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DEVELOPMENT OF A REUSABLE ATOMIX OXYGEN SENSOR  
USING ZINC OXIDE THICK FILMS 

 

by Juan Carlos Valer 
 
The aim of this project was to develop a thick film sensor made of zinc oxide that 
would accurately respond to various fluxes of atomic oxygen (AO), allowing it to be 
regenerated after saturation. The sensors were manufactured using a thick film 
technique of screen printing over a substrate (alumina) that is inert to the action of 
AO; some of sensors were developed with pure ZnO while others used a binder to 
the substrate. The expectation has been that impinging atomic oxygen is captured 
upon the zinc oxide which will consequently increase its resistance; this change is 
an indicator of the AO flux. By suitable heating, the adsorbed atomic oxygen 
atoms are released from the sensor and its original properties are then restored. 
 
  This thesis describes the manufacturing of the sensors as well as all the tests 
conducted so as to characterize and determine the performance of the thick film 
ZnO sensors. It also includes the relevant conclusions to this work. 
 
  It has been concluded that the sensors respond to AO by increasing the overall 
DC resistance of the sensors; impedance spectroscopy reveals that an increase of 
the resistance of the grain boundaries of the crystallites that make-up the sensors 
to be the dominant process. AO flux can be measured by both resistance and 
impedance spectroscopy measurements. Sensors can be regenerated by suitable 
heating. However, each sensor needs to be independently calibrated before AO 
measurements can be achieved. A model to relate the change of DC conductance 
with AO flux is described, as well as an adaptation to use with impedance 
spectroscopy. UV radiation does not seem to have an effect on the resistance of 
the sensors, despite evidence provided by other researchers. 
  
  This is the first time that thick film ZnO sensors have been used to measure AO 
flux, and also the first time that impedance spectroscopy has been used for this 
purpose and to characterize thick film ZnO sensors for outer space applications. 
 
 Screen-printing of pure ZnO has not produced a sensor robust enough for outer 
space applications; the use of a glass binder shows promise to overcome this 
limitation. 
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 The aim of this research is to develop a thick film sensor made of zinc 

oxide that would accurately respond to various fluxes of atomic oxygen (AO), 

allowing it to be regenerated after saturation.  

 

 Atomic Oxygen has a concentration in Low Earth Orbit (LEO) high enough 

to erode and degrade some spacecraft materials. Since the composition of the 

upper atmosphere, where several manned and unmanned spacecraft operate, is 

highly variable due to several factors, ways to monitor the concentration of AO in 

real time have been developed over the years. Recently, there have been 

attempts to design sensors that can be used for long periods of time without 

replacement. 

 

 Recent experience in the design of sensors of this latter type include the 

use of thin films of ZnO, a well known semiconductor which has the potential to 

release upon heating the adsorbed AO acquired during testing. Problems with this 

design, however, include hysteresis and some erratic response. 

 

The sensors that are the focus of this research are thick films of ZnO that 

have been developed in an attempt to overcome the limitations of thin films, and to 

provide a very affordable means to fabricate sensors for atomic oxygen flux 

measurement. These sensors were manufactured using a thick film technique of 

screen printing over a substrate (alumina) that is inert to the action of AO. In the 

ideal case, the impinging atomic oxygen would be adsorbed upon the zinc oxide 

which would increase its resistance; this change would be measured as an 

indicator of the AO flux. By suitable heating, the adsorbed oxygen atoms would be 

released from the sensor and its original properties would be restored. 

 

So as to provide an adequate background for the present work, a brief 

introduction is presented on the near Earth space environment, and the 

interactions of AO with spacecraft materials. A summary to the present most 

important AO measurement techniques is also presented.  

 

1. Introduction 
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Since the testing of sensors in LEO is not always possible or affordable, 

many techniques to simulate AO in ground laboratories have been developed. 

These techniques vary significantly in the fluxes, contaminants, and energy of the 

AO produced, among other factors, which can have an effect in the understanding 

and response of a measurement technique. Consequently, the most important AO 

sources are briefly described in this document, together with ATOX source of the 

European Space Agency which was used to evaluate the sensors of this research. 

 

The basics of semiconductor theory are given in this thesis to as to 

introduce the basic concepts and vocabulary on this field, followed by a brief 

description of ZnO crystals. Impedance Spectroscopy has been used to 

characterize the response of the sensors and to measure it; an introduction to this 

technique is provided. 

 

The technique used to manufacture the thick ZnO sensors is also 

described here together with an attempt to characterize the sensors before AO 

exposure.  

 

The rationale and results of testing the sensors exposed to a flux of AO in 

ATOX are presented here, followed by an attempt to understand their response. A 

follow-up research plan is outlined in this thesis. 
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The term “Space Environment” typically applies to the environment that a 

spacecraft encounters when it orbits our planet above most of the atmosphere. 

Although low Earth orbit space is considered to be very close to a vacuum, in 

reality there are chemical elements that can severely impact the ability of a vehicle 

to fulfill its mission. Interactions with the space environment are credited with about 

20 to 25% of all spacecraft failures (Tribble, 1995).  

 

 Orbiting spacecraft can encounter significant amounts of neutral molecules 

and/or atoms, micrometeorites, manmade debris, all ranges of electromagnetic 

radiation, and charged particles. 

 

 The range of orbits between 300 km and 1000 km, where most of the 

crewed spacecraft and a significant number of other vehicles operate, is called 

“Low Earth Orbit” or LEO for short. The main constituent of the atmosphere in LEO 

up to an altitude of 650 km is by far atomic oxygen. In LEO, the atmospheric 

pressure is about ten orders of magnitude less than at sea-level, and although a 

small relative value, it is significant enough to take into consideration its effect on 

spacecraft materials. It should be noted that several factors play in keeping the 

composition and physical variables of LEO changing; among them are solar cycle 

variations, Earth albedo, latitude, and others. As a consequence of this, the 

description of the very high Earth atmosphere should always be considered in 

terms of average values rather than exact numbers. 

 

 The neutral atmosphere, the region where neutral molecules and atoms 

have a higher concentration with respect to ionized particles, is located between 

175 km and 1000 km. At these altitudes, the ultraviolet (UV) radiation from the Sun 

severs intra-molecular bonds with a low probability of charging the newly 

independent atoms. Another consideration on the composition of the atmosphere 

is that gravity makes the heavier particles tend to be closer to the surface of the 

Earth than the lighter ones. At 175 km the concentration of neutral atomic oxygen 

takes predominance with respect to N2. At 650 km of altitude, Helium becomes the 

2. Space Environment and Atomic Oxygen 
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most abundant atom, a situation that continues up to 2500 km where Hydrogen 

takes its place as the element with the highest concentration. 

 

The flux of AO at an altitude of about 300 km is typically 1015 atoms/cm2s, 

although this value changes according to the eleven year-long solar cycle, and 

other short-term Sun related phenomena. 

 

 

 

 

Typically, the Space Shuttle and the International Space Station operate 

between 300 km and 600 km of altitude, and are thus subject to a continuous 

attack by atomic oxygen, an element known for being highly reactive. Spacecraft 

travel at these heights with a tangential speed of about 8 km/s. Since the thermal 

velocity of the atomic oxygen is about an order of magnitude less than this value, 

the orbital velocity (8 km/s) can also be considered the relative speed between the 

ram face of the spacecraft and AO regardless of the direction of motion of the AO; 

this is equivalent to an energy of 5 eV.  

 

Figure 2.1 Atmospheric Composition as a Function of Altitude (Fortescue et al., 2003) 
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During solar maximum, in which the heated atmosphere expands due to 

enhanced solar activity, the atmospheric density in LEO can be significantly 

increased. 

 

Measuring in real time the AO flux in which a particular spacecraft operates 

becomes then indispensable so as to take the appropriate measures to prevent or 

diminish the degradation of some of its systems.  
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 Atomic Oxygen will interact with spacecraft materials by causing 

atmospheric drag and the sputtering of surface materials. It will also react 

chemically with spacecraft causing glow and surface damage (Tribble, 1995). 

 

 Atmospheric drag occurs due to momentum transfer between the 

spacecraft and the atomic oxygen neutrals, and results in orbit decay and 

eventually reentry into the Earth’s atmosphere. To prevent this, the fuel budget of 

the spacecraft has to allow for periodic burns to increase altitude. Drag can 

increase during a solar maximum in which the heated atmosphere expands and 

increases its density in LEO. 

 

 Sputtering is caused when high energy neutral atoms (or molecules) 

impact the surface of a spacecraft, severing a chemical and/or surface bond, and 

in many cases severely damaging or degrading the surface in question. This 

phenomenon can be enhanced when spacecraft charging is present, in which 

case it can alter the properties of shields and other equipment. 

 

 Optical glow has been reported on numerous spacecraft and on the Space 

Shuttle. It is attributed to the interaction of the neutral higher atmosphere with the 

spacecraft’s materials, and important research has been done to understand the 

chemical mechanism of this phenomenon (Caledonia et al., 1990, 1993; Vierek et 

al., 1991). The glow, which peaks at about 680 nm (Vierek et al., 1991, 1992), can 

interfere with remote sensing instruments, and so far the only known way to 

reduce it is to change the composition of the surfaces exposed to the ram 

direction. Unfortunately, materials that to do not glow in LEO tend to be 

susceptible to chemical attack by atomic oxygen. 

 

 It is known that fast AO reacts with a variety of materials, causing erosion, 

oxidation, damage, and degradation of the surface exposed. Due to launch weight 

restrictions, some of the materials damaged by atomic oxygen are very thin and its 

effects on the overall spacecraft can be severe and can endanger the mission of 

the spacecraft or reduce its lifespan; this was the case with the first generation of 

3. Effects of Atomic Oxygen on Spacecraft Materials 
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GPS satellites due to faster than anticipated degradation of their solar panels 

(Tribble, 1995). 

 

Atomic Oxygen can react with coatings such as silver and osmium by 

oxidizing them, which can significantly change the properties of the coatings. It can 

also damage or destroy unprotected silver wire used to interconnect adjacent solar 

cells. The relative speed of 5 eV of AO is enough to sever many molecular bonds, 

including that of several polymers (Packirisamy, et al., 1995). 

 

AO can also react with the exhaust plumes of main propulsion systems 

and/or reaction and control systems, creating a cloud of contaminants that will orbit 

the earth around the source spacecraft. Some of the substances of this cloud can 

adhere to the surface, causing a change of properties of the material in question or 

degrading the performance of certain instruments.  

 

Protection of materials that can be damaged by AO in LEO is paramount; 

any defect of the protective coating or structure may allow the atomic oxygen to 

attack the material underneath. Atomic-oxygen undercutting is a potential threat to 

vulnerable spacecraft materials that have atomic-oxygen protective coatings (Groh 

et al., 1994).  

 

Due to the chemical nature of the AO interaction with many spacecraft 

materials, the potential damage is dependent on the total flux of AO, so the 

protection of pertinent materials needs to consider the total flux (or fluence) at the 

end-of-life of the spacecraft.  

 

3.1 Mars and Venus 

 

 It should be noted that there is ample evidence of the presence of atomic 

oxygen in the upper atmospheres of Venus and Mars (Fox et al., 2000, Hodges, 

2000, Kim et al., 1998, Slanger et al., 2001). With the recent commitment made by 

the United States to explore and eventually send manned crews to Mars, this 

planet is going to continue to receive exploration robots to further study the planet.  

 

 Observation platforms for both Venus and Mars are likely to be placed in 

orbits such that they may receive a fluence of AO over time, which could result in 
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degradation of some of its equipment. Monitoring of the AO presence in their 

upper atmospheres remains a field in which much development and understanding 

needs to take place. In this case, the need for reliable AO sensors, suitable for 

long-duration missions, is clearly important. 
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 Clearly, it is not always possible to test spacecraft materials in low Earth 

orbit, for both practical and economical considerations, as well as the need on 

occasions to isolate one or more of the environmental effects from the rest. There 

is also the need to accelerate the testing of some materials, so as to obtain 

accurate but relatively fast results equivalent to a long orbital exposure.  

 

 Many types of AO sources have been developed over the years, all of them 

with strengths and limitations. A brief description of the most important types of 

sources will be presented in this chapter; extensive reviews of different types of 

AO simulation facilities have been published elsewhere (Kleiman et al., 2003; 

Kudryavstev et al., 1994). 

 

 It is widely accepted that the atomic oxygen in LEO has the following 

general characteristics (which actually vary with altitude): 

 

• Kinetic energy of approximately 5 eV 

• Flux of approximately 1015 atoms/cm2s 

• Neutral, ground state (O3P) atoms 

• Very low level of ionized species 

• Low level of other species 

 

 The AO flux in LEO varies with altitude and time (the latter related to the 

solar cycle), and this variation can be several orders of magnitude (Hedin, 1988). 

An “ideal” AO source should be able to reproduce all of the above conditions. 

 

 Ideally, in addition to the above an AO simulation facility would also be able 

to replicate the LEO pressure, temperature and (solar) ultra violet (UV) conditions. 

Also, for accelerated testing of materials in a ground-based facility, a flux higher 

than that quoted above would be desirable. Unfortunately these requirements are 

very demanding, and often conflict. Nevertheless Kleiman et. al. (2003) identify 14 

major AO sources worldwide that are currently being used for testing materials and 

4. Overview of Hyperthermal Atomic Oxygen 
Sources 
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carrying out fundamental research into AO-related phenomena; more may exist or 

are under development. 

 

 Most of the various different types of facility that have been developed use 

molecular oxygen (sometimes in combination with other inert gases) as the feed 

gas. Hence the first requirement is to supply sufficient energy to dissociate the 

oxygen; further energy is required to accelerate the atoms to the required speed (≈ 

7.8 km/s for LEO simulation). Thus in principle it is possible to distinguish between 

the different types of sources by noting the methods used for dissociating and 

accelerating the test gas.   

 

 As a very general guide, there is an approximately inverse relationship 

between AO flux and energy (Banks et al., 1988): in early tests, experiments were 

carried out in ion sources – capable of providing very high energies but low fluxes 

– or in plasma asher sources, i.e., low energy but high flux (Kleiman et al., 2003). 

Because neither type of source duplicates the LEO conditions well, results were of 

questionable value. More recently, however, sources have evolved to match better 

the requirements. In this chapter we will concentrate our discussion on four of the 

most commonplace – or promising – types of source for LEO simulation. 

 

4.1 Ion Sources 

 

 This type of source has been developed extensively during the last decade 

or so (Kleiman et al., 2003). A beam of positive or negative ions is created by 

either radio-frequency (RF) excitation or electron bombardment and then 

accelerated electrostatically. The ions are then neutralized by either charge 

exchange or surface neutralization. However, gaseous charge exchange is 

inefficient and surface neutralization presents the complication that the reflected 

beam does not have a uniform kinetic energy. The 5 eV requirement tends to lie at 

the lower end of the achievable range and AO fluxes are modest, although in 

theory LEO-like fluxes can be achieved. 
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4.2 Microwave or RF Discharge 

 
 In this type of device a plasma is created – in this case by microwave or RF 

discharge – and expanded steadily in a supersonic nozzle. To achieve high 

velocities helium is used as the carrier gas, with molecular and atomic oxygen 

minor constituents (AO typically being 2-3% of the beam flux). Materials and 

pumping limitations restrict the resultant AO beam energy and fluxes to about 3 eV 

and 1016 to 1017 atoms/cm2s, respectively (Kleiman et al., 2003). 

 

4.3 Laser Discharge 

 
 Two types of laser-based sources have been developed. In one, a 

continuous optical discharge from an infra-red (CW) laser creates a plasma which 

is then expanded to high velocity in a supersonic nozzle (Cross et al., 1988). 

Conditions can be managed so that ionic recombination takes place in the nozzle, 

leaving the resultant beam essentially neutral. To obtain the required velocity the 

molecular oxygen is included as a minor constituent in an inert carrier gas; again 

pumping limitations usually restrict the beam to low/moderate AO fluxes and 

energies. 

 

 An alternative approach is to use a high-energy pulsed laser to create the 

plasma (Caledonia et al., 1987). In this type of facility molecular oxygen is 

introduced into the discharge chamber that has a conical nozzle. The laser pulse 

is fired and the plasma is then expanded through the nozzle by the resultant 

detonation/blast wave, generating a high velocity beam comprising a mixture of 

mainly neutral AO with some molecular oxygen. The advantage in comparison with 

the continuous discharge is that no carrier gas is required and the pumping 

requirements are lessened. Consequently time-averaged fluxes that can be 

achieved in this kind of source can be greater than in LEO, allowing the possibility 

of accelerated testing of materials, with energies in the range of 1-16 eV.  

 

 The AO source used in this research uses a high-energy pulsed laser. It is 

located at the ESA’s European Space Research and Technology Centre (ESTEC) 

in the Netherlands. 
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4.4 Electron-Stimulated Desorption (ESD) 

 

 A radically different approach is adopted in this type of facility: one side of a 

specially designed ceramic is placed under a high pressure of molecular oxygen, 

while the other side is exposed to vacuum; the latter side is usually coated with a 

thin film of silver. The molecular oxygen on the high-pressure side dissociates into 

negative AO ions and migrates through the ceramic towards the low pressure side; 

these ions become neutral as they are adsorbed on the internal side of the silver 

film. Upon reaching the outer surface of the silver film, and before they recombine 

into molecular oxygen, a beam of electrons impinging on the surface causes the 

oxygen atoms to desorb and leave with a kinetic energy similar to LEO conditions 

(Hoflund et al., 1994). 

 

 This method has provided fluxes similar to LEO for a short amount of time, 

without a significant production of ions or other contaminants (Valer, 2000). 

Further development efforts are needed to increase the flux of oxygen through the 

membrane in order to allow the production of higher AO beam densities.  

 

  Table 4.1 provides a comparison of some AO sources based on a few of 

the desired characteristics. 

 

 

Table 4.1 AO source types and basic characteristics 

 

Technique 
Kinetic 

Energy (eV) 
Contaminants 

Normalized  

to LEO Flux 

Ion Source 5-80 O ions, VUV 0.1-10 

Laser Discharge 1-16 O ions, VUV 0.1-100 

Microwave/RF Discharge 1-5 O ions, VUV 1-100 

Electron-Stimulated Desorption 4-6  0.01-1 
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 A review of a variety of AO flux measuring techniques for space-based 

applications is given in Osborne et al. (2001). The following section is a brief 

description taken from Osborne et al. (2001) and White et al. (2004) on the most 

relevant AO sensing techniques for ground and space applications. Two highly 

detailed references to be considered for any serious comparison among 

techniques by an experimenter are Minton (1995), and ASTM standard E2089-00. 

 

5.1 Kapton witness samples 

 

Kapton-H is a polymeric material commonly used in spacecraft thermal 

insulation.  Impinging AO erodes the material by producing volatile reaction 

products. The resultant mass loss can be used to provide a measure the AO total 

flux; so far Kapton mass loss is regarded as the standard measure of AO fluence. 

The erosion yield for Kapton has been well established as 3x10-24cm3/atom 

(Reddy, 1995; Leger at al., 1986). 

 

However, it is important to mention that the erosion yield of Kapton-H is 

believed to be dependant on the energy of the impinging AO, which is a problem 

when using it to compare results from facilities that produce beams with different 

energies as described in Osborne et al. (2001). 

 

There are some practical difficulties with the use of Kapton-H witness 

samples. It is not possible to have real time measurements, since the sample has 

to be taken out from the test chamber to be weighed. Hence the method is not 

sensitive to local changes of flux. There is also the risk of Kapton being 

contaminated and even reacting with the atmosphere and thus changing its mass; 

Kapton is particularly sensitive to humidity. Wolan et al. (1999) have described the 

limitations of Kapton for accurately measuring AO fluxes.  

 

Nevertheless, the use of Kapton-H witness samples provides a simple 

method for determining AO fluence with order of magnitude accuracy. 

5. Overview of Atomic Oxygen Flux Measurement 
Techniques 
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It is also important to consider that Kapton-H is in the process of being 

discontinued, and it has been replaced by Kapton-HN; Miller et al., (2008), have 

made a comprehensive study of the factors relevant to the erosion yield of this 

material in LEO. 

