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Abstract

A vortex cell (in this paper) is an aerodynamically shaped cavity in the surface of a body, for example a wing,
designed specially to trap the separated vortex within it, thus preventing large-scale unsteady vortex shedding from
the wing. Vortex stabilisation can be achieved either by the special geometry, as has already been done experimentally,
or by a system of active control. In realistic conditions the boundary and mixing layers in the vortex cell are always
turbulent. In the present study a model for calculating the flow in a vortex cell was obtained by replacing the laminar
viscosity with the turbulent viscosity in the known high-Reynolds-number asymptotic theory of steady laminar flows
in vortex cells. The model was implemented numerically and was shown to be faster than solving the Reynolds-
averaged Navier-Stokes equations. An experimental facility with a vortex cell was built and experiments performed.
Comparisons of the experimental results with the predictions of the model are reasonably satisfactory. The results
also indicate that at least for flows in near-circular vortex cells it is sufficient to have accurate turbulence models only
in thin viscous layers, while outside the viscosity should only be small enough to make the flow effectively inviscid.

Key words: Vortex cells, Separation control, Cyclic boundary layers, Cavity flow

1. Introduction

As a rule, flows past bluff bodies are unsteady. Vortices formed by separation are shed downstream in a
regular periodic or irregular chaotic process. Generating a wake having high kinetic energy leads to the large
drag observed in separated flows. If the process of vortex shedding were prevented the drag would be reduced:
this is the idea of a trapped vortex. A vortex cell is a cavity in the body surface designed to accommodate
a trapped vortex. The pioneering paper by Ringleb [1] played an important role in dissemination of these
ideas, even though some of the formulae in it did not take into account the Routh rule [2]. As a result, some
of Ringleb’s results on trapped vortices were incorrect [3].

On observing a particularly high-lift under a certain condition during a glider flight, W.A. Kasper suggested
(and patented the idea, see [4]) that it was due to a trapped vortex. This observation was not confirmed by
wind-tunnel tests, however [5]. Wu and Wu [6] hypothesised that in the flight test the vortex was stabilised
by wing vibrations, while in the wind-tunnel experiment the model was rigid. Indeed, at least within a
point-vortex model, stabilisation can be achieved by introducing suitable oscillations into the flow [7]. In
the late eighties-early nineties an aircraft, EKIP [8], was designed, patented [9], built, and flight-tested in
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Fig. 1. a). Schematic sketch of a general vortex cell; b). Realisation of this model in the cyclic boundary layer code.

Russia. EKIP was equipped with four vortex cells trapping vortices in the rear part of its body. However,
there is no information on the EKIP vortex cell performance published in peer-reviewed journals 1 . While
the evidence from the Kasper wing and EKIP remain inconclusive, it is clear that the viability of the trapped
vortex concept depends on the vortex stability, so it could possibly be improved by advances in active flow
control techniques.

In high-Reynolds-number flows unsteadiness is due not only to the large-scale vortex shedding but also
to the turbulence in the boundary and mixing layers. Naturally, full control of turbulence is rather difficult
to achieve. Wu and Wu [6] pointed out that, fortunately, drag reduction can be achieved by preventing only
the large-scale vortex shedding rather than fully suppressing the turbulence.

There are geometries for which large-scale vortex shedding from the separation eddy does not occur,
as in [10–12]. In these cases, however, the dividing streamline can be replaced with a wall along which the
pressure gradient is favourable and, therefore, the vortex cell is not actually needed. A trapped vortex can be
stabilised by constant suction [9,13], but more complicated forms of control should be more energy-efficient.
In various contexts an open-loop control of trapped vortices was considered in [7] and [14]. A comprehensive
review of open and closed loop control techniques is given in [15], while the recent work by Pastoor et al. [16]
demonstrates the advantage of stabilisation of large-scale vortex shedding by closed-loop control.

We will assume now that the flow with a trapped vortex is stabilised and consider the way the stabilised
flow can be calculated. The majority of the theoretical work on flows with trapped vortices has been done
using the point-vortex, or Föppl, model. Rather then giving an overview of this substantial body of work
we cite only the latest paper [17] where further references can be found. While it is simple, the point vortex
model has severe limitations. There are geometries for which a steady point-vortex flow cannot satisfy the
Kutta-Joukowski condition. This is unphysical and is caused by the imperfection of the model, because
the steady solution of the Navier-Stokes equation always exist [18], at least in closed domains, and at high
Reynolds numbers, of course, it satisfies this condition. In those cases when the Kutta-Joukowski condition
can be satisfied in a point-vortex flow it is usually used to determine the circulation of the point vortex,
otherwise the solution is not unique. This method of eliminating non-uniqueness also contradicts the physical
mechanisms governing such flows. In fact, an inviscid flow with closed streamlines can have almost arbitrary
distribution of vorticity across the streamlines, ω = ω(ψ), and it also can have a velocity discontinuity
corresponding to a jump B in the Bernoulli constant across the dividing streamline (that is the streamline
separating the closed streamline region from the rest of the flow domain, marked ‘Separatrix’ in Fig. 1(a)).
In contrast, viscous flows are either unique or have a finite number of solutions. Since an inviscid flow is an
approximation of a viscous flow with very small viscosity or, more precisely, with a large Reynolds number,
rather than assuming B = 0 and concentrating all the vorticity in a point, as is done by the point-vortex
method, the correct way of eliminating the non-uniqueness of the inviscid flow is to select that inviscid flow
which is the limit of the viscous flow as the viscosity tends to zero. For (steady) laminar flows this approach

