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ABSTRACT 

This paper builds a dynamic programming model to optimize the collections process in 

consumer credit. It determines which collections actions should be undertaken and how long 

they should be performed. Theoretical results about the form of the optimal policy under 

certain conditions are obtained. Finally a case study is described based on data from the 

collection department of a European bank. 
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1. Introduction 

Consumer credit has been little researched in banking and finance certainly when compared 

with the level of research directed at corporate credit. In particular  there has been no modelling 

undertaken to improve the management of the operations involved in recovering some or all of 

the debt incurred when a borrower defaults. Yet the US sub prime mortgage crisis and its 

knock on effects has made bankers and ordinary citizens realise how important is consumer 

credit. One important issue which has arisen in consumer credit within the last few years, 

because of changes in regulation and the increase in the default rate on credit cards to above 

5%, is how to maximize the amount recovered from consumer debts. This leads into how best 

to manage the recoveries and collection process, particularly for unsecured credit since the 

process in secured credit can be modeled by a two stage process – what is the chance the lender 

will have to take possession of the security and how much will the lender get for the security. 

This paper seeks to model the collections process of unsecured consumer credit debt. In this 

process the collections department of the lender has a number of actions it can take to secure 

some repayment of the debt. These can range from telephone calls and gentle reminder letters 

to more formal letters, getting agreement to rescheduled repayment patterns with some 

repayment being made immediately. If this fails the collectors occasionally can make home 

visits but more generally seek legal redress involving court proceedings and the use of bailiffs. 

The questions are which actions should be taken and how long should a particular course of 

action be undertaken before trying another action. These problem can be modeled in two 

different ways. In the first case, the decisions are made each period in the light of the individual 

debtor’s repayment performance up to that point. Such decisions would be modeled using 

stochastic dynamic programming. In the second case, the decision made is which action to 
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perform next and how long to undertake it, and this depends only on the debtor’s repayment 

performance on previous actions and assumes a deterministic “average” recovery profile under 

the current action. This gives rise to a deterministic dynamic programme. This has the 

advantage that you can easily calculate what are the optimal actions that will be applied to the 

“average” debtor and what is the average cash flow of recoveries that will follow from these 

actions. These are exactly the forecasts those who have to manage a collections process need to 

make prospectively when they are deciding the resources needed in the collections department 

and reporting to those who have to deal with provisioning ( setting aside money to cover lender 

expected losses in the future) how much of the bad debt they expect to recover. In the former 

case they want to know how many staff they will require and how many will need familiarity 

with the legal side of debt recoveries. So knowing which actions will be undertaken and how 

long on average they will last for the typical debtor makes such resource calculations possible. 

Similarly knowing the repayment pattern for the average debtor  allows estimates of total cash 

flow from recoveries to be calculated. We concentrate on this second model in this paper.  

There has been very little analytic modeling of the collections process for any form of lending 

until the advent of the new Basel Accord which came into operation in 2007. This changed the 

way regulators determined how much capital banks have to hold to cover against credit risk. It 

required banks to estimate for each segment of their loan portfolio three quantities- PD, the 

probability of default ( what proportion of the portfolio will default ), EAD the exposure at 

default ( the amount of money that could be defaulted upon within the segment) and, LGD, the 

loss given default ( the percentage of any default that is not recovered eventually), (Bennett et 

al 2005). The capital the banks have to set aside for the credit risk of this loan segment is then 

f(PD).EAD.LGD where f(.) is defined in the Basel regulations. LGD  is closely related to the 
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recovery rate, RR, the percentage of the default amount that is recovered since LGD =1-RR.  It 

is partly this regulatory emphasis on percentage of loss recovered that makes lenders’ 

collections departments measure their performance in terms of recovery rates rather than total 

amount recovered. They also use recovery rate because it is a measure which has the same 

bounds ( apparently 0 and 1) on all loans, and so it is easier to empirically estimate recovery 

rate distributions.  Also, as most countries have limits on the amount of unsecured credit that 

can be offered, the default amounts of unsecured credit are not that different from one another. 

Empirically one can have recovery rates less than 0 if interest is charged on defaulted loans and 

nothing is repaid; recovery rates greater than 1 can occur if all that interest and the original 

default amount is paid off. 

Previously there had been some work on estimating recovery rates in corporate lending since 

these affect the price of risky bonds. The edited book by Altman et al (Altman et al 2002) 

outlines, the mainly, regression based models that seek to relate recovery rates to economic 

factors and characteristics of the loan and the defaulter. The work on modeling the collections 

process for secured consumer lending (Lucas 2006) is directly motivated by Basel and so is 

more interested in estimating how much of the debt would be collected rather than optimizing 

the collections process. 