 

5.2 Quartz Crystal Microbalances 

 

 Quartz Crystal Microbalances (QCM) have successfully been used to 

measure AO fluxes both in ground-based simulation facilities and in LEO. The use 

of crystals covered with either silver or carbon is considered to be a mature 

technology. A good review on QCMs can be found in Osborne et al., (2001). 

 

QCMs provide an in situ measurement of the flux of atomic oxygen that is 

very specific to atomic oxygen. If the crystal is coated with silver, the AO will 

chemisorb and therefore its mass will increase; if coated with carbon, the AO flux 

will erode it with a corresponding decrease in mass.  

 

An especially cut quartz crystal is excited by the control unit and its 

frequency is measured; a change of frequency can be accurately related to a 

change of mass of the crystal. With the use of a suitable calibration curve, the rate 

of change of frequency can be related to an AO flux. It should be noted, however, 

that the rate of erosion of C-QCMs is dependant on the energy of the impinging 

AO, which can be a complication if this value is not known or changes significantly. 

 

QCMs can be very small, have high accuracy and repeatability, can have 

low mass, allow remote operation, and are relatively inexpensive. They have the 

limitation though that the material that is used to coat the crystal has a limited 

useful lifetime, after which the instrument is no longer capable of detecting AO.   

 

Further research on silver-coated QCMs needs to be performed to improve 

their accuracy, since the sticking coefficient between the AO and the silver is not 

accurately known, and there are some uncertainties related to the chemistry 

between those two species and the diffusion rate of AO on silver (Valer, 2000). 

 

QCMs can also be used to monitor the deposition of contaminants in a 

vacuum chamber. For this application, it is enough to use an uncoated crystal. 
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Provided that this crystal is kept at about the same temperature as the chamber, 

contaminants should deposit on the crystal at the same rate as on the rest of the 

chamber. The corresponding change in mass would in turn change the oscillation 

frequency of the crystal, which can be used to accurately determine the deposition 

rate of contaminants. 

 

5.3 Catalytic Probe 

 

This method is simple, reproducible, and very sensitive. The probe consists 

of a wire, coil, or foil and it may be movable in the test area. Its highly catalytic 

surface is heated by the recombination of reactive species. 

 

 A method very appropriate to absolute measurements of atom 

concentrations was applied to the O-atom reactions by Elias et al. (1959). The 

probe is a silver-coated platinum wire coil, large enough so that the temperature 

rise due to recombination is not large (∆T<100°C). It is operated isothermally at an 

elevated temperature and the difference in electrical power to produce the same 

wire temperature in the presence and absence of O-atoms is measured.  

 

The obvious disadvantage of this method is the lack of specificity to detect 

AO. It has been reported that oxygen molecules in the metastable state (92.2 

kJ/mole above the ground state) will produce an erroneously large heat release in 

the detector. This error is avoided with the complete absence of O2 in the system. 

In this scenario, measurements using this method are in excellent agreement with 

values obtained by NO2 titration. 

 

5.4 Electron Spin Resonance 

 

This method is highly specific for the detection of atomic oxygen 

recombination. The resonance lines are easily identified and other information 

such as temperature can be obtained for any parametric excited state. 

 

 Among its principal disadvantages are cost and complexity. Also, the fact 

that it gives only space averages of concentration over a considerable length of 

the flow tube. Absolute or even relative concentrations are calculated with some 
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difficulty from experimental data. The signal depends on the average collision 

frequency of the atom and this complicates an experiment with added gases.  

 

 The only rate data so far reported by this method are neither qualitatively 

nor quantitatively reliable. 

 

5.5 NO2 Titration  

 

This technique is based on the following reactions: 

 

(5.1) 

 

(5.2) 

 

where h is the Planck constant and ν is the frequency of the impinging radiation. 

The titration involves the careful measurement of the flux of NO2 in a fast flow 

tube. As the first reaction is about five orders of magnitude faster than the second, 

no energy emission would take place from the second reaction when the number 

density of O is less or equal than the number density of NO2. 

 

 When the flux of O is higher than that of NO2, the second reaction begins 

to take place and light emission would be present. This emission is a greenish-

yellow afterglow that has been well determined by spectral analysis. When the 

number density of O doubles that of NO2, the maximum light emission occurs; the 

concentration of NO remains constant during the peak emission. 

 

This glow can be detected by means of a photomultiplier, so that the end-

point of the titration can de determined with precision. This method is highly 

sensitive and specific. It has been successfully applied to pressures below 133 Pa, 

and the presence of neutral gases such as Argon does not interfere with the 

measurements. Unfortunately, the implementation of this method is not easy, since 

the equipment required is not only bulky, but it is not commercially available and 

has high demands in terms of vacuum requirements.  

  

A good review on NO2 titration can be found in Thrush (1967). 

 

22 ONOONO +→+

νhNOONO +→+ 2
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5.6 Mass Spectrometers 

 

The main principle behind this kind of instrumentation is the ionization of all 

the species in the beam so as to later divert and detect them. This technique 

detects mass-to-charge ratios, and as such, would give the same reading for both 

O+ and O2
+2. 

 

Mass spectrometers have a virtually indefinite useful detection life and can 

also be used to detect other species present in the flux. The most common type is 

the quadruple mass spectrometer, which has been successfully used on numerous 

occasions for both flight and ground AO measurements. A disadvantage of this 

technique is that the equipment required may be expensive, consume a large 

amounts of power, and it is generally bulky. Another difficulty is the possibility of 

AO recombination before detection. 

 

5.7 Actinometers 

 

 These methods have the significant advantages of allowing in-situ 

measurement, high specificity and sensitivity, low complexity, low cost, remote 

operation, and high potential for miniaturization. 

 

Suitable in-situ actinometers make use of silver, carbon, and zinc oxide 

(ZnO). All give a resistance increase when AO is absorbed and/or reacts with the 

sensor material. Resistance is easily measured in-situ and hence, unlike Kapton, 

real-time determination is possible. 

  

 Silver actinometers use the change in resistance of thin silver films as they 

are exposed to atomic oxygen. The progressive conversion of the silver into non-

conducting silver oxides causes the film resistance to increase, the extent of which 

depends on the total fluence (integrated flux) of atomic oxygen to which the film is 

exposed. This method assumes uniform oxidation. 

 

 The relation between the resistance, R, of the silver sensing film and its 

dimensions is simply given by Equation 5.3: 
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 (5.3) 

 

 

where ρ is the resistivity of the conductor, L is the length, W is the width, and Th is 

the thickness of the sensing element, λ is the mean free path of the conducting 

electrons, a value that is around 530 Å for silver films between 200 and 4000 Å of 

thickness. 

 

 The silver oxidation process apparently involves three stages. The first 

stage is linear up to a depth of 340 ± 100 Å. This is typical of a process controlled 

by surface reaction. The second stage appears to be parabolic, a typical response 

of a process controlled by diffusion. This suggests that the oxide layer does not 

inhibit the transport of oxygen atoms until a depth of approximately 340 Å of oxide 

has formed. 

  

 The final stage involves a rapid increase in the rate of change of the 

resistance with film break up, a process that continues up to a depth dependant on 

the thickness of the film. This later stage is believed to be an end-effect caused by 

the breakdown of the very thin conduction films into discrete islands, and the data 

collected in this range is not reliable.  

 

 In Fig. 5.1, the change of resistance of thin silver films of various 

thicknesses can be seen as a consequence of exposure to an AO source capable 

of producing a flux of approximately 1015 atoms/cm2s. The three steps in the 

oxidation process on the silver described in the previous paragraph can be seen. 
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Unlike silver, carbon releases volatile oxidation products and hence carbon 

actinometers are not diffusion limited. For carbon actinometers, the resistance (R) 

can be calculated by using Equation 5.4 (White et al., 2003): 

 

(5.4) 

 

where Tho is initial thickness in m, Ro is initial resistance, Ft is fluence in atoms/m2, 

and Y is erosion yield in m3/atom. Follows, as an example, the response of a 

carbon actinometer to the flux of AO, when exposed to a flux of AO (total fluence 

in the order of 1019 atoms/cm2s); Fig. 5.2 shows that, as the exposure progresses, 

the resistance of the carbon film increases due to the loss of this material from the 

sensor. 

 

Figure 5.1 Resistance change on thin silver films as a consequence of AO attack (Harris et 
al., 1997) 
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 In common with silver, carbon actinometers are consumed by the oxidation 

process and hence have a limited life. The useful life is further limited by the fact 

that the diffusion of the AO into the silver is not well understood, and only the first 

stage of oxidation, when a linear response is achieved, can be used with 

confidence. 

 

Osborne et al. (1999) has demonstrated that thin, sputtered films of ZnO 

are also sensitive to AO flux. They have the advantage over silver and carbon 

actinometers that they can be regenerated by heating to moderate temperatures 

which, in principle, allows their useful lifetimes to be extended indefinitely. 

Unfortunately, recent experience with these sensors shows a significant hysterisis 

during regeneration and an un-characterized variability of response to AO with film 

deposition conditions. A more detailed treatment of the experience so far with ZnO 

sensors is presented in Chapter 10. 

 

 It should be emphasized that actinometers like the ones discussed here 

have the great advantage of being suitable for miniaturization.  

 

 A good review on actinometers can be found in Osborne et al., (2001). 

 

 

Figure 5.2 Normalized resistance change in a carbon actinometer exposed to an atomic 
oxygen flux (White et al., 2003) 
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 As ZnO is a crystalline semiconductor material this chapter provides a brief 

introduction to Crystallography, Semiconductor Physics, and Surface Physics, in 

order to make available the basic tools for understanding the development of the 

present work. An excellent source for more detailed information on these matters 

and applications is McKelvey (1966). 

 

6.1 Crystallography 

 

6.1.1 Basic Atomic Structure 

 

Atoms are classically represented by a positively charged nucleus and a 

cloud of electrons that orbit the nucleus in a fashion that reminds us of the Solar 

System. The orbits of the electrons are not random, and only certain distances 

from the nucleus and trajectories are allowed; this is determined by quantum 

mechanics. Each orbit represents a particular energy level, and to promote an 

electron to a higher orbit, it must be provided with a particular amount of energy. In 

the same way that the planets of the Solar System orbit within a gravitational 

potential field with the Sun at the center, the electrons’ orbit are in a electrical 

potential field with the nucleus at the center. 

 

These results can be obtained by solving the following one-dimensional 

time-independent Schrödinger equation (Smith, 1964), Equation 6.1, a task that is 

beyond the scope of the present work): 

 

 

(6.1) 

 

 A solution is: 

 
n=1, 2, 3,…,∞                          (6.2) 
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where: x is distance, me is electron mass, h is the Planck’s constant, E is electron 

energy, and V is the potential experienced by an electron. The above equation 

clearly shows how the energy levels and the distances between electrons and the 

nucleus in atoms are ‘quantized’ or determined as discrete values, that is, there 

are some ‘forbidden orbits’, energy levels that electrons cannot attain. 

 

6.1.2 Basic Definitions in Crystallography 

 

 We normally use the term solid to describe substances that, although 

normally rigid, can display an elastic behaviour when exposed to external or other 

stresses. Among solid substances, we find two broad categories: amorphous and 

crystalline. In an amorphous solid there is no regularity or periodicity in the atoms 

or molecules that make up the bulk of it; we can regard them as supercooled 

liquids. On the other hand, in crystalline solids, we find regularity in the type of 

atoms and/or molecules and in their relative position to one another.  

 

Naturally, it is easier to study crystalline solids, and easier to describe them 

due to their regularity and periodicity in terms of structure. We will deal with this 

type of solid in this chapter, since ZnO is a crystalline material. 

 

 Not all crystalline solids are composed of a single crystal (a group of atoms 

and/or molecules with the same relative orientation of their constituents), but most 

are a conglomerate of multiple crystals. Each single crystal in this situation is 

called a ‘grain’ and the boundaries between them are called ‘grain boundaries’. 

 

6.1.3 Basic Types of Crystals 

 

 It can be shown that there are fourteen different ways of arranging atoms 

or molecules in three dimensions so that all atoms or molecules have the same 

surroundings. The fourteen basic kinds of crystals are called the “Bravais Lattices.” 

 

 It should be mentioned that sometimes a relatively small amount of a 

‘contaminant’ (atoms or molecules that do not form part of a crystal) can 

significantly alter the physical properties of such solid; sometimes this doping of 

material is intentional to modify the material for a particular use. 
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 There are many ways to characterize crystals, such as according to their 

mechanical or chemical properties. But for the purpose at hand, it is more 

convenient to classify solids according to the type of interaction that holds the 

atoms together within the structure of the crystal. And for this, we need to consider 

the two basic electrostatic forces that need to be in balance to keep a crystal 

together: attraction of atoms of different electrostatic charge (ions), and the 

repulsion between their respective positive nucleus; when the atoms reach such a 

distance in which both forces are in equilibrium, we have a stable crystal. 

 

 According to this criterion, there are four basic types of crystals: ionic, 

covalent, metallic, and molecular. The main driving force in this classification is the 

electronegativity of each atom, that is, its ability to attract electrons.  

 

• In ionic crystals, where the constituent atoms have very different 

electronegativities, there is a net transfer of valence electrons (and 

therefore of electrostatic force) from some atoms to others so as to obtain 

noble gas configuration, resulting in a strong electric attraction between 

atoms. A typical example of this kind of crystal is common salt, NaCl.  

 

• In a covalent crystal, formed among atoms of similar electronegativity, 

outer shell electrons are shared so as to obtain the configuration of noble 

gases, but there is no net transfer of electrostatic charge; the attraction 

between atoms is not so high as compared to the ionic crystals. A typical 

example of this is diamond, in which each carbon atom equally shares 

each of its four valence electrons with four carbon neighbours. It should be 

mentioned that in many cases, the transfer of electrons between atoms is 

only partial resulting in crystals that have properties intermediate between 

ionic and covalent. ZnO is predominantly ionic, but it has some covalent 

character. 

 

• In metallic crystals, the metallic element in free-state is surrounded by free 

electrons, the crystal being held together by the relatively weak 

electrostatic force between the negative free electrons and the positive 

nucleus. These free electrons are responsible for the high electrical 

conductivity and high temperature conductance characteristic of metals.  

 



 

24 

• In molecular crystals the binding energy between atoms is neither ionic nor 

covalent, but originates in the instantaneous dipolar moment variations in 

each particular atom, which in turn come from the instantaneous position of 

the electrons. These forces are rather weak and are called “van der Waal 

Forces.” Examples of such material are water ice and dry ice. 

 

6.1.4 Binding Energy of Ionic Crystal Lattices 

 

 In ionic crystals (and in some other kinds of crystals as well), the distance 

between atoms in a crystalline structure is the distance at which the electrostatic 

attraction forces between atoms of different charge is balanced by the repulsive 

forces of nucleuses of the same charge. For ionic crystals, the electrostatic 

attraction between atoms of different charge is the main interaction that keeps the 

structure together. 

 

 One can consider that if two particular atoms are pushed closer together 

than their equilibrium distance, the repulsive potential energy between the equally 

charged nucleuses will increase. In the same way, if both atoms are pulled apart a 

distance r greater than the equilibrium distance d, the potential attractive energy 

between the ions of different charges will increase. Therefore, the equilibrium 

distance is such as the summation of both potential energies Ui is the minimum, as 

can be seen in Figure 6.1. 

 

 

 

Figure 6.1 Interatomic distance as a function of potential energy (McKelvey, 1966) 
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The lattice energy, or binding energy in a crystal, is the energy required to 

displace the ions from their position of equilibrium to an infinite distance apart, and 

it is the ‘minimum potential energy’ discussed in the previous paragraph. 

 

6.2 Conduction 

 

Quantum theory tells us that for two atoms that are combined within a solid, 

the wave-vector is found to be as shown in Equation 6.3 (Somorjai, 1972): 

 

(6.3) 

 

The most important result from the above equation is that it shows two 

different energy levels for each electron. We can expand this result to encompass 

multiple atoms within a solid, with the resulting multiplicity of energy levels among 

the combined atoms. 

 

When atoms combine to form oxide crystals, some energy levels of the 

individual atoms combine into a series of levels that allow the outermost electrons 

to be shared; the outermost layer is called the ‘conduction band’. Each of these 

levels is in turn subdivided into other energy levels. The same exclusion of 

individual atoms applies, and electrons are allowed only in certain energy levels, 

which depend on the nature of the compound. See Fig. 6.2. 

 

At temperatures higher than absolute zero and in the presence of a 

potential difference, the electrons in the conduction band are free to move in the 

direction of the electric field applied, and conduction takes place.  

 

Insulators are materials in which the highest energy level (the conduction 

band) is empty of electrons, while the levels beneath are full, but the energy gap 

between the empty and the other levels is big enough (of the order of several 

electron volts) so as to prevent the transfer of electrons. Conduction then is not 

possible or minimal, even when thermal energy is applied (which should ease the 

promotion of electrons to higher levels). A conductor presents the reverse situation 

with their highest energy level rich (but not saturated) in electrons: this makes 

conduction always possible at temperatures higher than absolute zero.  
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A semiconductor has intermediate characteristics as compared to a 

conductor and an insulator: the energy gap is evident, but enough thermal energy 

can provide sufficient electrons in the upper band to allow conduction. The more 

thermal energy applied, the more electrons are able to move into the conduction 

band and the conduction increases accordingly; conduction is therefore strongly 

dependant on temperature, and the former will experience a strong initial increase 

when sufficient heat is applied. In addition to this, when an electron in a 

semiconductor moves into the conduction band, it leaves a positively charged 

‘hole’ in its former lower level (valence) band, which will also allow for conduction 

in this band by means of a process called ‘hole conduction’: these ‘holes’ allow for 

electrons in the valence band to move to fill them up, creating further holes which 

will be filled by subsequent electronic displacements in the same band, and 

therefore increasing conduction in the solid. 

 

The distinction between semiconductors and insulators is one of degree 

only: all insulators can experience some level of conductance if enough heat is 

applied, while semiconductors become insulators near or at the absolute zero. 

 

Band gaps depend on temperature because of thermal expansion. Band 

gaps also depend on pressure. 

 

Figure 6.2 Conduction and Valence Bands in a Semiconductor. (Taken from the online 
Wikipedia Encyclopedia). 
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Statistical mechanical calculations (which are beyond the scope of the 

present work) indicate that when pressure is applied to a semiconductor, the 

interatomic distance will decrease while the energy spacing between the valence 

and the conduction bands becomes larger (and therefore, the energy needed for 

an electronic transition from the former to the latter increases). This situation will 

result in a reduction of conductance in a solid when pressure is increased. An 

example of the increase in energy gap due to pressure (carrying a reduction in 

interatomic distance) can be seen in Fig. 6.3 for the case of diamond: 

 

  

  

 

 

Intrinsic semiconductors are those in which the energetic distance between 

the conduction band and the lower valence band is not significant (typically about 

1 eV or less) and normally there is enough thermal energy at normal room 

temperature to allow conduction.  

 

In an extrinsic semiconductor, impurities in the lattice structure are 

responsible for providing charge carriers for conduction. In an ‘n-type’, the 

impurities provide electrons from donor levels just below the conduction band; 

these electrons normally have no difficulties in reaching the conduction band and 

provide conductance. Assuming that the atomic medium in the lattice is similar to a 

Figure 6.3 Bands arising from the combination of two adjacent carbon atoms in a diamond 
crystal (McKelvey, 1966) 
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polarizable uniform continuous medium of macroscopic dielectric constant K, the 

ionization energy for an electron to leave its atom is smaller by a factor of K-2 as 

compared as that to the atom in isolation. 

 

Zinc Oxide is classified as an ‘n-type’ semiconductor; the impurities come 

from interstitial Zn atoms. 

 

A ‘p-type’ semiconductor presents the reverse situation of an ‘n-type’: 

energy (acceptor) levels are created just above the valence band; when electrons 

are promoted to this new level, positively charged ‘holes’ are left in the valence 

bands, which are the major contributors for conduction (these holes need to be 

filled by nearby electrons, which will in turn create further holes and so on, thus 

allowing conduction).  

