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NOTES ON THE CONNECTIONS BETWEEN SHAPE DEFINITION AND 

THE OBJECTIVE FUNCTION LANDSCAPE  
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Abstract: The key to effective shape optimization is the selection of the appropriate mathematical 

formulation for the parametric description of the geometry of the artifact being optimized. It is widely 

understood that a good parameterization scheme is concise, mathematically well-posed, robust and 

flexible. What is less clear, however, is the way in which the choice of parameterization approach 

influences the features of the resulting objective function landscape. In this article we examine the issue 

through a simple, four-variable design problem. Key words: optimal design, shape optimization, 

geometry design, brachistochrone, modality. 

 

1. PARAMETRIC GEOMETRIES IN 

OPTIMAL DESIGN  
  

The cornerstone of effective shape 

optimization is the mathematical formulation 

that describes the geometry of the object whose 

shape we seek to optimize. There are a number 

of criteria such parameterization schemes are 

usually expected to satisfy. 

The first, and arguably the most important, 

requirement is conciseness. In other words, the 

number of parameters needs to be kept to a 

minimum in order to reduce the dimensionality 

of the resulting design space (it is impossible to 

over-emphasize the importance of this 

requirement: the cost of exploring a design 

space increases exponentially with the number 

of its dimensions). 

Fulfilling the second requirement is 

generally made difficult by the fact that it often 

conflicts with the first one: the geometry model 

has to be flexible. It has to be able to cover a 

broad range of possible shapes, especially if it 

is likely to see action early in the design 

process (this conceptual phase usually requires 

the greatest amount of flexibility). 

Further, one usually expects these 

formulations to be robust, mathematically well-

posed, CAD-compatible and, if possible, they 

should have parameters that have some 

measure of intuitive significance (this enables 

the manual ‘tweaking’ of designs and generally 

permits all operations based on engineering 

knowledge). 

In this paper we suggest an additional 

consideration: the parameterization should lead, 

once an objective functional (or function) is 

assigned to the geometry, to a landscape with 

benign characteristics from an optimization 

standpoint. We have already seen that 

dimensionality is one of the main drivers here, 

but let us look one step further. Given a certain 

dimensionality, can our choice of 

parameterization scheme have an effect on 

other features, such as modality or ease of 

approximation? 

The easiest route towards gaining an insight 

into this question is via a low dimensionality 

toy problem, which we describe next. 

 

2. AN ILLUSTRATIVE PROBLEM – 

 THE BRACHISTOCHRONE 
 

 In order to gain an insight into the impact of 

the choice of parameterization method on the 

shape of the resulting objective function 

landscape, let us consider a simple  problem, 

that of the brachistochrone. This is formulated 

as follows. A ball rolls down a track, starting 

with zero velocity. What is the shape of the 
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track that will minimize the time the ball takes 

to roll down it? (we ignore the effects of 

friction and drag on the ball). 

 We know the answer since 1696, courtesy of 

Newton [1]: it is a cycloid segment. We shall 

not delve into the details of his solution (it is 

one of the standard results of the calculus of 

variations); instead, we will consider numerical 

approximations of this optimum shape using a 

series of parameterizations of the shape of the 

track. 

 Let us define the track 𝑇 as a function of 

four design variables 𝑥1, 𝑥2, 𝑥3 and 𝑥4. To each 

track shape 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) we can now attach 

an objective functional value 𝒯(𝑇), which is 

the time it takes a ball to roll down the track T. 

Computationally, this is easy to approximate by 

discretizing the track into a number n of 

straight segments over which the equations of 

motion are solved (a convergence study of 

experiments with increasing resolution will 

reveal the appropriate choice of n) and it 

therefore gives us an inexpensive way of 

charting the objective functional across the 

entire design space. 

 Perhaps the simplest possible paramete-

rization of T  is shown in Figure 1. The space 

between the abscissas of the starting point and 

the endpoint is filled with four interpolation 

points controlling a standard b-spline – these 

points are equally spaced along the horizontal 

axis. The vertical coordinates of the points 

determine the shape of the track. 

 

 

 

 

 

 

 

 

 
Fig. 1 Formulation ONE. Track shape defined by four 

interpolation points with equally spaced abscissas. 

 

We assume that the ordinate of the starting 

point is one, so here (as in the case of all the 

other formulations that follow) 𝑥1, 𝑥2 , 𝑥3, 𝑥4 ∈
[0,1]. 
 Let us now look at the resulting objective 

function landscape, as shown in Figure 2. This 

is a nested contour plot of the time it takes the 

ball to roll down the track 𝑇 𝑥1, 𝑥2 , 𝑥3, 𝑥4 , 

starting from the point (1.57,1) to the origin. 

Each tile of the plot represents the objective 

value versus 𝑥3 and 𝑥4, while the values of 𝑥1 

and 𝑥2 can be read off the main axes. 

 

Fig. 2 Objective function contour plot for Formulation 

ONE (four interpolation points with equally spaced 

abscissas). 
 