For unsecured consumer credit, Matuszyk et al (Matuszyk et al 2007) have recognized that the 

recovery rate depends both on decisions by the lender as well as the uncertainty about the 

borrower’s ability and intention to repay. They though look at models which support the 

strategic level decision of whether to collect the debt in house, use an agent or sell off the debt. 

Makuch et al (Makuch et al 1992) addressed bad consumer credit management for General 
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Electric Co in its GE Capital which provides credit card services, building a probabilistic 

account flow model to optimize resource allocation through linear programming. 

Otherwise the only analysis tends to be on very specific issues within the process such as how 

one could use text mining of the recorded conversation between the collector and the defaulter 

to identify whether the defaulter is likely to repay (Chin and Kotak 2006). The books by 

McNab and Wynn (McNab and Wunn 2000) and Anderson (Anderson 2007) describe the 

process and the sorts of actions that can be undertaken but do not model the process. In other 

areas there have been some attempts to model an operations process so as to optimize the 

outcome. One of the nearest to the work here is (Yu and Gittins 2008). This looks at how many 

staff should be put in the different stages of a pharmaceutical Research and development 

operations. There the time of the different operations depends on the number of staff assigned 

to it. In our model the decisions are how long to run each different action for. 

In section two we introduce the model, while in section three we prove some results concerning 

the form of the optimal recovery rate and the optimal collections process under certain special 

conditions. Section four describes the case study of applying this model to real collections data, 

while the final section draws some conclusions and indicates how one could develop more 

detailed models of the collections process. These would be aimed at customizing the actions for 

each particular debtor whereas in this model we assume we are dealing with a homogeneous 

population. 

 

2. Collection Process Optimization Model 

As we described in the previous section, any organization seeking to recover a borrower’s 

defaulted debt has a number of actions it can pursue as part of the collections process. The aim 



   

7 

of the model introduced in this section is to aid the collector determine which actions to 

undertake and how long to undertake them in order to optimize the amount of the debt that is 

recovered. A debtor will remain in the collections process until either all the debt is cleared or 

the collections agency determine that it is not worth pursuing the debt any further and ceases 

all actions and writes off (charges off ) the remaining debt.  

Assume that the collections process has 1,...,i n=  actions which can be undertaken. We 

assume there is an obvious ordering of the actions so that one cannot undertake action i , if 

action ,j j i> has already been used on the debtor. This is because there is little point in 

reverting to “softer” actions once harsher ones have been applied. For example once court 

action has been commenced to recover the debt, there is no advantage in sending reminder 

letters - it confuses the debtor and the collector and could lead to legal complications. Time 

could be considered as continuous, but since most collection agencies review the repayment 

performance of the defaulter at regular intervals, usually monthly, and make decisions about 

whether to change or continue with the current collections actions at these review points, we 

will consider it to be discrete. So let 0,1,2,..s =  be the number of periods the current recovery 

action has been in operation on this debtor. 

The aim of the whole collection process is to maximize the recovery rate. The definition of 

recovery rate can be extended to cover the recovery rate for each particular collections action 

as follows. Define ( )iF s  to be what is recovered by operating with action i for s periods as a 

fraction of the debt outstanding when action i  was started. So (0) 0, ( ) 1i iF F= ∞ ≤ . There is a 

collection cost for each period action i  is undertaken and we define ic to be this cost expressed 

as a fraction of the original debt. We do not add this cost to the debt but we will subtract it 

from the total recovery rate to get the net recovery rate. 
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The objective is to find the collections strategy which maximizes the net recovery rate from 

each debtor, allowing for collections costs, where the cash recovered and the costs incurred are 

discounted by a factor β  for each period into the future. We take the approach used by most 

reasonable lenders of freezing the amount of debt at default but recognizing that the subsequent 

cash flow of recoveries should be discounted to reflect the time value of money. Thus in almost 

all cases, the recovery rate will be less than 1. One can easily modify the model so that interest 

is charged on the unpaid debt, but the results obtained are very similar. 

This problem can then be modeled as a dynamic programming problem. The decision epochs 

are the monthly reviews undertaken on each case to check what recoveries have occurred in the 

past month and what to do in the next period. We denote these review times as T={1,2,..,}.  

