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UNIVERSITY OF SOUTHAMPTON

Abstract

Faculty of Engineering, Science and Mathematics

Optoelectronics Research Centre

Doctor of Philosophy

The study of surface SHG and polygonal microcavity design for nonlinear

applications on LiNbO3

by Tleyane J. Sono

A z-cut congruent lithium niobate crystal (LiNbO3) has been used in this thesis, as a

platform for the surface second harmonic generation (SHG) studies and for the designs of

polygonal microcavities for nonlinear applications.

Reflection second harmonic generation (RSHG) experiments were performed on LiNbO3 to

reveal the interfacial layer symmetry as the crystal is rotated around the z axis. RSHG

was also used, unsuccessfully as a non-destructive tool to map the domain-inverted area in

the poled LiNbO3 crystals. But nevertheless, the polarity of the direction of the y-axis of

the crystal was determined from RSHG data and the data shows that this direction also

inverts, during domain inversion. RSHG was used unsuccessfully to monitor the relaxation

of the internal field within the domain inverted area of the poled LiNbO3.

A general operational principle of optical microcavities was discussed, in which a detailed

theory governing the operational modes of a resonating hexagonal microcavity, made from

bulk LiNbO3 crystal was reviewed for nonlinear device applications. A model for a total in-

ternal reflection (TIR) technique for the QPM method in a double-resonating hexagonal mi-

crocavity was formulated. The TIR-QPM model was based on finding a suitable hexagonal

dimension in which, both the fundamental and SHG signal resonate simultaneously while at

the same time allowing QPM to occur via TIR. The TIR-QPM model and the FDTD simu-

lation were used to demonstrate the potential capability of the double-resonating hexagonal

microcavity for efficient SHG. The model to achieve a nonlinear microcavity by periodically

poling ring/disk resonator Ti:LiNbO3 ridge waveguide was introduced.
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Chapter 1

Introduction

1.1 Objectives

This thesis is divided in to two parts. The first part focuses on the use of the reflection
SHG technique to study the properties of a poled and non-poled LiNbO3 crystal, and is
presented in Chapter 3 and Chapter 4. In this study the SHG technique is used achieve
four goals which are: (1) to reveal the symmetry of the LiNbO3 crystal, (2) to compare the
amplitudes of the SHG signal from both z faces of the poled part of the LiNbO3 crystal to
the un-poled part, (3) to investigate the state of the direction of the y-axis after poling, and
(4) to monitor the relaxation of the internal field of the crystal following the poling process.

The second part of this thesis focuses on the use of microcavities to enhance the
SHG with a micro-dimension device using LiNbO3/-waveguide as a platform, and is
presented in Chapter 6 and Chapter 7. In this study the enhanced power of the resonating
fundamental mode in the microcavity is used to enhance power of the induced SHG
within a small volume of the device, as a means of creating smaller devices which can
compete with the conventional longer-length devices such as PPLN. The aim is to initially
demonstrate the potential of such devices numerically and thereafter to fabricate them
for practical demonstration.

Two geometries of the microcavity are considered namely, hexagonal and circular
shaped microcavities. A Hexagonal-shaped microcavity is selected based on the fact that
micro-structures with this geometrical shape are easily made from LiNbO3 via chemical
etching after poling of the material. In this hexagonal geometrical shape, phase matching
between the fundamental and the second harmonic waves can be achieved via total
internal reflection quasi-phase-matching. In the circular microcavity, phase matching is
achieved via periodic poling along the ring. In the circular geometrical shape, further
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enhancement of the FW is achieved due to the high mode confinement through the use of
a waveguide as compared to the use of the bulk material. In the circular micro-cavity a
waveguide form, as opposed to the bulk material, is used to give rise to a high confinement
to further enhances the FW.

1.2 Introduction and Summary of Chapters

Nonlinear processes such as SHG have a quadratic dependence on the intensity of the
fundamental wave (FW) (Iω), the total length of interaction during propagation (l)
and the nonlinear coefficient χ(2) (i.e I2ω ∝ (Iωlχ(2))2 sinc2(1

2Δkl)). The SHG process
is carried out in two geometries: reflection and/or transmission. In the transmission
geometry, the fundamental electromagnetic radiation is allowed to propagate through the
nonlinear active, medium along which the second harmonic signal is generated from the
FW. The conversion efficiency of the SH from the FW relies on χ(2) and the interaction of
the SH and FW within the medium. Materials with large values of χ(2), such as lithium
niobate (LiNbO3) will generally have a high SH conversion efficiency. Chapter 2 of this
thesis summaries the properties of LiNbO3 crystal, as this material is used as a platform
for all our proposed work.

In transmission geometry however, the inherent dispersion of the nonlinear medium
forces the fundamental and the harmonic waves to propagate through at a different
phase velocity leading to phase mismatch (Δk �= 0) between the two waves. This phase-
mismatch results in the degradation of the generated SH signal and hence compromises
on the conversion efficiency.

To counter this phase matching problem several methods were put into practice.
These methods included special alignment of the polarization angle and the incident
angles of the FW relative to the crystallographic geometry of the nonlinear medium,
to force the FW and SH beams to travel at the same velocity throughout the crystal.
These methods include the so called birefringent phase matching, also called the Perfect
Phase Matching (PPM) [10, 4] and the Total-Internal-Reflection Quasi-Phase-Matching
(TIR-QPM) [10, 11, 5]. Another method involved spatially flipping the spontaneous
polarization (Ps) after each coherence length, so as to reset the velocity mismatch at
every coherence length along the propagation length. This later method is called the
Quasi-Phase-Matching (QPM) [4] and it is largely applied to ferroelectric methods such
as LiNbO3 thanks to the electric field (EF) poling techniques of inverting a volume of

13



Ps. With these methods, nonlinear optical processes such as SHG have since been of
technological importance which brought about devices such as the frequency doubler
crystal used in lasers and periodically poled lithium niobate (PPLN) used for optical
parametric oscillation.

Following the EF poling technique, destructive methods such as chemical etching
are often employed [12, 3],using the differential etching property between opposite z
faces, to reveal the quality of the poling in LiNbO3 materials. This has since called
for alternative, non destructive methods for post-poling analysis of the poled materials
[12, 13, 14, 15, 16, 17]. In the first part of this work, studies have been undertaken
to investigate to examine the possibility of using SHG in reflection mode as a tool for
domain visualization after poling.

In reflection mode, the incident fundamental beam(s) are reflected from the surface
of the medium and the SH is generated within a few atomic layers of the medium and
it emerges together with the reflected FW from the medium. Reflection SHG (RSHG)
has been widely employed for surface studies even in a centrosymmetric medium, where
there is no bulk SHG but where there is surface SHG due to surface discontinuity which
induces nonlinearity. For a non-centrosymmetric material like LiNbO3, the bulk signal
is trapped inside the crystal via the use of the UV absorption of the medium. Within
the surface limit, the SHG properties are very much dependent on the properties of the
surface, which in general is different from that of the bulk. Also, it can be expected
that, within a certain limit of the surface range (depth of the surface), the z- faces of a
poled and nonpoled material should result in different magnitudes of the second harmonic
signal (SH). Chapter 3 investigate a detailed theory and the model governing generation
of SH, together with the experimental setup for our RSHG work.

In chapter 4, RSHG is used to study various properties of the interfacial layer such
as the symmetry, the magnitudes of the SH from both polar faces of the crystal and the
behaviur of the y-axis after the inversion of the z-axis of the z-cut LiNbO3 crystal. After
poling, the NLO tensor coefficients of the crystal may be different from that of the virgin
sample and they may relax back to the original value after a suitably long period of time
[18, 19, 20]. Also in this chapter, we investigate this relaxation after poling with the use
of RHSG.

In optical applications, such as optical communications, the integration of different
optical components is required. In this integration, size and packaging of optical com-
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ponents plays an important role in the practicality of the final devices. Optical cavities
with micrometer dimensions, termed optical microcavities, have therefore attracted much
research attention for their inclusion and role in integrated optical circuits. Microcavities
have been used for various applications such as micro lasers, optical filters, and non-linear
devices [21, 22].

In chapter 5 we focus our attention on optical microcavity devices with the potential
for use in nonlinear applications such as nonlinear frequency generation. Intensity-
dependent nonlinear optical processes such as all-optical switching have shown efficiency
improvements due to the enhancement of the fundamental power in the cavity which
resulted in the reduction of the required switching power in semiconductor microcavities
[23]. The motivation behind this work, outlined in chapter 6 and 7, is to utilise the signal
stored at resonance within the cavity to enhance the efficiency of the nonlinear optical
process.

In chapter 6, we propose the generation of a SH, in a hexagonal microcavity made
from single crystal lithium niobate, via TIR-QPM [24]. In chapter 7, we propose creating a
periodic inverted domain structure along the circumference such that the light propagating
along this path length experiences a constant domain period.
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Chapter 2

Summary of the Physical and

Chemical properties of crystalline

Lithium Niobate

2.1 Introduction

Lithium niobate (LiNbO3) is a multifunctional material due to its wide of properties,
such as ferroelectric, pyroelectric, piezoelectric, photorefractive properties, and because
it has high linear and nonlinear coefficients. This material has been utilized throughout
this work in surface second harmonic generation (SSHG) in chapter 3-5, for modeling
the generation of SHG in hexagonal microcavities in chapter 6-7 and for as a platform
for fabrications of nonlinear microring cavities in chapter 8. Therefore a summary of its
general properties is appropriate and these are outlined in this chapter.

2.2 Crystal Structure

LiNbO3 is a synthetic crystal and its main constituents are Li+, Nb5+ and O2−, as shown
in figures 2.1 and 2.2. The Li+ and Nb5+ cations are six-fold coordinated with O2− anions
and these anions are further four-coordinated with Li+ and Nb5+ [1]. LiNbO3 belongs to a
trigonal lattice system, it has a three fold symmetry relative to the crystallographic c-axis
and mirror planes along each of the three equivalent y axes which together makes it to
belong to the 3m point group. Like any other material belonging to the trigonal system,
lithium niobate can be described via either the hexagonal (see figure 2.1 and 2.2) or the
rhombohedral unit cell, with six or two formula weights per unit cell, respectively. In the
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Figure 2.1: Top view of the hexagonal unit cells of LiNbO3 outlined by the solid black
lines. In the standard conversion a = b ≡ x and c ≡ z and the y axis is taken to be normal
to the xz plane. The mirror planes are along the y-axis [1]. The picture is reproduced
using Diamond 3.1d software.

hexagonal unit cell, as outlined in figure 2.2, the crystal contains three equivalent a = b

axes (a1, a2, a3) all in a plane perpendicular to the c axis and perpendicular to the mirror
planes. The conventional hexagonal axes become (a1, a2, a3, c). From room temperature
to within the Curie temperature, Tc ≈ 1400K depending on the crystal composition, it
maintains its rhombohedral structure with space group of R3c. Its structure is made
of distorted oxygen octahedra (LiO6, NbO6 and vO6, where v is a vacancy) intercon-
nected by sharing their corners, faces and edges along different crystallographic directions.

The physical properties of lithium niobate are described by Cartesian coordinates
(x, y and z) rather than the crystallographic axes (a, b and c). The adopted standard
relation between the two is as follows, z is parallel to the c and the x is along the
hexagonal ai axes where i = 1, 2, 3 and then the y is the axis normal to the xz plane.
Thus the y axis is along the mirror planes. The polarity of the axis is defined as follows,
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Figure 2.2: Hexagonal unit cell of LiNbO3 [1]. Picture reproduced using Diamond 3.1d
software

the +c axis is defined as that c face that generates a positive charge upon cooling [25].
As the generated charge is based upon the resulting net charge appearing on the face
per relative displacement of atoms, the polarity of the face can also be described by
the order of the cation along the z axis. Figure 2.3 shows the x-cut face of LiNbO3.
From this figure, the cation order along the z axis from the +z to the −z face is
. . . , Nb5+, Li+, v Nb5+, Li+, . . .. Careful examination of figure 2.3 reveals that the
polarity of the y-axis can also be defined using the order of the cation along the y-
axis. The distorted cation from the +y to the −y axes is . . . , Nb5+, Li+, v, Nb5+, Li+, . . . .

2.3 Stoichiometry

LiNbO3 exists over a range of compositions from a near stoichiometric value
(X = [Li]

([Li]+[Nb]) ≈ 50%) to lithium-deficient compositions as low as X ≈ 45% (see
figure 2.4). LiNbO3 is normally grown via the Czochralski technique, in which a LiNbO3
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Figure 2.3: Hexagonal unit cell of LiNbO3 showing the x-cut face. The oxygen planes
along the y-axis are denoted by the black horizontal lines. The order of the metallic ions
in between oxygen lines along the y-axis is found to be . . . , Nb5+, Li+, v, Nb5+, Li+,
. . . going in one direction while the order along the anti-direction, along the y-axis, is
found to be . . . , v, Li+, Nb5+,v, . . . [1]. Picture reproduced using Diamond 3.1d software

seed crystal is attached to a rod and dipped in to a platinum crucible containing a
high purity molten mixture of Li2O and Nb2O5 compounds held at a temperature just
above the melting of LiNbO3. As the rod is rotated at a desired speed and pulled out
of the melt at the optimum rate, the seed initiates new growth of the LiNbO3 crystal
from within the melt. Normally an electric field is applied along the crystal to force
a monodomain formation as the crystal is cooled. Domains are defined as the volume
containing Ps pointing along one direction and the separations between the domains are
referred as domain walls. Crystals belonging to the trigonal system can only have 180o

oriented domains. Hence, the resulting LiNbO3 crystal has its domain aligned along the
z-axis. Because of the forced polarization of the domain during growth, the crystal is said
to be poled. However, the crystal can be poled gain later after growth during domain
engineering. To distinguish between the two poling stage, the crystal poled during growth
is referred as the virgin crystal, while the post-growth domain inversion is simply termed
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poling and the resulting sample are said to be poled.

A more reproducible, commonly grown and commercially readily available crystal
is made from the congruent melt, with X = 48.4%, because it is made from a Li2O
and Nb2O5 melt of equal composition. The ease of forming congruent LiNbO3 can be
attributed to the weaker Li-O bond, as compared to the stronger Nb-O bond, thus in the
case of cation substitutions competition during growth, the weaker bond would be easily
broken. Since Li+ and Nb5+ have an equivalent ionic radius there is more chance that
Nb5+ can replace Li+ and form a stable compound than the converse unless excess Li+ is
used during growth. The melt percentage composition of less than 50%, leaves room for
two kinds of defect inclusion, intrinsic (nonstoichiometric) and extrinsic defects within the
crystal. Intrinsic defects include antisite defects, in which a cation has occupied another
cation’s position, for example Nb5+ on Li+ site (Nb5+

Li+), Nb5+ on the structural vacancy
Nb5+

v , Li+v , a lithium vacancy (vLi+), a niobium vacancy (vNb5+) and oxygen vacancies [26].

vLi+ and Nb+5
Li+ seem to be some of the most important intrinsic defects as they can

be considered to have a higher concentration than others in congruent LiNbO3. Most
of the extrinsic defects seem to prefer the position vLi+ and Nb+5

Li+ first. Most of the
LiNbO3 properties, such as Tc, Ps, refractive index n, nonlinear coefficient (NLO) and
coercive field,Ec, depend mostly on X and hence on [vLi+ ] [27, 28, 29]. It has been shown
that although Ps, NLO, n and Tc decrease in magnitude with Nb+5

Li+ and extrinsic defects
(Ex) on the niobium site ExNb5+ , the change is more sensitive to Nb+5

Li+ than to ExNb5+

(i.e the change in Ps was found to be much steeper with Nb+5
Li+ than with ExNb5+) [27].

Extrinsic defects such as Fe, Mg and other elements are also present in the melt in
a trace concentration. As they are not meant to be there, they normally occupy the
position of the intrinsic defects and that of the actual elements. They are normally
suppressed during growth of the material by using very high purity starting materials.
However, as they vary the properties of the material (high [Mg] reduces optical damage
for example), they are sometimes included as dopants during or after growth, to modify
the properties of LiNbO3.

Thus, intrinsic defects give a window for the incorporation of dopants within the
material leading to titanium indiffusion for the formation of Ti:LiNbO3 waveguides
[30, 31]. Holmes and Smyth[32] have shown that the diffusivity of Ti within LiNbO3

decreases with increasing Li content. Thus, Li rich crystals will require more time for
the Ti to diffuse through during waveguide fabrication. On the other hand, some of
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crystal’s properties that depend mostly on the Li-O bonds, such as the d33 nonlinear
coefficient which increases with increasing Li content, are compromised [28]. The value
of the nonlinear coefficients increases as the value of X increases toward a stoichiometric
value.

From the above discussion, a trend in the crystal parameters is expected from
congruent to stoichiometric crystals. Some of the trends will be discussed below.

2.4 Properties

2.4.1 Paraelectric Phase

For temperatures above Tc but below its melting point (Tm = 1526K) see figure 2.4,
LiNbO3 attains a paraelectric phase in which case it loses most of its practical value
because it becomes centrosymmetric, with a space group R3̄c, and hence it is no longer
polar. In the paraelectric phase, the Li+ and Nb5+ move to an average position along
the z axis at the centre of the oxygen triangle and the center of the two oxygen layers,
respectively. All odd rank tensor properties such as 1st rank Ps, 3rd rank rijk electro-
optic effect and dijk nonlinear optical effects disappear. Also, the paraelectric phase
occurs at a very high temperature, in a range which is not of practical importance to our
application in this work, and hence we do not dwell on the crystal’s properties in this phase.

2.4.2 Ferroelectricity

As the temperature of the sample is reduced below Tc, the Li+ moves away from the
centre of the oxygen triangle while the Nb5+ is displaced away from the center of the
oxygen layers. These cations move in the same directions. The charge separation due
to the displacement of the cations relative to the oxygen octahedra induces a Ps along
the direction of the shift of the cations making LiNbO3 become a ferroelectric material.
Ferroelectric materials are those that contain Ps and for which the direction of the Ps can
be switched between equivalent states. For LiNbO3 which contains Ps along the z axis,
the direction of Ps can be switched to point either along the +z or −z in a single domain
via a processes called domain inversion. For domain inversion to occur, the Li+ needs to
move from the other side of the oxygen triangle through to the other side while the Nb5+

needs only to shift from the one half of the oxygen layer to the other. The large radial size
of the oxygen ion (RO2− = 1.40 Å ) is bigger than that of the lithium ion (RLi+ = 0.68 Å
) which inhibits the Li+ from easy motion through the oxygen triangle. A large electric
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Figure 2.4: Phase diagram of lithium niobate (after [2])

field is required to force the Li+ to pass through the oxygen triangle unless the crystal is
heated to T ≈ Tc or the size of the oxygen ion within the crystal is temporarily reduced.

The ferroelectric property of LiNbO3 arises from the displacements (Δz) of the ho-
mopolar metallic cation along the polar direction (z axis), i.e. the ion associated with
the driving mechanism of the phase transition. At temperatures below Tc, ferroelectric
parameters such as Ps and Tc of the material can be related to the homopolar displace-
ment. For a displacive-type ferroelectric such as LiNbO3, the universal relation between
ferroelectric parameters, extracted from a least squares technique, given as [12]

Tc = 2.00×104(Δz)2(KÅ −1) (2.1)

Ps = (258)(Δz)2(μCcm−2Å −1) (2.2)

Tc = (0.303)(Ps)2(μCcm−2)−1K (2.3)

In equation 2.2, Δz is in Å Tc in K and Ps in μCcm−2. For LiNbO3, Δz ≈ 0.269
Å and Ps = 71 μCcm−2 [12]. These equations are useful also for predicting ferroelectric
parameters for new displacive-type ferroelectric materials.

For a temperature less than Tc, Ps is parallel to the crystal’s +z axis. To reverse
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the direction of Ps, an E− field more than the coercive field, Ec, is applied along
the polar direction to induce the displacement of the cations along this direction. Ec

can be considered as the one holding the material constituents at their respective location.

2.4.3 Domain Inversion in LiNbO3

As seen from figure 2.5, domain reversal requires Li+ to move through an oxygen layer
into the vacant site, leaving behind the vacant site, while Nb5+ just shifts from the upper
half of the center to the lower half within the same oxygen sandwich. The outcome is
that, what used to be a positive z face in the virgin state becomes a negative z face in
the poled state and the order of the atoms along the z axis is reversed in the two states.

Domain inversion also results in the reversal of the order of the cations along the y axis.
From figure 2.5, the order of the cations along the y axis in between the oxygen sandwich
appears to be reversed in the poled state from the original state. Thus after poling, what
used to be a +y face becomes a −y face and vice versa. The inversion of the y axis due
to the inversion of the z axis has been confirmed experimentally via the use of the tech-
nique surface second harmonic generation to be described in chapter 3 [33]. Since the x

axis is normal to the mirror planes, the direction of this axis remains the same after poling.

Domain inversion has been achieved via several techniques as described in a review
by Houe and Townsend [34]. Poling in LiNbO3 crystal can be achieved by the application
of a small electric field whilst cooling the crystal through Tc. At T ≈ Tc, the Li+ is on
average within the oxygen triangle, hence only a small electric field is required to push
the ions in a desired direction to achieve domain inversion. This method is more suitable
for achieving single domain in the crystal during growth but it can also be applied after
the crystal has been grown. One major drawback of this method is that it requires the
crystal to be held at a high temperature which limits its application to bulk crystals as
waveguide can degrade at this high temperature.

Fast electrons or X-ray radiation incident on the crystal has been shown to assist the
Li+ to pass through the oxygen triangle and hence can be used for domain inversion.
This is made possible by a reduction in the radius of the oxygen ion upon being ionized
by the applied radiation. As the Li+ is already close to the oxygen layer to start with,
once the crystal is irradiated and the oxygen is ionized, it will take only a small electrical
field to force the Li+ through even at temperatures much lower than Tc within a shot
period of time (on the picoseconds scale). Poling on waveguides has been achieved via
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Figure 2.5: x-cut face of the virgin and poled LiNbO3 crystal. In the poled state, the
order of the cations in between the oxygen layers both along the z and the y axis appears
to be reversed.

this method with the use of a 10 keV electron beam scanned onto the crystal through the
mask and with an application of a small external electric field of 10 V cm−1 at 580 oC

[35]. Domain inversion with this method can be achieved either on the +z or −z face by
choosing suitable direction for the applied electric field. Scanning Electron Microscopes
(SEM) have also being used to achieve both 1D and 2D periodic poling on the −z face of
both LiNbO3 crystals and Ti:LiNbO3 without the application of an external electric field
[36, 14]. With the SEM method of poling, only the −z face was poled while the +z face
was earthed via a deposited metal coating.

As the temperature of the LiNbO3 crystal is raised toward Tc, Li2O out-diffusion
occurs mostly from the +z face which results in local decomposition of LiNbO3 to
LiNb3O8 (see figure 2.4)[2]. If part of the +z face is covered, a controlled out-diffusion
occurs on the +z face and this method has been used to induced periodic poling [37]. The
resulting domain inversion is thought to be due to the local structural variation due to the
out-diffusion which results in a lower Tc than that of the non-out-diffused part and hence
domain inversion can occur. The resulting domain wall attains a triangular shape with a
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30o angle. If the +z face is not periodically covered, at high temperature an uncontrolled
local domain inversion occurs and this can causes problem for waveguide application
such as undesired variation of the refractive index. For this same reason, LiNbO3 waveg-
uides fabricated at high temperature for non linear applications are limited to the −z face.

The poling electric field is inversely proportional to the temperature. At room
temperature, the required poling field is large and the field is normally pulsed on the
crystal to avoid permanent damage on the sample [38]. In general, the electric field poling
(EFP) technique relies on applying an electric field larger than Ec across the sample for a
short period of time. For congruently grown LiNbO3, Ec ≈ 22kV/mm. Once reversed, the
domain can also be reversed again, reversed poling, but this time with less field required
than that for the forward poling [39]. The anisotropy is brought about by the presence of
positive internal field, Ein, which itself is due to the presence of nonstoichiometric point
defects within the sample [40]. In the virgin state of the crystal, Ein is parallel to the z

axis and it does not follow completely the Ps motion unless annealed at a temperature
above 150 oC. As a result the required field to achieve reversed poling is Ec − Ein,
compared to the forward poling which is Ec + Ein [18].

2.4.4 Pyroelectric Properties

This is an effect in which the net dipole moment per unit volume within a medium
changes with a change in temperature (ΔT ). For ferroelectric materials, the pyroelec-
tricity is present when Ps changes with ΔT . The relationship between ΔPs and ΔT

is linear and can be written as Ps = ηiΔT , where ηi is the pyroelectric coefficient. In
uniaxial materials such as LiNbO3, where Ps lies only along the z-axis, ηi = ηz where
ηz = −4 × 10−5CK−1m−2 [25]. We do not use these properties in this work but they
affect the control of handling the crystal during fabrication, as uncontrolled changes in
temperature can lead to the formation of surface domains.

2.4.5 Piezoelectric effect

When LiNbO3 is subjected to stress (σi), a polarization (Pi) is induced. Pi is linearly
proportional to the applied stress and can be written in a tensor form as Pi =

∑
dijkσjk

where i, j, k = x, y, z and dijk is the third rank piezoelectric tensor [25]. By the application
of the intrinsic permutation, symmetry constraints and Neumann’s principle (see chapter
3), the 27 elements of dijk are reduced to 18. Due to a further symmetry constraints
of the crystal on dijk, there are only four independent piezoelectric coefficients d113 =
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Table 2.1: Parameters for the Sellmeier equation [7]
i = o i = e

A0 4.5312 × 10−5 3.9466 × 10−5

λo 223.219 218.203
A1 2.7322 × 10−5 8.3140 × 10−5

λ1 260.26 250.847
AIR 3.6340 × 10−8 3.0998 × 10−8

AUV 2.6613 2.6613
μ0 2.1203 × 10−6 7.5187 × 10−6

μ1 −1.8275 × 10−4 −3.8043 × 10−5

d131, d222, d311 and d333 of the possible 18 coefficients. This effect is also not used in this
work.

