optical cycles)

and a constant amplitude region of about 20 optical cycles. This model only allows

for inclusion of very simple propagation effects, based on analytic approximations

to the experimental conditions. Despite these approximations, this models, and

other similar models, show good qualitative agreement with experimental results.

The characteristic spectrum — a sharp drop in intensity over the first few orders,

a plateau region and a sharp cutoff at high energy — is seen in the response of

a single atom. TDSE models like this have been extended and developed both in

atoms [109,110] and ions [11].

Even these quantum models only account for the emission from a single atom, and

to fully understand the response of a real system it is necessary to take into account

the summation of these single atom emissions over an ensemble of atoms. The effect

of phasematching has been widely studied in focused geometries [64,65,107,111,112].

These studies fall into two categories, those that study only the geometric phase of

the laser and intrinsic phase of the harmonics [64,65,112], and those that include the

effect of refractive index changes in the medium due to ionisation [12, 107]. Other

theoretical work has focused on quasi-phasematching [109, 113–116], or other novel

phasematching techniques. For example, it is proposed that subcycle changes in the

electric field induced via ionisation could enhance the generation properties [117].

The situation in a guided HHG geometry is significantly different from that in a

focused geometry. In a waveguide, the driving laser is confined such that the intensity

is nominally constant over the length of the guide and the wavefronts of the laser

are flat. This is in contrast to a focused regime where, even with the loose focusing

normally employed, the intensity and wavefront curvature of the fundamental vary
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with propagation distance. This gives rise to contributions to phasematching from

the Gouy phase shift of the fundamental and variation of the intrinsic (single atom)

phase with z. In a waveguide geometry, the Gouy phase shift is not present in

the generation region. Also, the phase shift between the fundamental and harmonic

fields induced by the single atom emission φ, is determined by intensity. Therefore, if

the intensity of the fundamental is assumed to be constant as a function of z over the

generation region,1 then φ, although a function of radius and time, is constant with

respect to propagation distance. The collinear contribution to the phase mismatch

is given by dφ
dz

which here is identically zero.2 Thus neither the Gouy phase shift

nor the dipole phase affect the collinear phase mismatch ∆k. In this regime the

refractive index effects are the only contributing factors to phasematching and must

be accounted for explicitly.

Previous studies of phasematching in capillaries have either included the radial

variation of ionisation through radial averaging [118–120], allowing no variation of

the phasematching conditions with radius, or have used numerical propagation codes

to model the build-up of the harmonic field [109,113]. Here, the approach of Durfee

et al. [118] and Naumov et al. [120] is used, but the calculations are extended to

include the full radial variation of ionisation.

3.3 Phasematching in a constant ionisation fraction

In the case of a capillary waveguide HHG experiment there are several factors af-

fecting the propagation constant which must be balanced in order to achieve phase-

matching:

• neutral gas dispersion;

• plasma dispersion;

• waveguide dispersion; and

• non-linear refractive index.

1This assumption is justified in section 3.4.2.
2There is a non-collinear contribution given by dφ

dr
which is discussed in section 3.4.2.
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Here we follow the approach of [118], though major modifications are made to

take into account the full spatio-temporal nature of the HHG process. The propaga-

tion constant of light with wavelength λ in the EHnm mode of a capillary waveguide

is given by [77]

βnm = k0

[

1 − 1

2

(

unmλ

2πa

)2
]

, (3.6)

where k0 = 2π
λ

is the vacuum propagation constant and unm is the mth zero of

the Bessel function Jn−1. If the waveguide is filled with a medium of refractive

index n ≈ 1, then the modes of the capillary are not significantly changed and the

propagation constant k becomes

k = nβnm

k = n

(

k0 −
u2

nmλ

4πa2

)

k = (1 + δ)

(

k0 −
u2

nmλ

4πa2

)

k = k0 + δk0 +
u2

nmλ

4πa2
+ δ

u2
nmλ

4πa2

k ≈ (1 + δ)k0 −
u2

nmλ

4πa2
, (3.7)

where δ = ℜ(n) − 1 and the cross term, δ u2
nmλ

4πa2 , has been neglected since it is small

compared to the other terms.

The refractive index of a partially ionised gas is given by [118]

n = 1 + P

{

δ(λ) − ηNatmreλ
2

2π
+ n2I

}

, (3.8)

where P is the gas pressure in atmospheres, η is the ionisation fraction, Natm is

the number density at 1 atmosphere, re is the classical electron radius, n2 is the

non-linear refractive index and I is the pulse intensity.

Here the assumption is made that the (complex) refractive index of the ionised

gas atoms is approximately the same as the index of the neutral atoms. Given
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that the refractive index of gas ions in the XUV region is not well known, some

approximate value must be used. In some previous work [118], the approximation

that the refractive index of the ions is 1 is used. That is, as soon as an atom is

ionised, the atom ceases to have an effect on the light in the capillary, and only

the free electron has a contribution to the refractive index. Here the approach of

Naumov et al. is used, in that ionisation is assumed not to affect the refractive index

of the atom. This will introduce slight errors in the calculations as the refractive

index of the atom is modified by ionisation. However, the modification will be small

compared to the original value, and the refractive index component from the gas is

smaller than the component from the free electrons, even at low ionisation fractions.

This gives the propagation constant

k ≈ 2π

λ
+

2πPδ(λ)

λ
+ n2IP − PηNatmreλ − u2

11λ

4πa2
, (3.9)

where the terms correspond respectively to vacuum, neutral gas dispersion, non-

linear refractive index, plasma dispersion and waveguide dispersion. Equation 3.5

gives

∆k = kq − qkf (3.10)

∆k = qk0 {n(λq) − n(λ0)} (3.11)

∆k ≈ q
u2

11λ0

4πa2
+ Nere (qλ0 − λq) −

2πP

λq

{δ(λ0) − δ(λq)} , (3.12)

where Ne = ηPNatm is the density of electrons. The first term in equation (3.12)

corresponds to the guiding of the fundamental; the second term corresponds to the

dispersion of the plasma present in the capillary; and the third term corresponds to

the dispersion of the neutral and ionised gas atoms. Here the nonlinear refractive

index of the gas is neglected, as it is small compared to the other contributions.

Taking the nonlinear refractive index of argon as 9.8 × 10−24 m2 W−1 bar−1 [121]

and a typical intensity of 2 × 1014 W cm−2 gives the nonlinear contribution to re-
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fractive index at 100 mbar as ∆n = 2.0 × 10−6. This is just 7 % of the component

from the neutral gas atoms δ.

The contribution of waveguiding to the refractive index of the XUV radiation is

shown to be negligible in the following way. The equation for the phase mismatch

from only the waveguide, including guiding of XUV where the XUV radiation can

be in an arbitrary EH1m mode, is

∆kguide = q
u2

11λ0

4πa2
− u2

1mλq

4πa2
(3.13)

∆kguide =
qλ0

4πa2

(

u2
11 −

u2
1m

q2

)

. (3.14)

For large m, u1m ≈ mπ, and hence, the guiding of the XUV is only relevant for

m & q
u11

π
(3.15)

m & 0.76 q. (3.16)

If the XUV field (as calculated by this model, see section 3.5) for each harmonic is

decomposed into capillary modes using the techniques described in section 5.3, it is

found that only ∼ 1 % of the power is propagating in modes with m ≥ 0.76 q.

3.3.1 Constant ionisation fraction results

The most common way of controlling the phasematching of HHG in capillaries is

to control the pressure of the gaseous generation medium. This influences both the

plasma and neutral gas dispersion terms, and can be used to balance these against

the fixed waveguide dispersion. Another very important factor that can be indirectly

controlled is the ionisation fraction of the gas. This is determined by the intensity

of the fundamental laser pulse used to generate the harmonics.

Using equation (3.12) it is possible to produce plots of the variation of ∆k with

pressure and ionisation fraction for each harmonic (figure 3.2). From figure 3.2(a)

it can be seen that for a given ionisation, the phasematched harmonic order can be
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increased by increasing the pressure of the argon. Also, for a fixed pressure, higher

ionisation fractions cause phasematching of lower harmonics.

3.4 Time-dependent phasematching

Having obtained an understanding of the relevant factors in static phasematching,

this section describes the development of a phasematching model that takes into

account the full spatio-temporal nature of the HHG process.

Consideration of the semi-classical model (section 2.1) shows that ionisation

is a necessary step in the HHG process. This means that any HHG experiment

will have a changing ionisation fraction with time as the driving laser ionises the

generation medium. Figure 3.3 shows the typical form of the variation of ionisation

fraction with time. Before the pulse arrives, the ionisation fraction is zero; as the

intensity increases to the threshold for tunnelling ionisation, the gas starts to ionise,

with rapid increases at the (positive and negative) peaks of the electric field and

plateaux as the field passes through zero. As the pulse passes, the intensity drops

below the ionisation threshold, and no further ionisation occurs. Here the rapidly

oscillating carrier field is used for calculation of ionisation rate as has been shown

to be appropriate by Uiberacker et al. [122].

As the intensity of a laser beam (either a Gaussian beam in a focused geometry or

a waveguide mode in a guided geometry) varies with radius, the ionisation fraction

is also spatially dependent. In section 3.3 it was found that the phase mismatch

between the fundamental and XUV radiation is strongly dependent on ionisation

fraction. Therefore, to model the full effect of phasematching in an HHG experiment,

it is necessary to calculate the build-up of harmonic radiation as a function of space

and time throughout the driving pulse.

This section presents the model I have developed to describe spatio-temporal

phasematching in capillary HHG. Section 3.4.1 describes the equations used and

section 3.4.2 describes the assumptions that are made in the calculation. The com-

putational framework used to calculate the XUV output is described in section 3.4.3.
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Figure 3.2: Phase mismatch, ∆k, for pure argon: (a) as a function of pressure and
harmonic number for a constant ionisation fraction η = 4%; (b) as a function of ioni-
sation fraction and harmonic number at constant pressure P = 80 mbar. In both graphs
the phasematching curve ∆k = 0 is marked by the white line.
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Figure 3.3: Schematic of variation of ionisation fraction with time, for a given radial
position in the capillary. This diagram assumes that tunnelling ionisation is the only
significant ionisation mechanism. This implies that the ionisation rate is proportional to
field strength rather than intensity, and so shows the characteristic steps in ionisation
fraction at twice the optical frequency. The threshold for BSI is assumed not to be
reached.

This is followed by a description of the 3D ionisation calculations (section 3.4.4).

Finally, the simple model of single atom response used in determining the build-up

of XUV radiation is discussed in section 3.4.5.

3.4.1 Build-up equation

To derive the buildup equation for harmonic generation in an absorbing medium,

consider a medium of length L with a generation event occurring at an arbitrary

point a distance z from the input face of the medium, and z′ from the exit face

(figure 3.4). Assuming plane waves, the emitted field at the exit of the medium is

from this single generation event is given by

Eq(z) ∝ S e−iqk0z e−iφ e−i(kqz′−αz′) (3.17)
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Figure 3.4: Generation occurs at an arbitrary point in a generation medium. The
point is a distance z from the input face of the medium and z′ from the output face.

Where the first exponential represents the phase shift from the propagating q pho-

tons of the fundamental (with wavenumber k0) from the entrance to the generation

point (the absorption of the fundamental is assumed to be zero); the second repre-

sents a arbitrary phaseshift φ resulting from the generation process; and the third

represents the phaseshift and absorption from propagating the harmonic from the

generation point to the exit of the medium with propagation constant kq and field

absorption coefficient α = ωℑ(n)/c. The factor S is the nonlinear source term. For

conventional second harmonic generation this would be χ(2) |E|2.
The factor e−iφ is a constant and can be included in the proportionality. Since

z′ = L − z,

Eq(z) ∝ S e−iqk0z e−i(kqL−kqz) eαL e−αz

∝ S e−i(qk0−kq)z e−ikqL eαL e−αz. (3.18)

Again the constant factor e−ikqL can be dropped. Remembering the definition ∆k =
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kq − qk0 (equation (3.12))

Eq(z) ∝ S ei∆kz e−αz eαL. (3.19)

To obtain the total output from the medium Eq(z) must be integrated over the

length of the medium.

Eout =

∫ L

0
Eq(z) dz

∝ S eαL

∫ L

0
ei(∆k+iα)z dz

∝ S eαL

i(∆k + iα)

[

ei(∆k+iα)L − 1
]

Eout ∝
S

i(∆k + iα)

[

cos (∆kL) + i sin (∆kL) − e−αL
]

(3.20)

We then convert from output field strength to intensity and find (as given in

[118])

I = |Eout|2 = EoutE
∗
out (3.21)

I ∝ |S|2
(

1 + e−2αL − 2e−αL cos (∆k L)

α2 + ∆k2

)

(3.22)

The important physical result of this model is that the harmonic signal strength

is dominated by the shorter of the coherence length (1/∆k) and the absorption

length (1/2α). This leads to the (physically reasonable) conclusion that in order to

achieve good harmonic output, it is important to ensure that a) the harmonics are

not strongly absorbed by the medium and b) the phasematching requirements are

met in order to allow build-up of the harmonic signal over a significant length of the

capillary. It can also be seen that if absorption is neglected, α = 0, then equation

3.22 reduces to the familiar sinc2(∆kL
2 ) dependence.

The nonlinear source term used here is dN(r, t), the number of atoms ionised

by the driving laser at a given time and radius. In conventional low order harmonic

generation, the normal form of this term is Ip where p is the order of the harmonic
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process. This is because the intensity of the harmonic produced is proportional to the

pth power of the intensity of the input field. Here this relationship does not hold, as

the harmonic generation process can no longer be treated as a perturbative process.

Here, dN is used because the number of XUV photons produced is proportional

to the number of atoms ionised, provided that the probability of recombination is

constant for any energy, and that all photon energies are equally likely to be emitted

at any given time. Although these assumptions are not necessarily true within a

single optical cycle, these values average out over a whole cycle. Therefore, these

approximations are valid if, as in the regime studied here, we have generation over

multiple cycles of the driving pulse.

The intensity build-up, given a phase mismatch ∆k(r, t, q) and absorption in the

generation medium, is therefore modelled by

I(r, t, q) ∝ dN(r, t)

(

1 + e−2αL − 2e−αL cos (∆k L)

α2 + ∆k2

)

. (3.23)

Equation 3.23 cannot be used to obtain quantitative predictions of XUV inten-

sity; it can only be used to predict relative intensities. The most significant reason

for this is that the dipole oscillator strength of each individual emitter is not cal-

culated in this model. This strength can be found by solving the time-dependent

Schrödinger equation for the atomic system in the laser field (as performed in, for

example, [109,110]), but this type of modelling is not undertaken here. Also, in the

derivation of equation (3.23), several constant factors have been dropped because

the equation is only valid to within a constant of proportionality.

The build-up equation (3.23) accounts for only the efficiency that a generated

harmonic is emitted from the generation medium and neglects the electric field

response from a single atom. It cannot, therefore, produce the harmonic structure

seen in the experimental results presented below. This harmonic structure comes

from the temporal modulation of emission from a single atom, and is therefore not

included in this phasematching model. For this reason, the phasematching model

only produces an envelope (spatial, spectral and temporal) under which the harmonic
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structure should appear and consequently makes no distinction between even and

odd harmonics.

3.4.2 Assumptions

As explained is section 3.4.1, the maximum length over which harmonic radiation

can build up is the shorter of the coherence length and the absorption depth of

the XUV radiation. In the case studied here, the absorption depth is at most of

the order of a few millimetres, as shown in section 2.6. This short build-up length

allows us to simplify considerably the calculation that needs to be done to model

phasematching in a capillary. The short build-up length allows us to assume that

the pulse does not change significantly in peak intensity or temporal profile over the

build-up region. As discussed in chapter 5, any changes to the pulse profile due to

propagation are small in the current experimental regime. If this is so, then the

change over the build-up length of a few millimetres (which is much less than the

capillary length) will be negligible.

To determine the refractive index of the fundamental and XUV beams, it is

necessary to know the ionisation fraction in the capillary. Over a long length of

capillary, this ionisation fraction must be averaged over the effective area of the

capillary mode. However, as the build-up length is much shorter than the Rayleigh

length, z0, for the fundamental, the ionisation fraction used to determine the refrac-

tive index of the fundamental and XUV beams is an instantaneous, local ionisation

fraction.

It is also assumed that the wavefronts of the generated XUV radiation are flat,

i.e. there is no dependence of XUV phase on fundamental intensity. This is not

strictly true, as the phase is known to have an intensity dependence, but this ap-

proximation is shown to be valid for the short trajectories (see section 2.1). For the

long trajectories, the phase does vary significantly over the radius of the capillary,

but because of this the XUV beam generated is highly divergent and so will be much

less intense in any experimental measurement. Propagating the XUV beam into the
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far field (see section 4.4 for details of these calculations), it is predicted that the

XUV radiation generated from the long trajectories will be between 10 and 20 times

less intense than that generated by the short trajectories. Also, a beam with highly

curved wavefronts will not phasematch well with the fundamental, which, as it is in

a capillary mode, has flat wavefronts by definition.

For this assumption to hold, it is necessary that the XUV beam does not diverge

significantly over the build-up length. This can be justified by applying the angular

spectrum method to the predicted intensities and phases (see section 4.4) which

gives a “Rayleigh Range” — defined as the point where W =
√

2 W0 and W is twice

the second moment beam width [123] — of 10 mm, which is longer than the build-up

lengths considered here.

Since the single atom response is not considered in this model, the relative contri-

butions of the two trajectories are not included in this model. It is simply assumed

that the long trajectories do not contribute to generation.