},..,{ 1 kaaA =  is the set of actions which the lender can use in seeking to recover a debt with 

the ordering described previously so when using action i the lender cannot in future use actions 

j, j<i. The state space describes the situation at any time of an individual loan and consists of 

three components. These are the current action, i, being performed on that loan, the number of 

decision periods, s for which that action has been undertaken so far and r the recovery rate of 

the loan when this current action was started.  With this definition the transitions in the process 

are deterministic. Either the lender keeps with the existing action and so moves to state 

(r,i,s+1) or it moves to another action immediately and so instantaneously moves to state   

(r+(1-r)Fi(s), j,0). Note that though we are modeling this problem deterministically and are 

interested in the optimal actions on the “average debtor” for resource purposes, the model gives 

a policy where the time in any action does depend on the recovery rate from that debtor from 

the previous actions used. 



   

9 

Define ( , , )V r i s to be the future net discounted recovery rate given that currently action i has 

been performed for the last s periods and r  is the percentage of the original debt that had been 

recovered when action i commenced. The net discounted recovery rate allows both for the cost 

of collections and for discounting both costs and recoveries byβ . The decision this period is 

whether to continue with action i  or to move to a more severe action. Hence ( , , )V r i s  satisfies 

the following optimality equation of a dynamic programming model (Puterman 1994; 

Bertsekas 2007; Denardo 1982)  

(1 )( ( 1) ( )) ( , , 1)
( , , ) max

( (1 ) ( ), 1,0)

i i i

i

r F s F s c V r i s
V r i s

V r r F s i

β− + − − + ⋅ +
= 

+ − +
      (1) 

The first expression is the recovery if action i is continued for another period. The amount 

recovered in that period is (1 )( ( 1) ( ))i ir F s F s− + − , since (1-r) is the fraction of the debt still to 

be recovered when action i  starts. ic is the cost of action i and the recovery rate in subsequent 

periods is ( , , 1)V r i sβ + as the collection process starts the next period in state ( , , 1)r i s + and 

the subsequent recoveries need to be discounted by one period.  The second expression is what 

happens if it is decided to start action i+1. The recovery rate at the start of the action is 

(1 ) ( )ir r F s+ − where the latter is what has been recovered from s periods of action i . Note that 

one does not need to consider more drastic actions than 1i +  because in solving for the state (., 

i+1,0) one will consider moving immediately to action 2i + . Repeating this argument means 

one allows the possibility of moving immediately to all states (., j,0), i.e. starting any action 

, .j j i>  

To find the optimal overall recovery rate and the optimal collections strategy one must solve 

(0,1,0)V , i.e. start with nothing recovered and having performed action 1 for 0 periods. 

Computationally this can be solved using value iteration, outlined in the next section.  
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We have assumed a homogeneous population in the model but of course one could apply this at 

a subpopulation level and allow different types of subpopulations of debtors depending on their 

socio demographic characteristics, the type and amount of debt and their previous credit 

history. The case study we discuss later has two such subpopulations. 

 

3. Properties of the Optimal Collections Policy  

There are some obvious properties one might expect of the relationship between the recovery 

rate and the duration of a specific collections action. Trivially one should expect  

A1: ( )iF s  is non decreasing in s 

A more debatable assumption is  

A2: ( )iF s  is concave in s (i.e., ( ) ( 1) ( )i i iF s F s F s∇ = + −  is non increasing in s) 

This is reasonable if i is a repetitive action like telephoning, where as time goes by the amount 

recovered from each telephone call gets less. It is the law of diminishing returns. The 

assumption may be less obvious for actions, which take some time to set up, like undertaking 

legal action for recovery of the debt. Even there one the repayment pattern is agreed the 

increasing possibility of the debtors reneging on the agreement means the assumption has some 

validity.  

The standard way of solving dynamic programming is to use value iteration where the iterates 

( , , )nV r i s are defined by 

 
1

0

(1 )( ( 1) ( )) ( , , 1)
( , , ) max

( (1 ) ( ), 1,0)

( , , ) 0

i i i n

n
i

n i

r F s F s c V r i s
V r i s

V r r F s i

V r i s

β
+

− + − − + ⋅ +
= 

+ − +
≡

  (2) 
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( , , )nV r i s  converges to the solution of the optimality equation and this gives a way of solving 

numerically to find the optimal collections policy and the optimal recovery rate. To carry out 

this computation one discretizes the r values ( we took 100 values, i.e. every 0.01 and used 

interpolation to get estimates of the values in between), while i and s are already discrete. 

