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Abstract — We argue that the effective Poisson ratio of cellular and porous solids is independent
of the material of the solid phase, if the mechanism of the cell wall deformation is dominated
by beam bending —thus rendering it to be a purely kinematic quantity. Introducing a kinematic
simplification and requiring statistical isotropy, we prove a result of remarkable generality that
the effective Poisson ratio of irregular planar structures equals 1 for all bending dominated
random architectures. We then explore a deeper connection of this behavior with area-preserving
deformation of planar closed elastic cells. We show that thin sheets and films made of such
microstructured material afford physical realizations of the two-dimensional analogue of incom-
pressible matter. We term such non-stretchable sheet material as well as deformations as isoektasic.

Copyright © EPLA, 2009

Introduction. — Natural and synthetic porous mate-
rials such as bone, wood, metal foams [1], biological
soft matter [2,3], and optical metamaterial have recently
inspired many studies, relating structure to mechanical
properties [4,5]. These studies include numerical [6]
or laboratory experiments [7], analyses for regular
lattices [8,9], the effect of non-homogeneity [10], or theo-
retical properties bounds [11,12]. Planar architectures
are often called “honeycombs” whereas 3D structures are
termed as solid “foams”. We assume the cell walls to be
made of homogeneous isotropic material, having Young’s
modulus F and Poisson’s ratio v. When remote stress is
applied, the cell walls deform, resulting in bulk elastic
response of the material which manifests as two effective
elastic moduli £ and 7. A majority of solids possess
Poisson’s ratio in the range 0.2 to 0.5, the theoretical
limit for isotropic continuum being 0.5. Negative values
of Poisson’s ratio are not ruled out theoretically; however,
physical realizations of negative Poisson’s ratio material
had to wait until the discovery of certain microstructural
architectures that are usually attributed to “re-entrant
corners” present in cells having non-convex shapes [13].
Such materials are also known as auxetic.

Complex cellular geometries such as those in fig. 1
are not amenable to exact analysis, experimentation can

(a)E-mail: A.Bhaskar@soton.ac.uk
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Fig. 1: A micrograph of bone uniformly expanded to three
different hypothetical characteristic pore size (courtesy Alan
Boyde, Queen Mary University, London).

i

provide trends, and detailed computer analyses often
obscure general understanding, despite being useful. In
contrast, dimensional and scaling arguments are often
simple, yet effective [14,15]. We express the effective
Young modulus in the general functional form: E =
f(E,v,geometry). What role does the microstructural
size have in determining the effective elastic proper-
ties and, for example, which of the three microstruc-
tures in fig. 1 will have the highest Young modulus?
If the geometry of the microstructure is characterized
by m parameters, the non-dimensional groups in this
functional relationship are E/E, v, and (n—1) non-
dimensional parameters that describe the shape (e.g. the
ratios of the length parameters or angles) because of
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Buckingham’s II-theorem [16]. Therefore, in terms of a
new function P,

(1)

where shape stands for the geometrical attributes that are
invariant of scaling and topology stands for the nature of
the connectivity. It now follows from eq. (1): microstruc-
tural size has no role in determining the effective Young
modulus. We could come to this conclusion by formally
expressing the quantities in terms of unknown powers
and demanding dimensional homogeneity. The above
conclusion is a mere reflection of the well-known fact
that classical elasticity has no inherent length scale. The
effective Poisson ratio, similarly, has the functional form
= g(F, v, geometry). Dimensional homogeneity demands
7 ~ E° which means that 7 does not depend on Young’s
modulus of the solid phase. We can similarly show that it
does not depend on the microstructural size either, hence

(2)

That the effective moduli are scale invariant (i.e. they
do not change on uniform expansion or contraction as in
fig. 1) implies that, given microstructure, elastic proper-
ties are functions of the porosity (or the volume fraction)
because porosity is scale invariant. Equations (1) and (2)
are consistent with the detailed analysis for the special
case of thin walled regular hexagonal honeycombs |[8]
because such lattices are geometrically similar for a
given thickness—to—cell-wall-length ratio ¢/I. We have just
shown that (1) and (2) are generally correct for all porous
matter, simple or complex, such as those in fig. 1.