The model presented here only takes account of collinear phasematching pro-

cesses. This is reasonable since the only radial contribution to the harmonic wavevec-

tor comes from the radial component of the atomic phase gradient dφ
dr

. Using the

calculations described in section 4.4, this can be calculated to be of the order of 1 %

of the vacuum wavevector.

3.4.3 Computational approach

In order to apply the equations presented in section 3.4.1 to the experimental ar-

rangement, the capillary is considered as a series of slices in the axial direction.

If the fundamental pulse is assumed not to change in the build-up region (section

3.4.2), then each slice will have an identical response to the driving field. Thus it

is only necessary to calculate the response from one slice, and then sum over the

number of slices in the capillary. Since the build-up equation 3.23 is only correct to

within a proportionality, the sum over identical slices can, in fact, be neglected.
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3.4.4 Treatment of ionisation

The electric field profile of the EH11 mode of a hollow capillary waveguide of radius

a is given by (section 2.3)

E(r) = E0J0

(u11r

a

)

. (3.24)

For a Gaussian pulse of intensity full-width at half-maximum (FWHM) τ , the

time profile is given by

E(t) = E0 exp

(

− t2

2τg

)

, (3.25)

where τg = τ

2
√

ln 2
.

So the combined electric field for a Gaussian pulse in the EH11 mode at a fre-

quency ω is given by

E(r, t) = E0 × exp

(

− t2

2τg

)

× J0

(u11r

a

)

× cos (ωt) . (3.26)

The value of E0 can be calculated as

E0 =

√

Pavg

R
× 7.42

πcǫ0a2
× 1

1.066τ
, (3.27)

where Pavg is the average power of the laser beam and R is the repetition rate of

the laser. Thus Pavg/R is the pulse energy.

So, from knowledge of the average power of the laser, which is easily measured,

and the length of each pulse, which can be measured experimentally using frequency

resolved optical gating (FROG) [124–126] or spectral interferometry for direct elec-

tric field reconstruction (SPIDER) [127], the entire electric field profile can be cal-

culated for a capillary of known radius. The assumptions made here are that the

pulse is Gaussian in time, and that the entire energy of the pulse is in the EH11

capillary mode. These assumptions are reasonable provided coupling is primarily

into the EH11 mode, and that the pulse is not significantly changed by propagation

in the capillary. Chapter 5 discusses the effect of propagation in more detail, but it

is shown that at the powers and pressures used in these experiments, the assumption
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of a Gaussian pulse primarily in the EH11 mode is reasonable. If the exact mode

composition and temporal profile were known, perhaps as the output of detailed

propagation modelling, these could be included in the calculation relatively easily.

In order to calculate the phase mismatch, and therefore the build-up, it is nec-

essary to know the ionisation fraction in a slice at every radius and time. Using

equations 2.10 and 3.26, the ionisation rate w(r, t) can be calculated for all radii and

times. The ionisation fraction η(r, t) is then given by

η(r, t) =

∫ t

−∞
w(r, t′)

[

1 − η(r, t′)
]

dt′. (3.28)

These rates and ionisation fractions can be calculated numerically over the whole

capillary, though the rapid oscillations in time require a smaller step size than the

smoothly varying radial distribution. Output from a sample calculation is shown in

figure 3.5.

As described previously (section 3.4) the ionisation fraction at a given radius

(in this case the centre of the capillary) starts at zero, and increases with time

(figure 3.5(c)). At t ≈ −10 fs, the intensity becomes high enough to allow tunnelling

ionisation and the fraction starts to increase, with the rate of increase high at the

(positive and negative) peaks of the electric field and flattening as the field strength

passes through zero. For t & 10 fs the intensity drops below the tunnelling ionisation

threshold and no further ionisation occurs. Figure 3.5(b) shows the variation of

ionisation fraction with radius for a fixed time t = 0 fs. The ionisation fraction is

high at the centre of the capillary, where the intensity is high, and drops off smoothly

towards the edges. No ionisation occurs for r & 25 µm as the intensity here is never

high enough to cause ionisation. If these two effects are combined, a complete map

of ionisation for all radii and times is built up as shown in figure 3.5(a).

The ionisation fraction η(r, t) can then be used to calculate the phase mismatch

∆k(r, t, q) (equation (3.12)) which in turn is used to calculate the harmonic intensity

build-up I(r, t, q) from equation (3.23).
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Figure 3.5: Ionisation fractions for a 339 mW average power, 1 kHz repetition rate,
35 fs laser pulse, with centre wavelength 780 nm. These inputs give a peak intensity
of 1.91 × 1014 W cm−2 and a peak electric field of 3.79 × 1010 V m−1. The gas is pure
argon at 50 mbar. a) Ionisation fraction as a function of radius and time. Colour
represents the fraction of ionisation in the capillary as indicated by the colour bar. b)
Ionisation fraction as a function of radius for time t = 0, the peak of the pulse. c)
Ionisation fraction as a function of time for r = 0, the centre of the capillary
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3.4.5 Single atom response and the semi-classical cutoff

Equations (3.23) and (3.12) allow, in principle, any harmonic to be phasematched

and contribute to the output XUV field. Clearly this is not physical as the driving

laser can only transfer a finite amount of energy to the free space electron, and

therefore to each generated XUV photon. Here we use the simple cutoff equation

Ec = Ip + 3.17Up, (3.29)

where Ec is the greatest XUV photon energy that can be generated, Ip is the ioni-

sation potential of the atom and Up is the pondermotive potential.

This can be derived from the semi-classical model (section 2.1) but has also been

shown to be valid in the quantum picture [9, 12]. To include this physical effect

in the model, the cutoff energy Ec is calculated for each radius and time, and any

emission at that radius and time with a harmonic energy Eq > Ec is set to zero.

This cutoff is the only inclusion of single atom effects in this model. Here the

single atom emission is considered to be constant for any energy up to Ec, and zero

for any energy greater than Ec (figure 3.6). Single atom predictions (for example, [9,

11,128]) have shown that this is a good approximation, though obviously it neglects

some of the more complex single atom effects.

3.5 Model output

Phasematching surfaces

If we take equation (3.12) and apply it to the ionisation profile calculated from

equation (3.28) we obtain a map of the phase mismatch as a function of radius, time

and harmonic number. We are interested in the region in which ∆k ≈ 0 m−1, as

this is where the harmonic emission will build up efficiently. It is also interesting to

examine how rapidly ∆k varies around the zero point to understand the size of the

space-time region over which significant build-up can occur. Equation 3.23 implies
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Figure 3.6: Single atom emission strength as a function of energy, as used in the
phasematching model.

that the length over which XUV generation can build up efficiently is limited to the

coherence length 1/∆k. Thus if ∆k = 1000 m−1, then the build-up length is limited

to 1 mm.

In figure 3.7 the surfaces in space, time and harmonic for which ∆k = 0, -1000

and 1000 m−1 are shown. This shows the overall shape and trends of the evolution of

the phasematching conditions. Figure 3.8 shows various slices through these surfaces

to allow numerical values to be more easily extracted. At times earlier than −6 fs,

no harmonic is phasematched at any radius, as the ionisation fraction is too low. At

about −6 fs sufficient ionisation has occurred to phasematch the higher harmonics

at the centre of the capillary.3 As time progresses, phasematching at the centre

of the capillary then shifts quickly (less than 10 fs) to low harmonics and then the

ionisation fraction becomes too high to phasematch any harmonic and the centre of

the capillary ceases to generate efficiently. At the same time, the ionisation fraction

increase in the centre pushes the radius at which each harmonic is phasematched

towards the edge of the capillary. At times later than 10 fs the pulse intensity

3The higher harmonics will not necessarily be generated, as described in section 3.4.5.
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(a) (b)

Figure 3.7: Phasematching surfaces for the same conditions as figure 3.5. (a) Surface
for which ∆k = 0 m−1. (b) Region in which |∆k| < 1000 m−1 i.e. the coherence length
is greater than 1 mm.

has dropped sufficiently that no further ionisation occurs, and the phasematching

conditions stop evolving.

Figure 3.7(b), together with the colour scales in figure 3.8, show that the gradient

of the phase mismatch is high as it passes through 0 m−1. On axis, at r = 0, the time

over which the coherence length is greater than 1 mm is only about 5 fs, or about

2 optical cycles. This affects the number of XUV pulses in the pulse train, and

therefore the bandwidth of the emitted harmonics. This effect is discussed further

in section 4.5.4.

One further point to note is that if figure 3.8(b) is compared to figure 3.5, it

can be seen that each line of constant ∆k, for a particular harmonic, is a line of

constant ionisation fraction. This can be deduced from equation (3.12) as the only

dependence of ∆k on r and t comes from the spatio-temporally varying ionisation

fraction η(r, t).

Complete 3-dimensional output

Using the phase mismatch, as calculated above, and equation (3.23), the XUV in-

tensity is calculated as a function of space, time and harmonic number (shown in

figure 3.9). Comparing figures 3.7(a) and 3.9 we see that, as expected, intensity is
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Figure 3.8: Phase mismatch ∆k for three slices through the pulse. Colour shows the
value of ∆k in m−1, the white line shows the points for which ∆k = 0 m−1. Conditions
are the same as figure 3.5.
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Figure 3.9: XUV intensity build-up through the beam for the same conditions as
figure 3.5. These are contour slices, taken at 1.30 fs intervals. Lines are contours of
constant XUV intensity, with level of intensity (in arbitrary units) given by colour as
indicated in the colour bar. Generation moves to larger radii and lower harmonics as
time progresses.
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centred around the ∆k = 0 m−1 plane, though build-up does not occur at every

point at which good phasematching occurs. Phasematching is necessary for build-

up, but not sufficient. It is also required that the intensity of the fundamental is

both high enough to cause ionisation, and high enough to generate a particular en-

ergy of XUV photon. To gain a more detailed understanding of processes at work

in figure 3.9, it is useful to integrate the plots over one or more of the dimensions

(time, space, harmonic number) and study the resulting figures.

Integration over one dimension

Figure 3.10 shows the result of integrating the 3D output in figure 3.9 over each of

the three dimensions individually. Each plot shows a different aspect of the spatio-

temporal effects of HHG. Figure 3.10(a) shows intensity integrated over harmonic

number, to give a total intensity generated at each radius and time. As is expected

from figure 3.8(b), harmonics are generated first at the centre of the capillary, then as

ionisation increases, generation is pushed towards the edge of the capillary. At this

point the generation begins to differ from the phasematching surface as, although

the harmonics remain phasematched — in figure 3.7(a) the ∆k = 0 m−1 surface

extends to t = ∞ — the fundamental intensity drops below the values necessary

for generation. At these low intensities, the semi-classical cutoff drops below the

harmonics considered here and ionisation also stops occurring; both of these factors

cause generation to stop.

The notable feature of figure 3.10(a) is the pulsed nature of the XUV radiation

that is generated. This is expected from a simple consideration of the semi-classical

model of HHG (see section 2.1) and is included in this model by the dependence of

intensity on the term dN , the number of atoms ionised at a given position and time.

This ionisation is strongly dependent on the instantaneous electric field strength of

the fundamental, and so occurs once every half optical cycle at the (positive and

negative) peaks of the field.

Figure 3.10(b) shows XUV intensity integrated over radius to show at what time
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a particular harmonic in generated. In general, there is not much change in harmonic

distribution with time, although a steady, but slight shift to lower energies is seen

as time increases. This is due to lower harmonics being better phasematched at

higher ionisation fractions, as seen in 3.2(b). As the ionisation fraction is increasing

monotonically for every radius, phasematching should cause lower harmonics to be

generated more efficiently at later times.

Figure 3.10(c) shows XUV intensity integrated over time to show the radial pro-

file of each of the generated harmonics. The radial profiles do not change much with

harmonic number, expect at the highest energies, where the sharp cutoff (section

3.4.5) limits the radii at which the intensity is sufficient to generate a particular

harmonic. Thus the lower energy harmonics have smoother profiles, with the higher

energies tending more towards “top-hat” profiles.

Integration over two dimensions

Although integration of intensity over one dimension is sufficient to gain an un-

derstanding of the output of the model, the available experimental results are not

resolved over more than one dimension. The measurements that can be taken with

the experimental arrangement available are restricted to the spatial profile of the

harmonics (at some distance from the source) measured with an x-ray CCD camera,

and the spectrum of the harmonics.

Figure 3.11 shows the sample output in figure 3.9 integrated over each combina-

tion of 2 dimensions to give temporal and radial profiles and a harmonic spectrum.

These profiles will be compared with experimental data in chapter 4, but here we

will look at the interesting features of the simulated data.

Figure 3.11(a) shows how the integrated XUV intensity varies with time. We

see the expected sharp rise at the leading edge of the pulse as the ionisation frac-

tion reaches the required values for phasematching, followed by a smoother trailing

edge as the ionisation fraction stabilises. However, the driving intensity gradually

decreases, causing a reduction in generation. The time profile is modulated at twice
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(c) Integration over time.

Figure 3.10: Generated XUV intensity the beam integrated over 1 dimension for the
same conditions as figure 3.5. Colour is intensity in arbitrary units.
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(c) Integration over radius and time.

Figure 3.11: Generated XUV intensity through the beam integrated over 2 dimensions
for the same conditions as figure 3.5.
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the fundamental frequency by the spike of generation occurring every half cycle of

the laser. The number of spikes contributing to generation should affect the width of

the harmonics in the observed spectrum. This effect could be the subject of further

work and is discussed in detail in section 4.5.4.

Figure 3.11(b) shows the total emitted intensity as a function of radius. The

profile is approaching a top hat structure, with the sharp edges caused by the highly

nonlinear response. The flat top is caused by the phasematching in the centre causing

a “saturation” effect where, although generation is very efficient at early times due

to the large number of ions and high intensity, the process is self limiting because

large numbers of ions reduce the efficiency of generation at later times.

Figure 3.11(c) shows the XUV intensity integrated over space and time. This

gives a spectrum that is compared to experimental data in chapter 4. Here the

spectrum is plotted against harmonic number, but as the harmonic energies and

wavelengths are well known, it is simple to convert this plot to either a wavelength

or energy scale.

3.6 Effect of increasing the intensity of the fundamental

laser

It is shown above that phasematching causes HHG to become a self-limiting process;

as any one region of the pulse generates efficiently, it also ionises, making genera-

tion at that radius at later times much less efficient. For this reason, trying to

increase the efficiency by driving with a higher intensity laser is very unlikely to

work. Equivalently, trying to extend the cutoff energy using a higher energy driving

pulse will also fail. For the parameters used above, the highest harmonic generated

is at the theoretical cutoff at the peak of the pulse, which is the 29th harmonic. If

the energy of the driving pulse is increased by 50 %, the theoretical cutoff moves to

the 39th harmonic, but the maximum generated harmonic is only the 31st. If the

pulse is shortened by 33 % to give the same peak intensity and cutoff, the maximum
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Pulse energy /µJ 339 509 339
Pulse length /fs 35 35 23.3
Peak intensity /W cm−2 1.91×1014 2.86×1014 2.86×1014

Cutoff harmonic at peak of pulse 29 39 39
Maximum harmonic generated 29 31 33

Table 3.1: Semi-classical cutoff, as calculated at the peak of the pulse, and maximum
observed harmonics for a variety of input laser parameters. In all cases the generating
gas is argon at 50 mbar and the input wavelength is 780 nm.

generated harmonic is the 33rd. These results are summarised in table 3.1. Thus,

the maximum observed harmonic is not determined by the semi-classical cutoff cal-

culated at the peak of the pulse, but is reduced by phasematching effects. Using

higher intensity pulses, therefore, does not necessarily give access to higher energy

harmonics, although the improvements to be made from shortening the pulse are

greater than those gained by increasing the pulse energy.

3.7 Conclusions

The sample results presented above highlight some interesting insights into the gen-

eration process given by the phasematching model. One of these is that the varia-

tion of ionisation fraction with radius, as well as time, allows a large phase space in

which phasematching can occur. Provided the pressure and intensity are such that

∆k = 0 m−1 for a particular harmonic at some point in the capillary, then phase-

matching occurs at some radius at all later times. Examination of figure 3.10(a)

at r = 0 µm shows that if this were not the case, then only one or two optical

cycles would contribute to generation, and that phasematching could be used, with

suitable tuning, to generate near-single attosecond pulses from multi-cycle driving

pulses. Indeed, this technique may still be possible if a mechanism can be found

to separate the spatial components of the XUV beam. If the driving laser could

be filtered out, such spatial separation could be achieved with a ∼ 5 µm pinhole.

However, this would need to be done before propagation effects distort the space-

time profile of the XUV pulse and in this region the fundamental laser is sufficiently
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intense that filtering with any optical element is problematic.

Another interesting effect caused by the rapidly changing ionisation fraction is

that the generation is self limiting. At an intensity that is sufficient to generate, the

ionisation fraction is rapidly increasing and so poor phasematching prevents subse-

quent efficient generation. This means that, to first order, any radial region that

generates at all, generates at roughly the same efficiency, leading to the predicted

roughly top hat radial profiles. It is shown that, for the same reason, attempts to

increase the XUV flux or cutoff energy by increasing the intensity of the driving

laser will only have a very limited effect.

Having described the model used for predicting phasematching, the next step is

to test it by comparison to experimental data. This comparison is undertaken in

chapter 4.
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Chapter 4

Comparison of phasematching

modelling to experiment

The experimental parameter measurements and spectra described in this

chapter were taken by other members of the group, primarily Chris Froud,

Richard Chapman, Matthew Praeger, Sarah Stebbings and Ana de Paula.