Results in Puterman(1994 ) shows that value iteration can solve  problems with more than 

1,000,000 states relatively easily, whereas our state space is in the low thousands. One can also 

use induction on the iterates of value iteration to prove results about the form of the value 

function and the optimal policy. 

The first result explains how the optimal value function depends on the state descriptors , ,r i s . 

 

Lemma 1:  

i) ( , , )V r i s is non increasing in r 

ii) ( , ,0)V r i is non increasing in i  

iii) If A1 and A2 hold, then ( , , )V r i s  is non increasing in s. 

Proof 

ii) follows trivially because from (1) ( , ,0) ( , 1,0)V r i V r i≥ + The proofs of (i) and (iii) use 

induction on n the iterate of the value iteration procedure in equation (2). Trivially all three 

conditions hold at n=0 since 0 (.,.,.) 0V ≡  

 

i) Assume i) holds for  ( , , )nV r i s then as r increases (1 )( ( 1) ( ))i ir F s F s− + −  decreases and the 

induction assumption implies ( , , 1)nV r i s + is non increasing. Summing these two gives that the 

first expression on the RHS of (2) is non increasing in r . As r increases 
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(1 ) ( ) (1 ( )) ( )i i ir r F s r F s F s+ − = − +  increases and so  ( (1 ) ( ), 1,0)n iV r r F s i+ − + is non 

increasing by the induction hypothesis. Hence 1( , , )nV r i s+ is non increasing in r and the 

induction is proved. 

iii) From A2 we have  ( ( 1) ( ))i iF s F s+ − is non increasing in s. ( , , )nV r i s is non increasing in s 

because of he induction hypothesis . A1 implies ( )iF s is non decreasing in s and so i) shows 

that ( (1 ) ( ), 1,0)n iV r r F s i+ − +  is non increasing in s. Hence all the terms on the RHS of (2) are 

non increasing in s and the induction hypothesis holds. ... DEQ  

The optimal collections policy can be defined by a set of functions *( , ),  i=1,2,..,n, 0 1s r i r≤ ≤ , 

so that if the collection process starts action i , with the recovery rate at r, the action should be 

continued for *( , ),  s r i periods, where  

 *( , ) min{ | ( , , ) ( (1 ) ( ), 1,0)}is r i s V r i s V r r F s i= = + − +  

Note that for some actions j , *( , ) 0s r j =  which implies that action j  will not be used if the 

recovery at the point at which it was considered for use is r . 

 

Lemma 2: 

i) If (1 ) ( ) 0, 0i ir F s sc s− − ≤ ∀ ≥ , then 

ijjrs ≥∀= ,0),(*  

Proof 

Assume the contrary  namely *( , ) * 0s r j s= > ,then  as 0,0)( ≥∀≤− sscsF ii    
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* *( , ,0) (1 ) ( *) * ( (1 ) ( *), 1,0) ( (1 ) ( *), 1,0)

( (1 ) ( *), 1,0) ( , 1,0)

s s

i i i i

i

V r i r F s s c V r r F s i V r r F s i

V r r F s i V r i

β β= − − + + − + ≤ + − +

< + − + ≤ +
, 

where the first inequality comes from the assumption in (i) and the third inequality from 

Lemma 1 (i). This contradicts the definition of ( , ,0)V r i in (1) and so 0),(* =irs . ... DEQ  

Note that if A2 holds and (1*) / (1 )i iF c r≤ − , then condition (i) will also hold. 

 

Finally we prove the intuitive result that in the situation when 1, 0 ic iβ = = ∀ , one might as 

well run with each collection action for as long as possible before then moving onto the next 

hardest action, since there is no cost for operating any action and no penalty if  the recovered 

amounts are very late in being paid. 

 

Lemma 3: If 1, 0 ic iβ = = ∀ , *( , ) ,  i=1,2,..,n, 0 1s r i r= ∞ ≤ ≤  

Proof 

In this case, we can write ( , , ) (1 ) ( , )V r i s r W i s= − . Substituting this into equation (1) gives an 

optimality equation for ( , )W i s , namely 

(1 )( ( 1) ( )) (1 ) ( , 1)
( , , ) (1 ) ( , ) max

(1 (1 ) ( )) ( 1,0)

( ( 1) ( )) ( , 1)
( , ) max

(1 ( )) ( 1,0)

i i

i

i i

i

r F s F s r W i s
V r i s r W i s

r r F s W i

F s F s W i s
W i s

F s W i

− + − + − +
= − = 

− − − +

+ − + +
⇒ = 

− +

(3) 