 

As it was mentioned before, an increase in temperature will increase the 

conductance of semiconductors, since more electrons will be promoted to the 

conduction band. In the case of extrinsic semiconductors, the increase in 

conductance (which results from an increase in charge carrier numbers [n]), 

occurs in three steps as seen in Figure 6.4. The following discussion pertains to n-

type semiconductors: at absolute zero, none of the electrons reach the 

conductance band and therefore, there is no conduction; at slightly to moderate 

higher temperatures, some of the donor atoms are ionized and the charge carrier 

concentration increases (extrinsic slope); this situation will continue until all atoms 

capable of being ionized and donating electrons to the conduction band have done 

so, and therefore the charge carrier number and the conductance remain constant 

(saturation range); at even higher temperatures, electrons capable of migrating 

from the valence to the conduction band, giving the crystal some characteristics of 

an intrinsic semiconductor. 
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From Smith (1964) we find that for an n-type semiconductor, with a very 

low conduction by the holes mechanism, the number of charge carriers is: 

 

(6.4) 

 

where: 

ne  = extrinsic charge carrier concentration (m-3) 
Nd = density of donor atoms (m-3) 
Nc = effective density of states (m-3) 
εd  = donor level below conduction band (eV) 
k   = Boltzmann’s constant (J.K-1) 
T   = absolute temperature (K) 
 

 Under these conditions, it can be found that the conductivity (σ) of the 

sample is: 

 

(6.5) 

 

being µ the electronic mobility. Using the fact that sample’s conductivity and 

conductance (g) are related by Equation 6.6: 

 

(6.6) 

Figure 6.4 Effect of Temperature in the Carrier Number in Extrinsic Semiconductors (after 
Smith, 1964) 
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where A is the cross-sectional area of the sample [m2], l is the distance between 

measurement electrodes [m], and the conductance is measured in Ω-1, we can find 

that the following dependence between conductance and temperature: 

 

 

(6.7) 

 

where µ is the charge mobility in m.s-1.[V.m]-1. 

 

 After suitable rearrangement, it can be found that the Resistance R can be 

found by plotting it against temperature: 

 

(6.8) 

 

 

6.3 Photoconductivity 

  

 Excess charge carriers, that is, electrons and holes, can be created in 

many semiconductors by illuminating the material with light of enough intensity 

such that the photon’s energy equals or exceeds the energy gap of that particular 

crystal. In such circumstances, it is said that the semiconductor is ‘photosensitive’; 

the increase in conductivity can be regulated by using light of the required 

intensity. 

 

 Photoconductivity needs therefore to be taken into consideration when 

using sensors that react to particular wavelengths, since not only the Sun is an 

electromagnetic radiation source in LEO, but also some AO sources. 

 

6.4 Semiconductor Surfaces 

 

The discussion so far on semiconductors has assumed an infinite crystal. 

We need to refine this model to include the consequences for the break in 

symmetry that a finite solid introduces. 
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One of these consequences is the existence of surfaces in the solids, 

which create energy levels called ‘surface states’. These levels will be located in 

the so-called ‘forbidden gap’ under the conduction band. Electrons from the latter 

will be captured in the former, with the corresponding decrease in conductance in 

the solid. A depletion layer of electrons at the surface and immediately under it is 

created; this is clearly a surface phenomenon that will not extend beyond a depth 

of about 10µm. Some semiconductors which are not very thick can have a 

significant portion of their volume affected by this surface phenomenon, which can 

then be one of the most important drivers in the resistance of the semiconductor. 

 

When conduction electrons are captured by surface states, a ‘layer’ of 

negative charge forms on the surface of the semiconductor. As a result, a 

positively charged space charge layer (SCL) develops in the near surface regions 

of the material due to the presence of immobile, ionized atomic donors (it was from 

these atoms that the electrons in the conduction band originally came from). These 

two oppositely charged layers form a dipole in which the positive charge of the 

ionized donors is compensated by the negative surface charge. The zone from 

which the electrons were removed is commonly known as the ‘depletion layer’. 

The negative layer at the surface composed of electrons, and a positively charge 

region of ionized atomic donors (who gave the electrons at the surface) create an 

electric potential between those two regions.  

 

This situation of ‘surface states’ changes the electronic band structure of 

the solid. At the surface of the material, the conduction and valence bands are 

increased to higher energies by an amount proportional to the surface potential; 

this is call ‘band bending’. The negative charging of the surface increases the 

energy requirements (as compared to the bulk) for electrons to migrate to the 

conduction band near the surface; the surface charge also increases the energy 

requirements for an electron to migrate from the bulk to the surface. This last two 

combined effects are called ‘surface barrier’ (sometimes known as ‘Schottky’ 

barrier).  

 

6.5 Single Crystals 

 

In the case of some single crystals, like that of ZnO (Jacob, 1975), the 

conductivity is relatively simple to study and measure. In such cases, the 
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conductivity of the whole single crystal κ can be approximated to be the 

summation of the conductivity of the surface κs plus the conductivity of the bulk κb: 

 

 

(6.9) 

 

 The conductivity of the bulk is practically independent from surface effects, 

and mainly varies as a function of temperature. If single crystals are small enough 

that at significant portion of their volume is under the influence of surface effects, 

the conductivity of the surface will have preponderance over that of the bulk; the 

former is given by Equation 6.10: 

 

(6.10) 

 

where e is the elementary electric charge, µ is the electron mobility in the crystal, 

and θ is the free charge surface number density [electrons.m-2]. This result makes 

it obvious that a ZnO single crystal will have more ‘electric’ affinity to an atom 

rather than to a molecule of oxygen given its nature of the former as a donor of 

electrons (see Chapter 10 for further details on this); the surface conductivity will 

vary as a function of θ.  

 

 At the beginning of an exposure (the flux surface density [atoms.m-2.s-1] 

being n), a fraction dn of the impinging species will chemisorb to the surface with 

the corresponding decrease in surface density of free carriers, equal to the 

increase in the fraction of chemisorbed atoms: 

 

(6.11) 

 

 The rate of change at the beginning of the exposure of the surface 

conductivity is given by Equation 6.12: 

 

 

  (6.12) 

 

 Since we have assumed that the bulk conductivity is not affected by the 
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relates the initial flux surface density of species to the change of conductivity of the 

crystal: 

 

(6.13) 

 

 

6.6 Piezoelectricity 

 

Deformation (as a consequence of an applied force) on certain electrically 

neutral crystals—those not having a centre of structural symmetry—polarizes them 

by slightly separating the centre of positive charge from that of the negative 

charge; equal and unlike charges on opposite faces of the crystal result. This 

charge separation will create a potential difference, or voltage, between the 

opposite crystal faces. This phenomenon, also called the piezoelectric effect, has 

a converse: the production of a mechanical deformation in a crystal across which 

an electric field or a potential difference is applied. A reversal of the field reverses 

the direction of the mechanical deformation. See Fig. 6.5.  

 

The piezoelectric effect is exploited in a variety of practical scientific and 

commercial applications. 

  

 

 

 

 
Figure 6.5 Piezoelectric Effect: Crystal before deformation 
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Figure 6.6 Piezoelectric Effect: Crystal after deformation 
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The purpose of this chapter is to provide a basic introduction to outgassing 

theory, paying attention in particular to outgassing of water molecules and 

atmospheric gases in vacuum systems.  

  

 Any material manufactured in the atmosphere or exposed to it, is going to 

have gas molecules adsorbed on its surface, or absorbed or dissolved in its bulk. 

When this material is exposed to a pressure lower than atmosphere, the gases in it 

may outgas at different rates and mechanisms, depending on numerous factors. 

Another process of outgassing is by decomposition of the original materials. 

Surface gas sensors, like the ones being investigated, may alter their response 

depending on their outgassing characteristics and status: this makes considering 

outgassing of pivotal importance in understanding the response of the sensors. 

 

 One fundamental factor in understanding a particular outgassing process is 

to understand the nature of the interaction of the gas and the material it is attached 

to.  

 

 It is not possible to predict with total confidence the outgassing mechanism 

of a particular gas from a particular material, even when the chemical 

compositions and surface characteristics are known in detail. The experimentally 

determined outgassing rate of a particular gas from a particular material at 

constant temperature can be approximated by the following equation (Hucknall et 

al, 2003): 

 

(7.1) 

 

where q [Pa.m3.s-1] is the throughput due to outgassing, a is a fit parameter 

identified as the specific outgassing rate after one hour, A [m2] is the geometrical 

surface area outgassing, t [s] is time and ζ is the non-dimensional exponent of 

decay. For metals, glasses, and ceramics, this equation can be applied to times up 

to 100 hours.  

 

7. Basic Outgassing Theory 
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 The exponent of decay is an indicator of the type of mechanism of 

outgassing. Experimental data suggest that outgassing varies either exponentially 

as a function of time, inversely as a power of time, or independently of time, 

depending on the mechanism that is taking place. 

 

 An examination of the previous equation indicated that the bigger the area 

of the material exposed to vacuum, the more gas that will be released, since more 

gas can become attached to the surface or bulk of the material. This is a reason 

why vacuum chambers are designed to keep their internal surfaces to a minimum. 

This also indicates that a porous material will be, in principle, more prone to 

outgassing that one that is not, keeping all other variables constant. Outgassing 

decreases with time. 

 

 Pumping speed in a chamber S [m3s-1] and final pressure p [Pa] are related 

to q by the following equation: 

 

(7.2) 

 

 If in a particular vacuum chamber there are many materials capable of 

outgassing at the same time and by different mechanisms, a good approximation 

to the total outgassing rate qT will be the summation of the individual outgassing 

rates qi, that is, we are assuming that each outgassing process is independent of 

each other: 

 

(7.3) 

 

  

 The activation energy of desorption (to be explored in more detail later) 

gives an idea of the amount of energy in the bond between the material and the 

gas, and it is also an indicator of the type of mechanism involved in outgassing. 

Table 7.1 provides approximate values for exponents of decay and activation 

energies. Water has an activation energy of about 0.737 eV on clean metal 

surfaces. 

 

 Extensive reviews of experimental methods to determine outgassing rates 

can be found in Kutzner (1972), Elsey (1975), Messer (1977), and Komiya (1979). 

  

p

q
S =

∑
=

=
=

ni

i iT qq
1



 

37 

Table 7.1 Parameters of Outgassing Mechanisms (modified from Tribble, 1995) 
 

Mechanism 

Activation Energy 

(eV) Exponent of Decay 

Desorption 0.043-0.434 -1 to -2 

Diffusion 0.217-0.650 -0.5 

Decomposition 0.867-3.468 n/a 

 

 

7.1 Outgassing to due Adsorption 

 

 Gas molecules can adsorb to a surface either by a physical or chemical 

process. In the first case, the interaction with the surface and the adsorbed 

species is due to the weak Van der Walls force, while in the second case, a much 

stronger chemical bond takes place. 

 

 For a physisorbed molecule, the rate of escape (Ke) from the surface can 

be evaluated by an Arrhenius-type equation provided the activation energy (EA) is 

known (Hucknall et al, 2003): 

 

(7.4) 

 

where R is the Universal Gas Constant, EA is the activation energy, and T is the 

absolute temperature. To outgas, the molecules of a certain chemical species 

requires a particular minimum activation energy. A very important result of the 

above equation is that an increase of temperature will increase the outgassing 

rate, and therefore, decrease the time required to achieve a particular pressure in 

a vacuum chamber. 

 

 The desorption of physically-attached molecules being a surface process, 

its rate will be proportional to the number of surface sites occupied by the 

outgassing species. According to Boltzmann, the desorption flux j is given by the 

following equation (Hucknall et al, 2003): 
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where ν0 is the vibration frequency of the molecule-surface bond, R is the 

Universal Gas Constant, and N is the number of molecules bonded to the surface. 

 

7.2 Outgassing by Diffusion 

  

 Depending on the nature of the solid, its bulk is possible to absorb gases 

during its manufacturing (for example, when the material is melted or before being 

sintered) or later on. Gases absorbed in the bulk can alter the physical and/or 

chemical characteristics of many materials; therefore, baking before placing them 

in a vacuum chamber is a common procedure to remove absorbed gases. 

 

 A simple procedure (Hucknall et al, 2003) to treat outgassing by diffusion 

follows. We can assume a sheet of a material in which its length is significantly 

longer than its width 2x (see Fig. 7.1). In this scenario, two sides of this sheet of 

material are exposed to vacuum conditions. The number density of the gas 

absorbed n varies in the transversal axis X.   

 

 

 

 

Figure 7.1. A model for diffusion-controlled outgassing (Hucknall et al, 2003) 

x -x 
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 The flux j will start after an initial increase in temperature to provide enough 

activation energy to the process, and will be symmetrical on both sides of the 

sheet, according to Fick’s Law: 

 

(7.6) 

 

where D is the diffusion coefficient, and the flux j is: 

  

(7.7) 

 

For long outgassing times, the following approximate solution can be obtained 

assuming that n0 is the initial gas density in the solid surface: 

 

(7.8) 

 

 

The temperature dependence in diffusion-controlled outgassing becomes very 

obvious in the following equation, in a similar fashion to the surface-controlled 

outgassing (O’Hanlon, 1980): 

 

(7.9) 

 

In the above equation, the activation energy ED is the term that accounts for the 

mechanism by which the absorbed gas enters or leaves the material in question. 

The amount of mass loss can by represented by the relation (Tribble, 1995): 

 

(7.10) 

 

 

where qe is an experimentally determined constant. 

 

7.3 Outgassing by Decomposition 

 

 This process occurs when a compound divides into two or more simpler 

chemical substances, which then may outgas by any of the mechanisms described 

before. The chemical reaction that leads to decomposition can be triggered by a 
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number of factors, which include vacuum, temperature changes, and radiation. 

This kind of process can severely alter the characteristics of the material subject to 

it. 

 

7.4 Water Outgassing 

 

A major concern for metallic equipment designed to operate in the high to 

ultrahigh vacuum range is the outgassing from the walls and other surfaces inside 

the vacuum chamber. Whenever a vacuum system is opened to the atmosphere, 

all the internal surfaces will be covered with layer upon layer of water molecules. 

The thickness of the layer will depend on temperature, relative humidity of the air, 

the exposure history, conditions of the walls (porosity, cleanness, other 

contaminants), etc. Water molecules will bond to the surface of the chamber walls 

by strong chemical adsorption forces with change of a valence electron. The water 

molecules coming directly after will bond to the first adsorbed layer of water by 

physical (van der Waals intermolecular forces) adsorption forces; this bonding is 

facilitated by the polar nature of water. The strength of the bonding for subsequent 

layers of water molecules will decrease as more layers are added one on top of 

the other. Up to 1015 molecules/cm2 of real surface area (Berman 1996) can 

absorb at the surface, but some molecules will diffuse into the passivation oxide 

layer, the ones that can later desorb as well. 

 

The water layers mentioned above are present not only in the flat surfaces, 

but in particular in the porous ones, which have a high surface roughness factor 

(the ratio of the real to geometric surface area). This presents a problem when 

dealing with porous metallic and non-metallic materials, like the ZnO thick films 

investigated in this research, which are highly porous: the large amount of water 

can take a significant amount of time to outgas.  

 

The process for a complete removal of water by outgassing in a vacuum 

chamber can be very long. Dylla (1993) reported that after 50 hours of pumping, 

the predominant species (85%) being outgassed by his chamber was water. A 

common procedure to reduce the amount of water in a vacuum system (and 

therefore to reduce the time required to reach a certain desirable pressure) is to 

‘bakeout’ the materials and instruments that will operate that will operate under 
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such conditions so as to remove as much water as possible before operations 

begin. 

 

The removal of the water vapor from the surfaces of the vacuum system 

may be considered a three-step process of: desorption, transport and pumping. At 

the beginning of the pump-down process, the water that is contained in the air 

within the chamber is mechanically removed by the action of the pumps. When a 

regime of free-molecular flow is reached, the process is going to be dominated by 

desorption of water molecules from surfaces, which can travel to another surface 

(and therefore resorbed) or to the pump port (and therefore removed from the 

chamber). If the pumping system provides enough speed, the water vapor 

pressure will continue to fall until equilibrium is reached, that is, the desorption rate 

of water from the walls and other surfaces is matched by the available pumping 

speed. The removal of all remaining water molecules at that point will occur at a 

much reduced rate, mostly when molecules in free-flow reach the pump port. 

 

Humidity permeation from elastomers and polymeric materials such as O-

rings, valve seats, etc., is a serious source of moisture. Therefore, these kinds of 

materials are avoided whenever possible for high vacuum applications. 

 

A comprehensive review of the issues associated with the presence of 

water in vacuum systems can be found in Berman (1996). An interesting method 

to analytically determine the amount of water outgassed by non-metallic crystals is 

discussed by Mizushima (2004). 
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 Impedance Spectroscopy (IS) is a technique widely used to characterize 

sensors, and to understand their behavior; this takes advantage of its ability to 

measure the individual contributions to resistance and other electrical phenomena 

of the particular contributors to conductance, namely: grain bulk, grain boundaries, 

connectors, etc. In the present work, IS will not only be used for these purposes 

but an attempt has been made to use it to measure AO flux. A particular quality of 

IS is its suitability to study high resistance elements. 

 

8.1 Introduction to Impedance Spectroscopy 

 

Electrical resistance is the ability of a circuit element to resist the flow of 

electrical current. Ohm's law defines resistance (R) in terms of the ratio between 

voltage (E) and current (I); see Equation 8.1: 

 

(8.1) 

 

However, this relationship is valid only when dealing with one circuit element, the 

ideal resistor. An ideal resistor has several simplifying properties: it follows Ohm's 

Law at all current and voltage levels, its resistance value is independent of 

frequency, and AC current and voltage signals though a resistor are in phase with 

each other. 

More complex systems require the use of impedance (Z), a more general 

circuit parameter. Like resistance, impedance is a measure of the ability of a circuit 

to resist the flow of electrical current. Unlike resistance, impedance is not limited 

by the simplifying properties listed above. 

Impedance is usually measured by applying an AC potential to the 

specimen under study and measuring the current through it. Suppose that we 

apply a sinusoidal potential excitation. The response to this potential is an AC 

signal, containing the excitation frequency. 

8. Basic Impedance Spectroscopy 
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Impedance is normally measured using a small excitation signal. This is 

done so that the specimen's response is pseudo-linear. Linearity is described in 

more detail later. In a linear (or pseudo-linear) system, the current response to a 

sinusoidal potential will be a sinusoid at the same frequency but shifted in phase. 

See Figure 8.1: 

 

 

 

The potential (excitation) signal Et can be described by the following 

equation, where t is time, E0 is the maximum amplitude, and ω is the frequency (in 

radians per second): 

 

(8.2) 

 

The current response It is described by the following equation in an analogous way 

to the excitation signal, noting that this may be shifted in phase (Φ), and that I0 is 

the maximum amplitude: 

 

(8.3) 

 

So the Impedance Z is given by the following relationship: 

Figure 8.1 Potential (E) and Current (I) Response in a Linear System. (Gamry Instruments, 
2007). 
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(8.4) 

 

where Z0 is: 

 

(8.5) 

 

 

 The solution in the time domain for Equation 8.4 is very complex, and 

normally requires the solution of a system of differential equations. However, the 

use of Fourier transformation allows the simplification of the solution in the 

frequency domain: 

 

(8.6) 

 

where 1−=j . Using the Euler’s formula (Equation 8.7), 

  

(8.7) 

 

we find that: 

 

(8.8) 

 

The real and imaginary parts of Z, the modulus, and the phase angle are 

therefore: 

 

(8.9) 

 

(8.10) 

 

(8.11) 
 

 

(8.12) 

  

The frequency dependant real and imaginary components of the 

Impedance can then be plotted in a diagram such that of Figure 8.2 (a ‘Nyquist 
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Plot’). In such a plot, the modulus of the impedance is shown as an arrow starting 

at the origin. The horizontal axis represents the real part while the vertical is the 

negative of the imaginary component. It is clear that to have a complete plot one 

has to run a frequency ω sweep from lower (right hand side) values to higher 

frequencies (left hand side). Impedance becomes just resistance, that is, it only 

has a real component, when Φ is 0; in this situation, the impedance is independent 

from frequency. 

