HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Integrated Optical Fluorescence

Multi-Sensor System

by

Ping Hua

A thesis submitted for the

degree of Doctor of Philosophy

in the
Faculty of Engineering, Science and Mathematics

Optoelectronics Research Centre

July 2009


http://www.soton.ac.uk�
mailto:ph2@orc.soton.ac.uk�
http://www.soton.ac.uk/about/academicschools/esm.shtml�
http://www.orc.soton.ac.uk�
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ABSTRACT
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Doctor of Philosophy
Integrated Optical Fluorescence Multi-Sensor System

by [Ping Hua

Research on fluorescence-based integrated optical immunoassay multisensing systems
has gained growing interest in the last ten years. This is because the systems have the
potential to simultaneously detect multiple analytes in a single measurement, and the
techniques involved are fast, robust and cost-effective. Therefore they have the potential
to replace conventional chromatographic techniques, as the monitoring systems for the
rapid assessment of water or food samples. Other areas, such as clinical diagnostics or
forensic science also have a demand for highly multiplexed analytical systems.

This thesis presents a novel 32-analyte integrated optical fluorescence-based multisensor,
and its integration to an automated multi-bio-sensing system. This system is primarily
used for detecting organic pollutants in river water.

A fibre-pigtailed sensor chip consists of a channel waveguide circuit which distributes
evanescent excitation light to 32 separate sensing patches on the chip surface is realised.
Bio/immunochemistry may be used to sensitise each of the 32 patches to a specific
analyte and a microfluidic system is used to automatically handle the sample injection
over the sensor surface, enabling rapid, simultaneous and high-sensitivity fluorescence
detection of up to 32 pollutants. A fibre coupled photodiode detection array monitors the
32 separate fluorescence signals, and software controls the laser, fluidics, data acquisition
and processing of the fluorescence signals and records the laser power and ambient and
chip temperature.

Extensive study was undertaken theoretically and experimentally in order to optimise
the sensor chip design, fabrication and sensing system. The surface intensity of the sensor
region was also studied in depth, based upon beam propagation method simulation of
waveguides which gave the optimum fibre to waveguide coupling efficiency. Low loss,
high signal strength and robust optical transducers were realised.

The surface immunochemistry used in this research was based on binding inhibition tests
that require antibodies directed against specific analytes and analyte derivatives that can
be covalently bound to a transducer surface. The sensing system was characterised for
a single analyte, estrone, and a limit of detection (LOD) below 1 ng.L.~! was achieved.
The sensing system was then applied against up to six organic pollutants and the LODs
below 20 ng.L~! were achieved for all six analytes.

A detailed study was also carried out with a CCD detector system, used to replace
the fibre collection and photodiode array system and allow straight forward extension to
more than 32 analytes. A direct comparison between these two systems is also presented.
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Chapter 1

Introduction

1.1 The objectives of the work

Monitoring water quality and identifying pollution sources are important tasks in the
management of rivers, which are major sources of water for human consumption. The
main objectives of the overall research project are to construct and demonstrate a cost-
effective, on-line, water-monitoring biosensor to rapidly and simultaneously measure a
plurality of low molecular weight organic pollutants; for example, pesticides, antibiotics
and endocrine distruptors, with the potential for remote control and surveillance. This
work was undertaken in the framework of the Automated Water Analyser Computer
Supported System, funded by the European Commission, under the Fifth Framework
Programme and contributing to the implementation of the Key Action “Sustainable
Management and Quality of Water” within the Energy, Environment and Sustainable

Development.

An initial market survey, covering twelve European countries and the USA, was under-
taken by Siemens, one of the project partners. The outcome of this survey represents the
present situation in analytical practice in the different countries based on the present
EU legislative needs (2; 3) and available laboratory equipment and assays. The col-
lected data covered lists of substances, data on the number of sampling sites, sampling
frequencies, number of samples, detection limits and methods applied, numbers of pos-
itive findings, detection limit below 0.1 pug.L~! as well as analytical costs. The research

finding shows that the annual European expenditure for analysis of organic compounds

1



Chapter 1 Introduction 2

in water-monitoring is excess of 29 million Euro (4). The top 32 compounds account
for more than 48% of the total expenditure. The total number of analyses performed
to detect all compounds in one year is 2.9 million. The top 32 compounds account for
more than 26% of the total measurements conducted. Trace chemical analysis using
state-of-the-art analytical instrumentation presently carries a high cost per measure-
ment, so that a low-cost instrument capable of simultaneously measuring many of these
priority pollutants is expected to meet an important market need and gain widespread
acceptance, particularly if it is readily adaptable to new compounds as the need arises
and if it can operate unattended with centrally controlled monitoring and surveillance

of water systems (4).

The integrated optical fluorescence multi-sensor instrument described in this thesis is
based on evanescent field technology. Laser light is coupled into an optical transducer
and guided down to the multi-sensing area, which contains 32 patches in this case.
The transducer surface is chemically modified in spatially distinct loci with analyte
derivatives. Analyte-specific antibodies are labelled with a fluorescent marker which,
upon binding to the transducer surface, are excited in the evanescent field. The emitted
light is then collected for detection with 32 polymer fibres. The design allows for the

simultaneous measurement of multi-analyte spots.

The immunochemistry utilised in the project takes advantage of a binding inhibition
test that requires antibodies directed against specific analytes and analyte derivatives
that can be covalently bound to a transducer surface. A huge number of polyclonal
antibodies and their corresponding analyte derivatives have been produced for a variety
of organic micro-pollutants. After being purified and labelled with a fluorescent marker,

they were developed into immunoassays and used in this research project.

As part of the overall research project, the work described in this thesis and conducted

by the author has focused on the following main tasks:

e Design and fabrication of IO sensor arrays. Selection of waveguide materials tech-
nology and optimisation of fibre coupling, surface irradiance, packing density, opti-
cal isolation and chemical compatibility; design of sensor array geometry for small
total sample volume, low crosstalk and high signal strength; waveguide circuit lay-

out and mask fabrication, with incorporation of tapered waveguides for reduced
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photobleaching and high-index over-layers for improved pump efficiency. 1O sensor
arrays with a deposited isolation layer and with the fibre coupling loss and surface

irradiance experimentally traded-off.

e Optimisation of the fabrication parameters and realization of the final IO sensor

array chips.

e Packaging. Optimisation of inputs to sensor arrays for optical coupling, establish-
ing the apparatus for improving optical alignment, adopting of final chip fabrica-

tion and interconnection procedures.

e Signal collection from arrays. The establishment of laboratory-based signal collec-
tion from photodiode arrays via hardware tests for PD array readout, AD conver-
sion and hardware control. The determination of collection efficiency and signal

noise performance.

e Detection and signal/noise optimisation. The development of strategies for back-
ground fluorescence subtraction, ambient light suppression and noise reduction
depending upon the test protocols, raw S/N ratio, extent of photobleaching, and

the implementation of the photodetection system.

e Production of optimised sensor array chips assemblies with robust and stable op-

tical coupling for field tests.

e Determination of ultimate system detection limits, in collaboration with staff at

King’s College, University of London and the University of Tiibingen, Germany.

1.2 State of the art of optical biosensors

Research activities on chemical and biochemical sensors have progressed dramatically
over the past three decades. At present, much research work is focused on the develop-
ment of systems capable of multi-analyte detection in a single sample, for environmental,
clinical or security applications. Optical sensors have great potential in this field because
of their ability to probe surfaces and films, using a range of optical phenomena while
achieving low noise and high sensitivity. In addition, they have advantages in speed and

immunity from electromagnetic interference, and permit in-situ sensing and real-time
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measurements. Optical sensors are also suitable for miniaturization and for remote and

multi-analyte sensing.

In general, the operation of an immunoassay biosensor can be divided into two com-
ponents. The first is the immunoassay process, which is based on antigen (analyte of
interest) and antibody binding reactions providing a concentration-dependent response
to the analyte, and the second part is the physical transduction process, which is based
on converting the biological binding process into a measurable signal. The techniques
explored for the physical transduction process vary from electrochemical, mass, thermal

to optical systems.

Optical biosensors offer more advantages over laboratory based systems compared to
other sensing systems. In addition to the advantages of optical sensors mentioned above,
another important feature of an optical sensor system is that it is substantially free from
electromagnetic interference and has a reduced possibility of causing an explosion in a

dangerous environment, compared to electrical transduction systems.

There have been many applications in both the sensing industry and in research where
optical phenomena are utilised. The surface plasmon resonance (SPR) biosensor is one
example, it is one of the most sensitive devices currently on the market and is also the
most popular tool for characterizing and quantifying biomolecular interactions and for
environmental monitoring. The SPR affinity sensor detects chemical or biological sub-
stances by measuring their binding to the sensor surface. This binding is measured by
monitoring changes in the refractive index close to the sensor surface. Any binding or
adsorption process which results in a change in surface refractive index will be measured
(5). A rigorous model, based on this principle, was established for environmental mon-
itoring (6). This model detects the change in transmitted power when a thin layer is
adsorbed to the metal-clad region of the sensor, as a function of the waveguide and metal
film parameters. The excitation and propagation of modes in the metal-clad region were
analysed and, based on this, the device transmission was determined in the presence of
sensing films (6). Based on the same principle, a SPR sensor probe with an integrated
reference surface was investigated (7). In order to fabricate the integrated reference
surface, two dielectric layers with different thicknesses were deposited on the single gold
SPR sensor surface. The working sensor surface was a dielectric layer with immobilized

bovine serum albumin (BSA) antigen and an adjacent thin dielectric layer, without BSA,
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that provided the reference surface. A specific immunoreaction of anti-BSA antibody
was detected after immersion of the SPR probe into a sample solution. Simultaneous
observation of reference and working surface response enabled the determination of the
immunoreaction, without the need for the baseline measurements (7). The integrated
SPR sensor device, Spreeta 2000, was reported (8) to have a size of a thumbnail and it
incorporates all of the optical and optoelectronic components necessary for implement-
ing SPR biosensing into an inexpensive and moulded plastic package. It is claimed that
the performance of Spreeta 2000 is sufficient for virtually any SPR biosensing applica-
tions (8). The low noise of about 1.8x10~7 RIU in 0.8s and the response of 0.2% over
An = 0.04 of the sensor were achieved. This also gives an example of shifting the SPR
applications from high-cost systems designed for laboratories to low-cost, disposable,

portable electronic systems designed for the field.

The integrated optical Mach-Zehnder interferometer (MZI), as another example, is an
evanescent refractometer whose surface may be chemically modified to render it sen-
sitive to specific chemical species (9). In principle, the MZI is more sensitive than
waveguide surface plasmon resonance (SPR) based sensors (10)), primarily because it
does not employ coupling to a lossy waveguide, although exploitation of this enhanced
sensitivity may require the sensitive region to be longer. Furthermore, the MZI may
be rendered sensitive over a wider range of superstrate indices, as it does not employ
“resonant” coupling between two dissimilar waveguides but, in effect, directly measures
modal velocity changes due to changes in refractive index in the evanescent field of an
unisolated waveguide compared with a waveguide isolated from the analyte. Highly sen-
sitive MZI immunosensors have already been demonstrated, for example by Heideman
and Lambeck (11)), and this work has concentrated upon achieving sensitive operation
over a wide range of indices, enhancing the sensitivity of ion-exchanged devices using
high-index overlayers (12), and investigating the simple and reliable incorporation of

these sensors into instrumentation.

The aim of the research work (13) was to realise an integrated refractometer chip for
incorporation in practical instrumentation, for measurements in analytes having a wide
range of indices. The MZI has been chosen as it is straightforward to design and fabri-
cate, and is tolerant of manufacturing error. The design adopted incorporates (i) thin

tantalum pentoxide (TazO3) films to enhance sensitivity, (ii) a high-sensitivity MZI and
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a low-sensitivity MZI to allow the combination of high sensitivity with wide index range,
(iii) 3 x 3 output couplers from each MZI to ensure sensitive operation over the entire
index range and to remove ambiguity in the direction of index change, and (iv) reference
waveguides with and without analyte windows, to allow compensation for the effects of

input power fluctuations and potentially to determine analyte absorption.
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FIGURE 1.1: Integrated optical dual Mach-Zehnder interferometer sensor system.

Figure [1.1] shows the schematic diagram of a typical device and outline measurement
system. Light is coupled into the sensor chip using a mono-mode fibre and the power
is divided equally into a “left branch” which feeds the two interferometers and a “right
branch” for referencing purposes. Power in the “left branch” is split again to feed the
two interferometers and then again into the two arms of each interferometer. In each
interferometer, the relative phase of the light in the two paths combining at the 3 x 3
directional coupler depends upon the refractive index of the analyte in the window in
the isolation layer which otherwise covers the entire device. One MZI has a window 10
times shorter than the other, resulting in a sensitivity 10 times lower, in order to remove
ambiguities due to the periodic nature of the response to index for large index changes. In
a conventional MZI, the light is recombined in a simple Y-junction, resulting in an output
which varies periodically with relative phase, with excess power being scattered into the
substrate. Sensitive transducer response to small changes in analyte index requires
that the device must always operate in a sensitive region of the response curve. This
cannot be satisfied over the entire range of indices for a single-output MZI, which shows
maxima and minima in the interference function. The use of a three-waveguide coupler,
described in detail in (14), results in three outputs, with the interference functions shifted

by nominally 120° with respect to each other. In this way at least one output yields
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a sensitive response to small index changes whatever the baseline index is. While use
of 3 x 3 directional couplers tightens the constraints on manufacture somewhat, it also
allows referencing the individual signals to the sum of the signals emerging from the
three outputs, assuming negligible variation in total loss as power is distributed among

them, thus removing the effects of source intensity fluctuations.

Two reference outputs are provided; the first is isolated from the analyte for its entire
length, allowing simple removal of the effects of input power fluctuations and to eliminate
the effects of analyte absorption. The second reference waveguide is exposed to the
analyte through an identical window to that of the high-sensitivity MZI, yielding a
direct measurement of the loss due to the window and analyte. In the presence of
optically absorbing analyte media, this reference output may be used to estimate the
optical absorption of the analyte by comparison with the first reference channel. The
whole chip may be coated with a thin film of a robust high-index material, such as TayOs5
in order to increase the sensitivity of both MZIs and the exposed reference waveguide.
A phase resolution of 0.3° was obtained for the sensor coated with 30nm TasOj5 film.
This corresponds to a minimum detectable analyte index change of 2.6 x 107° for a
device operating in a sensitive region of its characteristics (or with an optimised 3 x 3

directional coupler) or a change in the modal effective index of approximately 6 x 1075.

With the developments in the semiconductor industry, integrated optical sensors have
become more important in the direct detection of biomolecular interactions. This ap-
proach advances to mass production as well as the fabrication of nano-/macrosystems on
the same platform by hybrid integration of sources, sensors, photodetectors and com-
plementary metal-oxide semiconductor electronics, which is achieved by using silicon
microelectronics technology (15; [16; [17; [18; [19). An integrated optical interferometric
nanodevice, based on silicon technology, for biosensor applications has been reported
(I5). This device is based on evanescent field sensing in conjunction with a Mach-
Zehnder interferometer (MZI) for increased sensitivity, in which a phase shift between
the sensing and the reference arm is induced by a biomolecular reaction that causes an
intensity modulation at the sensor output. The integration of semiconductor Vertical-
Cavity Surface-Emitting Lasers (VCSELs) and PIN photodetectors for biomedical fluo-
rescence sensing (17)) sets a good example in terms of applying semiconductor technology

into the sensor area. The VCSELs, optical emission filters, and PIN photodetectors were
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fabricated as part of a monolithically integrated, near-infrared, fluorescence detection
system. These micro-fabricated components with micro-arrays, flow channel arrays,
and biochips are integrated to form a complete sensor, and the integration of all these

components can drastically reduce costs and enable parallel sensing architectures.

Fluorescence-based array biosensors (20; 21; [12; 22; 23) hold much promise, due to
their high specificity and tolerance to temperature changes and to non-specific bind-
ing, compared to refractive index based sensors. Current trends in the development of
these biosensors are towards the application to the real environmental samples, and also
taking into consideration aspects such as sample pretreatment, matrix effects and the
validation of biosening measurements. As an example, a planar array immunosensor was
used to detect multiple toxic agents. The structure of the biosensor is a patterned glass
slide with covalently bound antibodies placed on the surface, evanescently illuminated
by 635nm light from a diode laser. Bound antigens are detected in the sandwich assay
format, where Cyb-labeled antibodies are used as the reporter antibody. The identity
and amount of toxin bound at each location on the slide were determined by quantitative
image analysis. The biosensor is able to detect quantities of three different toxins (ricin,
Yersinia pestis and staphylococcal enterotoxin B) in the sub-nanomolar range (ng.mL 1)
simultaneously (6). It was the same research group who extended the detectable an-
alytes up to 9 targets with the same detection level (24). It has also been reported,
by researchers at Zeptosens AG in Switzerland, that a grating-coupled TasO3 thin-film
(thickness < 1um) on a glass planar waveguide array biosensor has shown a sensitivity
improvement of about two orders of magnitude compared to conventional fluorescence
excitation and detection systems (25). In conventional fluorescence excitation configu-
rations, the part of the optical path with high excitation intensities is much larger than
the beam waist (typically, four to six times larger, the beam waist is about 10um to
30um) and deeply penetrates the bulk medium. In contrast, for surface-confined excita-
tion associated with light-guiding in an optical waveguide, the penetration depth of the

evanescent field into the adjacent media is only some hundred nanometres.

The transducers used in the above experiment had a 320nm period diffractive relief grat-
ing. The resonance condition for red light coupling (635nm) is met at a launching angle

of -10°. Consequently, under coupling angles between -20° and +30°, excitation light
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covering the whole visible spectrum (from 450-700nm) can be coupled into these waveg-
uides. This was allowed the use of all current commercially available fluorescence labels
that can be excited in the visible range. Compared with the conventional fluorescence
excitation configurations, there are a number of advantages of using the fluorescence
excited via evanescent field where the light is coupled into the waveguide by means of
gratings. Firstly, the location of launching the excitation light onto the coupling grating
is a distance away from the area where the analyte fluorescence is excited. So, it is easy
to discriminate the excitation light, in contrast with the classical configurations, where
the areas of launching the excitation light and of fluorescence generation are identical.
Secondly, the main critical and important parameter for light coupling using a grating,
is the match with the coupling angle in order to satisfy the resonance condition, not
the distance between the planar waveguide surface and the excitation light source, e.g.
when using a parallel excitation light. Thirdly, it is more tolerant towards the roughness
of the waveguide surface. For example, there is no effect on the available excitation light
intensities in the range of more than 10-50pum, deviation from a perfect surface flatness
over macroscopic distances, if the thickness of the waveguide layer remains constant and
no light scattering is generated. This is in contrast to the described classical fluores-
cence excitation configuration. Fourthly, the system allows the use of multiple laser light
sources emitting at different wavelengths, so more fluorescence labels can be applied for
analyte detection in assays using the system. In addition to the above, the excitation
field is not only more sharply confined to the sensing surface (by at least one order of
magnitude compared with the convention excitation schemes), it is also simultaneously
available along the whole propagation length of guided excitation light in the waveguide.
Therefore, simultaneous fluorescence excitation on macroscopic surfaces combined with
very high spatial selectivity of the excitation step (with respect to distance from the
interacting surface) is enabled. Furthermore, real-time studies of the kinetics of analyte
binding to the surface are enabled, which cannot be performed with scanning systems

due to sequential excitation and detection along the scanned areas (25).

An important factor in biosensor construction is the development of immobilisation tech-
nologies for stabilising biomolecules and applying them to surfaces. Since the pioneering
work of the incorporation of biological components in membrane structures was first
described by Clark and Lyons (1962) (26), in which an enzyme-based glucose sensor was

developed by the entrapment of glucose oxidase in a membrane enclosed sandwich, there
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have been a number of methods which have been described for the immobilisation of
enzymes and proteins on surfaces and within various matrices (12). The main methods
of immobilisation are: a) physical or chemical adsorption at a solid surface (27); b)
covalent binding to a surface (28; 29); c¢) entrapment within a membrane, surfactant
matrix, polymer or microcapsule (30); d) cross-linking between molecules (31) and e)

sol-gel entrapment, Langmuir-Blodgett (LB) deposition and electropolymerisation (32)).

As mentioned in Section 1.1, the immunochemistry used in this research work is binding
inhibition assay, which requires antibodies directed against specific analytes and analyte
derivatives that can be covalently bound to a transducer surface. The previously im-
mobilised aminodextran layer is used to reduce non-specific binding to the surface (33]).
Dried (immobilised) aminodextran layers on a glass substrate showed a thickness be-
tween one and three nm. The thickness of welled aminodextran layers were also verified
by spectroscopic ellipsometry experiments and these experiments yielded values between
100 and 150nm. A huge number of polyclonal antibodies and their corresponding analyte
derivatives have been produced for a variety of organic micro-pollutants. After being
purified and labelled with a fluorescent marker, they were developed into immunoassays
and used in this work. The sample containing the analyte is incubated in solution with
the labelled specific antibody. Therefore, the antibody binds the analyte during the in-
cubation step until a well-defined condition of the reaction is reached. When the sample
is pumped over the sensor surface, only the antibodies with free binding sites can bind

to the surface (33).

The development of biosensors has become more targeted towards integration in recent
years, both in the variety of analytes detected (34; [35) and in the compactness of the
sensing area, particularly for molecular arrays (36) and lab-on-chip devices (37 [38;
39). The standard of quantitative sensitivities has also been pushed to the lower levels
required for clinical diagnostics (40)), environmental monitoring (41)), biohazard detection
(405 142)). Optical methods play a significant role in all of these biosensors. The CCD
detector (43), as an integral part of a biosensing system, has become very popular in
recent years due to a few distinct advantages, such as the ability to image multiple
zones on the sensor, the flexibility of defining the sensing configuration and the low

noise performance of the detectors.
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The trends of development of biosensors have strengthened the role of CCD detectors as
part of the overall optical biosensor configuration. There are some research groups that
use CCDs (44; 45; [46; [47; [48)), while others use a CMOS-based system (49; 50)) or pho-
todiode arrays as the detection system(49; 39). After direct comparison of these three
detectors, the CCD exhibited significantly better signal-to-noise and thus better discrim-
ination of targets at a lower concentration than the CMOS and photodiode detectors(49).
However, CMOS detectors are continually improving and have the advantage that the
signal from each pixel is already digitised, which simplifies data acquisition. Photodi-
odes have proven to be useful for economical single point detection sensors. However,
in situations where there are more complicated arrays of analytes, the tradeoff between

ease of use and cost becomes more apparent(49).

1.3 Outline of the work

The main focus of the work is on developing a biosensor that employs fluorescence-
based detection of the binding of tagged biomolecules to the surface of an optical waveg-
uide chip. The fibre-pigtailed chip consists of a channel waveguide circuit which dis-
tributes excitation light to 32 separate sensing patches on the chip surface. Bio/immuno-
chemistry may be used to sensitise each of the 32 patches to a specific analyte, and a
microfluidic system is used to automatically handle the sample injection over the sensor
surface, thus enabling rapid, simultaneous and high-sensitivity fluorescence detection
of up to 32 pollutants. A fibre-coupled detection array monitors the 32 separate flu-
orescence signals, and the software controls the laser, fluidics, data acquisition and
processing for the fluorescence signals and records the laser power and ambient and chip

temperature.