The theoretical work and discussion is my own.

Having presented the development of the spatio-temporal phasematching model

in chapter 3, the model is compared to experimental results in this chapter. This

allows validation of the model and reveals its uses as a tool for developing more

efficient and controllable HHG sources.

The first part of this chapter (section 4.1) deals with the determination of the

necessary input parameters for the model from experimental measurements. Having

determined these, the theoretically predicted spectra are compared to experiment

for a selection of gases in section 4.2. Section 4.3 then extends the comparison

to mixtures of gases. In section 4.4, the spatial and phase profiles predicted by

the model are used to investigate how the XUV beam propagates after leaving the

capillary. The divergence of the generated XUV beam is predicted. Section 4.5

discusses possible extensions and developments of the phasematching model. A
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development is proposed that would allow the model to take account of the real

pressure profile in the capillary. Additionally, a proposal is made for further use of

the model in estimating the number of XUV pulses in the attosecond pulse chain

generated by the HHG source.

4.1 Determination of experimental parameters

In order to predict XUV generation using the model presented here, it is necessary

to know the wavelength, pulse energy and pulse length of the driving laser and the

pressure of the gas.

As discussed in section 3.4.2, the length over which the XUV radiation builds up

is small — no longer than the absorption depth in the medium. Since the absorption

depth is no greater than a few millimetres,1 any XUV photons generated towards

the entrance of the capillary will have been absorbed before they leave the capillary.

For this reason, the generation region is not only short, but also located at the end

of the capillary, in the last absorption depth. Therefore, the relevant values of the

experimental parameters are those at the output of the capillary rather than the

input. The following sections (4.1.1–4.1.4) discuss the experimental measurements

and fitting techniques used to determine these parameters for input to the model.

4.1.1 Pulse energy

The output pulse energy was determined by measuring the output average power

from the capillary, and dividing by the repetition rate of the laser. The output

energy is less than the input pulse energy due to imperfect coupling into the capillary,

transmission losses in the capillary and ionisation losses in the gas. These factors

are discussed in more detail in chapter 5.

Figure 4.1 shows the measured output power from the capillary as a function of

pressure for four different gases. These gases are the ones that have been used in

our experimental setup, and so the ones of interest here. In order to calculate the

1See section 2.6 for details.
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output average power at an arbitrary pressure, the pressure response of each gas is

fitted to an empirical curve of the form

Pavg = aebp + c, (4.1)

with a, b and c the parameters of the fits, Pavg the measured output power and p

the pressure in bar. The form of this equation was chosen as it fits the experimental

data well, but it is not suprising that such a form provides a good fit. The pressure

dependent loss processes in the capillary are caused by ionisation, which is in turn

related to the energy of the pulse at a particular location (equation (4.1)). As the

pulse energy is reduced the ionisation losses will be reduced, leading to a saturating

loss term (the exponential term in equation (4.1)). Once the energy drops below

some certain threshold (dependent on the gas), then ionisation will cease, and no

more losses will occur. This leads to the constant term c in equation (4.1).

Fits to equation (4.1) are shown in figure 4.1 as solid lines. These parameters

are then stored for each gas, and can be retrieved and used to calculate the output

power for a given gas and pressure for input to the phasematching model. The

parameters for each gas are shown in table 4.1. The fits are approximations due

to the somewhat arbitrary choice of fit equation and possible experimental error.

This leads to the values of output power for different gases not converging at zero

pressure. This is not physical, but the errors introduced by this will be small, as

generation is not possible at zero pressure and is weak at very low pressures. The

fits could be forced to converge at zero pressure, but only at the expense of worse

fits at higher, more experimentally interesting, pressures.

For each gas we see that the pressure dependent losses scale with the probability

of ionisation. For the same input laser pulse, most ionisation is expected for nitrous

oxide, followed by argon and nitrogen at roughly similar levels. The lowest levels

of ionisation are expected in neon. A simple consideration of the loss mechanisms

present — energy loss through ionisation and loss through nonlinear coupling to
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Gas a b c

Argon 0.142 -14.7 0.213
Nitrogen 0.188 -7.23 0.175
Neon 0.0102 -366 0.370
Nitrous oxide 0.292 -7.57 0.0868

Table 4.1: Best fit parameters of equation 4.1 for each of the four gases used experi-
mentally.

Parameter m C

a 3.34×10−4 -0.125
b -0.0368 14.7
c 1.50×10−4 0.0931

Table 4.2: Best fit parameters for linear fits y = mx + C to the plots in figure 4.3.

higher order modes2 — shows that greater loss is expected for greater levels of

ionisation. For any particular gas, the power losses “saturate” at a particular level;

this is the energy at which the intensity of the laser has dropped sufficiently to

reduce any further ionisation to negligible levels.

While this is the only procedure necessary for nitrogen, neon and nitrous oxide,

for argon the situation is complicated by the fact that we have also investigated

the dependence of XUV emission on input power. To incorporate this input power

variation into the model, the output power was measured as a function of pressure

for various input powers (crosses, figure 4.2), and equation (4.1) fitted (dotted lines,

figure 4.2). To interpolate this across various input powers, the parameters a, b

and c are plotted against input power (figure 4.3). As the points lie approximately

on a straight line, a straight line is fitted to each fit parameter as a function of

input power. These straight line fits can be used to determine the exponential

fit parameters a, b and c for a given input power which can then be used with

equation (4.1) to determine the output power at a given pressure. The parameters

of the linear fits are given in table 4.2. The values of a, b and c calculated from the

linear fits are used to produce the solid lines in figure 4.2.

The final factor to take into account is that the measured powers are those after

2Higher order modes have higher losses per unit length. See section 2.3 for more details.
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Figure 4.1: Output average power from the capillary as a function of gas pressure for
argon, nitrogen, neon and nitrous oxide. Crosses are experimentally measured values.
Solid lines are exponential fits.
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Figure 4.2: Output average power from the capillary as a function of gas pressure
for argon at various input powers. Crosses are experimentally measured values. Dotted
lines are exponential fits. Solid lines are generalised fits (see text).
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Figure 4.3: Straight line fits (solid lines) to calculated values of the a, b and c param-
eters (crosses) in equation (4.1) as a function of input power.
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Figure 4.4: Experimental arrangement used for measuring the laser properties after
propagation through the capillary. The mirror is silvered, so has a large reflective band-
width. The exit window is not anti-reflection coated, so loses 4 % of power at each
surface. The following instruments can be placed at the ‘Measurement’ location: spec-
trometer, power meter, FROG or CCD camera. These measure pulse energy, pulse
spectrum, pulse time profile and spatial profile respectively.

reflection off one turning mirror with a 90% reflectivity and propagation through

a non-anti-reflection coated, fused silica window (figure 4.4). The power at the

capillary exit Pcap is therefore given by

Pcap = Pavg × 0.9 × 0.962. (4.2)

4.1.2 Wavelength

The central wavelength of the fundamental pulse is also seen to shift with propa-

gation in the capillary. This effect has previously been observed in other experi-

ments [82,129,130] and is caused by propagation in an ionising gas.3 The measured

3Chapter 5 discusses this in more detail.
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Figure 4.5: Output central wavelength from the capillary as a function of gas pres-
sure for argon, nitrogen, neon and nitrous oxide. Crosses are experimentally measured
values. Solid lines are exponential fits.

central wavelength (defined as the median point in the output spectrum) of the pulse

in plotted (crosses) in figure 4.5. The shape of the curves are seen to be similar to

those in figure 4.1. Hence the same empirical curve is used

λ0 = aebp + c (4.3)

with a, b and c the parameters of the fits and λ0 the measured central wavelength.

The similarity of the curves is not unexpected, as both the loss and the shift are

ionisation dependent effects. This means that if the power loss saturates at high

pressure, when the intensity drops below that need to ionise the gas, the wavelength

shift should also saturate. As before, these values of a, b and c are stored and used to

calculate the expected central wavelength of the pulse for a given gas and pressure.
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4.1.3 Pulse Length

The pulse length used in the calculations is taken to remain at the input value of 35 fs

with no pressure dependence. This is consistent with results in the literature (see

section 5.1 for a discussion of this), which show no significant temporal reshaping

of the pulse as it propagates through the capillary at the experimental intensities

and pressures used here. It is also consistent with experimental measurements taken

after the output window in figure 4.4.

4.1.4 Gas Pressure

The gas pressure used in the phasematching calculation is that of the constant

pressure region in the centre of the capillary. This is because the model described

in chapter 3 is limited to a constant pressure. The effect of this, and the changes to

the model necessary to relax this assumption, are discussed in section 4.5.1.

4.2 Effect of generating gases

Having determined the experimental parameters for input to the model, the following

sections discuss the use of the model and its comparison with experimental results.

Figure 4.6 shows the experimental and theoretical spectra for various gases at

a generation pressure of 50 mbar. The shapes of the experimental spectra and

the highest observed energies are reproduced well by the calculations, as are the

relative intensities of the harmonics. The details of the spectrum are determined

by the absorption profile and differences in phasematching between harmonics. As

the calculations do not give a quantitative value for XUV flux, the spectra are

normalised such that the maximum value in each spectrum is 1. The method used

here cannot reproduce the harmonic structure of the XUV radiation and so only

gives an envelope under which the experimental harmonics should appear.

In figure 4.7 the predicted XUV generation is shown as a function of time and

space for various gases, together with the driving laser intensity. The region of
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Figure 4.6: Experimental (solid) and theoretical (dashed) spectra for (a) argon, (b)
nitrogen, (c) nitrous oxide and (d) neon at 50 mbar. The calculations reproduce well
the relative intensities of the harmonics, the shape of the spectra and the high energy
cutoff.
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Figure 4.7: Theoretical prediction of generation — summed over all harmonics — for
(a) argon, (b) nitrogen, (c) nitrous oxide and (d) neon as a function of time and radial
position in the capillary, relative to the peak of the pulse. The colour scale indicates
harmonic intensity . The contours are lines of constant fundamental intensity with labels
in 1014 W cm−2. The 1.1 × 1014 W cm−2 contour has been omitted and the colour scale
adjusted in (c) for clarity.
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space and time in which phasematching occurs is determined by the phasematching

conditions, and therefore the ionisation fraction. The contours along which gen-

eration occurs are therefore regions of approximately constant ionisation fraction.

Generation occurs first in the centre of the capillary and at the leading edge of the

pulse as the ionisation passes through the value at which ∆k = 0. As the intensity

increases, the gas on axis continues to ionise, and the fraction becomes too high

for efficient generation. The phasematched region then moves towards the edge of

the capillary where the ionisation fraction is lower than at the centre. The region

in which harmonics are generated directly affects the spectrum of the XUV radia-

tion produced, as harmonics produced in lower intensity regions have a lower cutoff

energy (equation (3.29)).

Figures 4.7(a) and (b) for argon and nitrogen show that generation occurs

primarily in a region of intensity 1.7 − 1.9 × 1014 W cm−2. For an intensity of

1.8 × 1014 W cm−2, the theoretical cutoff is at 48 eV. Figures 4.6(a) and (b) show

that this cutoff is seen in both the experimental and theoretical data. In figure 4.7(c)

the generation region is shown for nitrous oxide. Here almost all generation occurs

at 1.1 × 1014 W cm−2, which gives a theoretical cutoff at 38 eV, again this is re-

produced in figure 4.6(c). Figure 4.7(d) shows that for neon, generation occurs at

around 2.5 × 1014 W cm−2, with a cutoff of 61 eV, again seen in the corresponding

spectra in figure 4.6(d). The peak intensity of the fundamental is higher in neon as

lower levels of ionisation lead to lower ionisation losses in the capillary.

This analysis clearly demonstrates that phasematching conditions are limiting

the energy of the harmonics that are produced, not just by directly phasematching

particular wavelengths preferentially, but also by limiting the laser intensity that

can be used to generate them efficiently. This reduced intensity limits the maximum

energy of the harmonics that can be generated, and this relationship is well described

by the semi-classical three-step model.
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4.3 Gas mixtures

Using the methods given above, it is possible to calculate the phasematching prop-

erties for any single gas at any pressure. The gas properties necessary to perform

this calculation are the (complex) refractive index and the ionisation properties.4

To extend the phasematching calculation to mixtures of gases is, therefore, rel-

atively simple, given that all the above properties are known for both gases. The

ionisation fraction of each gas can be calculated independently, and the refractive

index calculated for the combination of gases. If natm = 1 + δatm + iβatm, then for

one gas δgas = 1+(Pδatm) and βgas = Pβatm. If the molar fraction of gas m is given

by fm then the refractive index of a gas mixture is given by:

nmixture = 1 +
∑

m

[fmδm + ifmβm] . (4.4)

When examining the output from the phasematching calculation (sections 3.5,

4.2), it was seen that the ionisation is limiting the intensity used to generate harmon-

ics. This limitation means that the experimentally observed cutoff is less than that

predicted by the peak intensity of the pulse, and is, in fact, that calculated using the

intensity at which the pulse reaches the correct ionisation fraction to generate. A

potential solution to this problem is to add a non-ionising buffer gas to the capillary.

This gas would contribute to the neutral gas refractive index without affecting the

number of electrons, and therefore the refractive index contribution of the plasma.

At the experimental intensities used here, helium is not significantly ionised by the

laser, and so is a suitable buffer gas.

As expected, figure 4.8 shows that the phasematching points for mixtures of

argon and helium move to higher ionisation fractions as the partial pressure of

helium increases. This should increase both the efficiency of generation and the

highest energy generated. However, these increases will be somewhat offset by the

extra absorption introduced by the relatively large pressure of helium. Looking at

4See section 2.2 for full details of ionisation parameters.
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(a) Partial pressure of helium: 0 mbar
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(b) Partial pressure of helium: 50 mbar
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(c) Partial pressure of helium: 450 mbar

Figure 4.8: ∆k for mixtures of argon and helium as a function of ionisation fraction
and harmonic number. In all three figures, the partial pressure of argon is 50 mbar.
Colour represents ∆k/m−1 and the white line shows the points where ∆k = 0 m−1.
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figure 2.16, we see that helium is even more absorbing in the relevant energy range

than argon, and this will reduce the overall efficiency considerably. However, helium,

like most of the gases in figure 2.16, becomes more transparent at higher energies.

This means that the higher cutoff effect should not be reduced by the absorption

of the helium. A mixture of argon and helium should, from this static analysis,

produce higher energy harmonics, but at lower efficiency than the same number of

argon atoms with no helium present. Below, I investigate whether 3D modelling

confirms this conclusion, and compare the 3D model to experimental results to test

it.

Comparison of theory and experiment for gas mixtures

Figure 4.9 shows the experimental and theoretical spectra of argon-helium mixtures.

with approximately the same partial pressure of argon and varying partial pressures

of helium. Unfortunately, no experimental data exists for which it is possible to

produce these plots with exactly the same partial pressure of argon. As expected

from the static analysis, the cutoff in the theory plots increases with increasing

helium pressure. The increase is not as large as might be expected from the static

analysis, but there are a number of other effects (for example, absorption and single

atom cutoff) that could be the cause. The experimental data also show a slight

increase in cutoff, though not as large in magnitude as the predicted change. The

reason for this discrepancy is unclear, but it could be due to slight inaccuracies in

the relative ionisation rates, or absorption depths of helium and argon, neither of

which are known precisely (as discussed in sections 2.2 and 2.6.)

4.4 Properties of emitted XUV beam

One output from the phasematching model presented in chapter 3 is the radial

intensity profile of the emitted XUV radiation.5 This information, together with

the phase information from the semi-classical model, can be used to predict the

5See figure 3.10(c) for examples of this.

96



Chapter 4 Comparison of phasematching modelling to experiment

20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

Energy /eV

In
te

ns
ity

/a
rb

. u
ni

ts

(a) 30 mbar Ar; 0 mbar He

20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

Energy /eV

In
te

ns
ity

/a
rb

. u
ni

ts

(b) 25 mbar Ar; 25 mbar He

20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

Energy /eV

In
te

ns
ity

/a
rb

. u
ni

ts

(c) 20 mbar Ar; 180 mbar He

Figure 4.9: Predicted and observed spectra for approximately constant partial pressure
of argon and varying partial pressures of helium. The exact values of argon pressure
were determined by the available experimental data. As the helium pressure increases,
both the theory and the experiment show an increase in the cutoff energy, although
agreement is not as good in the mixtures as in the pure gas.
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x-ray propagation from the exit of the capillary. Here a combination of the angular

spectrum method [131] (ASM) and far-field, Fraunhofer, diffraction [41] can be used

to determine the spatial electric field profile at any propagation distance. These

propagation calculations can be used to give quantitative predictions of the XUV

beam quality parameters such as the divergence and M2 parameter.

This section presents the calculations that have been performed, their results

and comparisons with initial experimental measurements.

4.4.1 Phase profile across capillary

Assuming that the harmonics have been generated by electrons following the short

semi-classical trajectories, as discussed in section 3.4.2, the phase of the XUV beam

is found as a function of radius using the semi-classical calculations of phase (section

2.1) for the known intensity profile of the fundamental in the capillary. Figure 4.10

shows the phase profile for the short trajectories corresponding to the 19th harmonic.

The phase is seen to be approximately spherical and converging, with a radius of

curvature of 137 mm.6

Figure 4.11 shows how the phase profile varies with harmonic number. The

most significant feature of this figure occurs at the 17th harmonic, where the phase

profile of the emitted beam is approximately flat. For harmonics above 17, the

shape of the profile is the same as that of the 19th harmonic, a converging beam

with an approximately spherical curvature. The curvature increases with increasing

harmonic number. For harmonics below the 17th, the phase profile is no longer

spherical and more importantly it is no longer converging. Again, the curvature

increases as you move further from the 17th harmonic.