2.4.6 Sellmeier equation and refractive index

Nearly all the properties of LiNbO3 depend on its refractive index. LiNbO3 is a negative
uniaxial material which implies that, in its transparency range, its ordinary refractive
index (no) is greater than the extraordinary refractive index ne. LiNbO3 is a dispersive
material and also its index depends on the composition within the medium. A general
form for representing ni, from the infra-red to the UV range, is via the Sellmeier equation
where the composition, the frequency and in some cases the temperature dependence are
treated as variables [7, 41, 29]. A general Sellmeier equation for LiNbO3 can be written
as [29]

n2
i =

50 + cLi

100
A0,i

(λ0,i + μ0,iF )−2 − λ−2
(2.4)

+
50 − cLi

100
A1,i

(λ1,i + μ1,iF )−2 − λ−2

− AIR,iλ
2 + AUV

where cLi is the mol % of Li2O, λ is the wavelength in nm and i = e, o. F = f(T )−f(T0)
is the temperature factor where f(T ) is given as [7]

f(T ) = (T + 273)2 + 4.0238 × 105
[
coth

(
261.6

T + 273

)]
(2.5)

where T is in oC. The parameters used in equation (2.5) are shown in table 2.1.
The above general Sellmeier equation is only valid from the far infra red up to the

UV region. In the far UV range, above 5.3 eV , pure congruent LiNbO3 is very absorptive
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[9, 42]. Also above 5.3 eV , congruent LiNbO3 losses its birefringent properties. The
absorption edge can be shifted more in the UV range via the incorporation of the desired
(doping) defects such Mg [42]. The linear refractive index of LiNbO3 can be changed
locally, from that described by the Sellmeier equation (2.5), by local doping with material
such as Ti, H or Zn for waveguide production. Due to their low diffusivity, Ti indiffusion
is normally limited to the surface. We will return to the details of Ti:LiNbO3 in the
subsequent chapters when dealing with waveguide production.

2.4.7 Photorefractive effect

The photorefractive effect is the ability of the crystal to change its local refractive index
under high exposure to intensity laser beam. Normally, such an effect is not desired,
such as in the case of waveguides where precise control of n is needed, then this effect
is called optical damage while in the case of holographic devices, where the effect is
used to induce memory within the crystal, dopants are used to increase the photorefraction.

Extrinsic defects such as Fe, Cu and Rh in congruent LiNbO3 result in an intermediate
energy level in between the valence and the conduction energy band. The electrons in the
intermediate energy level can be optically excited, via a long exposure of laser beam with
correct energy, causing them to migrate into the conduction band leaving behind holes.
Once in the conduction band photo-induced electrons can diffuse through the crystal to
a region where the intensity is low. The spatially local redistribution of photo-induced
charges between the valence, impurity and conduction energy level set up a local space
charge field, Esc. Esc results in a change in the refractive index via the electro-optic effect
(see the next section).

Photorefraction is a combination of a bulk photovoltic effect (appearance of a short
circuit current through the material when illuminated with light) and electro-optical effects
[25]. In LiNbO3, ions of iron, for example which are normally present as Fe2+ and Fe3+

act as electron donors and acceptors respectively and higher [Fe] results in an increase of
the photorefraction. The presence of Fe2+ and Fe3+ is indicated by the absorption band
at around 2.6 eV which is due to the Fe2+ −Nb5+ intervalance transfer and the red shift
in the absorption edge starting at around 3.1 eV due to the O2− − Fe3+ charge transfer.
These photorefraction effects can be initiated by long exposure of photons with λ ≈ 500
nm, to excite the donor electrons. Cu+/Cu2+ ions in LiNbO3 were also demonstrated to
induce photorefraction in a similar manner as Fe2+/Fe3+ in that they become electron
donor and acceptor, respectively, see ref [43, 44].
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2.4.8 Reduction of photorefraction

In frequency conversion lithium niobate devices, the crystal is exposed to a high intensity
field which can lead to local changes in refractive index if the crystal contains photore-
fractive enhancing defects such as Fe and Cu. This results in changes in the optical path
of the beam and hence a reduced efficiency of conversion. In such cases, a limit in the
laser beam intensity is set so as to avoid optical damage via the photorefractive effect.

Attempts have been employed to relax photorefraction, and these include the applica-
tion of an external field to cancel the photoinduced internal electric field [45], operating
the device at a temperature above 170oC [46] and limiting the operation of the device
to a wavelength that lies above the visible range. However, the above conditions do not
favour operation of most devices which operate at room temperature and use the near
UV and visible region. Another way of relaxing photorefraction is the incorporation of
the ”so called” photoresistant dopants such Mg, Zn, and Hf. When the concentration
of the dopants exceeds a certain value, called the optical damage threshold (ODT), the
photoconductivity levels off and the crystal and the material shows enhanced resistance
to optical damage.

Below the ODT, it has been shown that the photoresistant dopants occupy the Nb5+
Li+

site while above ODT these dopants can replace Nb or Li [31, 47]. Nondoped congruent
LiNbO3 can tolerate only up to 10 kWcm−2 while the near stoichiometric crystal can
take even higher intensity up to 1000 kWcm−2 before photorefraction starts to play a
role. This is due to the fact that the stoichiometric crystal has fewer intrinsic defects and
hence no impurities that can result in photorefraction. ODT in Mg:LiNbO3 is achieved
when about 4.6 mol% of MgO is included in the melt resulting in a 100-fold increase
of the optical damage resistance [48]. Zhang et. al have grown a Zn doped LiNbO3

(Zn:LiNbO3) from a congruent melt and they have shown an ODT of 6 mol% of Zn [49].
They have shown that below the ODT, the Zn replaces the Nb5+

Li+ while above the ODT
it replaces the Li ion. Razzari et al. have achieved a lower ODT with 4 mol% of Hf
doping in LiNbO3 (Hf:LiNbO3) [50].

2.4.9 Linear Optical Properties

LiNbO3 exhibits the Pockels effect in which the application of an electric field results in
a linear change of the refractive index. The relation between induced refractive index
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change and the electric field can be written as [25]

Δ(1/n2)ij =
∑

k
rijkEk (2.6)

where rijk is the linear electro-optic coefficient tensor. By the application of the in-
trinsic permutation, symmetry constraints and Neumann’s principle (see chapter 3), the
27 elements of rijk are reduced to 18 and further to 4 independent elements, and can then
be written in a reduced notation as

rijk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −r22 r13

0 r22 r13

0 0 r33

0 r42 0
r42 0 0
−r22 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

The magnitudes of the above coefficient depend on the symmetry and the relative
orientation of the octahedra in the crystal structure. For the case of LiNbO3 where
ne �= no, so does the change in the refractive index, and equation (2.7) can be written as
shown in equation (2.9) for the case where the electric field is applied along the z-axis.
r33 ≈ 33pmV −1 is the largest amongst other coefficient for LiNbO3 and hence Δne is
the largest with the result that this material is suitable for electro-optical devices such as
modulators ( see chapter 19 of [51]).

Δne = −1
2
n3

er33E3 (2.8)

Δno = −1
2
n3

or13E3

2.4.10 Nonlinear Optical Properties

LiNbO3, like many other ferroelectric materials is a non-centrosymmetric crystal which
makes it a possible candidate for nonlinear optical devices which utilize the odd rank polar
tensor properties. This was already discussed in the previous section, where a high 3rd
rank electro-optic tensor has been shown to be the basis of the electro-optical modulator
devices that are made from this material. Another odd rank tensor is the third rank non-
linear optical tensor which governs non linear optical process such as second harmonic
generation (SHG). SHG studies and devices constitute the basis of this work and the
following chapter deals with these phenomena in more detail.
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2.4.11 Microcavities for application in nonlinear optical processes

The effectiveness of the nonlinear processes is limited by the conversion efficiency which
itself is limited by the phase mismatch between the fundamental and the harmonic waves.
In order to resolve the above limitations multiple parameters must be considered together.
One of these parameter concerns the choice of a material with large accessible nonlinear
coefficients.

III-V semiconductors like AlxGa1−xAs (x = 0 − 1) have a large d14 or d36 coefficient
followed by crystalline materials such as LiNbO3 and MgO:LiNbO3 with a large value of
d33 [52].

Another parameter to consider address materials properties such as symmetry and
dispersion should be compatible with at least one of the phase-matching processes.

Semiconductor materials such as GaAs are very dispersive and isotropic at around
1.55 μm which implies that the phase-matching process involving birefringent is not
possible. QPM can be implemented in semiconductors by epitaxial growth and subsequent
technological processing. Crystalline materials such as LiNbO3 are ferroelectric and
birefringent. This implies that greater choice can be exercised in phase-matching technique

The SH intensity is proportional to the square of the propagation length and also the
square of the fundamental intensity. At the same time, integrated optics devices should
be small and compact to be compatible with device forming optical circuits such as fiber
optics. These requirements call for structures such as microcavites which allow the mode
to circulate within the device many times equivalent to a longer length device. Thus, if the
above parameters are achieved within such a device then SHG will be further improved.

Microcavity structures such as a micro-ring/disk have requirements of large refractive
index contrast for them to be small in radius with minimal bend losses. Small refractive
index contrast results in large bend losses for a given radius of the microring hence
preventing their small scale fabrication. As an example, semiconductors can have a
higher nonlinear coefficients, d36 = 137pmV −1 [51], and a high refractive index of 3.37
at λ = 1.55μm, which implies there can be small radius microcavity devices of order
of 10μm [53, 54]. Van et al, calculated a bending loss of 0.02 dB/cm for a racetrack
resonator with a bending radius of 1 μm made of AlGaAs waveguide [54].

Crystalline materials such LiNbO3 have a moderate refractive index of 2.21 and 2.14
for o and e respectively. Macrocavities using this material will have a radius larger than
those of III-V semiconductors for the same optical losses because of the lower refractive
index contrast.
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For nonlinear applications, this size limitation is not as bad as the SHG is also pro-
portional to the square of the propagation length. We therefore choose to use LiNbO3 as
a platform for our microcavity work because of the simple methods available for manipu-
lating χ(2) and more choice for phase matching processes.

2.5 Conclusion

In this chapter, the physical properties of LiNbO3 were outlined showing why this material
has for many years been a subject of both research and applications in electro-optics
and related fields. This material, specifically its congruent composition, is commercially
available with high purity and less extrinsic defects and hence it serves as a good platform
for any research which involves nonlinear optical processes and devices. It is for this reason
that this crystal was used throughout this work.
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Chapter 3

Reflection Second Harmonic

Generation

3.1 Introduction

Within the electric dipole approximation, second harmonic generation (SHG) is forbidden
in centrosymmetric media [55], however, at the surface it becomes allowed due to the
relaxation of the inversion symmetry. Reflection SHG (RSHG) has been one of the major
tools for selective surface studies for a wide range of material interfaces and surfaces [56].
Surface studies such as symmetry determination using SHG are normally achieved, for
example, by measuring SHG signals with a well-defined input and output beam geometry,
while rotating the sample around the axis normal to the surface. This is feasible since
the irreducible components of the second order susceptibility (χ(2)) tensor reflect the
symmetry of the medium and hence of the surface. In general, the structural symmetry of
the surface and that of the bulk are not the same due to the termination and discontinuity
of the bulk symmetrical properties at the interface.

In reflection SHG, the contributing layers to the reflected SHG signal from the top
surface has been described as having a thickness d ≈ λ [57]. The SHG signal generated in
the layers where d > λ interact destructively. Therefore, for a centrosymmetric medium,
the whole d ≈ λ will contribute to the surface signal therefore making SSHG not a surface
sensitive technique. At the same time, the thickness of the surface is not precisely defined,
and is normally considered to have a thickness of d << λ. Thus SSHG becomes only
surface specific in the limit d << λ where the bulk contribution can be neglected in
relation to that of that surface.

For non-centrosymmetric materials, the surface selectivity by SHG is limited due
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Table 3.1: Escape length calculation for λ = 266nm. Data obtained from ref[8, 9]
n2 − k2 2nk n k α(nm)−1 s1/e(nm)

e 11.3 2.6 3.3620 1.680 0.079 12.6
o 8.44 1.3 2.9064 1.452 0.069 14.6

to the inherent contribution from the bulk. It has been shown that with suitable
selection of the input and output beam polarization and the azimuthal angles, the SHG
contribution from the bulk and the surface can be separated [58]. This method is however
not applicable for the determination of the symmetry of the interfacial layer where the
azimuthal or the polarization angles must be varied.

Below the Curie temperature, the combination of several properties of LiNbO3 such as
ferroelectricity, high nonlinearity and high optical damage threshold has lead to the use
of this crystal in many technological applications such as quasi phase-matching (QPM).
With ferroelectric materials, QPM devices are made by periodic reversal of Ps and hence
reversal of the domain. For LiNbO3, (Ps) is along the z-axis and hence its reversal implies
the reversal of the z-axis (+z⇔ − z). Within the surface limit, the SHG properties are
very much dependent of the state of the surface which in general is different from that
of the bulk. Also, it can be expected that within a certain limit of the surface range
(depth of the surface), the two z- faces of a z-cut material should in results in different
magnitudes of the second harmonic signal (SH).

LiNbO3 exhibits high UV absorption hence the penetration of UV light is restricted to
within a few hundred atomic layers in this material. Thus for LiNbO3, surface selectivity
using RSHG can be achieved by selecting a fundamental beam in the visible range and
hence a SHG beam in the UV which must therefore originate from the top outer-most
atomic layers. At λ = 266nm, the absorption coefficients (α = 4πk/λ) is ≈ 0.08 nm−1

and 0.07 nm−1 for ordinary and extraordinary rays, respectively, where k is the imaginary
part of the complex refractive index [9]. The intensity of the beam propagating within
the medium is given by I = I0e

(−αs) where I0 and s are the incident intensity and the
propagation length. The SHG generated after a length s1/e where I = I0/e, will effectively
be absorbed and hence will not contribute to the reflected SHG signal.

At 266 nm, both ordinary and extraordinary polarized light can only propagate for a
1/e distance of s1/e 15 nm [8, 9]. Any SHG signal generated deeper than the interfacial
layer will be absorbed by the bulk and will not contribute to the observed reflected signal.
This layer is, however, thicker than what is usually considered as the surface (a few tens
of atomic layers) and therefore it is called an interfacial layer. The difference between this
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layer and the surface is that its optical properties are similar to that of the bulk while in
general they differ from that of the surface. Thus the observed RSHG will include signals
from both the surface and this interfacial layer.

This chapter and the following one contains the work in which RSHG is used as a
probe to study the changes in the structural symmetry of LiNbO3 upon domain inversion
within the crystal. There, RSHG is used as non-destructive probe for the determination
of the location and direction of the ferroelectric domain orientation in LiNbO3 crystal.
The model governing the generation of the SH within the interfacial layer together with
the experimental setup are firstly outlined.

3.2 Theory

Propagation of electromagnetic radiation through a molecular distribution results in the
induction of the multipoles within such a medium due to displacements of the molecules
from their equilibrium positions. The induced electric polarization (Pα) (dipole moments
per unit volume), in component form, is linearly related to the strength of the perturbing
field Eβ as

Pα = ααβEβ, (3.1)

where α and β are taken relative to the molecular-fixed axes. ααβ , the polarizability
tensor, is the constant of proportionality relating the induced electric polarization to the
inducing field and it is a property of the material. When a laser is used as a source of
electromagnetic radiation, due to its light wave field being comparable to the internal field
of the crystals [12], an induced electric polarization may result from even higher orders of
the incident electric field. To relate the induced polarization to these higher order terms
of the inducing field, equation (3.1) can be expressed as a power series in the field strength
as

Pα = Eβ(ααβ + βαβγEγ + γαβγδEγEδ + ...) . (3.2)

Where βαβγ and γαβγδ are the first and the second hyperpolarizability tensors and they
describe the deviation of the effective polarizability tensors from ααβ due to the intense
perturbing field. They are responsible, respectively, for the frequency doubling and tripling
of the oscillating induced multipoles relative to the frequency of the incident beam. In
principle, the induced polarization oscillates at all possible sum and difference frequencies
that can be generated from the incident beam [51]. Due to these harmonic terms, the
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time variation of the total polarization from equation (3.2) does not necessary vanish.
Hence, charges are accelerated and according to Larmor’s theorem on electromagnetism,
electromagnetic radiation is produced [59]. Polarizabilities and hyperpolarizabilities are
directly related to the induced multipoles, i.e related directly to the induced dipoles or/and
quadrupole moments within the material [59]. The polarization in equation (3.2) can be
written in another form by replacing the polarizabilities and hyperpolarizabilities with the
susceptibility of the corresponding order as

Pi(t) = ε0(χ
(1)
ij Ej(t) + χ

(2)
ijkEj(t)Ek(t) + χ

(3)
ijklEj(t)Ek(t)El(t) + · · ·). (3.3)

While the polarizabilities give more information about the molecular transition pro-
cesses occurring within the medium in the presence of electromagnetic radiation, the sus-
ceptibility reflects structural properties of the medium. The subscripts (i, j, ...) in the
above equation are taken relative to the space-fixed coordinates. While the two forms
(equations (3.2) and (3.3)) are directly related, the first one is a microscopic picture, but
we will use the second form shown in equation (3.3) since it is a macroscopic quantity and
directly linked to the measurable quantities.

For the purpose of our work as in this thesis, we now wish to concentrate on the
second term on the right hand side in equation (3.3), which describes the second order
polarization process within the medium and is therefore responsible for SHG processes.
SHG is a second-order process in which two photons with frequency ω are converted into
one photon which oscillates at twice the incident frequency.
The nonlinear polarization induced within the medium for this case is given in a component
form as

P
(2)
i (t) = ε0χ

(2)
ijk(−2ω;ω, ω)Ej(t)Ek(t). (3.4)

In equation (3.4), the repeated index j and k on the right hand side implies the
summation over j and k. The sum of all the frequencies contained in the nonlinear
susceptibility terms should be zero to satisfy the conservation of energy [51]. In Fourier
amplitudes, the nonlinear polarization due to the SHG process within the medium is given
in a component form as

P
(2)
i (2ω) = ε0

1
2
χ

(2)
ijk(−2ω;ω, ω)Ej(ω)Ek(ω). (3.5)

Synthesising the model to fit our observed data requires the knowledge of the properties
of χ

(2)
ijk. We therefore spent some time exploring such properties to facilitate our discussions

later in this chapter.
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3.2.1 Permutation symmetry and spatial symmetry

3.2.1.1 Intrinsic permutation

This fundamental property of the nonlinear susceptibility results from time invariance and
causality [55]. It implies the invariance of χ

(2)
ijk(−2ω;ω1, ω2) under permutation of the pairs

((j, ω1) ,(k, ω2)) such that

χ
(2)
ijk(−2ω;ω1, ω2) = χ

(2)
ijk(−2ω;ω2, ω1). (3.6)

Intrinsic permutation reduces the number of independent elements of a third rank
tensor from 27 to 18.

Spatial symmetry

For a crystal belonging to a known crystal point group or for which a point group
can be assumed, the number of elements of χ

(2)
ijk(−2ω;ω1, ω2) is further reduced due

to the constraints imposed on the crystal by Neumann’s principle, which restricts the
relation between the χ2 and χ2′ before and after symmetry transformation respec-
tively. Neumann’s principle requires χ

(2)′
ijk (−2ω;ω1, ω2) = χ

(2)
ijk(−2ω;ω1, ω2) for any

symmetry operations belonging to the point group of the crystal [55]. That is, for
example, if rotating the crystal by 60o is an operation belonging to the crystal’s point
group, then, all the independent χ2′ after this operation should remain the same as before.

For crystals not belonging to the hexagonal class, symmetry operations through the
transformation law (see equation (3.14)) result only in reshuffling of the indices and /or
sign changing. For these crystals the results of Neumann‘s principle can be written as

χ
(2)′
ijk (−2ω;ω1, ω2) = εT χ

(2)
ijk(−2ω;ω1, ω2) (3.7)

where εT = ±1.
If in equation (3.7) εT = −1 then that element of χ

(2)
ijk(−2ω;ω1, ω2) vanishes. Hence,

the nonzero and independent elements can be found by inspection of equation (3.7) for
any symmetry operation belonging to the point group of the crystal [55]. The method
described above is termed direct inspection and only works for crystals not belonging
to the hexagonal class [55]. The reduced elements of χ

(2)
ijk(−2ω;ω1, ω2) for the known

crystal point groups are known and tabulated [55] and therefore we will used them as given.
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3.2.1.2 Overall permutation and Kleinman symmetry

Unlike the intrinsic permutation, this permutation is an approximation and hence it
is not a fundamental property of the nonlinear susceptibility tensor. It is based on
the assumption that the medium is transparent over all optical frequencies appearing
in the formula for the nonlinear susceptibility.[55]. The permutation is now such that
χ

(2)
ijk(−2ω;ω1, ω2) ≈ χ

(2)
ijk(ω;−2ω1, ω2). It is mostly known as Kleinman symmetry and it

encapsulates the intrinsic permutation. It is worth mentioning here that the wavelength
of our incident beam is 532 nm, hence its second harmonic (266 nm) lies inside the
absorbing region of LiNbO3 [12, 7]. Kleinman symmetry neglects the dispersion property
of the medium over all used frequencies [55] and we will not assume Kleinman symmetry
in our model formulation. If this permutation holds, the number of independent elements
of the third rank tensor is further reduced.

For crystals belonging to the point group 3m, the independent elements of χ
(2)
αβγ found

without the assumption of the Kleinman symmetry (χxzx = χzxx = χxxz) are shown in
matrix (3.8) [55].

⎡
⎢⎢⎣

0 0 0 0 χxzx −χyyy

−χyyy χyyy 0 χxxz 0 0
χzxx χzxx χzzz 0 0 0

⎤
⎥⎥⎦ (3.8)

3.2.2 The Three Layer Model for RSHG

We followed the treatment by Zhang et al. [60] in which they have considered a three
layer slab with layers stacked on top of each other as shown in figure 3.1a. The top layer
may be assumed to be air and the SHG is generated by reflection of the beam on top
of the second layer. In our case, both the middle layer and the bottom layer are made
of LiNbO3 but we argue that the two layers possess some different optical properties in
both optical frequencies used. The significance of such a difference between the bottom
two layers is also expected to be polarization dependent.

For materials with center of inversion symmetry, surface SHG is generated only from
the surface due to the relaxation of the surface symmetry, thus some symmetry properties
of the surface and the bulk are different and this is expected to hold whether the material
has a center of inversion or not. Within a centrosymmetric material, the detection of
the significance of the difference in nonlinear optical properties is made possible by the
fact the bulk contribution can be totally minimized. With our approach of using the UV
absorption range to separate the bulk and surface contribution in noncentrosymmetric
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Figure 3.1: a) Three layer model of an interface. Medium r consists of air, while both
medium m and t are made of LiNbO3. b) In this figure x’ is the new space-fixed coordinate
relative to x as the sample is rotated around z by the azimuthal angle (ϕ). γ and Γ are
the input and output polarisation angles respectively. See the text for further details.

material, it should be possible to detect the difference in optical properties between the
two layers.

Zhang et al. [60] used the middle layer as a monolayer and we consider this layer to
be made of the few outermost layers of atoms in our crystal [56]. We denote the linear
dielectric constant of the medium as εην , where η and ν refer to the medium (which can
be r, m or t) and to the frequency of the beam (1 for ω or 2 for 2ω) respectively. The
depth of the middle layer (d) is assumed to be very much less than the wavelength of the
fundamental beam.

We take the plane of incidence to lie in the zx plane such that the yx plane is parallel
to the plane of the slab. As shown in figure 3.1, γ and Γ are used to denote the angles of
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the planes of polarization for the fundamental and the generated SHG beams respectively.
These two polarization angles are measured relative to the plane of incidence. We use p

and s to denote the polarization angles at 0 o and 90 o, respectively relative to the plane
of incidence.

The components of the electric field of the beam in the medium (m) are related to γ

and the fundamental field as
∣∣∣∣∣∣∣∣

Ex

Ey

Ez

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a cos(γ)
c′ sin(γ)
b cos(γ)

∣∣∣∣∣∣∣∣
E0, (3.9)

where a, b, and c′ are Fresnel coefficients given as

a =
2
√

εr1 cos(θr1) cos(θt1)
(
√

εt1 cos(θr1) +
√

εr1 cos(θt1))
(3.10)

b =
2
√

εr1 cos(θr1)
√

εt1 sin(θt1)√
εm1(

√
εt1 cos(θr1) +

√
εr1 cos(θt1))

(3.11)

c′ =
2
√

εr1 cos(θr1)
(
√

εt1 cos(θt1) +
√

εr1 cos(θr1))
(3.12)

The boundary conditions

√
εr1 sin(θ) =

√
εr1 sin(θr1) =

√
εm1 sin(θm1) =

√
εt1 sin(θt1) (3.13)

are used to relate the angles of refraction and reflection of the fundamental beam in
equations (3.11-3.12) to the incident angle (θ).