Turning to thin walled honeycombs, Torquato et al. [17]
conjectured that the effective moduli of any honeycomb
structure in the low density limit are independent of Pois-
son’s ratio of the solid phase because the beam bending
response depends on ETI (the flexural stiffness) and the
stretching response on FA (the axial stiffness) —both
independent of v; A is the cross-sectional area and I its
second moment. However, this is invalid for honeycombs
having thin but deep cell walls (e.g. for closed cell foams)
because they behave as thin plates rather than thin beams
even in the low density limit and because the plate bend-
ing rigidity, D ~ (1 —v?)~!, depends on v (admittedly a
weak dependence for small v but could be significant for
material such as rubber, ¥ ~0.5). On the other hand, the
conjecture [17] is correct for open cell foams and filamen-
tous planar networks because they possess beam-like thin
cell walls. An immediate upshot of (2) is that the effec-
tive Poisson ratio of cellular solids governed by thin beam
strut mechanics is a purely kinematic quantity: completely
independent of the material of the cell walls!

The effective properties for several regular lattices as
well as scaling arguments for random geometries have
been clearly articulated in [4]. The effective Poisson ratio
of a lattice of hexagonal beams has been calculated by
Gibson et al. [4,7,8] who use detailed mechanics. In this

E = E x ®(v, microstructural shape, topology),

7 = ¥ (v, microstructural shape, topology).

sl
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Fig. 2: (a) Part of a typical planar Voronoi structures analyzed,
(b) a cell wall during flexure under remote horizontal stress,
(c) the kinematic approximation of rigid-strut rotation.

approach, the response of the individual cell walls needs
to be calculated first. This further enables one to calculate
the bulk mechanical response in the directions along and
perpendicular to the direction of the remote stress. The
ratio of these two strain responses finally gives the effective
Poisson ratio. While this works well with spatially periodic
geometries such as the regular hexagonal honeycomb, it
poses analytical difficulty with random networks because
of the lack of a deterministic description of the latter. Our
approach here, therefore, is statistical. Further, we restrict
ourselves to planar networks.

A simplification of the network deformation
kinematics and the effective Poisson ratio. —
Consider irregular 2D networks such as the one shown in
fig. 2(a) which was generated by using Voronoi construc-
tion for a set of random seed-points. The mechanism of
deformation for kinematically rigid topologies is domi-
nated by stretching —examples include topologies with
triangular cells [18]. On the other hand, topologies such
as the one shown in fig. 2(a) are kinematically mobile
and they deform primarily in flexure. Consider a typical
cell wall AB in fig. 2(b). When remote stress is applied
horizontally, all the cell walls, in general, stretch and
flex leading to displacement associated with each point
of a cell wall. Ignoring the stretch deformation for the
bending dominated architecture of fig. 2(a), the deflected
shape is a cubic shape as shown by the solid line A’B”
because the governing equation of equilibrium is fourth
order. The overall shape and size of the deformed bulk
structure in 2(a) is determined by the positions of the cell
wall joints. The change in the dimensions of the overall
structure is related to the change in the projections of
the cell walls along the horizontal and vertical directions.
Now translate the deformed cell wall such that points A
and A’ coincide as shown using the curved dotted line in
fig. 2(b). Because we are ignoring stretching deformation,
AB =~ AB’. This simplifies the kinematics to the one
shown in fig. 2(c) which shows a rigid strut in rotation
and the resulting changes in the projections therefrom.

18004-p2
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The horizontal and vertical projections of a typical cell
wall AB of length [ are [, and [, respectively (fig. 2(c)).
Under horizontal remote stress, these projections change
by amounts d0l, and dl,, respectively. The end point B
assumes a new position B’ when A and A’ are made
to coincide, as it would appear for an observer attached
to point A. For stretch-free small deformation, vector
BB’ must be perpendicular to AB. The rotation of the
cell walls manifests itself as elongation of the horizontal
projection and a shortening of the transverse projection.
Because changes in the projected lengths accumulate, they
must lead to the changes in the overall horizontal and
vertical lengths and are associated to the bulk strains
in the two directions. When the cellular architecture is
random, the average change in the projections along and
across the the remote stress must be proportional to the
original average projections in the respective directions.
The constant of this proportionality equals the effective
strains in the two directions, i.e.