This curvature causes an effective focus in the higher harmonics, as can be seen in

figure 4.17. The position of this focus can be controlled to some extent by varying

the peak intensity of the pulse. However, changing the peak intensity also affect

the spatial profile of the generated beam (as discussed in section 4.4.2) and so will

6The sign convention used here for radii of curvature is that a positive radius corresponds to a
converging beam, and a negative radius to a diverging beam.
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Figure 4.10: Phase of the 19th harmonic as a function of position within the capillary

together with a quadratic fit. The peak intensity is 2.5 × 1014 W cm−2 and the capillary
radius is 75 µm. Beyond 43.8 µm the intensity is too low to generate the 19th harmonic.

affect the propagation in complex ways. Potentially, the phase profiles could also

be controlled by spatial shaping of the fundamental intensity profile, but this would

also affect the intensity profiles of the generated radiation. Also, as the generation is

taking place in a waveguide, spatial shaping of the beam has to take into account the

modal nature of the capillary propagation. In principle, any intensity profile can be

generated from combinations of modes, but the profile at a particular z position in

the capillary is not necessarily the same as the at the start, due to beating between

the capillary modes (discussed in section 5.6) and propagation loss of the modes.

For this reason, spatial shaping of the fundamental pulse in the waveguide, although

possible, is complicated.

Although the phase does not fit well to a spherical profile for all harmonics, it

is still instructive to examine radius of curvature of the best spherical fit R as a

function of harmonic number, as this gives a measure of the divergence of the beam.

As the scaling of the radius of curvature makes it difficult to examine, figure 4.12

shows a plot of 1/R against harmonic number. Figure 4.12 shows that 1/R varies

smoothly with harmonic number, passing through 0 m−1 at q = 17 as expected from
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Figure 4.11: Phase profiles as a function of harmonic number and radius. The blank
regions are those where the relevant harmonic cannot be generated at a particular radius.
Parameters are the same as those in figure 4.10.
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Figure 4.12: Curvature (1/R) of the best spherical fit to the phase profile as a function
of harmonic number. Parameters are the same as those in figure 4.10.

figure 4.11. The largest value of 1/ |R| in the range of harmonics relevant here is

31 m−1, corresponding to a radius of curvature of 32 mm which is long on the scale

of the generation length of the harmonics.

For comparison, the phase profiles of the long trajectories are plotted in fig-

ure 4.13 and the curvature in figure 4.14. The extremely large phase shifts across

the beam in figure 4.13 and the high values of curvature in figure 4.14 can both be

explained by the much stronger dependence of semi-classical phase on intensity for

the long trajectories, as described in section 2.1.3.

The high values of curvature seen suggest that the XUV radiation generated by

the long trajectories will be much more divergent than that generated by the short

trajectories.

4.4.2 Intensity profiles across the capillary

The predicted intensity profiles of the harmonics have been discussed briefly in sec-

tion 3.5; here the profiles are investigated from the perspective of their propagation

properties. Figure 3.10(c) is reproduced here on a larger scale in figure 4.15. As be-

fore, it is seen that the lower harmonics have a smoother structure, while the higher
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Figure 4.13: Phase profiles of the long trajectories as a function of harmonic number
and radius. The blank regions are those where the relevant harmonic cannot be gener-
ated at a particular radius. Note the very different phase scale compared to the short
trajectories (figure 4.11). Parameters are the same as those in figure 4.10.
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Figure 4.14: Curvature (1/R) of best spherical fit to the phase profile of the long
trajectories as a function of harmonic number. Parameters are the same as those in
figure 4.10.
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Figure 4.15: Predicted radial intensity profiles for each harmonic for the same condi-
tions as figure 3.5. Colour is intensity in arbitrary units.

harmonics have sharper edges in the region where the semi-classical cutoff occurs

and greater fine structure in the centre. Figure 4.16 shows the intensity profiles from

figure 4.15 in a more intuitive manner, showing the beam profiles of each harmonic

from the 13th to the 29th. A simple analysis of these profiles indicates that the lower

harmonics will diverge less than the higher ones, due to the intensity profile alone,

even ignoring the phase profile and the difference in wavelength between harmonics.

4.4.3 Propagation of the XUV fields

Given the phase and intensity profiles above, it is possible to derive a full electric field

profile. This field profile can then be propagated numerically using well understood

techniques. In this case, the angular spectrum method [131] is used in the near field
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Figure 4.16: Intensity profiles of the harmonics at the exit of the capillary. The colour
scale shows intensity with the same scale across all the images. Parameters are the same
as those in figure 4.10.
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region and Fraunhofer diffraction theory [41] is used in the far field region. Each

of these methods is briefly described below, followed by a description of the way in

which they are employed here and a discussion of the propagation properties of the

XUV beams.

Angular spectrum method

The angular spectrum method is based on the decomposition of an electric field

profile into plane waves, each propagating at a known angle to the optical axis of

the beam. In 1D or 2D Cartesian coordinates this decomposition is achieved using

Fourier transforms:

Ẽ(kx, ky) = F
{

E (x, y)
}

, (4.5)

where Ẽ is the angular spectrum of the field profile E(x, y) and F is the Fourier

transform operator. This angular spectrum can then be propagated as a set of plane

waves. The phase advance of a plane wave over a distance z is given by exp(ikzz)

where kz =
√

(k2 − (k2
x + k2

y) is the component of the wavevector k = 2π/λ in the z

direction. Thus for propagation in linear, homogeneous media, the propagation of a

field profile E(0, x, y) to an arbitrary position z may be carried out as a single step

E(z, x, y) = F
−1

{

F
{

E (0, x, y)
}

× exp
(

iz
√

k2 −
(

k2
x + k2

y

)

)

}

, (4.6)

where F
−1 is the inverse Fourier transform operator.

This method is applicable to any monochromatic field profile, without restric-

tion to specific ranges of z, angle or initial field profile, provided that the Fourier

transform of the profile can be calculated at both the initial plane and the required z

plane. For realistic beams, these Fourier transforms must be performed numerically,

and the computational resources required to sample a sufficiently large plane can

quickly become restrictive. For a discrete Fourier transform to be fully accurate, it

is required that:

1. the spacing between points in the x and y grids (∆x, ∆y) must be less than
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half the wavelength of the light being modelled; and

2. the space enclosed by the grid must be such that negligible amounts of field

are propagated to regions outside the modelled area, as these fields will be

artificially reflected from the boundaries, and cause interference with the prop-

agated waves.

For the simple, single-step implementation described above, it is also necessary that

the modelled input and output planes are the same physical size. These restrictions

limit the numerical application of this single-step process to systems where the field

profiles are of similar sizes in the two planes, and the physical size of the beam is

small. Here the beam width is defined as W = 2σ, where σ is the intensity second

moment beam width [123]. For a Gaussian beam, W corresponds to the standard

measure of half width at 1/e2 intensity. For this method to work, it is required that

6W . N
λ

2
, (4.7)

where N is the number of data points used in each dimension of the simulation. This

requirement means that for a 2-dimensional (x and y) model, the memory require-

ments rapidly become larger than are available on a typical desktop computer.7 To

reduce the computational resources required, the radial symmetry of the problem

can be exploited. For a field profile of the form E(r), a Hankel transform is used to

obtain the angular spectrum Ẽ(kr) = H {E(r)}, where H is the Hankel transform

operator [132]. The Hankel transform is defined as

f̃(kr) = H
{

f(r)
}

= 2π

∫

f(r) × J0(2πrkr) r dr. (4.8)

The method of Guizar-Sicairos and Gutiérrez-Vega [133] is used here, with an

implementation by Wyatt [134]. This allows propagation of the beam using ASM in

7In Matlab 7.4, a complex number requires 16 bytes of storage. For a beam with λ = 780 nm and
w = 1 mm, 15 385 data points are required in each dimension. This requires ∼ 3.8 GB of memory.
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a manner analogous to the 2D Cartesian case:

E(z, r) = H
−1

{

H
{

E (0, r)
}

× exp
(

iz
√

k2 − k2
r

)

}

. (4.9)

This operation, as it is 1-dimensional, is far more efficient in both memory and

processing time than the 2D version. However, for propagation over long distances

in z, even more efficiency can be achieved using Fraunhofer diffraction theory as

described below.

Fraunhofer diffraction

Fraunhofer diffraction theory [41] states that for any initial field profile E(x, y), after

propagation over a sufficiently long distance z, the observed intensity pattern ceases

to vary except for a scaling with propagation distance. This diffraction pattern is

given (in 2D) by the Fourier transform of the field profile at z = 0:

E(z, x′, y′) = F{E(0, x, y)}, (4.10)

where x′ and y′ are the coordinates in the observation plane. Again, for a radially

symmetric system, the Fourier transform may be replaced by a Hankel transform:

E(z, r′) = H{E(0, r)}, (4.11)

where r′ is calculated from the radial component of the wavevector kr by

r′ = z tan(θ) and cos(θ) =

√

k2 − k2
r

k
. (4.12)

The values of z for which the Fraunhofer diffraction regime is valid is commonly

defined in terms of the Fresnel number F . For an aperture of radius a illuminated

by light of wavelength λ, this is defined as

F =
a2

λz
, (4.13)
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with Fraunhofer diffraction being a valid approximation in the regime where F ≪ 1.

In the case of a beam in free space, there is no aperture, so the characteristic size

used is W , the beam radius as defined above. By comparison of the predictions

of Fraunhofer diffraction with those of the ASM above, it is found that Fraunhofer

diffraction becomes a good approximation for F < 0.1. That is, the Fraunhofer

diffraction approximation is valid for

z >
w2

Fλ
where F = 0.1. (4.14)

Beam propagation results

To investigate the properties of the XUV beam, the predicted beam is propagated in

free space and the divergence measured. Since each harmonic beam has a different

wavelength, each beam is propagated individually using the ASM method with the

theoretically predicted field profiles and phases. The input phase profile is taken

from the semi-classical model, as described in section 4.4.1, and the amplitude is

taken from the phasematching calculations (section 4.4.2) assuming that the pha-

sematching applies no phase structure to the beam. This field is sampled onto a

discrete grid in radius with 6000 points extending from 0 to 1500 µm. This large r

grid is needed to get both fine enough sampling to adequately model the structure

in the beam and to prevent numerical reflections from the grid boundary during

propagation. The beam is then propagated directly to 101 points 0 ≤ z ≤ 20 mm.

Since the propagation is linear, numerical propagation does not have to be done in

a series of steps.

These separate harmonic beams are then incoherently summed to produce a total

intensity profile. For visualisation purposes, the intensity profile is in interpolated

onto a 400 point grid in z; the radial grid is unchanged. This intensity profile is

plotted in figure 4.17. The beam shows considerable structure in the first 10 mm

from the capillary exit, before the beam settles down to a steadily diverging beam.

The converging phase profile of harmonics above the 17th produces an effective focus
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Figure 4.17: Intensity of the combined harmonic beam as a function of radius and
propagation distance from the capillary exit. Colour is intensity in arbitrary units.

around 8 mm from the capillary exit.

One use of this beam propagation modelling is in predicting the spatial quality

of the beam emitted from the capillary. A simple way of doing this is to investigate

the evolution of the beam width W as a function of propagation distance. For a

monochromatic beam of any intensity profile, the second moment width has been

rigorously shown to propagate as [123]

W 2 = W 2
0 + M4

(

λ

πW0

)2

(z − z0), (4.15)

where W0 is the beam width at the waist position z0 and M ≥ 1 is a numerical

factor that describes how close the beam is to a perfect TEM00 Gaussian beam.

Figure 4.18 shows the width of the combined beam as a function of z in the two
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Figure 4.18: Beam width W of the combined harmonic beam as a function of z (blue
line) and a fit of the form of equation (4.16) (green line) (a) in the near field region
using the ASM for propagation and (b) in the far field using Fraunhofer diffraction.
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propagation regimes, ASM in the near field, and Fraunhofer diffraction in the far

field. In both cases an excellent fit is found to an equation of the form

W 2 = W 2
0 + Υ(z − z0). (4.16)

However, in this case, Υ cannot be interpreted as M4 (λ/πW0)
2, as would be the

case for a monochromatic beam, because here the beam is highly polychromatic,

and so λ cannot be well defined. However, the fitting to equation (4.16) does allow

a prediction of the XUV beam divergence. The divergence half-angle Θ is given by

Θ = tan−1
(√

Υ
)

. (4.17)

This gives a divergence half-angle of 1.70 mrad from the fit to the near field pre-

dictions and 1.68 mrad from the fit to the far field data. The consistency of these

values is an indicator of low numerical errors in the propagation procedures.

While no well characterised experimental measurements of the XUV spatial pro-

file as a function of distance have yet been taken, the values above agree with the

estimated values taken from preliminary measurements. To compare this to exper-

iment, measurements of the beam profile as a function of z need to be taken. In

the far field regime, as necessary to measure the divergence of the beam, these are

relatively straightforward. However, it is difficult to take measurements in the near

field of the capillary due to the very high intensity fundamental that is propagating

collinearly with the XUV. In order to separate these beams, a 200 nm aluminium

foil is used, but this cannot be placed too close to the capillary as the fundamental

beam can burn a hole in it. By the time the fundamental has diverged sufficiently

to be filtered by the foil, the XUV beam has reached the far field.

An experiment has been done to refocus the XUV beam using an off-axis, spher-

ical, multilayer mirror. In principle this optical system can be modelled using the

above techniques: Fraunhofer diffraction from the capillary to the mirror and ASM

from the mirror to the focus. The problem with this method is that the off-axis
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Chapter 4 Comparison of phasematching modelling to experiment

mirror imposes a non-radially-symmetric phase profile on the beam, so the ASM

must be done in two dimensions. A 2D grid that covers the whole beam (∼ 3 mm

radius) at the mirror has poor resolution at the focus: for an array with 4096 points

in each dimension, the spatial resolution is only 1.5 µm. This also leads to poor

resolution in angular space; the ratio of ∆x to λ/2, which should be less than 1 for

accurate modelling, is ∼ 93. This leads to large inaccuracies in any propagation code

for beams containing high spatial frequencies. Further work is needed to determine

if the process can be made computationally tractable, and exactly what resolutions

are required for acceptable errors.

4.5 Further work

This section considers various extensions to the phasematching model to improve

its accuracy and range of validity.

4.5.1 Pressure gradients

The model presented in chapter 3 assumes a constant pressure when calculating the

harmonic build-up; in the derivation of equation (3.23) it was assumed that that kf ,

kq and αq are constant. To remove this assumption, the build-up equation must be

derived with kf , kq and αq as functions of propagation distance z. This gives, in the

most general form

I(r, t, q) ∝
{
∫ L

0

√

dN(r, t, z) exp

[

−i

(
∫ z

0
qkf

(

z′
)

dz′ +
∫ L

z

kq

(

z′
)

dz′
)]

× exp

[

−
∫ L

z

αq

(

z′
)

dz′
]

dz

}2

. (4.18)

This equation is valid for any form of pressure profile and can be calculated

numerically. However, it quickly becomes computationally time consuming as it

requires a double integral over z for each value of r, t and q. For the experiments

considered here, the pressure profiles, as discussed in section 2.5, are confined to
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linear gradients in z. For the case of a linear gradient, the inner integrals may be

solved exactly using the trapezium rule, giving the formula

I(r, t, q) ∝
{
∫ L

0

√

dN(r, t, z)

× exp

[

−i

(

(

kf (0) + kf (z)

2

)

z +

(

kq(z) + kq(L)

2

)

(L − z)

)]

× exp

[

−
(

αq(z) + αq(L)

2

)

(L − z)

]

dz

}2

. (4.19)

This equation can be evaluated with a single integral over z, and so is numerically

feasible. Implementing this calculation removes the assumption of constant pressure

from the phasematching calculations. As the currently used capillaries have a pres-

sure gradient over a length much greater than the build-up length (section 2.5), this

assumption is probably the most significant error in the phasematching calculations.

Therefore implementing this could provide a significantly more accurate prediction

of the XUV generation from a real capillary.

4.5.2 Time dependence of emitted energy

In the calculations presented in chapter 3 it is assumed that every harmonic is

equally likely to be emitted at any given point in time. However, in section 2.1 it

was seen that an electron tunnelling at a given time has a well defined energy on its

return to the ion, and will therefore emit a photon with a known energy. Therefore,

one extension of the phasematching model would be to include this effect. Instead

of a build-up of the form of equation (3.23)

I(r, t, q) ∝ dN(r, t) × f (∆k, α, L) (4.20)

an equation of the form

I(r, t, q) ∝ δK (q, qsc(t)) × dN(r, t) × f (∆k, α, L) (4.21)
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would be used. Here δK is the Kronecker delta function and qsc(t) is the harmonic

number emitted at time t. This is calculated from the semi-classical model by

evaluating the energy of a photon returning at time t, and converting this energy to

a harmonic number. The relationship between tunnelling time and energy is plotted

in figure 2.2(b).

This relaxes the assumption, made in deriving the original model, that all en-

ergies up to the cutoff energy are equally likely to be emitted at any given time.

It is, however, unclear whether this effect is significant, and further work should

be done to determine the magnitude of this effect before significant time is spent

implementing this extension.

4.5.3 Energy dependent recombination probability

Another improvement that could be made is to relax the assumption that all energies

are equally likely to be emitted. The cross section for recombination of the electron

with its parent is, in fact, energy dependent [9, 12]. This can done by including an

energy dependent recombination factor in the build-up equation, either separately

from, or combined with the modification suggested in the previous section. The

factor used could either be calculated from quantum mechanical simulations of the

atom, or derived from published tables of factors, such as electron impact ionisation

cross sections.