In most cases, such as this one, one may wish to vary the azimuthal angle (ϕ) in which
the sample is rotated around its facial normal. With this in mind we relate the elements
of χ

(2)
ijk to ϕ. For a z-cut surface, the rotational matrix containing the cosine direction

angles required for the transformation of χ
(2)
mno into χ

(2)′
ijk by [55]

χ
(2)′
ijk = RimRjnRkoχ

(2)
mno (3.14)

when the sample is rotated from (mno) to (ijk) is given as

R =

⎡
⎢⎢⎣

cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

⎤
⎥⎥⎦ (3.15)

The coordinates mno (i.e. m = x′ in figure 3.1b) and ijk refer to the space-fixed axes
and they share the same origin. We have assumed a non-vicinal surface (small offset of
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the crystal cut), hence the normal of the surface is always parallel to the z -axis of the
crystal. If the surface is vicinal, one needs to introduce a further 3 × 3 matrix to correct
for the small offset relative to the plane perpendicular to the incident plane [61, 62]. The
new elements of the second order susceptibility after using equations (3.14) and (3.15) in
equation (3.8) are found to be

K =

⎡
⎢⎢⎣

χyyyK1 −χyyyK1 0 0 χxxz χyyyK2

χyyyK2 −χyyyK2 0 χxxz 0 −χyyyK1

χzxx χzxx χzzz 0 0 0

⎤
⎥⎥⎦ (3.16)

where K1 = (−3 sin(ϕ) cos2(ϕ) + sin3(ϕ)), K2 = (3 sin2(ϕ) cos(ϕ) − cos3(ϕ)).
In the electric dipole approximation the second order polarization can be written as

[55]

⎡
⎢⎢⎣

P
(2ω)
x

P
(2ω)
y

P
(2ω)
z

⎤
⎥⎥⎦ = 1

2εoK

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E2
x

E2
y

E2
z

2EyEz

2EzEx

2ExEy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.17)

Zhang et al. [60] assumed that d
λ � 1 and used the results of Bloembergen and Pershan

[57] to arrive at the expression for the p (Γ = 0) and the s (Γ = π/2) components of the
SH field reflected from medium r layer as

E(2ω)
p = −4πi

ωd

c

(−1)(
√

εt2/εm2) sin(θm2)P
(2ω)
z + cos(θt2)P

(2ω)
x

(
√

εt2 cos(θr2) +
√

εr2 cos(θt2))
, (3.18)

E(2ω)
s = 4πi

ωd

c

P
(2ω)
y

(
√

εt2 cos(θt2) +
√

εr2 cos(θr2))
. (3.19)

where the so far undefined symbols have their usual meaning. By substituting the
results of the operation in equation (3.17) into both (3.18) and (3.19), the latter two
equations can be written as

E
(2ω)
p = (A cos2(γ) + B sin2(γ) + C sin(2γ))E2

E
(2ω)
s = (F cos2(γ) + G sin2(γ) + H sin(2γ))E2

E
(2ω)
±45 = 1√

2

(
E

(2ω)
s ± E

(2ω)
p

)
(3.20)
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where the coefficients A, B, C, F, G and H are found to be

A = S1

[√
εt2

εm2
sin(θm2)(a2χzxx + b2χzzz) + cos(θt2)(a2K1χyyy + 2abχxzx)

]
(3.21)

B = S1

[√
εt2

εm2
sin(θm2)c′2χzxx − cos(θt2)c′2K1χyyy

]
(3.22)

C = S1
[
2 cos(θt2)ac′K2χyyy

]
(3.23)

F = S1

[
a2K2χyyy

]
(3.24)

G = S1

[
c′2K2χyyy

]
(3.25)

H = S1
[
2c′bχxzx − 2ac′K1χyyy

]
(3.26)

where

S1 =
8πωid

c(
√

εt2 cos(θt2) +
√

εr2 cos(θr2))
(3.27)

The above equations have a similar form to those found by Mejia et al [63] for a
3m point group, but with a slight difference in that we get an odd dependence of the
anisotropic term on the azimuthal angle whereas they get an even dependence and the
opposite is true. The linear dielectric constants at the second harmonic frequency in
equations (3.21-3.26) can be related to the incident angle by similar boundary conditions
as in equation (3.13) and by using θr1 = θr2. Using the law of reflection θr1 = θ the
boundary conditions at the second harmonic frequency are written as

√
εr1 sin(θ) =

√
εr2 sin(θr2) =

√
εm2 sin(θm2) =

√
εt2 sin(θt2). (3.28)

We can make a non-dispersion assumption in equations (3.13) and (3.28) for the linear
dielectric constant in air (medium r) and equate them to unity. As we have been avoiding
Kleinman’s conjecture, we cannot make such an assumption for the pair of dielectric
constants in both medium m and t. It is very tempting however to equate the dielectric
constant at a specific frequency for these last two layers, but doing so will overrule our
argument about some different properties between them.

From equation (3.20) one can then fit the intensity of the SHG as a function of γ

at a fixed Γ and ϕ to determine the coefficients, for the surface under investigation, in
equations (3.21 - 3.26) from the polarization dependence measurements at a fixed θ. From
these coefficients, statistical methods can be used to determine the relative components of
χ(2) for the surface. However, this extraction of the components requires the knowledge
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of the dispersive dielectric constant at the surface. We have assumed that the dielectric
constant of the bulk and of the surface are not necessarily the same. This assumption is
made complex by the definition of the surface due to the fact that, as the surface becomes
thicker, the difference between these dielectric constants will become small. At the same
time, it is hard to limit the thickness of the surface. As result, we do not attempt to
extract these components of χ(2).

For rotation anisotropy measurements, γ and Γ are fixed together with θ, while ϕ is
varied. We show here three equations, determined by inserting equations (3.21 - 3.26) into
equation (3.20), to be used to fit the rotation anisotropy results for γ = p and Γ = p as
equation (3.29), γ = s and Γ = p as equation (3.30) and γ = s and Γ = s as equation (3.31).

E
(2ω)
p =

(
a1 + a2(sin3(ϕ) − 3sin(ϕ)cos2(ϕ)

) (
E

(ω)
0

)2
(3.29)

where a1 = f(n(ω), n(2ω), θ)(χzxx + χzzz + χxzx) and a2 = f(n(ω), n(2ω), θ)(χyyy).

E
(2ω)
p =

(
a1 + a2(sin3(ϕ) − 3sin(ϕ)cos2(ϕ)

) (
E

(ω)
0

)2
(3.30)

where a1 = f(n(ω), n(2ω), θ)(χzxx), a2 = f(n(ω), n(2ω), θ)(χyyy).

E
(2ω)
s =

(
a1(cos3(ϕ) − 3sin2(ϕ)cos(ϕ)

) (
E

(ω)
0

)2
(3.31)

where a1 = f(n(ω), n(2ω), θ)(χyyy).
Equations (3.30)−(3.31) can be generalized in a form which distinguishes the contri-

bution of rotationally isotropic terms B′ and rotationally anisotropic terms A′ as

E2ω = B′ + A′K(ϕ) (3.32)

B′ is a linear combination of the isotropic components of the χ(2): χzxx, χzzz, χxzz, A′

is proportional to the anisotropic susceptibility:χyyy , and K(ϕ) denotes the sine and/or
cosine variation of the azimuthal angle in equations (3.30)−(3.31).

The effect of the magnitude of B′ relative to that of A′ on the azimuthal variation of
the SHG signal is known to affect the relative amplitudes and the number of peaks of the
observed SHG signal as a function of the azimuthal angle due to the interaction between
these terms [64].

We have neglected the bulk contribution in our model formulation since the SHG
generated from the bulk will be absorbed for our incident beam (λ =532 nm). If that
was not the case, if for example incident wavelength was in the infrared region such that
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the generated SHG is outside the absorption region of the crystal, then one may have to
use suitable combinations of γ, Γ and ϕ appropriate for the point group of the crystal to
suppress the bulk contribution [58].

In the next chapter, we show the use of the rotation anisotropy measurement to re-
veal the symmetry of the surface of a LiNbO3 substrate. Also we use this technique to
investigate if the two polar faces (+ and −z-face) of this crystal give the same SH mag-
nitudes. We further use this method to reveal what happens to the y axis of this crystal
after the inversion of the z-axis during the domain inversion process. We now describe
our experimental setup used to extract the surface SHG.

3.3 Experimental

3.3.1 RSHG experimental setup

A 532 nm Q-switched Nd:YAG frequency-doubled laser (20 Hz repetition rate, 10 ns
pulse width, pulse energy of 2 mJ, Continuum, Minilite ) was used as the input beam.
Figure 3.2 shows a schematic of the experimental set-up used for the rotation anisotropy
measurements. The power of the input beam was controlled by rotation of the λ/2 plate
placed in the beam path between the laser head and the polarizing beam splitter (PBS1).
The plane of polarization of the input beam was controlled by rotating the second λ/2
plate. A beam splitter (BS) was used to direct a small fraction of the input beam into
the photodiode (PD) for monitoring the power. The signal from the PD was also used to
correct for any fluctuations in the SHG beam caused by any input beam instability. A 20
cm focal length lens (L1) was used to focus the beam to a spot size of ≈ 0.5 mm on the
z-cut congruent LiNbO3 sample.

LiNbO3 samples were cut from a wafer purchased from Crystal Technology, USA. A
UV blocking filter (UVBF) was placed between L1 and the LiNbO3 to block any SHG
signal generated along the optical train before the sample. The sample was held on a ro-
tational stage which allowed the sample to rotate around its surface normal. The incident
angle of the beam, θ, was set to be 60o. A visible blocking filter (VBF) was placed in
the path of the reflected beam to block any reflected part of the fundamental beam. The
train of optics in both the input and the output paths of the beam was fixed on two sep-
arate movable arms which allowed variation of both the incidence and the reflection angles.

The SH was passed through a UV Rochon polarizer (PBS2) for p or s polarization
selection. An iris diaphragm, A1, was placed after this polarizer to block any diverted
light. The signal was subsequently focused on the slit of a monochromator set to allow
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Figure 3.2: Experimental set-up. The dotted line shows the electrical signal path. PBS1
and PBS2 are the input and output polarizer, BS: beam splitter. PD: the photodiode.
UVBF and VBF are the UV and visible blocking filters. L1, L2 and L3 are lenses. A1:
iris diaphragm. PMT: Photomultiplier tube. DAQ: data acquisition unit. PC: personal
computer.

transmission of only 266 nm which was detected by the photomultiplier (PMT). After
feeding the signal from the PMT into a preamplifier, the amplified signal and that from
the PD were fed into a gate integrator before both were synchronously acquired and
analyzed using a data acquisition unit (DAQ) and a personal computer (PC), triggered
by the Q-switch signal from the laser.

The crystals used had a slab geometry for which both z face surfaces were parallel.
Due to the small thickness (500μm) and the spot size of the beam, multiple reflections
occur between the two z-faces which results in a higher SHG signal being generated.
The fundamental beam reflected from the bottom surface thereby generated a secondary
SHG signal from the last few atomic layers as it emerged from the top surface. Due to
multiple reflections, this contribution from the secondary SHG signal was larger than the
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Figure 3.3: A cross-section schematic diagram of the poling cell used to achieve domain
invertion in LiNbO3 crystal. A high voltage (HV) just above the coercive field of the
crystal is applied across the crystal via the water electrodes. The O-ring are used to
contain the water in between the crystal and the insulating material

primary SHG signal, as observed via RSHG. This secondary SH signal was minimized by
roughening the bottom surface of the crystal with 600 grit sandpaper.

3.3.2 Poling setup

The crystal was cleaned before being secured in the poling cell shown in figure 3.3. Tap
water was used as an electrode material and a high voltage (HV) about 11 kV (the crystal
thickness was 500 μm) was applied across the crystal to achieve the reversal of Ps within
an area of the crystal exposed to water. The sample was then removed from the poling cell.

3.4 Conclusion

The theory and the three layer model for the surface second harmonic generation have
now been discussed. The three layer model is based on the assumption that the top layer
of the LiNbO3 substrate may have different optical properties from that of the bulk. This
model will now be used in chapter 4 and 5 where the RSHG technique is used in several
specific applications: (1) To reveal the symmetry of the interfacial layer. (2) Used as a
non-destructive tool to map the domain-inverted area in the poled LiNbO3 crystals. (3)
To characterize the direction of the y-axes following domain inversion. (4) time dependent
RSHG is used to study the relaxation of the internal field and point defects within the
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crystal following the domain-inversion.
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Chapter 4

RSHG: Results and Discussions

4.1 Introduction

In this chapter, RSHG is used to study various properties of the interfacial layer
such as the symmetry, the magnitudes of the SH from both polar faces of the crystal
and the behavior of the y-axis after the inversion of the z-axis of the z-cut LiNbO3

crystal. This crystal is known to possess a bulk 3m point group symmetry, with the
x-axis located along the mirror planes. Figure 4.1 shows the relationship between the
laboratory and the crystal fixed axes. In this figure the plane of incidence is along
the XZ plane. In section 4.2, a sample with a known crystal axis orientation is stud-
ied via the RSHG to see if there is any deviation from the known bulk symmetry definition.

For a bulk material, the transmission SHG signal from the -z and +z faces of a polar
crystal, such as LiNbO3, is expected to be the same irrespective of which direction the
signal is observed from. This is due to the fact that an averaged signal from the bulk is
observed. At the surface, one can expect the termination of the -z and +z faces to be
very much dependent on the nature of the charge forming a layer just above the surface.
This surface termination can in general be different between the two faces. Thus if a
signal is obtained from the surface only, the difference in the surface termination can be
observed from the SHG signal. If such a difference in signal exists, it is expected to be a
function of (ϕ, θ, γ,Γ). In section 4.3, θ is fixed while rotational anisotropy investigations
are performed at different γ and Γ to see if the two faces, -z and +z face, yield different
magnitudes of the SHG signal. In section 4.4, RSHG is used to monitor the orientation
of the y-axes following the domain inversion process. In section 4.5, we investigate this
relaxation of these point defects that occurs after the forward poling.
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Figure 4.1: Crystal-fixed axes (x, y, z) relative to the laboratory-fixed axes (X,Y,Z). θ
and ϕ are the incident and the azimuthal angles. p and s are the polarization of the beam,
as described in the text.

Table 4.1: Summary of the rotational anisotropy results
γ Γ Terminology Figures
s s s, s Figure 4.2
p p p, p Figure 4.3
s p s, p Figure 4.4

4.2 Use of RSHG to reveal the symmetry of the interfacial

layer of a z-cut LiNbO3 crystal

Table 4.1 summarizes the rotation anisotropy results on a z-cut LiNbO3 sample. The
curves shown in figures 4.2-4.4 have the characteristics of a 3m symmetry with symmetry
repetition every 60o or 120o over the full 360o rotation. Each point in these figures is an
average of 250 accumulated measurements. The values in figures 4.2-4.3 are normalized to
a maximum SHG efficiency value for s,p, (i.e γ = s, Γ = p, see also 4.1) shown in figure 4.4.

The same reasoning that is used to account for the bulk SHG null signal in a centrosym-
metric medium can be used to put constraints on mirror planes with respect to the plane
of incidence. In this case, the SHG signal should vanish when a mirror plane coincides with
the plane of incidence, since both the input and output polarizations are perpendicular
to the mirror plane. For a 3m material, three mirror planes intersecting each other at
60o are expected and are clearly represented by the minima in the SHG signal in figure 4.2.
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Figure 4.2: The open triangle symbol shows the experimental results of the RSHG rotation
anisotropy for s,s input, output polarization and the error bars shows a 1δ standard error
of the experimental data. The solid line is the fitted curve using equation (3.31). θ = 60o.
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Table 4.2: Values of ϕ0 determined from the curve fitting procedure
p, p s, p s, s

ϕ0/degree −1.9 ± 0.3 −20.0 ± 0.2 −1.6 ± 0.2

By the standard definition of the crystalline axes in LiNbO3 [25], the three equivalent
y-axes lie along these mirror planes. With the mirror plane found in figure 4.2, the y-
axes locations are determined to an accuracy limited by the azimuthal angle steps chosen.
Jung et al. [65] have proposed and used LiNbO3 to demonstrate a simple method for the
determination of crystalline axes of a non-linear uniaxial crystal via transmission SHG.
However, as our underlying motives here are to study intrinsically surface phenomena, we
have chosen a reflection-based geometry for our studies.

It was shown in the section (3.2.2) that the rotationally isotropic and anisotropic
contributions to the measured SHG signal can be separated as B′ and A′, respectively.
When |A′| < |B′| the isotropic terms dominate and only three major peaks are observed.
This result, for the case of p,p is shown in figure 4.3 and is accounted for by the fact
that χzzz for LiNbO3 is the largest coefficient compared to all other components of the
χ(2) tensor, hence making the B′ term the largest. As shown in figure 4.4, the magnitude
of the isotropic term is reduced compared to that of p,p since there is no contribution
from χzzz and χxzx, and minor peaks (local maxima) subsequently appear. On fitting
the curves for the SHG results, a phase difference was introduced between |A| and
|B|, as discussed previously by [66]. The phase difference in this case accounts for the
different phase contributions between the χ(2) tensor components in the isotropic and the
anisotropic terms in the observed SH signal. The full six-fold symmetry is observed since
only an anisotropic term is contributing in this case.

On fitting the curves, ϕ in equation (3.32) was replaced by ϕ + ϕ0, with ϕ0 denoting
the offset between the laboratory-fixed axis and the crystal-fixed axis as it was not
possible to position the sample on the stage with the required degree of precision.
From the curve fitting procedure however, the location of the x and y-axes are thereby
determined with the prior knowledge only of the optical axis.
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Figure 4.3: The open circle symbols show the experimental results of the RSHG rotation
anisotropy for p,p input, output polarization and the error bars shows a 1δ standard error
of the experimental data. The solid line is the fitted curve using equation (3.29). θ = 60o.
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Figure 4.4: The open square symbols show the experimental results of the RSHG rotation
anisotropy for s,p input, output polarization and the error bars shows a 1δ standard error
of the experimental data. The solid line is the fitted curve using equation (3.30). θ = 60o.
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4.3 Methods for the characterization of the inverted do-

mains

Quasi-phase-matching (QPM), a technique in which the Ps of the crystal is periodically
inverted along the direction of propagation, has led to high efficiency non-linear processes
such as SHG. The QPM efficiency is very much affected by the periodicity and the duty
cycle. Knowledge of the period and the duty cycle throughout the poled crystal is therefore
a primary requirement. The periods of the inverted domain are in the 5-30 μm dimension
and hence of their cauterization requires high resolution techniques.

There are several methods used to observe and characterize domains in ferroelectric
materials and these include optical birefringence [12], X-ray topography [12, 13], X-ray
diffraction (XRD) [14, 15], transmission SHG [12, 16, 17], HF chemical etching [12, 3]
and others.

The effectiveness of these methods varies depending on the types and orientations of
domains within the sample. For an example, optical birefringence cannot reveal domain
structure for crystals possessing 180o domains and cannot detect the sign of the domains
[67, 12]. However it can reveal domain walls formed due to the material birefringence
which results due to stress near the domain wall itself [12].

The selective etching technique (SET) followed by a high resolution imaging technique
such as scanning electron microscopy (SEM) has been used to reveal the domain structure
of LiNbO3, to determine the sign of the domain and also to trace the emergence of
domain boundaries on various planes. With SET, the +z domains are found to etch not
at all, while the −z domains undergoes chemical etching at the rate of ≈ 1μm/h at room
temperature for an HF:HNO3 and mixture in the ratio 1:2 [12]. The SET method has one
main drawback, in that it is physically a destructive technique. Thus, with this method
the surface is destroyed. SET remains the most commonly used method however due to
its effectiveness and intrinsic lack of ambiguity.

Miller [16] had shown, via transmission SHG, using the maser as a fundamental beam
source, that SHG signal interacts with the domain walls within a ferroelectric crystal to
enhance the output generated SHG signal. The reflected SHG beam was too weak due
to the low intensity source of the fundamental beam and the interactions between this
beam and the domain walls were not studied at that time. We show in this work that
RSHG has the potential to reveal and characterize the presence of 180o domains in LiNbO3
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4.3.1 Differences in SHG signal between the +z and −z domains of a z-

cut LiNbO3 crystal

For centrosymmetric material, it is known that the bulk material does not yield any
SHG, however its surface can, and does, yield SHG due to inherent the discontinuity.
So, in general, the surface and the bulk of any material can yield different SH signal
characteristics as they originate from different sources. If we take the generation of SHG
as due to the oscillation of the components of χ(2), then, at the surface these components
will be different from that of the bulk material.

The atomic arrangement of the metallic ions, defining the magnitude and the direction
of Ps, along the +z-face and that of the −z-face are inverted relative to each other,
hence the surface discontinuity is not necessarily the same on both faces. Within a
microscopic view, the oscillation of certain equivalent components of χ(2) on both faces
will not necessary be the same. This difference is in terms of the magnitudes rather than
the phase. From the bulk, the difference along the +z and −z axis cannot be observed as
the signal will be averaged over and should yield the same value. At the surface, however
say the top ten atomic layers, the surface discontinuity should give a different average for
both faces. Note however that, if the bulk-like properties dominate the observed signal,
then such a difference will be minimized or lost entirely.

We want to use our method of separating the bulk and the surface SHG signal, to
see if the SHG signals from both faces are indeed the same or not. Rotation anisotropy
experiments are ideal for this investigation as they will allow us to probe different
components of χ(2). It is then expected that at given incident angle(s) θd and azimuthal
angle(s) ϕd, the signal from both faces will be different in amplitude. Therefore, at θd and
ϕd and a given set of γ and Γ, an RSHG scan along the propagation direction of PPLN
will result in an amplitude-modulated RSHG mapping the start and the end of the domain.

Figure 4.5 shows the rotation anisotropy results with different input/output combina-
tions of the polarization angle (see the caption and the legend for more details) from both
faces of the poled samples. In obtaining this data, rotation anisotropy measurements
were carried out as above (section 4.2) to obtain the full surface symmetry with the spot
of the beam focused on the re-poled area, the crystal was then flipped over about the y

axis such that −z → +z and −x → +x and the rotation anisotropy was repeated. The
results in figure 4.5 are therefore for the domain inverted area of the poled samples. The
set of results, for each input/output polarization angle combinations was then compared
as shown in figure 4.5.
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Figure 4.5: Rotation anisotropy results for domain inverted samples from both +z and −z
of z-cut LiNbO3 with: (a) γ = p and Γ = p, (b) γ = s and Γ = p, and (c) γ = s and Γ = s.
The solid lines are the fitted curves obtained by using equation (3.32), respectively. The
plane of incidence lies along 90o and 270o line.
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The results are from different poled samples which do not necessarily have the same
composition though all were from congruent samples. Figure 4.5 (a) and (b) are from the
same sample but taken at different times. This needs careful analysis as the results seem
to differ, for even the same sample, after an elapsed period of one month.

For γ = p and Γ = p there seems to be no difference in SHG intensity as the sample is
rotated around its normal surface. However a small difference is observed for γ = s and
Γ = s and γ = s and Γ = p, with the latter combination showing the difference only in
the small peaks.

From figure 4.5 b-c, the SH from the +z face is greater in magnituded than that from
the −z face for a specific γ,Γ, ϕ (i.e at ϕ = 0o, 60o, . . . for γ = Γ = s). If SH(+z) is greater
than SH(−z) for a given γ,Γ, ϕ, then the RSHG method can be used to reveal the poled
and nonpoled parts from the poled sample.

The trend of these results was not reproducible and this may point to the fact that
the SHG signal of the interfacial region is more dominated by the bulk properties than by
the surface properties. In future, the same experiment should be attempted at different
incident angles as that can affect the contribution of the bulk and the surface on the SHG
signal.

4.4 Use of RSHG to detect the inversion of the y-axis +y ⇔
−y on reversal of the spontaneous polarization

The remaining part of the chapter focuses on the use of RSHG to detect changes in the
y-axis polarity caused by domain inversion along the z-axis. The standard sign convention
for the y and z axes is related to (and defined by) the piezoelectric effect: compression of
either y or z faces results in a negative voltage appearing on their positive faces. There is
a direct relationship between the sign of these faces and the relative atomic arrangement
order along these axes within the crystal. The atomic arrangement is of interest here since
it directly influences any atomic polarization within the medium and hence any changes
within this order can therefore be detected, for example through the SHG technique.
Within LiNbO3, the cation order along the z-axis from the + z to the - z face is Nb+5,
Li+, Vacancy, Nb+5, as shown in Figure 4.6(d).

Along the y-axis, also shown in Figure 4.6 (d), there is also a corresponding direction-
dependent order of cations, sandwiched between the two planes of oxygen ions forming
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Figure 4.6: Possible physical operations to achieve inversion of a system with mirror
planes along the yz plane. (a) and (d) are the coordinate system and the LiNbO3 atomic
arrangement in a virgin state. (b) Shows the coordinate system rotated by 180o around
the y-axis (C2(y)) from the virgin state. (c) Shows the coordinates system rotated by
180o around the x-axis (C2(x)), which is similar to the inversion of the whole crystal. (e)
LiNbO3 atomic arrangement following domain inversion.
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octahedron complexes with the cations (NbO6 and LiO6). The reversal of (Ps) is a result
of the forced relative displacement of the cations along the z-axis and, in the case of
LiNbO3, the cationic order reverses which also reverses the ordering along the y-axis,
as shown in Figure 4.6 (e). It is these latter changes along the y-axis that we wish to
investigate here via RSHG.

1y�

2y�

3y�

+X

+Y

�

(a)

(b)

Figure 4.7: (a) The labeled y-axes with the + z direction pointing out of the page and
also showing the direction of rotation. (b) RSHG curves with the global maximum value
(ϕ = 30o) corresponding to the alignment of the + y3 direction along the + X direction.
The SHG signal was normalized to the value at (ϕ = 30o) and the error bars are calculated
as in the previous figures in this chapter.

