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NOTES ON THE CONNECTIONS BETWEEN SHAPE DEFINITION AND
THE OBJECTIVE FUNCTION LANDSCAPE

Andras SOBESTER

Abstract: The key to effective shape optimization is the selection of the appropriate mathematical
formulation for the parametric description of the geometry of the artifact being optimized. It is widely
understood that a good parameterization scheme is concise, mathematically well-posed, robust and
flexible. What is less clear, however, is the way in which the choice of parameterization approach
influences the features of the resulting objective function landscape. In this article we examine the issue
through a simple, four-variable design problem. Key words: optimal design, shape optimization,

geometry design, brachistochrone, modality.

1. PARAMETRIC GEOMETRIES IN
OPTIMAL DESIGN

The cornerstone of effective shape
optimization is the mathematical formulation
that describes the geometry of the object whose
shape we seek to optimize. There are a number
of criteria such parameterization schemes are
usually expected to satisfy.

The first, and arguably the most important,
requirement is conciseness. In other words, the
number of parameters needs to be kept to a
minimum in order to reduce the dimensionality
of the resulting design space (it is impossible to
over-emphasize the importance of this
requirement: the cost of exploring a design
space increases exponentially with the number
of its dimensions).

Fulfilling the second requirement is
generally made difficult by the fact that it often
conflicts with the first one: the geometry model
has to be flexible. It has to be able to cover a
broad range of possible shapes, especially if it
is likely to see action early in the design
process (this conceptual phase usually requires
the greatest amount of flexibility).

Further, one usually expects these
formulations to be robust, mathematically well-
posed, CAD-compatible and, if possible, they
should have parameters that have some

measure of intuitive significance (this enables
the manual ‘tweaking’ of designs and generally
permits all operations based on engineering
knowledge).

In this paper we suggest an additional
consideration: the parameterization should lead,
once an objective functional (or function) is
assigned to the geometry, to a landscape with
benign characteristics from an optimization
standpoint. We have already seen that
dimensionality is one of the main drivers here,
but let us look one step further. Given a certain
dimensionality, —can  our  choice  of
parameterization scheme have an effect on
other features, such as modality or ease of
approximation?

The easiest route towards gaining an insight
into this question is via a low dimensionality
toy problem, which we describe next.

2. AN ILLUSTRATIVE PROBLEM -
THE BRACHISTOCHRONE

In order to gain an insight into the impact of
the choice of parameterization method on the
shape of the resulting objective function
landscape, let us consider a simple problem,
that of the brachistochrone. This is formulated
as follows. A ball rolls down a track, starting
with zero velocity. What is the shape of the



track that will minimize the time the ball takes
to roll down it? (we ignore the effects of
friction and drag on the ball).

We know the answer since 1696, courtesy of
Newton [1]: it is a cycloid segment. We shall
not delve into the details of his solution (it is
one of the standard results of the calculus of
variations); instead, we will consider numerical
approximations of this optimum shape using a
series of parameterizations of the shape of the
track.

Let us define the track T as a function of
four design variables x4, x,, x3 and x4. To each
track shape T (x4, x5, X3, x4) We can now attach
an objective functional value 7°(T), which is
the time it takes a ball to roll down the track T.
Computationally, this is easy to approximate by
discretizing the track into a number n of
straight segments over which the equations of
motion are solved (a convergence study of
experiments with increasing resolution will
reveal the appropriate choice of n) and it
therefore gives us an inexpensive way of
charting the objective functional across the
entire design space.

Perhaps the simplest possible paramete-
rization of T is shown in Figure 1. The space
between the abscissas of the starting point and
the endpoint is filled with four interpolation
points controlling a standard b-spline — these
points are equally spaced along the horizontal
axis. The vertical coordinates of the points
determine the shape of the track.
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Fig. 1 Formulation ONE. Track shape defined by four
interpolation points with equally spaced abscissas.

We assume that the ordinate of the starting
point is one, so here (as in the case of all the
other formulations that follow) x, x5, x3,x4 €
[0,1].

Let us now look at the resulting objective
function landscape, as shown in Figure 2. This

is a nested contour plot of the time it takes the
ball to roll down the track T(xi,x5,x3,%4),
starting from the point (1.57,1) to the origin.
Each tile of the plot represents the objective
value versus x3; and x,, while the values of x;
and x, can be read off the main axes.
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Fig. 2 Objective function contour plot for Formulation
ONE (four interpolation points with equally spaced
abscissas).

This is not a bad first effort. The surface is
unimodal (has a single, global minimum) and
the shape of its basin of attraction is close to
spherical (a feature that makes it amenable to a
quasi-Newton-type local search). Note the
blank regions in the plot — these correspond to
nonsensical tracks (for example tracks where
the ball gets stuck partway down).

