50 Years of data mining and OR: upcoming trends and challenges

Baesens, B., Mues, C., Martens, D. and Vanthienen, J. (2009) 50 Years of data mining and OR: upcoming trends and challenges Journal of the Operational Research Society, 60, (Supplement 1), S16-S23. (doi:10.1057/jors.2008.171).


Full text not available from this repository.


Data mining involves extracting interesting patterns from data and can be found at the heart of operational research (OR), as its aim is to create and enhance decision support systems. Even in the early days, some data mining approaches relied on traditional OR methods such as linear programming and forecasting, and modern data mining methods are based on a wide variety of OR methods including linear and quadratic optimization, genetic algorithms and concepts based on artificial ant colonies. The use of data mining has rapidly become widespread, with applications in domains ranging from credit risk, marketing, and fraud detection to counter-terrorism. In all of these, data mining is increasingly playing a key role in decision making. Nonetheless, many challenges still need to be tackled, ranging from data quality issues to the problem of how to include domain experts' knowledge, or how to monitor model performance. In this paper, we outline a series of upcoming trends and challenges for data mining and its role within OR

Item Type: Article
Digital Object Identifier (DOI): doi:10.1057/jors.2008.171
ISSNs: 0160-5682 (print)
ePrint ID: 71318
Date :
Date Event
May 2009Published
Date Deposited: 03 Feb 2010
Last Modified: 18 Apr 2017 21:04
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/71318

Actions (login required)

View Item View Item