The reversal of (Ps) and hence the reversal of the z-axis within LiNbO3 can be
pictured by the physical operation on a system of Cartesian coordinates with the same
point group properties as LiNbO3, as shown in figure 4.6(a). In this figure, the x-axis is
not explicitly shown, since any effects on it upon inversion or rotation by 180o around
any axes (C2( axis of rotation)) will be masked by the mirror plane that exists along the
yz plane. Therefore, inversion of all three (x, y, z) crystal axes can also be achieved by
C2(x) on figure 4.6 (a). From figure 4.6 (a), the reversal of the z-axis can be achieved
in several ways, either by rotating the crystal C2(y), as shown in figure 4.6 (b), or by
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inversion of the whole crystal relative to the laboratory-fixed axes as shown in figure 4.6
(c). All these operations result in the reversal of the z-axis (+z ⇔ −z) but, as shown
in figure 4.6 (b), C2(y) on figure 4.6 (a) leaves the direction of the y-axis unchanged.
Although this C2(y) operation on figure 4.6 (a) results in +z ⇔ −z, it cannot lead to
the physical domain inversion along the z-axis since it would leave the sign of the y-axis
unchanged and hence leave the order of cations along the y-axis intact. Domain reversal
is therefore equivalent to the operation shown in figure 4.6(c), in which both the y and
z axes are reversed (+y ⇔ −y,+z ⇔ −z) within the poled area, which is equivalent to
the inversion of the whole crystal or just the C2(x) on figure 4.6(a) for a crystal with the
mirror planes along the yz plane.

(a)

(b)
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Figure 4.8: (a) The labeled y-axes with the −z direction pointing out of the page (b)
RSHG curves with the local maximum value (ϕ = 30o) corresponding to the alignment of
the +y3 direction along the +X direction. The SHG signal was normalized to the value
at (ϕ = 90o) and the error bar are calculated as in the previous figures in this paper.

The information about the polarity of the y-axes cannot be determined from the
curves, which shows the location of the mirror planes and hence of the y-axis, with respect
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Table 4.3: Summary of the RSGH results for both faces of the virgin LiNbO3 for s, p
Crystal face ϕ = 0o Global maxima Local maxima figure
+z +y1 along −Y +y3 along +X −y1 along +X figure 4.7
-z −y1 along −Y −y1 along +X +y3 along +X figure 4.8
-z −y1 along −Y −y2 along +X +y1 along +X figure 4.9

to the incidence plane, by the minimum SHG signal, and therefore other polarization
combinations must be used. With Γ = p, the interaction between the rotationally
isotropic and anisotropic components of the χ(2) tensor should reveal the polarity of the
crystalline y- and z-axes relative to the input and output geometry. As shown in figure
4.4, the locations of the global and local maxima coincide with the minima and hence
yield information about the polarity of the y direction.

The relationship between the sign of the y and z axes with respect to the plane
of incidence was investigated using rotation anisotropy RSHG experiments on a virgin
LiNbO3 sample having known crystalline axes and polarities. Though the three y-axes
are identical, they will contribute to the observed SHG anisotropy at different azimuthal
angles. We therefore argue below from the SHG results, that it is crucial to label these
three equivalent y-axes in order to detect any polarity changes after z-axis inversion.
During the experiment, the positions of the y-axes were known for any azimuthal angle.

Table 4.3 shows the summary of the results on both faces of the virgin LiNbO3 for s,
p. The direction of rotation around the z-axis on the + z and - z faces was clockwise and
anticlockwise as shown by figure 4.7(a) and figure 4.8 (a), respectively. The reversal of
the z-axis was achieved through C2(x) such that +y1⇔− y1,+y2⇔− y3,+y3⇔− y2and
+z⇔− z while the sign of the x-axis was left unchanged relative to the plane of incidence,
as shown by the previous figures. From table 4.3, it is then straightforward to make the
following conclusions for : On the +z face, the +y direction gives a global maximum for
the SHG signal at ϕ = 30o, as shown in figure 4.7(b), under rotation anisotropy when the
+y directions are aligned parallel and pointing along the positive direction of the X-axis
(referred to as +X in Table 4.3). On the −z face, the −y direction gives a global maximum
for the SHG signal at ϕ = 90o, as shown in figure 4.8 (b), from rotation anisotropy
when the −y directions are parallel and pointing along the positive direction of the X-axis.

It is clear from the labeled y-axes, in figure 4.8 (a), and the summary, in Table 4.3,
that rotating the crystal clockwise while probing the −z face will result in the same SHG
curve, figure 4.9 (b), as the one in figure 4.7 (b) where the experiments were performed

60



(a)

1y�

3
y�

+X

+Y

�

2y�

(b)

Figure 4.9: (a) The labeled y-axes with the -z direction pointing out of the page. (b)
RSHG curves with the global maximum value (ϕ = 30o) corresponding to the alignment
of the −y2 direction along the +X direction. The SHG signal was normalized to the value
at (ϕ = 30o) and the error bars are calculated as in the previous figures in this paper.
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Figure 4.10: Inset diagram shows the schematic top-view of a half re-poled LiNbO3 sample.
SHG results from the + z face of the virgin part (filled circles) and - z face of the poled
area (open circles). The SHG signal was normalized to the value at (ϕ = 90o)and the
error bars are calculated as in the previous figures in this paper.

on the + z face. However, the contributing y-axes for global maxima, as an example,
in these two cases possess opposite signs. The effect of the direction of rotation on the
same crystal face for these SHG experiments is to shift the azimuthal angle by 180o,
therefore, figure 4.9 (b) is just the continuation of figure4.8 (b) from ϕ = 180o onward.
Thus, performing rotation anisotropy SHG experiments with the same sense of rotation
on different faces must result in similar curves.

The above conclusions were then used to detect changes of the sign of the y-axis
imposed by the reversal of (Ps). The inset diagram in figure 4.10 shows a schematic
top-view of a LiNbO3 sample that has had half its area domain inverted. The face of
the virgin part is pointing out of the page and that of the domain inverted (- z face) is
pointing into the page. RSHG rotation anisotropy experiments were performed on the
virgin part and the crystal was then translated along the +X direction and the same
experiment was repeated on the poled area with the same rotation direction. The results
are shown in figure 4.10 and their clear similarity show conclusively that the sign of the
y-axes must have been reversed in the poled area (- z face) relative to that in the virgin
area (+ z face) since similar curves are observed from both the - z and + z faces. These
results show conclusively the use for RSHG for the detection of the reversal of the y-axis
as a result of the domain reversal procedure.
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4.5 Time-dependent Surface Second Harmonic Generation

effects

As discussed before the Nb+5 and Li+1 ions of LiNbO3 in the ferroelectric phase are
displaced from their equilibrium positions, attained in paraelectric phase, leading to the
presence of Ps below Tc. The magnitude of Ps is affected by the compositional ratio of
the Li+1/Nb+5 of the LiNbO3 crystal. Congruent LiNbO3 (composition: Li+1/[Li+1]+
[Nb+5]=48.4%) crystals are used in many applications due to the reproducibility of their
composition. The remaining percentage is occupied by the intrinsic defects which lead to
an asymmetric hysterisis curve for the forward and backward poling of this crystal. These
intrinsic defects are involved in the formation of an internal electric field (Ei) pointing
parallel to Ps in a virgin sample. During forward poling, at room temperature, Ps is
inverted but Ei does not invert immediately.

Following the forward poling, realignment of Ei towards the new direction of Ps can
be accelerated by annealing the poled sample at a temperature above 200 oC. Without
annealing, there is a longer-time relaxation period for which the point defects and Ei will
relax to their equilibrium ”virgin like” position. This behavior has already been discussed
by several authors and the time constant for relaxation has been determined [18, 19, 20].

It is known that the presence of point defects affects the second-order nonlinear
optical (NLO) tensors of the crystal with the greatest contribution coming from the
Li-O bond [28, 68]. After forward poling, the NLO tensor coefficients of the crystal are
different from that of the virgin sample and they may relax back after a suitably long
period of time. In this section, we investigate this relaxation of these point defects that
occurs after the forward poling. We describe the sample preparation before we show the
results on the time-dependent RSHG.

Poling of the samples was achieved via the application of a high voltage across the
z-faces of the crystal, placed in a water cell as described in chapter 3. Within two minutes
after the sample was poled, one side of its face was abraded, using a 600 grit sand
paper, to minimize reflection from the bottom surface before being placed on the stage.
The same experimental setup as described in chapter 3 was used for this measurement.
Rotation anisotropy measurements were done to locate the correct azimuthal axis. Two
spots on the sample, one from the non-poled virgin area and the other from the poled area
were selected for measurements, as shown in figure 4.11. The determination of the y-axis
and post sample preparation took less than 20 minutes in total. An x-y micro-positioning
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‘Virgin’ area
+z -face

‘Poled’ area
-z -face

Figure 4.11: A schematic picture showing the domain inverted area and the virgin area on
a domain inverted sample. Two spots were selected from the two areas for the collection
of the RSHG data as a function of time

stage was used to move between the two spots. At a given input/output polarization, the
two samples were examined one after the other in 1 minute intervals for a given period
of time. To minimize thermal effect on the sample, low energies per pulse (but enough
to give a good any signal-to-noise ratio) were used and the repetition rate was some
times further reduced from 10 Hz to 1 Hz. At a given spot, 250 points were collected
to make a final data set for that time. The data was collected for as periods long as 4 hours.

The data from the virgin area was used as a reference as no relaxation is expected
from that area. As the other surface has been abraded, and hence destroyed as far as any
meaningful RSHG measurements were concerned, only the top face was then available
for investigation. For the virgin area presenting a + z face of the virgin crystal then the
domain inverted area will present a - z face.

Figure 4.12 shows the SHG signal from the virgin and the domain-inverted areas
of the poled sample. In this case, the y-axis of the crystal was placed parallel to the
plane of incidence which gives rise to the maximum SHG signal. The signal from the +z
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Figure 4.12: SHG signal vs the time after the sample was poled. The y-axis was placed
parallel to the incidence plane and γ = s and Γ = p.

face of the virgin part of the sample does not seem to change over the duration of the
experiment. However an exponential decay of the -z face of the domain inverted part of
the sample is observed. This observed decay seems to stabilize at a point which is still
higher than that of the +z-face of the virgin sample. This trend is not surprising based
on the results presented in section 4.3.1 in which it was shown that the +z and the -z
face do not necessarily show the same strength of SHG signal.

Figure 4.13 shows the SHG signal for the case where the x-axis was placed parallel to
the plane of incidence. This corresponds to the signal giving rise to the local maximum
as seen from the rotation anisotropy result. Also, in this case, only the signal from the
-z face of the crystal seems to be relaxing. However, the relaxation in this case is an
admittedly noisy growth behavior with the time constant of approximately 40 min.

The above results could not be reproduced however and, in fact, data of this quality

65



was never observed again when the experiments were repeated. Instead, a non-relaxing
signal was observed from both the poled and the virgin area. We have used nanosecond
pulses, which may have a sufficient local thermal effect similar to annealing the sample
above 200oC. This annealing effect has been shown to accelerate the relaxation of the
internal field to a period of about 30 sec [18]. However, it required about 1 minute to
accumulate one point on the presented graph. Thus, if the laser itself had some thermal
effect, maybe via random intensity fluctuations, the relaxation could have disappeared
even within the data collected.

Houe and Townsend have demonstrated thermal polarization reversal of lithium
niobate through the use of heat pulses generated by a laser beam [69]. They have
preheated their samples to 400 oC and applied an external field of 187 V cm−1 while
irradiating the sample with the laser beam with energies in the range 40-90 mJ with
a pulse duration of 5ns at 532 nm to achieve poling. At this wavelength, LiNbO3 is
transparent and hence not much heat is expected from the laser beam with this pulse
duration. To achieve the desired thermal effect from the laser beam, they have used a
90 nm thickness copper film deposited on the -z face of the crystal to absorb the energy
from the beam, convert it into heat energy which is then conducted into the crystal to
locally increase the temperature. However, they have also observed that the copper film
was evaporated within 50 ns of irradiation and that poling did occurs even at places
were there was no copper deposited. They did not specify the geometry of the optical
setup but, the heat generated at place where there was no copper film to start with may
have resulted from the induced SHG within the surface. At 266 nm, lithium niobate
is very absorptive and heat can accumulate to have given them a sufficient increase in
temperature to achieve poling with the applied external field.

The above discussion suggests that the generated SH beam in our experiment may
have had enough accumulative energy to raise the local temperature at the sampling
spot to above 200o and thus annealing the sample. We have limited the average energy
of our fundamental beam to less than 25 mJ. Annealing the sample at this temperature
has been shown to accelerate the reversal of the internal field after poling. To avoid
this possible heat effect, the experiment should be performed in the infrared region such
that the generated SHG beam has a wavelength in the transparent range. Also, a low
repetition rate of about 1 Hz is suggested.

66



Figure 4.13: SHG vs time after the sample was poled. The x-axis was placed parallel to
the incidence plane.

4.6 Conclusion

RSHG experiments were used to reveal the interfacial layer symmetry and to determine
the crystallographic axes of a z-cut congruent lithium niobate crystal. The high UV
absorption within this material has been used effectively to limit the generation of the
SHG signal to the interfacial layer and hence to extend the use of RSHG to the non-
centrosymmetric materials. Based on the absorption depth of the medium, careful choice
of the fundamental wavelength, and hence the variation of the interfacial layer thickness,
should result in the approach used in this chapter being sensitive to a monolayer. As
a special case, RSHG was also used to detect the reversal of the y-axis caused by the
domain inversion along the z-axis. This effect is made possible by the interaction between
the isotropic and anisotropic second-order susceptibilities and hence it is dependent on
the input and output polarization angles.
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Due to the non-reproducibility and inconsistency of the time dependent results, it
seems fair to conclude that our present RSHG system cannot reveal the internal field
relaxation within the domain inverted area of the poled LiNbO3 crystal. It is unlikely that
the fundamental beam is causing any thermal effect within the sampling spot, but the
induced SHG signal can have accumulative thermal effects which can have temperatures
above 200 o C, enough to accelerate the relaxation of the internal field. It is therefore
suggested that the use of the infrared fundamental beam can resolve this problem as the
induced SHG signal will be outside the absorption range of the crystal and hence have
minimal thermal effects.

These effects, if reproduced, would show that RSHG is indeed a valuable tool for such
surface relaxation phenomena. Due to the lack of time to further investigate these effects,
it is not possible to conclude either way, and also no publication has been forthcoming.
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Chapter 5

Optical MicroCavity design and

modeling

5.1 Introduction

In this chapter the designs and applications for optical microcavities are introduced.
Specifically, the properties and behavior of a hexagonal microcavity will be dealt with in
detail in preparation for the next chapter where this optical device will be used for the
production of efficient nonlinear optical processes.

An optical cavity is simply an optical setup that allows guidance and the build-up of
the optical signal within it. One such cavity implementation is the basic two plane-parallel
mirror set-up placed at a fixed distance apart. In this example, the guidance of the optical
beam is achieved by multiple reflections between the two mirrors. The signal build up,
and cavity resonance, occurs if constructive interference of the multiply reflected beams
(per round trip) takes place. On resonance, the intensity of the light beam trapped
between the two mirrors grows. Thus the separation between the two mirrors, relative to
the wavelength of the optical beam, controls the resonance condition within the cavity.
This particular example of the optical resonator is called the Fabry-Perot cavity and the
two mirror set-up can have any combination of plane or curved mirrors to suit the desired
geometry and properties [51].

Optical cavities are aimed at trapping light, ideally without any loss, until they are
triggered to release the stored light out of the cavity. Practically, nulling the losses within
a cavity is very hard and a more efficient optical cavity is one that can store a large
fraction of the light compared to that lost during the cavity lifetime. A figure of merit,

69



used to describe the energy stored in the cavity, relative to that lost by the cavity per
round trip, is called the quality factor (Q). Effective optical cavities will therefore possess
high Q. A gain medium can be placed between the two mirrors to enhance the cavity
oscillation and such optical cavities are called active optical resonators, as opposed to the
passive cavity which does not have a gain medium.

In optical applications, such as optical communications, the integration of different
optical components is required. In this integration, size and packaging of optical compo-
nents plays an important role in the practicality of the final devices. This then imposes
a size and compactness requirement on any optical devices, such as optical cavities, for
them to form part of any optical integrated circuits. Thus, a high Q is not enough unless
the corresponding cavity is small enough to integrate with other micro-optical systems
such as optical fibers for any device to form part of a practical optical ’circuit’.

Optical cavities with micrometer dimensions, termed optical microcavities, have
therefore attracted much research attention for their inclusion and role in integrated
optical circuits. They are normally placed near to at least one coupling waveguide device
which then allows in-coupling and out-coupling of light [70]. Microcavities have been
used for various applications such as micro lasers, optical filters, and non-linear devices,
amongst others [21, 22]. Light confinement and resonance within the microcavity is
achieved via total internal reflection of the light beam between the guiding medium
and the surrounding medium and mode wavefront matching per round trip. With
mature technologies for waveguide fabrication available, microcavities with high modal
confinements and low modal volume have started to emerge and several geometries of the
cavities including microspheres, polygonal cavities, and photonic crystal resonators have
been investigated so far for a range of applications.

Here, we focus our attention on the optical microcavity devices with the potential for
use in nonlinear applications such as nonlinear frequency generation. The motive behind
this work is to utilisz the signal stored at resonance within the cavity to enhance the
efficiency of the nonlinear optical process. For a second order nonlinear optical process,
the conversion efficiency is proportional to the square of the propagation length within
the optical device. Obviously, higher efficiency for this kind of process in traditional
linear devices requires longer lengths that imposes a limitation for integration with any
other micro-optical systems. However, high Q within a microcavity implies an effective
longer integration-length within a small volume. Hence multiple round trips within the
microcavity can equate to the longer length of bulky devices.

70



The nonlinear intensity is also proportional to the square of the fundamental intensity.
Since microcavities can be made to resonate the input beam, they can serve as platforms
for effective nonlinear optical process while at the same time maintaining small devices
size. Thus these devices are both compact and integratable with other devices. Intensity-
dependent nonlinear optical processes such as all-optical switching have shown efficiency
improvements due to the enhancement of the fundamental power in the cavity which re-
sulted in the reduction of the required switching power in semiconductor microcavities [23].

Full details of this specific application will be given in the next chapter, in which,
a hexagonal microcavity will be explored for its nonlinear optical application. To
appreciate the potential application for these devices in nonlinear optics we first review
the relevant linear optical processes and mechanisms governing its operation. In doing so,
we will expose critical issues which need to be considered when designing this device. The
rest of this chapter focuses only on the study of the linear properties of these microcavities.

5.2 Review of Microcavities

Optical microresonators can be fabricated by exploiting either TIR of light at the interface
between a dielectric material and the surrounding medium such as air, or distributed
Bragg reflection (DBR) from periodic multilayered structures or array of holes in a
periodic crystal (PC).

A microsphere resonator utilizes TIR for mode confinements around the circumference
of the sphere. Their dominants modes are WGMs and have ultra-high Q-factor of order
of 109, they have large modal volume and dense modal spectrum. Most organic and non
organic liquids are highly transparent and have a high refractive index contrast when
surrounded by air, for these reasons they have been used for microsphere resonator. Ap-
plication of liquids resonator is however limited because of the difficulty in manipulation
and the lifetime of the droplets is short due to evaporation. Solid spheres on the other
hand are easy to handle [71].

Amorphous materials like fused silica are good candidates for microsphere resonator
as they have a very small optical attenuation from the UV to the infra red (1.5 μm.
Silica micro spheres have ultra-high Q factor of order of 109, however, they also have
high density degenerate modes which cannot be easily separated [72]. These degenerate
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modes complicate their application for spectral analysis and make it tricky for on chip
integration with other components.

Several authors [21, 73, 74, 75] have recently proposed micro-toroidal resonators.
Micro-toroidal resonators demonstrate a very high WGM Q-factor of about 108 [74] which
is comparable to that of the microspheres but with the advantage that micro-toroidal
resonators have less modal volume and higher FSR and they are easy connected to the
other components.

Circular high index contrast microring and microdisk resonators based on planar
waveguide technology have been widely demonstrated. Diameter as small as 1-10 μm

are able to support WGM with high Q-factor of 105 and are used as add/drop filters for
WDM networks [76, 77, 78, 79] for example. Circular micro cavity belongs to a broad
range of polygonal microcavities. Polygonal microcavities can attain different shapes such
as, racetrack resonator [53], square/rectangular [80, 81], triangle, hexagonal [82, 83, 84]
and octagonal microcavties.

The Q-factor is lower on other polygonal microcavities as compared to the circular
ones due the sharp corners which introduce the losses. The Q-factor in these cavities
can be improved by rounding corners. These other non-circular microcavities, also tend
to guide other non-WG modes such as four-bounce or six bounce modes in the case of a
square and a hexagonal, respectively. These later modes also have a defined path within
the cavity and hence a preferred incident angle guided by TIR between the facets of
the devices. The incident angle preference reduces the mode degeneracy, for example,
hexagonal microcavity prefers modes with 60o angle of incidence within the cavity.
With the propagation path known, manipulation of the mode like phase matching the
fundamental mode with the harmonic modes is possible.

Other kinds of microcavities utilize Bragg reflection either alone or with TIR. Photonic
crystal (PC) cavities made by drilling holes on slab waveguide have been demonstrated
with a moderate Q-factor 104 [85].

5.2.1 Material

As the need increases for smaller optical devices, for dense optical integrated circuits,
the selection of the material for the device becomes a crucial factor as this choice affects
the device’s physical size, fabrication steps and behavior during operation. Device size
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depends on the index contrast between the optical guide and the surrounding medium
and therefore on the cross-section of the waveguide. Higher index contrast allows the
optical beam to be bent more sharply, and hence a small bending radius can be achieved
with tolerable bend losses, thus allowing very small size microcavities to be designed
[86, 54]. A large free spectral range (FSR ∝ 1/neffL) is required to avoid signal cross
talk, for example in the third telcom window, where a FSR of at least 30 nm is required
[70]. This then requires a smaller cavity round trip length (L) for a given effective index
(neff ).

Glass materials are inexpensive, have a moderate index contrast and are compatible
with most standard fabrication technologies [87]. Silica glass has a wide transparency
window, low intrinsic loss and is used extensively for optical fibers. However this material
has poor second-order nonlinear properties. Semiconductor materials have the highest
index contrast compared to that of glass materials and thus can attain even smaller
devices. This type of material has attracted much interest for microcavity fabrication
with both passive and active functionalities possible in a single material, thus serving as
a potential candidate for monolithic devices. Polymer materials have also demonstrated
much potential due to their index tunability, low cost fabrication and good optical
properties.

Many material ranging from, liquids droplets, amorphous material such a fused silica,
crystalline material, polymer and semiconductors have been demonstrated as good mate-
rials for microresonator applications [71]. However, most of them are only suited for the
linear optics application as they have low nonlinearities or are difficult to handle. Semi-
conductors have the highest nonlinearities, but, they are often not compatible with the
phase matching process due to the high dispersion and the fact that they are cubic.

However, we are interested here in the nonlinear optical properties and we therefore
require a material which is intrinsically nonlinear. One choice will be semiconductor
materials as they have inherent high nonlinearities, as has already been demonstrated.
Materials such as lithium niobate are also known for their nonlinear applications and they
also allow manipulation of these domain properties via conventional electric field poling
(see ref [4]). In the next section, coupling of light in and out such cavities will be reviewed.

5.3 Theory of a Microcavity

Figure 5.1a shows a geometrical layout of a microcavity with two waveguides, one to
couple light into (input bus) the cavity and one to couple light out of the cavity (output
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bus). Ideally, both of the bus guides are arranged such that they are not multimoded,
to avoid excitation of different cavity modes. The following description is general and it
holds for every microcavity with any geometrical shape and refractive index. Only the
one direction of propagation within the cavity is considered.

A beam of light with wavelength λ and amplitude E1 is launched at port A and
the resulting bus mode is allowed to propagate along the input bus. At the coupling
point, where the separation between the input bus and the microcavity is small enough
to allow the tail of the evanescent wave from the input bus to extend in the vicinity of
the cavity, part of the mode in the input bus given by ζaE1 is evanescently coupled in
the cavity leaving behind taE1 which continues to propagate along the bus. ζa is the
coupling coefficient between the input bus waveguide and the cavity and ta =

√
1 − ζ2

a is
the transmission coefficient [88, 89].

Within the cavity, the resulting cavity mode propagates around the cavity via total
internal reflection (TIR). After traveling a distance equaling half the cavity round trip,
part of the cavity mode whose evanescent wave extent in the vicinity of the output bus
given by (ζb

√
τ(ζaE1)exp(iφ

2 )) is coupled out of the cavity into the output bus thus leaving
behind a mode with amplitude of E′ = tb(ζaE1)τexp(iφ). τ is the total attenuation per
round trip and φ = 2πneff

λ Leff is the phase shift per round trip accumulated by the
mode. Leff is the total effective path traveled by the mode in the ring and tb =

√
1 − ζ2

b

is the transmission coefficient where ζb is the coupling coefficient between the cavity and
the output bus waveguide [88, 89].

After one round trip, part of the mode that had survived a trip around the microcavity
is coupled out into the input bus while the remaining part continues around the ring.
This continuing cavity mode will only reinforce the newly coupled cavity mode from the
input bus provided that the phase difference between these two modes is φ = 2πm, where
m = 1, 2, 3, . . . and that they have the same cavity propagation constant.

The evanescent modes from the multimoded input bus will excite all cavity modes
that have the same cavity propagation constant matching that of the evanescent one.
However, the strength of the excited cavity modes will differ and only those which satisfy
TIR and survive the cavity attenuation over one cavity round trip will make it around
the cavity. That is, if the cavity has very high optical losses, the surviving modes with
correct φ relative to the newly coupled modes, will make no contributions to the cavity
build-up due to its lower amplitude.
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Figure 5.1: a) geometrical layout of a ring resonator in general parameters, b) multimoded
ring resonator confining 12, 8 and 6 bounces laterally coupled to a multimoded input and
output bus
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After a cavity round trip, however, if φ �= 2πm there will be no reinforcement on the
modes in this cavity and this ensures that only the resonating modes survive multiple cavity
round trips. Figure 5.1 b, shows a multimoded ring microcavity in which cavity modes with
12, 8 and 6 bounces are phase-matched and therefore they will survive if excited. Hence,
it is necessary to use a single mode input bus especially when the microcavity geometry
has a potential of being multimoded, as such for rings. The amplitudes at different parts
of the microcavity can be summarised as shown in the following equations [88, 89].