Compared to factors such as pressure gradients (section 4.5.1) however, this is

probably a small effect and may well be negligible compared to the errors introduced

to the model by inaccurate values of gas absorption (see section 2.6) or ionisation

properties.

4.5.4 Use of XUV time profiles

One output from the phasematching calculation is the time profile of the XUV

output as shown in figure 3.11(a), and reproduced in figure 4.19 for convenience. It

is seen that there are a distinct number of optical cycles of the fundamental over

114



Chapter 4 Comparison of phasematching modelling to experiment

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time /fs

In
te

si
ty

 /A
rb

. u
ni

ts

Figure 4.19: XUV intensity as a function of time, as predicted by the phasematching
model. Conditions are the same as figure 3.5.
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which the generation occurs. Since the harmonic structure of the beam is caused

by interference between the XUV bursts generated at each half cycle of the laser,

a change in the number of cycles used for generation should be visible as a change

in the spectral width of the observed harmonics. From consideration of the Fourier

transform relationship between the time profile and the spectrum, a reduction in the

number of XUV bursts contributing to the spectrum should cause an increase in the

bandwidth of each harmonic, and vice versa. In the limit that a single attosecond

XUV pulse is generated, the harmonics merge into a continuum [30].

Investigation of the bandwidth of the generated XUV harmonics can therefore be

used as a further validation of the phasematching model. If a quantitative relation-

ship can be established between harmonic bandwidth and the number of attosecond

bursts, then simple spectral measurements can be used to determine, to a reasonable

accuracy, the number of bursts in an XUV attosecond pulse train. This would not

fully determine the temporal shape of the XUV pulses, as the structure of each burst

and the exact pulse train envelope would remain unknown. However, an estimate

of the number of pulses in the attosecond train would still be useful in the design of

experiments that use the XUV source to investigate matter, particularly those with

a strong time dependence.

4.5.5 Non-Gaussian laser pulses

Another assumption used in this model is that the laser pulse is Gaussian in time.

While this assumption may be appropriate for the powers and pressures used in

these experiments, simulation has shown (see chapter 5 for details) that at only

slightly higher pressures and intensities, the temporal profile of the pulse can be

modified by propagation through the plasma. It is not yet known how large an

effect modification of the temporal profile of the pulse has upon generation, but

given that the time at which phasematching occurs is so strongly dependent on the

ionisation caused at the leading edge of the pulse, and that the generation process

is highly nonlinear, it is likely that the temporal shape of at least the leading edge
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of the laser pulse is important.

The combination of a propagation model with this phasematching model could,

therefore, provide a better understanding of the generation process and thus give

greater control of the generated XUV pulses. Section 5.9.2 discusses the potential

development of this compound model further.

4.6 Conclusions

The model of phasematching presented in chapter 3 has been compared to exper-

iment and shows good agreement with the experimentally measured spectra for a

range of gases. This implies that, as expected, phasematching effects are crucial in

determining the spectrum of emission from a capillary HHG source, as good agree-

ment can be achieved by considering only the simplest single atom response, that of

a plateau with a hard cutoff at the semi-classical cutoff energy Emax = Ip + 3.17Up.

The model has also been compared with gas mixtures, where it shows qualitative

agreement with experiment; the cutoff energy is increased by the introduction of a

non-ionising buffer gas. However, the magnitude of the increase is not as great in

experiment as predicted in the theory, which may be due to errors in the ionisation

properties or refractive index properties of the gases used.

A further use of the propagation model in predicting the spatial properties of

the output XUV beam, and therefore its propagation characteristics, has also been

demonstrated. Experiments to test the propagation have been proposed, and the

computational limitations of the method have been explored.

Finally, a number extensions to improve the accuracy and range of validity of

the phasematching model have been discussed, together with a proposal to use the

phasematching model to gain an understanding of the temporal profile of the emitted

XUV beam. The most useful of these would be the extension of the phasematching

model to pressure gradients, as that would allow a more realistic modelling of the

experimental situation. The use of a non-Gaussian laser pulse for phasematching

is also useful, and would be easy to implement, as the input laser pulse is already
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treated numerically. The other suggestions, while sensible, would provide only slight

increases in accuracy which may be swamped by other, neglected, effects such as the

single atom response.
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Chapter 5

Development of a modal

propagation model

The use of a capillary waveguide for HHG provides an additional level of control

over the generation process, as well as extending the interaction length over which

harmonics may be generated. However, the relatively long length of capillary means

that the fundamental laser pulse propagates for a significant distance in an ionising

gas. Significant fractions of the gas are ionised by the passage of the pump laser,

and the optical properties of the created plasma significantly affect the propagation

of the laser pulse, leading to reshaping of the pulse in space, time and spectrum. In

particular, as capillary waveguides are inherently multimode, spatially and tempo-

rally varying ionisation can create mode mixing. An understanding of these effects

is necessary to understand the harmonic generation occurring in the capillary. It is

also necessary to know the amount of ionisation at a given position in the capillary,

as this affects the phasematching conditions and generation efficiency.

This chapter is structured as follows: section 5.1 discusses the published models

of propagation in ionising gases and section 5.2 gives an overview of the modal

propagation model, before detailed discussion in the following sections. Section 5.3

describes the input beam definition, the method of calculating the coupling and

the determination of the modes to be propagated at the input face of the capillary.
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It also discusses the effect of input beam misalignments on the coupling, and the

level of radial asymmetry present for a given misalignment. Section 5.4 covers the

propagation of this initial field in the capillary, the calculation of ionisation and the

spatial reshaping of the beam. The beating of capillary modes is discussed in section

5.6. Section 5.7 presents a comparison of the model output with experimental data.

Section 5.8 considers the uses and limitations of the model as presented and section

5.9 contains ideas for developments and future work. Section 5.10 concludes the

chapter.

5.1 Prior work

While there have been a number of studies on the propagation of pulses in gas-filled

waveguides (see, for example, [78, 135, 136]), these have generally been limited to

intensities below the ionisation threshold. Other studies of pulses in ionising gases

(for example [137–139]) allow the beams to propagate in free space, and do not

include guiding effects. The work on waveguides filled with ionising gas is more

limited. Rae and Burnett [140] describe a 1-dimensional model which produced

some of the effects observed in experiments, but also showed that spatial effects

could play a large role, and that higher dimensional models were needed. This

conclusion was also shown by Babin et al. [141], in which a 1-dimensional model

was used to successfully predict the observed spectral broadening. The broadening

in [141] was suggested as a means of pulse compression, similar to that occurring

via self phase modulation in gases below the ionising limit [121].

Tempea and Brabec [142] developed a 3-dimensional model of pulse propagation

in ionising gases to investigate this broadening further, and Courtois et al. [79]

further developed the model to include the properties of the plasma created by

the laser. A similar model by Christov [109] has been used to investigate [130]

pulse compression mechanisms in low-pressure, gas-filled waveguides, that do not

require subsequent dispersion compensation. These mechanisms are inherently 3-

dimensional and cannot be explained by 1-dimensional nonlinear effects [130]. The
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models of Tempea and Brabec [142], Courtois et al. [79], Christov [109] and also

Andreev et al. [143] are all essentially similar, and involve the solution of coupled

differential equations for the time-dependent amplitudes of each of the capillary

modes. They also calculate the ionisation fraction either using a quasi-static ADK

type model (as in [79, 142, 143]), or via solution of the Schrödinger equation for

the outer electron [109]. These simulations are very computer intensive and, as a

consequence, are limited in the number of capillary modes that are simulated: 2

modes in the case of [142] and 3 modes in [79].

The models above are powerful in predicting the effects of propagation on the

spectral and temporal profile of a laser pulse through a waveguide; however, they

are computationally intensive and therefore take a long time to run and are limited

in the number of modes that can be modelled. In the present experiment, we are

interested in modelling the power losses and the fluorescence that is observed from

the side of the capillary as a diagnostic for the HHG experiments. As HHG can

only occur when the generating medium is ionised, it is desirable to know at exactly

which points in the capillary ionisation occurs, to optimise the capillary design. For

this purpose, the exact spectral and temporal profiles of the pulse are not of interest

in the first instance, provided that the time profile is not significantly distorted. At

experimental peak intensities of . 3 × 1014 W cm−2, as used in these experiments,1

the literature [140,141] has shown ionisation to have a small effect on the temporal

profile. For this reason, a simple modal model, assuming a constant temporal pulse

profile, should be sufficient to predict power losses and local ionisation fractions

within the capillary.

5.2 Outline of the model

This chapter presents a theoretical model of the effect of laser induced ionisation

on a pulse propagating through a gas-filled capillary waveguide. This model takes

1Since this model was developed, the laser system has been upgraded, allowing access to higher
intensities. For these intensities, the model described in section 5.9 may be more appropriate.
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account of spatially dependent depletion of the laser field due to ionisation, leading to

changes in modal distribution with propagation. A comparison with experimental

results demonstrates that the model predicts correctly both the observed energy

loss from propagation and the plasma fluorescence from the capillary. The model

and experiment also both reproduce the mode beating patterns previously observed

[60,61]. This model allows us to investigate the effect of wavefront tilt and curvature,

such as that caused by experimental misalignment of the capillary relative to the

input beam.

To model the capillary, the input is taken to be a linearly polarised Gaussian

beam with arbitrary size, position and wavefront tilt. The coupling of the input

beam to each capillary mode is then calculated to give the amplitude and phase of

each excited capillary mode. These modes are individually propagated for a short

distance in the axial direction and then recombined. The combined intensity profile

is used to calculate the ionisation fraction at each capillary radius. The energy

lost from the laser beam is then calculated as a function of radial position, the lost

energy is subtracted from the pulse, and the electric field is recalculated. This field

profile is then decomposed into capillary modes and the process repeated. This

process is summarised in figure 5.1. Although it treats slightly different effects, this

model is similar, in principle, to a split step beam propagation model [144] as the

nonlinearity, instead of being a continuous process, is evaluated at the centre of each

propagation step.

As described above, the effect of the ionisation on the spatial and temporal pro-

files at the experimental intensities is small. This implies that self phase modulation

of the pulse due to the plasma is not a significant effect and as such, the phase

changes induced by the plasma can be neglected in the current work. A more so-

phisticated model, including these phase effects is desirable (see section 5.9), but

including temporal effects would mean that the model could not be used in the way

that was intended (for investigating the effect of coupling on ionisation) without

considerably increased computer resources.
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Input Beam

Overlap Integral: Calculate
amount of each mode

Propagate in z

Calculate Energy
Losses

Calculate New
Intensity Profile

Figure 5.1: Schematic of the algorithm used in the modal propagation model.

5.3 Excitation of capillary modes

In section 2.3 the mode profiles and propagation constants for all linearly polarised

capillary modes were determined. Using these, any arbitrary combination of modes

may be propagated along a length of hollow capillary. However, it is first necessary

to determine the (complex) coefficients of each mode as excited by some electric field

profile incident on the capillary entrance.

The coupling coefficient of each capillary mode is determined by calculating

the overlap integral of the laser profile and the relevant mode. This integral is

evaluated by multiplying the laser profile by the (suitably normalised) mode profile

and integrating over all space. For a linearly polarised laser, only linearly polarised

modes will be excited, so the problem can be reduced to a scalar form. This assumes

that the focusing is weak, such that the axial components of the electric field can

be neglected.

The radially symmetric modes of the capillary are considered here, the EH1m
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modes, but the treatment of the composite modes is identical. The capillary mode

profiles are, as defined in equation (2.15),

E1m = J0

(

u1m

r

a

)

(5.1)

for the EH1m modes. These modes are, by definition, orthogonal; that is

∫

S

E1p × E1q dS











= 0 if p 6= q

6= 0 if p = q,

(5.2)

where
∫

S

. . . dS is the integral over the plane of the capillary entrance. In polar

coordinates,
∫

S

. . . dS becomes
∫∞
0

∫ 2π

0 . . . r dr dθ.

If normalised modes E′
1m are defined as

E′
1m =

E1m
∫

S

|E1m|2 dS
, (5.3)

then E′
1m form an orthonormal set and

∫

S

E′
1p × E′

1q dS











= 0 if p 6= q

= 1 if p = q.

(5.4)

The input laser electric field profile is denoted here by Ei(r, θ) and the field

coupling coefficient Cm is given by

Cm =

∫

S

E′
1m × Ei dS. (5.5)

If the input electric field is complex (i.e. it has a phase variation across the beam),

then the mode coefficients are also complex. The arguments of these complex coef-

ficients Cm give the relative phases of each of the coupled modes.

These coefficients can be used to reconstruct the field from the mode profiles in
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the inverse operation

Ei =
∑

m

CmE′
1m. (5.6)

Here it is important to be clear about the meaning of the coefficients in ques-

tion, as there are four possible numbers of interest: the field coupling coefficient,

denoted here by Cm and described above; the field coupling efficiency C̄m, which is

a measure of the proportion of the electric field that is distributed into each mode;

the energy coupling coefficient ξm, which describes the total energy in each mode;

and the energy coupling efficiency ξ̄m, which is the fraction of the input energy that

is transferred to each mode. These are related by

ξm = |Cm|2 ξ̄m =
ξm

∫

S

|Ei|2 dS

ξ̄m =
∣

∣C̄m

∣

∣

2
C̄m =

Cm
√

∫

S

|Ei|2 dS
.

5.3.1 Effect of spot size on coupling

For the case of a linearly polarised Gaussian beam focused to a spot size of w centred

on the capillary entrance, the electric field of the laser is given by

E = E0 exp

(−r2

w2

)

. (5.7)

The coupling of this perfectly aligned beam into the capillary is parameterised

by the single number w/a, the ratio of the spot size to capillary radius. This scenario

has been studied by Nubling and Harrington [145]. The radial symmetry of the input

laser means only the radially-symmetric, linearly-polarised modes of the capillary,

the EH1m modes, need be considered. Figure 5.2 shows the energy coupling efficiency

ξ̄m for each mode as a function of the spot size parameter w/a. For this perfectly

aligned beam, 98 % of the energy can be coupled into the EH11 mode if the beam has

a w/a value of 0.64. Since the EH11 mode is the lowest loss mode of the capillary (as

discussed in section 2.3), a w/a parameter of 0.64 gives the maximum transmission
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Figure 5.2: Fraction of energy coupled into each mode (ξ̄m) as a function of the spot
size parameter w/a. Each line corresponds to a different capillary mode. Peak coupling
into the EH11 mode occurs at w/a = 0.64.

through a sufficiently long section of capillary. However, w/a = 0.64 is not the

point at which the coupling into higher order modes is minimised, and even at the

minimum point, it is still impossible to completely eliminate coupling into higher

order modes. Thus, for any coupling of a Gaussian beam into a hollow capillary,

some energy will be coupled into modes other than the EH11; for a capillary aligned

for maximum transmission, ∼ 1.1 % of energy is coupled into higher order modes.

Since higher order modes attenuate faster, the effect of these modes is lessened with

propagation length, but the interference between these modes and the EH11 mode

must be considered.2

5.3.2 Effect of misalignment of the capillary

For the perfectly aligned beam described above, the coupling is easily analysed as

the coefficients are a function of only one parameter, the spot size. For the more

realistic case of a misaligned beam, there are 6 independent parameters (shown in

2A high order mode with only 1 % of the power of the EH11 mode will have 10 % of the field
strength. This can cause a 33 % peak to peak modulation in the intensity of EH11 mode.
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Figure 5.3: An arbitrarily aligned Gaussian beam incident on a capillary. The focal
point may be misaligned in x, y and z, and the beam may be propagating at an arbitrary
angle to the z-axis: θ in the plane of the x-axis and ϕ in the plane of the y-axis.

figure 5.3): the waist spot size w0; x0, y0 and z0, the coordinates of the centre of

the capillary entrance relative to the beam focal point; and θ and ϕ, the angles of

the beam with respect to the axis of the capillary.

Misalignment in z

For misalignments in the z direction only (that is, with the laser focused slightly in

front of or behind the capillary entrance plane) a similar analysis can be carried out

to the w/a analysis above. Since the z displacement does not parameterise as neatly,

a value for a and w0 must be set. This analysis uses the experimental capillary size

a = 75 µm and a perfectly coupled beam at z0 = 0. Therefore w0 = 0.64 a = 48 µm.
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Such a beam propagating in free space is defined mathematically by

Ei = E0 exp

(

r2

w(z)2
− i

k

2R(z)
r2

)

, (5.8)

where

w(z) = w0

√

1 +

(

z

zR

)2

(5.9a)

R(z) = z

[

1 +
(zR

z

)2
]

(5.9b)

zR =
πw2

0

λ
. (5.9c)

Figure 5.4(a) shows how the energy coupling efficiency ξ̄m varies with z0. In the

case of defocusing however, the coupling is not determined entirely by the efficiency.

As the phase of the input beam varies (Ei is complex) the coupling coefficients

Cm are also complex, and arg(Cm) gives the phases of the coupled modes. The

variation of these phases with z0 is shown in figure 5.4(b). As might be expected,

the most efficient coupling occurs at z0 = 0 where the phase of the laser is flat

and w = 0.64 a. For z0 6= 0, the coupling efficiency decreases as the beam size

w increases. The decrease is not dramatic in the region around z0 = 0, showing

that the z position of the focus is not highly critical in determining the efficiency,

provided it is correct to within about 5 mm.