Let us now consider an alternative
parameterization, where we allow the abscissas
of the interpolation points to vary too, but, to
keep the dimensionality the same, we need to
sacrifice two of them. A naive implementation
of this idea is shown in Figure 2.
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Fig. 3 Formulation TWO. Track shape defined by a b-
spline with two interpolation points with variable
abscissas and ordinates.
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Both abscissa variables (x; and x3) sweep
the entire range from the projections of the
starting and finish points, so we define the
geometry in such a way that the spline goes
through them in the order of their values (that
Is, it does not loop around if the points happen
to overtake each other).

Figure 4 shows the corresponding objective
function (rolling time) landscape.
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Fig. 4 Objective function contour plot for Formulation
TWO (b-spline with two interpolation points sweeping
the whole of the abscissa).

Clearly, this is bad news. We can now see a
well-known ogre of local optimization: the
landscape has two optima of comparable
depths. Worse still, their basins of attraction are
surrounded by infeasible regions of the design
space.

It is worth emphasizing here that
multimodality at this scale is not an issue for
any but the most basic optimizers. This is
merely a toy example meant to illustrate what
can happen — the real point of this exercise is to
show how relatively easily one can fall into
such traps, which can make optimization
intractable when there are, say, 40 variables
instead of the four shown here and the objective
function takes hours to compute, not fractions
of a second, as in this case.

Let us now look at a possible way of
avoiding the trap of multimodality here. What
happens if we repeat the process, but this time
we only allow x; to sweep half of the distance
and x3 the other half (let us call this

Formulation THREE). With the two
interpolation points not allowed to overtake
each other anymore, the resulting objective
function surface can be seen in Figure 5.

Fig. 5 Objective function contour plot for Formulation
THREE (similar to two, but each interpolation point
allocated its own half of the full distance).

Unsurprisingly, we are only left with a
single optimum now, though its basin of
attraction is slightly elongated, a feature that
can make optimization slightly more difficult
(once again, this is a trivial example, but larger
scale problems have the same traps and their
cost can be substantial).

What else could we do with two
interpolation points? Might it be worth using
the (variable) abscissa of the first point as the
datum for the abscissa of the second point — as
shown in Figure 6?
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Fig. 6 Formulation FOUR. Two ordinate variables as
before, but this time the second abscissa variable has a
moving datum.



The resulting (rather similar) objective function
landscape is shown in Figure 7.
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Fig. 7 Objective function contour plot for Formulation
FOUR.

Finally, let us consider changing the
formulation altogether, by opting for a different
type of curve — a Non-Uniform Rational B-
Spline (NURBS). The reader interested in the
details of shape description via NURBS may
wish to consult the excellent text of Piegl and
Tiller [2] — here we limit ourselves to stating
that these, by comparison to the b-splines
discussed earlier, offer an additional means of
shape control. The track shape is defined
through two so-called control points (instead of
the interpolation points used earlier), which
also each have a weight parameter assigned to
them.

Formulation FIVE, then, is a track defined
as a NURBS curve clamped at its ends (the
starting and finishing points) and controlled by
two fixed abscissa control points in-between.
The ordinates of the two control points and
their corresponding weights make up the four
design variables. Figure 8 shows the resulting
objective function landscape.
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Fig. 8 Objective function contour plot for Formulation
FIVE. Note that the entire design space is feasible here,
though this is likely to entail a flexibility sacrifice
(nevertheless, the optimum — the best approximation of a
cycloid — is included in the design spaces of this and all
the other cases presented earlier).

3. CONCLUSIONS AND FUTURE
DIRECTIONS

The choice of parameterization scheme can
have a strong influence on the characteristics of
the objective landscape. Even apparently very
similar formulations can vyield radically
different landscapes. Beyond the anecdotal
evidence presented here, further research is
required to quantify the phenomena discussed
above.

4. REFERENCES

[1] Boyer,
History of Mathematics, 2nd ed. |,
New York, 1991.

[2] Piegl, L., Tiller, W. The NURBS Book,
Springer, 1996.

C.B. and Merzbach, U.C. A
Wiley,

Legaturi intre Descrierea Formei si Forma Functiei Obiectiv
Cheia optimizarii formei unui obiect este alegerea corecta a formei parametrizate a descrierii geometriei sale. Se
cunosc multe criterii ce trebuie satisfacute de 0 asemenea descriere matematica: ea trebuie sa fie concisa, robusta,
flexibila, etc. Influenta tehnicii de parametrizare asupra formei functiei obiectiv ce rezulta este, insa, mult mai putin
clara. In acest articol vom examina problema prin prisma unei probleme simple, clasice de optimizare a formei.
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