Note that 0 ( , ) 1W i s≤ ≤ , since it is a recovery rate with no costs or discounts involved. To 

prove the theorem, it is enough to show that the first term in (3) is greater than the second term 

for all s. Now 

 
( 1) ( ) ( , 1) ( 1) ( ) (1 ( 1)) ( 1,0)

( 1,0) ( ) (1 ( )) ( 1,0)

i i i i i

i i

F s F s W i s F s F s F s W i

W i F s F s W i

+ − + + ≥ + − + − + +

> + − > − +
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where the first inequality holds because in state (i,s+1) choosing to start the i+1
th
 action result 

in a recovery less than or equal to the optimal action in that state. The last two inequalities hold 

because ( 1,0) 1W i + ≤ . Thus one keeps on using action i  all the time and 

so *( , ) ,  i=1,2,..,n, 0 1s r i r= ∞ ≤ ≤ .   ... DEQ  

 

4 Case Study 

The model developed in the previous sections was applied to collections data from an 

European Bank. The sample consisted of 3084 consumer loans that had defaulted over a three 

year period. For each loan there were some details of the borrower, and loan details including 

when it was taken out, how much it was for, when the borrower defaulted and how much was 

owed at default. There were also monthly details (covering 150,658 loan/months in total) of the 

collection process including which collection action was applied to the defaulter in the month 

and how much was recovered in that month. 

There were 5 different collections actions recorded but in fact only 3 actions were ever 

considered for each debtor. This was because the collections process segmented the debtors 

into two groups depending on whether the defaulted amount was a low percentage of the 

original loan (which we will classify as G, the Goods) or a high percentage of the original loan 

(which we classify as B, the Bads). The policy was to allow actions 1G, 2G and 3 to be applied 

to those in the Good group and action 1B, 2B and 3 were applied to those in the Bad group. 

Although not the same actions, 1G and 1B both concentrated on communicating with the 

defaulters and arranging repayment schedules. 2G and 2B are also different actions but both 

use legal procedures to recover the debt. The collection procedure has to begin with action 1G 

or 1B, because the regulations prevented collectors using legal procedures without first seeking 
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to agree a repayment schedule. Since the collectors’ objective is to maximize the recovery rate, 

allowing for collection process expenses they would want to move to stronger actions in due 

course Action 3 is essentially passive in that the debt is kept on the books but no effort ( 3 0c = ) 

is made to recover the debt. The legal position in that country is that someone with an 

outstanding debt is not allowed to take out further credit and therefore many debtors do pay off 

their debt unsolicited (sometimes several years after the debt occurred) when they want to 

obtain further credit. Note that although action 3 is the weakest action, it still satisfies the 

modeling assumption that having moved to it, and written off the loan, the collector will not 

move subsequently to actions 1 or 2. We solve the problem separately for the two segments- 

Good and Bad.   

We plotted the relationship between recovery rate and maturity for each action case by case 

and from that felt that the exponential function 

 ( ) (1 ),    , 0iB s

i i i iF s A e A B−= − >  (4)

  

fitted action 1 and 2 well. This exponential function also satisfied Assumptions A1 and A2, 

since ( 1) ( ) (1 )  as Bs BF s F s Ae e s− −+ − = − ↓ ↑ . Coefficient Ai is the recovery rate if the action 

was allowed to continue indefinitely while Bi is related to the rate of recovery 

( ln(0.5) /  where i i iB s s= −  is the time until half the maximum possible recovery under this 

action will have occurred. The parameters A and B were estimated by minimising the square of 

the errors of the average amount collected in each period s, i.e. ( 1) ( )i iF s F s+ − . 

Figures 1 shows the form of the cumulative recovery rate function for 1G and 2G where the 

estimate for 2G ignores how a debtor had performed on 1G. The estimated parameters for the 

Good segment were   
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-0.147

1 ( ) 0.243(1 )
s

GF s e= −  with 9755.02 =R  and 

  -0.0577

2 ( ) 0.425(1 )
s

GF s e= −  with 9924.02 =R . 
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Figure 1 – Cumulative Recovery Rate for Action 1G and 2G (Good) 

It is clear that in the long run action 2G collects more than 1G in that it would eventually 

recover 42% of the debt while 1G would only recover 24%. However 1G is quicker in 

recovering debt than 2G recovering 14.2% in the first 6 months compared with 12.4% for 2G 

recovered in the first 6 months. 