The more interesting aspect of these figures is in the phase information shown in

figure 5.4(b). This figure shows that sizable adjustments to the phase of the modes

can be made by adjusting the position of the capillary in the z direction relative to

the focus. The phase difference becomes largest around the Rayleigh range, as that

is where the radius of curvature reaches a minimum and hence the curvature of the

input is most pronounced. These phase shifts can be used to control the beating

pattern observed in the capillary (see section 5.6 below). To obtain a π
2 rad shift

between the EH11 and EH12 modes, it is necessary to move the capillary by just

4.8 mm. Since the phase shift is in a different direction for positive and negative z
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(a) Fraction of energy coupled into each mode (ξ̄m) as a function
of z0. The dashed line shows the width of the input beam w in
arbitrary units.
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(b) Phase of each mode as a function of z0. The dashed line shows
the radius of curvature of the input Gaussian beam, R, in arbitrary
units.

Figure 5.4: Coupling efficiency and phase of each EH1m mode as a function of z
position of the capillary relative to the focus (z0). Each solid line corresponds to a
different mode, and in each figure the Rayleigh range — the points at which w =

√
2w0

— is marked by the dotted lines.

129



Chapter 5 Development of a modal propagation model

movement, it is possible to achieve a phase shift of π rad whilst only varying the

coupling efficiency from 98 % at z0 = 0 to 93 % at z0 = ±4.8 mm.

It might be speculated that, although optimum coupling is at z0 = 0 for w0 =

0.64 a, for w0 < 0.64 a increasing the z offset might improve the coupling (i.e. setting

z0 such that w(z0) = 0.64 a). Investigation shows that this is not the case, as the

increased curvature of the laser wavefronts still reduces the coupling efficiency.

Breaking of radial symmetry

Having investigated the first misalignment parameter, z0, the remaining four pa-

rameters, x0, y0, θ and ϕ, are now considered. The analysis of these is considerably

complicated by the fact that if any of these parameters are non-zero, the system is

no longer radially symmetric and both the EH1m modes and the composite modes

(described in section 2.3.1) must be considered. To model this, the radial symmetry

assumption used thus far must be relaxed, and coupling must be investigated as a

2-dimensional, rather than a 1-dimensional, problem. Also, any further modelling

of propagation in the capillary must be extended to a 3-dimensional model, rather

than the 2-dimensional one that can be used if radial symmetry is assumed.

Another significant problem in investigating this situation is the number of data

points that must be sampled to adequately investigate a 6-dimensional space: for a

coarse scan of 10 points in each dimension, 1 000 000 points must be sampled; for a

more useful scan with 100 points per dimension, 1012 points must be calculated.

The following Monte Carlo model is proposed to address these problems and

determine the significance of the radial asymmetry in our experimental arrangement.

In the case of a hollow capillary with no gas in the core, the losses due to propagation

of each mode in the capillary can be determined analytically. Therefore, for any given

set of coupling parameters, it is possible to calculate the overall power transmission

of the capillary relatively easily. Here the transmission of the capillary is calculated

for many different sets of coupling parameters selected at random, and the overall

trends are examined. The parameters were selected using a normally distributed
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Parameter Run 1 Run 2

Mean Std Deviation Mean Std Deviation

Spot size parameter w0

a
0.64 0.2 0.64 0.1

x0 /µm 0 20 0 5
y0 /µm 0 20 0 5
z0 /mm 0 3 0 1
Angle θ /◦ 0 1 0 0.3
Angle ϕ /◦ 0 1 0 0.3

Table 5.1: Mean and standard deviation of each of the coupling parameters used in
the Monte Carlo Simulation.

random number with a given mean and standard deviation (see table 5.1 for a list),

and the coupling and capillary transmission were calculated. The capillary used was

7 cm long with a 75 µm radius. The coupling was calculated over a 300 by 300 point

Cartesian grid in the entrance plane of the capillary. The first 30 modes (taken from

both EH1m and composite modes) were modelled. To obtain a well distributed set

of transmissions, two runs of the simulation were performed, each with 10 000 data

points, and the results collated. For run 1, the parameter values (as shown in table

5.1) led to a large number of data points with low transmission; for run 2 the data

points were clustered towards higher transmissions.

The ratio of power in the EH1m modes to power in the composite modes was

calculated for each set of coupling parameters. This ratio of powers is plotted against

total transmission in figure 5.5. As the transmission increases, a greater proportion

of the energy is found to be in radially symmetric EH1m modes. In the experimental

arrangement, typical transmission efficiencies are in the range 70 − 80 % at optimum

alignment with no gas in the capillary. For a transmission of 70 %, the ratio is

greater than 35 for all the data points calculated. This means that a negligibly

small fraction of the coupled power is found in radially asymmetric modes for the

alignments routinely used in our experiments. Radial symmetry may, therefore, be

assumed with negligible loss of accuracy.
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Figure 5.5: Ratio of power in EH1m modes to power in composite modes for 20 000
random sets of coupling parameters, plotted against total transmission of a 75 µm radius,
7 cm long capillary. The dotted line is at a ratio of 1:1, and the red line marks the lowest
observed ratio for a particular transmission. The ratio is greater than 10:1 for all points
with a transmission greater than 58 %.
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5.4 Propagation modelling

Once the coupling coefficient of each mode has been found at the start of the capil-

lary, the next step is to propagate the modes along the capillary, taking into account

the effects of ionisation. In this model, the pulse shape in time is assumed not to

change with propagation.3 This means that the entire pulse can be described purely

by its spatial profile E(r) or, equivalently, by the set of mode coefficients Cm.

A summary of the propagation algorithm is shown in figure 5.1. Once the mode

coefficients Cm are determined, each mode can be propagated simply by using the

complex propagation constant of the mode γm as defined in equation (2.16):

Cm (z + ∆z) = Cm (z) × exp (iγm∆z). (5.10)

From equation (5.6) we have

E(r, z + ∆z) =
∑

m

Cm(z + ∆z)Em(r). (5.11)

Using these equations it is simple to reconstruct the electric field profile E(r) at

a short distance ∆z into the capillary. From the electric field, the intensity profile

I(r) = 1
2cǫ0 |E(r)|2 can be found.

In principle, to calculate the total ionisation fraction after passage of the pulse,

it is necessary to evaluate the ionisation rate w(r, t) for each point in space and time

and integrate over the whole pulse in time (cf. equation (3.28)). However, given

the assumption that the temporal pulse envelope does not change, the ionisation

depends only on the peak electric field (or equivalently, peak intensity) at a given

radius. The model takes advantage of this fact to dramatically speed up evaluation

of the ionisation fraction. The fraction is evaluated for the whole pulse, assuming a

Gaussian pulse with a given pulse length, for a set of peak intensities. The model

then uses this data as a lookup table to find the ionisation fraction at a given peak

3The limitations introduced by this assumption are discussed in section 5.8.
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Figure 5.6: Final ionisation fraction as a function of peak intensity for a 40 fs Gaus-

sian pulse. For peak intensities greater than 2.47 × 1014 W cm−2, the threshold for BSI
is reached, and the gas is completely ionised.

intensity. A sample lookup table is plotted in figure 5.6 for a 40 fs pulse.

The pulse intensity profile I(r) and ionisation fraction η(r) are now known, and

it is possible to work out the effect that the ionisation has on the energy of the

pulse E. To do this, the known intensity profile must be converted to energy, the

energy adjusted for ionisation induced losses and then converted back to give a new

intensity profile.

Intensity is defined as energy per second per unit area so, by definition,

E =

∫∫

I(r, t) dr dt, (5.12)

where E is the total energy in the laser pulse. In this case, the time profile of the

pulse is assumed to be constant and the spatial profile is assumed to be radially

symmetric, so

I(r, t) = I(r) × I(t), (5.13)

where I(r) is the peak intensity as a function of radius and I(t) is the temporal
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intensity profile. For a Gaussian profile with FWHM τ ,

I(t) = exp

(

− t2

τ2
g

)

. (5.14)

where τg = τ

2
√

ln 2
is the Gaussian width corresponding to FWHM τ .

The energy density E
′(r) — energy per unit area — is given by integrating the

intensity over time only:

E
′(r) =

∫ ∞

−∞
I(r, t) dt

= I(r)

∫ ∞

−∞
exp

(

− t2

τ2
g

)

dt

=
√

πτ2
g × I(r)

E
′(r) =

√

π

4 ln 2
× τ × I(r). (5.15)

From the definition of energy density, the energy E(r) in a ring of radius r, with

thickness ∆r, is given by

E(r) = 2πr ∆r × E
′(r). (5.16)

Thus the total energy in such a ring at radius r is given by

E(r) = 2π r ∆r τ

√

π

4 ln 2
× I(r). (5.17)

As the energy in the laser as a function of radius is now known, it is necessary

to determine the loss of energy due to ionisation. Here the loss is assumed to be

1 ionisation potential of the gas involved, Ip, per ionisation event. The loss Eloss is

then simply given by the number of ionisation events NI multiplied by Ip:

Eloss(r) = NI × Ip

= pNatm × 2πr ∆r ∆z × Ip (5.18)

where p is the pressure of the gas at the relevant position and Natm is the number
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density of atoms at atmospheric pressure. The pressure p can vary with z position

as is necessary to model the actual capillary system. The pressure profile used in

the model is that described in section 2.5.

To calculate the new energy in the ring, Eloss(r) is subtracted from the original

energy E(r). This energy is then converted back to intensity and then to electric field

strength. Since this procedure only yields |E|, the original phase values are used, i.e.

the ionisation process is assumed not to change the phase of the electric field. The

mode coefficients are recalculated using equation (5.5) and the propagation process

repeated.

The ionisation mechanism for energy loss causes a reshaping of the beam, as

more energy is lost from the centre of the capillary where the ionisation fraction is

highest. Therefore, when the mode coefficients are recalculated after loss, energy will

have shifted between modes. In general, energy will be shifted from the EH11 mode

into higher order modes as the intensity profile after ionisation will be flattened.

As the beam propagates, these higher order modes attenuate faster than the EH11

mode, and so the mode reshaping induces an extra loss in addition to that caused

directly by ionisation.

5.5 Numerical implementation and testing

To implement the modal propagation model numerically, the input beam (assumed

to be Gaussian, with specified alignment parameters as defined in section 5.3) is

sampled on a Cartesian grid in the plane of the capillary entrance with 150 points

in each of the x and y directions. The first 30 EH1m capillary modes are sampled

on the same grid, and the overlap integral is taken with each mode (equation (5.5))

to find the field coupling efficiency Cm for each mode. Inside the capillary, the

calculations are carried out at 300 z points between z = 0 and 7 cm. At each z

point the summation over modes and loss calculations are carried out on an r grid

with 151 points 0 ≤ r ≤ a.

To test convergence, the simulation was run with double the number of grid
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points (in x, y, z and r seperately) and with double the number of modes modelled.

In all cases no significant differences were observed in the higher resolution results.

As an example, the total number of ionisation events remained the same to 3 sig-

nificant figures. If the simulation is run with no gas in the capillary, the numerical

propagation code reproduces the analytic predictions of intensity in the capillary as

a function of z and r. The results are also stable with respect to small changes in the

input physical parameters (alignment parameters and input power). The coupling

calculations reproduce those of [145] for the simple case of varying the spot size w.

5.6 Beating of capillary modes

One effect that has been previously predicted [60] and observed [61] elsewhere is the

beating of capillary modes. Consider two modes propagating in a capillary, the EH11

and EH12 modes. As these two modes propagate, they have different propagation

constants and the modes develop phase slip relative to each other. This phase slip

causes the modes to interfere with each other as they propagate: at point z the two

modes add constructively, and at z+ ζ
2 , where ζ is the distance equivalent to a phase

shift of 2π rad, the two modes interfere destructively.

Figure 5.7 shows the difference in intensity profile at the points of complete con-

structive and destructive interference. The difference is significant, even for an EH12

mode with 8 % of the intensity of the EH11 mode. Figure 5.8 shows the intensity

variation along the capillary for two modes and for only the EH11 mode. It can be

seen that the peak intensity is actually higher in the case of the two-mode system

because — as is seen in figure 5.7 — the intensity profile at the constructive inter-

ference point is narrower than that of a pure EH11 mode. Also, at the destructive

interference point, the intensity profile no longer has a maximum at r = 0 and is

now a ring, rather than a peak.

For two modes, EH1p and EH1q, the beat length ζpq can easily be derived by

setting

ζpq ∆βpq = 2π, (5.19)
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Figure 5.7: Intensity profiles of constructive and destructive interference of the EH11

and EH12 modes. The interference is between 92 % power in the EH11 mode (shown for
comparison) and 8 % power in the EH12 mode. The peak intensity is much higher in
the constructive interference case than with only the EH11 mode.
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Figure 5.8: Peak intensity as a function of length and radius for (a) only the EH11

and (b) a mix of EH11 and EH12 modes. The colour scale used to represent intensity is
the same in each case. The total energy in the 40 fs pulse at the start of the capillary
is 400 mJ in each case. In (b) 92 % of the energy is in the EH11mode, and 8 % is in
the EH12 mode.

where ∆βpq = β1p − β1q and β is defined in equation (2.16a). This gives

ζpq =
8π2a2

λ
(

u2
1q − u2

1p

) (5.20)

as given in [60].

The use of this beating for quasi-phasematching has been suggested [146, 147],

as the intensity modulation in the driving laser modulates any harmonic generation

from the guide. One problem with this scheme is that in order to obtain modulation

on a sufficiently small length scale, the beating must be between the EH11 mode and

high order modes; the shorter the modulation length, the higher order the mode.

These high order modes are more lossy, and so tend to decay along the length of the

capillary, reducing the beating effect. Also, the group velocity mismatch between

modes is sufficient to significantly reduce the overlap in time between pulses in

different modes over the capillary length. Dromey et al. [147] suggest that the

nonlinear mode coupling could be sufficient to repartition energy into higher order

modes during propagation, thus overcoming these difficulties, but this repartition is
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difficult to control experimentally and so relies on the correct reshaping occurring

naturally.

5.7 Comparison of the model to experiment

The experimental data in this section were taken by other members of

the group, primarily Chris Froud and Richard Chapman. The theoretical

results and analysis are my own.

The propagation model, as described above, has two outputs that can easily be

compared to experiment: the output pulse energy and the number of atoms ionised

at a given position in the capillary. The output pulse energy can be measured using a

power meter to measure the average laser power and dividing by the laser repetition

rate. Measurement of the number of ionised atoms was done indirectly by using a

CCD camera to record the fluorescence observed though the side of the capillary

wall. Figure 5.9 shows a schematic of the arrangement. The number of ions in

the capillary is determined from measurement of the intensity of light emitted from

the 488 nm emission line in Ar+ . It is assumed that the intensity of emission is

proportional to the number of Ar+ ions in the capillary. This only gives a relative

measure of the number of ions at a given point, as the number of emitted photons

per ion is not known, but this is sufficient to show the variation of ionisation level

in the capillary. Also, the resolution of the imaging is not sufficient to determine

emission as a function of radius. This is partially due to the camera resolution and

choice of imaging optics, but is also due to the side wall of the capillary itself and

the tube in which the capillary is mounted, each of which introduce aberrations in

the radial direction.

When comparing the model to experiment, it is necessary to know the input

coupling parameters, w0, x0, y0, z0, θ and ϕ, as described in section 5.3. For

the experimental arrangement, w0 can be determined by accurate measurements

of the beam before focusing and knowledge of the focusing optics, as well as by
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Capillary

Imaging LensCCD Camera

Power Meter

Laser In
Bandpass filter

Figure 5.9: Schematic of the arrangement used for taking measurements of argon ion
fluorescence in the capillary for comparison to the modal propagation model. The filter
used is a 488 nm bandpass filter to isolate emission from the Ar+ ions.

direct measurement. This parameter can therefore easily be set in the model. The

other parameters are harder to measure experimentally. The experimental alignment

procedure seeks to minimise all these parameters in order to obtain the best possible

coupling — achieved at x0 = y0 = z0 = θ = ϕ = 0. It is likely, however, that perfect

alignment is not achieved, as experimental measurements with no gas never reach the

theoretically achievable 98 % transmission. This imperfect transmission is seen in

various experiments in the literature [79,129,130,141], and is attributed to a variety

of plausible causes; for example, pointing instability of the laser [79]; a non-Gaussian

input beam [79,129,141]; and a slightly elliptical beam [141].

Measurements of the pointing stability indicate that instability is not a signifi-

cant factor in our experiments. The non-Gaussian and elliptical beam profiles are

possibly a contributing factor to the experimental transmissions, but are difficult to

quantify. Here, I will investigate the possibility that the reduced transmissions are

due to misalignment of the capillary relative to the laser, and use these misalignment

parameters to compare my model to experiment.
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Figure 5.10: Schematic of the alignment arrangement for the capillary. Each end of
the capillary can be translated independently in the x and y directions (perpendicular to
the propagation direction). The focusing lens can be translated in the z direction.

5.7.1 Experimental procedure

The arrangement used is that described in section 2.4. Here, some additional details

of alignment arrangements and experimental procedures are given. The alignment

arrangement for the capillary is shown in figure 5.10. To align the capillary, first

the z position of the lens is set, then the capillary is aligned by alternately moving

the entrance and exit faces. The optimum alignment is considered to be when

the transmission is at a maximum and the image (recorded at the ‘Measurement’

position in figure 4.4) is as symmetric as possible. For each z position of the lens, the

transmission of the capillary is recorded with no gas present, and then the nominal

gas pressure in the capillary is increased from 0–100 mbar in 10 mbar steps. At each

pressure, setting the fluorescence from the Ar+ ions in the capillary is recorded.