A thorough study was undertaken theoretically and experimentally in order to optimise
the sensor chip design, fabrication and sensing system. The surface intensity of the sensor
region was also studied in depth, based upon BPM simulation of waveguides which gave
the optimum fibre to waveguide coupling efficiency. The total power which will be
emitted by fluorophores was estimated, which allows proper design of the fluorescence

detection system.
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Optics, electronics and fluidics are the three major parts of the instrument in terms
of hardware requirements for the multi-sensor system. The photodiode-based detection
schemes which consists of the photodiodes with integral amplifiers and an amplifica-
tion and prefiltering stage, were experimentally evaluated for cost, noise, stability and

detection limit.

The system detection limit was estimated theoretically based on immunoassay char-
acteristics, and an equivalent detection limit of the system for dye solution was also
predicted. Subsequently, extensive bulk dye fluorescence measurements were carried
out, in order to confirm low-noise operation of the detection system and determine an

ultimate detection limit in terms of the number of Cy5.5 molecules per unit area.

This thesis also addresses experimental results for the detection of a key pollutant,
estrone, in water. Estrone pollution is potentially deleterious to human and animal
wellbeing, due to its hormonal activity, and arrives in waterways as a byproduct of
pharmaceuticals and contraceptive formulations. A characteristic immunoassay calibra-
tion curve has been generated that yields a lower detection limit of 1 ng.L~! with a
range (without dilution) up to about 1 ug.L~!. Water samples can be analysed directly,

without concentration or complex extraction techniques.

In addition, a detailed study was also carried out theoretically and experimentally in
investigating a CCD detector system, an alternative detector system for the purposes
of this research work. Direct comparisons between these two detector systems were also

presented.

1.4 Structure of the thesis

The first chapter gives a brief introduction of the aims of the work and the structure
of the thesis. It also describes the background of the optical biosensor technology and

summarises the current status or the level of development in this field.

Chapter two describes how the optical sensor chip has been researched, including: mask
design: layout, parabolic tapers’ design and simulation, estimation of the power budget
of the system, optimisation and characterisation of fabrication process parameters, fibre

pigtailing, preliminary test samples’ fabrication, optical loss measurement, optimisation
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of silica isolation layer, TasOs5 film, and a detailed study on fibre to waveguide coupling

efficiency.

Chapter three describes the instrumentation and the system, which includes: the system
overview and experimental setup, optical power estimation, optical component selection
and testing, detection system and experiment, such as preliminary test of the pho-
todetector/amplifier and assembly of a complete system and the system operation. In
addition, a detailed study was presented on electronic signal filtering and processing, in

order to justify the suitability of the selected filter for the system.

Chapter four addresses the fluorescence measurements and sensor chip characterisation,
dye experiment, limit of detection (LOD), patch to patch uniformity, and a direct com-
parison of the sensor chips with and without a TasOjs film. Detailed comparison of

theoretical and practical results are presented.

Chapter five describes the surface chemistry modification and estrone calibration exper-
iment, including the calibration curve and LOD. This chapter also presents the multi
analyte measurements as well as providing a direct comparison of the sensor system with
conventional analytical techniques. In addition, this chapter also addresses the results
of data processing in order to verify whether the data collected via the system would be

affected by the influence of the presence of the photobleaching.

Chapter six addresses a detailed study on various aspects of the instrumentation of
a CCD detector system, including the system overview and operation, the difference
between the CCD and photodiode detectors, the collection efficiency of the CCD detector
system and a comparison with the photodiode array system, estimation of the power
flow, and Signal to Noise Ratio (SNR) and NEP analysis, as well as the result of the
fluorescence measurement on bulk dye Cy5.5 and the detection limit of the system for

Cyb5.5. Detailed comparisons of theoretical and practical results are also presented.

Chapter seven presents the overall conclusion and highlights the remaining problems,

the next steps and future directions.



Chapter 2

Sensor Chip Design and

Fabrication

2.1 Introduction

The purpose of this chapter is to describe the design and fabrication of a sensor array
chip with low loss and high signal strength. The literature was reviewed to determine the
glass substrate materials and ion-exchange waveguide fabrication procedures appropriate
for low-loss waveguides, with a modal spot size similar to that of optical fibre at 635nm,
which would yield high surface intensity for the excitation of fluorescent molecules on
the surface. Potassium ion-exchange in BK7 was selected to give a good index match to

optical fibre and provide adequate surface intensity.

A dilemma is that the high signal strength will be accompanied by photobleaching
of the dye molecules, thereby reducing the sensitivity of the device. In this study, a
tapered waveguide section is introduced into the sensor chip design in order to reduce
the power density of excitation radiation at the sensing surface and hence reduce the
rate of photobleaching whilst maintaining the overall signal strength and the sensitivity

of the device.

In order to achieve the best fibre to waveguide coupling, a thorough study was under-
taken experimentally and mathematically. The surface intensity of the sensor region

was also studied in depth, based upon BPM simulation of waveguides which gave the

14
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optimum fibre to waveguide coupling efficiency and, finally, the total power which will
be emitted by fluorophores was estimated to allow proper design of the fluorescence

detection system.

In this chapter, a detailed optimisation of chip design and the fabrication process is
presented, with the aim of achieving low loss and high signal strength for the sensor
array chip. Estimation of the power budget through the sensor device is discussed in
order to provide information to select the detection system, which will be described in

the next chapter.

2.2 Optical circuit layout and mask fabrication

2.2.1 Design of curved waveguides and splitters

The optical waveguide circuit was designed using OlymplOs software and using the
Beam Propagation Method (BPM) to ensure low-loss and adiabatic tapering. The soft-
ware enables photolithographic mask design as well as the simulation for the adiabatic

tapering and the optical power flow within the device.

The sensor chip design contained 32 sensing spots, as defined by the AWACSS project
partners to detect 32 primary pollutants in river water (4). The partners with responsi-
bility to realise the instrument, CRL and Siemens, decided that for the AWACCS project,
1mm diameter fibre would be used underneath each sensor patch for the collection of

fluorescence, rather than using a CCD camera, for reasons of cost.

Potassium ion-exchange in BK7 glass was chosen for the fabrication of the waveguide
sensor chip. BK7 has good optical quality and exhibits low fluorescence and the potas-
sium ion-exchange process produces low loss waveguides, uses low cost materials and
fabrication procedures, and had already been optimised for low loss coupling from opti-
cal fibres resulting in minimisation of scattered light in the substrate (51). In addition,
waveguides made by ion-exchange have a flat surface, which is suitable for the attach-
ment of flow cell, while other methods of making waveguides, such as by etching results

in a non-planar surface unsuitable for applying a flow cell.
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A silica isolation layer of approximately 1um thickness was sputtered onto the sensor
chip, with 32 windows being photolithographically defined in this film over the waveg-
uides. The isolation layer prevents excess losses due to contact with the flow cell and
environment outside the sensing regions. The evanescent intensity decays exponentially
with increasing distance from the interface with an evanescent penetration depth of ap-
proximately 150nm in this case (a detailed calculation is given in Section 4.4.2.1). A
silica thickness of 1 micron results in a surface intensity of approximately 0.1% relative to
that directly on the waveguide surface, providing acceptable isolation of the waveguides

from the analyte.

The sensing spot dimensions were chosen so that the emission falling upon the collection
fibre end was within the collection cone of the fibre underneath each spot, in order to
maximise the collection efficiency. The numerical aperture (NA) of the lmm diameter
fibre underneath the sensor patch is 0.514+0.3 and, taking the thickness of the substrate
to be 0.8 mm, the length of the sensing window is chosen as 1.5mm, to ensure that
light emitted from any point on the sensing window which falls on the fibre end-face is
within the NA. The selection of the window width was based on the consideration of
the waveguide width and the separation between the waveguides. Since the width of the
taper section of the waveguide is up to 60 pum (section 2.2.2), 70 pm is the minimum
possible window width to allow for alignment tolerances. The maximum window width
is 0.8mm, to ensure that the window does not cross the adjacent waveguide. 0.3mm was

chosen as the window width within this range.

An adjacent sensing patch in a multisensor must be placed to avoid crosstalk, so that
it must not be within the collection cone of any other collection fibre. To avoid unnec-
essary breakthrough of additional pump scattering from adjacent waveguides, adjacent
waveguides should also not pass through the collection cone of an adjacent fibre. The
minimum waveguide spacing allowing for alignment tolerances is therefore 0.85mm, and
1lmm was chosen for convenience and to ensure that the curved waveguide sections,
which depend upon required separation, were not significantly longer than necessary.
This waveguide separation ensures that no direct crosstalk and no direct pump scatter-
ing enters adjacent fibres. It was decided that the sensing patches should be laid out in
the staggered configuration as shown in Figure 2.2/ to allow easy machining and assembly

of the block holding the 32 fibres.
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The final step in the layout was to decide the number of rows and columns in the sensor
patch array, and this was dictated by compactness, maximum chip size and surface
intensity. To ensure low waveguide bend radius and hence low waveguide loss, a 1 x
2 waveguide splitter requires a length of 10mm and the 60 micron tapers for reduced
photobleaching also require 10mm, as described in section 2.2.2). The maximum chip
length is 75mm, defined by the mask aligner exposure area, but total of 8mm clearance
is used at both ends to avoid edge effects in the photolithography and for cutting and

polishing, so that the maximum device length is 67mm.

Consideration of patch length, patch spacing, splitter length and taper length, and the
maximum chip length restricted the design for a 32 patch device to a 4 x 8 (or 8 x
4) array with either a 4-way splitter (20mm) or an 8-way splitter (30mm). The 4 way
splitter and the design shown in Figure 2.2 was chosen to maximise the surface intensity
at each patch for a given laser power, assuming that waveguides and sensing patches

would exhibit low loss.

Three chip designs were reproduced on each wafer, and the size of each chip was set
at 1bmm x 67mm after considering any restrictions of the fabrication conditions in
the ORC, for example, the maximum diameter of the wafer for the mask aligner of
75mm. Each design consists of (i) an alignment and sawing mark level, which will be
used to align successive photolithographic stages and to guide the dicing of the chips;
(ii) a waveguide level, which defines the waveguide circuit, including 1x4 splitters and
tapered sections designed for adiabatic transformation of the mode and reduction of
photobleaching, and (iii) an isolation layer level which isolates the waveguide from the
analyte and flow-cell, except in thirty-two 1.5mm long and 300um wide windows where
the specific chemical will be deposited and the fluorescence excitation will take place.
The wafer layout is given in Figure 2.1. Figure 2.2/ shows a schematic diagram of a
sensor design. The 32 windows were designed as a staggered array in order to use the
area effectively and to reduce the crosstalk. In addition to these sensor devices, there
are two sets of straight waveguides with different widths (from 1.5pum to 3.5um with a
constant increment of 0.5um on each side of a single chip) as shown in Figure 2.1. One
set of straight waveguides will be covered with a silica isolation layer and one will not,

in order to characterise the fabrication conditions and hence to optimise waveguides for
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FIGURE 2.1: Wafer design comprising 3 chips.

transmission loss, the waveguide opening, fibre to waveguide coupling efficiency and the

silica isolation layer.

2.2.2 BPM analysis of tapered waveguide structures

Since the sensitivity of the device will be reduced if significant photobleaching of the
dye molecules occurs under the high optical intensity, it is necessary to keep the photo-
bleaching rate level sufficiently low, by reducing the optical field power density, such that
signals can be collected before they fade away. In this study, a taper section is employed
to broaden the waveguide in order to reduce the power density of excitation radiation at
the surface of the waveguide hence reducing the rate of photobleaching. Decreasing the
rate of photobleaching offers two distinct advantages. Firstly, data acquisition becomes
more straightforward as the fluorescence signal changes less rapidly. Secondly, a wider
waveguide increases the number of bound fluorophores excited during the measurement
leading to a greater measured signal. This second advantage is expected to lead to an
increased signal to noise ratio, and hence an improved detection limit for the sensor
(52). Theoretical modeling of tapered waveguides has been carried out using a commer-
cial beam propagation method (BPM) package. The Finite Difference (FD) method is
used with the software package. The FD method is based on discretisation of the 2D

field equation that lies in the waveguide cross-section plane.
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FIGURE 2.2: Schematic diagram of the sensor layout.

In order to maintain a uniform power distribution in a wide, and hence highly multi-
moded waveguide, it is desirable to excite only the fundamental mode which is the

lowest-order spatial mode of a channel waveguide. If the rate of increase in the width
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of the waveguide is slow enough, the broadening of the modal field is essentially adia-
batic and results in all of the launched light remaining in the fundamental mode of the
waveguide. The concept of using tapered waveguides, to couple from broad to narrow
channel waveguides, is well established. Various designs for the adiabatic expansion of
the fundamental mode of a channel waveguide have been described in (53)). A parabolic
shaped taper can give a low-loss expansion to a width W if the length L satisfies the

following condition (53):
I> W2n,,
-2

(2.1)

Where n,, is the mode index, A is the free-space wavelength, and the initial channel
width is much smaller than W. Therefore, for a 0.633um mode in BK7 glass (n,, ~
1.51), a 100pum width can be reached in 12mm, and a 60um width can be reached in

8mm.

A theoretical study and a simulation using BPM were carried out with taper widths
of 30um, 60pum and 100um. A transition length of up to 10mm was studied for use in

67mm long waveguide devices. The device length is limited by the following factors:

e The cost of the glass substrates;

e The fabrication procedures, for example, the mask aligner used for the photolithog-

raphy process;

e The sensor structure, i.e. whether the transition length of the taper section is

sufficiently long to incorporate the required number of sensing patches.

Figure 2.3/ shows that the peak intensity of radiation in the 3um guide may be reduced
to 8% of its initial value if the guide is broadened through a taper to a final width of
60um.

Figure 2.4/ shows the fundamental mode propagation from the narrow channel through
the transition section in the case of a taper to 100um. The power was not evenly
distributed, compared to the result for the 60pum width taper (Figure 2.3), because the
10mm transition length is shorter than that required, which results in the excitation of
the next even high order mode of the waveguide and the high order mode beating along

the propagation direction causing the uneven power distribution. Figure 2.5 shows the
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FI1GURE 2.3: Taper width is 60pm and length is 10mm. Top: Electric field distribution
along the taper. Bottom: the start field and the end field.

mode power evolution along the taper length in these two cases. Therefore, the taper
width of 30um and 60pum were chosen for the final mask design, to avoid significant
excitation of higher order modes while keeping the taper length to 10mm, due to chip

size constraints.
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FIGURE 2.4: Taper width is 100pum Length is 10mm. Top: Electric field distribution
along the taper. Bottom: The start field and the end field.

2.3 Optimisation of the fabrication process

2.3.1 Preliminary test waveguides’ fabrication and optimisation

In order to determine the optimum production process for the sensor array chip, with
low loss and high signal strength, a set of preliminary test waveguides was realised

by potassium ion-exchange (IE) in BK7 glass (54), with widths between 1.5 and 3.5
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FIGURE 2.5: The mode power evolution along the taper length in 60um taper (top);
and in 100pum taper (bottom).

microns for diffusion times of 1.25-2.0 hours in molten KNOj3, at 400°C. The size
of the BKT7 glass substrates was 50mm by 50mm; the reason for choosing this size,
as preliminary test samples, was simply because they were available at the time the
project started. Although these glass substrates were not long enough for the sensor
device, they were sufficient for the purpose of establishing and optimising the fabrication

process. An aluminium masking film was deposited on the substrate, and the waveguide
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circuit was defined by opening tracks of 1.5 pm width in this film using conventional
photolithography. Transmission measurements were carried out between all these test
samples, using a pigtailed semiconductor laser emitting a power of 3mW @ 635nm
(Point Source). The transmitted light power, from a semiconductor laser on its own and
through the waveguide were recorded by a power meter, and the waveguide transmission

loss in dB was calculated. Figure 2.6/ shows the transmission loss against ion-exchange
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IE time in hour

FIGURE 2.6: Excess coupling and propagation loss in device with the waveguide width
of 3um against IE time.

time for 3um width waveguides, as an example. Note that the 6dB loss, due to the
4-way division, has been deducted from the total loss. Therefore the remaining loss
is comprised of the excess loss due to modal mismatch, Fresnel loss due to reflections,

propagation loss and misalignment.

In a conclusion, a set of preliminary test waveguides were realised, and the optimum
condition for fabrication of low loss, single mode at 635nm and high signal strength
waveguides has been established. As an example, for a 3um waveguide opening, the

optimum IE time is 2 hours.

2.3.2 Modal intensity profiles and fibre to waveguide coupling effi-

ciency

The ultimate device discussed in this thesis would be a portable type of instrument

which requires the sensor chip to be pigtailed with a fibre; this allows easy connecting
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and coupling of light from a laser source. The purpose of this section is to optimise the
fibre to waveguide coupling efficiency, thus enabling the optimisation of the sensor chip

design.

The waveguide modal intensity profiles were measured and compared with the Point
Source polarisation maintaining fibre, to be used for pigtailing. The modal intensity
profiles were recorded using a CCD camera, measured with a micro-ruler under a mi-
croscope, and processed with a Vision XL software package. Overlap integrals were
performed between the measured fibre field and the waveguide field, using equation 2.2,
in order to predict the expected coupling losses for perfect alignment and thus obtain

fibre-waveguide coupling efficiency, according to equation 2.2/ (55):

; (2 [, By (z,y) By(z,y) dzdy?
T T B y)Pdedy [ [ By(x,y)Pde dy

(2.2)

In equation 2.2, 7. is the predicted coupling efficiency, Ef(x,y) is the fibre field profile,
and Ey(z,y) is the waveguide mode field profile. Strictly speaking, |E|? is not equal to
intensity, as there should be an impedance term present. However, we can use |E|? =1
since the impedance term occurs on both the top and the bottom of the expression.

Figure 2.7/ shows how the fibre mode profile and waveguide mode profile evolve with

ion-exchange duration.

Fibre-waveguide coupling measurements were made on these waveguides to confirm the
optimum fabrication condition for fibre coupling. Table 2.1/ gives mode dimensions of
sets of straight waveguides, with waveguide widths from 1.5 um to 3.5 um, and the

optical fibre (Table 2.2) to be used for fibre pigtailing.

X and Y in the Table 2.1 represent mode widths parallel and perpendicular to the
waveguide input edge respectively. The mode width was defined as the width where
the peak value falls to 1/e of its peak value. The table also gives a predicted coupling
efficiency, calculated using equation 2.2, based on these measured mode profiles of fibre
and the sets of straight waveguide with IE time from 1.25 hour to 2 hours. Both TE
and TM modes were investigated. The best coupling efficiency, of 80.2% in the TE
mode, was achieved and corresponded to the fabrication conditions of 2.5 pm waveguide

opening and 2 hours of IE.
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FIGURE 2.7: A)-D) waveguide (TE) mode intensity profiles (2D) with different IE

time. E)Fibre from Point Source type(FDS-P-2-P-635-FCP-FCP). Note: The images

show areas 10 pm square on the CCD where each unit on the x and y axis represents
0.1pm.

Figure 2.8 shows the calculated coupling loss, for different waveguide widths and IE
times, in dB and for the TE mode only.

Figure shows the direct comparison of the calculated coupling loss in dB with the
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Samples

WG Opening T7(IE1.25h) | TS(IEL.5L) | T9(IEL.75h) | T10(IE2h)
1.5pum TE-X(um) — 6.22 5.51 4.75
TE-Y (um) - 3.56 4.03 3.82
Coupling Efficiency% — 65.2 59.3 69.2
TM-X(pum) - 6.75 4.83 4.01
TM-Y (pum) - 3.47 3.15 3.71
Coupling Efficiency% — 65.4 65.1 67
2pum TE-X(pm) 6.27 5.18 5.15 4.71
TE-Y (pum) 4.05 3.48 3.42 3.57
Coupling Efficiency% 49.1 67.4 77.3 76.7
TM-X(pum) 4.86 5.94 5.65 5.23
TM-Y (pm) 2.95 3.73 3.20 3.67
Coupling Efficiency % 58.0 67.9 71.1 72.1
2.5um TE-X(um) 6.87 5.26 5.01 4.79
TE-Y (jm) 3.61 3.47 3.65 3.52
Coupling Efficiency% 58.9 70.2 75.9 80.2
TM-X(pm) 7.17 5.81 5.14 4.86
TM-Y (um) 3.51 3.56 3.32 3.33
Coupling Efficiency% 56.2 68.7 72.0 76.2
3um TE-X (pm) 6.99 5.69 5.04 5.61
TE-Y (pum) 3.40 3.71 3.38 4.01
Coupling Efficiency% 52.1 68.3 78.6 73.9
TM-X(pum) 7.43 5.98 5.92 5.53
TM-Y (pum) 3.31 3.36 3.35 3.72
Coupling Efficiency % 57.4 72.9 73.4 78.8
3.5um TE-X(pm) 7.93 6.56 5.47 5.22
TE-Y (jum) 3.56 3.46 3.64 3.70
Coupling Efficiency % 55.6 66.2 75.1 71.2
TM-X(pum) 8.51 6.39 5.62 5.5
TM-Y (pum) 4.09 3.25 3.45 3.59
Coupling Efficiency % 62.2 70.5 76.8 82.6

TABLE 2.1: Mode dimensions of a set of testing waveguides fabricated with differ-
ent waveguide openings and ion exchange times and the calculated fibre to waveguide
coupling efficiency.

Point Source PM fibre mode dimension

TE-X(pum) | TE-Y(um)

TM-X(pm)

TM-Y (pum)

3.76

3.40

4.26

3.59

TABLE 2.2: Mode dimension of the Point Source PM fibre.

measured waveguide loss in dB for a set of 2.5um width of straight waveguides against

different IE times. About 5 to 8dB difference between the two curves can be seen, which

is mainly due to the fact that some of the losses were not considered in the calculations,

such as excess coupling loss, including Fresnel loss, propagation loss and misalignment

loss, while in the measured loss they were all included.
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F1GURE 2.9: Direct comparison of the calculated coupling loss in dB and the measured
waveguide loss for a set of 2.5 pm width waveguides with different IE times.

From the above calculation, the optimised parameters, based on the best coupling effi-

ciency for the waveguide design, are 2.5um for the waveguide opening and 2 hours for

the IE process.



Chapter 2 Sensor Chip Design and Fabrication 29

2.4 Optimisation of the isolation layer

2.4.1 Introduction

The isolation layer, which is used to isolate the waveguides from their surroundings
except where the sensing patches are situated, has been studied and optimised in terms

of the deposition process and annealing process.

Vacuum-deposited Teflon FEP has proved a useful isolation material for experimental
devices (56)), due to its low refractive index, low porosity and ease of patterning, but it
has not, so far, proved acceptable for use in sensors which are to be handled repeatedly,
as it is easily damaged. Development of these devices for prolonged use in an instru-
ment requires optimisation of hard dielectric materials, such as sputtered silica films,
as robust isolation layers. However, sputtered silica tends to exhibit higher optical at-
tenuation than vacuum-evaporated Teflon, unless it is annealed in an oxygen-bearing
atmosphere at high temperature. As the silica in these devices is to be deposited on
substrates containing ion-exchanged surface waveguides, it is important to determine an
acceptable deposition process without high-temperature annealing which would degrade

the underlying waveguides by thermal diffusion.

This section addresses the research results and the comparison of using two methods of
producing the silica isolation layer, the PECVD method and using the RF sputtering

machine.