In the Bad segment the cumulative recovery functions are similarly estimated. They are shown 

in Figure 2, where  

-0.770

1 ( ) 0.0188(1 )sBF s e= −  with 8073.02 =R   and 

 -0.0681

2 ( ) 0.252(1 )
s

BF s e= −  with 9976.02 =R . 
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Figure 2 – Cumulative Recovery Rate for Action 1B and 2B (Bad) 
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In this case action 1B on average  only recovers 1.8% of the debt even if it was used forever, 

whereas action 2B could recover 25% of what is owed if it was operated for ever. So really 

action 1B is extremely unsuccessful and 2B is far less successful than 2G, though that has more 

to do with the difference between the debtor types rather than any difference in the actions. 

F(s) - Cumulative Recovery Rate for Action 3
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Figure 3 – Cumulative Recovery Rate for Action 3 

Action 3 which involved no proactive collection procedures, was the only action where plotting 

the data did not give a good fit to the exponential function. Investigation also suggested only 

minute differences between the results for the two groups Good and Bad and so it is considered 

that the same action (or perhaps non action is a better description) is applied to both groups.  

As there are no costs in this action and no “harsher” action can be undertaken once a debt 

reaches this state, there is no point in ever stopping doing this action. Figure 3 shows the 

debtors’ repayment behavior under action 3. We sought to fit it using a combination of linear 

functions and the exponential function which fitted the other actions so well. The result was a 

curve of the form 

3

-0.05924s

0.0259  1 8

0.0272  8<s 30
( )

0.000009s+0.0272 30<s 37

0.0314(1-e ) 37<s

s

F s

≤ ≤
 ≤

=  ≤

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In calculating the cost 
ic  of operating the various actions one has to use expert judgment. The 

monthly cost of each operation was determined having examined the whole collections budget 

and after discussions with the collections managers. ic  though is this cost expressed as a 

fraction of the debt outstanding on default and to do this we took the average balance at default 

of those who were in the Good group ( for 1 2,G Gc c ), and in the Bad group (for 1 2,B Bc c ).This 

resulted in estimates of the costs of  

00048656.1 =Gc , 00398703.2 =Gc , 00003769.1 =Bc , 00242082.2 =Bc    (5) 

There was data for up to 80 months in the collection process with up to 60 months available on 

individual actions. It was clear that almost all collection actions achieved no further recoveries 

after 48 months (some of them such as 1B well before). So it was decided to let each action 

takes place for a maximum period of 48 months, i.e. 4 years.  

Looking at the case where the costs are given by equation (5), but keeping the discount factor 

1β = , we get the results in Table 1 for the Bad segment of debtors and the results in table 2 for 

the Good segment. Of course for resource allocation purposes we are only interested in the case 

when the recovery rate before the first action is 0 in which case the second action starts after 8 

months with an expected recovery rate of 0.0188 from the first action. We have added the 

results for how long the collectors should undertake the second action 2B if the recovery rate in 

the first action is not this average value for sensitivity analysis purposes. The column 

“Recovery rate after 1B applied” shows reference values of recovery before the start of action 

2B, and the rest of the row described how long 2B should be undertaken and the effect it has on 

the net recovery rate. Table 2 describes the same results for the Good segment of debtors. 
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Table 1 – Optimal policy for Bad segment with Costs and No discounting  

Recovery 

rate before 

1B applied 

Optimal 

duration of 

1B 

Recovery 

rate after 1B 

applied 

Optimal 

duration 

of 2B 

Recovery 

rate after 

2B applied 

Optimal 

duration 

of 3 

Total 

recovery rate 

Optimal total 

net recovery 

rate 

0 8 0.0188 29 0.231 ∞∞∞∞ 0.254 0.183 

Sensitivity analysis on recovery rate under action 1B 

  0 29 0.217 ∞ 0.24 0.17 

  0.1 28 0.293 ∞ 0.314 0.246 

  0.2 26 0.367 ∞ 0.386 0.323 

  0.3 24 0.442 ∞ 0.458 0.4 

  0.4 22 0.517 ∞ 0.531 0.478 

  0.5 19 0.591 ∞ 0.603 0.557 

  0.6 16 0.667 ∞ 0.677 0.638 

  0.7 11 0.74 ∞ 0.747 0.721 

  0.8 6 0.817 ∞ 0.822 0.808 

  0.9 0 0.9 ∞ 0.903 0.903 

 

The results are that for the Bad segment one can expect an optimal net  recovery rate of 18.3% 

(including costs) by applying action 1B for 8 months followed by action 2B for 29 months 

before moving the debt into Action3 ( the passive action) where it can stay indefinitely. 22% of 

the debt should be expected to be recovered by action 2B though.  Figure 4 and 5 shows this 

optimal recovery rate as a function of the months into the collections process for the type of 

customers. 