E2 = taE1 + iζaE
′ (5.1)

E” = taE
′ + iζaE1 (5.2)

E′ = tbE”τexp(iφ) (5.3)

E3 = iζbE”
√

τexp(i
φ

2
) (5.4)

At any time, the intensity at the throughput and the drop positions can be written as
shown below.

|S21|2 =
∣∣∣∣E2

E1

∣∣∣∣
2

=
t2a + (tbτ)2 − 2tatb cos(φ)

1 + (tatbτ)2 − 2tatbτ cos(φ)
(5.5)

|S31|2 =
∣∣∣∣E3

E1

∣∣∣∣
2

=
(ζaζb)2τ

1 + (tatbτ)2 − 2tatbτ cos(φ)
(5.6)

ζ is a function of the coupling properties such as the coupling gap and the coupling
length and τ is a function of the material and fabrication process while φ is a function of
the geometrical size of the cavity, and it is this function that defines resonance within a
microcavity with a given refractive index. Thus, for a given refractive index, the properties
of the cavity at resonance can be achieved by studying φ alone. Figure 5.2 shows a typical
normalized intensity output spectrum (normalized to the input E2

1 ) from port B and
C in figure 5.1 given by equations (5.5-5.6) for ζa = ζb. τ is fixed at 0.98 for a ring
with R = 20μm and neff = 3.2. These intensities are functions of the input/output
coupling strength and can be varied by changing the coupling coeffiecints. For example,
the normalised throughput intensity at resonance (λ = 1550nm) can be made to be zero by
varying the input coupling coefficients until ta = tbτ , a condition referred to as ”critical
coupling” as shown in figure 5.3 [90, 91, 92]. At critical coupling the value |S21|2 = 0
and |S31|2 attains its maximum value. Figure 5.3 also shows that a typical symmetrically
coupled (ζa = ζb) resonator does not achieve critical coupling.
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Figure 5.2: Typical normalised intensity profile from port B (dotted line) and port C (solid
line) as a function of the wavelength at different output coupling constants (ζb = ζa = 0.1
and τ = 0.98 calculated using equations (5.6,5.5), respectively. R = 20μm and neff = 3.2.

The behavior of the resonator can be charcaterised by its Q-factor. The Q-factor of
the cavity can be approximated as [88]

Q ≈ λ0

Δλ3dB
=

2π2neffR

λ0 arccos(1+(tatbτ)2−4tatbτ
−2tatbτ )

(5.7)

Equation 5.7 is plotted in figure 5.3 as a function of the input coupling coefficient, which
shows the drop in Q-factor as the input coupling strength increases. For a symmetrically
coupled resonator, the Q-factor is high but the throughout intensity is also high, and this
condition does not favour the use of a microcavity as a filter as the signal is still present in
the throughput. For a filtering application, the coupling is better at critical coupling as the
dropped intensity is at its maximum but it presents a compromise on the cavity Q-factor.
However achieving critical coupling is in practice very difficult compared to symmetric
coupling so an array of symmetrically coupled ring resonators are used for nulling |S21|2
[93].
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Figure 5.3: Cavity Q-factor and waveguide output intensities at resonance (λ = 1550nm)
as a function of the input coupling coefficient for a lossy (τ = 0.98) ring resonator with
R = 20μm and neff = 3.2 and ζb = 0.1. From the left, the first vertical dotted line (A)
marks symmetric coupling while the second one (B) shows critical coupling.
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(a) (b)

(.c)

Figure 5.4: lateral coupling for (a) ring resonator, (b) vertically coupled ring/disk micro-
cavity and (c) hexagonal resonator

5.3.1 Input and Output Coupling Mechanism

Mostly, the input and output coupling in and out of the microcavities is achieved via
evanescent field coupling. Coupling light into the resonator is achieved by allowing the
tail of the evanescent field to extend into the guiding structure of the resonator from a
bus waveguide. For coupling out, the evanescent field tail from the resonator is allowed
to couple into an output bus guide. Coupling of light in and out in this way is achieved
either by lateral or vertical coupling. Figure 5.4 shows a typical geometry for these coupling
methods.

When a straight waveguide is brought into the vicinity of the other waveguide, for
example ring waveguide, preferential coupling of the mode from the straight waveguide
into the ring occurs if the following are satisfied: The propagation vector in the waveguide
denoted by kwg must match that in the in cavity denoted by kcav [80, 94]. Since neff =
f(Wb, ng, ns), for example as shown by the normalised frequency (V = 2πWb

λ

√
(n2

g − n2
s))

and guide index b =
n2

eff−n2
s

n2
g−n2

s
for TE modes [95, 96], tuning either Wb, ng, ns will selectively

a input mode with a different Θ into the cavity. Normally, both ns and ng are fixed while
Wb is varied to achieve suitable mode-coupling in the cavity. This is because it is easier
to fabricate a waveguide with a variable w rather than to vary the other two constants.
Therefore, to couple a mode with kcav(60o), Wb is varied until kwg(60o) is achieved [94].
Tuning of the incident angle can also be achieved by the variation of the effective index of
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Figure 5.5: Schematic top view of a waveguide-coupled hexagonal microcavity. A bus
waveguide of width Wb is displaced from the flat side of the hexagonal microcavity by a
distance g1. Both the cavity and the bus waveguide, with refractive index ng are immersed
in a background medium with refractive index ns. kwg(kcav) is the waveguide (cavity) mode
propagation vector. Capital letters A and B denote, respectively, the input and output
port of the device

the waveguide for a given Wb.

θc < θ < (120o − θc) (5.8)

Lateral coupling is a popular method since it is easily achievable with the standard
fabrication technology such as lithography followed by dry etching. Vertical coupling
requires either growth of material on the top surface or wafer bonding before using the
standard fabrication tool. However, the latter method does have merits over the lateral
coupling when it comes to defining the separation between the guide and the resonator.
For vertical coupling, the coupling gap is defined during material growth or bonding and
this gap is well controlled and very reproducible. Control over the coupling gap is very
crucial as it is one of the factors affecting the coupling strength between the two guides [97].

High confinement of the modes in the bus waveguide and the resonator guide
leads to a limited short tail of the evanescent field away from the guide resulting,
therefore, for the need for a very small coupling gap and/or a long coupling length.
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For micro-ring resonators, aiming for a long coupling length, while maintaining the
small radius required for long FSR, is not an option therefore leaving only the op-
tion for a very small gap. A microcavity with a long coupling length, see figure 5.4(b)
does not need a very small coupling gap as the coupling occurs along the entire flat surface.

Besides the dependence on the coupling gap and coupling length, the coupling
strength depends also on the relative width, the relative index contrast between bus
guides and resonator guides and also on the wavelength. We mention here this dependence
for the lateral coupling, as it affects the coupling efficiency and therefore needs more
consideration for the resonator design.

For the case where the index of refraction of the bus guides and the resonator are
different, the guide with higher index will tend to confine the modes more than the other
one resulting in a very short tail of the evanescent field, hence leading to a small κ from
the high index guide to the lower one, for a fixed width and coupling gap. This effect can
be used to obtain a high Q microcavity by making the bus waveguide have a low effective
index, hence becoming a weak guide and a good coupler to the resonator but not the
opposite [97].

Where the width of the bus guide and the resonator guides are comparable, the guide
with a small width is effectively a weak guide and the coupling strength out of this guide
is high resulting in the same effect as the small index guide discussed above. In the next
section the general theory of the whole microcavity is discussed.

5.3.2 Ray optics approach for a hexagonal microcavity

Figure 5.5 shows the schematic top view of a waveguide-coupled hexagonal optical micro-
cavity where Wb and α are the width of the bus waveguides and the lateral cavity width.
g1 is the gap between the bus waveguide and the microcavity and ng and ns are the refrac-
tive index in the cavity and the surrounding medium, respectively. For this geometrical
layout of the microcavity and the bus waveguide, introduction of the optical mode into
the microcavity is achieved via lateral evanescent coupling, as discussed in the previous
section. In this way evanescent modes from the waveguide, with the correct propagation
constant to match the modes of the microcavity, will couple in. The width of the guide and
the side length of the microcavity ls determine the coupling condition while g1 determines
the strength of the coupling. Upon entering the cavity, cavity modes propagate within the
cavity via TIR. For these cavity modes, their incident angles θ must satisfy the following
conditions, which require that ng > ns [94].
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In (5.8), θc = sin−1(ns/ng) is the TIR critical angle. Within the cavity, resonance of
the optical modes is only possible if the cavity propagating modes complete at least a
single cavity round-trip while at the same time, the cavity modes’ wavefront is in phase
with that of their corresponding source modes.

For the cavity modes to complete a single round-trip, the condition in equation (5.8)
has to be satisfied at every cavity-surrounding interface that the mode encounters. If
θ is outside the range set by equation (5.8) when arriving on the next interface, the
corresponding modes are refractively lost into the surrounding medium. Thus, there
exists an even narrower incident angle range which will guarantee at least a six single
bounce cavity round-trip in a hexagonal microcavity [98]. We concentrate only on this six
bounces partially-confined cavity mode case. For Nc sided polygonal optical microcavity
cavities, there are few ideal incident angles, (θm = 2π

uNc
, u = 1, 2, . . . and for example

Nc = 6 for a hexagon) within equation (5.8), for which the cavity loop trajectories
are always closed. Closed-loop trajectories refer to ray trajectories that reflect at the
same location along the cavity wall after every cavity round trip. In contrast open
loop-trajectories drift away from their initial point of reflection along the cavity for
every cavity round trip, the so called walk-off condition, until they escape the cavity via
refraction [94, 99]. The resulting relative displacement (ΔX) from the starting position,
due to the walk-off conditions is given in equation (5.9) [94].

ΔX = 3
√

3α
sin(60o − θ)

cos θ
(5.9)

The material used for the hexagonal cavity (Nc = 6)considered in this work has a high
refractive index relative to that of the surrounding medium which is enough to avoid
refractive transmission outside the cavity when the beam is incident on the cavity wall for
θ ≈ θm [100]. When θ drifts away from θm, open-loop cavity trajectories result and these
cavity modes can only lead to cavity mode resonance provided that they are wavefront
matched [94]. For a hexagonal microcavity, the total path traveled by the six-bounce
wavefront-matched cavity modes, open or closed, over a single cavity-round trip, is given
in equation (5.10) [94].

L(θ) = 3α sin(30 + θ) (5.10)

Open-loop cavity mode life-time, measured as the number of bounces (N ) the modes
undergo before refracting from the cavity into the surrounding medium, has been shown
to increase as θ approaches θm[94]. L(θ) is independent of the starting position of the
propagation mode along the cavity side. For open-loop trajectories, a different N for
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a given θ has been shown to give rise to multiple modes which results in an undesired
broadening of the resonance line width [99].

For a given free space wavelength (λo), resonance of the given mode, defined by θ inside
the hexagonal cavity, has to satisfy the wavefront matching condition (5.11) [94, 99].

kongL(θ) + 3ΦF (θ) + 3ΦF (120 − θ) = 2πmω, mω = 0, 1, 2, 3, . . . (5.11)

In equation (5.11), ko is the free space propagation constant (ko = 2π/λo) and mω is an
integer representing the number of resonating wavelengths along L(θ) within the cavity.
In cavity mode terms, mω is referred to as the azimuthal mode order. ΦF (θ) is the Fresnel
phase shift, upon a single reflection on the cavity wall, experienced by the mode when
undergoing TIR and it is given as equations (5.12, 5.13) for a given mode polarization
[51].

Φp(ω, θ) = 2tan−1 nc

√
sin2 θ − sin2 θc

ngcos θ
(5.12)

Φs(ω, θ) = 2tan−1

√
sin2 θ − sin2 θc

cos θ
(5.13)

In equation (5.12, 5.13), p and s refer to the polarization angle (γ) of the plane
wave parallel and perpendicular to the plane of incidence, respectively. Referring to the
laboratory coordinate system in figure (5.5), the plane of incidence lies along the x-y
plane. ΦF (θ) is a function of θ, γ, ng and nc at a given angular frequency (ω = 2π/λo)
and it can attain any value between zero and |π| for the values of θ > θc [101]. Only when
the condition in equation (5.11) is satisfied can a signal build up within the cavity. We
focus on the solution of equation (5.11) for θ = 60o, for which the condition in equation
(5.8) is satisfied. At this angle, the round trip trajectory will always be closed, hence
avoiding the walk-off condition. Also, by choosing the correct launching position along
the cavity side wall, an equal interface to interface length (l1 = L(θ)/6) traveled by the
wave during TIR can be found.

The choice of the hexagonal shape microcavities has been justified in the introduction
section, however the sharp corners of this geometrical shape introduce loss as compared
to those cavities without sharp corners, such as the circular ones. High losses will lead to
a broader resonance line-width (ΔλFWHM) and hence to a lower Q factor

Q =
λR

ΔλFWHM
(5.14)

thus lowering the efficiency of the device. In equation (5.14), λR is the resonance wave-
length. However, side length for a hexagonal cavity

ls =
α√
3

(5.15)
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relaxes the small coupling gap bottleneck, which proves to be a challenge during fabrica-
tion. Only part of ls, which is still bigger than that of the microcircular resonator, will
be effective during couping. Therefore the actual corners of the hexagonal cavity can be
rounded off without affecting many of the cavity properties, while lowering the losses and
hence increasing the Q factor.

The main aim of this work is to harness the enhanced optical power within the mi-
crocavity for nonlinear applications. In the following section we therefore link the above
known microcavity behavior with the requirements for the effective nonlinear phenomena
to occur. We will focus on second harmonic generation in nonlinear optical materials.

5.4 Simulations

The demand for all-optical-circuits to be an equivalent to electronic circuits has forced
the size reduction of many optics components into the micrometer range, and lower,
such that the integration between these components is effective. At the same time,
the geometrical shape of these micrometer sized components becomes more complex
and so too is the theoretical description of their operation. Experimental work on
this scale proves to be more challenging and therefore numerical methods such as the
beam-propagation-method (BPM) and finite-difference time domain (FDTD), amongst
others, have found widespread application in studying these components prior to their
experimental realisation. The choices of which method to use depends on the nature
of the component functions, for example the BPM is applied for components with low
index contrast along the direction of propagation and therefore does not include reflection
during propagation. BPM is therefore not applicable to cavity studies where back
propagation and high-index contrast form the basis of the device.

The FDTD approach solves, numerically, the direct solution of Maxwell’s time-
dependent curl equations over space and time. As the FDTD does not have the above
limitation it is suitable for most complex structures and arbitrary propagation schemes.
This numerical method was therefore selected for our studies of the hexagonal microcavity.
The FDTD formulation is outlined below.

5.4.1 FDTD formulation

Consider a loss-less structure, which assumes the absence of volume current and finite
conductivity. Let its optical properties be time-independent throughout. The Maxwell
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Figure 5.6: Yee lattice used for FDTD unit cell

curl equations are written as

μ
∂H
∂t

= −∇× E (5.16)

ε
∂E
∂t

= ∇× H (5.17)

The Maxwell curl equation implies that the time variation of the H-field (E-field) in
time depends on the space variation of the E-field (H-field). As an example, with the
knowledge of the spatial E-field local distribution at a given time and the stored value of
the H-field, the value of the H-field for a future time can be determined. At time t = 0,
the field distribution is given and known everywhere in the structure. The structure is
placed in a discrete spatial volume domain represented by equation (5.19) and a discrete
time interval domain (nΔt ), where i, j, k are integers and Δx,Δy , and Δz are space
increments while the time increment is kΔt for an integer values of n. The field functions
in this discrete domain take the form shown in equation (5.19).

(x, y, z) = (iΔx, jΔy, kΔz) = (i, j, k) (5.18)

f (x, y, z, t) = f (iΔx, jΔy, kΔz, nΔt) = fn (i, j, k) (5.19)

For the computation of the FDTD algorithm, in the Cartesian computational grid, the
H and E-fields are staggered in the spatial domain such that the H-field component is
halfway between a pair of the E-field components, as show by the Yee lattice in figure 5.6.
The E-field and H-field occupy the edge and the face of the cube respectively.

The central differential approximation is then used to approximate the partial differ-
entiation in the above Maxwell curl equation and the solutions are given for example by
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[102, 103] and reproduced below for completeness. The FDTD procedure is as follows: the
stored component of the Hn− 1

2 -field and the spatial variation of the E -field in the present
time, t = n, are used to determine the H-field components at t = n + 1

2 . This will give
the known spatial distribution of the H-field components in the new time, which are then
used to determined the E-field components in time.

H
n+ 1

2
x (i, j, k) = H

n− 1
2

x (i, j, k)

+
Δt

μΔz

(
En

y (i, j, k) −
(
En

y (i, j, k − 1)
))

− Δt

μΔy
(En

z (i, j, k) − (En
z (i, j − 1, k))) (5.20)

H
n+ 1

2
y (i, j, k) = H

n− 1
2

x (i, j, k)

+
Δt

μΔx
(En

z (i, j, k) − (En
z (i − 1, j, k)))

− Δt

μΔz
(En

x (i, j, k) − (En
x (i, j, k − 1))) (5.21)

H
n+ 1

2
z (i, j, k) = H

n− 1
2

x (i, j, k)

+
Δt

μΔy
(En

x (i, j, k) − (En
x (i, j − 1, k)))

− Δt

μΔx

(
En

y (i, j, k) −
(
En

y (i − 1, j, k)
))

(5.22)

En+1
x (i, j, k) = En

x (i, j, k)

+
Δt

εΔy

(
H

n+ 1
2

z (i, j + 1, k) −
(

H
n+ 1

2
z (i, j, k)

))

− Δt

εΔz

(
H

n+ 1
2

y (i, j, k + 1) −
(

H
n+ 1

2
y (i, j, k)

))
(5.23)

En+1
y (i, j, k) = En

y (i, j, k)

+
Δt

εΔz

(
H

n+ 1
2

x (i, j, k + 1) −
(

H
n+ 1

2
x (i, j, k)

))

− Δt

εΔx

(
H

n+ 1
2

z (i + 1, j, k) −
(

H
n+ 1

2
z (i, j, k)

))
(5.24)

En+1
z (i, j, k) = En

z (i, j, k)

+
Δt

εΔx

(
H

n+ 1
2

y (i + 1, j, k) −
(

H
n+ 1

2
y (i, j, k)

))

− Δt

εΔy

(
H

n+ 1
2

z (i, j + 1, k) −
(

H
n+ 1

2
z (i, j, k)

))
(5.25)

The choice of both the spatial and time step size, that is the grid size and time step,
affects the accuracy and the stability of the calculation respectively. To achieve the desired
accuracy, the grid size needs to be small enough to resolve the smallest feature in the
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structure and must be smaller than the wavelength used in the calculation. This grid size
requirement is clearly at the expense of computational time as the calculation complexity
increases proportional with its reduction. Normally, convergence studies are performed for
each problem, in which the grid size is reduced while monitoring the output values until
these values approach a limiting value. The stability of the simulation is limited by the
choice of the grid size, hence limiting the choice of the time step as shown below, where
the time step Δt has to be smaller than the stability limit Δts given as

Δts ≤ 1
c

(
1

Δx2
+

1
Δy2

+
1

Δz2

)−1/2

(5.26)

Due to the finite nature of the FDTD, care must be taken at the boundary of the
calculation window as the FDTD cannot evaluate the field at this location since it will
need field information outside the calculation window. At the start plane, this restriction
is relaxed by setting every field component before this plane to zero while, at the other five
planes of the calculation window, for 3D in general, the field must be absorbed to avoid
it being reflected back into the calculation window. For the following simulation results,
a perfect matching layer (PML) method was applied to all of the calculation windows.
The PML, with a known width and reflectivity is added at the boundary of our calcula-
tion window to absorb the radiated field from within the calculation window (see ref [104]).

In the PML region, the electromagnetic wave propagates without reflection and an
exponentially decreasing amplitude. PML formularization is governed by the following
trasnformation:

∂

∂x
→ 1

1 + iσx(x)
ω

∂

∂x
(5.27)

In 5.7, σx(x) is the PML absorption coefficeint which is set at is zero in the calculation
window but positive in the PML region [105]. 1

ω is there to make the PML effect inde-
pendent of the wavelength, and for example the attenuation rate in the PML region will
be the same for all w for a given σx(x) function [106]. The effect of the PML for a given
waveform exp(−ikx) as shown in figure 5.7, is to replace x by x(1 + iδx)/ω. The PML is
then defined within the calculation region at the region of interest by making the function
δx in the x direction to be zero anywhere before the PML layer and greater than zero in
the +x axis from the PML layer outward.

The PML absorbs waves with real propagation constants effectively but it fails when
it comes to evanescent waves. This is because evanescent waves have an imaginary k value
and this wave oscillates on passing through the PML layer [106]. Though the evanescent
wave is of a decaying nature, which then suggests putting the PML far from for the wave
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Figure 5.7: Effect of the PML layer on the wavefunction along the propagation direction.
The PML starts from x = 5 by making σx(x < 5) = 0 and σx(x > 5) > 0
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the evanescent wave will propagate and decay completely before getting to the PML, this
will be in the expense of the computational window and hence time. A compromised
is made in PML formalization to deal with evanescent waves with a fast decay rate by
making δx complex [106].

The width and reflection coefficient are specified to control the function of the PML.
A think width results with a slowly decaying wave as opposed to a perfect conductor
with a zero thickness. Perfect conductor force the wave to decay very fast and can cause
instability in the calculation. The reflection coefficient is also specified to determine the
reflection of the boundary layer. For evanescent wave case, a constant is normally defined
which the make the δx complex.

In the next section the simulation results for the hexagonal microcavity are shown.
Since the aim is to use this hexagonal microcavity for nonlinear applications, the size of
the microcavity is carefully selected such that it is also suitable to resonate the resulting
nonlinear generated wave. The details of selecting this cavity size will not be discussed in
this chapter but will be presented in chapter 7. Therefore, for the remaining sections of
this chapter, the focus will be on the simulation results of the linear device.

5.5 Simulation Results for the Hexagonal Microcavity

We have used a commercial FDTD package for our calculations. Here, we only consider
2D calculations of our devices. Our hexagonal microcavities have the same properties
as bulk, congruent, z-cut LiNbO3 crystal. The aim here is to study the maximum
cavity response without the influence of the input and output coupling condition,
such as the coupling length and coupling gap. Therefore, the input and output buses
are excluded in the calculation window leaving only the microcavity, as shown in
figure 5.8. The refractive index of our hexagonal microcavity at the fundamental
wavelength (FW) corresponds to the extraordinary refractive index of LiNbO3, ne

LN

[7] for the appropriate value of λ. The refractive index of the surrounding, na, is that of air.

To detect the response of the cavity, a monitor was located inside the cavity at
one of the sharp corners of the hexagon, as shown in figure 5.8. This monitor allowed
measurements of the field components, power, or the energy density at that position
in the cavity per time. The length of the monitor lm = 2α

3
√

3
was selected such that

the monitor extends to cover the width of the area occupied by the long lived cavity
modes, colored white in figure 5.8. In this figure, the whole of the hexagon has the same
refractive index including the inner gray part. This inner gray part is not occupied by
the long lived cavity modes [82] and the difference in colorings is merely intended to show
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Figure 5.8: 2D schematic layout of the hexagonal microcavity in the FDTD simulation.
The launch position of the incident beam is located at the center of the width of the
detection monitor as shown by a red arrow representing the k vector of the launch mode

this occupancy effect. The direction of the monitor is such that this monitor is optimised
for any signal normal to the plane containing lm. The width of the monitor wm was
kept at a constant value as this dimension did not influence the monitor response for our
calculations. The desired beam type, cw, pulsed or impulse, with transverse width = lm

was launched in the middle of the monitor such that the beam was incident on the next
wall, at an incident angle θ, as shown in figure 5.8. We have used an ultrashort pulsed
beam type for cavity spectral studies while a cw beam was used for the steady-state
simulations.

We have adopted the grid size as λ
ne(λ)C , C being a constant giving rise to the

convergence for a given α. In this work, a suitable value of λ within the Ti:sapphire
wavelength-source range (650nm to 1100nm) was used to obtain a corresponding res-
onating cavity size satisfying equation (5.11). In this chapter, α = 2.97μm will be used
throughout, which corresponds to the resonance of the s-polarized of the fundamental
wave (FW) with λ = 0.959μm. It will be shown in the next chapter that this cavity size
also allows resonance of the generated second harmonic and for phase matching to take
place. For the rest of this chapter, where α will remain almost constant, C = 36.81 was
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used throughout.

Smaller structures are preferred for FDTD calculation as they reduce the duration of
the simulation for more accurate results. Smaller structures are used for the general cavity
properties while in the next chapter, larger structures will be used for estimation of the
SHG efficiency as they have lower radiation losses compared to the small ones.

5.5.1 Cavity spectrum

Figure 5.9 shows the cavity spectrum, for the hexagonal microcavity with α = 2.97μm,
designed to resonate an s-polarized FW with λ = 0.959μm. The spectrum was obtained
by launching a 10 fs Gaussian pulse centered at λ = 0.959μm in the cavity and performing
a fast Fourier transform on the recorded results. The pulse width used was wide enough
to cover at least three multiples of the cavity FSR expected at given values of α and λ.
The spectral resolution 1

t is limited by the duration of the simulation (t). The FSR of
the cavity obtained from figure 5.9 is 49 nm and it is comparable to that estimated by
assuming a six bounce wavefront-matched trajectory within the microcavity with θ = 60o

as FSR= λ
3nω

e α = 48 nm.