In the latest set of experiments, reported here, the transmission of the capillary

with gas was not recorded as, at the higher pressures used, the gas caused the

fundamental beam to diverge sufficiently that the beam was clipped at the exit

window, and so the power could not be reliably measured. This effect indicates

that these experiments are reaching the limits of the regime in which this model
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can be successful. For accurate modelling of the regime where plasma defocusing

has a significant effect, a more sophisticated model, as discussed in section 5.9, is

needed. In earlier experiments, with only slightly lower transmission (∼ 60–70 %,

rather than the ∼ 80 % achieved here) these effects were not observed. The lower

transmission experiments are not reported, as the alignment procedure in that case

was not consistent, and the pointing stability of the laser was not as good. These

effects make comparison with theory more complex.

5.7.2 Results

Figure 5.11 shows the experimentally measured transmission as a function of z0 for

the more recent, high transmission, experiments. As the experimental measurements

only give relative values of z0, the relative values z0R have been centred as z0 =

z0R − zc, where zc is the centre of mass of the data points. The centre of mass is

given by

zc =

∑

ziTi
∑

Ti

, (5.21)

where zi and Ti are the z position and transmission of the ith data point respec-

tively. This selection of a zero point is necessary as the lens can be moved on a

translation stage towards and away from the capillary with high accuracy, but ac-

curate measurements of the exact distance between the capillary and lens could not

be taken.

The transmission data show a peak in transmission, as is expected from the

coupling efficiencies plotted in figure 5.4(a). However, the peak value is at ∼ 82 %

rather than the value of 98 % that is expected for perfect coupling. Experimental

measurements have determined that the spot size w0 at the capillary is close enough

to 0.64a that spot size should not have this effect.4 This leaves the possible explana-

tions for lower coupling efficiency as a non-Gaussian or elliptical beam, an imperfect

capillary, or misalignment in the other four degrees of freedom (x0, y0, θ and ϕ).

4From examination of figure 5.2 it is seen that the coupling efficiency is not strongly dependent
on w0 in the region w0 ≈ 0.64a.
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Figure 5.11: Experimentally measured capillary transmissions as a function of z po-
sition of the focusing lens. See text for details of the determination of the values of
z0.

Any of these are possible causes of the observed low transmissions. Measurements

of the beam profile in the region of the focus show approximately Gaussian profiles,

but the measured M2 factor of the beam [123] is 1.8, indicating that the beam is

not a perfect Gaussian. The capillary entrance was imaged under an optical micro-

scope before the experiment began, and no imperfections were noted, but the laser

may have damaged the capillary during the experiment. The issue of misalignment

is complicated by the fact that the alignment changed between each transmission

measurement, due to adjustment of the lens. This means that the alignment for the

experiment cannot be specified by one particular set of x0, y0, θ, ϕ that are constant

for all z0, but that they can change between z0 settings.

Even in light of this, it is still instructive to investigate the size of misalignment

needed to reduce the transmission to the experimentally observed values. It is

possible that the alignment procedure may have a tendency to get stuck in a local

maximum of transmission and thus a similar value of the misalignment parameters

may be found at all z positions.

To simplify the investigation, the misalignments will be restricted to two degrees

144



Chapter 5 Development of a modal propagation model

0

20

40

−5
0

5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

x offset /µm
z offset /mm

 

x 
an

gl
e 

(θ
) 

/d
eg

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.12: Theoretically predicted transmission of the capillary as a function of x0,
z0 and θ. Transmission is denoted by the colour scale, as shown in the colour bar. The
slices are at the z0 values used in the experiment.

of freedom, x0 and θ, with the other values assumed to be y0 = ϕ = 0. As the field

profile in the capillary can be assumed to be radially symmetric (section 5.3.2), x0

and y0 are equivalent, as are θ and ϕ. Therefore, this approximation still allows the

model to account for all effects except those caused by an angular misalignment out

of the plane of a translational misalignment.

Figure 5.12 shows the predicted transmission of the capillary with no gas as a

function of the three misalignment parameters z0, x0 and θ. This figure shows an

interesting feature of the misalignment in multiple dimensions. For negative z0 and

a positive x0, the transmission actually increases with θ, as the laser rotates around

its focal point to line up with the capillary entrance. This is shown more clearly in

figure 5.13 which plots the surface in (x0, z0, θ) space for which the transmission is

80 %. (This value was chosen as it is around the experimentally measured values.)

The region of interest is on the right hand side, where the surface “bulges” as θ

increases. In the rest of the plot, transmission decreases with increasing θ; here the

transmission has a peak at θ 6= 0.

The main use of figure 5.13 from the point of view of determination of exper-
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Figure 5.13: Surface for which the theoretically predicted transmission with no gas is
80 %. The region in which a misalignment in angle increases the transmission is clearly
seen on the right hand side.

imental parameters, is that it may be used to reduce the degrees of freedom that

must be considered in misalignment. Consider the case for one z position (plotted in

figure 5.14 for z0 = −1 mm). In principle, the actual experimental alignment could

lie anywhere on this plane. However, if the transmission with no gas is known, the

experiment is restricted to those points along the line with the correct transmission.

This means that for each z0 position, there is only one free parameter; if x0 is free,

θ is known, and if θ is free, x0 is known. This analysis reduces the parameter space

that must be searched to fit experiment to theory from a 2-dimensional space to a

1-dimensional one.

Pressure variation

The results of the experimental runs are shown in figure 5.15. The experimental

pulse is Gaussian in time with a FWHM pulse length of 40 fs and a pulse energy of

768 µJ. These images show the variation in intensity of fluorescence from Ar+ ions

as a function of propagation distance z and nominal pressure. The actual pressure

profile in the capillary is described in section 2.5. Briefly, it consists of a constant

region at the nominal pressure between the gas inlet holes, a step of ∼ 20 % and
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Figure 5.14: Theoretical transmission with no gas as a function of x0 and θ for
z0 = −1 mm. The black line is the 80 % contour. The experimental parameters x0 and
θ must lie somewhere on the black line.

then a linear gradient to zero at the entrance and exit faces. The expected beating

between modes is seen, although the complex structure makes it difficult to resolve

the exact beats from these plots. This beating is discussed as a function of z0 below.

To compare these data to the theory, the experimental values of z0, pulse length,

pulse energy and capillary geometry are used as input to the modal propagation

model. The transmission with no gas was used to reduce the choice of coupling

conditions to one free parameter: the ratio of x0 to θ. The theoretical predictions for

four values of this parameter are shown in figure 5.16 for z0 = −1 mm. Comparing

the various plots in figure 5.16, it is seen that the main features remain constant

over the coupling changes, but that in general increasing x0 and reducing θ leads

to an increase in fine structure in z. The experimental data do not show this fine

structure, but this may be due to the resolution of the experimental measurements

as scattering of emitted light by the capillary and containing tube walls may be

smoothing the observed data. The increase in fine structure can be qualitatively

explained by looking at the effect of x0 and θ on an otherwise perfectly coupled

capillary (figure 5.17).
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(d) z0 = 1 mm
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(e) z0 = 3 mm
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(f) z0 = 5 mm

Figure 5.15: Experimentally observed capillary fluorescence as a function of propa-
gation distance and nominal pressure. Colour is proportional to the intensity of the
observed fluorescence, with the same colour scale across all figures. The red dotted lines
mark the capillary entrance and exit. The white dotted lines mark the two gas inlet
holes in the capillary. The beam propagates from right to left, i.e. the capillary entrance
is at z = 0 mm.
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(a) x0 = 0 µm, θ = 0.113◦
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(b) x0 = 10.5 µm, θ = 0.099◦
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(c) x0 = 17.9 µm, θ = 0.016◦
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(d) x0 = 17.7 µm, θ = 0◦

Figure 5.16: Theoretically predicted capillary fluorescence as a function of propaga-
tion distance and nominal pressure for various different misalignment parameters. In
all figures z0 = −1 mm and the transmission with no gas is the experimentally mea-
sured value of 82 %. These theoretical figures correspond to the experimental results in
figure 5.15(c). Colour is proportional to the number of Ar+ ions present. The capillary
entrance and exit are at the edges of the figure. The white dotted lines mark the two
gas inlet holes in the capillary. The beam is propagating from right to left.

149



Chapter 5 Development of a modal propagation model

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

x angle (θ) /deg

P
ow

er
 c

ou
pl

in
g 

ef
fic

ie
nc

y

 

 

EH
11

 / 20

EH
12

EH
13

EH
14

EH
15

(a)

0 0.5 1 1.5 2 2.5

x 10
−5

0

1

2

3

4

5

6

7
x 10

−3

x offset  /µm

P
ow

er
 c

ou
pl

in
g 

ef
fic

ie
nc

y

 

 
EH

11
 / 20

EH
12

EH
13

EH
14

EH
15

(b)

Figure 5.17: Power coupling efficiency of each mode as a function of (a) θ and (b)
x0. Note that increasing θ increases the proportion of the EH12 mode, while increasing
x0 decreases it. The efficiency of the EH11 mode has been divided by 20 to fit on the
same scale.

In figure 5.17 it is seen that the response of the EH12 mode to the different

misalignments is very different. For similar reductions in EH11 coupling (∼ 20 %),

the EH12 mode increases in intensity by a factor of ∼ 3 if the capillary is misaligned

in angle, while the higher order modes (m > 2) reduce in intensity. In contrast,

if the capillary is misaligned in x0, the EH12 mode is suppressed, while the higher

order modes are more strongly excited. This leads to the observed strong beats at

a beat length of 23 mm — the beat length between the EH11 and EH12 modes —

in the angle misaligned case, and suppression of these beats and beating at many

higher frequencies in the offset case.

A qualitative comparison of figure 5.16 and figure 5.15(c) shows that figure 5.16(c)

is the best match between experiment and theory, with a similar pressure response

and three strong, sharp beats: one at ∼ 23 mm; one at ∼ 30 mm; and one at

∼ 42 mm. Thus, these parameters, or their equivalent when adjusted for z0 and

the experimentally measured transmission, are used in the remainder of this discus-

sion.

Figure 5.18 shows the theoretically predicted Ar+ concentrations for all the ex-

perimentally used z0 values. The agreement between experiment and theory is rea-
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(a) z0 = −5 mm, x0 = 27.3 µm, θ = 0.632◦
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(b) z0 = −3 mm, x0 = 22.0 µm, θ = 0.047◦
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(c) z0 = −1 mm, x0 = 17.9 µm, θ = 0.016◦
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(d) z0 = 1 mm, x0 = 18.3 µm, θ = 0◦
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(e) z0 = 3 mm, x0 = 20.8 µm, θ = 0◦
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(f) z0 = 5 mm, x0 = 26.1 µm, θ = 0◦

Figure 5.18: Theoretically predicted Ar+ concentrations as a function of propagation
distance and nominal pressure for the experimental z0 values and best fit misalignment
parameters. In each figure the transmission with no gas is the experimentally measured
value (figure 5.11). These theoretical figures correspond to the experimental results in
figure 5.15. Colour is proportional to the number of Ar+ ions present. The capillary
entrance and exit are at the edges of the figure. The white dotted lines mark the two
gas inlet holes in the capillary. The beam is propagating from right to left.
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Figure 5.19: Experimentally observed fluorescence as a function of z and z0 at a fixed
pressure of 40 mbar. The solid red lines mark the expected position of the EH11–EH12

beat and the solid black lines mark the position of the EH11–EH13 beat (see text for
explanation). The EH11–EH12 beats are not observed. Colour is proportional to the
intensity of the observed fluorescence. The red dotted lines mark the capillary entrance
and exit. The white dotted lines mark the two gas inlet holes in the capillary. The beam
is propagating from right to left.

sonably good, though quantitative comparisons are difficult between the plots. A

more quantitative comparison can be made by looking at the variation of emission

with z0 at a single pressure, as is done in the next section.

Variation with z displacement

For comparison at a single pressure, the value of 40 mbar is chosen. This pressure

is in the middle of the experimental range, and is low enough that the ionisation

effects should play a small role, yet high enough that a reasonable fluorescence signal

is recorded. Figure 5.19 shows the experimentally observed fluorescence as a function

of z and z0 for a fixed pressure of 40 mbar. The solid lines in the figure show the

expected position of the beats between the EH11 mode and each of the EH12 and

EH13 modes. These are calculated using equation 5.20, with a modification of the

first beat length due to the phase shift between modes at coupling. In figure 5.4(b)
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it was seen that the relative phases of the modes at the capillary entrance were

dependent on z0. This shift should change the position of the first beat in the

capillary, and all subsequent beats should follow the first at the standard beat length.

Investigation of the coupling phases as a function of x0 and θ shows that these

misalignments do not affect the phase, so only phase shift due to z0 is relevant

here. If the difference between phases of mode EH1p and EH1q due to coupling is

∆φ = φp−φq, then the length of the first beat, in terms of the standard beat length

ζpq, is

ζ ′pq =

(

1 − ∆φ

2π

)

ζpq. (5.22)

This value is used to calculate the positions of the beats in figure 5.19; for each z0

value, lines are plotted at z = ζ ′pq + nζpq where n = 0, 1, 2, . . . .

In figure 5.19 the beats of the experimental data are clearly seen to correspond

to the EH11–EH13 beat, with no evidence of beating between the EH11 and EH12

modes, which indicates that the EH12 mode is being suppressed. The same pattern

of beats is also seen at all experimental pressures, which indicates that ratios of the

modes are not significantly changed by propagation, i.e. that the nonlinear coupling

between modes is weak at pressures up to 100 mbar.

The theoretical data (figure 5.20), in contrast to the experiment, show strong

EH11–EH12 beats, and overall little evidence of EH11–EH13 beats. In the two centre

z0 positions, z0 = ±1 mm, there is evidence of beating at the points expected for the

EH11–EH13 beats, but it is weak compared to the EH11–EH12 beats. This effect is yet

to be explained fully by the theory, but it could be due to alignment effects because,

as demonstrated in figure 5.17, misalignment can suppress the EH12 mode. It is also

possible that it is due to coupling effects not included in the model, for example an

elliptical or non-Gaussian beam. One extension to this analysis is to look at whether

suppression of the second mode is possible in more complex misalignments, those

with multiple non-zero misalignment parameters, and if so, in what regions of the

(z0, x0, θ) space it can occur.
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Figure 5.20: Theoretically predicted Ar+ ion concentration as a function of z and z0

at a fixed pressure of 40 mbar. The solid red lines mark the expected position of the
EH11–EH12 beat and the solid black lines mark the position of the EH11–EH13 beat (see
text for explanation). In contrast to the experimental data (figure 5.19) the EH11–EH12

beats are present and the EH11–EH13 beats are not discernable. Colour is proportional
to the intensity of the observed fluorescence. The capillary entrance and exit are at the
edges of the figure. The white dotted lines mark the two gas inlet holes in the capillary.
The beam is propagating from right to left.
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Figure 5.21: Output pulse energy as a function of nominal pressure in the capillary
for various input pulse energies at low coupling efficiencies. The analysis of these
experimental data is not as extensive as that above, but the best fit coupling parameters
were determined in a similar way. The agreement is good, and shows that modifying the
experimental arrangement to allow power measurements at high coupling efficiencies is
worthwhile.

5.8 Uses and limitations of the model

The modal propagation model described above has demonstrated good qualitative

agreement with experiment with respect to the observed fluorescence, and has given

insight into the effect of coupling alignments in the capillary. Due to experimental

limitations, it has not been possible to compare the observed output pulse energies

with the theoretical predictions for the most recent data sets. However, initial

results for various input powers at lower coupling efficiencies (figure 5.21) show that

the results are promising. The next stage is to refine the experimental arrangement

to allow power measurements at high transmissions.

This modal propagation model has several uses when applied to the experiments

described. The analysis of coupling effects can be used to refine the experimental

alignment procedure to obtain the desired coupling. This will normally be coupling

for maximum transmission, but may also include suppression of various modes to

obtain a particular beating pattern.
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The agreement between experiment and theory in the magnitude of fluorescence

observed in the pressure gradient regions relative to the centre region, gives an inde-

pendent experimental verification of the pressure profile predicted by CFD modelling

(section 2.5). This gives confidence in the use of further CFD modelling that has

been undertaken to design capillaries with tailored pressure profiles for optimum

harmonic generation.

The optimisation of capillary design is an area where the modal propagation

model can be of direct use, as well as confirming gas flow simulations. In order to

generate high harmonics, it is necessary to ionise the generating gas. Therefore, in a

simplistic picture (avoiding the complications of, for example, phasematching), the

XUV generation at particular a z coordinate is simply proportional to the number of

ions created at that z coordinate. However, any XUV radiation is strongly absorbed

by the gas. For this reason, the ideal capillary for generation would have a constant

pressure region with a sharp drop to very low pressure and a peak in ionisation at

the end of the high pressure region (figure 5.22). This design requires a combination

of the gas flow CFD modelling and propagation modelling to determine the optimum

capillary profile.

The limitations of the modal propagation model lie in the lack of temporal and

spatial variation of the pulse, and the neglect of plasma defocusing effects. The

plasma defocusing is caused by the refractive index of the capillary being lower in the

centre due to the higher concentration of free electrons; this should cause nonlinear

coupling between modes. The nonlinear coupling is weak in the experimental results,

as discussed previously, so the neglect of plasma defocusing is a small effect.

The temporal reshaping of the pulse, on the other hand, may be having a signifi-

cant effect, as the intensities used in the experiment are approaching those at which

temporal and spectral effects have been observed in other experiments [140, 141].