 

The results in the Good segment are quite different as Table 2 shows. One would expect to 

recover 51% of the debt eventually and the optimal policy is to operate with action 1G for 29 
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months followed by action 2G for another 27 months before moving the debt to the passive 

state. In this case almost equal amount of debt are recovered by the two types of actions. 

 

Table2 – Optimal policy for Good segment with Costs and No discounting  

Recovery 

rate before 

1G applied 

Optimal 

duration 

of 1G 

Recovery 

rate after 

1G applied 

Optimal 

duration 

of 2G 

Recovery rate 

after 2G 

applied 

Optimal 

duration 

of 3 

Optimal total 

recovery rate 

Optimal net 

recovery 

rate 

0 29 0.240 27 0.495 ∞∞∞∞ 0.510 0.388 

Sensitivity analysis on recovery rate under action 1G 

  0 32 0.358 ∞ 0.377 0.25 

  0.1 30 0.415 ∞ 0.432 0.313 

  0.2 28 0.473 ∞ 0.488 0.377 

  0.3 26 0.531 ∞ 0.545 0.441 

  0.4 23 0.588 ∞ 0.6 0.508 

  0.5 20 0.646 ∞ 0.656 0.576 

  0.6 16 0.703 ∞ 0.711 0.647 

  0.7 11 0.76 ∞ 0.767 0.723 

  0.8 4 0.818 ∞ 0.823 0.807 

  0.9 0 0.9 ∞ 0.903 0.903 

 

This policy could be compared to other, such as using action 1G for one year, followed by 

action 2G for another year and action 3 indefinitely. This policy would collect 39.0% of the 

debt instead of the 51.0% recovered using the optimal policy. The net recovery rate would be 

33.6% using this policy and 38.8% using the optimal policy. Note that the optimal policy can 

recover 12%  more of the debt than this other policy  but  half of the “extra” amount recovered 

is used up by the extra collection effort so the net improvement is just over 5% of the 

outstanding debt. 
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Recovery rate through optimal time in actions
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Figure 4 – Recovery rate through optimal time in actions 1B and 2B 
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Figure 5 – Recovery rate through optimal time in actions 1G and 2G 

Note that as the recovery rate from action 1 increases the time in action 2 drops. This is 

because there is less debt still to recover and so the operating costs are a larger proportion of 

the possible amount to recover. Of course the total net recovery rate increases as the amount 

recovered in action 1 increases but the amount of this that comes from the actual collection 

actions decreases. If a sufficient amount has been recovered it may not be worth while 

undertaking the second collection actions at all. This is the case for action 2B in the Bad 
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segment if at least 90% of the debt has been collected by action 1B. Similarly for the Good 

segment one would not use 2G if 84% of the debt had been recovered before its operation.  

Table 3 – Optimal policy for Bad segment with Costs and discounting  

Recovery 

rate before 

1B applied 

Optimal 

duration 

of 1B 

Recovery 

rate after 

1B applied 

Optimal 

duration 

of 2B 

Recovery rate 

after 2B 

applied 

Optimal 

duration 

of 3 

Optimal total 

recovery rate 

Optimal total 

net discounted 

recovery rate 

0 5 0.0184 29 0.231 ∞∞∞∞ 0.254 0.149046 

Sensitivity analysis on recovery rate under action 1B 

  0 29 0.217 ∞ 0.24 0.139 

  0.1 27 0.290 ∞ 0.311 0.221 

  0.2 26 0.367 ∞ 0.386 0.302 

  0.3 24 0.442 ∞ 0.458 0.383 

  0.4 21 0.515 ∞ 0.529 0.466 

  0.5 19 0.591 ∞ 0.603 0.548 

  0.6 15 0.664 ∞ 0.674 0.632 

  0.7 11 0.72 ∞ 0.747 0.718 

  0.8 5 0.814 ∞ 0.820 0.807 

  0.9 0 0.9 ∞ 0.903 0.903 

 

If we introduce discounting with the monthly discount factor set at β = 0.99746 (corresponding 

to an annual inflation rate of 3.2%- the European average for the last five years), the results are 

very similar as Tables 3 and 4 show. The main difference is that the optimal recovery rates are 

slightly lower because of the time before one starts to recover some of the amounts. Also the 

durations of the first action drop a little because, especially in the Bad segment, one wants to 
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get more quickly to action 2B which is where the main recoveries occur so that the recoveries 

are not too heavily discounted. 