 

This is not a bad first effort. The surface is 

unimodal (has a single, global minimum) and 

the shape of its basin of attraction is close to 

spherical (a feature that makes it amenable to a 

quasi-Newton-type local search). Note the 

blank regions in the plot – these correspond to 

nonsensical tracks (for example tracks where 

the ball gets stuck partway down). 

 Let us now consider an alternative 

parameterization, where we allow the abscissas 

of the interpolation points to vary too, but, to 

keep the dimensionality the same, we need to 

sacrifice two of them. A naïve implementation 

of this idea is shown in Figure 2.  

 

 

 

 

 

 

 

 

 
Fig. 3 Formulation TWO. Track shape defined by a b-

spline with two interpolation points with variable 

abscissas and ordinates. 
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 Both abscissa variables (𝑥1 and 𝑥3) sweep 

the entire range from the projections of the 

starting and finish points, so we define the 

geometry in such a way that the spline goes 

through them in the order of their values (that 

is, it does not loop around if the points happen 

to overtake each other). 

 Figure 4 shows the corresponding objective 

function (rolling time) landscape. 

 
Fig. 4 Objective function contour plot for Formulation 

TWO (b-spline with two interpolation points sweeping 

the whole of the abscissa). 
 

 

 Clearly, this is bad news. We can now see a 

well-known ogre of local optimization: the 

landscape has two optima of comparable 

depths. Worse still, their basins of attraction are 

surrounded by infeasible regions of the design 

space. 

 It is worth emphasizing here that 

multimodality at this scale is not an issue for 

any but the most basic optimizers. This is 

merely a toy example meant to illustrate what 

can happen – the real point of this exercise is to 

show how relatively easily one can fall into 

such traps, which can make optimization 

intractable when there are, say, 40 variables 

instead of the four shown here and the objective 

function takes hours to compute, not fractions 

of a second, as in this case. 

 Let us now look at a possible way of 

avoiding the trap of multimodality here. What 

happens if we repeat the process, but this time 

we only allow 𝑥1 to sweep half of the distance 

and 𝑥3 the other half (let us call this 

Formulation THREE). With the two 

interpolation points not allowed to overtake 

each other anymore, the resulting objective 

function surface can be seen in Figure 5. 

 

 
Fig. 5 Objective function contour plot for Formulation 

THREE (similar to two, but each interpolation point 

allocated its own half of the full distance). 
 

 

 Unsurprisingly, we are only left with a 

single optimum now, though its basin of 

attraction is slightly elongated, a feature that 

can make optimization slightly more difficult 

(once again, this is a trivial example, but larger 

scale problems have the same traps and their 

cost can be substantial). 

 What else could we do with two 

interpolation points? Might it be worth using 

the (variable) abscissa of the first point as the 

datum for the abscissa of the second point – as 

shown in Figure 6? 

 

 

 

 

 

 

 

 

 
Fig. 6 Formulation FOUR. Two ordinate variables as 

before, but this time the second abscissa variable has a 

moving datum. 
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The resulting (rather similar) objective function 

landscape is shown in Figure 7. 

 
Fig. 7 Objective function contour plot for Formulation 

FOUR. 
 

 Finally, let us consider changing the 

formulation altogether, by opting for a different 

type of curve – a Non-Uniform Rational B-

Spline (NURBS). The reader interested in the 

details of shape description via NURBS may 

wish to consult the excellent text of Piegl and 

Tiller [2] – here we limit ourselves to stating 

that these, by comparison to the b-splines 

discussed earlier, offer an additional means of 

shape control. The track shape is defined 

through two so-called control points (instead of 

the interpolation points used earlier), which 

also each have a weight parameter assigned to 

them. 

 Formulation FIVE, then, is a track defined 

as a NURBS curve clamped at its ends (the 

starting and finishing points) and controlled by 

two fixed abscissa control points in-between. 

The ordinates of the two control points and 

their corresponding weights make up the four 

design variables. Figure 8 shows the resulting 

objective function landscape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Objective function contour plot for Formulation 

FIVE. Note that the entire design space is feasible here, 

though this is likely to entail a flexibility sacrifice 

(nevertheless, the optimum – the best approximation of a 

cycloid – is included in the design spaces of this and all 

the other cases presented earlier). 

 

3. CONCLUSIONS AND FUTURE 

DIRECTIONS 

 

 The choice of parameterization scheme can 

have a strong influence on the characteristics of 

the objective landscape. Even apparently very 

similar formulations can yield radically 

different landscapes. Beyond the anecdotal 

evidence presented here, further research is 

required to quantify the phenomena discussed 

above. 
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Legaturi intre Descrierea Formei si Forma Functiei Obiectiv  

Cheia optimizarii formei unui obiect este alegerea corecta a formei parametrizate a descrierii geometriei sale. Se 

cunosc multe criterii ce trebuie satisfacute de o asemenea descriere matematica: ea trebuie sa fie concisa, robusta, 

flexibila, etc. Influenta tehnicii de parametrizare asupra formei functiei obiectiv ce rezulta este, insa, mult mai putin 

clara. In acest articol vom examina problema prin prisma unei probleme simple, clasice de optimizare a formei. 
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