(ol = (lizl) s (ol)) ==y (LD, (3)

where the angular brackets mean average over the cell
walls and the subscripts to the bulk strain 7 refer to the
directions with respect to remote loading. This statistical
argument obviates detailed calculation of the response
for a very large number of degrees of freedom which the
rigid kinematics of cell walls alone cannot determine. For
statistically isotropic networks,

(llz]) = (L), (4)

i.e. the total projections in any direction must be the same
because such architectures must be free of directional bias.
During inextensible deformation, 12 +12 =17 is constant.
Differentiating both sides, 1,01, + 1,61, = 0 which each cell
wall must respect during the complex deformation of the
network. Reorganizing terms and averaging over the cell
walls after taking the absolute value of both sides, we have

(l6Ly|/18Lz]) = (|La| /1Ly ) - (5)

Since |l;| and |l,| are independent random variables,
the mean of the quotient equals the quotient of the
means. The changes in the projections [0l,| and |dl,| are
also statistically independent (the ratio being a random
variable defining the orientation of a cell wall). After using
egs. (3) and (4), we have

- _(I8tyl)y /161,
U=—v./y = ol <c%|> '

Using eq. (5), demanding that |l and |l,| are statistically
independent, and employing eq. (4) again, we obtain

()

This proves a remarkably general result that all statis-
tically isotropic random planar elastic networks, having

(6)

(7)

bending dominated architectures, have their effective
Poisson ratio equal to 1. The importance of this result
is highlighted by the fact that practically all known
theoretical structure-property relationships are for lattice
models [19]. Note that the result (7) excludes certain
special architectures that have non-convex cells (eq. (3)
does not hold in those cases; particularly the the sign
of the second of the two) and they may show auxetic
behavior [13,20,21]. Our theoretical result (7) is consis-
tent with numerical observations and conjectures of Zhu
et al. [6] and our own numerical experiments. To the
best of our knowledge this general result has not been
previously proven.

To verify the result (7) numerically, we generated
Voronoi networks by creating edges from a set of
randomly generated “seed-points” within a rectangular
space. Voronoi cells guarantee convexity because they
partition a plane into convex polygons. The randomness
was achieved by randomizing the positions of the seed-
points. However, the apparent randomness is restricted in
that concave cells are excluded —a requirement for the
validity of (3). Care was taken in ensuring that the cell
density is fairly uniform despite randomness. If this is not
done, the “sample size” required to ensure effective homo-
geneity at the bulk scale becomes very large. Each edge of
the Voronoi network was modeled as an elastic beam strut
having flexural as well as stretching degrees of freedom.
The total elastic energy is expressed in terms of the degrees
of freedom of the joints (2 translational and 1 rotational
degrees of freedom per joint) and interpolating the stretch-
ing displacement linearly and the transverse deflection
(associated with flexure) cubically. The potential energy
of external remote stresses is calculated from the work
done at the left and the right boundaries where stresses
are applied. This term is a linear function of the general-
ized co-ordinates. Finally the principle of minimum total
potential energy is applied and a set of linear algebraic
equations of the form Hq=1{f are variationally derived.
Here H is the Hessian of the strain energy functional
and f is the generalized force vector. In mechanics litera-
ture, this implementation is the well-known finite element
method (the Hessian is also known as the stiffness matrix).
These linear equations are solved for the unknown joint
variables q and a complete displacement field is obtained.