Table 4 – Optimal policy for Good segment with Costs and discounting  

Recovery 

rate before 

1G applied 

Optimal 

duration 

of 1G 

Recovery 

rate after 

1G applied 

Optimal 

duration 

of 2G 

Recovery 

rate after 

2G applied 

Optimal 

duration 

of 3 

Optimal total 

recovery rate 

Optimal total 

net discounted 

recovery rate 

0 25 0.237 27 0.493 ∞∞∞∞ 0.508 0.301016 

Sensitivity analysis on recovery rate under action 1G 

  0 32 0.358 ∞ 0.377 0.244 

  0.1 30 0.415 ∞ 0.432 0.313 

  0.2 28 0.473 ∞ 0.488 0.382 

  0.3 26 0.531 ∞ 0.545 0.451 

  0.4 23 0.587 ∞ 0.6 0.520 

  0.5 20 0.646 ∞ 0.656 0.590 

  0.6 16 0.702 ∞ 0.711 0.662 

  0.7 11 0.76 ∞ 0.767 0.735 

  0.8 4 0.817 ∞ 0.823 0.812 

  0.9 0 0.9 ∞ 0.903 0.903 

 

5 Conclusions 

It is surprising that so little research has been undertaken into the operations management of 

the collections process in consumer credit, so that this is, we believe, the first model to seek to  

optimize aspects of the process. This may well be psychological in that banks want to “bury 

their mistakes” but it is also partly the accounting conventions in that when a bank has written 
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off all or part of a loan , senior managers are only concerned that the write off covers the loss 

and not to minimize the loss by optimizing the subsequent collections process. Moreover 

sometimes collections is contracted out or sold on to other debt recovery organizations and so 

the data on collections is not available. Even when collections is kept “in house”, collections 

departments tended to register only the most basic information on the process.  

The model introduced here is essentially a homogeneous one in that differences between 

debtors is only allowed for by segmentation and within a segment, the population is assumed to 

be homogeneous. This deterministic model is useful as a way of identifying what the cash flow 

from recoveries would be under the optimal collections process. Such information together 

with estimates of numbers of new debtors moving into collections each month is what is 

required  for provisioning. The model is also useful in determining the allocation of resources 

within the collections department to obtain this optimal average recovery rate under  the 

different actions. 

One could expand the problem by seeking to tailor the collections process to the individual 

debtor, but one would then need to connect the cumulative recovery rate function for each 

action to the characteristics of the debtor. This will require experimentation by collections 

departments to acquire this data, but will be worthwhile doing once such data becomes 

available. One might also want to expand the model by including the information on the 

recoveries to date from an individual debtor from the current action being applied in deciding 

whether to continue that action or not. For example if someone is keeping to the agreed 

restructured repayment pattern, one would not want to change this; if someone has been 

repaying more than the average so far under a particular action one would want to keep with 

that action even if for the average debtor it is time to change to another approach. This is like 
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adjusting the way one operates with normal borrowers (increasing their credit limit for 

example) in the light of movements in their behavioural score. Since it has taken fifty years for 

this to happen with credit scoring, namely operating decisions based on behavioural scores, it 

should not be expected to happen overnight with the collections equivalent problem. The need 

is to acquire collections data in this level of detail. 

Another extension will be to move from the deterministic way of modeling recoveries 

repayment to modeling it as a stochastic process. Part of this would mean checking what 

impact the previous recovery actions have on the efficacy of the current action. Our model 

assumes that they have none but that one can never return to a previous action. Checking 

whether the recovery process is really “memoryless” in this sense and that returning to 

previous actions is pointless would be part of developing such stochastic models.  

Data is the key. Without it no useful model of the collections process can be built. Some 

collectors are investigating the use of text mining to identify the key phrases in the recorded 

conversations between debtor and collector which will categorise those who will subsequently 

repay the debt and those who will not. Most collections departments though are nowhere near 

this level of sophistication and a useful first step would be to collect and keep the data which 

was needed in this case study – the records of what collections actions were performed on the 

debtor that month and how much of the debt the debtor repaid in that month. With that 

collections departments would be in a position to improve the operations of their processes by 

models akin to that developed here. 
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