The cavity lifetime of the resonating mode is limited mainly by the optical radiation
losses due to the corners of the hexagon, which limit the Q factor to about 180 for
the above cavity size. The Q factor is obtained by fitting a Lorentzian function on the
resonance peak in figure 5.9 and extracting the ΔλFWHM . Since the intention for this
optical polygonal microcavity is to utilize the cavity gain to enhance nonlinear processes,
then improving the Q factor and minimizing the optical losses is essential. It has been
demonstrated that rounding the corners of the polygonal microcavities reduces the
optical losses and increases the Q factor [107, 108]. However, it was also shown that
rounding the corners shifted the position of the resonance wavelength away from that of
a regular non-rounded polygonal microcavity. The latter effect will affect the efficiency of
the nonlinear process if the shifts of the resonance wavelength on the individual beams
involved in the nonlinear interactions within the cavity are not compensated. In the next
section, the effect of rounding the corners of the above hexagonal microcavity on the
Q-factor, the resonance wavelength and the FSR is summarised.

5.5.2 Reducing Cavity losses

Figure 5.10 shows a schematic top view of a regular and a rounded hexagonal microcavity.
In the simulation domain, rounding of the corners of the hexagonal was achieved by
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Figure 5.9: Cavity response for s-polarized FW in a cavity with incident λ = 0.959μm
and α = 2.97μm, FSR = 49 nm

introducing a circle, with the same refractive index as the hexagon, at each corner of the
hexagon while reducing ls such that only an arc with 60o arc-angle completed the boundary
of the hexagon by joining each pair of the straight segments of the hexagon with length
ls given by equation 5.15. R is the radius of curvature of the circle and it varies from 0
to 1

2α corresponding to regular hexagonal and circular microcavities respectively. R and
ls are related by equation (5.28).

ls =
α − 2R√

3
(5.28)

When calculating the rounding effects, the launching position was optimised for values
of R in 5.28 along the length of the position of the detector, shown in figure 5.8. This
was necessary as the launching and the detection point are within the cavity and hence
if the launching position does not lie on the path of the returning resonating modes the
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Figure 5.10: Schematic top view of a regular and a corner-rounded hexagonal microcavity

coupling between the two modes will be compromised. The grid size was kept constant at
12 nm throughout the rounding effect studies.

Figure 5.11 shows the curve fitting on the resonance peaks after rounding the corners
of the hexagon. The percentage rounding value is also included in this figure either on top
of the corresponding peak or color coded to the resonance peak.

With more rounding, the Q-factor rises, which implies that radiational optical losses
due to the hexagonal corners are reduced, as shown in figure 5.12. The limitation of
the Q-factor at R

α = 50% is no longer due to the corners but due to the bending losses,
which are a function of the index contrast and the size of the cavity. Thus, for the same
wavelength, the Q-factor can be increased by increasing the cavity size, which reduces the
bending losses. The latter Q-factor dependence will form part of the basis of the next
chapter 8 where it will be discussed.

In figure 5.12, there seems to be non-smooth increase of the Q-factor with the rounding
near R

α = 50%, this may be due to relationship between the the resonating wavelength
and the size of the cavity. Though the correct resonating wavelength was found for values
of R

α , the cavity size may have not been ideal for resonating wavelength as compared to
those with the small rounding values.
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Figure 5.11: Curve fitting for the Q factor determination as a function of the corner
rounding. The numbers within the area of the graph are of the corresponding cavity
rounding

Due to the increment of the total length traveled by the modes per rounding, the
resonance wavelength shifts to smaller values. The wavelength shift extracted from
the resonance position in figure 5.11 is shown in figure 5.13. Above 20% rounding the
resonance wavelength shifts become more pronounced, which may be due to the migration
of the cavity’s six bounce modes to a higher number of bounces per round trip until
whispering gallery modes (WGM) are formed. WGMs cling to the cavity walls along the
propagation direction and are more favoured to have a high Q-factor in a rounded cavity.

With further rounding, more long-lived modes in the cavity are expected, as was shown
in figure 5.1b, as compared to a few that must satisfy the six-bounce wavefront-matched
behavior in a regular hexagonal cavity. Thus, though the rounding increases the Q-factor,
it also increases the number of long lived modes in the cavity. This is shown in figure 5.14
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Figure 5.12: Dependence of the Q-factor on the rounding of the hexagonal corners for
α = 2.97μm

by the decrease in the FSR as the rounding is increased so that more long-lived modes
are accommodated. The FSR values for R

α ≤ 20 in figure 5.14 are in between 48 nm and
49 nm and they are comparable to a value of 48 nm predicted before. Also, the decrease
in the FSR away from that estimated using the six bounce trajectory estimation confirms
the migration to the WGM as shown in figure 5.14. The small error (1nm variation
at most) on the FSR values within R

α ≤ 20 may be due to the insufficient number
of points making the resonance peaks in figure 5.11, for this case the resonance are
peaks not clearly defined and hence results in more variation between the resonance peaks.

From the above discussion on the effect of the rounding on the wavelength shift and
FSR, it can be concluded that the six bounce trajectory is valid up to the ≈ 20% rounding.
In the next chapter, the rounding will be limited to this number, as the aim there will be
to show the use of a hexagonal microcavity for nonlinear optical processes with six bounce
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Figure 5.13: Resonance wavelength shift as a result of the rounding of the hexagonal
corners for α = 2.97μm

trajectories per cavity round trip.

5.6 Steady-state simulation

The steady-state of the cavity was obtained by launching a cw wave with a λ values corre-
sponding to the resonance wavelength obtained from figure 5.11. Since the λ corresponds
to the resonance wavelength, cavity build-up is expected until the cavity gain balances the
cavity loss per round trip whereby the signal within the cavity will be constant. For these
simulations, the grid size and transverse width of the input beam were kept the same, as
described above.

Figure 5.15 shows the steady state results for a regular hexagonal microcavity with
α = 2.97 and λ = 0.960μm, obtained from the FDTD simulations. For this cavity, the
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Figure 5.14: FSR as a function of the rounding for α = 2.97μm

steady state is reached after 10 round trips. With the corners of the hexagon rounded,
the number of round trips, before achieving the steady state, is expected to increase.

Figure 5.16 and 5.17 shows the resulting cavity modes at steady state for R
α =

0, 10, 20, 30, 40, and 45.95%. As expected, the cavities show lower optical losses at the
corners when the rounding increases. However, due to the small size of the cavity, it can
also be seen that the bending losses are also high for these microcavities.

From the launch position in the clockwise direction the intensity field is higher but
decrease as mode propagate around the hexagon. The sharp corners are sources of optical
loss. For small cavity size, this corner also results with mode reflected into the cavity
center than the bigger cavity, thus the mode pattern at the center of the cavity will be
less in a large cavity. As R/α increases the mode behave like WGM and clings along the
perimeter of the microcavity resulting with less reflection at the center of the cavity.

It is observed from the results that hexagonal corners of a regular hexagon results
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Figure 5.15: Numerical simulation of the regular hexagonal microcavity at resonance with
α = 2.97μm and λo = 0.960μm. Top: intensity build-up within the cavity until steady
state is reached. Bottom: Steady state mode field pattern showing increased scattering at
the corners of the cavity.

98



(a)

-1.0

1.0

R/a=10%

X (μm)
0 1 2 3

Z
 (

μ
m

)

0

1

2

3

(b)

-1.0

1.0

R/α=20%

X (μm)
0 1 2 3

Z
 (

μ
m

)

0

1

2

3

(c)

-1.0

1.0

R/a=30%

X (μm)
0 1 2 3

Z
 (

μ
m

)

0

1

2

3

Figure 5.16: Cavity modes for hexagon microcavity with different rounding α = 2.97μm
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Figure 5.17: Cavity modes for hexagon microcavity with different rounding α = 2.97μm

in large optical losses and that rounding these corners reduces these undesirable losses.
However more corner-rounding also migrates the propagating mode from a six-bounce
mode geometry to WGM, thus to maintain the six bounce mode propagation the rounding
can only be done until R/α = 20

5.7 Conclusion

A general operational principle of optical microcavities was discussed, in which a detailed
theory governing the operational modes of a polygonal microcavity was also reviewed.
Rounding the corners of the microcavity was shown, numerically, to reduce the cavity
optical losses hence increasing the Q factor of the cavity. It was also shown in this chapter
that rounding the corners also introduces a decrease in the FSR owing to the multimoded
nature of the rounded cavity.

100



Chapter 6

Nonlinear Optical Hexagonal

Microcavities

6.1 Introduction

Nonlinear processes such as SHG have a quadratic dependence on the intensity of the
fundamental wave (FW) (Iω), the total length of interaction during propagation (l) and
the nonlinear coefficient χ(2) (i.e I2ω ∝ (Iωlχ(2))2 sinc2(1

2Δkl)). Therefore, within a
medium with high χ(2), such as LiNbO3 as an example, increasing Iω and/or l can lead
to higher I2ω when phase matching is achieved (i.e Δk = 0).

On the other hand, microcavities have attracted much attention due to their small
size and high Q-factor, leading to high intensity of the resonating wave with a long
cavity lifetime. Such a long cavity lifetime is equivalent to a longer propagation length
achievable in non-cavity devices. These micro-structures are promising for implementation
in micro-optical circuits and these devices have already been demonstrated, as optical
filters and signal routers for example. However, nonlinear processes within microcavities
are not yet popular due to the constraints imposed by the required physical mechanisms
for effective nonlinear optical processes, such as phase matching. The use of a microcavity
for a nonlinear process is a very attractive area, due to the potential enhancement of
these processes due to the cavity resonance [109, 110].

The efficiency (η) to convert the FW to the second harmonic wave (SH) in a dispersive
medium where n2ω �= nω is limited by the inherent phase mismatch, k2ω �= 2kω , between
the FW and SH. Perfect phase matching (PPM), temperature tuning and quasi phase
matching (QPM) techniques have been used succesfully to resolve this phase matching
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problem [10, 4].

Another technique used to achieve the phase matching between the two waves is
via a total internal reflection-quasi phase matching process (TIR-QPM), which uses the
induced Fresnel phase shift between the FW and the generated SH upon total internal
reflection to balance the dispersion phase shift [10, 11, 5]. TIR-QPM has an inherent
advantage as it does not require an inverted domain structure along the propagation
length, as is required for QPM, and can be used throughout the transparent window of
the material unlike the case of PPM. TIR-QPM can also be used in microcavities, where
light is resonantly guided via TIR. When the light is resonantly guided, TIR-QPM can
be as efficient as the perfect phase method.

Various approaches for enhancing nonlinear processes via the use of microstructure
have been proposed and demonstrated in the past. Schiller and Byer demonstrated si-
multaneously SHG and parametric oscillation enhancement in a monolithic TIR resonator
(MOTIRR) made of bulk MgO:LiNbO3 [111]. The MOTIRR consisted of a heated 11.5mm

square bulk crystal with one face polished for input/output coupling via prism coupling.
Phase matching in their MOTIRR was achieved by Type-I phase matching with a p-
polarized FF wave and a s-polarized SH wave, and tuned by varying the temperature
of the cavity [111]. Xu et. al. had used the tight-binding approximation and the FDTD
simulation to analyze two types of coupled-resonator optical waveguides (CROW), namely
a coupled-microdisk waveguide and a waveguide composed of coupled defect cavities in a
two-dimensional photonic crystal (PC), to demonstrate the enhancement of the SHG effi-
ciency [112]. In PC, it has been shown that enhancement of the SH field can be achieved
at the band edge of the photonic crystal where the group velocity goes to zero [113]. On
the other hand, defect cavities have been shown to enhance the SHG efficiency by large
optical field amplitude of the local defect-cavity mode

Recently, Dumeige and Feron proposed the use of microdisk cavities and their
associated WGMs to simultaneously obtain phase matching for III-V semiconductors
[114]. They show a strong dependence of the SHG efficiency and cavity Q-factor on the
coupling gap separating the disk resonator and the waveguide. At the optimum coupling
gap, they predicted a Q2ω = 28000 and Qω = 8700 for an Al0.28Ga0.72As resonator
waveguide and bus waveguide both on a AlAs/GaAs substrate [114].

In this chapter, we propose the generation of a SH, in a hexagonal microcavity made
from single crystal lithium niobate, via TIR-QPM [24]. The TIR-QPM process, allows
QPM to occur along the propagation length by balancing the dispersion phase shift
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Figure 6.1: Hexagonal superstructure achieved by etching poled z-cut, LiNbO3. The -z
face etches away while the +z face remains unetched when the crystal is immersed in an
HF:HNO3 acid mixture [3]

with the relative Fresnel phase shift between the FW and SH induced when the two
signals undergo TIR at the interface [5]. In the conventional 1st order QPM process,
the dispersion phase shift is cancelled after every coherence lc = π/Δk = λ

4(n2ω−2nω) , for
example, by reversing the sign of the nonlinear coefficient [10].

The choice of the hexagonal geometry is due to the fact that hexagonal optical cavities
of superior optical quality can be fabricated by differential etching of inverted ferroelec-
tric domains in lithium niobate, as shown by figure 6.1 [3]. In figure 6.1, the straight
segments forming the perimeter of the hexagon are along the y-axes of the crystal. This
superstructure is typically achieved as follows: a clean 500 μm thick optically polished
z-cut wafer is coated with about 1 μm of Shipley 1813 photoresist, photolithographycally
patterned with hexagon features and then developed. The patterned region is then poled
to produce antiparallel domains by applying an electric field which exceeds the coercive
field (22 kVmm−1). The poled sample is then etched in 48% HF acid at about 60oC. At
this temperature the reported etch rate is 80 μm in 15 hours [3].

For TIR-QPM, full control of the orientation of the crystal’s axes is crucial as this
technique depends on the direction of these axes relative to the plane of incidence.

In the next section, the theory governing TIR-QPM will be discussed and compared
with those of the perfect-phase matching and QPM method. In the same section the
model for TIR-QPM in a hexagonal cavity will be introduce in which the results from the
previous chapter are used in formulating the model. Then, we show and discuss simulation
results from the TIR-QPM model.
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6.2 Theory

6.2.1 TIR-QPM

The intensity of the generated SH (I2ω), assuming no depletion of the FW, can be written
as (see [5])

I2ω =
8π2d2

eff

n2
ωn2ωλ2ε0c

I2
w(l)2

[
sin(Δkl1/2)

Δkl1/2

]2

(6.1)

here Iω is the intensity of the FW, λω is the wavelength of the FW and l is the
interaction length between the FW and the generated SH. When l is of the order or
longer than lc, the amplitude of the SH, given by equation 6.1, is modulated between zero
and its maximum value at every even and odd number of lc, respectively, for the NPM
case. This is shown by NPM in figure 6.2 [16]. This is because of the difference in phase
velocity between the SH and the FW waves which results in destructive interference of
the generated SH at every even multiple of lc [10].

In birefringent materials, this phase mismatch is addressed by launching a polarized
FW beam(s) (see below), with an incident angle equaling the phase matching angle (θm)
at which, n2ω(θm) = nω(θm) leading to Δk = 0 and then generating SH signal orthogo-
nally polarized to one of the two possible FW beams [115]. Phase matching in this way
is termed perfect phase matching (PPM) and the corresponding I2ω is shown in figure
6.2. There are two types of PPM possible for SHG: Type I PPM is when both beams
of the FW have the same polarization or Type II when both beams of the FW have or-
thogonal polarization. For a negative uniaxial crystal such as LiNbO3 the following sets
of polarization are possible (see ref [116]):

Type FW1 FW2 SHG

I o ray o ray e ray
II o ray e ray e ray

However, the PPM method suffers from the transverse walk-off of the SH pointing
vector away from that of the input polarized FW if the phase matching angle is not normal
to the optical axis, and this then degrades the conversion efficiency. Also, the phase
matching angle requirement cannot be routinely satisfied for all nonlinear interactions
and hence it is not possible to access all nonlinear coefficients throughout the whole
transparent window of a nonlinear material. However, for the case where the transverse
walk-off is resolved, the PPM technique is the most effective method for achieving high
efficiency because it allows for perfect SHG throughout the whole crystal, as shown in
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Figure 6.2: Growth of the SH along the propagation length within a nonlinear crystal.
PPM: perfect phase matching in a single domain crystal. I2ω in this figure is normalized
to that of PPM. QPM: first-order QPM in a periodically poled crystal and NPM: non-
phase-matched interaction see ref [4]. TIR-QPM: total internal reflection-QPM see text
and ref [5, 6]. For TIR-QPM, the overall phase matching occurs not necessarily at at lc
but at a length (l1) where the Fresnel phase shift balances the dispersion phase shift
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figure 6.2.

QPM is a technique commonly used to enhance the efficiency of nonlinear interactions,
such as SHG, in cases where PPM cannot be applied [4]. One example of QPM is by
periodic poling in LiNbO3 or KTP where the sign of the relevant nonlinear second-order
coefficient, dijk = 1

2χ
(2)
ijk, is inverted after each length lc (for the case of first order

QPM as shown in figure 6.2) to compensate for the phase shift between the FW and
the SH (see ref [4]). The inversion of dijk at every lc, prevents the down conversion of
SH into FW at every odd number of lc and enables the growth of SH, as shown in figure 6.2.

The QPM technique has several advantages over the PPM technique however. For
QPM, the whole window of optical transparency of a nonlinear material can be used for
effective nonlinear interaction provided that the desired QPM period (Λ) can be achieved.
This is in contrast to PPM where the walk-off condition can only be minimized at certain
frequencies. Also, QPM allows the use of the largest nonlinear coefficient of χ(2) which for
LiNbO3 is χ

(2)
zzz, as an example, since the input incindent angle of the FW is not limited

to θm. For a given l, the SHG effecincy of PPM is 4
π2 .

However, in the QPM process, Λ ∝ λ where Λ is the period of the inverted domain
pattern, which implies the requirement of short periods for low values of wavelength which
are not always possible to fabricate via conventional methods.

Another way to achieve QPM is by utilizing the relative Fresnel phase shift (ΔΦF )
given in equation (6.2) between the FW and the induced SH, that occurs upon TIR
of the two waves at a cavity-surrounding interface after propagating for a length l1, to
compensate for the dispersion phase mismatch (Δk · l1) [10, 5]. In this method, referred
to as ”TIR-QPM”, both the FW and the induced SH are made to reflect via TIR on
a surface as shown in figure 6.3 for the case of propagation in a parallel sided plate. In
doing so they experience a relative phase difference that can cancel that due to dispersion.

The relative Fresnel phase shift is given as

ΔΦF = Φγ(2ω) − 2Φγ(ω) (6.2)

where Φγ(2ω) and Φγ(ω)) are the Fresnel phase shifts of the SH and FW, respectively,
which occurs after each TIR. γ is either p or s as shown in equation (6.11−6.12) depending
on the polarization of both FW and SH. The effective nonlinear coefficient (deff ) can
also change sign following reflection depending on the input/output polarizations of both
FW and SH relative to the crystal symmetry, denoted by the azimuthally angle (ϕ in
figure 3.1b). The possible change of sign of (deff ) results in an extra phase shift (ξπ),
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Figure 6.3: Schematic diagram demonstrating the TIR-QPM technique within a parallel
plate device

with ξ being either 1 or 0, respectively. For values of θ above θc, ΔΦF can take any value
from 0 and 2π, as θ increases towards 90o. Thus, the combination of ΔΦF and ξπ can, in
general, compensate for any dispersion phase shifts and allows for a more flexible choice
of the propagation length, between adjacent reflections, as compared to the periodic
poling case where the 2lc period constraint is strict. The global phase shift φ, between
the FW and SH during TIR, is therefore the combination of all these phase shifts and is
given in equation (6.3) [5].

φ = Δkl1 + ΔΦF + ξπ = 2πm, m = 0, 1, 2, . . . (6.3)

For a given ω, θ and set input/output polarization state of the waves, the condition in
equation (6.3) is only possible at certain values of l1. The intensity of the generated SH
(I2ω), for no reflectivity loss, can be written as [11]

I2ω =
8π2d2

eff

n2
ωn2ωλ2ε0c

I2
w(Nl1)2

[
sin(Δkl1/2)

Δkl1/2

]2[sin(Nφ/2)
N sin(φ/2

)
]2

(6.4)

where Iω is the intensity of the FW and λω is the wavelength of the FW. In
equation(6.4), the first trigonometric part represents a parametric conversion on each
path, l1, traveled by the mode between two bounces, while the second trigonometric
part represents the interaction of all input and generated fields after each reflection.
For the case when l1 is exactly an odd number of lc, the combination of ΔΦF and ξπ

has to sum up to π for QPM to occur, in which case both trigonometric functions in
equation (6.4) are maximized [5]. This case is termed resonant TIR-QPM and is found
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to be practically more efficient as compared to the non-resonant case, l1 can take any
value but not even multiple orders of the lc, while satisfying equation (6.3). Though
the resonant TIR-QPM is more effective than the non-resonant case, it is also more
restrictive due to the requirement that the length between the reflections has to be
exactly an odd multiple of the coherence length. This requirement is, practically, very
difficult, to achieve for example in planar devices where the length in between each
reflection is controlled by the angle of incidence at the input face of the device [5]. Figure
6.2 compares the efficiency of the PPM, QPM and TIR-QPM methods. In this work
we focus on the non-resonant case and we will use TIR-QPM to refer to this case from
now on, whereby the resonant case is generalized as a special form of the non-resonant case.

The other advantage of TIR-QPM is that l1 can take up any values but not limited
to the integral multiple of lc. For the case where lc > l1 the efficiency of the TIR-QPM is
ideally comparable to that of the higher order QPM process while for lc < l1 the efficiency
approaches that of PPM as shown in figure 6.2 [6]. For large values of l1 relative to the lc,
the TIR-QPM efficiency drops to that of NPM. The limitation to this ideality is mostly
due to the reflection losses that occur at each reflection. In figure 6.2, three values of
l1 = 1.72, 7.35, 12.71μm were used and the reflection coefficients were set to be 100%.

Iω in 6.1 is defined at the input and it stays at that value throughout l, so the
value I2ω increased mainly do to l. Within a singly-microcavity where FW resonates,
Iω increases after each round trip until the steady state condition is met. Basically, Iω

is amplified until steady state. Therefore, I2ω, increase not only due to increment of l

but also due to the amplification of Iω. In a doubly-resonant microcavity where SH also
resonate, I2ω is further amplified.

Since the idea is to use the stored and cavity-enhanced FW (by the cavity) to increase
the efficiency of the SHG, equation (6.10) has to be solved simultaneously for FW and
SH, together with equation (6.3), for an ideal cavity size αs. Such a cavity, with α = αs,
will allow resonance of both the SH and the FW via TIR and will also allow TIR-QPM
to occur. To achieve an ideal cavity size for this doubly resonant situation, we follow the
approach by Haidar [6] used for determining the ideal thickness for the case of TIR-QPM
in a semiconductor plate, as shown in the next subsection.

6.2.2 The Model of TIR-QPM in a hexagonal cavity

First, we consider the requirement for the FW to resonate in a hexagonal microcavity, as
given by equation (6.10). The angle of incidence within this cavity is set at 60o and is
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fixed at this value for the entire model. Our model is based on a LiNbO3 crystal as a bulk
platform and, since this crystal is both uniaxial and dispersive, we have to pay attention
to the polarization of the FW and use the corresponding refractive index.
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Figure 6.4: Hexagonal cavity showing schematic resonance propagation of both the FW
and SH. ng,ω and ng,2ω are the refractive indices of the material experienced by FW and
SH respectively

For the reasons which will be apparent very shortly, the plane of polarization of the FW
will be set at s-polarization. For example in figure 6.4 the plane of incidence is parallel to
the page and hence, for the s-polarization, make the electric field components of the beam
normal to the plane of the page. The s-polarized FW will see the extraordinary refractive
index (nω

e ). The corresponding Fresnel phase matching is then Φω
s , given by equation

(6.12). For dispersion calculation, the Sellmeier equations introduced in section 2.4.6,
were used to determine the corresponding indices of refraction. As far as the resonance
of the FW is concerned, what remains is to find the correct cavity size αω = L(60o)

3 at the
given wavelength, such that the LHS of equation (6.10) equals an integer multiple of 2π
(φR = 2πm). Since cos(mπ) = ±1, for integer values of m, the resonance condition in
equation (6.10) for FW can be rewritten as

fω = cos(
1
2
φω

R) = cos(
1
2
[kon

ω
e L(αω) + 6Φω

s ]) = cos(mωπ) = ±1 (6.5)
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.
Likewise, the resonance condition for the SH can be written as

f2ω = cos(
1
2
φ2ω

R ) = cos(
1
2
[kon

2ω
e L(α2ω) + 6Φ2ω

s ]) = cos(m2ωπ) = ±1 (6.6)

.
where α2ω is the resonating cavity size for SH. For a doubly resonating cavity size for

both the FW and the SH, equations (6.5-6.6) must be satisfied simultaneously, in which
case αω = α2ω. Also for the TIR-QPM process, the global phase shift in equation (6.3)
can be written as

fφ = cos(
1
2
[Δkl1(αφ) + ΔΦF + ξπ]) = cos(πmφ) = ±1 (6.7)

where αφ is the cavity size at which the dispersion phase shift will be balanced by
the Fresnel phase shift. The ideal cavity size is αm = αω = α2ω = αφ. Within the ideal
cavity, all the functions in equations (6.5-6.7) have values of ±1 and so will be their
products. Equation (6.8) shows the resulting products of the above three equations.

f = fω(αm) × f2ω(αm) × fφ(αm) = ±1 (6.8)

Figure 6.5 shows the variation of the functions fω, f2ω, fφ and f in equations (6.5-6.8)
for the s-polarized FW and SH in z-cut LiNbO3 at λ = 0.959μm. Each of these functions
has a maximum values of ±1, at which resonance of the corresponding wave is achieved.
For example at α = 2.907μm, f2ω = −1 while fω ≈ 0.1 which means SH will resonate in
the cavity of this size while FW will not.