 

 

 

 

 

 The Nyquist plot shown in Figure 8.2 is representative of a resistor and a 

capacitor in parallel. More complex systems would have much more complex 

Nyquist plots. 

 

A linear system is one that possesses the property of superposition: if the 

input consists of the weighted sum of several signals, then the output is simply the 

superposition, that is, the weighted sum, of the responses of the system to each of 

the signals. Most specimens that are studied with Impedance Spectroscopy are 

not linear; however, their response is approximately linear (pseudo linear) if the 

current response to the voltage is analyzed over a small portion of the response 

envelope. Experience shows that when a low voltage (less than 10 mV) is applied 

to a solid specimen, the response is pseudo linear in the vast majority of cases. 

For an electronic component, the input signal is the potential difference, and the 

Figure 8.2 Real and Imaginary Impedance Plot. (Gamry Instruments, 2007). 
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output signal is the measured current; therefore, if one operates IS within the 

linear range of the voltage to current plot (that is, under the breakdown or 

threshold voltage), the system will be linear. 

 

 The question that follows is how to use impedance spectroscopy to model 

the behavior of a particular specimen? The answer is to try to put together an 

equivalent circuit of resistors, capacitors, and inductors whose combined response 

over the same frequency range used for the impedance determination would give 

the same plot. This would allow to assign different elements (say a resistor and a 

capacitor for a grain boundary) to represent the different contributors to the total 

impedance. 

 

 To put together such equivalent circuit, some relationships and definitions 

are presented in Table 8.1: 

 

 

Table 8.1 Equivalent Circuit Elements. 

 

Element Symbol Impedance 

Resistor R Z=R 

Inductor I Z=jωL 

Capacitor C Z=(jωC)-1 

 

 

 It follows from the above table that the impedance equals the resistance 

when the former does not have an imaginary component, and therefore is 

independent of frequency and the response remains in phase all the time. Besides 

this, it is necessary to note that the impedance of different components in series 

and parallel combine in a fashion similar to that of resistance, as shown in 

equations 8.13 and 8.14: 

 

(8.13) 

 

 

 

(8.14) 

 

∑= iseries ZZ

∑ −− = 11

iparallel ZZ
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Care should be taken when applying the above equations to group the imaginary 

and real components of the equivalent circuit to allow a Nyquist plot.  

 

Once an equivalent circuit is being put together and the associated 

equations that relate the resistances and capacitances of each of the components 

with the real and imaginary parts of the impedance of the whole sensor are 

obtained, it is possible to make a plot in the complex plane, which should resemble 

that obtained by Impedance Spectroscopy. It should be noted that sometimes it is 

possible to find more than one equivalent circuit to mimic the impedance response 

of a specimen; in this situation, further investigation would be required to discern 

which equivalent circuit is best suited.  

 

In some simple instances it is possible to directly obtain the values of the 

individual components and capacitances from the plot provided by the instrument; 

this is the case shown in the Figure 8.3 (Asokan, et. Al., 1993), where Rg is the 

resistance of the grain, Rbg is the resistance of the grain boundary, C is the 

capacitance of the grain boundary, ω is the frequency, and ωmax is the frequency 

at which the imaginary component of the impedance is maximized. 

 

 

 

 

 

Figure 8.3 Equivalent circuit and Impedance plot for a typical ZnO varistor (Asokan, et. al., 
1993). 
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A limitation of this technique is that the time constants τ’ (given by the 

product of resistance, R and capacitance, C) of the various components in the 

model should differ by more than about one decade to allow reliable 

measurements to be made (Andres-Verges et. al., 1997).  

 

There is considerable versatility, and complexity, in the analysis of AC data 

because the data can be analyzed in any of four interrelated basic models: 

impedance, admittance, electric modulus, and permittivity (the data does not differ 

among the different models, but just how these data are calculated and 

presented). The use of combined impedance and modulus spectroscopic plots can 

be useful for separating components with, for example, similar resistances but 

different capacitances or vice versa, similar capacitances with dissimilar 

resistances. Thus, in cases where one of the components is much more resistive 

than the other(s), it dominates the impedance response whereas the components 

that are seen most clearly in the modulus response are those with the smallest 

capacitance values. As an example, Andres-Verges (1997) report that a second 

pair of resistor-capacitors is only discernible when the modulus is also plotted (see 

the two peaks in Figure 8.4 right): 

 

 

 

 

 

 Another useful parameter that can be obtained from Impedance 

Spectroscopy, often after an equivalent circuit is found, is the activation energy; 

this value for either the whole specimen under study or for just of one of the 

Figure 8.4 Impedance (left) and Electric Modulus (right) plots in the complex plane for ZnO 
varistors (Andres-Verges, 1997). 
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components of the equivalent circuit (for example, the grain boundary or the 

crystallite’s grain), can be obtained by using the following equation: 

 

 

(8.15) 

 

where R is the resistance, R0 is a constant, EA is the activation energy, k is the 

Boltzmann’s Constant, and T is the absolute temperature. If the resistance has 

been measured against several temperatures, the activation energy can be found 

by means of plotting ln(R) versus T-1 using Equation 8.16 (an Arrhenius plot): 

 

(8.16) 

 
 

In such a plot, the gradient is EA/k, and the intersect with the vertical axis is ln(R0). 

Examples of the use of Equation 8.16 are to be found in the literature review 

presented in this chapter (Section 8.2). Since resistance values will depend on 

absolute temperature, it follows that impedance results will also be temperature 

dependent in the complex plane; an example of such situation is shown in Figure 

8.5 for doped ZnO varistors: 

 

 

 

Figure 8.5 Impedance dependence on temperature for a doped ZnO varistor (Asokan et. 
al., 1993). 
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8.2 Literature Review 

 

Review of the literature suggests that polycrystalline semiconductors, such 

as the thick film sensors investigated in this research, can be generally modeled 

by using an equivalent circuit such as the one shown in Figure 8.6: 

 

 

 

 

 

 

 

where: 

1) Capacitance 1 represents the electrode-electrolyte interface capacitance 

2) Resistance 2 and Capacitance 2 model the bulk impedance 

3) Resistance 3 and Capacitance 3 model the grain boundary impedance 

4) Resistance 4 and Capacitance 4 model the surface impedance 

 

There is ample consensus in the literature that polycrystalline ZnO variable 

resistors have a high degree of non-linearity, that is, of non-ohmic behavior. This is 

attributed to double Schottky barriers (a potential barrier in a semiconductor) 

between adjacent grains as a result of electrons being captured in the grain 

boundaries (Binesti et . al., 1986), creating depletion regions. 

 

In zinc oxides, initially the current increases linearly with voltage (ohmic 

response) and above a critical voltage called ‘breakdown voltage’, the current 

increases drastically with voltage in a highly non-ohmic behavior (Viswanath et. al., 

2001). The non-ohmic character of this semiconductor can be expressed by 

means of the following empirical relationship: 

 

(8.17) 

 

where I is the current, k is the Boltzmann’s constant, E is the applied voltage, and 

β is a non-linear coefficient (which is between 25 and 50 in the breakdown region). 

Figure 8.6 One possible electrical representation of a resistance sensor. 

1          2              3         4    

β
kEI =
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Conduction activation energies are an important parameter to characterize 

a gas semiconductor sensor, since they give the energy required for conduction 

and can help determine the mechanism of conduction. The activation energy of 

pure ZnO crystals is 0.3 eV; this value goes to 0.55 eV for grain boundaries in 

microphase ZnO and 0.066 eV for grain interiors (Seitz, et. al., 1983). However, 

Jose et al., (2001) have found that conduction activation energies for nanophase 

ZnO to be around 0.29eV. 

 

Conduction and therefore the activation energy, can be altered due to 

physical or chemical processes in the sensor, or due to adsorption of species. 

Asokan et. al., (1993) report in their investigation of electrical-induced degradation 

of doped ZnO varistors that if these are exposed to a DC current density of 

25mA/cm2 for 50 hours at 150°C, the grains experience an increase in their 

activation energy from 0.023eV to 0.104eV (see Fig. 8.7) possibly due to migration 

of interstitial Zn towards the grain boundary as a consequence of the applied 

electric field; however, this conclusion requires further confirmation and may 

include causes due to the elements used to dope the varistor. They also report the 

grain boundaries experience a decrease in their activation energy from 0.55eV to 

0.25eV possibly due to migration of adsorbed O-1 and O-2 due to the electric field 

away from the grain boundaries. If Zn migrates from the grains to the grain 

boundaries, this may lead to the formation of neutral lattice ZnO. The research 

carried out by Binesti et. al. (1986) at 115°C for 410 hours at 76% of the varistor’s 

threshold voltage (when the device is damaged or destroyed) supports these 

conclusions. 
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Relaxation time τ’ (or time constant) is the time required for any system to 

reach a steady-state equilibrium; in the case of Impedance Spectroscopy, it can be 

considered the time required for a particular component of the equivalent circuit to 

provide a stable response to a change of conditions. For a resistor R and capacitor 

C pair, the relaxation time can be found from Equation 8.18: 

 

(9.18) 

 

Dhananjay et. al. (2007) studied the Impedance Spectroscopy profile of 

ZnO thin films grown on p-type Si substrates by thermal oxidation. It is reported 

that the relaxation time in the grain boundary is very high as compared to that of 

the grains, since the former is highly resistive by virtue of surface grain depletion of 

electronic charge, due to adsorption of other species and surface effects. The 

measured impedance and the proposed equivalent circuit are shown on Figure 

8.8, with Rs being the resistance of the grain bulk, and R and C representing the 

grain boundary. 

 

 

Figure 8.7 Activation Energies of the grain of doped ZnO varistors  before (o) and after (x) 
prolonged DC current (Asokan et. al., 1993). 

RC='τ
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Huang et. al., (2005), carried out studies on 5% and 10% CoFe-doped ZnO 

films. The results for each of the compositions of the films can be seen in Figure 

8.9. For the 5% case, two pairs of resistance and capacitor in parallel (one for the 

grain and one for the grain boundaries), in series with each other, provide an 

adequate representation of the films behavior. However, for the 10% case, in 

addition to the above pairs, Rmg represents the formation of CoFe clusters, while 

the pair in parallel Rmo and Cmo suggests the existence of an interface between 

these clusters and the host oxide. See Figure 8.9. 

 

 

 

 

Figure 8.8 Impedance Spectroscopy profile of ZnO thin film on Si substrate at different 
temperatures and equivalent circuit. Dhananjay et. al. (2007). 
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Hong et. al. (2004), in their research on Mn3O4-doped ZnO varistors, 

maintain that a suitable equivalent circuit is two parallel resistor-capacitor elements 

connected in series. The same findings have been published by Shao et. al., 

(2003). 

 

 Viswanath et. al. (2001) have studied ZnO varistors with an insulating layer 

around each crystallite created by means of the diffusion of other elements into the 

grain boundary (see Figure 8.10).  

 

 

Figure 8.9 Impedance Spectroscopy of 5% and 10% CoFe-doped ZnO films. Huang et. al., 
(2005). 
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 These varistors were studied under both molecular oxygen and molecular 

nitrogen atmospheres; the resistance values obtained in the former were 

significantly higher than those in the later as seen in Figure 8.11.  

 

 

 

 

The corresponding equivalent circuit was found to be Rg(core) for the pure ZnO 

grains, a resistor and capacitor pair in parallel for the diffused layer (dl), and 

another pair for the grain boundary (gb); see Figure 8.12. 

 

Figure 8.10 Crystallite structure of diffusion-doped ZnO varistors. Viswanath et. al. (2001). 

Figure 8.11 Effect of different gases on Impedance Spectroscopy  on diffusion-doped ZnO 
Varistors. Viswanath et. al. (2001). 



 

56 

 

 

 

 Lee et. al., (1995), report in their study of nanophase ZnO that a suitable 

equivalent circuit is two parallel resistor-capacitor elements connected in series, as 

found by other researchers, and that an increase of the partial pressure of 

molecular oxygen increase the resistance of the grain boundaries (which have the 

dominant effect); this latter effect is attributed to the adsorption of the oxygen at 

the surface. The value of grain boundary resistance found was in the 107Ω range, 

for the diffusion layer was in the 105Ω range, while the value for the bulk grain can 

be neglected compared to these two former values. The activation energy for the 

grain boundary has been found to be 0.57 eV independent of the O2 partial 

pressure. See Figure 8.13. 

 

 

 

 

 

 

Figure 8.12 Equivalent circuit for diffusion-doped ZnO Varistors. Viswanath et. al. (2001). 

Figure 8.13 Effect of molecular oxygen partial pressure on grain boundary resistance in 
nanophased ZnO. Lee et. al. (1995). 
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 Dachun et. al. (1999) indicate that the resistance between the ZnO grains 

and the electrode interface can normally be neglected if compared to the total 

resistance in between grains. 

 

 It has been shown that surface barriers can form in between ZnO grains 

and gold connectors (Mead, 1965; Fabricius et al., 1986). But there is also ample 

evidence (Freer, et al., 2004) that the effect of those surface barriers can be 

isolated from the resistance of the bulk and grain boundaries by means of 

impedance spectroscopy. 
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 The purpose of this research is to develop of basic ZnO thick film sensor 

capable measuring AO flux. For this purpose, a model that explains the change of 

resistance as the AO impinges on the sensor is required.  

 

 

9.1 Basic Model Formulation 

 

The model described in this section relies heavily on the adaptation of 

Osborne (1999) for ZnO thin films of the model developed by Langmuir et al. 

(1918), which has been called ‘the balistic model’. This model is formulated from 

first principles. 

 

 Let Co be the surface density of atoms [atoms/m2] at the surface of the 

crystal, and a∞ is the maximum density of adsorbed atoms that the surface of the 

crystal can take. So the maximum fraction of surface sites occupied by adsorbed 

atoms is: 

 

Co

a∞                                                            (9.1) 

 

 Now, let a(t) represent the density of atoms adsorbed at the sensor surface 

at a given time t; therefore, the fraction of surface sites at a time t in the sensor is 

given by: 

 

Co

ta )(
                                                          (9.2) 

 

 The fraction of empty surface sites in the sensor at a particular time t is 

then: 

 

9. Development of a Semiconductor Gas Sensing 
Model 
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                                                    (9.3) 

  

It is also known that not all atoms that reach the surface of the sensor will 

adsorb. Let us then define a scattering coefficient γ representing the fraction of 

impacting atoms that reflect from the surface. Let us also define the flux of 

impinging atoms into the surface as F [atoms.s-1.m-2]. Therefore the rate of 

adsorption is determined by: 

 

( )F
Co

ta

Co

a
)1(

)(
γ−


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
−∞                                              (9.4) 

 

 It is also necessary to describe the rate of desorption of atoms. So if τ is 

the mean residency time of atoms at the surface, then the rate of desorption is 

given by: 

 

τ

)(ta
                                                         (9.5) 

 

 At equilibrium, the rate of desorption and of adsorption are the same. In a 

non-equilibrium status, the rate of change of surface atom density may be found 

by the difference between equations (9.4) and (9.5): 

 

τ
γ
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)1(
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F
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taa
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
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= ∞                                    (9.6) 

 

 Now one must integrate equation (9.6) for a definitive time t, and for the 

density of adsorbed atoms a: 

 

[ ] [ ]∫ ∫=








+−−−∞

a t

dtda
CoFtaFa

Co

0 0
)1()()1( τγτγ

τ
                       (9.7) 

 

 By means of formula (9.8) we can find equation (9.9). 
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 It is possible to find the atomic concentration at the surface at time t from 

equation (9.9): 
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If we differentiate equation (9.10) with respect of time, we find the rate of 

change of adsorption evaluated at t=0 is directly proportional to the flux: 
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The above equation relies on several assumptions. For purposes of 

measuring the flux impinging on the sensor, one has to determine the initial 

change of adsorption rate, which in turn requires that no previously adsorbed 

atoms or molecules of any kind. This also requires the flux to be constant, the 

average atomic residence time at crystallite surface to be constant, surface 

geometry of sensors not changing in time, and the scattering coefficient (fraction of 

impacting atoms that reflect) of impinging species does not change (this 

assumption will only be valid at the very beginning of the exposure, since after 

time passes, some positions in the surface will be occupied and therefore the 

probability of adsorption decreases with time). 

 

The question that remains is how to measure the rate of change of 

adsorbed atoms at the surface of the sensor at time=0? We will now attempt to 

relate this change with resistance or impedance, which can be easily measured. 
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To reduce the number of constants to work with let us define a* as Co/a∞. 

Therefore equation 9.11 becomes, after suitable rearrangement: 

 

0

*

)1(
=

−
= t

dt

daa
F

γ
                                             (9.12) 

 

 In the particular case of ZnO and adsorption of AO, only the adsorbed 

atoms that become ionized (by accepting one electron from the sensor) will affect 

the conductivity of the material. If we define α as the fraction of adsorbed atoms 

that become ionized, and i as the surface density of ions, we get: 

 

00 ==

=
tt dt
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di
α                                                 (9.13) 

 

 But we also need to take into consideration that the increase of ionic atoms 

in the surface will decrease the surface electronic density ns: 
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Using equations 9.13 and 9.14 into 9.12 we get: 
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 The conductivity in a semiconductor σ is given by: 

 

µσ enb=                                                      (9.16) 

 

where e is the electronic charge and µ is the mobility of the charge carriers, in this 

case, the electrons, and nb is the density of electrons in the bulk. Therefore the 

change in conductivity with time is: 
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The number of electrons removed from the surface due to adsorption ∆Ns 

is the same as the decrease in the number of electrons available for conduction (in 

the bulk) ∆Nb, and we find that: 

 

VnNN bbs ∆=∆=∆                                             (9.18) 

 

where V is the volume of the sensor. If d is the sensor thickness, b the breadth of 

the sensor, and l the distance between electrodes we find, after differentiating 

against time: 
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d

b
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dN bs =                                                   (9.19) 

 

 So the change of conductance with time is given by replacing 9.19 into 

9.17: 
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b
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d sµσ
=                                                  (9.20) 

 

 Since Ns and ns are related by volume, after differentiation by time we get: 
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we can replace 9.21 into 9.20 and then into 9.15 to get: 
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 Now since the conductivity σ is related to resistance R and resistivity ρ by: 
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                                        (9.22) 

 

where A is the cross-sectional area, and g is conductance. Replacing equation 

9.22 into 9.21: 
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otdt
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 Equation 9.23 will therefore allow the determination of AO flux by 

measuring the resistance change at the beginning of exposure, and then 

converting that value to change of conductance with time at the beginning of the 

exposure. However, each sensor would need to be calibrated before actual flux 

determination with a source of a known flux so as to determine the magnitude of 

the constants in equation 9.23. 

 

 A limitation of this model is that a precise measurement of resistance is 

required. This may not be possible for films on ZnO in which gold is used for the 

contacts. As mentioned in Section 10.2, surface barriers may form in the interface 

between the gold and the ZnO, which could preclude accurate measurements by 

the sensors matter of this research, if such barriers are present. The following 

section tries to overcome the limitation of this model. 

 

9.2 Ballistic Model modified by the use of Impedance Spectroscopy 

 

 It has been shown that surface barriers can form in between ZnO grains 

and gold connectors (Mead, 1965; Fabricius et al., 1986). But there is also ample 

evidence (Freer, et al., 2004) that the effect of those surface barriers can be 

isolated from the resistance of the bulk and grain boundaries by means of 

impedance spectroscopy. It is also known that if the resistance readings of a 

sensor obey Ohm’s Law, those barriers are not present. Therefore, sensors that 

obey Ohm’s Law can use the ballistic model described in the preceding section.  