2.4.2 Silica layer deposited by PECVD

A trial of depositing a silica layer by the PECVD (STS Mesc Multiplex Chemical Vapour
Deposition V1 Tool) method was carried out on the preliminary test waveguide samples,
which were realised by potassium ion-exchange in BK7 glass, with widths between 1.5
and 3.5 microns for diffusion times of 1.75 hours in molten KNO3 at 400°C. The size
of the BK7 glass substrates were 50mm by 50mm. The final length of the waveguide
sample is 3bmm. The 1 pm silica layer was deposited under a chamber pressure of 1
Torr, 156 sccm 5% SiHy in N9 and 710 scem NoO, at the power of 19 W and temperature
of 300 °C, for 20 minutes.
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As a result, an additional loss of 7dB was measured for the 3um width waveguide after
adding the silica layer using the PECVD method. Figure 2.10 shows the waveguide
loss before and after the silica layer was deposited using the PECVD method over the
straight waveguides set, the waveguide widths were from 2pm to 3.5pum with steps of
0.5um.
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FIGURE 2.10: Waveguide loss measured before and after the silica layer was deposited
on sample No 9 by the PECVD method. The IE time was 1.75 hours, the length of the
sample is 3bmm.

2.4.3 Silica layer deposited by RF sputtering

A test trial was then carried out using the RF sputtering machine (model: Plasmalab 400
RF, Oxford Instruments Plasma Technology). Note: due to the time constraints at the
time, the RF sputtering was done on the 4-way waveguide under the same substrate and
same fabrication parameters. The silica layer was deposited at the sputtering condition
of 250 W in 10 mTorr argon, ImTorr oxygen for 2.5 hours at 10 °C, followed by annealing
in oxygen for 1 hour at 250°C. Figure [2.11] shows the insertion loss for all four linear

channels before and after annealing.

Annealing gives an 8dB improvement in transmission, and produces reduced porosity of
the silica layer (13). The remainder of the attenuation is due to the 4-way division (6dB),
propagation losses and fibre/guide coupling losses (6dB). The outcome of using the RF

sputtering was better in comparison with using the PECVD method, since the length
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FIGURE 2.11: Insertion loss measured before and after 1 hour annealing at 250°C.
Sample No.11.

which was covered by the silica film was 43mm and the measurement was also carried
out on a 4-way splitter, while the length of the sample coated with silica by PECVD was
35mm, and the measurements were carried out on a set of straight waveguides. The loss
measurement results were 0.4 dB.mm™! and 0.17 dB.mm ™! for PECVD method and RF
sputtering respectively. Therefore, the RF sputtering silica method was selected for the

final fabrication process.

2.5 Predictions on sensitivity enhancement by coating with

a high-index film

This section will explore the possibility of enhancement of the sensitivity of the sensor
chip. The integrated optical fluorescence multi-sensor described in this thesis exploits
the fluorescence immunoassay in an evanescent field of optical channel waveguides. Its
mechanism is based on the fact that the evanescent field will interact with organic
pollutants. One of the major objectives of the research work in the past, on this type of

sensor, has been to improve its sensitivity. Stewart and Culshaw achieved a theoretical
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enhancement in the sensitivity of an evanescent wave methane sensor by adding a high
index overlay, using modeling, as described in their paper (57). They theoretically
predicted an enhancement of greater than an order of magnitude for their sensor design.

Quigley and Wilkinson have put these theories into practice ().

Figure 2.12/ shows the theoretically predicted enhancement factors against various thick-
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FIGURE 2.12: Enhancement factor against various thickness and refractive indices of
the overlay of high-index films from (1)).

ness and refractive indices of the overlay of high-index films. The intensity enhancement
in the evanescent field is mainly due to the thin high-index film overlays which modify
the distribution of light in the optical waveguide. Consequently more power is carried

in the superstrate evanescent field as shown in Figure 2.13.

The fluorescence sensing experiments aimed at testing the high index films were per-
formed on sensor chips which were fabricated and capable of measuring fluorescence at
2-4 discrete sensing positions simultaneously (51). The chip has a channel waveguide
with a structure of one split only. The loss of the waveguide was about 5-6dB.cm™ (tar-
geted at 2.5dB.cm™!), and discrete sensing patches were located on one of its branches.
Patches were coated with or without high index film TasOs5. The measurement of con-
centrations of simazine and isoproturon in water were carried out and sensitivities as
low as 0.03ppb were reported. According to the outcome of the experiments, the high-
est sensitivity came from a sensing patch which was not coated with the TasOs5 film.

It was found, after investigation into the use of high index films on these fluorescence
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F1GURE 2.13: The field in green is before adding the high-index film. The field in red
is after adding the high-index overlay from (1)).

sensors, that outcomes of these sensors are not limited by low intensity of illumination

or excitation, but by the photodegradation of the fluorophores (51).

It was pointed out that applying the high index films onto the surface of a low NA
waveguide to increase the interaction of the guided mode with the superstrate medium, is
more favourable to refractometry. However, it is also applicable to large array sensors, in
which the input power may be divided between more waveguides. In this case the use of
high index films would permit low power light sources to be used without compromising
sensitivity (57; [I; 51). Preliminary work by Harris (52) showed that a 20nm film of
TasO5 on waveguides similar to those described in this thesis enhanced fluorescence
signal strength by a factor of 6 for a fluorescence-based immunoassay. Work by the
present author on a refractometer (13) confirmed this behaviour and showed that much
higher enhancements, due to increased surface intensity, could be achieved with thicker
TasO5 films. In that work, a set of identical chips coated with different thicknesses of
TaoO5 films, were measured of their response to liquid analyte index by passing aqueous
sucrose solutions over the sensor surface. The use of these films is shown to increase

sensitivity by a factor of up to eighty with a film thickness of 45nm.
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The experiments demonstrated that adding a thin TasOs film over the window of the
refractometer substantially increases the sensitivity of the device to changes in analyte
index, with the sensitivity enhancement increasing rapidly with TasOs film thickness.
It also shows that the sensitivity increases with increasing analyte index. Both these ef-
fects are due to enhancement of the proportion of modal power travelling in the analyte
(I). For the fluorescence-based immunoassay, the fluorescence intensity is proportional
to the surface intensity. The above work also showed that the window attenuation is
insignificant for the device without TaoOs5 coating and for that with a 15 nm TagOs5 film.
The attenuation becomes significant for a film thickness of 30nm and becomes catas-
trophic for films over 45nm thick, with attenuation of over 30dB. Annealing the device
reduced the attenuation from 30dB to 14dB, due to reducing the optical absorption in
the TagOs5 film (13).

In this research, a four-way split structure is adopted for the sensor chip in order to
accommodate more sensor patches on a chip. So, the power in the waveguide will be
further reduced by 6dB at least, due to the four-way split, plus other losses in the
waveguide. Therefore, adding high index films onto the surface of sensor chips, as one

of options to enhance the sensitivity, is also considered as a part of this study.

2.6 Fibre pigtailing

FIGURE 2.14: Fibre-pigtail setup.

The reason behind applying fibre pigtailing to the sensor chip is the requirement for the
prototype device to be portable, plug-and-playable, user-friendly, and fully automated.
Furthermore, the fibre pigtailing also contributes towards signal stability and reliability.

Since submicron alignment is one of the features of fibre pigtailing, the actual fibre to
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waveguide bonding process will become very difficult. For this reason, a multi-stage
bonding process was used in order to achieve near-lossless and robust bonding between

the fibre and waveguide.

Figure 2.14! shows a pigtailed chip, where the fibre is bonded to the chip at the right
end in the photograph.

The support piece is bonded on top of the substrate near the input end. The fibre tip
is pre-bonded to the input of the waveguide using UV curing epoxy (Lensbond Type
VTC-2, P-92 and SK-9 purchased from Electromotif). The fibre is finally bonded to
the waveguide for additional robustness and the fibre is then bonded to the support
piece. Further improvement has been achieved by pigtailing fibre in a ferrule, which is
considerably more robust and stable compared to pigtailing the bare fibre. Excess loss

due to the fibre pigtailing is 0.1dB.

2.7 Estimation of the power budget

In order to select the most suitable detection system for this study, it is necessary to
know the power distribution along the optical chip and the amount of fluorescence power
reaching the receiving end of the detection system. This can be achieved by calculating
the surface intensity over the sensing region using the BPM method followed by analysis

of absorption and emission of fluorescence molecules.

The input parameters in the calculation were based on the fabrication condition adopted

for the integrated optical chip.

A set of fabrication parameters has been established, as described in the previous section,
which were optimised for the best coupling efficiency of the modal intensity between fibre
and waveguide. In this section, a detailed study on 2D index profile, waveguide surface

intensity and quantified emitted fluorescence are presented.

2.7.1 2D index profile model

Having a precise refractive index profile of a waveguide is essential for design, optimisa-

tion and fabrication of the waveguides as well as for analysing their properties.
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There have been numerous studies on the “exhausted source” diffused waveguides, such
as channel waveguides formed by diffusing transition metals into LiNbO3 or LiTaOj
(95 58; 59), using the effective index method(9) and Fick’s equation of diffusion theory
(58)), or a numerical approach (59). But the results achieved by these studies were more
or less the same in terms of 2-D index profile as for diffusion from a metal strip. A
common feature of these results is that the index profile follows a Gaussian distribution

in the diffusion depth, and has the shape of an error function (erf) in the lateral direction.

There are also studies on “non-exhausted source” diffusing waveguides, such as potas-
sium or silver ion exchange in glass (60; [61; 62; 63; 64; 65). The results of the index
profile differed from each other among those studies. For the potassium ion exchange
channel waveguide in a 2-D profile, as an example, the complementary error function of
index profile in the diffusion depth has been recognised by the majority (60; 61} 62; 65),
However, in a lateral direction the Gaussian (61) or erf (64) profiles are widely used;
either of which only suits narrow waveguide openings, and cannot be applied to wider

waveguide openings, e.g. for the tapered waveguide in this case.

Why is there a difference between exhausted and non-exhausted source diffusion? The
key difference is the boundary condition on the interface, the ion source, and the sub-
strate. For the exhausted source, the source concentration will gradually decay during
the diffusion process; therefore the index profile in the substrate has a continuous and
smooth pattern which can be described by a mathematical function such as a Gaus-
sian distribution or error function. On the other hand, in the non-exhausted source
diffusion case, the ion concentration at the surface will remain constant during the dif-
fusion process. This constant ion source will result in a non-smooth or non-differentiable
point in the index profile in the area under the edge of the mask. No simple analytical

mathematical expression exists for the resulting index profile.

So far, the profile parameters of non-exhausted ion exchanged planar or channel waveg-
uides are normally determined either by mode-index measurements (60; 61), using the

prism coupling method (66), or a numerical approach (62; 63} 64).

In section [2.2.2, a constant index profile was used in order to simplify the calculation
in a 2D simulation process using BPM to optimise the tapered waveguide parameters.
In this section, a 2D index profile is derived which reflects the real IE waveguide in

this study, and thus enables the precise calculation of the optical intensity distribution
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along the tapered waveguide. In the next section, a three dimensional analysis will be

introduced in order to describe the flow of intensity.

For channel guides, it has been found that, although the surface-index change An of
channel waveguides is almost the same as that of the corresponding planar guides, the
diffusion depth is different and depends on the mask width and the extent of the side
diffusion or lateral diffusion under the mask, which is relatively independent of the mask
width (61). According to H.F Taylor (62)), the ratio of the extent of lateral diffusion to
the depth diffusion, defined at the 1/e concentration point, is of order of 0.43 for the
case where the waveguide width is greater than the diffusion depth, and an exponential

function is a close fit to the lateral diffusion profile under the mask.

The optimum condition for the fabrication of a potassium ion-exchanged channel waveg-
uide in a BK7 substrate at a wavelength of 635 nm, was found to correspond to an effec-
tive diffusion depth, d, of approximately 3 pm with a waveguide width between 2.5um

to 3um. The effective depth was plotted against the square root of the diffusion time,

2 1

t, (t=2 hours in this case) and an effective diffusion coefficient D, =1.42x1071% m?.s~

(60) using the relation d=+/Det.

The non-exhausted source induced 2-D index profile in a tapered waveguide can be

modelled section by section along the lateral direction of the taper as below:

n(z,y) = ns+ Anf(y) f(z) (2.3)

where

f(y)= erfe(y/dy,)

f(2)= expl-(z-w(2)/2)/ d), if 22 w(2) /2

f(2)= expl(z+w(2)/2)/ de), if2<-w(z)/2

f(z)=1, if -w(z)/2<x<w(z)/2

In which, z is in the lateral direction; y is the diffusion depth; w is the width of the

mask; ns=1.5151(substrate index), An=0.0094 (the peak change in refractive index),
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dy=3um(diffusion depth), dr=0.43dy. Figure 2.15 shows the waveguide surface index
profile of the 30um width section of taper, modelled in this way.
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FIGURE 2.15: The index profile of a 30um taper at the waveguide surface

2.7.2 Waveguide surface intensity

In section 2.2.2) a set of tapered waveguide parameters was optimised by using 2D
BPM simulation. In this section, the OlymplOs 3D BPM simulation is used in order
to obtain the waveguide surface intensity, determined from the field distribution at the

cross-section of the waveguide.

The 3D simulation was carried out for tapered waveguides, tapering to a width of both
30pm and 60um, using OlymplOs BPM in conjunction with the 2D index profile, equa-
tion 2.3, and assuming an input power of ImW. As an example, Figure 2.16/ shows the

start field and the end field of 60pum width tapered waveguides.
Intensity can be obtained from the square of the field strength:

waveguzde \/> X H2 “ o n 2
omess (2.4)

U317
Ty

In which the mode index n.f;= 1.52.
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FI1GURE 2.16: The start field and the end field of 60pum taper waveguides

Figure [2.17 shows the maximum intensity of the start waveguide of 3um and the end of
30pm and 60um taper waveguides in the diffusion -y direction, in W.mm™2, obtained
from the model. The maximum intensity means the mode intensity in the depth direction

through the centre of the waveguide.

Figure 2.18 shows an expanded view of the intensity distribution at the waveguide/an-

alyte interface, which indicates the waveguide surface intensity.

Figure 2.19 shows the surface intensity of the start of the waveguide and the end of

30um and 60pum taper waveguides in the lateral direction (across the surface of the
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FIGURE 2.17: Maximum intensities of the start (3um) and the end of 30um and 60um
taper waveguides in the diffusion -y direction, which are 100 W.mm =2, 43 W.mm ~2and
27 W.mm ™2 respectively
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FIGURE 2.18: An expansion of the interface shown in Figure 2.17

waveguide), with an input power of 1mW. The predicted emitted fluorescence intensity

is also plotted on the same chart (as explained in the section 2.7.4 below).

Therefore the peak surface intensities for 1m W propagating in the waveguide, for 30um

and 60pum taper waveguides, are 0.804 W.mm ™2 and 0.502 W.mm =2 respectively.
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FIGURE 2.19: Surface intensity of the start (3um) and the end of 30um and 60um
taper waveguides in the lateral direction and emitted fluorescence intensity, detail of
the latter is given in the section [2.7.4

2.7.3 Estimation of detection limit for the system

This section will study the possible detection limit for the detection system, in theory,
based on the immunoassay characteristics, and an equivalent detection limit with dye

solutions for the system is also predicted.

In an immunoassay with a binding inhibition format, analyte specific antibodies which
are not occupied by analyte are quantified. In this type of assay the number of binding
sites supplied by the antibodies should not, by far, exceed the number of target analyte
molecules. This results in an upper limit of about 10 nmol.L~! (<1 mg.L~! IgQG) for
the analyte specific antibody (67). For binding, the analyte/antibody mixture has to
be brought into contact with the sensor surface. By using of a flow injection system the
diffusion layer thickness can be minimised and the mass transport to the surface can be
optimised. Under practical conditions a diffusion layer thickness, d, of 107>m may be
reached (67). For a given antibody concentration, c,p, the maximum binding rate, I'y,qz,
can be derived from Fick’s first law assuming a surface concentration of free antibody

of zero and taking into account the diffusion coefficient for IgG (D,,=6x10"1tm?2.s71):

c
Crnaz :Dabﬁb
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A maximum binding rate of 6 pmol.m—2.s7!

can be extimated. The corresponding
maximum change in surface mass coverage is about 4.5 ug.m=2.s~! or 1% of a protein
monolayer per second (assuing an IgG monolayer coverage of about 5 mg.m=2 (68)). In
practice, limited convection may lower the binding rate by up to one order of magnitude.
Acceptable measurement times will dictate incubation times below 1000s but, preferably,
times of approximately 100s are targeted. Therefore, a maximum surface coverage of
0.6 nmol.m™2 can be expected, in binding inhibition assay formats this corresponds to
the maximum assay response (blank measurement), which will decrease with increasing

analyte concentration. So, the detection system should resolve this value to 1 % or less

(i.e. 6 pmol.m~2) (67).

A simple estimation for the performance of a sensor device can be obtained by exposing it
to a dye solution. The fluorophores’ excitation will take place only within the penetration
depth of the evanescent field (a few 100nm), corresponding to a volume per square metre
of about 5 x10~"m?.m~2 (0.5 ml.m~2). A 1.2 x10~®M fluorophore solution will bring
the same number of fluorophores into the excited volume as a surface concentration of
6 pmol.m~2. Therefore, a possible detection limit for the optical detection system with

dye solution with concentrations down to 1078M is desirable.

2.7.4 Emission by dye molecules

A crucial issue in the power budget analysis is estimating how much fluorescence will
be emitted by dye molecules on the sensor surface with a certain surface pump light

intensity.

In this section, the emission in a situation of the minimum surface coverage necessary
to detect of 6pmol.m~2 is considered, in which the number of antibody molecules per

m? is equal to:

6pmol.m~2 x 6.02 x 10%* mol~!(Avogadro’s Number) = 3.61 x 102 antibodies.m 2

Since about 2 to 6 Cy5.5 molecules will bind to each antibody (67), the worst case of the

density of Cy 5.5 molecules in the same surface coverage is 7.22 x10'2 (Cy5.5molecules).m 2.

The fluorescence emission intensity Imnitteq 1S given by:
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Iemittea = D X n X ()‘p/)\e) X 0g X Ig (2'5)

In which D is the molecule surface density, 1 is the quantum efficiency of Cy 5.5 which
is 0.28, A, is the pump wavelength (638nm) and A, is the emission wavelength of Cy 5.5
(700nm), o, is the absorption cross-section of Cy5.5, which is 3.6 x1072m? (69) and I,

is the surface intensity.

Thus, for the minimum dye molecule density which must be detected, the emission

intensity is given by Iepmitted = 6.6 x 1078 x I

As an example, for a 30um taper waveguide with 1mW input power, the Ipitteq at the

peak surface intensity is 53 nW.mm™2.

In Figure2.19, the axis on the right side corresponds to the emitted fluorescence intensity.
The total emitted fluorescence Pep,isteq from the area of a 30um taper waveguide (30pum

x 1.5mm, the length of the sensor patch) is

o0
Pemitted = / Iemitteddx X 15(mm) = 1.4nW (26)

—0o0
The total emitted fluorescence from the area of a 60 pym taper waveguide is 1.1nW.

For the minimum surface density of fluorescence molecules to be detected (7.22 x10'2
Cy5.5-molecules.m™2), the total emitted fluorescence power is predicted to be 1.4nW
for the 30um taper waveguide area of 30pum x 1.5mm per mW of pump power in the
waveguide. And for the 60um taper waveguide with the area of 60pum x 1.5mm, the total
emitted fluorescence power is predicted to be 1.1nW under the same pump power in the
waveguide. This established a design parameter for the next chapter which describes

the instrumentation in more detail.

2.8 The first generation sensor chip fabrication process

The results of the design procedure are summarised here. The multisensor chip was
fabricated by potassium ion-exchange in BK7. Since the BK7 glass has good optical

quality and exhibits low fluorescence, and the process produces low loss waveguides,
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uses low cost materials and fabrication procedures, and had already been optimised in
our laboratories for low loss coupling from optical fibres resulting in minimisation of

scattered light in the substrate.

The overall chip dimensions were 67mm x 15mm, constrained in length by the exposure
area of the mask aligner and in width by ease of handling. The waveguide circuit was
defined by opening tracks 3um (for a signal mode waveguide at 633nm) wide in this
film using conventional photolithography, following the layout shown in Figure 2.1. Ion
exchange was carried out by immersing the masked substrates in KNO3 at 400°C for
2 hours to produce single mode channel waveguides with good coupling to optical fi-
bre. Parabolic taper waveguides widening to 30pum and 60pm were introduced into each
waveguide branch after the Y-junction splitters in order to reduce the optical power
density at the waveguide surface, and hence to reduce the rate of fluorophore photo-
bleaching. The purpose of broadening the waveguides was to maintain the emitted
fluorescence power while reducing the pump intensity incident upon each dye molecule
and thereby reducing photobleaching and allowing longer acquisition time and hence

improved signal to noise ratio.

A silica layer thickness of 1 micron ensures that the intensity at the surface of the
isolation layer is much less than 1% of the intensity within the window, effectively

isolating the chip from the analyte outside the window.

Deposition of the TasOs5 film was used for some devices to explore its effect upon sensor
system performance. In order to enhance the surface intensity in the sensing windows,
a 25nm thick film of TaoOs was deposited over the entire surface of the chip by RF
sputtering in an atmosphere of 1 : 9 oxygen : argon at a total pressure of 11mTorr,
which resulted in optimised films with low loss as showed in Figure 2.21. A factor
of 10 enhancement of the surface intensity is expected with the 25 nm TasOs film,
which would lead approximately to a factor of 10 enhancement in peak signal strength.
A polarisation-maintaining (PM) fibre pigtail with a PM connector was permanently

bonded to the input end of the sensor chip with UV-curing epoxy.

Figure 2.20 shows a photograph of one of the sensor chips.
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F1GURE 2.20: Photograph of the sensor chip.

2.9 Further improvements on the new generation sensor

chip fabrication

Based on the outcome of the fabrication of the first generation of sensor chips and the
calculation result of overlap integrals, the new waveguide diffusion mask width has been
changed from 3pm to 2.5um, in order to improve the fibre/device coupling efficiency,
as mentioned in early of this chapter. Further, the chip is now entirely covered by the
silica isolation layer apart from the sensing windows themselves, in order to prevent
the waveguide from being disturbed by anything dropped on the sensor surface. In
the previous case, only 50% of the sensor area was covered by the silica isolation layer,

because the silica layer used was very lossy (13).

The following improvements in the fabrication process have been implemented: the
thickness of the new chip substrate was reduced from 1mm to 800um, which also reduced
the substrate absorption and scattering, and hence improved fluorescence collection; the
silica layer was sputtered with an oxygen partial pressure of 20 mTorr, rather than 10
mTorr argon (section 2.4.3), during the deposition; excess loss due to the silica isolation
layer was reduced to ~1dB. Tantalum pentoxide films of 25nm thickness have been
deposited on one of the new sensor surfaces to increase signal strength, the sputtering
process has been improved by using a rotating table and adopting a chamber temperature
of 250°C in order to improve film uniformity, which also resulted in negligible excess
loss. The loss measurement was shown in Figure [2.21. The fibre in a ferrule has been
introduced for fibre pigtailing, which is considerably more robust and stable compared
to pigtailing the bare fibre. Excess loss due to the fibre pigtailing is now less than 0.1dB.
Figure 2.21] shows the loss measurement for the same new chip in different fabrication
stages, in which the 6dB loss due to the 4way split is not included. The rest of the

fabrication process is the same as in the last section.
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FIGURE 2.21: Loss measurement of the new generation sensor chip.