A practical difficulty encountered with long and slender
samples subjected to remote uniaxial stresses is that due
to randomness, the structure is not perfectly symmetrical
about the centreline of the sample, leading to an overall
response in flexure transverse to the axis. This leads to
significant curvature of the the bulk because the transverse
response scales as ~ (overalllength/overallthickness)3.
Therefore, the aspect ratio of the samples was kept close
to 1. To ensure that the length scale of heterogeneity
(i.e. the characteristic cell wall length) is much smaller
than the overall size of the sample, a large number of cells
were included in each numerical experiment. Typically,
each sample had over 1700 joints which corresponds to
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Fig. 3: (Colour on-line) A histogram of the computed effec-
tive Poisson ratio 7. Cell walls have bending and stretching
flexibility.

more than 5100 degrees of freedom. The joints on the
left edge were constrained horizontally but they had the
freedom to move transversely. The effective Poisson ratio
was calculated as the ratio o = —v, /v where the strains
along and transverse to the applied stress were calculated
from the averaged response at the four edges and the
overall dimensions of the rectangular sample. A histogram
of v for 50 such numerical experiments is shown in fig. 3.
The mean value of 7 is obtained ~0.94 which is very
close to the predicted value 1. The difference between
the theoretically predicted value 1 and the numerically
observed values can be attributed mainly to the extension
of the cell walls during deformations which is completely
neglected while obtaining the result (7). In addition,
other practical factors such as the finiteness of the sample
with respect to typical cell size may also have contributed
to this slight discrepancy.

Since the proof of eq. (7) crucially depends on the rigid-
rotation assumption, we test its validity in the numerical
experiments by plotting —dl,/dl, as a function of I, /l,
(the slope of a cell wall) in fig. 4. The data for each cell
wall are plotted by a dot. Data for a large majority of cell
walls align along the line through the origin at 45° —thus
confirming rigid rotation of the cell walls under remote
stress.

It has been suggested [4] that hexagonal honeycombs
(7=1) behave as isotropic media because the elastic
moduli are directionally independent and because they
satisfy the isotropic relationship for the shear modu-
lus G = E/2(1+ 7). However, thermodynamics demands
Poisson’s ratio for isotropic media to be in the range
—1<v<0.5. That the effective Poisson ratio v equals
1 for hexagonal honeycombs [4], as well as for irregular
honeycombs (this letter), is not inconsistent with thermo-
dynamics because honeycombs are not isotropic: they are
“isotropic” only in the plane (hence > 0.5 is accept-
able). On the planes perpendicular to the honeycomb, the
properties are very different, hence non-isotropic. A most
interesting implication of the effective Poisson ratio 7 — 1

150

100

50

-100

-150
-150

-100 -50 0 50 100 150
1
VX

Fig. 4: (=4l,/dly) as a function of [, /I, for a typical numerical
experiment. Each point corresponds to one cell wall.

(@ () ©

Fig. 5: (Colour on-line) (a) A cell (not in the sense of
crystallographic unit cells) out of a square lattice of beams
under remote horizontal stress. Triangles AOB and A’OB’
have the same area for small deflection. (b) A hexagonal
cell: the quadrilaterals AOCB and A’OC’B’ have equal area.
(c¢) An isolated inextensible circular ring stretched horizontally.
Deformed shapes are shaded in all the three cases.

is the exceptionally high stiffness for elastic properties
containing terms such as (1—?)71, e.g. for bending
rigidity of plates.

Isoektasic deformation and non-stretchability
of sheets and films. — For the two-dimensional case
under wuniaxial remote tension, we can relate the frac-
tional change in area to the strains by using the scaling
argument. Consider a sheet of characteristic dimensions
Ly x L, thin in the z-direction and loaded parallel to
the z-direction. After ignoring second order terms, we
have (6A/A) = +~.. Combining this with v, = —oy,
we have (0A/A) = (1 —v)y. Therefore, 7 relates to the
strain normalized fractional change in area as

7 =1—(54/A) /. (8)

Now consider cells out of regular geometries e.g. the
square honeycomb and the hexagonal honeycomb. A
typical cell (not in the crystallographic sense) for the
square lattice is shown in fig. 5(a). For simplicity, assume
the sides of this square to be of unit length. When
remote stress is applied horizontally, due to symmetry of