 

 However, it is typical that sensors only show ohmic behavior for a limited 

voltage range (from zero up to the threshold value) for a number of reasons; so 

after this threshold value, the measurement of resistance can be compromised by 

the appearance of surface barrier. And it is even possible that those barriers are 

present at all voltages. So it is required to find the means to isolate the effect of 

contact to sensor surface barriers. 

 

 The obvious choice is to use impedance spectroscopy to find an equivalent 

circuit of resistances and capacitances to model the resistance in the contact to 
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sensor inter phase, the bulk, and grain boundaries. Once this surface barrier effect 

is isolated, the change of bulk and grain boundary resistance can be used 

(depending on the nature of the sensor) to measure flux.  In sensors where the 

overall change of resistance with time is dominated by the resistance of the grain 

boundaries, the former parameter can be used to estimate flux in place of overall 

resistance rate of change as long as the magnitude of the error introduced is 

known and acceptable. 

 

 Using impedance introduces another form of error: it takes from a few 

seconds to a few minutes to complete a frequency sweep with enough detail to 

obtain impedance measurements. Each data point in the resistance versus time 

plot will require a complete frequency sweep. The AO flux will have to be blocked 

or assume this as an error during the sweep, but regardless of the technique used, 

the margin of error will increase by the length of time it takes to make an 

impedance measurement. 
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The purpose of this chapter is to present a brief description of Zinc Oxide 

and to provide an overview of the variables that influence its electrical resistance. 

This review will include references to work done in single crystals, as well as both 

thin and thick films. Zinc oxide films have successfully been used as sensors for 

flammable gases like hydrocarbons, alcohols, hydrogen gas and carbon monoxide 

(Nunes et al., 2001), but these applications are beyond the scope of the present 

work. 

 

 The first and most important characteristic of a semiconductor like ZnO is 

that it is of an n-type; it is under investigation that under some exceptional 

circumstances like heavy doping with other components and temperatures 

between 573 and 1000 K (Chandra et al, 1967) this can change, but this is not 

expected to occur within the scope of this research. Charge-carrier providers are 

Zn atoms that occupy interstitial positions (Royal et al., 1968). 

 

10.1 Zinc Oxide 

 

Zinc oxide is a chemical compound with formula ZnO. It is nearly insoluble 

in water but soluble in acids or alkalis. It occurs as white hexagonal wurzite lattice 

crystals, with lattice constants (dimensional lengths) a1 = 3.25 Å, a3 = 5.19 Å 

(Heiland et al., 1959). 

 

It remains white when exposed to ultraviolet light. Crystalline zinc oxide 

exhibits the piezoelectric effect (the ability of certain crystals to generate a voltage 

in response to applied mechanical stress), is luminescent under the bombardment 

of electrons, and is light sensitive. These properties have led to the employment of 

ZnO in a diverse range of scientific and technological applications. Zinc oxide 

occurs in nature as the mineral zinctite.  

 

 Zinc oxide has a molar mass of 81.37 g/mol, a density as a solid of 5.606 

g/cm3, and a melting point of 1975°C. It is a semiconductor with a band gap of 3.2 

10. Zinc Oxide Gas Sensors 
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eV (387 nm, deep violet/borderline UV). A common application is in gas sensors. 

Its crystalline structure is depicted in Figure 10.1. 

 

 

 

 

 

10.2 Relationship between Voltage and Resistance 

 

Osborne (1999) reported in his work, that the thin film ZnO sensors 

respond to different DC voltages following a linear relationship between voltage 

and current measured under vacuum conditions in accordance with ohms law. A 

typical result from his experiments can be found in Fig. 10.2. 

 

These results indicate that the resistance of the thin film sensors would not 

vary with different voltages applied to them (ohmic behavior). It has been reported 

(Mead, 1965; Fabricius et al., 1986) that gold can form a surface barrier when in 

contact in ZnO, a condition that would preclude an ohmic response on a sensor. 

 

Polycrystalline sensors of ZnO may be modified by the presence of 

additives so as to perform in a specific manner. Routbort et. at., (1995) report that 

the response of these sensors may deviate from a linear and ohmic response 

when a voltage is applied to them. 

Figure 10.1 Zinc Oxide Crystalline Structure (picture taken from Webelements.com) 
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10.3 Ultraviolet Radiation 

 

 It has been widely reported, that UV causes surface lattice oxygen atoms 

to leave the surface of the oxide; because of the significant band gap (about 3.2 

eV) most radiation absorption will take place in the UV region; thin zinc oxide films 

have been used as UV detectors (Fabricius et al., 1986). The process is described 

by the following reaction (Thomas et al., 1958), where h is the Plank’s Constant, 

and ν is the radiation frequency: 

 

(10.1) 

 

Subsequent ionization of interstitial zinc provides electrons that increase 

the conductivity of the crystal: 

 

(10.2) 

 

It has been reported (Kohl, 1996) that once an important loss of oxygen 

atoms on the surface of a film has occurred due to exposure to UV radiation, and 

provided the temperature is at least of 900°C, some of the atoms of oxygen from 

the bulk of the film will migrate towards the surface to replace the ones lost from 

the surface; this process irreversibly changes the resistance of the film. This being 

a temperature significantly higher than those encounter in the present research, 

migration should not be of concern for the present work. 

Figure 10.2 I-V plot for thin ZnO sensors (Osborne, 1999). 

ZnOhOZnO +→++ −+
22

122 2 ν

−+ +→ eZnZn
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 Zinc oxide can also absorb UV light directly, and when this energy is higher 

than the band gap energy, an electron(e-)-hole(H+) pair is created (Melnick, 1957):  

 

(10.3) 

 

 The above reaction will cause the concentration of charge carriers to 

increase which will in turn increase the conductance of the material. This process 

is entirely reversible, and reverses once the radiation ceases to reach the ZnO. 

 

 It should also be mentioned that UV radiation can increase the temperature 

of a film of ZnO crystals and as a result decrease its resistance. 

 

 It has been reported that thin films have a significantly larger and faster 

photoconductivity response than thick films (Takahshi et al. 1994), due to the 

limited penetration of UV radiation, which Heiland (1961) found to be about 0.1µm; 

this is consistent with a surface effect. This penetration depth should be 

understood as the maximum depth on a particular sensor where the availability of 

negative charge carriers increases due to UV radiation impinging on the sensor’s 

surface. 

 

 

10.4 Adsorption of Molecular Oxygen 

 

 In the absence of UV radiation, molecular oxygen can be adsorbed in the 

surface of ZnO according to the following equation (Takahashi et al., 1994):  

 

(10.4) 

 

 The gaseous molecular oxygen would adsorb by capturing an electron from 

the surface of the oxide, which should be available in an n-type semiconductor; 

this phenomenon will increase the resistance of the material, since it will create a 

depletion zone of charge carriers near the surface. The process can be reversed 

by UV radiation of sufficient energy, according to: 

 

(10.5) 

−+ +Η→ ehν

)()( 22 adOegasO
−− →+

)()( 22 gasOadOh →+ −+
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10.5 Adsorption of Atomic Oxygen 

 

Upon impinging the surface of a sensor, AO may get physisorbed, and 

therefore stay in the surface by means of a weak physical attraction of the van der 

Waals type, of an order of magnitude of a fraction of an electron-volt; there is not a 

proper chemical bond in this type of interaction, but the force is of a long range 

and may allow the build-up of several layers of adsorbed atoms. 

 

After some time, an oxygen atom may become chemisorbed, a process 

that involves the transfer of some of the negative electric charge to the adsorbed 

atom, which will create a strong chemical bond. This will create a situation similar 

to the surface states discussed in Chapter 6, decreasing the availability of charge 

carriers for conduction (and therefore increasing the resistance of the crystal); 

some of the electrons will transfer to an energetic position under the conduction 

band of the oxide. This strong attraction is of short-range type; the number of 

positions available for chemisorption is limited, and it is unlikely that more than one 

layer of adsorbed atoms will form; therefore, it is said that the surface has 

‘saturated’. 

 

The adsorbed atoms will ionize due to the negative charge transfer, which 

explains the strong ionic bond to the surface and the reduced likelihood of 

desorption, which can nevertheless take place by suitable heating. But adsorption 

will also create a depletion layer of electrons, with a depth in between 0.1 to 10 

µm, that although small, affects the conductivity of the crystal; a consequence of 

this is that the thicker a sensor is, the less sensitive it will be to chemisorbed AO, 

since the conductivity of the bulk of the sensor may shunt the observation of the 

reduced conductance due to the adsorption; consequently, thin films will be more 

sensitive than thick ones of the same surface area, depending as well on crystallite 

sizes. 

 

It should also be mentioned that resistance response due to AO 

chemisorption is very dependant on crystallite size and the porosity of the film, 

since these variables can significantly change the amount of surface exposed to 

AO. 
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 Different techniques (Arshak et. al., 2005; Caillaud et.al., 1991; Fabricius 

et. al., 1986) have been developed over the years for the deposition of zinc oxides 

on different substrates so as to be used in a variety of ways. Grain sizes can vary 

dramatically from technique to technique. If the grain size is small enough that 

depletion layers due to adsorbed oxygen affect a significant amount of the volume 

of the conducting material, the number of electrons available for conduction can 

significantly decrease, while the sensitivity of the sensor increases. 

 

 It is interesting to compare the results of the chemisorption of molecular vs. 

atomic oxygen. Nahr et al., (1971) found a response between 102 to 103 times 

higher for the latter than the former on single ZnO crystals. This may be explained 

by the fact that atoms of oxygen wish to acquire a couple of electrons to achieve a 

noble gas electronic configuration, while the atoms in a molecule of oxygen have 

already attained that configuration. 

 

 

10.6 Atomic Oxygen Migration 

 

 The diffusion of oxygen and zinc atoms in ZnO has been studied in depth; 

Newman (1981) provides a good review on this matter. Just a general overview 

will be presented here. 

 

 Equation (7.9) can be reformulated and expressed in terms of the 

Boltzmann’s constant to obtain a “diffusion coefficient’, which is defined by 

Equation 10.6: 

  

(10.6) 

 

where D is the diffusion coefficient [m2/s], D0 is the frequency factor [m2/s], Q is the 

activation energy [J], k is the Boltzmann’s constant, and T is the absolute 

temperature [K]. The time for a species to diffuse can be found by using Equation 

10.7 

 

(10.7) 

 

where y is the diffusion depth [m]. 
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Research by Erhart, et. al., (2006) has shown not only that interstitial 

atomic oxygen migrates in the structure of ZnO oxides, but also that the atoms 

with a single negative charge are those favourite for such migration to occur, as 

depicted in Figure 10.2. It has been reported by Tuomisto, et. al., (2005) that the 

activation energy for the neutral oxygen vacancy is 1.8 eV. 

 

 

 

 

10.7 Response to Changes in Pressure 

 

 Wortman et. al., (1972) performed a detailed work on the response of thin 

films of ZnO (deposited by RF sputtering over a substrate) to atmospheric gases at 

different pressures. The film’s resistance will change according to Equation 10.8: 

 

(10.8)  

 

 

where R is the resistance, Ro is temperature independent constant, EA is the 

activation energy for the process, k is the Boltzmann’s constant, and T the 

absolute temperature. Wortman et. al., (1972) found that Ro and EA increase with 

an increase of the partial pressure of molecular oxygen in air. The decrease in the 

concentration of charge carriers, and hence a further increase in resistance, is a 

consequence of the trapping of electrons at the surface by the adsorption of 

Figure 10.2 Charge state dependence of oxygen interstitial migration enthalpies. Graph 
shows this dependence for different migration patterns. Erhart, et. al., (2006) 

)exp(0
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oxygen, both molecular and atomic (there a negligible concentration of AO in air). 

Equation 10.8 also shows that an increase in temperature will cause a decrease in 

resistance, keeping all other variables constant. 

 

 Figure 10.3 provides a clear exposition of the relationship between partial 

pressure of air and resistance; the temperature dependence is also demonstrated. 

The activation energy measured in the curve with the lowest resistance (and 

lowest pressure as well), was measured to be 0.047 eV; published values for the 

first ionization energy for interstitial zinc atom (which would transfer an electron to 

adsorbed molecules of oxygen) range from 0.040 eV to 0.050 eV depending on 

the structure of the grains. 

 

  

 

Figure 10.3 Resistance dependence on Oxygen Partial Pressure in Air and Temperature, 
Wortman et. al., (1972). 
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As the number of adsorbed oxygen atoms or molecules increase on the 

surface, so will be the probability of repulsion among them. This circumstance will 

also result in an increase in the activation energy (a consequence of the increase 

in partial pressure of air); eventually, the surface will saturate and prevent further 

adsorption. The activation energies found by Wortman et. al., (1972) are 

presented in Table 10.1. 

 

 

Table 10.1 Change in Activation Energy with Oxygen Partial Pressure, Wortman et. 

al., (1972) 

 

Pressure 
[Pa] 

Activation 
Energy [eV] 

1 0.05 

104 0.2 

105 0.3 
 

  

Using the same reference, and after a long analysis that goes beyond the 

scope of the present work, it can be proposed that the concentration of O2 at the 

surface of the film [O2] is a function of the number of available sites at the surface 

per unit area ns, the partial pressure of O2 PO2 and the total air pressure PT: 

 

(10.9) 

 

 

The fact that ZnO films can operate as piezoelectric detectors/transducers 

is well documented. Piezoelectric zinc oxide thin films are used as a transducer 

material in mechanical sensors, acoustic wave devices (it can also generate this 

type of waves), acoustic microscopy and acousto-optic devices (Cimpoiasu et al., 

1996; Schwesinger et al., 2005). 

 

 

10.8 Response to Humidity 

 

 It has been reported that the presence of water vapour in the gas (either 

pure molecular oxygen or nitrogen) in which thin zinc oxide sensors were tested, 

[ ]
T
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will increase the resistance of the sensors while exposed to UV radiation (Melnick, 

1957). It has been proposed that the water vapour decreases the concentration of 

charge carriers while under UV radiation according to the following mechanism 

(Takahashi, 1994): 

 

(10.10) 

 

 

An alternative mechanism would be the oxidation by water of the interstitial Zn 

atoms (created by the UV radiation) which will also reduce the concentration of 

electrons and thus reduce the conductivity of the material. 

 

 Wortman et. al., (1972) report an increase in resistance of thin ZnO films 

with an increase in the partial pressure of water vapour in air. He attributes the 

change to the chemisorption of H2O molecules on the surface of the films, which 

will ‘trap’ some of the electrons. 

 

 

10.9 Response to Other Gases 

 

 Wortman et. al., (1972) report that thin films of ZnO do not significantly 

react to a variation in the pressure of either molecular nitrogen or argon, at room 

temperature. This contrast with the response of adsorbed oxygen can be 

explained by the nature of the interaction of N2 or Ar with the surface of a film: 

having both the electronic configuration at the atomic level of noble gases, they 

will not accommodate an electron from the ZnO, which will not allow a chemical 

adsorption, but rather a physical one. This physisorption involves much weaker 

forces and of a reduced range than chemisorption; also, no significant reduction of 

the concentration of electrons takes place, and therefore, there is no significant 

increase in the resistance of the films. 

 

There is documented evidence that thin films of ZnO respond to the 

presence of molecular hydrogen. Research performed by Yamazaki et at., (1993), 

show that the resistance of thin films (that were deposited by ion-beam sputtering 

over a substrate) increase as a consequence of a partial pressure of H2 in dry air; 

this increase in resistance is attributed to the creation of a depletion layer of 

22
1

22 22 OHehOH +→++ −+
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electrons in the surface of the film, in a similar fashion as adsorbed oxygen. In this 

experiment, the sensitivity of the sensor dropped as its thickness increased, which 

is consistent with the presence of a depletion layer.  

 

 It has been reported (Trivikrama Rao et al., 1999) that thick and thin films 

of ZnO at about 300°C respond to trace amounts of reactive gases like 

hydrocarbons, carbon monoxide, methane, ammonia, and oxides of sulphur, 

nitrogen, and chloride; it has also been reported (Arshak et al., 2005) the use of 

thick zinc oxide films to monitor the concentration of propanol, methanol, and 

ethanol at temperatures of 25°C to 50°C. A review on these effects is considered 

to be beyond the scope of this work. 
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11.1 Historical Background 

 

 This research project has its immediate predecessor in the work performed 

by Osborne (1999) for his doctoral thesis in the University of Southampton. He 

developed a series of thin films that proved to be responsive to AO, as well as 

being capable of regeneration by suitable heating. Thin film technology allows the 

manufacture of sensors that can be small, with very modest requirements in terms 

of electronics and power. Nonetheless, Osborne’s sensors presented a significant 

hysterisis upon repeated exposure, and also significant variability in their initial 

resistance. 

 

 Osborne’s work in turn was inspired by the experimental work carried out 

by Gabriel (1997) in which he recorded the increase in resistance of a single ZnO 

crystal exposed to AO. 

 

 However, thick film technology presents a series of advantages to be 

exploited in the design of sensors. The printing of films can be done at 

atmospheric conditions with simple instrumentation, and the firing only requires a 

furnace without a controlled environment. All this makes thick film technology very 

affordable and allows the simple and rapid preparation of sensors. These features 

were exploited in the present work. 

 

 

11.2 Sensor Fabrication 

 

The design was based on the thin film sensors of Osborne (1999), but with 

many differences: the substrate and heaters were the same, but deposition took 

place by screen printing (later to be explained in more detail). A thick film of ZnO 

was deposited over an alumina substrate; in between these two, an interdigitated 

gold array (thickness of about 1 µm) was printed so as to provide electrical 

contacts with the film. A heater of the resistor type was printed on the other side of 

11. Sensor Development 
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the substrate to provide temperature control and the necessary heat for 

regeneration. 

 

Substrates are made of commercially available alumina (supplied by Coors 

Tek, catalogue code USO-LS/1), better than 98% pure. 

 

Initially, a gold film used for conduction is deposited over the substrate. 

This gold film has a very fine interdigitated structure so as to decrease the 

resistance of the ZnO sensor once it is deposited over. The gold (ESL 8880-H) is 

deposited by a screen printing technique and then fired at 850°C to assure its 

adherence to the substrate; final thickness will be 1 µm approximately. Four 

equidistant gold films are printed in each substrate. Fig. 11.1 is a diagram of one 

of these interdigitated films (dimensions in mm): 

 

 

 

 

 

 

Silver soldering pads were printed on both sides of the gold interdigitated 

array. 

 

An ‘ink’ (or paste) was prepared with better than 99.9% pure ZnO powder 

(supplied by Sigma Aldrich, catalogue number 20,553-2) and one of several 

Figure 11.1 Gold Interdigitated Film Design. 
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different oils (that would act as solvents) into a homogeneous paste. Different 

percentages of binders (substances that would ease the adherence of the ink to 

the substrate) were added to some of the inks. A simple mixing process by hand to 

make it homogenous is completed, using a pot and stainless steel tools (see Fig. 

11.2). 

 

 

 
 

 

 

 

 

The ink was then taken to a mill (see Fig. 11.3) for about five minutes to 

further reduce particle size and increase homogenization. This mill has rollers that 

rotate with different angular speeds to provide shear stress to the ink that is 

constantly going from one roller to the other by the small gaps in between them. 

 

Then the ink is deposited on the substrate by a screen printing process. 

The sketch in Fig. 11.4 shows a schematic arrangement of the process and the 

instruments used for it (Atkinson et al., 1992). 

 

Figure 11.2 Mixing Tools. 
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Quoting Sizeland (1994): “The screen is held above the substrate, paste 

(ink) is applied to the screen and the squeegee travels over the screen, pressing it 

down into contact with the substrate, pushing the paste through the screen, thus 

depositing paste onto the substrate surface.” A mesh in between the substrate and 

the screen would allow the deposited ink to have the desired shape. Different ink 

thicknesses (of the order of several µm) can be achieved: an emulsion is fixed in 

Figure 11.3 Mill used for Homogenization. 

Figure 11.4 Screen Printing Technique. 
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the screen that provides the space between the mesh and the substrate where the 

ink is deposited. 