2.10 Conclusion

The optical waveguide circuit has been designed using OlymplOs software to ensure
low-loss and adiabatic tapering. Near-field modal intensity profiles have been measured
and compared with those of the selected polarisation-maintaining fibre; coupling losses
were predicted using overlap integrals. Waveguide losses and fibre coupling losses have
been measured directly and an optimised fabrication process has been selected for the

sensor chips.

The first generation sensor chips have been fabricated and further optimised by achieving
low-loss silica isolation layers in a newly-commissioned RF sputtering machine. Tanta-
lum pentoxide films of 25nm thickness have been deposited on the sensor surface to

increase signal strength with negligible excess loss.

A detailed study has been carried out to estimate the power budget over the waveguide
region and to derive the 2D-index profile theoretically. A precise model, which describes
the characteristics of the devices, has been established after a thorough study process
of simulation and optimisation; this will contribute greatly to the future devices’ design

and fabrication.

New generation sensor chips were realised based on the outcome of the calculation and
optimisation of the previous fabrication process, in terms of low loss and high signal

strength.
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The minimum fluorescence output power to be detected has been estimated, allowing

the design of suitable collection optics and detection electronics in the next chapter.



Chapter 3

Multi-Sensor System I: Fibre
collection and photodiode

detection system

3.1 Introduction

The integrated optical fluorescence multi-sensor instrument, described in this thesis, is
based on evanescent field technology. Laser light is coupled into an optical transducer
and guided down to the multi-sensing area, which contains 32 patches in this case.
The transducer surface is chemically modified in spatially distinct loci with analyte
derivatives. Analyte-specific antibodies are labelled with a fluorescent marker which,
upon binding to the transducer surface, are excited in the evanescent field. The emitted
light is then collected for detection with 32 polymer fibres. The design allows for the

simultaneous measurement of multi-analyte spots.

Optics, electronics and fluidics are three major parts of the instrument in terms of hard-
ware requirements for the multi-sensor system. The development of miniaturised fluidics
for the consumption of solutions, the provision of a sample handling system and the set-
ting up of a detection system were the next major tasks after the design and realisation
of the integrated optics. The microfluidic circuit was designed and fabricated by the

former Central Research Laboratory (CRL) in London. This microfluidic circuit was

48
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complementary to the sensor array and enabled the test sample to be presented to all 32
test spots, and allowed the access to the input and output ports of the fluidic circuits.
It had been agreed among the research partners to use photodiodes in the instrument
rather than a CCD array. Therefore the photodiode-based detection schemes, which con-
sist of the photodiodes with integral amplifiers, an amplification and prefiltering stage,
were experimentally evaluated for cost, noise, stability and detection limit. This chapter
addresses various aspects of the instrumentation of the sensing system including a pre-
liminary test of the photodetector/ amplifier, microfluidic and electronic components,
optical component selection, testing, the basic concept of signal filtering and processing,
the estimation of the optical power within the sensor device, the detection system, and

the system operation.

3.2 System overview and operation

e e e

OPTICAL
FILTER

F1GURE 3.1: The flowchart of the multi-sensor system

Figure3.1lis the flowchart for the multi-sensor system; it illustrates the three major parts

of the instrument. The waveguide, laser and detector are the optical part, which forms



Chapter 3 Multi-Sensor System I: Fibre collection and photodiode detection system 50

the heart of the instrument. This part is comprised of integrated optical fluoro-sensor
arrays with potential for multi-analyte operation combined with pigtailed laser diodes
for stable and precise control of fluorescence excitation. The fluidics part consists of
an auto-sampler and the microstructured fluidic cell, which delivers fluid to the sensing
system with small sample and reagent volume. The rest are electronics components
including a photodetector (PD), amplifiers, temperature sensors and an electronic filter,
which carries out measurements and data processing. All these three major parts are

controlled by a computer.
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F1GURE 3.2: Experimental set up.

The complete apparatus for immunoassay measurements is shown in Figure [3.2. Light
from a semiconductor laser is coupled into the input waveguide of the sensor chip, this
input power is divided equally into four parallel waveguides through three Y-junction
splitters and, in the 32 exposed sensing regions, the evanescent field is able to interact
with the analyte, forming spatially separated sensing spots. If a fluorophore is brought
within a few 100nm of the sensing spot the evanescent field of the guided light will
excite the fluorophore, resulting in fluorescence. The fluorescence is collected by an
array of 1mm core diameter high numerical aperture polymer optical fibres located
under the sensor chip, then filtered to remove stray pump light, and detected by a

silicon photodiode.
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A micro-flow-cell is affixed to the chip over the 32 patches to supply sequences of solutions
to the sensor surface. The pumps and valves which supply the solutions, the laser,
and the data acquisition system are controlled by a computer that is integrated in the
housing. The fluorescence power from each sensing site, the laser power, the ambient
temperature and the temperature at the sensor are recorded, and the data are logged

and analysed on the computer.

3.3 Optical power estimation

It was established in Section 2.7.4 of the last chapter that, for the 30um taper waveguide
and 1mW of waveguide power, the total emitted fluorescence power from a sensing spot
would be 1.4nW. In this section, the power collected by the photodiodes is discussed,

which is vital to the instrumental design.

As mentioned previously, the emitted fluorescence will be collected by a 1lmm core
diameter, high numerical aperture, polymer optical fibre, that is located under the sensor
patch since the flowcell is clamped on top of the sensor chip. The collected fluorescence

is then filtered to remove stray pump light, and detected by a silicon photodiode.

As an example in Appendix Al the fluorescence collected from the 30um taper waveguide
patch is calculated, assuming that the dye emission is isotropic, and that the numerical
aperture of the fibre is about 0.514+0.03 (and 0.48 was used for the calculation). The
calculation shows that approximately 3.7% of the emission from a 1.5mm long 30um

wide fluorescent strip would be collected by the fibre beneath the patch.

By integration of the transmission spectrum of the optical filter with the emission spec-
trum of the dye Cyb5.5, it is estimated that about 20% of the collected fluorescence passes
through the filter.

Due to the thickness of the filter (a typical thickness of a suitable filter is about 3mm),
and again the high numerical aperture of the fibre, only about 11% of the collected

fluorescence light would reach the detector.

Combining the above figures, we can estimate that 0.08% of the emitted fluorescence
will be collected and reach the silicon photodiode detector (details of optical component

optimisation and selection will be given in section 3.4.3 of this chapter).
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With 1mW power input to the waveguide, the collected fluorescence P,yjjecteq from the

30 pm taper waveguide patch is:

Pcollected = Pemitted % 0.08% = 1PW (31)

With the same imput power to the waveguide, the total collected fluorescence from the
60 pum taper waveguide patch is 880 fW. Therefore, a detection system which can detect

to its minimum power of 880 fW or less is adequate for this project.

3.4 Instrumentation

This section will study electronics, fluidics and the rest of the optical and electronics

components in detail, plus the electronic signal filtering and processing.

3.4.1 Photodetector/amplifier selection and preliminary test

In theory, a worst case example is 1pW of fluorescence being collected by the detector
under the condition of 1mW power input to the 30um taper waveguide sensor spot,
and 880fW for the 60 pum taper waveguide sensor spot under the same input power.
Therefore, a detection system which can detect to its minimum power of 880fW or less

is adequate for this study.

In practice, a peak fluorescence signal (blank measurement) of 5pW (without tantala
high-index film) was achieved by Harris et al. in their waveguide immunofluorescence
sensor for water pollution analysis (52). It can be estimated that, to achieve a 10 ng.L~!
detection limit, the reduction in fluorescence power from the blank value to 1% would
have to be resolved. For example, 30=1% of 5pW is 50fW (o is the standard deviation
of the measurement). However, if a 10 times improvement can be achieved in signal by
using tantala then the optical detection requirement can be increased to 500fW. This
should be achievable by using the Centronics diode, which was chosen if the bandwidth
was about 1 Hz, as the NEP is 150fW.(Hz)~'/2, and 3 x NEP = 450fW. This leaves some
room for degradation by CRL’s amplifier. It is also worth mentioning that the former
river analyser project (also called RIANA) aimed at achieving a detection limit of 100fW

of fluorescent power incident on the photodetector. A practical detection limit of 120fW
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was found in subsequent testing of the prototype unit which was considered acceptable

(70). Based on these results, the same Centronics diode was selected as detector.

The purpose of this initial photodetector/amplifier hybrid selection test is to determine
whether noise performance is acceptable without lock-in amplification. The experiment

consisted of three steps.

The first step was to test the drift of the photodetector/amplifier in a constant tem-
perature environment: a selected Centronic OSI 5 - IR - 100M/1k photodetector with
an integrated amplifier was packaged with a Schott fluorescence emission filter and the
input feed through for a Imm core diameter polymer fibre was capped off with black
tape. The aim of using a fluorescence emission filter is to filter out direct illumination
from the pump source. The chip was powered by +12V from batteries and placed in
an environmental chamber (stabilised at 30+£0.2°C) for 12 hours, and the output was
recorded. The sensitivity of the detector/amplifier is specified to be approximately 40
wV.pW! at a wavelength of 700nm. The output drifted by about 0.06mV over the full

period, equating to about 1.5pW equivalent optical power.

The second step was to test the drift of the photodetector/amplifier in a variable tem-
perature environment: the environmental chamber was set at temperatures between
25°C and 50°C at 5°C intervals and allowed to settle for approximately lhr at each
temperature. The output voltage was recorded and the results plotted in figure 3.3, in
terms of the equivalent optical power (to the DC offset voltage) against temperature. At
27°C the DC offset voltage shifts by about 0.06mV.°C~!, equivalent to 1.5pW.°C~1. At
40°C, the DC offset voltage shifts by about 0.47mV.°C~!, equivalent to 11.85pW.°C~L.

The third step was to identify whether the detection of a “pulse” of fluorescent radiation
with a resolution of order 100fW was achievable. The detector/amplifier was removed
from the environmental chamber and approximately 1 metre of lmm core diameter poly-
mer fibre was fed into the detector/filter housing. An instrumentation amplifier with
a voltage gain of x1, x10, x100 or x1000 and low-pass filtering at 1Hz or 1kHz was
constructed. The instrumentation amplifier was fed by the output of the photodetec-
tor/amplifier hybrid and powered by +12V from batteries. Light from a white light
source was passed through a chopper and variable attenuator, collected by the polymer

fibre and passed through the Schott filter onto the photodetector surface. With the
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amplifier set to x1000 gain and using the 1kHz band-pass filter, a peak-to-peak sig-
nal of 400mV (10pW) was established. The chopper was then removed, a 20dB filter
was placed between the light source and the fibre to provide an illumination level of
100fW, the instrumentation amplifier filter was set to 1Hz, and the amplifier output
was recorded continuously. After recording for some minutes, a piece of black card was
inserted between the light source and the polymer fibre. After approximately 1 minute
it was removed again. Despite evidence of drift and noise, there was clearly a reversible

step change in the recorded signal, which was greater than the short-term noise. In the
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FIGURE 3.3: Dependence of equivalent optical power to DC offset on temperature

case of short-term non-automated measurements in a well-controlled laboratory envi-
ronment, the detection of a “pulse” of fluorescent radiation with a resolution of order
100fW was determined to be feasible using the chosen detector/amplifier combination.
However, in an instrument where temperature drifts considerably, where there may be
other environmental noise sources at very low frequency, and where the signal acquisition
must be automated, it will be necessary to employ some form of noise/drift reduction.
While it would be undesirable to add unnecessary extra costs to a production instru-
ment, there is a good case for adding extra flexibility to a research instrument, which can
be removed in a production instrument after the R and D phase is complete. The most
flexible way to provide a means to study different noise-reduction techniques, including
“lock-in” detection, would be to implement them in software, as suggested by Siemens, a
partner of the consortium. The most cost-effective means to realise the instrument that

is required to provide an on/off modulation of the laser input at frequencies up to, say,
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300Hz, for acquisition of the modulated fluorescence signal, and for digital lock-in tech-
niques. However, for cost reasons, lock-in detection was not selected by the AWACSS

consortium, but it was decided to include temperature monitoring of the detectors.

3.4.2 Microfluidics and electronic components

Optimal performance of the immunoassay system is dependent upon the efficient util-
isation of fluorescence-labelled antibodies to detect the presence of specific analytes in
the water sample. These analytes are transported to the sensor transducer by the mi-
crofluidic system where they bind to specific regions on the sensor surface to produce
the transducer signal. The signal intensity is therefore dependent upon the binding
efficiency and contact time between antibodies and binding sites. The proportion of
antibodies that is made available for binding is also dependent upon the dimensions of
the flow cell. As the depth of the flow cell is increased, less of the antibodies fall within
the diffusion capture range of the binding site and the sensitivity of the assay decreases.
The concentrations of antibodies required to give optimal performance are calculated
during the calibration runs, but if the depth of the flow cell varies significantly from one
binding region to the next, assay performance will be compromised. The flow cell used in
this study was designed and fabricated by CRL. Prototypes of the microfluidic channel
were fabricated in acrylic polymer by CRL using a hot emboss technique (71} [72), and

trials of fluid flow through the device were carried out.

Figure 3.4a shows plan and elevation views of the flow-cell. The width is 5mm, to cover
the 3mm wide waveguide region and the length is 24 mm. The targeted channel depth
of the flow-cell is 35um, but fabrication tolerances caused it to vary between 35um and
50pm from device to device. The flow channel height is chosen to be as small as possible
so that transport of molecules to the sensor surface is fast and measurement times are
kept low, but not so small that it is easily blocked or so that manufacturing tolerances
become impractically stringent (73)). The shape of the flow-cell from the plan view is
designed to result in laminar flow with the velocity profile shown in Figure 3.4b. While
the flow rate over the outer rows of sensing patches is 80% of that over the central rows,
differences in resultant binding fractions are expected to be corrected in calibration of

the sensor.
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FIGURE 3.4: Flowcell schematic. a) The flowcell design (dimension 24mm x 5mm x
50um approximately), and b) The flow profile across the flowcell with 0.1ml.min~! flow
rate.

The design and fabrication of the trial sensor mounting block contains 32 fibre optic
cables (optical fibre single core polymer 368-047 (RS Components)) which conduct the
fluorescence from the chip to the detectors. There are two built-in temperature sensors
which monitor the temperature of the sensor surface and the photodiodes. The sensor
block is interfaced with an array of 32 independent photodiodes and filters, which are
hard-wired to amplifier circuits and, via low noise interconnects, to the interface with the
main pc controller, supplied by Siemens. The technology for precise and semi-automatic

cutting of sensor chips to align with the collection fibres to within +50um has been
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established. Figure 3.5/ shows a sensor chip attached to the CRL block.

Temp sensor

FIGURE 3.5: Photo shows a sensor chip in a CRL block.

3.4.3 Optical component selection and testing

Having selected the photodetector and receiver electronics, the peripheral optical com-
ponents were specified, selected and tested. The testing work was carried out jointly
with Patrick Hole. A Point Source laser diode module (iFLEX-1000), which emits ap-
proximately 5mW at 637+2nm and is connected to a polarisation-maintaining fibre, was
selected since it met the power and wavelength specifications and was packaged ready for
use. Although a 635nm version was considered, in order to reduce pump breakthrough of
the fluorescence filter, this had the disadvantage of lower power and a reduced power re-
liability. The latter was, however, used for the dye fluorescence measurements, described
in the next chapter, due to the laser diode module (iFLEX-1000) not being available
at the time for the dye experiment. Measurements on suitable fluorescence filters and
on the 637nm versions showed that there was little difference in the behaviour of these
modules, so that the standard 637nm version was selected. The power spectra of the
two lasers used in the experiments are shown in Figure 3.6, The wavelength for both

lasers are 635.5nm and 637.7nm respectively.
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Spectral comparison of 635.6nm and 637.7nm laser diode
sources

o A%
625 6?5” ) 645 655 665 675 685 695 705 715

L

-20 // \\
-30 ~—637.7nm
~635.6nm

-40

log power (dB) mW/nm

-50

-60

70
Wavelength (nm)

FIGURE 3.6: Laser power spectra.

Sample filters had been provided by NDC Infrared (74) for testing. These included
690/4, 690/6, 700/4 and 700/6 (centre wavelength/fractional wavelength% (74)), and
the relative transmission from fluorescing Cy5.5 was measured for each one. Figure 3.7
shows the emission spectrum of Cy5.5 dye excited at 633nm. Figures!3.8 and[3.9/show the
transmission spectrum of the selected filter. The diameter of the filter is 5mm=+0.1mm
and the thickness is 2.7mm=+0.1mm. In trials, pump breakthrough occurred with the
690/6 filter. The pump breakthrough is a potential problem, as it tends to saturate
the detection channels and, furthermore, any fluctuations in the pump breakthrough
will manifest itself as noise in the received signal, causing the detection limit to dete-
riorate. Overall, the 700/6 combined with absorbing and interference layers was found
to be the most suitable filter. Subsequently filters with 695/2.5 characteristics also be-
came available, but it was felt that these would probably restrict the amount of light

transmitted.

3.4.4 Electronic signal filtering and processing

The outcome of the preliminary test of the photodetector/amplifier (described in Section
3.4.1 of this chapter) has shown that at 700nm wavelength the photodiode has a response
of approximately 24mV/100pW incident power. A non lock-in detector system was

selected for the instrument which included a 4% Order Butterworth Low-pass Filter,
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FIGURE 3.7: Emission spectrum of Cy5.5 dye excited at 635nm.
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FIGURE 3.8: Transmission spectrum of 700/6% filter.

this approach was suggested by CRL, and was approved by the project partners, who
were involved in design of the detection system including the author. In this section, a
description of the 4" Order Butterworth Low-pass Filter used in the system in order to

suit the above requirement is given, with detailed analysis in Appendix BL.

3.4.4.1 The 4'" Order Butterworth Low-pass Filter in the system

In order to accommodate the requirements of the system, as mentioned at the beginning

of this section, the 4" Order Butterworth Low-pass Filter was chosen for the system.
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FIGURE 3.9: An expansion of transmission spectrum of 700/6% filter.

The circuit shown in Figure 3.10 addresses the requirement of the system.

4th Order Butterworth Low Pass Filter

c1 ? +15V

R1

R8

200K

R3

910K

Total Gain =144 _L Stage 1: Fo=1.41Hz, Q=0.54 Stage 2: Fo=141Hz, Q=1.31

Ficure 3.10: AWACSS Photodiode Circuit: Amplifier-Filter Stage

Note that the final magnitude of the gain is dependent on the actual light output of the
sensor device and the output measurements indicated that a gain of approximately 1350

was required and designed.

Based on the value of resistors and the capacitors given in the circuit Figure 3.10 and
the parameters of the transfer function, equation 3.2l can be obtained via solving the set

of nodal equations.

1

(s — 3.2
() (0.012552 + 0.2067s + 0.9977)(0.0121s2 + 0.0909s + 1.0076) (32)
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in which s = jw. More details about the transfer function in equation 3.2/ and data

processing will be given in Section [5.5/in Chapter 5.

3.5 Detection system

Fluorescence measurements were carried out in order to characterise the sensor system in
terms of patch-to-patch uniformity and the system detection limit. Detailed fluorescence

experiments are given in the next chapter.

It has been mentioned, in Section [3.4.1 of this chapter, that a worst-case detection limit
for changes in fluorescent intensity of about 100fW was projected based on the RIANA
project (70). Based upon this data, the decision to employ a preamplifier detection
system based on a photodiode array in the sensing system was made, and the detection
system was then designed and built by CRL. Each channel gain has been adjusted to
1350, allowing a maximum signal of about 200pW and the detection limit is below 0.5pW
corresponding to a NEP of about 160fW for a bandwidth of 1.4 Hz. This is very close
to the specification and the detection limit, using this system with the pigtailed chips

and a commercial FIA, details are given in the next chapter.

The limit of detection is defined as the concentration at which the signal equals the
mean value plus three times the standard deviation and is expected to allow detection

below 1% of the blank value (75).

A preliminary measurement of the photodiode (PD)(Centronic OSI 5-IR-100M /1K) sig-
nal to noise distribution at room temperature (RT) was performed without using the
built in amplification and filter circuitry. The investigation of the noise spectrum of the
photodiode, with an integrated pre-amplification circuit, yielded a minimum near 1Hz.
Measurements at different stages within the CRL detection unit circuitry confirmed the
good operation of amplification and filter stages. Using the Lock-In method @ 177Hz
chopper frequency and the built in amplification circuit a PD signal standard deviation
of about 1.7mV was measured. The slow integrating DC measurement with use of the
built in amplification and a 1 Hz low-pass filter circuit yielded a standard deviation of
below 1mV. This result compares well to the noise spectrum minimum value at 1Hz.

1mV signal was found to correspond to 160fW, so that the minimum detectable signal
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change, corresponding to 3 standard deviations, was found to be 500fW. This confirmed

what was discussed in section [3.4.1l

All components of the system were assembled, including the CRL final instrument,
computer control hardware and software, auto-sampler and sensor chip. The hardware
(optical, electronic and fluidic) and software has been tested. Figure 3.11/shows a photo

of the interface between optical bench and electronics.

F1GURE 3.11: Interface between Optical Bench and Electronics, constructed by CRL.
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3.6 Conclusion

This chapter addresses detailed study on electronics, fluidics and part of optics and
their selection for the instrumentation, in terms of hardware requirements for the multi-
sensing system. A study on optical power estimation of the system was delivered hence

enables a detailed design of the detection system.

The author has worked closely together with CRL, Siemens and Tiibingen University in
the design of the final detection system, the involvement including, the laser selection,
laser to chip connection, detector selection, filter selection, detector pre-amplifier, signal
processing, and the integration of sensor chip to the microfluidics system and to the
optical fibre array connection. In addition, the author supplied pigtailed sensor chips to

other partners for varies trials.

The choice of using the detection system discussed in this chapter mainly because of
its low cost. Preliminary research and experiments have been carried out and have
proved the feasibility of the sensing system. The complete system, including components
of optics (the sensor chip), hardware (instrument, computer, and auto-sampler) and
software, was assembled and tested. The optical detection limit of the full system,
defined as 3 x NEP, has been found experimentally to be equivalent to ~500fW of

fluorescence power.

A detailed analysis was given on how the signal filter works and also a brief introduction
of the 4" Order Butterworth Low-pass Filter used in the system. The photodiode
itself operates best at 1 Hz measurement frequency. Fast signal changes induced by
the laser, power supplies or fluidic components could not be eliminated by any of the
investigated measurement techniques. But, by optimizing the design and construction
of the system, these changes can be reduced or eliminated. Influences of slowly varying
ambient light changes or thermal drifts could be avoided by the use of Digital Lock-In
methods which involves controlling the computer and software environment or a more

adequate construction of the unit housing.



Chapter 4

Fluorescence Measurements and

Sensor Chip Characterisation

4.1 Introduction

Fluorescence power measurements have been carried out using various concentrations of
bulk dye solutions of Cy5.5 in water, using a commercial flow-injection system to supply
sequences of solutions to the sensor surface, in order to confirm low-noise operation of
the detection system and determine the ultimate detection limit in terms of the number
of Cy5.5 molecules per unit area. Signal strength, noise and drift have been quantified

for the detection system.

This chapter presents the bulk dye experiment in detail and the results obtained, and

compares these results with the theoretical predictions.

During the characterisation process, improvements were implemented in adjusting the
optical circuit layout and in the fabrication process (which was addressed in Chapter
2), hence, a direct comparison between two generations of sensor chips has also been

possible.