In calculating equations (6.5-6.8) an s-polarization was selected so to make it possible
for use of largest of the nonlinear coefficients (d33) of the z− cut LiNbO3 to be used for
generation of SH. This implies that Fresnel phase given equation (5.12) was used instead
of that equation (5.11). The two equations will results with different (αi) and hence with
different (αm), thus the ideal cavity for s-polarized mode will not be ideal for p-polarized
mode.

Figure 6.5 displays six values of α2ω shown by ±1 values of the blue dash curve, three
values of α2ω shown by ±1 values of the red long-dash curve, and a single value of αφ

shown by a black arrow. From figure 6.5, αm = 2.98μm, since it is at this value that
α2ω = αω = αφ.

Figure 6.6 shows a broad variation of f and fφ(αm) against the cavity size, which
shows the locations of other smallest possible αm at αm

1 = 2.98μm, αm
2 = 12.73μm, and
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Figure 6.5: Plot showing the dependence of the cavity resonances of the FW, SH, TIR-
QPM condition and the ideal condition on the cavity dimension α. The ideal cavity size
is therefore at αm = 2.98μm for λ = 0.959μm

αm
3 = 22.35μm, for λ = 0.959μm. These three ideal cavity sizes will have different values

of l1 and hence different SH efficiency, as shown in figure 6.2 where the smaller the value
of l1 corresponds to the high SH yield.

The value of αm is determined from the constraints formulated above and will be used
in the next section as a guide to locate the ideal cavity size from the FDTD simulation
results. Also, the cavity characteristics, i.e repetition of the solution of the FW in figure
6.5, will be used as a benchmark to validate the FDTD solutions.

6.3 Simulation Results

We have used our FDTD simulation to study the response of an ideal hexagonal microcav-
ity for both the FW and the SH. The focus is firstly on the individual propagation of the
FW and SH within the microcavity. The SH here does not refer to the second harmonic
signal generated by the FW, but simply a mode launched at half the wavelength of the
FW. The evolution of this mode within the microcavity will have similar properties to the
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Figure 6.6: Plot showing the dependence of the global phase shift on the cavity size. Three
ideal cavity sizes are shown at αm

1 = 2.98 μm, αm
2 = 12.73 μm, and αm

3 = 22.35 μm i.e,
all the solutions in figure 6.5 belong to the first lobe in this figure while the other lobes
show the location of the other ideal cavity sizes. The dashed line represents the global
phase shift.

SH generated by FW. Thereafter we make use of the cavity response from both FW and
SH to estimate the SHG efficiency of the cavity, when the FW is converted into the SH
via equation 6.4.

The refractive index of the cavity at FW and SH corresponds to the extraordinary
refractive index of congruent LiNbO3, as given by the Sellmeier equations described in
chapter 2 for λ and λ

2 respectively. The polarization of the launched mode was set to TE
(E-field is perpendicular to the cavity plane).

6.3.1 Determination of the ideal cavity size using FDTD simulation

With the FDTD simulation, we seek a value of αm for which both FW and SH will
resonate. In the previous chapter, we mentioned the dependence of the cavity response on
the grid size and we have used a rule of thumb that grid size= λ

nC , where C is a constant
determined to give a convergence value of αm for a given λ. Within the convergence
range for both FW and SH simulation, the values of αm approach their true value. This
procedure was used to determine αm ≈ 2.98 μm in figure 6.7 from the TIR-QPM model.

For a given λ, long-lived cavity modes have similar properties. Hence, a full study of
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Figure 6.7: FDTD simulation α scan results for λω = 0.959μm and for λ2ω = λω

2 . αm
1 =

2.98μm because it is at this value that α2ω ≈ α2ω.

the cavity at the FW and SH can be achieved by long- lived cavity modes of the individual
cases. If, in our simulation, the FW was generating the SH in situ, then all the studies
from now on should be done in that ideal cavity size. Here, the SH is estimated based
on the FW power amplification and on the Q-factor of both the FW and SH launched
individually in the cavity. Therefore, variation of the grid size, which becomes compu-
tationally expensive for large α, to obtain a well-resolved ideal cavity size, is not necessary.

Figure 6.7 shows the scan of the FW (SH) for λω = 959nm (λ2ω = λω

2 ). The refractive
indices of the FW and the SH were set to nω

e = 2.1627 and n2ω
e = 2.2632, respectively.

From the above defined TIR-QPM model it was shown that an ideal cavity size can
be located for f(αm) = ±1, at a given wavelength. In figure 6.7, the ideal cavity size
corresponds to the value αm ≈ 2.98μm where fω × f2ω ≈ 1. Based on the results of the
TIR-QPM model in figure 6.5 about a broad range for which fφ = 1, i.e fφ = 1 for for
all six values of α2ω and three values of αω, the phase matching condition is assumed to
cover a broad range also in figure 6.7.

The location of the ideal cavity size from the FDTD simulation in figure 6.7 is justified
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by comparing this figure with figure 6.5 that was obtained from the TIR-QPM model.
From figure 6.5, the period of the FW resonating cavity size, denoted by the separation
between the adjacent fω = ±1, is about αω

i+1 − αω
i =140 nm, which is similar to the

separation of the FW modes in figure 6.7. The same is true for the SH, where the period
is about half that of the FW. This direct comparison between the FDTD simulation of
the α scan results and the TIR-QPM model results validates our theory in terms of the
six-bounce propagation trajectory in a hexagonal microcavity.

6.3.2 Steady-state Cavity Response

In order to obtain the cavity response on resonance, the steady-state simulations were
performed at the resonance wavelength. This was achieved by launching the fundamental
mode and measuring the cavity response as a function of time until the cavity response
reached the steady state, at which point the cavity loss per round trip and the cavity
amplification per round trip are equal.

A moderate cavity (not too small and not that big either), was used to minimize
the cavity losses due to the sharp corners and also to minimizes the large computational
time required by a large cavity size. Also, from figure 6.6, three ideal cavity sizes were
shown:αm

1 = 2.98 μm, αm
2 = 12.73 μm, and αm

3 = 22.35 μm. The equivalent l1 values
of these three cavity sizes were used in figure 6.2, it was shown that for a value of l1

equivalent to αm
3 the SH yield was comparable to that of the NPM method. Therefore,

a moderate cavity size for λ = 959 nm, corresponds to αm
2 in figure 6.6. Though it was

shown in figure 6.2 that for l1 < lc, this is practically difficult to achieve as the cavity
losses increases with the reduction of the cavity size.

For λ = 955 nm, the corresponding suitable ideal cavity size is found to be αm
2 = 13.95

μm which is equivalent to the second solution for λ = 959μm in figure 6.6. Here, the
value of αm

2 is for λ = 955μm instead of λ = 959μm due to the fact that fm(955) was
closer to a unity value than fm(959).

Figure 6.8 shows the cavity build-up for λ and λ = λ
2 for a perfect hexagonal cavity. For

this ideal cavity size, the cavity has a higher Q for λ/2 than for λ, as shown by maximum
number of round trips (Nmax) before steady-state. For example, the FW reaches the
steady state after only 13 round trips, i.e Nmax

FW = 13 while Nmax
SH = 33. Figure 6.9 shows

an exponential growth curve fitted to the cavity power profile of FW in figure 6.8 and the
following power profile was determined with the variation of the round trips.

Pω(N) = Pmax
ω (1 − exp(−bN)), (6.9)
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where Pmax
ω is the maximum amplified power of the FW and b = 0.330 represent the

cavity loss per round trip. The implication of equation (6.9) for the hexagonal cavity
modeled in figure 6.8 is that the FW amplification follows this equation. However, if the
right, appropriate FW is coupled from the bus waveguide to excite the ideal cavity mode
(θ = 60o) , Pmax

ω will be lower than that when the mode is launched from within the
cavity but the number of round trips before steady state will still be the same.

FW

SH

Figure 6.8: The cavity response for both FW and SH at a moderate ideal cavity size of
αm

2 = 13.95 μm. The power output is normalized to that of SH at steady state

We use the values in figure 6.8 for Nmax and amplification values for FW given by
equation 6.9 and estimate the SHG output from the cavity in the next section.

6.3.3 SHG efficiency via TIR-QPM in a hexagonal cavity

Due to the complexity of our TIR-QPM set-up and the time constraints that we had,
we did not use the FDTD simulation engine to estimate the SH conversion yield with
the cavity. Instead, we use the TIR-QPM model, together with values obtained from
the simulation to estimate the SHG efficiency. We assume that the ideal cavity size
obtained from the FDTD simulation has equivalent properties to those obtained from
the model above. Our assumption has been justified above by comparing the cavity size,
the scan obtained from the FDTD simulation, and that obtained by using the six-bounce
wavefront matched trajectories. To summaries these comparisons: It was found that the
separation between the -1 and +1 solution in the TIR model is similar to the separation
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Figure 6.9: A curve fitting to the power profile for the FW within a hexagonal microcavity
to determine the cavity loss per round trip for an deal cavity size of αm

2 = 13.95 μm
b = 0.33.

between the resonating cavity size from the FDTD simulation, for both the SH and FW.

With this assumption we can then use the cavity Q factor and the number of round
trips for both FW and SH together with the value of the power for each of the FW round
trips up until the steady state obtained from the FDTD simulation to estimate the SH
growth in the cavity.

For the SHG efficiency estimation, we will need to know the cavity Q factor for both
the FW and SH and also the cavity amplification for FW. The cavity Q factor for SH,
which is different from the FW, defines the maximum number of the SH round trips
(Nmax

SH ). We will assume that, when the FW has reached the steady state (Nmax
FW ), there

will be no more SH build-up within the cavity once the Nmax
SH is reached. That is, the

SH will grow in the cavity until its growth is balanced by its loss, at which point the SH
output will be constant for the case where QFW < QSH .

In our case, the SH growth is due to the combination of two mechanisms: firstly,
the conversion growth due to the presence of the FW over the entire length of the FW
propagation with the cavity and secondly, the gain growth of the SH as it builds up within
the cavity. The latter growth contribution is due to the fact that the cavity resonates
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both the FW and SH. If, for example, the cavity did not resonate the SH, the only SH
growth mechanism would be that due to the presence of the FW similar to the normal
QPM. This individual conversion growth mechanism, must lead to high SHG efficiency
per volume of the hexagon via the quadratic dependence of the SH on the resonated FW.
In other words, this conversion mechanism will be the dominant one, however it will not
be effective on its own as most of the SH signal will be radiated out if the latter signal is
itself not resonated.

Equation (6.4) was used to estimate the SH build-up within the cavity until it reaches
the steady state, determined by Nmax

SH . The angle of incidence was fixed at 60o and only
the six-bounce trajectory per round trip, with equal propagation length between the
bounces was considered. This is because, though these modes are wavefront matched, the
SHG will not be the same when the lengths per bounce (l1) are not the same. The longer
path length between the bounces will undergo the TIR-QPM later than the shorter path
ones, leading to different SHG efficiency per length.

Figure 6.10 shows the estimation of the growth of the SH in a regular hexagonal
cavity, i.e with no rounding (R

α = 0%), via the use of equation (6.4) for different values
of the reflection coefficient (r). In equation (6.4) Iω is not a constant value up until 13
round-trips but takes the values of FW from figure 6.8 for TIR-QPM. For PPM and
QPM, Iω was constant and equal to the starting Iω used for TIR-QPM because there
is no resonance of the FW in these condition. The SH was allowed to propagate until
it reached the steady state, after which no buildup is expected. After 13 round trips,
the growth in SH is due mostly due to the resonance of the SH but not the conversion
from FW. Iω is amplified after each of the round trips by the resonance of FW within
the cavity. This amplification, boosts the SH efficiency (via the TIR-QPM) to be more
efficient than that via PPM and QPM methods. Without this amplification, TIR-QPM
method will never be more efficient than the PPM method, and for our choice of the
cavity size αm

2 = 13.95, it will be less efficient as compared to the QPM method (see figure
6.2). The total length of the devices used to estimate the SH growth for PPM and QPM
is NL = 3Nα = 1.25mm, about 90 time longer than the hexagonal microcavity used
for TIR-QPM. The use of a resonant cavity has boosted the efficiency of the TIR-QPM
method.

The effective number of bounces inside the microcavity is limited by the Goos-Hanchen
shift and by the surface roughness on the side of the cavity which controls the value of r

[5]. There is an effective number of round trips for a given r after which there will be no
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Figure 6.10: Estimated SH growth for a regular hexagon with no rounding, for λ =
0.955μm with αm

2 = 13.95 μm.r is a reflection coefficient. The total length of a linear
devices used to estimate the SH growth for PPM and QPM is 3Nα = 1.25mm. For
r = 100%, the TIR-QPM in a hexagonal cavity greater than that from PPM method for
an equivalent length. For r = 99% Nmax

SH is limited to about 15 round trips before the SH
signal starts to degrade down toward that of NPM
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signal-build-up. This effect is shown by the factor contained in the second trigonometric
function of equation 6.4 as

[
sin(Nφ/2)
N sin(φ/2

)
]2

=
rN

N2

1 − 2
√

rN cos(NΔφ) + rN

1 − 2
√

r cos(Δφ) + r
(6.10)

where Δφ is the global phase shifting given in equation 6.7 and it is zero for a
TIR-QPM structure. The effect of r is shown in figure 6.10 where I(2ω) drops as the
reflection losses increase.

As R
α increases, the Q factor increases, leading to longer cavity lifetime for both the FW

and the SH and hence the SH efficiency will increase. It has been shown that increasing
R
α results in the resonance wavelength being blue-shifted. This was attributed to be due
to the growth of the cavity size per rounding resulting in a longer cavity path length.
Hence, to keep the resonating wavelength constant, the cavity size has to be reduced per
rounding for the cavity path length to remain constant. As our TIR-QPM does not see any
rounding applied to the cavity within the six-bounce trajectories, we keep the wavelength
and cavity size constant and use the rounding effect results.

Figure 6.11: Growth of the SH with the rounding of the hexagonal corners, for λ = 0.955
μm with α = 13.95μm.

Figure 6.11 shows the estimated normalized SH signal with cavity rounding. The SH
increases with smoothing of the corners of the cavity owing to the increasing Q-factor
at resonance. It is expected that the SH would be at its maximum in the cavity with
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more smoothing of the corners. We do not show the results in which R
α > 20% as the

propagation within the cavity migrates from a six-bounce trajectory a to WG type.
So far we have only mentioned the simulation results for a cavity in which the mode

is launched from within the cavity. We have not said anything about the expected
detectable signal. To do that we will need to estimate the coupling efficiency of the
mode from the bus guide into the cavity, which was beyond the scope of this study. A
measurement of the coupling efficiency of hexagonal microcavity can be found in ref
[94]. They have measured a Q-factor of about 1300 for a hexagonal microcavity with
α = 50μm. For small cavities like the one simulated in our work, the losses are higher.
So these studies should be extended for a bigger cavity size where the modes are also
launched from outside to have a feel for the expected SH signal.

6.4 Conclusion

In this chapter, the TIR-QPM model for a hexagonal cavity was introduced. The model
was based on the six-bounce trajectory introduced in chapter 5 and phase-matching of
the FW and SH via the TIR-QPM technique. The FDTD simulation method was used
to validate the model and also to demonstrate its capability for SHG in a hexagonal
microcavity in LiNbO3. The TIR-QPM method is shown to be limited mostly by the
reflection losses which limits the number of round trips to an effective number of round
trips and hence compromises the build-up of the SH per cavity. However, TIR-QPM is
capable of a high SH efficiency, even greater than that of perfect phase matching, thanks
to the resonance of both the FW and SH within the same cavity. If FW was not at
resonance, higher efficiency TIR-QPM (greater than that of QPM) can be obtained by
lowering the length l1 in between the bounces to be lower than lc. TIR-QPM is by far the
most efficient compared with the non-phase-matching.
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Chapter 7

Feasibility studies of a nonlinear

micro-ring resonator on a

Ti:indiffused LiNbO3 waveguide

7.1 Introduction

In chapter 5, it was shown that microcavity structures can lead to the enhancement of
nonlinear processes within their small volume if phase matching conditions between the
fundamental and the harmonic waves are met. In that chapter, the TIR-QPM method
was used, whereby the Fresnel phase shift was used to balance the dispersion in order
to achieve phase matching within a hexagonal microcavity [24]. In this chapter, another
approach is proposed to enhance nonlinear processes within a mircoring waveguide
resonator via the use of periodic domain inversion.

This QPM method requires the reversal of Ps along the propagation length [10, 4].
Ilchenko et al., demonstrated a periodically poled toroidal disk resonator made of LiNbO3

[110]. Their device was, however, periodically poled along a specific direction, hence
limiting the QPM to two specific areas of the resonator. This device requires a large
Q factor in order to be efficient. In this work, we propose creating a periodic inverted
domain structure along the circumference, such that the light propagating along this path
length experiences a constant Λ, as shown in figure 7.1.

Due to the 3m symmetry of the LiNbO3, the induced inverted domains on the −z face
have the hexagonal shape oriented along a specific direction. These preferential hexagon
shaped domains have their walls parallel to the crystal y-axes [117].
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Figure 7.1: PPTi:LN ring resonator for nonlinear applications

We also propose the use of an optical ridge waveguide, instead of a bulk material, to
further improve the mode confinement within the device. Three dimensional structures
like ridges, strip or channel waveguides are normally used in order to enhance the
confinement within optical devices. The choice of the type of waveguide to use is defined
by the application of the final devices. For example, ridge waveguides have high index
contrast and hence allow smaller cross-section dimensions and tighter bend angles with
lower optical losses than the conventional channel waveguide [118]. It is for the later
reason that this type of waveguide was preferred for our microring resonator devices.

The technology behind manufacturing reproducible Ti:LiNbO3 is very mature and
the analytical functions describing the refractive index profile of this waveguide have
already been evaluated [119, 120, 32]. Ti:LiNbO3 was therefore selected as a platform to
demonstrate our proposed goals. From these analytical functions, the refractive index
can be calculated as a function of the Ti film thickness (τ), dwell temperature (Td) and
dwell time (td) during the diffusion processes.

In this chapter, the fabrication steps towards achieving a microring resonator, shown
in figure 7.2, and the attempt to obtain a periodically poled resonator will be discussed.
The following steps, as outlined in figure 7.2, will be followed to achieve the final device:
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Figure 7.2: A schematic flow diagram for the production of the Ti in-diffused LiNbO3

planar waveguide

Preparation of the Ti:LiNbO3, poling the resulting planar waveguide along the ring cavity
(not shown in the figure 7.2) , and finally the preparation of the ridge waveguide. The
details of the steps will be discussed in the next sections.

Due to the lack of a clean room facility at the University of Southampton, following
the fire incident in 2005, part of the fabrication work was undertaken at Glasgow
University. Because of the need to work at different clean room facilities, work on the
optimization of the Ti:LiNbO3 index profile was necessary and will be shown.
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7.2 Theory

7.2.1 Ti:LiNbO3

The effective index (neff ) is not known precisely before the design of the device, but it
can be determined from the universal curves [119] once the refractive index ngi(y, z) of
the waveguide is known; where i refers either to the extraordinary (e) or the ordinary (o)
refractive index in the case of Ti:LiNbO3. ngi(y, z) can be written as a function of the
refractive index of the substrate (nib) and the maximum change in the refractive index
(Δni) as [119, 120]

nig(y, z, λ) = nbi(λ) + Δni(λ)f(y)g(z/D), i = e, o. (7.1)

In equation (7.1), the g(z) function represents the diffusion shape and it can be an
experimentally determined function or a theoretical one in the form of an error function
(erfc(y, z)), an exponential function (exp(y, z)) or a Gaussian function (exp(y,−(z)2)).
The function g(z) defines the shape of ngi along the depth of the guide (z-axis) and f(y)
defines the lateral shape for a mode propagating along the x-axis.

The diffusion of the metal into the substrate depends on T and td and it is characterized
by the diffusion depth, given by

Dj =
√

2DTjtd, j = B,S (7.2)

where B and S stand for bulk or surface diffusion respectively. DTj = D0exp(−T0/T )
and it contains the temperature dependent part, where D0 and T0 are constants. The
later two constants are functions of the material and hence they will be affected by any
variation of the material quality [121]. Also, calibration of the furnaces used for the
diffusion process may differ hence affecting the absolute temperature of diffusion from one
laboratory to another. These factors, together with the temperature dependent diffusion
constant, force the need for the optimization of the diffusion function profile at each
laboratory.

For a Ti-diffused waveguide, with τ being very much smaller than the substrate thick-
ness and with the diffusion time being long enough for all the metal to be diffused into
the substrate, a Gaussian function is found to be more appropriate for the depth function
while an error function is found to be suitable for the surface profile. The two functions
are given as [120, 122]
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Table 7.1: Possible values of p, m and R for a given neff (1.55μm) = 2.1551
ring number p m R(μm)

1 17 443.0003 50.709
2 34 886.0006 101.412

. . . . . . . . . . . .
k pk mk−1k Rk−1k

g(z) = exp(−1
2
(

z

DB
)2) (7.3)

f(y) = [erf [
1√
2DS

(x +
w

2
)] − erf [

1√
2DS(x − w

2 )
]]/(2erf(

w

2
√

2DS

)) (7.4)

7.2.2 Nonlinear ring resonator

In a ring or disk resonator, with radius R and effective refractive index neff , WGM will be
at resonance if m number of wavelengths of that mode fits exactly along the circumference
of the resonator as

m
λo

neff
= 2πR. m = 1, 2, . . . (7.5)

For a linear resonator, any WGM satisfying equation (7.5) for a given R will resonate.
For a nonlinear resonator, on the other hand, where the periodic poling technique is
utilized, Λ constrains further the value of R, as only integral p numbers of Λ are allowed.
For the first order QPM, the domain constraints are as follows

pΛ = 2πR. p = 1, 2, . . . (7.6)

Equations (7.5-7.6) have to be satisfied simultaneously for the operation of this nonlinear
resonator. From equations (7.5-7.6), m = pneff

Λ
λ0

which is in general real since Λ and
λ = λo

neff
are all real values. However, for certatin values of p, it is possible for the

values of m to come close to integer values for which the above equations (7.5-7.6)will be
satisfied. If neff is known, Λ = λ0

2(n2ω
eff

−nω
eff

)
can be determined, m can then be determined

from the possible p values, from which the resonating R can be determined. Table 7.1
shows possible values of p,m and R, for a given neff (1.55μm) = 2.1551.
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7.3 Bend loss

Optical loss in a curved waveguide is due to a combination of the material absorption (αm),
pure bending (αb) and the scattering (αw). LiNbO3 is transparent, and αm is considered
to be low, from the fundamental bandgap absorption band-edge around 350 nm to about
5 μm, where phonon absorption starts to occur [7, 123].

Pure bending loses are mainly due to wavefront mismatch between the modes within
the bending waveguide and that just radiated from within the bend into the surroundings
as the mode negotiates the bends. For a bent waveguide with radius R large enough to
inhibit mode conversion, pure bend losses are given by [118]

α(R) = C1exp(−C2R) (7.7)

C1 and C2 are functions of the bent waveguide and the mode dimension but not of R.
That is, both of them depend on the mode confinement, but with C2 showing much more
of the dependence than C1, so C2 is considered to have a dominating contribution to α(R)
and it is given for the case where neff varies slightly from the bulk index, nb, by [118] as

C2 =
2π
λ

(2ΔN)3/2

√
nb

(7.8)

where ΔN is the modal confinement. From equation(7.8), because C2 appears in the
exponential of the expression in equation 7.7, the bending losses are expected to decrease
rapidly with the increase of the modal confinement. Also, the bend radius at which a
certain loss occurs moves to smaller radii when make confinement is increased [118]. A
ridge waveguide can have a high lateral index contrast and hence minimal bending losses,
α(R) =≤ 0.1dB/cm, for a very small R as compared to lower index contrast waveguides.
For a Ti:LiNbO3 ridge waveguide, with air as the surrounding medium, ΔN is high
enough for our starting radius R = 50.8μm to have minimal pure bend losses and hence
a negligible contribution to the total bending loss [118, 54].

Scattering losses are due to the surface roughness on the walls of the ridge waveguide.
A mode within the ring cavity sees more of the outer wall than the inner wall more
especially with the reduction of the radius of the cavity, and hence the losses will be due
to the outer wall quality. For a given mode confinement, the scattering loss for small
rings will be higher than that from larger rings. Smaller ring sizes were avoided for our
devices due to the need to include more domains within a ring. Besides the quality of the
photolithography mask, scattering losses are products of material preparation and they
can be minimized by improving the etching method used to achieve the final ridge guide.
In the previous chapter, this effect was not considered as the device was to be achieved via
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chemical etching, which gives an excellent quality side walls, much better than dry etching.

7.4 Experimental

7.4.1 Photolithography mask design

For z-cut LiNbO3 it is known that Δne > Δno after Ti diffusion. This produces smaller
w and h when ne is utilized than when no is used. Hence shorter diffusion times and
shorter etching times are required for fabrication of a monomode waveguide at a given
wavelength. Also, our devices were to be used for nonlinear applications via a QPM
process, therefore TM modes will result in more efficient devices as d33 > d31 > d22. It
was because of this consideration that we shifted our focus to the TM guiding during our
design. The wavelength used for the design was λ = 1.55μm.

An assumed value of Δne = 0.01 was used to determine nig and the neff from which
R was determined via graphical methods. There is no analytical solution for R, so p was
varied until a near integer value of m, with an accuracy of 0.001, was observed. Rings
and disks of suitable R with a width, w, were designed and reproduced on a 5 inch
Chrome on quartz photolithography mask. Figure 7.3 shows pictures of the designed
photolithography mask. In this picture, the ring, rectangular and covered patterns depict
the waveguide shapes.

Another photomask, with periodically poled hexagonal patterns placed on the same
R values (as the above), was also designed and reproduced on a 5 inch quartz plate with
chrome coating. This photomask was made to be used for creating periodically poled
patterns on the Ti:LiNbO3 planar waveguide substrate before the patterning rings/disks.
These superimposed periodically poled hexagonal patterns are shown schematically in
figure 7.3. Figure 7.2 shows a typical flow diagram containing steps that were followed to
achieve a ridge waveguide.