 

The screen used for the deposition of the ZnO inks was made of a 

stainless steel mesh at an angle of 45° with the frame, with 325 holes per square 

inch, and an emulsion about 13 µm thick. The hole density and emulsion thickness 

are the main drivers that determine final film thickness; other drivers are the 

viscosity of the ink and the pressure applied on the squeegee. 

 

Once the deposition of the ink was completed, the substrate was taken to a 

furnace for a carefully planned firing to a temperature of up to 850°C (standard 

temperature in the industry) in a process that can take up to an hour, according to 

the profile showed in Fig. 11.5; it should be noted that the firing for all printings 

described in this report followed the same temperature profile. In case of a 

commercial ink like the one of gold used for the interdigitated array or when using 

a binder, the firing temperature is set by the manufacturer; in case only an oil 

(solvent) is used, the firing temperature has to ensure this solvent evaporates at 

the end of the process. 
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 Figure 11.5 Furnace Temperature Sequence. 
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 Shorter times in the firing processes were also tried for the ZnO inks, but 

the above described firing profile seemed to provide the better adherence of the 

ink to the substrate.  

 

ZnO inks were printed on the substrates, covering two gold interdigitated 

arrays, as can be seen in Fig. 11.6. 

 

With the aid of a sharp object, a groove in the ZnO film in between each 

gold array was created, so as to separate each individual sensor. 

 

 

 
 

 

 

 

 

With the screen printing technique, sensors of different thicknesses and 

multiple layers can be produced. For the first batch of sensors, a single layer with 

a thickness of about 10 µm (plus or minus 10%) was chosen; this thickness is a 

common value used in the sensor industry. This thickness has been measured by 

means of a “light section microscope” that measures the difference in reflection of 

the impinging light on the substrate and film as an indication of thickness. One of 

the technical challenges that remain to be dealt with is to achieve little variation 

among the thickness of different sensors.  

 

The detailed list of steps to manufacture single-layer sensors can be found 

in Table 11.1. To obtain multiple layers, the last four steps need to be repeated as 

necessary. 

Figure 11.6 ZnO Sensors. 
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Table 11.1. Manufacturing route for single-layer ZnO thick films. 

 

Step Operation 

1 Screen-print silver contacts for Ruthenium heater 
2 Dry at low temperature 
3 Fire to temperatures of up to 850°C 
4 Screen-print Ruthenium heater 
5 Dry at low temperature 
6 Fire to temperatures of up to 850°C 
7 Screen-print interdigitated gold array 
8 Dry at low temperature 
9 Fire to temperatures of up to 850°C 
10 Optical inspection of gold array 
11 Screen-print silver contacts for gold array 
12 Dry at low temperature 
13 Fire to temperatures of up to 850°C 
14 Prepare ZnO ink 
15 Mill ink for homogenization 
16 Screen-print ZnO ink 
17 Dry at low temperature 
18 Fire to temperatures of up to 850°C 
19 Measure film thickness 

 

 

 

After some experience was acquired with the operation of single-layer 

films, and with the intention of reducing the resistance of the pure ZnO sensors, it 

was decided to manufacture a final batch of sensors with the same characteristics 

but made of three layers of the oxide. This result is achieved by subsequent 

printing and firing individual layers one on top of the other. The thickness achieved 

on the triple-layer sensors is in the order of 30 µm, that is, about three times the 

thickness of the single-layer sensors. 

 

 Several different inks were tested so as to determine which one provided 

the best adherence of the sensing material to the substrate; some of them were of 

pure zinc oxide with an oil (or vehicle), whose only purpose is to act as a solvent of 

the oxide to facilitate later the screen printing process. The following oils (always in 

the minimum amount possible) were used: 

 

a-Terpineol (90%): oil produced by Sigma Aldrich (catalogue number 43,262-8) 

Rosmerinol: oil produced by Heraeus. 
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Pine Oil: produced by Heraeus. 

ESL400: vehicle produced by ESL Europe. 

 

 If a good homogenization is achieved, most if not all of the oil or vehicle 

should evaporate during the firing process. 

 

 Besides trying with different oils and vehicles, other chemicals known as 

binders where also used. These have the ability to facilitate the adherence of the 

zinc oxide to the substrate; they should remain with the zinc oxide after firing. The 

following were tried in the mass percentages indicated in parenthesis: 

 

IP027 (18% and 30%): produced by Heraeus. 

PbO (6% and 12%): produced by Aldrich. 

 

On the back of the substrate, a heater made of a resistor material 

(ruthenium oxide in a glass frit) is deposited so as to allow the heating of the 

sensor to reach temperatures of up to 80 to 100°C during regeneration. Silver 

contacts were deposited before the ruthenium. This heater follows the same 

design used by Osborne (1999), which is depicted in Fig. 11.7.  

 

The production and utilization in conjunction with semiconductor gas 

sensors of thick film RuO2 heaters is considered a mature technology. These 

heaters are reliable and not very much subject to ageing after utilization in 

temperatures not higher than 300°C. A good review on them can be found in 

Nowat et al., (1992). 

 

To this heater element, a commercially available thermocouple can be 

attached by means of Kapton® tape. Thermocouples require their own electrical 

connections. 
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Figure 11.7. Heater Element Design. 
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Before testing the ZnO sensors under a flux of AO or other gases, they 

were studied using several techniques so as to learn more about their physical 

and chemical characteristics. Several batches of sensors were prepared using the 

same techniques; Table 12.1 lists all sensors used for this present research, 

indicating manufacture and place and type of testing. 

 

 

Table 12.1 Master List of Sensors 

 

Serial 
Number 

Type 
Date of 

Manufacture 
Test Location and Conditions 

100 1 

October 2004 

ATOX (exposed to AO) 
101 1 
102 1 ATOX (covered with quartz window) 
110 1 

ATOX (exposed to AO) 
111 1 
112 1 ATOX (covered with alumina) 
122 1 Univ. of Southampton (SEM and basic 

electric response) 124 1 
200 2 ATOX (covered with quartz window) 
201 2 ATOX (exposed to AO) 
202 2 ATOX (covered with alumina) 
203 2 Univ. of Southampton (SEM and basic 

electric response) 204 2 
301 3 Univ. of Southampton (SEM and basic 

electric response) 302 3 
401 1 

ATOX (exposed to AO) 402 1 
403 1 
404 1 

ATOX (covered with quartz window) 
405 1 
406 1 

ATOX (covered with alumina) 
407 1 
A1 1 

October 2006 

University of Southampton (for vacuum 
and atmospheric gases) and ATOX (for 

atomic oxygen) 

A2 1 
A3 1 
B1 1 
B2 1 
B3 1 
C1 1 

University of Southampton (for vacuum 
and atmospheric gases)  C2 1 

C3 1 

12. Characterization of the ZnO Thick Film Sensors 
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Unless otherwise stated, the following results apply equally to sensors of all 

batches and refer to tests conducted within few days or weeks of the 

manufacturing of the respective sensors.  

 

 

12.1 Adherence to Substrate 

 

Initially, the different sensors produced were subjected to simple 

mechanical tests to evaluate the adherence of the thick film to the substrate. For 

all but the four following sensor types it was possible to scratch the zinc oxide by 

applying a gentle pressure with a sharp object: 

 

• Type 1: Pure ZnO dissolved in ESL400 prior to firing, single layer. 

• Type 2: ZnO (82%) with IP027 (18%). 

• Type 3: ZnO (70%) with IP027 (30%). 

 

It should be noted, that when an adhesive tape was applied to the above 

mentioned sensor types, in all but the Type 3, some sensor material remained on 

the tape when it was removed from the sensor. 

 

It was decided to continue testing with these three types of sensors only 

from now on, since the adherence to the substrate was best. It should be noted, 

however, that the adherence of these sensors is inferior to that achieved by thin 

film sputtering as used in the sensors produced by Osborne (1999). The limited 

adherence of ink to the substrate may limit the application of these sensors to 

circumstances where damage due to installation, transport, and operation are not 

likely to occur. 

 

12.2 Response to changes in Temperature and Pressure 

 

 The purpose of this package of work was to determine the response of 

Type 1 sensors to changes in pressure and temperature. These tests were carried 

out in a custom built chamber at the astronautics laboratories of the University of 

Southampton. The chamber (see Figure 12.1) was equipped with a mechanical 

pump and a turbomolecular pump (Edwards catalogue EXT 70 DN63 ISO-K). A 
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system to continuously monitor pressure from atmospheric pressure down to 10-9 

Pa was installed and controlled by a PC. The resistance readings were carried out 

by highly accurate Agilent Data Acquisition Unit (model 34970A) that was 

connected to a PC for remote operation and data recording. This chamber has no 

windows. 

 

 

 
 

 

 

 DC resistance was chosen as an indicator of sensor response since, as 

discussed in Chapter 10, it is expected that a reduction in atmospheric pressure 

will result in desorption of molecular oxygen and water, which in turn should 

reduce the resistance of the sensors. Some preliminary tests were carried out in 

vacuum; these determined that for temperatures close to ambient, the most stable 

temperature for resistance readings over time was 35°C. 

 

Figure 12.2 shows the typical response of Type 1 sensors when pressure 

is reduced. The first significant drop in resistance (at time 190 hours) occurred 

when the mechanical pump was activated. The second drop occurred when the 

turbomolecular pump was activated (at time 330 hours). The temperature used for 

this test was around 35°C. The final pressure in the chamber was in the order of 

Figure 12.1. Custom-built vacuum chamber for this research project. 
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10-4 Pa. From the time the turbomolecular pump was activated, it took the sensors 

at least 72 hours to provide a nearly stable resistance. The resistance drop from 

atmospheric pressure to high vacuum was of about five orders of magnitude; this 

is general agreement with past experience presented in Section 10.7. 
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Once the resistance readings of all sensors were stable, temperature was 

varied according to Figure 12.3. This figure shows that as temperature increases, 

resistance decreases; this is to be expected, since as more thermal energy is 

available, more electrons are able to migrate into the conduction band and 

therefore conductance increases.  

 

 

 
Figure 12.2. Change in Resistance with Change in Pressure for one Type 1 

Sensor (serial number C2). 
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Resistance vs Temperature
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Using equation 12.1 (Wortman et. al., 1972): 

 

(12.1) 

 

we can find the following relationship (Equation 12.2): 

 

kT

E
RR R+= )ln()ln( 0                                             (12.2) 

 

 The same data presented in Figure 12.3 is now presented in Figure 12.4 

but using Equation 12.2. The slope of the linear regression curve fitted into the 

data allows us to find the activation energy ER which is 0.045 eV, with coefficient of 

correlation 97%. This value is similar to that found by Wortman et. al. (1972) for 

thin ZnO films (0.047eV) and similar to that found by Osborne (1999) for thin films 

as well (0.039). These range of values are the ones to expected for the first 

ionization energy for interstitial zinc atoms in Zinc Oxide. These results allow us to 

confirm that O2 will adsorb as −
2O  removing some of the electronic density 

available for conduction in the ZnO. 

 

Figure 12.3. Resistance versus Temperature for a Type 1 sensor. 
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 It was also found that although the all Type 1 sensors were manufactured 

according to the same procedures, and all have the same exposed surface, their 

baseline resistance in vacuum can vary significantly from sensor to sensor. Table 

12.1 gives an indication of the distribution of baseline resistances for one batch 

tested. 

 

 

Table 12.2. Mean Baseline Resistance for one batch of Type 1 Sensors at 35°C 
 

Mean Resistance [Ω] Standard Deviation [Ω] 

96 50 

 

12.3 Electrical Response Characterization 

 

 With the purpose to determine the response of Type 1 and 2 single-layer 

sensors due to varying applied DC voltages, a series of tests were carried out 

under vacuum conditions using a Keithley 6485 multimeter. These tests took place 

nine months after the sensors were manufactured; the sensors were stored in a 

Figure 12.4. Logarithm of Resistance versus the Inverse of Temperature for a Type 1 
sensor (serial number C2). 
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clean box under normal atmospheric conditions during this time. The vacuum 

chamber used was that depicted in Figure 12.5 at the Astronautics Research 

Laboratories of the University of Southampton. No light was admitted into the 

chamber during testing, which occurred at atmospheric pressure. Plots of 

resistance vs. voltage can be found in Figures 12.6 and 12.7 for typical results; the 

voltage was varied from nearly 1 to 50 V, and then back to 1 V. 

 

 

 

 

 

 

Figure 12.5. Vacuum Chamber at the University of Southampton. 
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Resistance vs. Applied Voltage - Type 1 Sensors
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Resistance vs. Applied Voltage - Type 2 Sensors

1.0E+07

2.1E+08

4.1E+08

6.1E+08

8.1E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

0 10 20 30 40 50

Voltage [V]

R
es

is
ta

nc
e 

[o
hm

]

Voltage Increasing

Voltage Decreasing

 

 

 

 

 

Figure 12. 6. Resistance vs. Voltage for Type 1 Sensor. 

Figure 12.7 Resistance vs. Voltage for Type 2 Sensor. 

Sensor 203 

Sensor B2 
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The above results show that for sensors of types 1 and 2, the resistance 

decreases with an increased voltage across the sensor, showing a clear departure 

from an ohmic response for voltages in excess of 3.3 V, which has been 

determined to be the breakdown voltage for Type 1 and Type 2 sensors. This is in 

agreement with published values of around 3 V for ZnO varistors (Ohashi et al, 

2003). The results also show that resistance can drop up to an order of magnitude 

when the voltage increases from 5 V to 50 V.  

 

There is a modest hysterisis on the resistance value of the sensors. The 

resistance values first obtained when increasing the voltage are generally lower 

than those obtained later when a decreasing voltage is applied for Type 1 sensors. 

The opposite is true for Type 2 sensors.  

 

 To further characterize the region near the breakdown voltage but at a low 

pressure, Type 1 sensors were tested in the ATOX chamber (this chamber to be 

described later in Chapter 13) at a pressure of about 1.3*10-2 Pa and temperature 

of 35°C, after four days of heating at about 135°C. The instrument used was an 

Impedance Spectroscopy equipment to be described in more detail in Chapter 

XIV. The results for one sensor, which are typical for Type 1 sensors, are shown in 

Figure 12.8 and confirm that in the range 0 to 3.3 V, Type 1 sensors obey Ohm’s 

Law (evident by linear response of current vs. applied voltage as shown in Figure 

12.8) 

 

 

Figure 12.8 Typical resistance response for Type 1 sensors. 

Sensor B2 
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12.4 Characterization by Electronic Microscopy 

 

 Thick film ZnO Type 1, 2 and 3 sensors were examined by means of 

Scanning Electronic Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy 

(EDS) at the University of Southampton. The purpose was to determine grain 

characterization and chemical composition before AO exposure.  

 

The instrument used for these tests was a JSM 6500F thermal field 

emission scanning electron microscope (see Fig. 12.9). Its main characteristics 

are: accelerating voltage 0.5 to 30 kV; magnification up to 500,000; resolution: 1.5 

nm at 15 kV, 5.0 nm at 1 kV; it allows secondary electron and backscattered 

electron imaging, electron backscattered diffraction, and energy dispersive X-ray 

determinations (by means of the attached Oxford Inca 300 instrumentation). 

 

 

 

 

 

Each of the tested substrates was attached to the sample holder by a 

special adhesive conductive tape (see Fig. 12.10). So as to provide electric 

continuity between the top surface of the sample holder and the sensors to be 

Figure 12.9 JSM 6500F thermal field emission scanning electron microscope. 
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tested, a conductive strip was placed to connect that surface with the film 

connectors on one side of the substrate. 

 

 

 

 

 

 

 

12.4.1 Type 1 Sensors 

 

Type 1 sensors not yet exposed to AO generally showed a flat surface, but 

often, deep cracks and protuberances were noticed (see Fig. 12.11). Depending 

on the depth and extension of the cracks, they can have a severe impact on the 

ability of the sensor to conduct electrons. 

 

 

Figure 12.10. Substrate in Sample Holder. 
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Figure 12.11. Typical Type 1 Sensor SEM Image. 

Figure 12.12. Typical Type 1 Sensor SEM Image. 

Sensor 122 

Sensor 122 
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Visual inspection of several SEM pictures taken at different magnifications, 

show that crystallite size for Type 1 sensor range from 20nm to 1000nm (see Fig. 

12.12). It can also been seen the porous nature of this type of sensors; although 

the area exposed to the ram remains the same as the geometrical surface, the 

actual surface exposed to gases (the effective surface) that can diffuse through 

the spaces in between the crystallites (like air and O2 at standard atmospheric 

conditions) is much bigger than the geometrical surface of the sensor. 

 

 Using equations 10.6 and 10.7 to find the diffusion time along a distance of 

20nm (the size of the smallest crystallite), a D0 of 1.63*1011 cm2.s-1 (Newmann, 

1981), and an activation energy of 4.11 eV, we find that diffusion time is in the 

order of 1044 s for a temperature of 308 K. For the time scale of the experiments 

being carried out in this research, AO diffusion within the crystalline is not to be 

considered a significant factor in resistance change. 

 

EDS analysis performed on the Type 1 sensors, revealed they all contain 

the same relative proportions of the elements Zn and O, consistent with the 

stoichiometry of ZnO (Fig. 12.13 presents results in terms of atomic percentage). 

Information provided by this instrument does not allow us to elaborate on 

composition at the chemical compound’s level. The maximum percentage error for 

this instrumentation is +/- 0.5%. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 12.13. Results for Sensor 124: O (52.4%), Zn (47.6%). 
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 It should be noted that EDS is an analytical tool for surfaces. The volume 

sampled (that is, the actual portion of the specimen under analysis) is a layer with 

a thickness of about 1µm (Goodhew et al., 2000). 

 

 Pure ZnO powder, from the same source employed to manufacture all the 

sensors, was also analyzed by means of the SEM and EDS instrumentation. Fig. 

12.14 shows a microphotograph of the powder, which reveals crystallites of about 

the same size of those in the films (compare with Fig. 12.12). These results lead 

us to believe that the homogenization carried out in the three-roller mill does not 

significantly alter the size of the crystallites. 

 

Figure 12.15 presents the composition for the ZnO powder in terms of 

atomic percentage. A comparison with Fig. 12.13 reveals a decrease in the ratio of 

the concentrations of O to Zn (ratio of areas under the curves as calculated by the 

instrument) in the printed ZnO versus the powder; it is possible to speculate that 

this reduction is due to the firing sequence during sensor production. This relative 

increase in Zn atoms can increase the concentration of interstitial Zn atoms that 

provide most of the charge carriers available for conduction. 

 

 

 
 

 

  

 

 

Figure 12.14. ZnO powder. 
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12.4.2 Types 2 and 3 Sensors 

 

Sensors of Types 2 and 3 generally show a flat surface (see Figures 12.16 

and 12.17), but holes and other features are also present. SEM pictures at higher 

magnification show the binder keeping crystallites together in the sensor (see 

Figure 12.18); this figure also shows crystallite sizes comparable to that of Type 1 

sensors. 

 

 

Figure 12.15. Results for ZnO Powder: O (56.8%), Zn (43.2%). 
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Figure 12.16. Type 2 Sensor. 

Figure 12.17. Type 3 Sensor. 

Sensor 302 

Sensor 204 
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A ‘sensor’ manufactured with an ink made exclusively with the binder used 

in type 2 and 3 sensors was also tested with the EDS instrumentation. Table 12.2 

presents the results of such chemical analysis.  

 

 

 

Table 12.3 Ink Chemical Analysis 

 

Element Atomic % 

O 73 

Si 12 

Pb 14 

 

 

Figure 12.18. Type 3 Sensor. 

Sensor 302 
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12.5 Summary 

 

The tests outlined in this chapter have show the sensors to have a ohmic 

response up to applied voltages of 3.3 V. Their chemical composition of pure ZnO 

sensors is nearly stoichiometric. Sensors reduce their DC resistance by about five 

orders of magnitude when pressure is reduced from atmospheric to about 10-4 Pa. 