64
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4.2 Fluorescence measurements

Preliminary tests were initially carried out with a custom made optical block in which
the sensor chip can be fitted and the fluorescence can be collected from the backside
of the sensor chip via a single fibre, which can be moved from one patch to another
manually. This approach was aimed at using the available resources more efficiently,
as the sensor chip characterisation could be carried out at the same time as the final

AWACSS instrumental block was being prepared in CRL.

Figure 4.1/ shows a sensor chip fitted in the optical block and with a flowcell attached.

FI1GURE 4.1: Sensor chip and flowcell mounted in a home-made block.

Light from the semiconductor laser, with an output power of 3mW at 635nm, was
coupled into a single-mode polarisation-maintaining fibre, which was butt-coupled to
the sensor chip instead of using fibre pigtailing thus resulting in less stable coupling in
this case. A microscope lens was located at the output end for optimising the coupling
light. The chip was deposited with 25nm tantalum pentoxide in order to enhance the
signal. Cy5.5 dye from Amersham Pharmacia was chosen for the bulk dye experiments.
Sequences of solutions of deionised water and bulk dye with concentrations between
1075 to 1078 Molar Cy5.5 were delivered to the sensor surface via a lab flow-injection
analyser (FIA). An OSI 5-IR-100M/1K photodiode was used as a detector and signals
acquired with a commercial lock-in amplifier. The fluorescence was excited with a peak
wavelength of approximately 700nm and was collected by a high numerical aperture
polymer optical fibre located under each sensing spot of the sensor chip; the pump light
was removed from the signal by a filter before the photodiode. The diode signal was
acquired by a commercial SR810 lock-in amplifier (from Stanford Research Systems)

and recorded by a computer using LabView software.
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Figure [4.2] shows a result of a dye experiment using the above set up, the concentration

of dye is 0.92x107%M Cy5.5.
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FIGURE 4.2: 0.92x1075M Cy5.5 test. The slow trailing edge is due to the mixing of
washout and the dye solution diffusing into the pure water (sample No. 11-3-32).

The signal is defined as an averaged signal over a series of data in the peak region of
the dye pulse, in which the background signal was deducted. The background signal
was an averaged signal over two parts, the first part of the signal was taken before the
beginning of the dye pulse and the second part was the signal taken after the dye pulse.
The limit of detection here is defined as three times the dye concentration divided by
the signal to noise ratio. Here the noise is defined as the square root of the squared

standard deviation of the signal and the squared standard deviation of the background

signal (noise:\/ agigml + afackgmun 2)- Therefore, a detection limit below 2 x 1078 M

Cy5.5 was determined for the 15 generation sensor chip.

In Figure 4.2, the dye concentration has been chosen to give a similar peak fluorescent
signal to that of a “blank” immunoassay measurement. The signal is 15pW, but this
will be increased by a factor of 2 if lock-in detection is not used and also increased with
the high power laser to be used in the instrument, so that at least 50pW of signal can be
expected. In this experiment to measure the fluorescence from bulk dye solutions, the
dye sample was loaded with a flow rate of 1.4 ml.min~! for 5 minutes. Subsequently, the
dye solution was washed out of the cell with the fixed pump flow rate of 0.56 ml.min".
The change of flow rate from fast to slow shows an effect of sudden cut-on in, and a slow

trailing edge at the washout end, due to the mixing of washout and the dye diffusing

into the pure water.
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4.3 Patch-to-patch uniformity

A good patch-to-patch uniformity means that the measurements from all 32 patches
will have a similar dynamic measurement range. Uniformity of the signal from the 32
patches was assessed by scanning an individual fibre underneath the chip while the cell

was filled with 1075M Cy5.5 dye, as shown in Figure 4.3. Background signal strength

FIGURE 4.3: Setup for patch-to-patch uniformity measurement.

was recorded, which was the average of the measured signal strength at 4 spots ad-
jacent to the patches, this average background signal of 1.3mV, equivalent to 32pW,
was subtracted. 16 patches attained ~15pW with 1075M Cyb5.5 and 16 patches yielded
1354+30pW, Figure [4.4] shows the mapping of the uniformity of the 32 patches with
1075M Cy5.5 dye solution;

Figure 4.4 shows the mapping of the uniformity of the 32 patches with 107M Cy5.5
dye solution. Uniformity was reduced after applying the tantalum pentoxide high-index
film. The intensity decay along the patches was mainly due to the high-index film
which pulls the intensity field towards the sensor surface, resulting in an increase in
the signal strength decay rate. Absorption and scattering losses inside the TagOj5 also
contributed to the intensity decay. Annealing the device could reduce the attenuation
due to reducing the optical absorption in the TagOs film (13). A direct comparison with
the patch-to-patch uniformity of the new generation sensor chips will be discussed in

the section below.
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FIGURE 4.4: Mapping of the uniformity of the 32 patches with 10-M Cy5.5 dye on
the 1%t generation sensor chip coated with TagOjs film.

4.4 Comparisons between 1* and 2"! generation sensor

chips

This section presents the dye experiment results of the new generation sensor chip and

the direct comparison with the first generation sensor chips.

4.4.1 Bulk dye experiments

Dye experiments have been carried out again using bulk dye solutions of 107°M-10"M
Cy5.5 in water, with a commercial flow-injection system to supply sequences of solutions
to the sensor surface with CRL instruments. All CRL electronics were used for these
trials (240V AC input to instrument, all 32 photodiode outputs and both temperature

outputs).

4.4.2 Chips with and without Ta;O; over-layer
4.4.2.1 Limit of detection

The best case LOD for the newly fabricated chips coated with TayOj5 layer (Figure
4.5) has reached 7.7x1071'M bulk Cy5.5 in water, it is about 130 times better than
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FIGURE 4.5: 107?M Cy5.5 on new generation chip sample 14-2 with TayOj5 film @
RT=29°C.

previously fabricated 15! generation sensor chips, and it is about 36 times better than
what was achieved before adding the TagOs film (Figure 4.6), this is agreed well with
the theoretical prediction in Figure 2.12, which shows the enhancement factor of 36 for

the 35nm TasOs5 film (the index of the TayOj film is 2.1).
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FIGURE 4.6: 1076M Cy5.5 on new generation chip sample 13-2 without TayO5 film @
RT=29°C.
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Discussion: the comparison of the flow profiles between Figure 4.5, Figure /4.6 and Figure

4.2,

The flow regime was identical for the experiments shown in Figure 4.5 and Figure 4.6,
with a slow flow rate of 0.42 ml.min~! when the dye sample is introduced, the duration
of sample loading is 3 minutes, and a fixed pump flow rate of 0.56 ml.min~! when the
washing out starts. The slow flow rate shows the effect of the dye solution diffusing
into the water in the cell, and the change of flow rate from slow to fast shows the
effect of sudden cut off. The difference between Figure 4.5/ and Figure 4.6/ is in the dye
concentrations, and Figure 4.5 also has a 35 nm TasOj film coated on the sensor surface
which shows higher sensitivity than the result of Figure 4.6/ in which the sensor chip has
no high-index coating. The reasons for the difference in diffusing in the leading edge are

unknown.

The flow regime in Figure 4.2/ was different from the above experiments. It has a fast
flow rate of 1.4 ml.min~! for loading the dye sample, the duration of sample loading is
5 minutes, and the fixed pump flow rate of 0.56 ml.min~! (the same as the above) when
dye solution was washed out from the cell. Therefore, the change of flow rate from fast
rate of 1.4 ml.min~! to slow rate of 0.56 ml.min~' shows a sharp cut-on in, and a slow
trailing edge at the washout end, due to the mixing of washout and the dye diffusing

into the pure water.

The detection limit of the system also means that the system is able to resolve 1%
of blank measurement. The peak signal for a blank measurement is expected to be
equivalent to a bulk dye concentration of 1.46 x 10~°M Cy5.5 in water. If a detection
limit of 1071°M Cy5.5 is assumed, then the minimum detectable surface density of Cy5.5

could be worked out.

As we only detect dye molecules within the evanescent field, which extends of order d =
100nm from the waveguide surface, we can estimate how many molecules per unit area

this concentration corresponds to.

This surface density is denoted as p, and may be calculated as follows:

p=1000 DN ad,
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(Note: the units are molecules.m~2; a factor of 1000 is required to convert L to m3,

1mol/1000cm3=1M). Where D; is the bulk detection limit of the system, N, is Avo-
gadro’s number = 6.02x10% (molecules.mol~!), and d, is the penetration depth of the

evanescent field:
dp:/\/[QW(fof —ny?)1/2]

Where A\ is the wavelength of the laser, N.;y is the effective index of the waveguide

mode, and ng is the refractive index of the analyte.

For A =635nm, N ry = 1.51, and np = 1.339, we obtain d;, = 145nm

This results in a surface density detection limit of 8.73x10° Cy5.5 molecules.m ™2 or

8.73x10% Cy5.5 molecules.mm™2, and it is equivalent to 4.36 x103 antibodies.mm ™2,

this is at least one order of magnitude better than the detection system requirement.

4.4.2.2 Patch-to-patch uniformity

The patch-to-patch uniformity measurements were carried out on the new generation
chips using the CRL semi-finished set up. Although this would limit the number of
data points collected to 8 in each dye measurement, it is still an improvement in the
measurement efficiency when compared with the previous method, in which fluorescent
signals were collected by scanning an individual fibre underneath the chip from patch
to patch manually. It was found from the measurements that about 80% of the patches
reached a LOD of 2.8x107°M Cy5.5, compared with previous measurements in which
46% reached an LOD of 8.1x107?M Cy5.5. Figure 4.7 shows the patch-to-patch uni-
formity measurement on sample 13-2 before adding the TasO5 layer. Figure 4.8 shows
the patch-to-patch uniformity for sample 14-2 coated with a 35nm TagOs film. The
decreasing signal from the patches along the length of chip is mainly due to the TasOs
film which pulls the modal field towards the sensor surface, resulting in an increase in
attenuation due to increased surface scattering and scattering at the beginning and end
of each sensing window. Optical absorption in the TasOs may also contributed to the
intensity decay, and this may be reduced by annealing the device to reduce oxygen de-
ficiencies (13). During the measurement in the latter case, air bubbles were observed in

the flow system. These air bubbles could cause the signal to fluctuate as they prevent the
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FIGURE 4.7: The patch-to-patch uniformity measurement on sample 13-2 before adding
TasO5 film. Data was obtained from 8 patches at a time.
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FIGURE 4.8: The patch-to-patch uniformity measurement on sample 14-2 after adding
35nm Tas 05 layer. Data was obtained from 8 patches at a time.

dye solution from contacting the patch surface fully. There is still room for optimising

the thickness of the TayOs5 film as a trade-off between sensitivity and the uniformity.

Discussion: The desired thickness of TagOs for the 2" generation sensor chip sample 14-
2 was 15 to 20 nm, in order to make direct comparison with the 15 generation sensor chip
in terms of signal uniformity, since the uniformity was degraded after applying a 25nm
of TaoO5 film on the sensor chip described in section [4.3. Unfortunately, the sputtered
TaoOs film thickness on sample 14-2 was 35nm despite using the same conditions as

before (due to unknown experimental variations). Although the chip achieved the better
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detection limit of 7.7x10~"M Cy5.5 compared with 2.8x10~8MCy5.5, addition of the

TaoOs film compromised the uniformity of the sensor chip.

4.5 Comparisons of theoretical and experimental results

Tablel4.1/presents both theoretical and practical results for the photodiode array detector
system. The calculation result was made under conditions of 1% of maximum assay
response (blank measurement) with 1mW input laser power in the waveguide. The
second row in the table shows that 0.93pW.mW~1@10~®M and 0.73pW.mW~1@10~8M
should be expected for the collected fluorescence power by the tapered waveguide opening

with 30pum and 60pm respectively.

The 52pW.mW1@1078M listed in the third row of the table was the result of the bulk
dye experiment on the first generation sensor chip with a 30pum taper waveguide opening.
The chip was coated with 25nm TapOj film and it has a total loss of 14dB (6dB loss
due to the four-way split and 6dB and 2dB due to the transmission and silica layer loss
respectively). The bulk dye experiment was carried out with a lock-in amplifier, and
the final result of 52pW.mW~1@1078M took into account the effect of this lock-in. It is
also assumed that the fluorescence intensity is proportional to the concentration of the

dye.

The second generation sensor chip has a good improvement in terms of coupling efficiency
and optical loss in the waveguide compared to the 1st generation sensor chip. The result
from the fourth row of 2.2pW.mW~1@10~8M (without TazOs layer) was obtained for
the new generation sensor chip, which is comparable with the theoretical result. The

SNR of 152 and the LOD of 2x10~3M were achieved with this sensor chip.

A result of 253pW.mW1@10~®M was achieved for sensor chip No 14-2. The chip has
a 35nm TapOs film coated on its surface. The LOD of 7.7x10~"M of Cy5.5 was also

achieved with this sensor chip.

Overall, the theoretical prediction of 0.23 pW.mW—1@10~®M fluorescence power collec-
tion should be reached if one takes the 4-way split waveguide structure into account for
a 30pum taper waveguide, so it is in reasonable agreement with the experimental result

of 2.2 pW.mW~1@107®M for the same waveguide (assuming a linear response of the
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concentration of dye with the fluorescence signal power), since the laser power in the

waveguide was an estimation, it could be higher in practice.

Estimated | Estimated Fluorescence
Laser /measured Dye WG Output for
PD Detetor | Power in Power in Conc. width | WG width pW.mW!
System WG(mW) | WG(uW) (M) (pm) | 30&60 (pum) at10~8M
In theory* 1 1000 1.2x10~% | 30/60 1.12pW 0.93(30um)
/880fW 0.73(60um)
In practice 52
15t 0.6 24 0.92x10~6 30 15pW (With 25nm
Generation™ TaOs film)
In practice
274 Gen. 1 63 106 30 2.8pW 2.2(No
13-2%** TagOs5 film)
In practice 253
274 Gen. 1 63 1078 30 16pW (With 35nm
14-2%** TagOs5 film)
Note:
* under the condition of 1% of maximum assay response (blank measurement)

Kok Lock-in Amp. was used for the experiment, 6dB loss due to the 4-way split.

) 3k ok

Transmission loss was 6dB and silica layer loss was 2dB.
6dB loss due to the 4-way split. 5dB transmission loss and 1dB silica layer loss.

TABLE 4.1: Comparing the theoretical result with experimental outcomes of the fibre
collection and photodiode array detector system.

4.6 Conclusion

This Chapter addressed bulk dye experiments and discussed the results for both genera-

tion sensor chips. The newly fabricated sensor chip has increased improvement in terms

of low loss, robustness and with a LOD well within the specification. A direct compar-

ison between the experimental results and the theoretical calculations were carried out

and the results were comparable. Optical parts and electronic parts of the instrument

were assembled and functioned successfully. Further improvement and optimisation of

devices, instrument parameters and signal processing will depend on the real signal and

data from immunoassay trials.



Chapter 5

Surface Chemistry, Immunoassay

Experiments and Data Processing

5.1 Introduction

The immunochemistry utilised in this research work takes advantage of a binding inhi-
bition test that requires antibodies directed against specific analytes and analyte deriva-

tives that can be covalently bound to a transducer surface.

A huge number of polyclonal antibodies and their corresponding analyte derivatives
have been produced for a variety of organic micro-pollutants. After being purified and
labelled with a fluorescent marker, they were developed into immunoassays and used in

this study.

This chapter describes the surface chemistry modification, the detection limit of the
sensing system, the procedure of the immunoassay experiment, and the response of the
measurement result of different concentrations of an analyte, which forms a calibration
curve. This curve subsequently can be used for detecting an unknown concentration of
the analyte. This chapter also presents the first result on multi-analytes’ measurement

as well as a direct comparison with conventional analytical techniques.

In addition to the above, this chapter also addresses the results of data processing in
which it is ascertained whether the data collected via the system would be affected by
the influence of the photobleaching.

75
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5.2 Analyte recognition overview

Analyte recognition is based on a binding inhibition assay (Figure [5.1). Prior to the

antibodies incubation phase Tow cell
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FIGURE 5.1: Schematic diagram of binding inhibition assay.

assay, analyte derivatives are first immobilised onto the transducer surface, analyte-
specific antibodies labelled with fluorescent markers are then incubated with the analyte
samples. After a short incubation period, the analyte solution is made to flow over the
transducer, during which process analyte-specific antibodies with free binding sites will
bind to the transducer surface whereas those having one analyte molecule bound to
each epitope will not bind to the surface. The surface-bound labelled antibodies are
excited in the evanescent field and the fluorescence is detected. As a result, an inverse
analyte signal is measured, with samples having low analyte concentrations giving rise
to high fluorescence signals and samples with high analyte concentrations resulting in

low fluorescence.

For the binding inhibition assay to be quantitative, the binding of the antibody to the
surface must be mass transport-limited. This allows the signal to be a function of the
diffusion rate to the surface and not of the kinetics of the surface binding. The number
of higher affinity binding sites on the surface has to be much higher than the number of
antibodies used for one measurement. In order to make sure that the binding is mass
transport-limited, there was a huge excess of antigen derivatives immobilised on the
sensor surface while only small amounts of antibodies were applied. This was confirmed
by additional reflectometric interference spectroscopy (RIfS) measurements as described

in (76)).
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5.3 Surface modification

This multisensor platform may be applied to a wide range of analytes according to the
surface attachment protocol. In this case, characterisation of chip and instrument perfor-
mance for immunofluorescence sensing was carried out with a single analyte, estrone, to
allow direct patch-to-patch comparisons. The surface modification and the immunoassay
experiments described in the next section were undertaken by the author jointly with
Giinther Proll, at the Tiibingen University, in Germany. The entire sensor surface was
chemically modified in order to render the chip specific to estrone, to reduce non-specific
binding and to enable repeated use. The chip was cleaned in a freshly prepared mix-
ture (ratio 2:3) of hydrogen peroxide (30% H203) and concentrated sulphuric acid (65%
H3S50,) for approximately 10 minutes and rinsed with Milli-Q water. After drying un-
der a nitrogen flow, a few drops of [3-(2, 3-Epoxypropoxy)propyl]trimethoxysilane were
applied to the sensor surface, and the surface was covered with a microscope slide for 1
hour. The silanised surface was rinsed with dry acetone and blown dry at room temper-
ature, and then the aminodextran was coupled to the silanised surface (33). Since the
silane has an epoxy terminal which reacts directly with amine groups on the aminodex-
tran, so when glass surface is silanated, the epoxy group is introduced and remains active
till the dextran is added. Epoxy groups react with amines and for covalent bonds. The
sensor surface was then immersed in the analyte derivative estrone carbonate acid dis-
solved in N-Dimethylformamide (DMF) together with N, N’-Dicyclohexylcarbodiimide
(DCC). This procedure leads to a high surface density (4) of binding sites specific to es-
trone antibodies. Non-specific binding is limited due to the shielding of the glass surface

by the aminodextran (77).

5.4 Immunoassay trial

The performance of the biosensor was demonstrated by measuring the response to eight
known concentrations of the analyte estrone in deionised water, ranging from 0 ng.L !
(blank) to 10 pg.L='. Then 100 uL of antibody solution, containing 60 ng.mL~! of
labelled affinity purified polyclonal anti-estrone antibody in 10-fold phosphate buffered
saline (PBS), were added to 900 uL of each standard solution and mixed thoroughly to

allow the analyte to bind to the fluorescent-labelled antibody molecules, according to
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its concentration. The incubated solution was then pumped over the sensor surface as
described below. Those antibodies which have not been bound to analyte molecules are
free to bind to the sensor surface. The output of one sensing channel during a sensor
test cycle using Cy5.5 labelled anti-estrone and a blank sample, is shown in Figure

5.2, and progressed as follows: a constant flow of PBS was established through the
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FIGURE 5.2: Sensor test cycle for blank with 6 ng.mL~! anti-estrone.

micro-flow-cell, and the background signal, due to laser breakthrough and background
fluorescence, was measured. While the incubated sample was being loaded and injected
into the flow-cell, the laser was turned off to prevent the onset of photobleaching. After
binding of the incubated sample at the sensor surface for ~6 minutes, the cell was flushed
with PBS again and the laser turned on, allowing fluorescence from the Cy5.5 dye to be
detected. Figure!5.2 shows that, once the background has been subtracted, a peak signal
of ~155pW was obtained and that this was bleached in a few seconds. Nonetheless, there
is no difficulty in acquiring this signal, and the signal to noise ratio is of order 1000. After
bleaching, the surface was regenerated by 0.5% sodium dodecyl sulphate (adjusted with
HCI to pH 1.8) to break the interaction between the antibodies and analyte derivative
and remove the antibodies bound to the surface, so that another measurement could be

carried out, with the entire cycle time taking less than 18 minutes.
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Figure 5.3 shows a test cycle for zero estrone concentration (blank), using an antibody
concentration of 50ng.mL~! on the sensor chip number 13-2. Figure /5.4 shows a close

look of the same cycle.
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FIGURE 5.3: Test cycle for blank on sample 13-2 (without TayO5 layer).
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FIGURE 5.4: An expansion of Figure [5.3. Note: two saturated patches were removed
from the figure.

Linear correlations have been achieved between the antibody concentration used and
the fluorescence power measured in preliminary experiments conducted by Tiibingen
University (33). The first set of experiment was undertaken using antibody concentra-

tions between 50ng.ml~! and 500ng.ml~!, and showed a linear relationship between the
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fluorescence signal to the concentration of antibody. A linear correlation of 20fW fluo-
rescence powerper ng.ml~! of antibody concentration was achieved (78). Subsequently,
tests using antibody concentrations from Ing.ml~! to 50ng.ml~! showed similar linear
behaviour. This linear relationship shows that the surface receptors are not becoming
saturated even with the highest antibody concentration (1.5ug.ml~!). This verifies that
there is a large excess density of antigen derivative immobilised on the surface in com-
parison with density of antibody binding, so that a linear relationship between the free
antibody concentration in solution after incubation with the sample and the fluorescence

signal can be expected in water sample assays.

5.5 Data analysis and processing

One of the major features of the present sensor chip was the reduced rate of photo-
bleaching which was achieved by broadening the waveguide, because the sensitivity of
the device will be reduced if significant photobleaching of the dye molecules occurs under
the high optical intensity. It is necessary to keep the photobleaching rate level sufficiently
low, by reducing the optical field power density, so that signals can be collected before
they fade away. In order to assess the effect on the photobleaching rate due to the
waveguide broadening or the light power in the waveguide, it is desirable to extract the
photobleaching rate from the output signal. The detailed data collecting system has
been described in Section 3.4.4 Chapter |3. The output signal was filtered and it has the
influence of the filter. The question is whether this influence or effect of the filter, the
4% Order Butterworth Low-pass filter in this case, on the signal is noticeable. In this
section, a detailed analysis is given on how to recover the raw data from the measured

data in order to find out whether the latter is reliable.

5.5.1 Recovering the original signal from the measured data

In this study, the data measured from the instrument has been filtered, and the original
input signal is unknown. If the effect of the filter on the signal is unimportant, the
measured signal can be treated as the same as the original signal. If the filter’s effect is
important, or is unclear and yet is potentially important, it will be necessary to recover

the original signal by removing the effect of the filter.
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In this section, the method used to recover the orignal data from the measured data is

discussed.