7.4.2 Substrate preparation

Rectangular pieces (15 mm × 10 mm in size) of z-cut LiNbO3 were cleaned in a clean
room environment in an ultrasonic bath as follows: Five minutes immersed in acetone,
then moved into isopropanol (IPA) for a further five minutes and then into distilled water
for a another five minutes. The samples were removed from the ultrasonic bath and blow
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Figure 7.3: Pictures of the designed photomasks with the waveguides and the periodic
hexagonal patterns
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Table 7.2: Summary of the Ti film thickness used and diffusion time
τ(nm)

t(h) 80 100 130
6 TiLN(1) TiLN(2)
10 TiLN(3) TiLN(4) TiLN(5)
13 TiLN(6) TiLN(7) TiLN(8)

dried with N2 gas.

7.4.3 Ti deposition

An Edward coater (ORC) or Plassy (University of Glasgow) was used to deposit the
desired thickness of Ti film on the −z face of the crystal. The Ti film thickness varied
from 50 nm to 150 nm depending on the required maximum refractive index change and
the final height of the ridge waveguide.

7.4.4 Ti indiffusion

The samples were placed on a platinum mesh bed or silica boat and then placed in a
tube furnace. Dry O2, flowing at 0.5 l/min, was passed through the samples for the
entire period while the samples were in the furnace to suppress Li out- diffusion. To avoid
spontaneous poling on the sample, due to the temperature in the furnace, the temperature
was ramped up to the dwell temperature of 1050 oC at a rate of 3 oC/min. The dwell time
varied from 6 to 14 hours. The ramp down rate was set to 5 oC/min but the rate observed
was actually less than this because of the good thermal insulation of the furnace. Table 7.2
shows a summary of the different Ti film thickness used together with the corresponding
diffusion dwell times.

7.4.5 Poling of Ti:LiNbO3

A similar method used by Broderick et al. [117], to fabricate hexagonal domain inverted
area z-cut LiNbO3, was used in this work on Ti:LiNbO3. A 1 μm, thin Shipley S1813,
photoresist was deposited on the -z face of the Ti:LiNbO3 planar waveguide and then
photo-lithographically patterned with the aid of a photomask containing hexagonal
patterns. The samples were arranged so that the flat side of the hexagons in the mask
was aligned with a y-direction of the Ti: LiNbO3 sample.
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Figure 7.4: A schematic diagram for a prism coupling setup used for the determination of
neff . BS = beam splitter

7.4.6 Determination of neff

The effective refractive index (neff ) of the planar LiNbO3 waveguide modes were
determined by a prism coupling setup, as shown in figure 7.4. A polarized laser beam,
with λ = 632.3nm, was passed through a beam splitter (BS) before arriving on the
rutile prism at a incident angle of φm. The rutile prism, the planar waveguide and the
photodiode detecting the reflected beam from the rutile prism were all mounted on a
rotating stage. The waveguide sample was compressed slightly against the prism until a
coupling spot was observed. The table was rotated to vary φm while the reflected signal
from the interface between the prism and the waveguide was recorded. The recorded
signal was normalized against the one partially reflected by the BS. The presence of
modes was observed by dips on the normalized signal corresponding to the reflection
loss due to mode coupling into the waveguide. With the angle θ (as shown in figure
7.4) known, together with the refractive index of the rutile and the substrate for the
polarization used, neff was determined for the selected angle of polarization used.

Once the neff was known, the desired final height of a ridge waveguide, required to
give a monomode output at 1550 nm, was calculated to determine the required thickness
of the SU 8 photoresist. The thickness of the SU8 photoresist was set to be about two
times the height of the ridge, due to the different etch rate between the photoresist and
Ti:LiNbO3.
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7.4.7 Applying photoresist

SU 8 10 photoresist ( SU 8 optimized for 10 μm thickness)(MicroChem) was poured
slowly on the sample that was placed on a spinner. The photoresist was allowed
to cover the whole sample with a uniform volume. The spinner was set as follows:
start from 0 rpm, accelerate at 100 rpm/s to 500 rpm, dwell for 5 s, accelerate at
300 rpm/s to 3000 rpm. At 3000 rpm, the dwell time was varied to obtain the
required photoresist thickness and then the spinner was decelerated to 0 rpm at 500
rpm/s. A 30 s dwell time was used to obtain the SU8 with an average thickness of 9.9 μm.

7.4.8 Soft bake

The samples were removed from the spinner and placed directly on a hot plate that was
set at room temperature. The temperature of the hot plate was ramped up at 3 oC/min

to 95 oC and left there for the sample to soft bake for 5 min and then the hot plate
was switched off. This dwell time was enough to evaporate the solvent for the SU 8
thickness of less than 11 μm. The samples were then returned slowly to room temperature.

7.4.9 Exposure

The power density calibration values of the MA6 mask aligner, (16.3 → 17.2 mWcm−2),
were used to determine the required time of exposure. A recommended energy density,
(100 mJcm−2) for 10 μm, supplied by the photoresist provider were used as a guideline
to obtain the optimized exposure time for our SU 8 thicknesses. The measured width
and the profile of the SU 8 ridges were used to quantify the exposing conditions. The
required width of 3 μm and a better ridge profile were obtained with 5 → 6 s for 8.5 to
9.5 μm SU8 thicknesses.

7.4.10 Post exposure bake

From the mask aligner the samples were post baked on a hot plate at the same tempera-
ture as the soft bake. The baking profile differed only by the shorter dwell time of 2 min

as compared to the soft bake.
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7.4.11 Development

Within 30 min of exposure, the samples were immersed in an Microposit EC solvent
(Chestech Ltd, UK) for 30 s, then in a new Microposit EC solvent for 15 s, 15 s in IPA.
During immersion in the solvent, the samples were strongly shaken. The samples were
then gently dried with N2.

7.4.12 Dry etching of the ridge waveguide

When the refractive index profile was known and the depth of the ridge was determined
from the BPM simulations, the SU 8 patterns on the planar waveguides were transferred
into the planar waveguide via dry etching. Figure 7.5 shows the optical micrograph of the
developed SU 8 patterns on the Ti:LiNbO3 planar waveguide before they were etched.

Initial attempts to achieve optimum conditions for dry etching at Glasgow University
suffered from material re-deposition after etching, as shown in figure 7.7. Reactive ion
etching (RIE) of the SU 8 masked Ti:LiNbO3 waveguide was performed using Ar+:O2

chemistry using a RTE340 (Electrotech SRC PlasmaFab340). A gas rate of 30/3 Ar+/O2

sccm was used with an open valve (lowest pressure available) and the power of the RTE
340 was set to 130W. The temperature on sample stage was kept at 20oC. The samples
were kept on a flat surface during dry etching for a total period of 3 hours in three
hour-long steps.

One major problem which will lead to major optical loss can be observed from these
optical micrographs. Because the gap between the ring/disk and the bus waveguides
was defined to be zero in the photolithography mask, the contact area between the ring
and the bus waveguides is distorted. This problem should be solved as it will affect
the coupling efficiency of the mode in and out of the resonator and also degrade the
mode propagating along this contact. However, as we needed to optimize the etching
conditions, these structures were used anyway.

Because the etch rate of a non-hard-baked SU 8 is about 1.5 times higher than that
of LiNbO3 or Ti:LiNbO3, a thicker SU 8 photoresist (hSU8 ≈ 1.5h) was used so that the
desired h is achieved when all of the SU 8 etches away.

Figure 7.6 shows an SEM macrograph of the developed SU 8 patterns on a LiNbO3

substrate. This figure shows that the width of the SU 8 is already greater than the
corresponding width on the photolithography mask (3μm) and also that the top part
of the photoresist is wider than the bottom part. This problem occurs during the UV
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Figure 7.5: Optical micrograph of the developed SU 8 photoresist patterns on a Ti:LiNbO3

planar waveguide before dry etching
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Figure 7.6: SEM micrograph of the developed SU 8 photoresist patterns on a LiNbO3

substrate before the dry etching

exposure and is caused by UV beam diffraction within the gap between the photomask
and substrate [124]. Although the hard contact mode was used during exposure, any
irregularity on the substrate will introduce a gap. This problem can be resolved by
applying a matching fluid in-between the mask and the substrate. However, due to time
constraints such corrections were not attempted in the frame of this work.

Although the re-deposited material was removed, by wet etching with 48% HF for 15
min, the quality of the ridges was compromised by the chemical etching of the Ti:LiNbO3

layer. Additionally, due to the normal incidence of the plasma during the dry etching,
the etched samples showed a very shallow angle of the ridge wall. This angle is very bad
as it will prevent the bus and the resonator wall from coming close to each other, which
is necessary to allow close proximity, for proper evanescent mode coupling between the
two. Both of the above dry etching problems have to be resolved before a better ridge
waveguide can be achieved.

In an attempt to resolve the re-deposition of material during dry etching, the samples
were sent to Oxford Instruments (OF) which houses some of the dedicated dry etching
apparatus. Figure 7.8 shows our etched samples as returned from OF. The re-deposition
seems to have been minimized, however there appear to be other problems, as shown in
this figure, such as the two steps along the depth of the ridge. About the same time as
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Figure 7.7: SEM micrograph of the etched LiNbO3 substrate Ti:LiNbO3 waveguide before
and after they were chemically etched by concentrated HF acid
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Figure 7.8: SEM micrograph of the dry etched Ti:LiNbO3 waveguide

we were sending the samples to OF, our temporary clean room facility in Southampton
was put in place and OF was expected to come and install their equivalent dry etching
apparatus in our clean room, hence this work was delayed while waiting for the instal-
lation. However, the installation took much time and we could not continue with the work.

Dry etching seems to be the bottleneck for the successful fabrication of ring resonators
based on ridge waveguides. Due to time constraints, the dry etching problems were not
investigated sufficiently and they should be revisited in future studies.

The above problems have halted, for now, the success of the fabrication of Ti:LiNbO3

ring resonators in our laboratory. The formation of domains along the path of the
waveguides was not explored as the priority was to fabricate a ring resonator first.

7.5 Results and Discussion

7.5.1 Effective index

Figures 7.9 and 7.10 show the TM and TE modes, observed from the planar Ti:LiNbO3

fabricated under different experimental conditions, at λ = 632.8. For a given waveguide,
with the same τ and diffusion dwell time, there are more TM modes than TE modes
which is as expected since Δne is larger than Δno for the LiNbO3 crystal.
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Table 7.3: Summary of the measured neff of the planar Ti:LiNbO3 at λ = 632.8 nm
τ(nm)

t(h) mode 80 100 130
(TM; TE) (TM; TE) (TM; TE)

6 0 (2.22025; 2.2955)
1 (2.21050; 2.29071)
2 (2.20500; ——-)

10 0 (2.21340; 2.29350) (2.21685; 2.29430) (2.22025; 2.29535)
1 (2.20820; 2.29065) (2.2101; 2.29075) (2.21300; 2.29155)
2 (2.20505; 2.28830) (2.2055; 2.28840) (2.20275; 2.2889)

13 0 (2.21430; 2.29380) (2.21915; 2.29525)
1 (2.20950; 2.29115) (2.21310; 2.29200)
2 (2.20610; 2.28905) (2.20820; 2.28850)
3 (2.2057;——–)

The effect of a longer dwell time is to push the waveguide modes deeper into the bulk
without affecting the overall mode number. For ridge waveguides, the dwell time needs to
be controlled as it will affect the required height of the ridge, i.e, a single mode waveguide
(corresponding to longer dwell time) will be deeper in the substrate and hence a taller
ridge will be required to guide the mode effectively.

As τ increases so does the number of modes. However, the bigger τ also implies a
longer dwell time to make sure that no Ti is left undiffused at the surface which will then
result in greater surface loses.

From this discussion, TiLN(4) and TiLN(5) seem to stand a better chance of being
single mode at 1550 nm.

7.5.2 BPM simulation

Figure 7.11 shows the ne index profile at 632.8 nm, for τ= 100 nm and dwell time = 6
h, obtained from the slab mode solver for a given 1D Gaussian diffusion profile through
the use of OlympoiS slab mode solver. This corresponds to the index profile of Ti:LN(2)
sample in figure 7.9. The diffusion constants were varied until only three TM modes were
observed, as shown in figure 7.9.

A dispersion factor, Δn = f(λ) [121, 125], was included before the same Gaussian
diffusion profile and diffusion constant were used to calculate the index profile and mode
at λ = 1550 nm, as shown in figure 7.11 and 7.12 respectively.
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Figure 7.9: Planar TM modes at 632.8 nm for different Ti film thickness (τ) and dwell
time (t). See table 7.2
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Figure 7.10: Planar TE modes at 632.8 nm for different Ti film thickness (τ) and dwell
time (t). See table 7.2
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Figure 7.11: ne index profile at 632.8 nm and 1550 nm for τ=100 nm and t= 6 h extracted
from slab mode solver.

To obtain the height (h) of the ridge waveguide, the cross-section BPM mode solver
(OlympioS Selene) was employed. The width (w) of the ridge was fixed to 3 μm during
the design of the mask. Due to the large index contrast between the surrounding air and
the waveguide, any widths larger than 0.5 μm will correspond to multimode structures
at the wavelength used. However such a small width is not practical since it is at the
resolution of photo lithography hence it will be difficult to achieve.

The optimized diffusion profile obtained from the measured neff at λ = 632.8 nm and
slab mode solver was used for the refractive index of the waveguide at λ=1550 nm.

Figure 7.13 shows a simulated single TM00 mode at λ = 1550 nm with w = 5μm and
TiLN(8) profile, (i.e. τ = 130 nm and dwell time = 13 h). For this diffusion profile, h

needs to be above 3 μm for the mode to be more confined in the strip of the ridge. A
longer dwell time pushes the modes deeper into the substrate hence requiring a higher
h. For h ≥ 6μm, the undesired TM01 starts to appear. The waveguides design of
4μm < h < 6μm was then selected, the h value depending on the dwell time, with the
shorter dwell time corresponding to the shorter h.
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Figure 7.12: Modes and single mode at 632.8 nm and 1550 nm, respectively. for τ=100
nm and t= 6 h extracted from slab mode solver.

Note that more of the modes need to be in the strip part of the ridge for effective
coupling as these ridge waveguides are to be used for the fabrication of a ring resonator.
Though h = 3μm is small for TiLN(8) , it can be sufficient for TiLN(5) as it has less
dwell time ( 10 h). However, from the neff shown in figure 7.9, the quality of the modes
was poor, suggesting that there may be some undiffused Ti on the surface. It was then
concluded that in the future both the TiLN (5) and (8) design will be avoided due to the
above constraints.

7.6 Conclusion

In this chapter, the theory to achieve a nonlinear microcavity by periodically poling
ring/disk resonators was introduced. This theory was based on the operation of a circular
microcavity made of a Ti:LiNbO3 ridge waveguide. The design of the fabrication process
of a periodically poled QPM SHG optical waveguide microcavity was discussed and the
fabrication steps were attempted. The optimization of the fabrication of the Ti:LiNbO3

was detailed and problems associated with dry etching were highlighted. Demonstration
of the operation of the devices was hindered by the dry etching problems and they will
need to be resolved before the device can be realized.
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Figure 7.13: Single mode at 1550 nm for τ=130 nm and t= 13 h obtained using the BPM
solver.
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Chapter 8

Conclusions and Further work

8.1 Conclusions

In this chapter, I summarize the work presented in the previous chapters and present
recommendations for future work.

Chapter 2 summarizes the physical properties of LiNbO3 crystals in which important
properties such as ferroelectricity, the Sellmeier equations, domain inversion, etc, have
been discussed. From these properties, it is clear that this material is suitable to the scope
of this thesis, namely, for use in the RSHG experiments, and microcavity experiments for
nonlinear applications.

In chapter 3 the theory of surface SHG was discussed, in particular a three-layer
model (see ref [60]) was discussed in detail. From the three-layer model, the equations
(3.29-3.31) describing the variation of the SH with the input/output polarization angles
γ/Γ and azimuthal angle φ were formulated. Equations (3.29-3.31) were then used in
chapter 4 to describe the observed SH signal from the experimental results. In this
chapter I have also discussed the experimental setup for the RSHG experiments.

In chapter 4, RSHG experiments were used to determine the symmetry of the
interfacial layer of a z-cut LiNbO3 crystal with a known crystal axis. For γ = Γ = s

the rotation anisotropy results shows six maxima over a 360 o rotation of the sample as
shown by figure 4.2. With this polarization combination only the anisotropic term in
E2ω = A′K(φ) contributes to any observed SHG signal. For the case where γ = Γ = p,
the largest isotropic term B′ dominates due to the large value of χzzz and the six maxima
are reduced to three as a consequence and are shown in figure 4.3. From these results it
was concluded that the interfacial layer has the same symmetry as that of the bulk medium.
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The use of RSHG experiments to detect the signal difference from the poled and
non poled faces was described in this chapter. The aim was to compare, for example,
the SH signal generated from the +z and −z faces of the poled and non-poled regions,
respectively. A set of results has shown the signal difference between the two regions at a
given φ, γ,Γ and are presented in figure 4.5. This was however unsuccessful because the
results were not consistent. The inconsistency was attributed to a couple of parameters,
one of them being the fluctuation of the fundamental laser beam and the other being the
domination of the bulk properties for which no difference between the two faces can be seen.

On the other hand, RSHG experiments were conducted successfully to shows that the
y axis does invert direction during poling. During poling, +z changes to −z, in which
case the order of the cation, Nb+5, Li+, Vacancy, Nb+5, along the z axis also reverses as
shown in figure 4.6. The changes along the z axis force the change of the order of the
cation along the y axis in between the oxygen layer. This is presented in figure 4.6 and
this results have been published in a journal [33].

Chapter 5 introduces polygonal microcavities and their properties for application
in linear optics, and chapter 6 demonstrates a hexagonal microcavity for nonlinear
applications. In chapter 5 the theory governing mode propagation and mode resonance
within a microcavity was detailed. It was shown that for a mode to resonate in a
hexagonal microcavity a wavefront matching condition given by equation (5.30) should
be satisfied. In this work, resonating modes with a 60o incident angle were considered only.

Properties of the hexagonal microcavity such as the Q-factor, FSR and the effect
of rounding the hexagonal corners of the cavity were investigated at a given resonating
wavelength (λ0). For λ0 = 959nm, one of the ideal cavity sizes was calculated from
equation (5.30), and was confirmed by FDTD shown in figure 5.6 to be α = 2.97μm for
a s-polarized FW in a z-LiNbO3 crystal. The FSR for in this cavity was found to be
48 μm. For a regular hexagonal microcavity, a Q-factor of 180 was calculated from the
FDTD simulation. For such a low Q-factor cavity, it takes only 10 round trips before the
cavity reaches steady state.

This low Q-factor was attributed to high cavity losses at the corners of the hexagon,
and the effect of rounding the corners of the hexagon shows an increase in Q-factor.
This is presented in figure 6.9. The limitation of the Q-factor at maximum rounding
(R

α = 50%) is no longer due to the corners but due to the bending losses, which are a
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function of the refractive index contrast and the size of the cavity. A smaller cavity like
the one used in this study will have higher bend losses than a larger cavity at the given
refractive index contrast.

Rounding the corners also changes the overall cavity size and the shape of the cavity.
Consequently the resonating wavelength and the form of mode propagation in the cavity
changes. Figure 6.10 shows the resonating wavelength shift within the ideal cavity size
determined for the regular hexagon. It was also observed that when rounding the corners
to a value of R

α > 20% the form of propagation changes from a six-bounce to a WG kind
of propagation. Within R

α = 20% the shift of the resonating wavelength was found to be
small (δλ ≈ 1nm) compared to that of R

α > 20%. It was then concluded that rounding of
cavity corners up to 20% is sufficient to increase the Q-factor.

In chapter 6, a further requirement was imposed on the ideal cavity size for the FW
by making such a cavity also resonate at λ0

2 . An example of this is the SH from SHG.
This means that the cavity doubly resonates.

For practical nonlinear application of the microcavity, the nonlinear process takes
place in situ within the cavity from the FW, and the condition to favour this nonlinear
process was also included in the cavity. Therefore, such a doubly resonant microcavity
was further made to allow phase matching to occur. A model for TIR-QPM in a doubly
resonating hexagonal cavity was then developed according to equation (6.4-6.6). From
the model some ideal cavity sizes were found for λ0 = 959nm to be αm

1 = 2.98μm,
αm

2 = 12.73μm and αm
3 = 22.35μm, . . ..

In figure 6.2 I have made a comparison of the SHG yield between different phase
matching processes. In that figure the most efficient process was shown to be the PPM
followed by TIR-QPM for (l1 < lc) and the QPM method, respectively, in non-resonant
devices. The reason for the TIR-QPM with (l1 < lc) being better than the QPM was
attributed to the phase matching which is achieved in the devices when the TIR-QPM
with (l1 < lc) process is set-up. In the QPM process the phase matching is achieved at
lc by reversing the sign of the χ(2). For example, while in the (TIR-QPM(l1 < lc)) the
phase matching is achieved by balancing the Fresnel phase shift and the dispersion phase
shift which in this case occurs at l1 < lc. Thus the SHG starts to grow faster in the
(TIR-QPM(l1 < lc)) case than that in the QPM, and was shown in figure 6.2.

I compared the TIR-QPM processes for different values of l1 and I have shown that
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(TIR-QPM(l1 < lc)) > (TIR-QPM(l1 > lc)). This implies that for three ideal cavity sizes
αm

i , i = 1, 2, 3,, the most efficient one will be that for the small α in a non resonating
cavity. However, for resonating cavities such as the doubly resonant one in this study, the
small cavity size was found to lose resonance very quickly hence leading to a low Q-factor.
I have since shown that the bigger the cavity size (as is the case with our hexagonal
devices) the higher the Q-factor. In addition the resonating nature of our hexagonal
device gives rise to a higher SHG yield for this cavity compared to that of non-resonance
QPM devices with a longer length (90 times longer). That, is if the length of the QPM
and TIR-QPM were the same and the starting FW power was the same, the TIR-QPM
will show a higher efficiency because both the FW and SH will be amplified on resonance.

From our study a few major parameters were not dealt with, one of them being how
much of the FW will actually couple into the cavity from the bus waveguide to excite the
cavity mode? The work in this chapter needs an analysis in terms of how to practically
achieve firstly the six-mode propagation via evanescent coupling and secondly how to
achieve doubly resonant TIR-QPM in practice. For a linear hexagonal microcavity this
coupling was achieved and demonstrated by varying the width of the bus waveguide until
a resonant mode was launched in the cavity. This is yet to be demonstrated for a double
resonant microcavity. A practical demonstration of the device is required to confirm that
works and this work is presently continuing at the ORC.

In this chapter, the theory to achieve a nonlinear microcavity by periodically poling
ring/disk resonators was introduced. This theory was based on the operation of a circular
microcavity made of a Ti:LiNbO3 ridge waveguide. The design of the fabrication process
of a periodically poled QPM SHG optical waveguide microcavity was discussed and the
fabrication steps were attempted. The optimization of the fabrication of the Ti:LiNbO3

was detailed and problems associated with dry etching were highlighted. Demonstration
of the operation of the devices was hindered by the dry etching problems and these will
need to be resolved before the device can be realized. The problem with dry etching has
been attributed to the choice of the etch mask which in this case was SU 8. A thick etch
mask with SU 8 is not avoidable due to the low SU 8/LiNbO3 selectivity of about 1.5 and
low vertical index contrast (< 0.01) of the Ti:LiNbO3 waveguide. An effort should be
made to try a metal mask such as Cr [126] in order to improve the selectivity required.
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8.2 Further Work

In the first part of this thesis, the potential usage of the RSHG technique as a non-
destructive tool to test and quantify the degree of poling on the sample was presented.
To continue this work, the use of a stable laser beam should be considered for the
reproducibility of the method. In addition, the choice of λ of the FW should be reduced
further from 532 nm to push the SH deeper in the UV region such that this RSHG
technique is surface specific and the bulk contribution is further minimized. There
is no expected SHG difference through the bulk of the crystal so the increased bulk
contribution on the measured reflected SHG will limit this application.

In the second part of this thesis the potential usage of microcavities for nonlinear
applications was shown and the problems encountered were discussed.

One of the obstacles in achieving a circular microcavity was due to the taller ridge
height required with our choice of waveguide. The taller height requirement can be
further reduced if annealed H:LiNbO3 is used instead of Ti:LiNbO3 waveguide. This
is because Δne for proton exchange waveguide can be ten times lager than that of a
titanium in-diffused waveguide which leads to a smaller ridge height of the order of 1 μm

[127]. Annealed proton exchange has been shown to have recovered d33 values to that
of the bulk LiNbO3 crystal as compared to non-annealed proton exchange [128]. The
limitation of guiding only the extraordinary wave by a H:LiNbO3 waveguide is overlooked
by the fact that d33 will be accessed in this polarization.

The phase matching capability of LiNbO3 is superior compared to that of semi-
conductors as a platform for non-linear microcavities. Hence the use of LiNbO3 as a
platform for microcavities for non-linear applications in this work. However, flexible phase
matching process such as TIR-QPM have recently been demonstrated in semiconductor
materials [5]. This together with the high values of χ(2), Δn and the maturity of the
semiconductor fabrication processes present opportunities for the investigation of the use
of semiconductors in microcavities for non-linear applications.

The numerical work discussed in this thesis can be improved by estimating the
generation of SHG in situ for given input power of the FW and coupling strength.
This can be achieved by using the ideal cavity sizes presented in this work, defining the
non-linearity of the material and launching only the FW through the bus waveguide
to generate the SHG within the cavity. The FDTD methods used in this work should
be optimized to allow phase matching process such as TIR-QPM to occur within the cavity.
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