Resistance also reduces with increase in temperature; activation energies for the 

first ionization of interstitial zinc oxide have been measured and found to be in 

agreement with published literature. Sensors show a limited adherence to 

substrate, as well as some cracks and valleys in their surface; crystallites have 

been found to be in the nano-size range. 
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The main objectives of these experiments were to characterize the DC 

response of Types 1 and 2 sensors to atmospheric gases and to AO at LEO-like 

fluxes. 

 

 

13.1 Response to Atmospheric Gases 

 

 The objective of this package of work was to determine the response of 

Type 1 sensors to the atmospheric gases in both dry and wet conditions. Although 

the sensors developed under this research are intended to be operated under the 

vacuum conditions prevalent in LEO, the sensors will be exposed to Earth’s 

atmosphere before and after this happens, so their response to these gases is 

required to be characterized to understand any possible interactions. The chamber 

used and other required equipment are those described in Section 12.2. The 

sensors were kept for at least 72 hours in vacuum before different gases were 

allowed into the testing chamber; the sensor temperature was 35°C. Gas bottles 

were used to provide the dry O2 and N2 for this work. Gases were admitted into the 

chamber in the order shown in Figure 13.1; vacuum was obtained and kept for at 

least 72 hours in between each gas exposure; values shown in Figure 13.1 for 

final values, after a stable response was present for several hours. The pressure 

of each gas tested was one atmosphere inside the chamber; the N2 was saturated 

with water by means of the device shown in Figure 13.2. 

 

  

 

 

13. Sensor Characterization Investigation using DC 
Resistance 
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Response to Different Gases
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As observed before, there is a significant drop in resistance in going from 

atmospheric conditions to high vacuum (10-4 Pa). When dry O2 is admitted into the 

Figure 13.1. Typical Response to Different Gases of Type 1 Sensors. 

Figure 13.2. Device to Saturate with N2 with H2O. 

Sensor A2 
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chamber, the resistance increases by about two orders of magnitude, as expected, 

since O2 will adsorb at the surface of the sensor as −
2O and therefore, removing 

some electronic density from the conduction band (see Section 10.4). Molecular 

Nitrogen also increases the resistance of the sensors, but not as much as O2, N2 

having a complete electronic configuration in its outer shell; the increase in 

resistance is attributed to some adsorption and perhaps a piezoelectric effect (not 

confirmed). Comparison of resistance change between dry and wet N2 (the former 

being higher than the latter) indicates the adsorption of H20 with the removal of 

some of the electronic density from the conduction band (see Section 10.8). 

 

 

13.2 Response to Atomic Oxygen 

 

The purposes of these experiments were to characterize the DC resistance 

response of sensors of Types 1 and 2 to a flux of AO similar to these in Low Earth 

Orbit, the time dependence of this response, as well as to explore the regeneration 

properties of these types of sensors. An objective was also to evaluate how the 

sensors respond to UV radiation. The very high resistance of Type 3 sensors 

made it impracticable to include these sensors in this testing. 

 

The ATOX test facility in ESTEC, Netherlands, was used for these 

experiments, which took two separate visits, the first one in August 2004, and the 

second in September 2005. This facility was chosen because: it can produce a 

high flux (typically a day-in-orbit fluence in a few hours), the absence of other than 

oxygen elements, and the fact that it was readily available as part of the support of 

the European Space Agency for this research. A good description of it can be 

found in Osborne (1999). 

 

13.2.1 Instrumentation 

 

 The ATOX source (see Figure 13.2) is of the laser-breakdown type, based 

on the research work of Caledonia et al. (1987). By means of an electromagnetic 

valve, a measured amount of molecular oxygen is injected in the nozzle of the 

source. Here, a beam produced by a carbon dioxide laser breaks down the oxygen 

molecules so as to produce plasma with a temperature in excess of 21000K. This 

plasma constitutes a source of UV radiation that will reach the test samples, with 
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an illumination several orders of magnitude higher than the solar at LEO (Weihs 

and van Eesbeek, 1994). 

 

 The system is designed so as to allow the plasma (which has been 

accelerated due to the blast-wave originated during the breakdown) to cool off to 

the point of allowing the recombination of ions and electrons, but to prevent the 

recombination of atomic into molecular oxygen. The flux of AO will then reach the 

sample holder in the test chamber of this instrument.  

 

  

 

 

 

It needs to be mentioned that there is a small amount of molecular oxygen 

that is not dissociated (Caledonia, 1988), and other small amounts of excited or 

ionized AO (Caledonia et al., 1994) that would reach the samples under being 

tested. All these constitute contaminants that should not be ignored. 

 

 The AO produced by ATOX has a typical speed of 5 eV, which is the value 

ram spacecraft surfaces typically experience in LEO, with high directionality. This 

makes us conclude that the vast majority of AO from the source will interact with 

the ram surface of the sensors, that is, some of the AO will penetrate into the bulk 

Figure 13.3. ATOX (Osborne, 1999). 
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of the sensors through the cracks. Due to scattering, the effective area may be 

higher than the ram area of the sensors. 

 

 The test chamber can be kept in a vacuum of 10-7 Pa by means of a 

turbomolecular and a cryogenic pumps, when there is no AO flux. This value will 

increase to 10-4 Pa when the source is generating AO due to the pressure of this 

element. 

 

 The test chamber is connected to a sample chamber that can be isolated 

from the former. This allows working on the samples and/or replacing them while 

keeping the test chamber under vacuum. The sample chamber is brought into 

vacuum by means of a turbomolecular pump, reaching a minimum pressure of 10-5 

Pa. There are no windows in any of the ATOX chambers. 

 

 The sample tray can be moved back and forth from the sample chamber 

and the test chamber. Its orientation in respect to the flux can be varied so as to 

allow different angles of impact of the AO upon the samples. The distance 

between the origin of the flux and the sample tray can also be varied to allow 

different fluxes to reach it, taking advantage of the geometry of the AO beam.  

 

All the sensors, heaters, and temperature sensors were connected to the 

internal electrical connections in the ATOX test chamber, thus making those 

connections available to the exterior of the chamber via the corresponding 

feedthrough. All leads were soldered using PTFE insulated wire, and vacuum-

compatible soldering. 

 

The equipment used to measure the resistance across the sensors was a 

Hewlett Packard 34401A Multimeter. This instrument was connected to a switch 

box that allowed the sequential reading of resistance values, with an interval of 

about 30 seconds for taking readings on the same sensor (which would mean that 

very rapid changes in resistance on the sensors would not be recorded). This 

instrumentation was connected to a personal computer that recorded the 

measured values in a Microsoft Excel file. 

 

The multimeter used to measure resistance did so by applying a potential 

difference across the sensors that varied as a function of the resistance being 

measured. Table 13.1 (obtained from the manufacturer of the multimeter) indicates 
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the ranges of resistances, and the corresponding currents, that the instrument can 

measure; voltages values have been calculated and added by the author. The 

results of Table 13.1 are very important, since it has previously been determined 

that the sensors obey ohm’s law for applied voltages of less than 3.3 V. Therefore, 

the most accurate measurements of resistance will take place for resistances of 

106 Ω or less. 

 

The heaters of the substrates used during each test were connected in 

series with a power source to heat the films. The voltage applied to the whole 

circuit was three times as much as intended for each sensor, since they were in 

series. Given the fact that the resistance value of the heaters was 400 Ω plus or 

minus 2%, the voltage applied to each particular sensor is very close to one third 

of the total potential difference applied to the three heaters in series. For heat 

treatment and regeneration, the potential applied to each heater was about 30 V 

(which yielded a temperature of about 135°C) and this took place in the sample 

chamber, while a value of about 5 V (which yielded a temperature of about 35°C) 

was used in all other circumstances. The temperature for regeneration is in the 

higher end of the regeneration temperatures chosen by Osborne (1999) for this 

work with thin films.  

 

 

Table 13.1 
 

Resistance [Ω] Current [A] Voltage [V] 

1.E+02 1.E-03 0.1 

1.E+03 1.E-03 1 

1.E+04 1.E-04 1 

1.E+05 1.E-05 1 

1.E+06 5.E-06 5 

1.E+07 5.E-07 5 

1.E+08 5.E-07 50 

 

 

 On applying a potential difference to the heaters, we find by means of 

Equation 13.1: 

 

Power [W] = Voltage [V] 2 / Resistance [Ω]                      (13.1)  
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that the power applied to the heaters were 62mW (5V) and 2244mW (30V). 

 

To provide an independent means to measure the AO fluence to which the 

zinc oxide sensors have been exposed, carbon-coated quartz crystal 

microbalances (manufactured by Stabilix, model A OZ) were used. These 

instruments were connected to a Hewlett Packard 53132A Universal Counter so 

as to display the oscillating frequency of the crystal; this value was recorded by 

hand both at the beginning and end of each exposure. The change of frequency 

(in Hz) would then be converted to AO fluence or total flux Ft by means the 

Equation 13.2 (provided by the ATOX staff): 

 

Fluence = 2.46 * 1015 O-atoms/(cm2 Hz)                        (13.1)  

 

The above equation was calibrated using Kapton witness samples that 

were exposed to AO the ZnO. 

 

An AD590 commercially available thermistor was attached in each 

substrate to monitor the temperature during the first run of experiments. These 

small integrated circuits were connected to an electronic board that gives an 

electrical output that can be converted to temperature and saved by the data 

acquisition system under use.  

 

Problems were experienced when trying to measure the temperature of the 

sensors while testing in the test chamber. The electronic board initially intended to 

measure the response of the AD590 temperature sensor was judged not to be 

working properly during testing, due to readings that indicated erratic temperatures 

in the films that could not correspond to real test temperatures. In addition to this, 

later tests on the board indicated that the circuitry that was connected to an AD590 

was giving the same temperature readings as the circuitry in the board that was 

not connected to any temperature sensor. 

 

  A determination of the typical temperature during exposure and during 

regeneration was later performed under similar testing conditions (all the same 

factors except that the ATOX laser was not turned on). For this purpose, a PT100 

thermometer (manufactured by Minco, model number S651PD) was employed in 

place of the AD590 sensor. It was found that when a potential difference of 5 V is 
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applied to the sensor heater, this corresponds to a temperature of about 35°C; a 

potential difference of 30 V corresponds to a temperature of about 135°C ± 2°C. 

 

 For the tests carried during the second visit, a group of PT100 

thermocouples were successfully used to measure the temperature. 

 

13.2.2 Experiment Set-up 

 

 The following types of sensors were tested on the first visit to ATOX; only 

Type 1 were tested on the second visit: 

 

• Type 1: Pure ZnO dissolved in ESL400 prior to firing. 

• Type 2: ZnO (82%) with IP027 (18%). 

 

The aim of these tests was to characterize their response to AO, to 

determine if it is possible to use the sensors to measure AO flux, to detect if 

saturation could be achieved with a small fluence, as well as to determine the 

regeneration properties of the sensors (if any). It was decided not to test Type 3 

Sensors (with 70% of ZnO and 30% of IP027) as originally planned because the 

resistance of this type of sensors was beyond the limit of detection of the 

instrumentation used for the tests. 

 

With the objective of providing control sensors (not exposed to AO but 

exposed to the same vacuum, thermal and electrical environment of the exposed 

sensors), some of the sensors were covered (and thus preventing the AO from 

impinging on them) with an alumina sheet, the same substrate material used in the 

deposition of the zinc oxide films. This procedure was intended to help to 

determine the role of the other-than AO flux conditions in the resistance change (if 

any) on Types 1 and 2 sensors. 

 

Given the fact that the ATOX facility produces a significant amount of UV 

radiation during the production of AO, it was required to isolate the effect of that 

radiation on any eventual change of resistance on sensors of the types tested. 

Some of the sensors were covered with a 0.25mm thick sheet of quartz (supplied 

by Goodfellow, catalogue number 720-613-54) that is transparent to radiation 

between 180nm and 2500nm, but resistant to the attack of AO; the resistance of 

quartz to AO attack (Tagawa et al., 1997) and its UV transparency (Kopitkovas et 
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at., 2004) have been well established. These UV control sensors were exposed to 

the same electrical, vacuum, and thermal environments as the exposed sensors. 

. 

Figure 13.4 shows a typical arrangement of three substrates with four 

sensors in each one, as mounted in the ATOX chamber prior to testing. Kapton 

tape is seen holding in position a plate of alumina to block one sensor from the AO 

flux. In the lower right position, a quartz widow can be seen covering one sensor. 

All sensors were oriented perpendicularly to the AO beam. 

 

 

 
 

 

 

 

13.2.3 Atomic Oxygen Exposure  

 

 Multiple runs were carried out with different sensors on both visits to ATOX. 

The results of both visits tend to agree. For clarity, only results for individual 

sensors that represent a group tested under the same conditions will be 

presented. It should be noted that about 15% of all sensors failed at some point 

during testing. Data is reported here of sensors that were kept for at least three 

days at a pressure of about 10-4 Pa in the sample chamber for outgassing at a 

temperature of about 135°C before testing. These conditions have been 

determined to be enough (see preceding chapter) to reach stable resistance 

Figure 13.4. Typical Sensor Arrangement for Testing. 
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readings indicating the completion of the outgassing of the sensors, and therefore, 

surfaces to be clean of adsorbed species. Prior to AO exposure, the temperature 

was lowered to about 35°C. 

 

The first series of experiments was carried out to determine the response 

of Type 1 sensors to AO, and to investigate the possibility to regenerate Type 1 

sensors after AO exposure by heating. It was also desired to investigate the 

response of sensors placed in the same chamber but being covered with either 

alumina or a UV-transparent (quartz) window. The results of such an experiment 

are shown in Figures 13.5 to 13.8 for one exposed sensor (serial number 110), 

one sensor covered with quartz (102) and one covered with alumina (112); these 

results are typical of the whole sample of tested sensors. The time line is as shown 

in Table 13.2.  

 

Figure 13.5 shows the complete timeline of testing in logarithmic scale of 

resistance. Significant events are marked on the plot. Note the very large 

fluctuations in the signals when the pressure conditions change (that is, when the 

sensors are moved from the sample chamber to the test chamber and back). 

Some of these fluctuations were accompanied by nearly instantaneous DC 

resistance readings of 1038 Ω which can only be interpreted as brief ‘open circuit’ 

readings; these events are depicted in Figure 13.5 as lines going vertically above 

the scale in the figure. The sensitivity to pressure changes has already been noted 

and discussed in Section 12.2. The details of the sensors’ response to AO and to 

regeneration heating is further discussed below. 
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Table 13.2. Timeline of Events for Testing at ATOX. 

 

Time [min] Event 

88 Sensors in Sample Chamber at 35°C 

963 Sensors are moved sample to test chamber 

1029-1407 Exposure to AO 

1410 Sensors are moved test to sample chamber 

1429-2529 Sensors regeneration at 135°C 

 

 

            Figures 13.6 and 13.7, which only show the timeline of exposure to AO, 

indicate that the sensor exposed to the AO flux increases its resistance as the 

exposure continues, but the covered sensors only show a very modest increase in 

resistance as that compared to the exposed sensor. During this exposure, a 

fluence of 3.2x1019 atoms/cm2 was achieved. 

 

            The apparent lack of UV-response noted in the thick film sensor is 

attributed to the fact that the UV’s effects penetrate only just beneath the surface 

of the thick film; Heiland (1961) showed that the increase of charge carriers due to 

UV exposure in ZnO goes to up to a depth of the order of 0.1µm, which would 

Figure 13.5. Exposure Timeline for sensors 102, 110, and 112. 

Pump down begins 

Sensors moved 
from sample to 
test chamber 

AO 
exposure 
begins  

AO 
exposure 
ends 

Sensors moved to 
sample chamber and 
regeneration begins 
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leave the majority of the 10µm-thick film unaffected. The bulk conductance in the 

thick film sensors may therefore shunt the (predominantly at the surface) effects of 

UV radiation. This would explain why the present results with regard to UV 

sensitivity are different from those of other researchers, as documented in Section 

10.3. 

 

Figure 13.6 shows that resistance increases nearly linearly with exposure 

for most of it. In particular, it should be noted that the mere increase in resistance 

and the fact that this can be measured allows us to use the ballistic model (see 

Section 9.1) to measure flux. However, it should be noted that since all sensors 

showed different baseline resistances in vacuum, each would need to be 

calibrated independently so as to find the constant the relates flux with change of 

conductivity in time before they can actually be used for AO flux measurements. 
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Figure 13.6. Exposure of Type 1 sensors to Atomic Oxygen, and control sensors. 

Sensors 102, 110, 
and 112 
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Figure 13.8 shows the regeneration event (which took place in the sample 

chamber): the resistance of the exposed sensor decreases to a value even lower 

than that of the beginning of the exposure, but similar in magnitude to that in the 

sample chamber before exposure. The resistance of the sensor covered with 

alumina also decreases.  

 

 

Figure 13.7. Exposure of Type 1 sensors to Atomic Oxygen, and control sensors, 
logarithmic scale. 

Sensors 102, 110, 
and 112 
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The sensor covered with the quartz window showed an erratic response 

(see Fig. 13.8). Figure 13.9 is a picture taken after the tests and shows the sensor 

had been damaged at some point during those tests. This figure shows a silver 

appearance on the right side of the gold interdigitated film; it also indicates that 

some of the ZnO material is missing since the underlying interdigitated gold film is 

visible. A possible explanation is that solder flux, which is part of the vacuum-

grade solder used, may have found its way into the thick film and removed some 

of the ZnO and damaged some of the gold film. Solder flux, a chemical cleaning 

agent that removes oxides during soldering and allows the solder to flow easily on 

the working piece (rather than forming beads as it would otherwise), is usually an 

acid that could act as a solvent to the ZnO as well as attack gold. An acid attack 

on the gold interdigitated film may also change its geometry resulting in a 

permanent change of the measured DC resistance. However, this type of damage 

was observed on only a few of the films tested over the course of the research 

programme. 

 

 

Figure 13.8.  Regeneration of Type 1 Sensors. 

Sensors 102, 110, 
and 112 
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A separate experiment was carried out to determine the response of Type 

1 sensors to subsequent exposures to AO. In between exposures, the sensors 

were kept in the sample chamber at 35°C and no regeneration was attempted; 

subsequent exposures took place in successive days. Results are shown in 

Figures 13.10 and 13.11. The fluence achieved during each exposure is shown in 

Table 13.3. 
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Figure 13.9.  Damaged Type 1 Sensor (102) covered with Quartz window. 

Figure 13.10. Response of a Type 1 sensor to AO. 

Sensor 401 
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Table 13.3.  Fluence per Exposure 

 
Exposure Fluence [1019 O-atoms cm-2] 

1 1.1 
2 1.5 
3 1.3 

Total 3.9 
  

 

 It can be seen that in all exposures, the resistance increases with time, and 

that this increase takes a near linear form at the beginning of each exposure; the 

resistance values never exceeded 1 MΩ which means the measured values were 

within the ohmic range of the sensors. Again, these results can be used to 

estimate flux by using the model described in Section 9.1 Some peculiar situations 

are evident: the resistance at the beginning of the second exposure is higher than 

that at the end of the first exposure; also, the resistance at the beginning of the 

third exposure is lower than that at the end of the second exposure. It is also 

shown that the total flux achieved combining the three exposures is not enough to 

saturate the sensor (a situation that would have rendered no further increase of 

Figure 13.11. Response of a Type 1 sensor to AO. 

Sensor 401 
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resistance with flux); technical limitations of the ATOX source prevented longer 

exposures. 

 

Figure 13.12 shows the results of different exposures of the same Type 1 

sensor to AO in ATOX. The negative of the initial rate of change of resistance is 

plotted in the vertical axis, with the AO flux on the horizontal axis. The two data 

points highest flux were attained during the first visit to ATOX; the other two data 

points were obtained during the second visit. It should be noted that the sensors 

were heated to 135°C in between each exposure for each visit to ATOX. This 

figure reveals a nearly linear relationship, as predicted by equation 9.23, with a 

correlation coefficient of about 93%. These results are typical for most sensors 

tested. 
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 As with Type 1 sensors, Type 2 sensors were exposed to AO flux in ATOX, 

and some were covered with quartz or alumina sheets. The results of such 

experiment are shown in Figures 13.13 to 13.15 for one exposed sensor (serial 

number 201), one sensor covered with quartz (200) and one covered with alumina 

 
Figure 13.12. Exposure of Type 1 sensors to Different Fluxes of Atomic Oxygen. 