5.5.1.1 Recovering the original signal using a Fourier transform; theory

Assuming the original input signal is z;(t), the filter has a time response function h(t),
or transfer function H(w), and the measured signal, i.e. the output signal, is x,(t); the

output signal can then be expressed as:

7o(t) = h(t)"zi(t) (5.1)

Where * denoted the convolution integration of the two adjacent functions. The equation

in 5.1l can be rewritten in the frequency domain as

Which leads to

or

Xi(w) = Xo(w)/H(w) (5-3)

The original signal x;(¢) can now be obtained by performing an inverse Fourier transform

to both sides of equation 5.3

(5.4)
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FIGURE 5.5: Effect of AWACSS 4** Order Butterworth Low-pass filter, time step
size=0.05 sec

An example is shown in Figure 5.5, in which the original input signal x;(¢)=exp(-t); the
4t Order Butterworth Low-pass filter which was used in the AWACSS system has a
cut-off frequency of 1.4 Hz. The original signal z;(t) is obtained by applying an inverse
Fourier transform to the measured signal which is the filtered in this case over the
transfer function of the 4* Order Butterworth Low-pass filter in the frequency domain.

It can be seen that the original signal is fully recovered using this method.

5.5.1.2 Application to photobleaching data - post-processing

The main objective of this effort to recover the original signal is to exclude the distortion
from the measured data caused by the filter, so that the decay rate of the original signal

can be more accurately calculated.

There are three steps involved in determining the decay rate of the original signal. The
first step is to remove the background noise. The second step is to de-convolute the
measured signal using a Fourier transform to recover the original signal and the last
step is to determine the decay rate using a curve fitting method. The decay rate of the
signal is measured by the time it takes to decay from peak value to peak value divided

by e.
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FIGURE 5.6: Measured signal and recovered original signal (channel 1)

Figure 5.6 shows an example of the original signal recovered from the measured signal
using the de-convolution method. Note that the sampling rate needs to be at least twice

as high as the frequency of the signal being sampled.
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FIGURE 5.7: An expansion of the Figure [5.6.
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5.5.1.3 Discussion

From Figure 5.7, one can observe that:

The two curves have very similar mean values, but the recovered signal contains

high frequency noise which has been filtered out in the measured date
e No obvious phase shift is observed in the measured signal near the peak
e Effect of the filter is negligible

e The peak value is always very close to the start of time (when the laser is switched
on) and the data tends to be oscillatory, so the peak value obtained from the

oscillating region may not be very reliable

It was therefore decided to perform a least square curve fitting to determine the decay
rate. The decay rate of the measured signal can be assumed to be the same as that of

the original signal.

5.5.1.4 Curve fitting and photobleaching rate extraction

An exponential function is chosen to fit both the measured signal and the recovered

signal. The fitting curve is expressed as (excluding the base value):
S(t)y=Aec

The decay rate is decided by the time it takes for the signal to reduce from its peak
value A (at t=0) to A/e. If this length of time is denoted by T}, then the decay rate of

the fitting curve can be calculated by:
Ae=Ta = Ale

or

Ty=1/c (5.5)

By comparing the fitting curve with the measured data, it can be seen that, although

the two agree very well in general, the sharp peak in the measured data at t=0 is not
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well matched by the fitting curve. This difference is expected to reduce the decay rate,

or increase the value of T, derived on the basis of the fitting curve.

In order to take the sharp peak in the measured data into account in the decay rate

calculation, a modification needs to be made to the expression in equation |5.5.

Assuming the peak value of the measured data (at t=0) is A,,, then the time T}; on the
fitting curve should be decided by

Ae—Ta =A,,/e

i.e.

Ty =1 - In(A/A)]/c (5.6)

It can be seen that if the measured data has a higher peak value than the fitting curve,
ie., Ay /A>1, then In(A,,/A)>0, then the value of Ty from equation 5.6 will be smaller
than that from equation 5.5, i.e. the decay rate is higher (about 10% in the cases tested)

with this modification.
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FI1GURE 5.8: Sample of curve fitting of measured signal 1.
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FIGURE 5.9: Sample of curve fitting of measured signal 2.
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FIGURE 5.10: Sample of curve fitting of measured signal 3.
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Figures 5.8 5.9/ and 5.10/ show three curve fitting samples from three different sensor
patches on the same sensor chip, the result is listed in Table 5.1. It can been seen that
the decay rate or the value of the Ty, can vary and is dependent on the peak value of
each sensor patch. We can apply this method to different broadened waveguide sensor

chips to map the photobleaching rate, in order to find out the effect of the broadening.

Sensor patch No | Peak signal (V) | Decay rate T4(sec)

32 9.87 7.97
6 5.85 10.01
3 4.67 10.61

TABLE 5.1: Comparison of the decay rate from three curve fitting of three different
sensor patches on the same sensor chip. Note that patch No 32 is nearest the waveguide
input end, patch No 6 and 3 are near the waveguide output end.

5.6 Estrone calibration curve and limit of detection (LOD)

A calibration curve for normalised fluorescence power against estrone concentration was
obtained by repeating the procedure described in Section 5.4 using the 3 ng.mL ™" dye-
labelled antibodies and water samples containing estrone in a different concentration,
prepared as described above. This calibration curve was formed by responses of the mea-
surement results of estrone in the concentration range 0-10ppb (ug.L~1). Subsequently,

the curve can be used for detecting an unknown estrone concentration.

The blanks were repeated 9 times to yield a good statistical sample and all other concen-
trations were repeated three times. The averaged data were fitted to a logistic function

as given in equation 5.7/ (79),

Y= 114_‘1_151 + A (5.7)
(parameters of a logistic function: A, As, x, and p) with three free parameters (As,
Zo, and p) were used. Ajp, as the upper asymptote was fixed to 100% (relative signal
to the mean value of the blanks) and Aj is the lower asymptote. The range between
Aj and As is the dynamic signal range. The inflection point is given by the variable
T, and represents the analyte concentration which corresponds to a decrease of 50% of

the dynamic signal range (/C3p). The slope of the tangent in this point is given by the

parameter p. The function 5.7 represents a close approximation to the shape of a typical
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immunoassay curve, and an example is given in Figure [5.11, which shows the estrone

calibration curve for one sensing patch normalised to the mean of the signals for the

blanks.
Detection limit = 1 ng/L.
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FIGURE 5.11: Averaged calibration curve for estrone. Samplel13-2 without TasOs5 layer.

The limit of detection (LOD) was taken to be the concentration in Figure 5.11 at which
the signal has fallen below the blank value by three times the standard deviation of the
blanks. Approximately 99.7% of all values fall within three standard deviations of the

mean for data sets having a normal, Gaussian distribution.

LOD for estrone for this sensing patch was found to be just below 1 ng.L ™!, well within
an European specification of 0.1 pug.L~1(80), and the test mid-point of the response
curve occurred at a concentration of 40 ng.L~!. Concentrations up to 1ug.L=! are
measurable and higher concentrations could be measured by diluting the sample. A
complete set of test results for all patches during one measurement is shown in Figure
5.4. Clearly the signal strength for each sensor patch is different, due to nonuniformity in
the surface intensity of the pump. However, these patch-to-patch differences are constant
between measurements and may be normalised in creating the calibration curve for each
individual chip. The normalised calibration curves for all 32 patches were found to be

similar, as all patches were modified for the same analyte.
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Figure [5.12/ shows the comparison of the results for the flow in opposite directions.
It shows the peak power recorded, with the background subtracted, for all 32 sens-
ing patches for zero estrone concentration (blank) using an antibody concentration of
10ng.mL~!. Patches 29-32 are nearest the waveguide input and patches 1-4 are nearest
the waveguide outputs. The red triangle mark shows the signal from each patch with
co-directional propagation of light and of liquid flow through the cell, while the blue

circle mark shows the flow direction is against the laser transmission direction.

Although there were 12 patches saturated in the former case and only three patches were
saturated when the flow direction is reversed, this indicated that there are optical losses
along the channels. Saturation can be avoided by further optimisation of the amplifier
gain or the antibody concentration. Since the patch-to-patch variations in the peak
signal were dominated by the flow direction rather than the losses in the waveguides as
shown in Figure [5.12, this direct comparison implies that the dominant factor in patch-
to-patch nonuniformity under these conditions is not the delivery of light to each patch,
but a flow-related phenomenon such as the reduction in antibody concentration along
the flow-cell as antibodies bind to the surface. This phenomenon or the design of the
flow cell will not affect the purpose of this project, because each sensor patch on the
sensor chip will eventually have different surface chemistry modification and will aim at

and attract each different antibody, so the binding reduction effect is negligible.
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FIGURE 5.12: Comparison of reversing the flow direction. Samplel4-2 with TasOs5
layer, at antibody concentration of 10ng.mL™*.
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5.7 Multi-analyte measurement

The first multi-analyte test of this sensor was successfully carried out with a mixture of
six analytes, atrazine, bisphenol A, estrone, isoproturon, sulphamethizole, and propanil,
jointly with six project partners at Tiibingen University, in Germany. During the test,
the sensor chip was first modified with the derivatives of the above six analytes, in ac-
cordance with the previously described immobilisation protocol, by a parallel spotting
device TopSpot from HSGIMIT, Villingen-Schwenningen, Germany. The sample con-
taining six analytes was then incubated in a solution with the fluorophore labelled six
specific antibodies (anti-atrazine, anti-bisphenol A, anti-estrone, anti-isoproturon, anti-
mixed sulphonamides, and anti-propanil). For instance, 100uL antibodies stock solution
was mixed with a 900uL sample by an autosampler and incubated for approximately
6 minutes. A simultaneous calibration could be performed with mixed analytes and
an antibody stock solution from 0 to 90 ug.L~! analyte concentration in Milli-Q water

containing the six corresponding polyclonal antibodies.

The resulting set of calibration curves is shown in Figure [5.13. For all compounds, the

calculated LOD is below 0.020 pug.L~! and all validation parameters, calculated relative

signals, and standard deviations, are summarised in the Table 5.2/ below.

Conc. Propanil Atrazine Isoproturon | Sulphame- | Bisphenol A | Estrone
(ug.L71) thizole

0 100.0£1.91 | 100.042.37 | 100.0£2.04 | 100.0£2.79 | 100.04+0.93 | 100.0+£0.56
0.009 96.43+2.02 | 92.15£2.19 | 96.45+0.83 | 95.55+2.23 | 98.01£2.33 | 95.59£2.04
0.027 92.87+3.38 | 89.66£3.27 | 92.054+3.96 | 90.49+2.24 | 95.84+0.87 | 91.62£2.48
0.09 75.694+1.83 | 71.96+£3.49 | 70.47+£3.48 | 80.13+1.80 | 86.75£2.27 | 56.93£2.48
0.27 49.85+1.77 | 54.96+3.69 | 40.62+2.23 | 70.13+1.32 | 81.76+£2.22 | 32.34+1.58
0.9 26.95+1.35 | 41.15+£1.53 | 18.244+0.57 | 58.6740.10 | 70.34+2.55 | 21.6940.41
2.7 17.4440.36 | 32.78+1.86 | 12.52+0.27 | 52.73£1.06 | 58.67+1.54 | 18.65+0.46
9 12.4140.61 | 27.414+0.98 | 9.85+0.26 45.704+1.14 | 49.31£2.25 | 16.53+1.00
27 9.394+0.81 | 22.58£0.91 | 8.24+0.51 39.59+0.88 | 40.25+1.39 | 15.64+1.56
90 7.87£0.68 | 19.15+0.63 | 7.10+£0.24 33.91+0.92 | 34.224+1.64 | 14.63+0.23
A (%) 100 100 100 100 100 100

Ay (%) 9.344+0.87 | 20.66£1.65 | 8.39£0.52 32.884+2.41 | 28.10£2.45 | 16.72+1.05
xo(pg.L=1) | 0.2340.01 | 0.2240.02 | 0.17+0.01 0.474+0.10 | 1.70+0.29 0.09+0.01
P 1.05+£0.04 | 0.744+0.05 | 1.23+0.04 0.57+0.05 | 0.584+0.04 1.4640.12
LOD 0.019 0.010 0.020 0.018 0.008 0.007

TABLE 5.2: Resulting parameters (with standard deviations) for the determined logistic

fit functions and the validation parameter LOD for all analytes.



Chapter 5 Surface Chemistry, Immunoassay Experiments and Data Processing 91

7/
100 4 E - ¥ = Propanil
’ * Atrazine
I soproturen
v Sulphamethizale
—_ 80 Bisphenol A
Estrone
S
— B0
©
=
=
wn
v 40
e =
=
©
x 20 4 ““,‘-—ﬂ_i
- T 3
0
0 0.01 0.1 1 10 100

Analyte concentration [ pg L' ]

FIGURE 5.13: The resulting set of calibration curves for atrazine, bisphenol A, estrone,
isoproturon, sulphamethizole, and propanil, which were measured in parallel on a multi-
analyte transducer.

Table [5.2] presents calculated relative signal values with standard deviations for all six
analytes at each concentration step from 0 to 90 ug.L~!, and it also shows the calculated
detection limit using the logistic function equation 5.7 (79) for all six analytes which are

all below 0.020 pug.L~1.

This multi-analyte calibration demonstrated the possibility to quantify pesticides from
three different classes (triazines, phenylurea herbicides and anilides), endocrine disrupt-
ing compounds (bisphenol A), steroid hormones (estrone), and pharmaceuticals (sul-
phamethizole) within one single measurement cycle, which only takes approximately 18

minutes.

Tests were undertaken by the project partner in IIQAB, Department of Environmental
Chemistry, CID-CSIC, Barcelona, Spain to quantify non cross-reactivity of each anti-
body. These tests were carried out with three different antibodies directed against the
three different analytes. Three antibodies were tested together, but only one of the ana-
lytes’ concentrations was varied, and it was reported that no mesureable cross-reactivity
was observed (81). The final experiment was then set up in which all analytes were
varied and calibration curves were established for all three analytes simultaneously (27

concentration combinations). This final experiment was performed successfully, which
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confirmed that the multianalyte experiments could be run with little cross-reactivity,
meaning that all patches were bound only with one specific antibody, or, there were no

other antibodies captured on the same patch.

It was found that the silica isolation layer of the sensor chip was deteriorated beyond
repair after 400 to 500 measurements. This deterioration was caused by the gradual
erosion of the layer by 0.5% sodium dodecyl sulphate (adjusted with HCI to pH 1.8)
solution, which was used in the regeneration process to remove the remaining antibodies

bound to the sensor surface and to prepare the system ready for the next measurement.

5.8 Comparison to conventional analytical techniques

The overall performance of the AWACSS system in comparison to the conventional
analytical and immunosensor techniques was tested in the inter-laboratory collaborative
trial among the project partners. In total, eleven different analytical set-ups were used in
six laboratories, among them four automated on-line SPE-LC-DAD UV system (82), on-
line SPE-LC-FLD, on-line SPE-LC-MS (83)), off-line SPE/LVI-GC-MS (84), two RIANA
prototypes (85; 86), ELISA and AWACSS. The tested matrices were Milli-Q water
and freeze dried 63pum fractions of river sediments from the Nitra River, for which
the special sample preparation protocol was involved. Each of them was spiked with
three analytes:(i) atrazine as a representative of pesticide class, being also on the list of
WEFD Priority Substances; (ii)bisphenol A-industrial pollutant known as an endocrine
disrupting compound; and (iii) estrone-hormone with endocrine disrupting effects, often
present in outlets of municipal waste water treatment plants. Spiking levels were 0.1
and 1 pg.L~! in water matrices and 50 to 500 ng.g~! in sediment. Water samples were
directly loaded onto small 10.0mm X 2.0mm cartridges, which fitted into the automated
sample preparation device available in all partner’s laboratories. Sediment samples were
first extracted by ultrasonic extraction into acetonitrile, the extract was diluted in Milli-
Q water and concentrated on the same cartridges. Each sample has been prepared in

triplicate and sets of cartridges, including blanks, were distributed among the partners.

The outcome of the tests showed that, in terms of accuracy, AWACSS performance in
Milli-Q water and sediment samples is fully compatable with conventional chromatography-

based techniques. Table [5.3 shows the results obtained by the AWACSS system within
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Compound | Assigned Milli-Q water Assigned Sediment matrix
value matrix value
(ug-L~1)" (ng.g—")*°
Mean Mean CV Mean Mean CV
(ugl™) (%) (%) (mgg™") (%) (%)°
Atrazine
Level 1 0.095 0.11 116 9.6 45 49.0 109 5.0
Level 2 0.950 1.12 118 8.3 450 384 85 3.6
Bisphenol A
Level 1 0.097 0.08 82 4.0 44.5 51.7 116 27.8
Level 2 0.974 1.25 128 16.9 445 423 95 7.5
Estrone
Level 1 0.076 0.08 105 7.0 36 25.4 71 3.2
Level 2 0.763 1.04 136 4.4 360 333 93 10.7

TABLE 5.3: Milli-Q water and sediment samples were spiked at 0.1 and 1.0 pg.L~—!

(water samples) and 50 and 500 ng.g~! (sediment samples), respectively. a) Corrected

for recoveries of analytes on the SPE cartridges and blank measurements. b) Corrected
for extraction recoveries from sediments. c¢) Calculated from three measurements.

Methods Mean(ug.L=Y) | CV(%)
Conventional
SHE-HPLC-DAD UV (Lab 1) 0.11 14.3
SHE-HPLC-DAD UV (Lab 2) 0.14 3.5
SHE-HPLC-DAD UV (Lab 3) 0.07 20.8
Immunochemistry

0.16 24.1
AWACSS 0.11 9.6
0.14 3.6

TABLE 5.4: Spiked concentration:0.1ug.L~1; number of measurements=3.

the collaborative trial and Table 5.4 shows the comparison of atrazine determinations

in Milli-Q water obtained by conventional liquid chromatography-based analytical tech-

niques, ELISA, the immunosensor RIANA, and the AWACSS instrument. Recoveries

of atrazine and bisphenol A ranged from 82 to 126% compared to the assigned values,

while those for estrone were between 71 and 136%. In general, the AWACSS results were

less biased towards higher values in comparison to ELISA and RTANA immunosensor

techniques. An evaluation of the collaborative trial using the Z-score methodology as

an expression of deviation of the measured from the assigned value showed that none

of the results obtained by AWACSS was excluded from the evaluation. With regards to
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the reproducibility, all results by AWACSS have a variation coefficient lower than 17%
(Table5.3), with the only exception of bisphenol A at the lower spiking level in sediment
(27.8%). The results were well within the range obtained by both chromatography-based
and other immunosensor techniques. The time for a single analytical run was less than
18 minutes and during the system validation more than 70 analyses were performed
within a day in a fully automated regime. Detection limits of all tested analytes were in

the low nanogram per litre range.

5.9 Conclusion

This chapter described the sensor chip surface chemistry, and the immunoassay experi-
ments. Data analysis and processing were performed in order to verify the effect of the
photobleaching against the collected signal data. The system was initially calibrated
with the estrone, and then was applied to test up to six organic pollutants, at detection

level of ng.L ™!, without any prior sample pre-concentration nor pre-treatment steps.

The LOD of 1ng.L ™! is two orders of magnitude better than that required by EU legis-
lation for organic pollutants, and it is expected that improvements in sample handling
and signal processing will reduce this further. The ability to regenerate the sensor au-
tomatically after an assay, as part of an automated protocol, means that the sensor and
system may be left unattended for months, in normal operation, before a chip needs re-
placing. There is significant potential for further miniaturisation, increased integration,
and reduced usage of reagents as the fluorescent signal is obtained from an area of less

than 0.05mm? and a volume of less than 20pL.

The overall performance of the AWACSS system, in comparison to the conventional an-
alytical and immunosensor techniques, was tested for the first time. Among the tested
matrices were surface, ground, drinking and waste water as well as sediment samples.
The results showed that AWACSS is fully comparable to conventional analytical tech-
niques in terms of accuracy, repeatability and reproducibility, while selectivity allowed

for trace analysis even in complex matrices such as sediment extracts.



Chapter 6

Multi-Sensor System II: CCD

Detection System

6.1 Introduction

The integrated optical fluorescence multi-sensor instrument discussed in this thesis is
based on evanescent field technology. System I, which used polymer fibres to collect the
fluorescence, as described in chapter 3] and subsequent chapters, has demonstrated that
the principle on which the system design was based works successfully. In principle, the
system could be extended to measure more than 32 analytes. For example, it could be
readily adapted to measure in excess of a hundred analytes. In System I, the photode-
tector/filter assembly is chosen as the receiver due to its low cost, and as a result, the
high cost effectiveness is one of the major features of the system. If System I is to be
extended to a multi-analyte system which can measure many more analytes, the cost
may become an issue, since each sensor patch will need a optical filter and a photode-
tector. Therefore, an alternative detecting and receiving system should be considered

and investigated.

In this Chapter, an alternative detection system is presented, which is a CCD detector
system. Alternative detection system such as microlens arrays (87) or microchannel
plates (88) could also be considered, however, the combination of the sensor chip de-
scribed in this thesis with a CCD detector could offer more, since the CCD system has
flexibility in defining the sensing configuration, and low-noise performance. This chapter

95
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addresses various aspects of the instrumentation of the CCD detector system, including
the system overview and operation, estimation of the power flow, and Signal to Noise
Ratio (SNR) analysis, as well as reporting the result of the fluorescence measurement
on bulk dye Cy5.5 and comparing it with the theoretical prediction and the detection
limit of the system for Cy5.5.

This work was severely delayed due to a major fire, which took place at the Mountbatten
Building in the University of Southampton, at the end of October 2005. The work
eventually resumed in later 2007, in temporary laboratories, and the newly fabricated

sensor chips were also undertaken in a temporary cleanroom.

6.2 System overview and operation
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FIGURE 6.1: The multi-sensor CCD detection system.

Figure 6.1] is a schematic diagram of the CCD detection system. The basic principle of
the operation is the same as in Chapter 3| Section 3.2, except that the photodetectors,
optical filters and electronic filter in System I are replaced by a CCD camera, a single

filter and lenses in System II.

There are two principal differences in these systems: (i) the efficiency of fluorescence

power collection on the CCD; (ii) the noise performance of the CCD.
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6.2.1 The difference between CCD and photodiode detectors

This section will study the types of CCD and address the main difference between CCD

and photodiode detectors.

The CCD is a device which uses a quantity of electrical charge to represent an analog
quantity, such as light intensity, sampled at discrete times. There are three well known
types of CCD in scientific imaging, in terms of two-dimensional or area image scanning
format. The first is the interline transfer CCD (ILCCD), the second is the full frame
transfer (FFTCCD), and the third is the frame transfer CCD (FTCCD).

Figure 6.2 shows a schematic diagram of the structure of a CCD camera that uses the
interline transfer method. The interline CCD (ILCCD) has vertically paired columns
consisting of light sensitive arrays as the readout register (also called VCCD). Electrons
generated by incoming photons in each light sensitive patch are transferred simultane-
ously from the patch to the adjacent VCCD register. The VCCD register is covered by
a mask of aluminium or other opaque material to prevent photons from creating addi-
tional charges in this area. So, only the charges generated in the light sensitive array are
included in the readout. Readout is accomplished by transferring each horizontal row
of information in the VCCD, line by line, up the CCD to the Horizontal serial register
(HCCD). At the HCCD charges are transferred horizontally and converted into charge
voltage by an On-Chip-Amplifier (89).

The advantage of ILCCD is that the signal accumulation (exposure) and readout can
be done simultaneously because the light sensitive array can accumulate charges for the
next frame straight after the previously generated electric charges in the area are shifted
to the VCCD. There is no possibility of image smearing in this device and the fastest

optical shuttering is achieved.

Figure 6.3 shows a schematic diagram of the structure of FFTCCD and how the mech-
anism works. In most applications FEFTCCD would require a mechanical shutter to cut
off the light input, in order to prevent smearing during the time the charges are passing
through the parallel VCCD. The pixel charges are transferred, in parallel, to the HCCD

where they are then transferred, in series, to the output.
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FIGURE 6.2: The interline transfer CCD (ILCCD).