The main effects introduced by temporal modelling are temporal amplitude reshap-

ing of the beam, where the leading edge of the beam is more strongly absorbed due

to ionisation; phase reshaping, where the trailing edge of the pulse is travelling in
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Gas Pressure

Ionisation

Generation

Absorption

Emission

Figure 5.22: Schematic of an idealised capillary for high harmonic generation, in a
simplistic scenario where generation is proportional to ionisation. The pressure profile
is constant, with a sharp drop to zero pressure; the ionisation fraction is oscillating,
as observed, due to mode beating. The generation is simply the product of these two
functions. Absorption from a particular z coordinate is also shown, and the last curve
shows emission from a particular z coordinate, given by the emission from that point
multiplied by the absorption. An ideal capillary has a peak ionisation rate coinciding
with the end of the high pressure region.
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a lower refractive index medium, and so should “catch up” with the leading edge;

and temporal walk-off between capillary modes, as each mode has a different group

velocity in the capillary. These effects are included in the more sophisticated model

currently in development and described in section 5.9.

5.9 Further work

The modal propagation model (MPM) presented above has many uses in predicting

experimental output and improving experimental procedures and design. It is also

computationally fast, and provides a qualitative measure of the XUV generation.

However, the model also has several limitations: it is not able to model spectral

or temporal evolution of the pulse and it does not take into account the plasma

defocusing effects that should lead to coupling between modes. The uses of this

model suggest that the development of a more sophisticated model that can take

into account plasma defocusing and temporal effects is worthwhile, and such a model

is being now being developed.

5.9.1 Time-dependent model development

This section is a collaboration with Peter Horak of the Optoelectronics

Research Centre. The analytic and computational development of this

model is being undertaken by Peter Horak. The model is being guided by

the experimental and theoretical results presented above.

This more sophisticated model — which will here be called the multimode non-

linear Schrödinger equation (MM-NLSE) model, due to the form of propagation

equation used — was originally developed for modelling nonlinear propagation in

optical fibres [148] and has subsequently been converted to use the nonlinear effects

of plasma generation in place of the standard nonlinear effects of fibre optics.5 As

with the MPM, the new model treats the electric field within the capillary as a

5See [144] for a discussion of nonlinear propagation in optical fibres.
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sum of capillary modes with coefficients Cm(z). However, instead of the coefficients

being the same for the whole pulse, they are now a function of time Cm(z, t) so

the electric field profile is now changing in time. The other major difference be-

tween the MPM and the MM-NLSE model, is that the MM-NLSE model does not

propagate each mode coefficient separately (equation (5.10)), but instead derives an

equation for propagation that takes into account the coupling between modes due

to the presence of the plasma. The MPM assumes that

dCm(z)

dz
= iγmzCm(z) =⇒ Cm(z) = Cm(0) exp (iγmz) , (5.23)

which allows no coupling or cross-talk between modes, as the value of Cm depends

only on previous values of Cm. In the new MM-NLSE, Cm is not only a function of

z but also of t, as described above, and a propagation equation of the form

∂Cm(z, t)

∂z
= f

(

C1 (z, t) , C2 (z, t) , . . . , CM (z, t)

)

(5.24)

is derived. This equation implies that the change in Cm between points z and z+∆z

is dependent, in principle, on the coefficients of all modes present. A simple example

that shows the necessity of this more complex approach is that of an intense pulse

propagating in a medium with a nonlinear refractive index n2. The total refractive

index is then given by n = n0 + n2I, where n0 is the linear refractive index. To

propagate this beam, it is necessary to know the intensity at each point, and therefore

the propagation of each mode depends on the total intensity of all modes. The case

in question here is more complex, and the refractive index is not determined by a

simple dependence on total intensity. Instead, it is determined by the ionisation

fraction, which is a more complex function of the total electric field at preceding

times. Propagation using equation (5.24) allows coupling between modes due to

plasma defocusing that was not possible with the MPM.

The MM-NLSE model also introduces a time dependence of the electric field,

rather than dealing solely with the peak value and assuming a Gaussian pulse in time.
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This change allows the incorporation of several new effects: temporal reshaping due

to ionisation losses at the peak of the pulse; temporal reshaping due to the trailing

edge of the pulse propagating in a plasma, with the leading edge in neutral gas;

and group velocity walk-off between capillary modes. The temporal information

also allows calculation of the spectrum at any point in the capillary, and hence the

evolution of the spectrum along the capillary.

The major disadvantage of the MM-NLSE model compared to the MPM is the

computational time needed to run. For a single run, this model takes ∼ 30 min

to run, compared to a few seconds for the MPM. This makes it unsuitable for

parameter scans (over coupling parameters) in the way the previous model was used,

without very significant increases in computational resources. In order to keep the

computational effort tractable, compromises have also been made in the precision

of results obtained. The number of radial points has been reduced as far as possible

while still keeping the ability to decompose into capillary modes, thus the number

of points radially is set equal to the number of modes modelled. This is typically

10-30 points, compared to the 150 that were used in the MPM.

The MM-NLSE model also does not include BSI, as to do so introduces large

temporal and spatial step changes in ionisation fraction. These abrupt steps require

that a very small step size in z is used to maintain the accuracy of the simulation

and increase the computing requirements to high levels.

Since the MM-NLSE model is difficult to use for large parameter scans, it may be

beneficial to determine the coupling parameters using the MPM model, as demon-

strated above, and then use the MM-NLSE to confirm, and possibly correct, the

parameters on the small scale, and also to determine the spectral and temporal

profile of the beam during and after propagation. This use would combine the ben-

efits of the computationally fast MPM and the extra information provided by the

MM-NLSE model.
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(a) 300 µJ (b) 500 µJ

(c) 650 µJ

Figure 5.23: Temporal and spectral profiles of a laser pulse of various pulse energies
after propagation through a capillary, as predicted by the MM-NLSE model. In each
case, the top plot shows the time profile, and the bottom plot the spectrum. The lines
are: solid blue line – EH11 mode; solid green line – EH12 mode; solid red line – EH13

mode; black dotted line – sum over all modelled capillary modes. The input pulse length
is 40 fs; the capillary nominal pressure is 80 mbar.

Time-dependent model results

The MM-NLSE model is still under development, and no systematic comparison of

the predictions of theory to experimental results has yet been undertaken. Here,

some preliminary results are presented to show the type of information provided by

the MM-NLSE model.

Figure 5.23 shows the results of three sample runs of the MM-NLSE model at

different input powers. These are all for optimum coupling, so the 650 µJ plot is

close to the experimental conditions used above. The results show that at 300 µJ,
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the pulse spectrum and temporal profile are largely unchanged by propagation, with

a slight shift in time of the EH12 mode relative to the EH11 mode due to the differing

group velocities of the two modes. At 500 µJ the spectrum of the pulse has begun to

evolve, but the temporal profile is largely unchanged, still being roughly Gaussian

in shape with a 40 fs pulse length. Only at the 650 µJ pulse energy is any significant

temporal pulse distortion seen, and this is at 80 mbar, which is at the high end

of the experimental pressures used in the results presented above. In principle,

this shows that, as expected, the approximations of the MPM model break down

at around the high pressure end of the experimental parameters used, and that

the MM-NLSE model is better suited to higher powers and pressures than those

used above. These higher powers and pressures are available experimentally, and so

modelling of these regimes is of interest. The results also show that at high powers

and pressures, the EH12 and EH13 modes are more strongly excited, implying that

nonlinear mode coupling is having a significant effect. Only nonlinear mode coupling

due to amplitude reshaping is accounted for in the MPM model, whereas the MM-

NLSE model also includes coupling due to plasma defocusing. For this reason, the

MM-NLSE model should be more accurate as mode coupling becomes significant.

The plots show that in general, the different spatial modes of the capillary have

different temporal and spectral profiles, and it would therefore be useful to have a

way of separating these modes experimentally, so that the spectral content of each

mode, for example, could be measured. If the capillary mode profiles (as defined

in section 2.3) are propagated into the far field using Fraunhofer diffraction (as

described in section 4.4.3), then the intensity profiles of each mode at a large distance

from the capillary can be found. These intensity profiles are plotted in figure 5.24 as

a function of angle. For each mode other than the EH11, there is a position where

there is a peak of intensity coinciding with a zero of intensity for all the other modes.

In principle, if a sufficiently small detector can be used to sample this spatial region,

it could obtain information about the spectral properties of that mode. However,

this analysis is carried out for a quasi-monochromatic beam, and beams with a large
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Figure 5.24: Angular intensity profiles of the first five capillary modes after propa-
gation into the far field. For each mode EH1m, where m ≥ 2, there is a peak at some
angle at which all the other modes have zeros of intensity.
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bandwidth will smear out the propagated structure, leading to washing out of the

zeros of intensity. If the propagation equations are analysed, it is found that the

angle to which a particular spatial frequency is diffracted is proportional to the

wavelength of the light. This means that a beam with a 700–800 nm bandwidth,

as shown in figure 5.23(c), will have a ± ∼ 7 % spreading of the angular intensity

profile. Further work is needed to determine whether the resolution of this spatial

method of mode selection is sufficient to resolve spectrally broadened beams.

5.9.2 Propagation model as input to phasematching calculations

A further development that could be applied to either of the propagation models

studied here, is to use the output of the model as an input to the phasematching

model described in chapter 3. This would prediction of the XUV flux, spectrum

and spatial profile, given a set of input coupling parameters and a gas profile. This

would be most useful after the effects of pressure gradients have been taken into

account (section 4.5.1) to fully model the whole capillary length.

The greatest benefit would be obtained by using the output of the MM-NLSE

model rather than the MPM, as the MM-NLSE predicts the full spatial and tempo-

ral profile of the laser field and would thus provide most information to the spatially

and temporally dependent phasematching calculations. The use of the MPM model

would provide greater spatial information than is currently used in the phasemat-

ching model, but would not provide any new temporal information.

While the temporal profile from a propagation model could easily be included in

the phasematching model, the use of a multimode generation beam would require

further work, as the current model assumes a single propagation constant for the

fundamental beam (the propagation constant of the EH11 mode β11). While this is

easily corrected for any other single mode — i.e. the propagation constant of mode

EH1m, β1m, can be used in place of β11 — a multimode beam is more complex,

as it has no single propagation constant. In principle, each mode of the capillary

should phasematch differently with the generated XUV radiation. In practice, it
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may be acceptable to neglect generation from all modes other than the EH11 mode,

as higher order modes phasematch (∆k = 0) for lower ionisation fractions than the

fundamental.

Recall that the phase mismatch is given by (equation (3.12))

∆k ≈ q
u2

1mλ0

4πa2
+ Nere (qλ0 − λq) −

2πP

λq

{δ(λ0) − δ(λq)} . (5.25)

Setting ∆k = 0 and solving for η = Ne

PNatm
gives

η =
P∆kgas − u2

1m
qλ0

4πa2

P∆kplasma
, (5.26)

where ∆kgas = 2π
λq

{δ(λ0) − δ(λq)} and ∆kplasma = Natmre (qλ0 − λq). So the ion-

isation fraction at which a particular harmonic is phasematched decreases as m

increases. For argon at 50 mbar, the required ionisation fraction for phasematching

with the EH12 mode is negative for all harmonics. Clearly a negative ionisation

fraction is unphysical, and so the second harmonic will never phasematch. As the

pressure increases, it becomes possible to phasematch with the EH12 mode, but

still at a lower ionisation fraction than that at which the EH11 mode phasematches.

Since the ionisation fraction is monotonically increasing, any generation that is pha-

sematched with a high order mode must occur earlier in the pulse than generation

phasematched with the EH11 mode. As all phasematched generation occurs on the

leading edge of the pulse, generation that is phasematched with high order modes

must be driven by a lower strength electric field, and consequently will be of lower

flux.

Another complication introduced by the use of a propagation model to determine

the laser pulse to use for phasematching, is that the pulse produced by the prop-

agation model varies with z position. The assumption made in the phasematching

calculations is that the pulse does not change over the generation region. To use the

model of phasematching presented in chapter 3, it will be necessary to take the laser

pulse at one z and assume that it does not change. This is probably still a good
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assumption because, as described in the assumptions of the phasematching theory,

the generation length is short.

5.10 Conclusions

A modal propagation model has been presented in this chapter for modelling prop-

agation in a capillary filled with ionising gas in a low power, low pressure regime.

The model is computationally undemanding and has demonstrated good agreement

with experiment in its intended use. However, it is limited in that it will not work

for the higher powers and pressures now available experimentally. A more sophisti-

cated model has been outlined that is currently under development in collaboration

with others within the department, and initial results have been shown that con-

firm the validity of the MPM in the low intensity regime. A possible method for

investigating the spectral content of different capillary modes at the output of the

capillary has been suggested, although further work is needed to check the validity

for a polychromatic beam. Finally, the use of the propagation models as inputs to

the phasematching model (chapter 3) has been discussed, along with some of the

complications that would result from a combination of the models. Such a combi-

nation could be very useful in predicting the output of a complete capillary HHG

experiment: from input laser coupling to output XUV intensity.
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Conclusions

Two new models have been presented in this thesis for use in understanding capillary

high harmonic generation. The first is a spatio-temporal model of phasematching in

capillary HHG, and the second is a modal propagation model of high intensity laser

propagation through a hollow waveguide filled with ionising gas.

Phasematching model

The phasematching model takes into account the full spatio-temporal variation of

ionisation fraction to determine the emitted XUV pulse as a function of time, radius

and harmonic number. The model begins by calculating the ionisation fraction as

a function of space and time, which allows calculation of the phase mismatch for

each harmonic at each space and time coordinate. This phase mismatch, together

with knowledge of the absorption characteristics of the gas, allows the full XUV

build-up to be calculated. The model assumes a very simple single atom response,

that of a plateau and hard cutoff at Ec = Ip + 3.17Up. A number of simplifying

assumptions can be made because build-up length is limited to the absorption depth

of the harmonic in the medium, and so is of the order of a few millimetres.

A number of conclusions can be drawn from the model at this stage, the most

notable of which is that the harmonic generation process is self limiting and that

attempts to improve either the flux of photons or the cutoff energy by increasing the
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intensity have a limited effect; in the case of cutoff, the effect is far smaller than is

predicted by simply calculating the cutoff energy at the peak of the pulse.

The model has been compared to experimentally measured spectra for a number

of gases, and found to predict accurately the distribution of energy between har-

monics and the position of the high energy cutoff for argon, nitrogen, nitrous oxide

and neon. The model has been applied to gas mixtures, where helium is mixed

with argon in an attempt to balance the refractive index of the plasma generated

by the argon atoms with that of the neutral helium. This balancing should allow

generation of higher energy harmonics, as the time at which generation is phase-

matched moves closer to the peak of the pulse. When compared to experiment,

qualitative agreement in the movement of the cutoff is seen; however, the theory

tends to over-estimate the magnitude of the increase.

The spatial predictions of the phasematching model, together with semi-classical

predictions of the phase of the harmonics, have been used to investigate the propaga-

tion of the XUV beam after it leaves the capillary and propagates in free space. The

methods used for propagation are the angular spectrum method, in the near field

region, and Fraunhofer diffraction, in the far field, the computational limits of which

are briefly discussed. Propagation calculations are used to predict the divergence of

the XUV beam and give a value which is found to be in agreement with preliminary

experimental measurements. It is also noted that, for a highly polychromatic beam,

such as that generated by an HHG experiment, the M2 measure of beam quality

must be carefully considered, as it depends on the definition of a single wavelength

for the beam which cannot easily be calculated for a polychromatic beam.

Modal propagation model

The modal propagation model is simple and computationally fast, and is based on

the assumptions that the temporal profile does not vary with propagation and the

nonlinear coupling between modes due to phase effects is weak. These assumptions

are shown to be valid in the low pressure, low intensity regime of the experiments

168



Chapter 6 Conclusions

described, but not for higher intensities — including those caused by higher coupling

efficiencies — or higher pressures. A more sophisticated model for these regimes has

been proposed, and is currently being developed in collaboration with Peter Horak

of the Optoelectronics Research Centre.

The effect of misalignment of the capillary on the coupling efficiency of various

modes is discussed, and it is found that for well aligned capillaries, the effect of

non-radially symmetric modes can be neglected even for a non-radially symmetric

input beam. Experimentally, measurements of argon ion fluorescence are taken

through the side wall of the capillary. Comparison of these measurements with

predicted numbers of argon ions, as a function of pressure in the capillary, shows

good agreement. However, when the results are analysed as a function of the z

position of the capillary entrance relative to the beam waist, it is found that there

is strong evidence in the experimental data of suppression of the EH12 mode and

this suppression is not seen in the theoretical data. However, analysis of coupling

efficiencies shows that, in simple cases, certain misalignments can cause suppression

of the EH12 mode. Further work is needed to discover whether this suppression can

extend to complicated misalignments.

The modal propagation model has uses in validating the CFD modelling previ-

ously done by Matthew Praeger that determines the pressure profile in the capillary,

and in designing capillaries for optimum harmonic generation. The optimum capil-

lary would have a pressure profile with a sharp drop just after a peak in ion density,

to generate efficiently with minimum subsequent absorption of the harmonics.

The greatest use of the propagation model would be obtained if the output

of the propagation model, either the modal model or the more sophisticated time-

dependent model, were used as input to the phasematching calculations. This would

provide an end-to-end model of the generation process. Firstly, the input laser beam

is coupled into the capillary and propagated in the presence of the ionising gas. The

generation is then calculated using the phasematching model, and finally the XUV

beam is propagated from the capillary to the detection equipment, whatever that
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may be. This end-to-end model would, in principle, allow optimisation of every step

of the generation experiment.
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