Sensor 401 
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(202). The results, as well as the regeneration attempt, are shown in Figures 13.13 

to 13.15. During this exposure, a fluence of 3.2x1019 atoms/cm2 was achieved. 

Figure 13.13 shows that the resistance of the exposed sensor increases 

significantly as the exposure progresses. The same cannot be said about the 

sensor that only receives the UV from the source, which only increases its 

resistance modestly. The resistance of the sensor blocked with alumina decreases 

during the exposure. Figure 13.15 shows the period right after the exposure when 

the temperature was elevated to 135°C; the resistances of all sensors return to 

values in the same order of magnitude they had while in the sample chamber 

before exposure – in particular, the resistance of the exposed sensor reduces to a 

value lower than that at the beginning of the exposure.  

 

The above results suggest that sensors may have changed their baseline 

resistance in between exposures. The changes in pressure in between exposures 

(going back and forth from test to sample chamber) may have altered the surface 

of these sensors, due to the relatively fragile nature of them.  
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Figure 13.13. Exposure of Type 2 sensors to Atomic Oxygen, and control sensors. 

Sensors 200, 201, 
and 202. 
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Resistance vs. Elapsed Time
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Figure 13.14. Exposure of Type 2 sensors to Atomic Oxygen, and control sensors, 
logarithmic scale. 

Figure 13.15.  Regeneration of Type 2 Sensors. 

Sensors 200, 201, 
and 202. 
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The purpose of this package of work was an attempt to characterize the 

response of Type 1 and 2 sensors using impedance spectroscopy, and to 

investigate the feasibility of using impedance spectroscopy to measure AO flux. 

This work included two separate experiments: work in vacuum and exposure to dry 

O2 at a laboratory of the University of Southampton for Type 1 and 2 sensos, and 

exposure to a flux of atomic oxygen at ATOX for Type 1 sensors.  

 

 

14.1 Exposure to Vacuum and Molecular Oxygen 

 

This work took place at the Astronautics Laboratory of the University of 

Southampton. The chamber and instrumentation used to measure pressure and 

temperature are those described in Section 12.2. The Impedance Spectroscopy 

instrument was an Ivium Technologies Compact Stat Electrochemical Interface, 

serial number B08033, loaned by the Electrochemistry Group of the Chemistry 

Department of the same university. A laptop was used to control the impedance 

spectroscopy equipment by means of the computer application Iviumsoft®, version 

1.633; it was also used to record the data. 

 

14.1.1 Type 1 Sensors 

 

A group of five sensors in two substrates spent about three weeks at a 

pressure of 10-3 Pa (also the pressure the vacuum tests were carried at), at 

temperature between 10°C and 15°C. The settings for the Impedance 

measurements were as follows: constant potential 0.01 V, frequency range from 

4*106 Hz down to 0.1 Hz, and seven readings per decade. They reached a state of 

stable readings (desorption of atmospheric components was completed) before 

impedance measurements were taken. 

 

Impedance was first measured in vacuum as the temperature was raised; 

three different temperatures were used. Later, dry molecular oxygen was allowed 

14. Atomic Oxygen Flux Measurement and Sensor 
Characterization using Impedance Spectroscopy 
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to enter the chamber until reaching atmospheric pressure; two different 

temperatures were used for these measurements. At least three determinations 

were performed for each temperature and exposure condition, and the results 

were averaged to lessen the effect of noise. 

 

Inspection of the Impedance plots and the past experience presented in the 

literature review (see Section 8.6) suggest that a suitable equivalent circuit to 

model the behavior of Type 1 ZnO sensors is a resistor for the grain, and a resistor 

and capacitor in parallel for the grain boundary, such as that depicted in Figure 

8.3. Figure 14.1 shows one sample of the scans obtained, where some data points 

due to noise can be seen; this Nyquist plot shows the real response (Z’) on the 

horizontal axis and the imaginary response (Z’’) on the vertical axis, frequency 

increases from right to left. Figure 14.2 shows the higher frequency data from 

Figure 14.1 at a higher magnification, to make explicit the intercept of the plot with 

the horizontal axis. 
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Figure 14.1. Nyquist Plot of ZnO Type 1 Thick Film in Vacuum at 35°C. 

Sensor B3 
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The following is a mathematical process to find the equations to calculate 

resistances and capacitance for the equivalent circuit of Figure 8.3. The total 

impedance of the circuit is (Equation 14.1): 

 

gbg ZZZ +=                                                 (14.1) 

 

The impedance of the grain is just Rg. The Impedance of the grain 

boundary is given by Equation 14.2: 

 

                                         

1

1
−


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


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
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gb Cj
R

Z ω

                                        (14.2) 

 

Therefore the total Impedance is given by Equation 14.3, after adding both 

terms and rearranging: 

 

Figure 14.2. Nyquist Plot of ZnO Thick Film in Vacuum; high frequency data from Figure 
14.1 but at higher magnification. 

Sensor B3 
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Rearranging the results to separate the real from the imaginary parts, we 

get: 
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When the frequency ω is nearly 0, we can find in the real axis: 

 

ggb RRrealZ +=→0)( ω                                          (14.6) 

 

When the frequency has a very high value, say in the MHz range, we can 

assume that ω → ∞ and therefore: 

 

gRrealZ =→∞ω)(                                             (14.7) 

 

Resistances and Capacitances of the equivalent circuit were calculated 

using the algorithm included in Iviumsoft®, as well as the above two equations, 

which were in agreement. Figure 14.3 shows the measured resistance of the grain 

and the calculated resistances of the grain boundaries as function of temperature 

for both vacuum and molecular oxygen; this plot is of a sensor that represents well 

the results from the other four sensors. 
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Resistance vs. Temperature
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An inspection of Figure 14.3 allows us to draw the following conclusions: 

 

In all cases, resistance values decrease as temperature increases. This is 

to be expected in a semiconductor like ZnO, and is in accordance with data 

presented in Section 12.2. Resistance values at the grain boundary are about two 

orders of magnitude higher than those for the grain bulk, which confirms the 

existence of an electronic-depletion layer at crystallite boundaries. Resistances 

measured in vacuum are nearly two orders of magnitude higher for the grain 

boundaries than for the grain. This relative difference goes even higher when 

measured in molecular oxygen.  

 

Grain boundary resistance increases by almost one order of magnitude 

when going from vacuum to molecular oxygen exposure, which in absolute terms 

means an increase of about 104 Ω. The resistance increase for the grain is 

relatively modest, only of about 102 Ω. 

 

The above situation can be explained by the adsorption of molecular 

oxygen (as −
2O ) at the grain boundaries of the crystallites exposed to the gas. The 

adsorbed molecular oxygen would take some of the electronic density from the 

grain boundaries therefore significantly increasing its resistance. The results also 

Figure 14.3. Resistance vs. Temperature plots for Type 1 Sensor. 

Sensor B1 
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show that there is negligible diffusion of the oxygen into the grains, proved by the 

modest increase in resistance of the grain when going from vacuum to O2. This is 

in agreement with literature reports that molecular oxygen migration into ZnO 

crystals is very slow.  

 

Therefore the process that controls the response of these sensors is the 

change of resistance in the grain boundaries, due to adsorption of molecular 

oxygen. 

 

Figures 14.4 and 14.5 show Arrhenius plots (ln (R) vs. the inverse of 

Temperature) for one Type 1 sensor, in order to calculate the activation energies 

of both the grain boundaries and grains, for both vacuum and exposure to 

molecular oxygen; the equations of the trend lines as well as the correlation 

coefficients are shown; care should be taken with the interpretation of a correlation 

coefficient of 1 on each plot, since those curves were obtained with just two data 

points. The same procedure was carried out for all five sensor and the results are 

shown in Table 14.1. 
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Figure 14.4. Arrhenius plot for the Grain Boundary, Type 1 Sensor. 

Sensor B1 
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Activation Energy Plots - Grain
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Table 14.1 Activation Energies for Five Type 1 Sensors. 

 

 Grain Boundary 
Mean [eV] 

Standard 
Deviation 

Grain 
Mean [eV] 

Standard 
Deviation 

Vacuum 0.300 0.025 0.314 0.017 
Molecular Oxygen 0.381 0.026 0.492 0.038 

 
 
 
 The conduction activation energies in vacuum are in very close agreement 

with those published before (0.29eV; see Jose et al., 2001; and Section 8.2) for 

both grains and grain boundaries. 

 

14.1.2 Type 2 Sensors 

 

A group of four sensors in one substrate spent about ten days at a 

pressure of 10-3 Pa (also the pressure the vacuum tests were carried at), at a 

temperature of about 85°C. The settings for the Impedance measurements were 

as follows: constant potential 1 V, frequency range from 4*106 Hz down to 0.1 Hz, 

and seven readings per decade. They reached a state of stable readings 

(desorption of atmospheric components was completed) before impedance 

measurements were taken. 

Figure 14.5. Arrhenius plot for the Grain, Type 1 Sensor. 

Sensor B1 
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Impedance was first measured in vacuum as the temperature was raised; 

several different temperatures were used. Later, dry molecular oxygen was 

allowed to enter the chamber until one third of atmospheric pressure; several 

different temperatures were used for these measurements.  A typical Nyquist Plot 

is shown in Figure 15.6. 

 

 

 

 

 An inspection of all plots reveal only one semicircle; in most cases the plots 

reveal an intercept with the origin at high frequencies; however, in some instances, 

noise at high frequency precluded determination of any intercept with the real axis. 

A possible interpretation of this result is that the total resistance of the sensor has 

shunted the response of the grain; however, other explanations are also possible 

and merit further investigation.  

 

Figure 14.7 shows a plot of the natural logarithm of the total resistance vs. 

the inverse of the absolute temperature. As for Type 1 sensors, the total resistance 

of Type 2 sensors increase when exposed to molecular oxygen; this is probably 

due to adsorption of O2 to the ZnO crystallites. This figure also allows us to 

calculate the conduction activation energy for this type of sensor, the results being 

Figure 14.6. Nyquist Plot of ZnO Type 2 Thick Film in Vacuum. 

Sensor 204 
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shown in Table 14.2. This table reveals values about 50% higher than those for 

the grain boundaries for Type 1 sensors. The role of the binder in the setting 

conduction activation energies thus merits further investigation. 
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Table 14.2 Activation Energies for Four Type 2 Sensors. 

 
 Total Resistance 

[eV] 
Standard 
Deviation 

Vacuum 0.462 0.039 
Molecular Oxygen 0.423 0.035 

 
 

 

14.2 Exposure to Atomic Oxygen 

 

 This work took place at the ATOX facility of the European Space Agency in 

February 2009; this facility has already been described in Section 13.2.1. The 

Impedance Spectroscopy instrument used is that described in Section 14.1. Three 

Type 1 sensors were installed in the sample tray of the ATOX chamber. The 

sensors were left at 135°C for three days at a pressure of about 10-4 Pa. A number 

Figure 14.7. Arrhenius plot for the Grain, Type 2 Sensor. 

Sensor 204 
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of preliminary impedance measurements in vacuum with no AO flux were taken 

using the same parameters as described in Section 14.1, but the noise of all the 

electronics in the laboratory precluded any useful readings. The voltage had to be 

increased to 1 V (still within the ohmic-range of these sensors) to obtain clear 

results. The settings for the impedance measurements were finally as follos: 

constant potential 1 V, frequency range from 4*106 Hz down to 0.1 Hz, and five 

readings per decade; temperature of 35°C. 

 

 During the operation of the laser (necessary to produce the AO flux), the 

level of noise was such that it prevented any clear measurements even with the 

settings listed in the previous paragraph. So it was decided to stop the flux every 

30 minutes to take a measurement, regretting that no measurements during the 

AO could be taken. Each measurement took about 20 seconds, with a total of no 

more than two minutes with the AO source stopped in between exposures. This 

means that an error of 20 seconds/30 minutes, that is, 1% could be expected 

versus an ideal operation without interruption of the source. 

 

 Kapton witness samples were also placed in the chamber to calibrate a 

microbalance, used to independently monitor AO flux, by means of the change of 

frequency of its sensing element. The results of the calibration are shown in Figure 

14.8; they assume that the flux was constant in magnitude during the whole 

exposure, which is reasonable given the experience in using this equipment. The 

speed of AO was also monitored and found to be around 8 Km/s or an energy 

equivalent to 5 eV. 

 

Figure 14.9 shows a Nyquist Plot of impedance measurements taken at 

intervals of 30 minutes for one Type 1 sensor; this response is typical of all 

sensors tested. It can be seen that total impedance (the low frequency intercept of 

each measurement with the real axis) increases with fluence. The lowest 

impedance measurement shows a data point that departs from the semicircle at a 

low frequency; this response, which can be attributed to noise, is also typical of the 

data taken.  

 

Figure 14.9 also shows that the resistance of the grains is overshadowed 

by the significantly higher value of the resistance of the grain boundaries; grain 

resistance does not significantly vary as the exposure continues, remaining at 

values less than 100 Ω. These results show that the change of resistance is due to 
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AO adsorption at the surface, reducing the electronic concentration available for 

conduction at the grain boundary, with negligible or null diffusion of adsorbed 

species into the grains. 
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Figure 14.8. AO Fluence with Exposure Time calibration chart. 

Figure 14.9. Successive Impedance Measurements in 30 min intervals. 

Sensor B1 

Sensor B1 
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Figure 14.10 shows total real impedance data plotted versus fluence at 

exposure elapsed time for the same sensor and fluence; total impedance shows a 

linear response to AO flux (the linear curve of regression has a coefficient of 

correlation of almost 1). This result enables to use the modified ballistic model (see 

Section 9.2) to measure AO flux by measuring resistance. It should be noted that 

all sensors had a different baseline resistance in vacuum, so each sensor would 

need to be calibrated (in other words, find the constant that relates flux with 

change of conductance at the beginning of the exposure) independently. 
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Figure 14.10. Total Impedance vs. Exposure Time and Fluence 
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Thick film ZnO sensors have been developed that are capable of 

measuring AO fluxes similar to those present in low Earth orbit. Two versions of 

screen-printed ZnO thick film sensors have been produced and tested; Type 1 

sensors are made of pure ZnO while Type 2 use 18% in weight of a glass binder. 

The sensors have been characterized using a number of techniques, including 

Scanning Electronic Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy 

(EDS). The response of these sensors to vacuum, changes in temperature and 

pressure, and while exposed to different gases has been assessed by means of 

DC resistance and impedance spectroscopy measurements.  

 

It has been shown that a reduction in atmospheric pressure will reduce the 

DC resistance in Type 1 and Type 2 sensors. For Type 1 sensors, separate 

measurements with dry O2 and wet N2 suggest that the both water and molecular 

oxygen adsorb at the surface of these sensors taking a negative electronic charge, 

resulting in a decrease of electronic density available for conduction with the 

resulting increase in sensor resistance.  

 

An increase in temperature in Type 1 and Type 2 sensors will result in a 

decrease in resistance. This can be explained by the increase of energy available 

for electrons to migrate from the valence to the conduction band. 

 

Electrical characterization of Type 1 and 2 sensors show ohmic behavior 

for voltages up to 3.3 V result that is in agreement with published data. For higher 

voltages, the sensors show a clear departure from ohmic behavior. 

 

It has been shown that Type 1 and 2 sensors do not significantly respond 

to ultraviolet radiation. This may be due to the limited penetration of UV into ZnO, 

which is of about 0.1µm as reported in the literature: the bulk conductance in 10 

µm-thick sensors may shunt the effects of UV radiation. 

 

 Type 1 and 2 sensors show an increase (nearly linear for Type 1) of 

resistance with LEO-like atomic oxygen flux, for a fluence of 3.2x1019 atoms/cm2; 

the best explanation available is the adsorption of the oxygen atoms by each atom 

15. Conclusions and Recommendations 
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taking one electron from the surface of the sensor. Type 1 sensors are the first 

ZnO thick film sensors developed for space applications that successfully have 

measured AO flux (a model to convert conductance change with time to AO flux 

has been provided for Type 1 sensors). Type 1 and Type 2 sensors have also 

been regenerated by suitable heating, providing in principle the ability to reuse 

them an unlimited number of times for AO measurements; this has only being 

achieved before by the ZnO thin films produced by Osborne (1999). However, 

each sensor needs to be individually calibrated due to the significant variation in 

baseline DC resistance among them. A continuous fluence of 3.2x1019 atoms/cm2 

or a fluence of 3.9x1019 atoms/cm2 accumulated in three exposures are not 

enough to saturate Type 1 sensors.  

 

Type 1 sensors have been characterized by means of Impedance 

Spectroscopy. It has been found that the two components that make up the sensor 

resistance are the crystallites’ grain boundary resistance and the crystallites’ grain 

resistance; the value of the former is significantly higher than that of the latter and 

drives the overall resistance response. When exposed to molecular oxygen, the 

grain boundary resistance increase can be up to two orders of magnitude more 

than that of the grain, suggesting the adsorption of molecular oxygen takes place 

by removing some of the electronic density from the grain boundaries. Impedance 

spectroscopy measurements were taken while the sensors were exposed to AO; 

total impedance and grain boundary resistance offer an alternative measurable 

quantity to determine AO fluxes when the resistance of sensors goes beyond the 

measurement range of ordinary instruments. This is the first time that Impedance 

spectroscopy has been employed to characterize sensor response to LEO-like AO 

fluxes and to measure such fluxes.  

 

Type 2 sensors have also been characterized by Impedance Spectroscopy, 

although not as comprehensively as Type 1 sensors. It has been found that Type 

2 sensors increase the magnitude of total resistance (the real component in a 

Nyquist plot) as the sensors goes from vacuum to an atmosphere of dry molecular 

oxygen with a pressure of one third of an atmosphere. 

 

Mechanical testing of Type 1 sensors shows some level of fragility; when 

scratched with a sharp object, material can be removed from the substrate. SEM 

pictures reveal cracks and valleys in the surface of most sensors, as well as many 

pores. Type 2 sensors have shown a much higher resistance to damage; however, 
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features that resemble craters are often found. The surface characteristics of the 

sensors can explain the large variation of baseline (in vacuum after desorption is 

completed) resistance among individual sensors, and the large number of hours 

required for desorption of atmospheric components to be completed. The high 

level of porosity observed allows the sensors to be operated with high AO fluences 

before they become saturated, a situation that was not observed during testing. 

 

 The sensors developed in this research have show n some advantages 

and disadvantages over other sensors used to measure AO flux (such as carbon 

and silver actinometers, and carbon and silver coated quartz microbalances). 

Some advantages over them are the ability for regeneration, and low cost of 

manufacture and operation. Another advantage is the large fluence that is required 

to saturate them; saturation was not achieved even with fluences one hundred 

times those required to saturate the thin films produced by Osborne (1999). A 

particular advantage of the ZnO thick films vs. silver actinometers is that the 

former present a linear response to AO flux for a much higher fluence than the 

latter, which change the slope of the response when AO diffusion assumes a more 

significant role in the DC resistance. Furthermore, the ZnO thick sensors do not 

seem to react to UV radiation, which is present in LEO. 

 

How ever, the thick film sensors are not as robust as for example, thin ZnO 

films, or carbon and silver actinometers developed by other researchers. More 

effort needs to be spent resolving this issue before manufacturing sensors capable 

of space flight. Another issue is the large variation of baseline resistance between 

different ZnO thick film sensors of the same production batch, which is a problem 

other actinometers and coated quartz crystal microbalances do not normally have. 

 

It is recommended that further work is carried out to fully understand the 

behavior and response of thick film sensors with a binder. More work is required to 

find the right percentage of binder required to provide a smooth sensor surface 

that in turn provides more repeatability among sensors. More impedance 

spectroscopy analysis should be carried out to determine the equivalent circuit that 

models the electrical response of sensors with a binder, and use these results to 

modify the ballistic model to account for the glass present in the sensors. 
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