18004-p4
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the loading and geometry, the deformed shape continues
to have mirror symmetry about the horizontal and the
vertical axes of the square. As a result, the four corner
must fall on a rhombus after deformation. Ignoring the
details of the complex shape of the four edges of the cell
(which requires detailed mechanics), if BB’ =dz which
gives AA’ = dx + O(dx?), the area of the rhombus spanned
by the four corners is given by 1+ O(dz?). Hence, the
change in area is an order higher than the order of
strains. In the limit of small strains, therefore, the area
remains unchanged. Similarly, using elementary geometry,
the change in area for hexagonal cells (fig. 5(b)) can
be shown to be zero (since four times the area of the
rectangle BB'C'C' is compensated by the lost area of the
two chevron shapes at the top and the bottom of the hexa-
gon in fig. 5(b)) when a lattice containing such cells is
stressed horizontally.

Symmetry and simple kinematics as presented above
show that the net change in area d A = 0 for small strain for
each cell in figs. 5(a) and (b). This implies that the change
in area of the two-dimensional sheet made out of such
cells must also remain unchanged upon uniaxial tension.
Hence from equation (8), 7=1! This agrees with the
detailed calculation of [4] for the hexagonal honeycombs.
Kinematic models have been qualitatively suggested in the
past [13] mainly to explain auxetic behavior of regular
lattices, often without recognizing that the fundamental
assumption is the inextensibility of cell walls. We have just
shown here that Poisson’s ratio, as obtained kinematically
here, is indeed quantitatively ezact.

There appears to be a deeper connection between
the inextensibility of the cell walls and area-preserving
deformation of closed cells that extend roughly equally in
the two directions in a plane. By “extending equally” we
mean that the average inclinations of the cell walls and the
resulting cell shape do not have any directional bias. It is
hard to be precise about this for regular lattices, however,
for random networks, the meaning can be made exact via
appropriate shape measures or overall projections in two
orthogonal directions (as is the case in this letter; eq. (4)).

It can be shown elegantly that an isolated thin inexten-
sible circular ring, when loaded diametrically, deforms into
an oval shape in such a way as to leave the area unchanged.
Consider such a thin ring loaded by equal and opposite
diametrical forces of magnitude F' as shown in fig. 2(c).
Due to the deformation of the ring, a displacement field
associated with each point on the ring is given by u’’ (the
superscript denotes the actual problem of a ring loaded by
discrete forces F'). Now consider a hypothetical problem
when the ring is loaded by an internal “pressure” p which
acts radially outwards. Associated with this loading is a
displacement field u? which must be radial due to symme-
try. If the radial displacement due to the pressure loading
is 6P, then the principle of reciprocity requires

FéP = ]{ pn-uf'ds, (9)

where n is the outward drawn normal at the boundary of
the circle. Because the ring is inextensible, there can be
no radial displacement due to internal pressure, so 67 =0
which means § n- u”dS = 0 —thus the change in area due
to diametrical force F' must be zero. Hence the circle and
the ellipse in fig. 5(c) have the same area. Although circles
do not fit together to form a lattice and fill the plane, at
the heart of Poisson’s ratio being equal to 1 is this area
preserving deformation of cells.

We now develop an expression for the change in area of a
2D solid of finite extent and of arbitrary shape under plane
stress when traction is applied at the edges such that the
resultant forces and moments of the applied traction are
zero. The reciprocal theorem in elasticity can be expressed
in terms of surface integrals

/ niaf}ufdA:/ niagufdA
v v

in the absence of body forces where the superscripts
A and B are two different equilibrium states and oy
are the stress tensor components. Choose state A as
the actual displacement, stress, and strain in the solid
and state B as a hypothetical state of the same 2D
body under hydrostatic edge tension (constant in value
and normal to the local tangent). A guessed stress field
oB = ny =1, afy =0, (more compactly 05 = 0;5; where
di; is the Kronecker delta) is a valid equilibrium state
for problem B because it can be shown to satisfy the
plane stress equilibrium equations and the corresponding
compatibility relation. The strain field is then given
by 'yg = 1;E’j<5U where the indices take values 1 and 2.
Integrating the strain-displacement relationship ~;; =
(u;,j +u;;)/2 (the subscript following the comma means
differentiation with respect to the corresponding spatial
variable), we obtain the in-plane displacement field