Figure 6.4 shows how the FTCCD works. The image is transferred from the image
array to the opaque frame storage array by the bucket-brigade (90) process. This is a
relatively fast process, compared to FFTCCD, since the serial register is not used, but

it is slower than ILCCD.

The main difference between CCD and a photodiode (PD) detector is the readout scheme
of the output signal. In a CCD, the signal (charge) is transferred from one element to the
next one down the row until it reaches the end. At the end of the line, the charges, from
all the different “picture elements” (pixels), are read in sequence in a time multiplexed
fashion, and can then be converted to electrical signals. In a photodiode, the signal
(current) is output at the element’s unique anode and cathode. Therefore, the signal for

the photodiode can be read simultaneously, rather than sequentially and multiplexed.

After exploring all types of CCD, the conclusion is that depending upon the noise per-
formance described in section 6.5, the new CCD to be chosen should be equipped with

the ILCCD, since it is the fastest camera compared to the rest.
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FIGURE 6.3: The full frame transfer CCD (FFTCCD).
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FIGURE 6.4: The frame transfer CCD (FTCCD).

6.3 Collected optical power estimation

Chapter 2 Section 2.7/ addressed the power distribution along the optical sensor chip and

the amount of fluorescence power reaching the receiving end of the detection system.

The fluorescence collection efficiency of System I was given in Chapter [3.
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In order to detect a dye concentration of 10~8M which approximately corresponds to
the minimum surface coverage required for the system, an emitted fluorescence power
of 1pW must be detected with 1mW input pump power with System I, according to the
study in previous chapters. In this section, a similar approach is adopted; it addresses
the collection efficiency of a CCD detector system and the direct comparison of the

collection efficiency with System I.

6.3.1 Collection efficiency of CCD detector system
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FIGURE 6.5: Fluorescent collection configuration from the sensor chip surface.

This section will study how much emitted fluorescence from the sensor area will be

collected by the CCD detector system.

Figure 6.5 shows a sketch of the proposed fluorescent collection configuration. The
number of fluorescent photons emitted from the sensor area A A radiate into all directions
corresponding to the solid conical angle {2 = 4w. The emitting area is positioned in the
centre of the sphere with radius di. Assuming that the fluorescent radiation is isotropic,
there are only a small fraction of the generated fluorescent photons striking the camera

lens. The effective aperture of lens D,y is given by:

Dcf¢=f/kp, in which, f is the focal length and ks is the f-number.
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If the lens is positioned a distance di away from the emitting surface, then the solid

angle of emitted light that is captured by the lens is given by:

D
ﬂ.( 62ff)2 7Tf2

4.2 Adg%k,?

Qp = (6.1)
So that the fraction of light incident upon the lens is € /47. The number of photons

which reach the CCD-sensor chip P, is given as

Qg
P.= TlensTfilter(T)Pe (6'2)
T
In which, Tjeps is the transmission of the lens and T, is the transmission of the

interference filter at the wavelength of the fluorescent radiation.

Therefore, the CCD system collection efficiency 7.4, which is the ratio of the collected

fluorescent power to the emitted fluorescent power, can be expressed as:

2

— 6.3
16d,2 k2 (63)

Neced = T‘lensTfilter

A CCTV-lens (f = 16mm/k, = 1.4 from Pantax Machine Vision C1614-M(C31634))
was chosen to collect sufficient fluorescent light. The transmission of the lens in the
visible spectrum is Tj.,s = 0.83. The filter used in the set up is the same one in System
I in order to make direct comparison of two systems, and has a transmission of 20% for

the fluorescent emission of the dye Cyb5.5.

Using equation 6.3, the collection efficiency of the CCD detector system 7..q is 0.22%.

6.3.2 Collection efficiency for both System I and II

Table 6.1 shows the direct comparison of the fluorescence collection efficiency for both
System I and System II. The collection efficiency of the CCD system is predicted to be

three times better than that of the fibre collection System I.

In order to determine full system performance, the noise behaviour must now be studied.
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Fibre% | Lens%

Fibre/lens collection efficiency 3.67 1.31
Fibre/lens transmission 92 83
Filter transmission 20 20
Detector/CCD collection efficiency 11 100
Total emmision/collection efficiency | 0.08 0.22

TABLE 6.1: Direct comparison of fluorescence collection efficiency for both System I
and II.

6.4 Signal to Noise Ratio (SNR) analysis

This section will study the noise performance of CCD cameras, which leads to the

identification of a suitable CCD for the detector system.

SNR is an important parameter of a CCD camera which describes the camera’s detection
capability. It refers to the relative magnitude of the signal compared to the uncertainty
in that signal on a per pixel basis. In this research, SNR is also considered on a “regions

of interest” (ROI) basis or a super-pixel basis for a CCD detector system.

Photons incident on the CCD convert to photoelectrons within the silicon. These photo-
electrons comprise the signal but also carry a statistical variation of fluctuations in the
photon arrival rate at a given point. This phenomenon is known as “photon noise” or
shot noise and follows Poisson statistics (91). In addition, inherent CCD noise sources
create electrons that are indistinguishable from the photoelectrons. When calculating

overall SNR, all noise sources need to be taken into consideration.

The SNR in a CCD camera is given by the ratio of generated charge carriers (signal

electrons) to the number of unwanted charge carriers (noise electrons):

Naional
SNR = 29" 6.4
Nnoise ( )

In which the light signal Ng;gnq is the number of signal electrons which depends on the

illumination intensity of the incoming photons described as:

Nsignal = ‘I)qut (6'5)
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Where @ is the incident photon flux (pixel!. second™!), Nge is the quantum efficiency

of the CCD, t is exposure time (s).

Photon noise refers to the inherent natural variation of the incident photon flux. Pho-

tolectrons collected by a CCD have a square root relationship between signal and noise.

So the total noise signal from photon or shot noise is

Nphoton = 1/ Nsignal =V ‘I)qut (66)

The other noise contributions from a CCD camera are readout noise and dark current.

The readout noise caused by the on-chip floating diffusion amplifier (FDA) that converts
accumulated charges into voltage, is the most dominant factor influencing the detection

limit of a CCD, and it is the square-root of readout noise squared.

The dark current has two elements, one is due to clock induced charge and the other is
thermal charge. Clock induced charge is the charge generated when electric potential is
changed in order to transfer charge. Normally, it is negligible as it is less than 1 electron
compared to the readout noise which is several electrons or more. Since a CCD is made
from silicon the dark current is caused by thermal migration of electrons in the silicon.
This migration is known as dark current and can be an important noise factor for a
CCD sensor. Dark current or dark noise, which also follows a Poisson relationship, is

the square root of the number of thermal electrons generated within a given exposure.

Cooling the CCD from room temperature to -25°C will reduce dark current by more

than 100 times (37).

Since all noise sources are not correlated, taken together the signal electrons and the
total number of noise electrons, the SNR for a CCD camera can be calculated from the

following equation (92):

Nsi na P et
SNR = —sigmal _ Tq (6.7)

Nnoise \/(\/W)2+\/7Td2t+nr2

In which, ng (electrons pixel ™. second~!) is dark current and n, (electrons) is readout

noise.
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Hence, to achieve a good SNR, high quantum efficiency, small CCD dark current or dark

noise and small readout noise are all desirable.

Using binning can improve the SNR, of a CCD camera. Figure 6.6/ shows the principle of
binning. By summing signals of adjacent pixels in a CCD, the binning readout method
delivers high sensitivity, improved signal to noise and increased frame rate as a tradeoff
for resolution. The resolution is not an issue in this study, since the focus is on collection
of emitted light rather than fine or detailed images. As an example, in 2x2 binning, the
electrical charge of 4 pixels is summed in the CCD to increase the signal component
4-fold, but the readout noise is still only equal to one readout period so the SNR is

improved.

@ Signal
@® Readout noise

(A) (B)

FIGURE 6.6: Principle of binning. (A) Normal readout of 4 pixels. (B) 2x2 binning
readout. In which, readout noise is still only equal to 1 readout period per 4 pixels’
signal readout.

Taking the effect of binning into account, equation 6.7/ should be modified as below:

M ®rgct

SNR =
VM Pnget + Mngt + n,2

(6.8)

In which, M represents the number of binned pixels, and it is assumed that the signal

in each of those pixels is the same.
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6.5 Selection of the CCD camera

This section will investigate a number of CCD cameras based on the above analysis.
In order to achieve a good SNR, high quantum efficiency, small CCD dark noise and
small readout noise are essential. Table [6.2] lists a number of CCDs and some of their
specifications. Figurel6.7/shows a plot of SNR vs exposure time based on all CCDs listed
in the table, using the equation 6.7, in which, assuming ®, the incident photons falling
on each pixel per second, is 500(pixel~!. second™!), which is equivalent to the 10~8M
Cyb5.5 fluorescence power collected from a sensor spot of 30 um x 1.5 mm in practice.
Figure 6.8 shows an expanded view of the SNR for the listed CCDs with exposure times

from 0.1s to 1s.

Quantum efficiency Dark noise Readout noise | Frame rate
(%,@700nm) (e”.pizel Ls71) (rm.s.,e”) (no binning,
frames.s™1)

Hamamatsu
ORCA-R? 50 0.005 6 8.5
Hamamatsu
ORCA-285 27 0.8 8 8.8
Q-Imagin
RETIGA-SRV 45 0.05 8 11
PCO
Sensicam qe 40 0.1 6 10

TABLE 6.2: List of CCD cameras and some of their specifications.

Having compared the listed CCDs, the digital CCD camera ORCA — R? from Hama-
matsu was chosen for the CCD detector system. The ILCCD is used in the ORC' A — R?.
It has better SNR and it is also cooled to -35°C with air cooling (it could reach -40°C
with water cooling). The CCD chip contains a 8.66mm x 6.66mm effective area (1344
x 1024 pixels), the dimensions of a pixel is 6.45um x 6.45um. The quantum efficiency
of the CCD, as shown in table [6.2, is 50% at the emission wavelength A\ = 700nm.
The pixel quantum wells have a full well capacity of 18,000 electrons (with the high
dynamic range mode off) and 36,000 electrons (with the high dynamic range mode
on). The maximum digital signal for the 12-bit A/D converter is 2'? = 4,096, so the

analog-to-digital-conversion factor is v = (18,000/4096) = 4.4 electrons/ADcounts. The
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FI1GURE 6.7: Signal to Noise Ratio for the listed CCDs in table [6.2, assuming the pho-
tons’ flux is 500 pixel ~!. second ™!, which is equivalent to the 10~8M Cy5.5 fluorescence
power collected from a sensor spot of 30 pm x 1.5 mm in practice.
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FIGURE 6.8: An expansion of the Signal to Noise Ratio shown in Figure [6.7.

maximum digital signal for the 16-bit A/D converter is 2'6 = 65,536, so the analog-
to-digital-conversion factor is v = (18,000/65,536) = 0.275 electrons/ADcounts. The

integration time of the camera tr,; can be set from 10us up to 4200s.

One of reasons for choosing ORC A — R? is due to its high dynamic range feature in the
normal scan mode. High dynamic range takes advantage of the larger full well capacity

of the horizontal transfer register pixels, in comparison with the full well capacity of
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each imaging pixel. It is enabled in 2 x 2, 4 x 4 and 8 x 8 binning modes where the
charges in the imaging pixels are summed in the horizontal transfer pixels. This feature
is only available in normal scan mode since normal scan mode is able to transfer these
larger charges accurately. For example, the standard dynamic range for the CCD is 3000
(full well capacity/readout noise):1 at full spatial resolution in normal scan mode. This
is higher than most comparable cameras. The high dynamic range mode is 6000:1 and

this mode offers an increased full well capacity of 36,000 electrons when binning.
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FIGURE 6.9: Signal to noise improvement with binning. Assuming the photon flux is
500 pixel~!. second!.

Figure 6.9 shows the effect of different binning values on curves plotting the variation
of SNR of the selected ORCA — R? camera with exposure time. The calculation was

based on equation 6.8.

From Figure 6.9, one can see that the SNR will be over 8 times better when using the

8x8 binning mode compared to without using binning.

6.6 The Noise Equivalent to Power (NEP) of the CCD

It has been determined in Chapter |3 Section 3.4.1] that the selected photodetector for
System I has the NEP of 150 fW.(Hz)~/2 over 5 mm? or 30 fW.(Hz)~'/2.mm—2.
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In order to make a direct comparison with the photodetector in System I, one should
work out the NEP of the selected CCD for System II. This section addresses the NEP
of the CCD ORCA-R?.

From the ORCA-R? specifications, the real dark noise of the CCD is negligible, at much
less than an electron/second. The noise is dominated by readout noise, the charge that
is injected into the analog channel during clocking out of the data. In this case, the
readout noise is 6 electrons in normal scan mode. Each photon has a chance equal to
QE (quantum efficiency) of generating an electron. The QE of ORCA-R? CCD camera
is 50% at the wavelength of 700nm. Hence 6 electrons of noise are equivalent to 12

photons.

Assuming the signal integration is 1s, then the readout noise is equivalent to 340X10_18W.(HZ)_1/ 2

= 340aW.(Hz)~ /2.

As an example, Figure [6.10 shows the NEP at SNR=1, the integration time is 0.027
seconds, assuming the photon flux is 500 photons pixel™!. second™!, it is equivalent to
the fluorescence power of 1078M Cy5.5 collected from a sensor spot of 30 um x 1.5 mm

in practice.
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FiGURE 6.10: NEP at signal = noise at 0.027s. Assuming the photon flux is 500
pixel~!. second!.

Therefore, the NEP of the CCD camera system, in this case, over the area of one mm?,

is 25fW.(Hz)~"/2.mm~2, which is comparable with photodetector system.
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In general, the CCD is more preferable, in terms of noise performance, as one could
choose a smaller area for signal, in other words, the CCD system has the flexibility in

defining the sensing configuration.

6.7 Instrumentation

FIGURE 6.11: Experimental set up.

Figure 6.11/ shows the CCD detection system. In order to make a direct comparison
with two detector systems, the same sensor chip design was used with the CCD detec-
tor system. The iFLEX fibre-coupled laser diode from Point-Source, operating at the
wavelength of 635nm, with an output power of 5mW (the same laser used in System I),
is butt-coupled into the input waveguide of the sensor chip (from the right side of the
sensor chip) to pump the Cy5.5 fluorophores. A micro-flow injection system from FI-
Alab, shown in Figure 6.11, is used to present initial samples to the sensor surface. The
excited fluorescence is filtered to remove stray pump light collected and detected by the
CCD camera (model ORCA-R? from Hamamatsu) behind the sensor chip. The output
power from one branch of four outputs of the sensor chip is collected by a microscope
lens and monitored on a power meter. This is in order to optimise the input power,

since the fibre is not permanently pigtailed to the chip for these experiments.
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LabVIEW software was used for the system integration, which enables integrated control
of the laser, flow injection system and the CCD camera and data acquisition. The

following functions have been implemented:

e Control of all functions of the flow-injection analyser;
e Control and power feedback functions of the laser;

e Capturing frames from the CCD at a maximum rate of 40 frames.sec™!. The cam-
era is run with internal triggering, images are captured and calculations performed
on them to produce an array of 32 values proportional to the fluorescence power

emitted from the 32 software-specified “regions of interest” (ROIs);

e Thermistor sensors are provided for the temperature measurement of two regions

in the sensor assembly, and these temperatures are logged;
e NI 6009 USB module is used for all control and measurement functions.

e A bitmap image of the exposed sample, and additional data relating to the test

type, time and temperatures are recorded.

6.8 Fluorescence measurements

In this section, detailed fluorescence measurements using the CCD detector system and
the outcome of these experiments are presented. Importantly, it addresses the limit of
detection (LOD) of System II, which leads to the direct comparison with the LOD of

System 1.

6.8.1 Fluorescence measurements

This section presents the results of the fluorescence test for the CCD camera detector
system, which enables the limit of the detection of System II to be determined and an

estimate made of detectable surface density for dye molecules.

Fluorescence measurements were carried out using the set up in Figure6.11, which shows

a sensor chip fitted in the custom made optical block and with a flowcell attached. Cy5.5
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from Amersham Pharmacia was chosen for the bulk dye experiments, as it was used for
the previous dye experiments. The sensor chip was newly fabricated using the same
design as the sensor chip in System I, but without the TayOp film, since the sensor chip
without the coated TayOs film has been proved to have good sensitivity from previous
experiments. The bulk Cy5.5 dye solutions of 107M - 1078M in water were tested.
The excited fluorescence at around 700nm was collected by the CCD camera ORCA-R?
located behind the sensor chip, and the data and condition of the test were recorded via

a computer.

Figure 6.12] shows the bulk dye result from the newly fabricated sensor chip with a
60um taper waveguide. The dye concentration is 4.4x10~5M, with 49uW of laser power
measured in the waveguide. The size of selected ROIs on the CCD camera corresponds
to the size of the sensing patches on the sensor chip. The A/D converter of the CCD
camera was set as 12 bit, and no binning was used in this case and the exposure time

was one second.
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FIGURE 6.12: 4.4x107°M Cy5.5 on sensor chip No 15 with the 60um taper waveguide

with a 49uW measured laser power in the waveguide (one of set of data showed in
Figure 6.13).

Figure 6.13 shows the changes in fluorescence signal with changes in laser power mea-
sured in the waveguide, the result gave a response of 8.7+ 0.5fW.uW——1, between the

output fluorescence power and the laser input power in the waveguide. While Figure 6.14
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shows the changes in SNR that corresponded to the dye experiment results in Figure
6.13, which demonstrated that there is an optimum power level beyond which the plot
saturates, increasing the input laser power implies a direct increase in the fluorescence
signal, but the downside is that as the signal increases the noise will also increase, so

the SNR will be degraded.
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FIGURE 6.13: Fluorescence signal of 4.4x1075M Cy5.5 tests on sensor chip No 15 with
the 60pm taper waveguide, against different levels of laser power in the waveguide.

Figure 6.15 presents the bulk dye result with dye concentrations from 10~7M to 1075 M
of Cy5.5 applied onto the newly fabricated sensor chip with the 30pum width waveguide.
This shows that the average fluorescence signal increases about 19 and 24 times when
the dye concentration increases from 107~"M to 107°M, and from 1076M to 107°M

respectively.

However, Figure 6.16/ shows the average SNR of the same set of data as in Figure 6.15
against the different dye concentrations, it shows that the SNR increases less compared
to the increasing rate of the dye concentration (under the same laser input power).
This might be due to some pixels in ROIs being saturated. The software of the data
acquisition part was reviewed and modified, with the addition of the function of notifying

any saturation of any pixels after this experiment.
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FIGURE 6.14: SNR of 4.4x1075M Cyb5.5 tests on sensor chip No 15 with the 60um
taper waveguide, against different levels of laser power in the waveguide.
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FIGURE 6.15: Dye Cy5.5 tests with different concentrations from 10=7"M to 107°M
on the sensor chip No 15 with the 30um taper waveguide, without TasOs film, at room

temperature.
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FIGURE 6.16: The average fluorescence signal of dye Cy5.5 tests with different concen-
trations from 10~7M to 10~°M, on sensor chip No 15 with the 30um taper waveguide
(same set of data as shown in Figure 6.15), compared with the average SNR of the

same data.
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FIGURE 6.17: 10~ M Cy5.5 test on the sensor chip No 15 with the 60um width taper
waveguide, without TagOs film at room temperature.

Figure 6.17 shows a typical dye pulse of one of the sensing patches. The Cy5.5 dye
concentration was 10~7M, and the test was carried out on the sensor chip with the
60pm taper waveguide. The maximum of 8x8 binning was used in this case, in order
to improve the SNR, and a SNR of 600 was achieved as a result. The power in fW
shown on the plot was converted from the CCD digital signal, the sum of counts of ROI.



Chapter 6 Multi-Sensor System II: CCD Detection System 115

Assuming N, is the total number of photons reaching the CCD,

N, = (—)C (6.9)

In which, nge = 50% is the quantum efficiency of the CCD camera, v is the analog-to-
digital conversion factor, v= 4.4 (electrons / AD counts), in this case. C is the sum of

counts (digital signal) over the ROI from the CCD camera.

The total energy of these N, is N,hv(J), therefore, the power equals:

Nphy_(hl)g
t e t

(6.10)

Where h is Planck’s constant, v = ¢/, c is the speed of light, A is dye emission wave-

length and ¢ is the integration time.

6.8.2 Comparison of theoretical results and experimental outcomes

Table 6.3/ shows theoretical and experimental results for the CCD detector system. The
theoretical result was under the condition of 1% of maximum assay response (blank
measurement) with ImW input laser power in the waveguide, the second row of the
table shows that 2.5pW.mW1@107¥M and 2pW.mW—1@10~8M should be expected
for the collected fluorescence power by the tapered waveguide opening with 30um and

60um respectively, the 4-way split was not considered in the theoretical prediction.

The 0.4pW.mW~1@10~8M listed in the third row of the table was the result of the
bulk dye experiment on the newly fabricated sensor chip with a 60um taper waveguide
opening. The chip has a total loss of 16dB (6dB loss due to the 4 way split and 10dB
loss due to the transmission and silica layer), there was no TasOs film coated on the
surface. This result is comparable with the theoretical result, and a good SNR of 600

was achieved with this chip.

A result of 74 pW.mW1@1078M was obtained for the sensor chip No 13-3 fabricated
for the AWACSS project, the chip has 37nm of TasOs film coated on the sensor surface,
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this result is about 3.4 times lower compared to the result of sample 13-3 in Table 4.1,

due to damage to the input end of the chip.

Estimated | Estimated Fluorescence
Laser /measured Dye WG | Outpuot for
CCD Detetor | Power in Power in Conc. width | WG width pW.mW~!
System WG(mW) | WG(pW) (M) (pm) | 30&60 (pm) at10~3M

In theory™* 1 1000 1.2x107% | 30/60 | 3pW/2.4pW | 2.5(30um)
2(60pm)

In practice

Sample No 1 25/58 10-7 60 206fW 0.4(No
15-3** Ta205 ﬁlm)

In practice 74

Sample No 1 63/0.94 1078 60 70fW (With 37nm
13-3*** Ta205 ﬁlm)

Note:
* under the condition of 1% of maximum assay response (blank measurement)

Kk 6dB loss due to the 4-way split. 10dB due to transmission and silica layer loss
* %% | 6dB loss due to the 4-way split. 5dB transmission loss and 1dB silica layer loss

TABLE 6.3: Comparing the theoretical results with experimental outcomes of the CCD
detector system.

Overall, the theoretical prediction of 0.5 pW.mW~1@10~8M fluorescence power collec-
tion should be reached if one takes the 4-way split waveguide structure into account
for the 60 pm taper waveguide, so it is in a good agreement with the experimental re-
sult of 0.4 pW.mW~1@10~®M for the same waveguide (assuming a linear response of

concentration of dye with the fluorescence signal power).

6.8.3 Detection limit of System II

The limit of detection is defined as three times the dye concentration divided by the
signal to noise ratio, where, the noise is defined as the square root of squared standard

deviation of the signal and the squared standard deviation of the background signal

e 2 2
(HOISE— \/asignal + Ubackground)‘

The signal is defined as an averaged signal over a series of data in the peak region of the
dye pulse, from which the background signal was deducted. The background signal was

an average signal taken before the beginning of the dye pulse.
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Therefore, from the outcome of the bulk dye experiments, a limit of detection below 3

x 107190 Cy5.5 was determined for the CCD detector system.

This results in a surface density detection limit of 1.3x10* antibodies.mm™2 based on
the calculation in Section 4.4.2.1, which is about one order of magnitude better than

the detection system requirement.

In Chapter 4, Section 4.4.1], the LOD of 2.8x107°M Cy5.5 was found for the sensor chip
without TasOs film. In this section, a limit of detection below 3 x 107°M Cy5.5 was
determined for the CCD detector system, which is about one order of magnitude better
than System I. There is still room for improvement and optimising the CCD detection

system could reduce the LOD even further.

6.9 Conclusion

In this chapter the optical apparatus, instrumentation and the performance analysis of
a CCD detector system for multisensor immunoassay were described. It was estimated
theoretically that the collection efficiency of the CCD detector system is about three
times better than the fibre collecting photodiode detector, largely due to the assumption
that 100% of the light hitting the lens would fall on the CCD sensor chip, while only
11% of the light from the end of the light collecting fibre would fall on photodiode.
Although Table 6.1l shows that the fibre collection up to the filter in system I is better
than lens collection up to the filter in CCD system, the combination of fibre collection
and CCD may offer better collection efficiency in theory, but it will limit the flexibility in
defining the sensing configuration in reality. The results of bulk dye experiments of the
system were presented, which is 0.4pW.mW1@1073M and it is comparable with the
theoretical prediction of 0.5pW.mW~1@10~8M, and a good agreement is reached. It also
addressed detailed analysis on Signal to Noise Ratio of the CCD camera and optimisation
of the camera in order to improve the SNR. Improvements could be undertaken from
three aspects: using larger binning in order to reduce the readout noise; increasing
the exposure time to increase the signal strength, also using the better cooling method
to reduce the thermal noise; and finally, integrating with many short exposure times,
especially for those analytes that cannot survive under a long exposure time due to the

photobleaching.
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While the NEP for both CCD and photodetector systems are comparable, the CCD
system is preferable due to its flexibility in defining the sensing region and the low
noise performance. A limit of detection below 3 x 107'°M Cy5.5 was determined for
System II, which is about one order of magnitude better than System I and two orders

of magnitudes better than the detection requirement for the system.



Chapter 7

Conclusions

7.1 Overall conclusion

A novel 32-analyte integrated optical fluorescence-based multisensor chip has been re-
alised, and integrated with fluidics, a detection system, surface chemistry, immuno-
chemistry, and a computer for control and signal processing. The performance of this
biosensor system has been demonstrated with the key pollutant estrone. A detection
limit of 1 ng.L~! was achieved (with a range up to 1 ug.L=!). This is two orders of
magnitude better than that required by EU legislation for organic pollutants, and it is
expected that improvements in sample handling and signal processing will reduce this

further.

Extensive study was carried out theoretically and experimentally in order to optimise
the sensor chip design, fabrication and sensing system. A tapered waveguide section was
introduced into the sensor chip design to reduce the power density of excitation radiation
at the sensing surface, hence reducing the rate of photobleaching and maintaining the
overall signal strength and the sensitivity of the device. In order to maintain a uniform
power distribution in a wide, and hence highly multi-moded waveguide, it is desirable to
excite only the fundamental mode which is the lowest-order spatial mode of a channel
waveguide. If the rate of increase in the width of the waveguide is slow enough, the
broadening of the modal field is essentially adiabatic resulting in all of the launched
light remaining in the fundamental mode of the waveguide. A theoretical study and

simulation using BPM were carried out with taper widths of 30um, 60pum and 100um.

119
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The taper widths of 30pum and 60pum were chosen for the final mask design, to avoid
significant excitation of higher order modes while keeping the taper length to 10mm,
due to chip size constraints. A set of preliminary test waveguides were fabricated under
various conditions in order to determine the optimum production process for the sensor

array chip, aiming for low loss, high signal strength and robustness.

Particular attention has been paid to the fibre to waveguide coupling efficiency. Since
the ultimate device discussed in this thesis would be a portable type of instrument
which requires the sensor chip to be pigtailed with a fibre, this allows an easy method
for connecting and coupling light from a laser source. Therefore, to optimise the fibre
to waveguide coupling efficiency is essential. A thorough investigation was undertaken
theoretically and experimentally and the best coupling efficiency, of 80.2% in the TE
mode, was achieved and corresponded to the fabrication conditions of 2.5 pym waveguide
opening with 2 hours of ion exchange time. Subsequently, low loss, high signal strength
and robust optical transducers were realised based on the optimised mask design and

fabrication process.

The surface intensity of the sensor region was studied in depth based on the establish-
ment of a precise 2D refractive index profile for the waveguide. Extensive studies were
undertaken mathematically in terms of step by step calculation of the optical power
collection efficiency of the detection system, in order to estimate the power flow in the
detection system, which is vital for the design of the detection system. The photodiode-
based detection schemes which consist of the photodiodes with integral amplifiers, an
amplification and prefiltering stage, were experimentally evaluated for cost, noise, sta-

bility and detection limit.

A system detection limit was estimated theoretically based on immunoassay characteris-
tics, and an equivalent detection limit of the system for dye solution was also predicted.
It was estimated that 1pW of fluorescence power should be collected by the fibre and
photodiode detection system with 1mW laser power in a 30um width taper waveguide,
under the area of 30um x 1.5mm. Subsequently, extensive bulk dye fluorescence measure-
ments were carried out, in order to confirm low-noise operation of the detection system
and determine an ultimate detection limit in terms of the number of Cy5.5 molecules per
unit area. In practice, a 2pW of fluorescence power was achieved under the same con-

dition as theoretically predicted. LOD of 7.7 x 10""'M and 2.8 x 107?M were achieved



Chapter 7 Conclusions 121

for the sensor chips with and without TasO5 high index film respectively. If a detection
limit of 10~'°M Cy5.5 is assumed, this is equivalent to the minimum detectable surface
density of 4.36 x10® antibodies.mm =2, which is at least one order of magnitude better

than the detection system requirement.

Surface chemistry and immunoassay experiments were carried out in cooperation with
the project partner in the University of Tiibingen, Germany. The antigen and antibody
were provided by the project partner from King’s College, University of London. Ex-
tensive immunoassay trials were undertaken, in order to calibrate the detection system
initially using estrone as the analyte. Subsequently, the system was applied to detect up
to six organic pollutants (propanil, atrazine, isoproturon, sulphamethizole, bisphenol A
and estrone), and a good detection limit of Ing.LL™! for the system has been achieved.
The overall performance of the detection system, in comparison to the conventional an-
alytical and immunosensor techniques, was tested and also undertaken by other project
partners. The results showed that the system is fully comparable to conventional analyt-
ical techniques in terms of accuracy, repeatability and reproducibility, while selectivity
allowed for trace analysis even in complex matrices such as sediment extracts. In addi-
tion, the analysis only takes a few minutes without any prior sample pre-concentration
nor any pre-treatment steps, and it cuold regenerate upto 500 times without replacing

the sensor chip.

A detailed study was carried out in a CCD detection system theoretically and experi-
mentally. It was estimated theoretically that the light collection efficiency of the CCD
detector system is about three times better than the fibre collecting photodiode detec-
tor, this is based on the assumption that 100% of the light reaching the lens would fall
on the CCD sensor chip, while only 11% of the light from the end of the light collecting
fibre fell on the photodiode. The results of the bulk dye experiments of the system was
presented, which is 0.4pW.mW~1@1078M, and it is comparable with the theoretical
prediction of 0.5pW.mW~t@10~8M. Improvements could be undertaken from three as-
pects in order to improve the SNR: using larger binning in order to reduce the readout
noise; increasing the exposure time to increase the signal strength, also using the bet-
ter cooling method to reduce the thermal noise. Finally, integrating with many short
exposure times, especially for those analytes that cannot survive under a long exposure

time due to the photobleaching. The NEP for both CCD and photodetector systems
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are comparable, however the CCD system is preferable due to its flexibility in defining
the sensing region and low noise performance. A limit of detection below 3 x 1071°M
Cy5.5 was determined for System II, which is about one order of magnitude better than
System I and two orders of magnitude better than the detection requirement for the

system.

Overall, an integrated optical fluorescence multi-sensor system was presented; the ap-
plications of this system will be in environmental monitoring, medical diagnostics and
biotechnology. The applications are not for screening very large numbers of compounds
in high concentrations, but fairly low numbers of compounds in very low concentra-
tions. End-users will include instrument manufacturers and scientific researchers who
wish to analyse small volumes of analyte for multiple compounds with good stability

and repeatability and low detection limits.

The main innovative features in this work are multi sensing integration on a sensor chip,
including integration of 32 sensing spots, selection of waveguide materials technology and
optimisation of fibre coupling, surface irradiance, isolation layer, with incorporation of
tapered waveguides for reduced photobleaching and high-index over-layers for improved
pump efficiency. Optimisation of the fabrication parameter and the process; power
budget: calculation from input power, output power, emitting and collection for both
detection systems. Integration the sensor chip to the detection system including the
interface with microfluidics system, establishing the apparatus for improving optical
alignment and signal collection from photodiode arrays via hardware tests for photodiode
array readout, and operation to detect 6 organic pollutants simultaneously and with
the detection limit of 20ng.L—!, the best performance reported. The waveguide design
leading to high sensitivity, the mass-fabrication technology employed for the chips, which
will help to keep unit costs down, and the robust connection to instrumentation, which is
expected to lead to greater reliability, ease of use, and reduced detection limits through
improved stability. These sensor devices are being developed for fluorescence-based
measurements but may potentially be applied to other surface scattering or luminescence

techniques, such as Raman spectroscopy.
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7.2 Future work

The silica isolation layer in the present sensor was found to have deteriorated beyond re-
pair after 400~500 measurements. This deterioration was caused by the gradual erosion
of the layer by 0.5% sodium dodecyl sulphate (adjusted with HCI to pH 1.8) solution,
which was used in the regeneration process to remove the remaining fluorescence labelled
antibodies bonded on the sensor surface and to prepare the system ready for the next
measurement. Therefore looking for a suitable isolation layer or a different sensor chip
fabrication technique with different substrates such as sapphire has priority in the next

phase of study, in order to produce low loss and robust new generation sensor chips.

Through-out the project period, laser breakthrough and background fluorescence have
been found to be problems which cause the reduction of the signal to noise ratio. Se-
lecting the correct filter to strip off the pump source is one way to overcome the laser
breakthrough problem. More efforts should also be made into studying the fluorescence
behaviour of various glass and crystal materials which are chosen as the host substrate
of the sensor chip. Better signal to noise ratio can be achieved by using a substrate

which is less sensitive to the pump source in terms of exciting fluorescence.

Another feature of the present sensor chip is the reduced rate of photobleaching which
was achieved by broadening the waveguide. The measurement results show that the
detection limit of the system is good and it is within EU regulation, therefore the
system did not take the broadening issue into account. But for the future improvement
of signal to noise ratio and sensitivity, detailed and systematic study on the raw data of

various width of waveuide against photobleaching rate should be carried out.

The system has been developed for the application in river water monitoring, which
is the main objective of the AWACSS project. Although this project has now been

completed, the potential of this system has to be explored further.

Work building upon that described in this thesis will continue towards an optical waveg-
uide sensor for highly sensitive detection and quantification of cytokines in biological
fluids. This aims at quantifying cytokines (such as IL-1a, and IL-13, IL-6 or TNF«) at
the ng.LL~! range in biological fluids which might lead to significant potential for many
other bioscience applications. The system can also be applied in medical science such

as in DNA recognition, or in the food industry such as for the detection of toxicity, etc..
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Exploration of new areas for the application of this system will also form part of the

future work.
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Power Collection
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FI1GURE A.1: The Sketch shows the fluorescence collecting fibre butt-coupled under-
neath the sensor patch.

In this appendix, a detailed calculation of how much fluorescence emitted by the 1.5mm
long and 30 pm width waveguide within the sensor patch was collected by the fibre
(NA=0.5140.03) underneath the sensor patch is given. The Figure [A.1 shows the flu-

orescence collection fibre underneath the sensor substrate. The calculation has three
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parts: Part one considers the dye molecules of Cy5.5 which are located outside of the
fibre region, as shown in Figure [A.2l Parts two and three take into account the dye

molecules within the fibre area with different ranges shown in Figures 'A.3 and |A.4.

A.1 Case A (xg > Ry)

Sensor patch

F1GURE A.2: View from the top of the sensor patch. In case A, the Cy5.5 molecules
are located outside of the fibre region.

The fluorescence intensity from a single molecule reaching the fibre can be expressed as

P (ze,yE) _ Py (rE,yE) (A1)
dm(d® + 2% +y?)  Aw(d? +r?) '

I (x,y) =

In which, r? = 2% + 42; P, (zg, yE) = power /molecule at position (rg,yg).

Therefore for the power from a molecule in the analysis region (Pg) :
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In which,
R?‘ =24 az% — 2repcosPmaz(r) (4.3)
COS‘Pma:c(T') = M (A4)
2rxp
Pt ap - R

Omaz (1) = arccos (A.5)

2reg

Ry = 0.5mm, d = 0.8mm.
Assuming that the dye emits isotropically and ignoring the effects of the glass slide.
NA fipre = Sind = 0.48,0 ~28°. Rya = d x tanf = 0.8mm x 0.53 = 0.424mm.

The total power reaching the fibre in case A (P4) should be:

L)2
Py 22/ de/dyEPE(anyE)p
Ry

L)2 Rua 9 2 42 R2 P
:2/ de/ dr—s—-3 4 2arccos—E f/dyEm(xE’yE)p
Ry ep—Ry A°+T 2rag iy

(A.6)

In which, L = 1.5mm, where p is the molecule density, p =number of molecules/area,

note: neglecting the dependence on yg.

Calculating the integral of the first part of the equation [A.6l using a numerical method

and neglecting the - dependence of Pg, the following result can be obtained,

P
Py = 0.0966(mm) / dyE%p (A7)
7
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Sensor patch

F1GURE A.3: View from the top of the sensor patch. In case B, the Cy5.5 molecules
are located within the fibre region (R; — Rya < zg < Ry).

A.2 Case B (Rf — Rya <zp < Rf)

P Riy—zp 1 21
Pg(rp,yp) = Enlor, ye) / rd / dep
0 0

A7 "2 + r2
Pm(anyE) Rya 1 (Pmaz(r)
+ / TdTHQ/ ng
4m Ry—zp A2 +7% Jo (A8)
_ Pm(JUanE)lo d* + (Ry — zp)? n Pn(zg,yE)
4 g &2 o
Rya o r? + 13 — R}
/ dr————arccos—————
Rj—zp @ FT 2rzp

The total power reaching the fibre in case B should be:

Ry
Pp = 2/ de/dyEPE(fUE,yE)P (A.9)
Ry—Rya

A.3 Case C (XE + Ryg < Rf)

P Rna 1 27
Pp(rp,yp) = Pn(25,y5) / rd / dp
0 0

47 T2t (A.10)
B Pm(JUanE)l d* 4+ (Rya)?
T T

The total power reaching the fibre in case C should be:



Appendix A Power Collection 129

Sensor patch

F1GURE A.4: View from the top of the sensor patch. In case C, the Cy5.5 molecules
are located within the fibre region (xg + Rya < Ry).

Ry—Rna
Pc = 2/ da:E/dyEPE(xE,yE)p (A.11)
0

A.4 Power collection

Therefore the total collected fluorescence light by the fibre is:

Py + Pp + PC<7
= —— 0
P total,emitted
Py + P+ Pc

f_L[/jg dep [ dypPu(ce, yp)p

(A.12)

= 3.67%

Note: [ Pp,(yg)dyg = p drops out of ratio.
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Electronic signal filtering analysis

B.1 Principle of the analogue filter

(1) R o X

FIGURE B.1: A 1% Order RC Low-Pass Filter, in which R is the resistance of a resistor,
C is the capacitance of a capacitor, and z(t) is the output alternating voltage which is
equal to the voltage on the capacitor. Both R and C are constants.

To understand how a filter works, it is necessary to establish a relationship between the

input signal and output signal for the electric circuit representing the filter.

Taking the 15! order RC low-pass filter, shown in Figure[B.1, as an example, the equation

of the output voltage x(t) can be derived as follows.

Based on the serial electric circuit theorem, the sum of the voltages on the components

in the circuit equal the input voltage, i.e.

Vr(t) + V() = e(t) (B.1)

In which Vi and V¢ are the voltages on the resistor and capacitor respectively, and e(t)
is the input voltage. Note that Vo (t) = x(t).
130
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Assuming the electric current in the circuit is I(t), the voltage on the resistor can be
expressed as:

Va(t) = I(OR (B.2)

The voltage on a capacitor is equal to the quantity of electric charge in the capacitor,

Q(t), divided by the capacitance, i.e.

Vr(t) = Q(t)/C (B.3)

Since the electric charge in the capacitor is equal to the net inflow of the electric current

into the capacitor, i.e.

Qt) = [y I(t)dt

Ve(t), ie. x(t), can then be written as:

Vo(t) = () = % /0 I(#)dt (B.4)

Differentiating with respect to time t on both sides of the equation above, the following

expression is obtained:

du(t)  I(t)
a ~ C (B-5)

Comparing equation B.2 with equation [B.5, the voltage on the resistor can be expressed

as:
dz(t)
dt

Vr(t) = RC = RCZ'(t) (B.6)

equation B.1/now becomes an ordinary first order and linear differential equation for the
output voltage x(t):
RCZ'(t) + x(t) = e(t) (B.7)

Assuming at t < 0, there is no input signal, i.e. e(t) = 0 for t < 0, and x(t) = 0 when t =
0, the equation B.7/can be solved using a Fourier transform or the method of variation of
constants. In order to illustrate the frequency characteristics of the circuit, the Fourier

transform method is to be used to solve the equation.



Appendix B Electronic signal filtering analysis 132

Taking the Fourier transform (denoted by F) on both sides of equation B.7, and noting
that

equation B.7 becomes:

(jw RC 4+ 1) X(w) = E(w)
1
X(w) = mE(w) (B.8)

In the above, w is the circular frequency in radians per second.

Let

H(w) = 1/(jwRC + 1)

equation B.§| can then be written as:

X(w) = H(w)E(w) (B.9)

In the above, H(w) is the “transfer function” which decides the characteristics of the
electric circuit response to the input signal in the frequency domain. H(w) itself is
entirely decided by the electric circuit and is independent of the input signal. It can
be seen that the higher the input signal frequency w, the lower the H(w) value, and
therefore the lower is the output to input ratio X(w)/E(w), which is the feature of a

low-pass filter.

It can be seen that the original differential equation in [B.7l has been reduced to an

algebraic equation in [B.8 by the Fourier transform. The solution for output signal x(t)
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can be obtained by performing the inverse Fourier transform (denoted by F~!) at both

sides of equation [B.8§], i.e.

(B.10)
= F ! Hw)] F ' [Ew)]
in which “x” represents a convolution operation.
Note that,
FX(w)] = 2(t)
FHEW)] = e(t)
and
FHW) = F ']
JwRC+1
_ 1 <_i)
~RC"PURC (B.11)
= h(t)

(h(t) = 0if t < 0)

equation B.10 becomes:

x(t) = h(1)"e(1)
= /_oo h(t—7)e(T)dr (B.12)
1 t—r1

= RC/O exp(— RC Ye(T)dr

While the transfer function H(w) exhibits the frequency characteristics of the circuit’s
response to the input signal, its inverse Fourier transform h(t), called the impulse-
response function as given in equation B.11, shows the circuit’s response to the input
signal in the time domain, and the expression in [B.12/ demonstrates(in real time) how

the input signal is modified by the circuit to become the output signal.



Appendix B Electronic signal filtering analysis 134
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FIGURE B.2: Transfer Function (modulus squared) of the 15 Order RC Low-pass Filter
cut-off frequency = 1Hz or 6.283 rad.s~!)
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FIGURE B.3: Impulse-response Function of the 15¢ Order RC Low-pass Filter (cut-off
frequency = 1Hz or 6.283 rad.s™ 1)

Figure B.2l and Figure B.3| show the curves of the circuit’s responses in the frequency
domain (modulus of H(w) given in B.13) and time domain (h(t) given in [B.14), respec-

tively.

|H(w)| = m (B.13)

1 1

= %exp(—ﬁ) (B.14)
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The cut off frequency w, of this filter is decided by the RC value. By definition, the
square of the modulus of the transfer function should have half of its value at zero

frequency, i.e.

1
H(w, L — B.15
which leads to:
we = 1/(RC)

Assuming the cut-off frequency is 1 Hz, or w. = 6.283 (rad.s~!)), the corresponding RC
value is RC = 0.159. For this RC value, the transfer function and the time response

function of the filter are plotted in Figure B.2 and Figure B.3.

B.2 4" Order Butterworth Low-pass Filter

Since the characteristics of a filter are described by its transfer function H(w) or impulse-
response function h(t), there is no need to look into the details of the electric circuit if

either H(w) or h(t) is available.

The transfer function of a 4" order Butterworth low-pass filter is given as:
wi(A-iB)
in which w, is the cut off frequency of the filter defined by
|H(w0)] = = | H(O) (B.17)
we)| = —= .
V2
and
2 242 9 o dm w
A= (v —w)* —dwiwcos—cos—
8 8 (B.18)
= (w2 — w?)? — 1.4143w2W?
9 99 3w
B =2(w? — w) ww(cos—-cos—)
8 8 (B.19)

= 2.6131(w? — w?)2wew
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The modulus of the transfer function can be written as

i

|Hw)| = ——e— (B.20)

VA% + B?

Note that selection of the cut-off frequency, w,, in this case is similar to selecting the
RC value for the 1% order RC filter in equations B.13 and [B.14. Assuming the cut-off
frequency of the filter is 1 Hz or w, = 6.283 (rad.s~!), the frequency characteristics of the
4% order Butterworth filter can be demonstrated by the graph of the modulus squared

of the transfer function in Figure B.4.

1.2 4

S
d
S
S\

0 0.5 1 1.5 2 25 3 3.5 4 45 5
Frequency (Hz)

|H(omega)|*2

FIGURE B.4: Transfer Function (modulus squared) of the 4** Order RC Low-pass
Filter (cut-off frequency = 1Hz or 6.283 rad.s™!)

The time response function h(t), i.e. the impulse-response function, of the 4** order
Butterworth filter can be derived from its transfer function using the inverse Fourier
transform. However due to the complexity of the transfer function, an analytical ex-
pression of h(t) is difficult to obtain. Instead, a discrete inverse Fourier transform can
be used to derive the numerical time series of the function h(t), which is shown in Figure

B.ol
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FIGURE B.5: Impulse-response Function of the 4" Order RC Low-pass Filter (cut-off
frequency = 1Hz or 6.283 rad.s™1)

B.3 Effects of the Order of the Low-pass Butterworth Fil-

ter

Comparing the graphs in Figure B.2 to Figure B.5l for the 15 order and 4" order filters,

it can be seen that

e The higher order filter has a sharper frequency cut-off and therefore is able to allow
more wanted frequency components and less unwanted frequency components to

pass the filter. This is shown by the transfer function curves.

e The higher order filter’s time response takes longer to reach the peak and also
takes longer to die out. This can cause more phase delay in the output signal and

more interference between signals.

For the above reasons, Butterworth filters with orders higher than 6 should be used with

caution.

Regardless of the orders of the filters, the principle of a filter acting on input signals is
the same, which can be presented either in frequency domain or time domain, as shown

in equations B.9/ and B.12.
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