(10)

B 1-v
! E

T; + ¢ + €53 W3, (11)
where c¢; are the two arbitrary in-plane infinitesimal
displacements, w3 is the infinitesimal rotation about an
axis perpendicular to the plane of the solid, €;;3 is the
Levi-Civita permutation symbol with the third index fixed
as 3, and summation over repeated indices is implicit. The
three terms in eq. (11) represent dilatation without shape
change, rigid-body translation, and rigid-body rotation,
respectively. The change in area due to edge traction
t; = oy;n; is given by the contour integral §A = fC niuttdS
which can be expressed as

(5A:?{ niuiAdS:% niéijuj‘dS:y{ niaf;ude
c e} c

after specializing the reciprocity relation (10) for the
plane stress problem. On account of translational equi-
librium of the externally applied traction, the integral
$c niag‘}cde:Q and similarly, §, niaf;ejkgkagdSzo
for rotational equilibrium. The change in area due to

(12)
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arbitrary traction t is then given by

1-v

A=
) 7 |

mltldS (13)
Note the strong similarity of this expression with the well-
known result in elasticity for the change in volume of an
isotropic solid 0V = I_EQ” fav x;t;dA subjected to surface
traction. Apart from the surface integral instead of a
contour integral, the main difference between this and (13)
is the dependence on Poisson’s ratio. The factor (1 —2v)
for the expression of volume change is replaced by the
factor (1—17) for the expression of area change for the
plane stress problems.

The (1 — 2v)-dependence of fractional volume change is
consistent with the scaling argument. If the characteristic
dimensions of a solid, slender in the z-direction, are
Ly xLyxL,, then the fractional change in volume
0V/V =0Ly/Ly +0Ly/Ly+6L./L,=(1-2v)y,  when
loaded along the x-direction. Compare this with the frac-
tional area change of a lamina given by 0A/A = (1—v)y
(eq. (8)). Equation (13) shows a) that the (1-—7)-
dependence is not limited to simple geometries such at
rectangular lamina; and b) it is true for any arbitrary
traction, not just uniaxial tension.

From eq. (13), it follows that for all plane stress prob-
lems, the area preserving deformation (or coining a term,
isoektasic —“ektasi” meaning area or extent) is associ-
ated with the effective in-plane Poisson ratio 7 being equal
to 1. This is a two-dimensional analogue of the case of
v=0.5 for 3D solids (i.e associated with isochoric defor-
mation) Since homogeneous isotropic materials cannot
exceed a value of Poisson’s ratio 0.5, 2D sheet/film of such
material cannot exhibit isoektasic behavior. In fact, thin
sheets of incompressible material (v =0.5) will show an
extension in area given by 0A/A =) /2 when stretched
remotely, according to eq. (8). Here, in microstructured
material such as that in fig. 2(a), we have found a phys-
ical realization of “two-dimensional incompressibility”, or
“non-stretchability”. The hexagonal lattice of beams then
becomes the only known area preserving in-plane isotropic
material having regular microstructure.

Conclusions. — We have shown using statistical argu-
ments that cellular solids having random architectures of
convex cells such as those in Voronoi networks must have
in-plane Poisson’s ratio equal to 1 when the dominant
mechanism of cell wall deformation is flexure. Interestingly
this value of Poisson’s ratio coincides with Poisson’s ratio
for regular hexagonal lattice of beams. The basis of our
proof is the statistical isotropy of random networks and a
kinematic simplification that results from cell wall inexten-
sibility. The simplified kinematics is found to be consistent
with our numerical calculations. The numerically observed
value of Poisson’s ratio is slightly less than the theoreti-
cally predicted value 1. This difference is attributed to
small stretch contribution to the cell wall deformation.
We then show that thin sheets and films made out of such

microstructured material will exhibit an area preserving
property for any arbitrary geometry as long as the bulk
matter is acted upon by traction at the edges that is
in equilibrium. This behavior is a realization of the 2D
analogue of isochoric deformation (associated with volu-
metric incompressibility). Accordingly, we propose to call
such materials as isoektasic.

X %k %
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