1 In addition to the references given above our sources of information on EKIP are the seminar presentations on EKIP at the
Moscow University, given by EKIP designer Prof. L. N. Schukin, which one of the authors (SC) attended, and an account of
our colleague, Prof. G.Yu. Stepanov, who went to the Saratov Aviation Plant and inspected the aircraft.
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leads to the famous Prandtl-Batchelor theorem [19] and the Batchelor model [20]. The Batchelor model,
proposed initially for describing the high-Reynolds-number asymptotics of the flow past a bluff body (see the
review [21]), is actually more appropriate for flows with trapped vortices (see [22] for the full description of
the laminar high-Reynolds-number solution and further references). The most important physical mechanism
revealed by high-Reynolds-number asymptotic studies is the balance between acceleration and deceleration
of fluid particles along the closed streamline by viscous forces. Since it is a balance between two effects
proportional to viscosity, it remains satisfied however small viscosity is. For the case of a constant viscosity
coefficient this leads to the Prandtl-Batchelor theorem, stating that in the high-Reynolds-number limit the
vorticity inside the eddy is constant, ω(ψ) = const. When applied to a boundary layer surrounding the
eddy this balance also gives an extra condition which, together with the Kutta-Joukowski condition, allows
determination of both ω and B. Further details can be found in the papers cited above.

High-Reynolds-number asymptotics studies of flows with trapped vortices [22] also revealed that the
trapped vortex should be accommodated in a vortex cell that is a specially designed cavity in the airfoil
surface. Otherwise, the flow in the recirculating eddy separates again, creating another region of closed
streamlines. The secondary separation gives a flow of a more complicated topology having more inflection
points in the velocity profiles. Not only is such a flow more difficult to stabilise but, even if it is stabilised, it
would have large velocity gradients, a higher rate of energy dissipation and, hence, higher drag. Numerical
optimisation of the vortex cell shape will require a large number of vortex-cell flow calculations which,
therefore, have to be fast. The present paper describes a step towards developing a fast method of calculating
flows with vortex cells.

2. Approximate model of the flow with a vortex cell

It is worth repeating that while there will be no large-scale vortex shedding in the stabilised flow with
a vortex cell, the flow will remain turbulent in realistic conditions. An approximate model for the mean
turbulent flow used in the present study is obtained by adjusting the laminar high-Reynolds-number theory
of flows with trapped vortices, as suggested in [22]. The model is obtained from the high-Reynolds-number
asymptotic theory by replacing the laminar viscosity in the boundary and mixing layers with turbulent
viscosity. As a result, turbulence needs to be modelled only in thin layers, which is easier than modelling
turbulence in the entire recirculating flow. Another important advantage is faster numerical calculations,
as compared to using a full Reynolds-averaged Navier-Stokes solver. Such an approach assumes that the
effective Reynolds number, that is the Reynolds number based on turbulent viscosity, is high. This is not in
general true for massively separated flows, since large-scale vortex shedding results in large Reynolds stresses.
However, once large-scale vortex shedding is prevented either by stabilisation or by the geometry, one can
hope that this approximate model will be suitable. Note also that the Prandtl-Batchelor theorem might not
apply to mean turbulent flow even if the turbulent viscosity is small, since this theorem is proved for constant
viscosity. These issues can only be resolved by comparisons with experiments, and such comparisons will be
described later in the present paper. The justification for the high-Reynolds-number laminar asymptotics is
given in [22]; here we simply explain the resulting approximate model.

The implied geometry is illustrated in Fig. 1(a): the flow approaches the vortex cell along the wall from
left to right, separates from the cusp and then reattaches. The model has two coupled components: an
inviscid Batchelor model flow [20] and the thin viscous layers. The inviscid model neglects the thickness
of the boundary and mixing layers. The vorticity ω is zero outside the area of closed streamlines and is
constant inside it. There is a discontinuous drop B in the total pressure across the dividing streamline. The
stream-function of this flow satisfies the equation

∇2Ψ = −ω(Ψ) + B δ(Ψ), with ω =

{
0, Ψ ≥ 0
ω0, Ψ < 0

(1)

where δ denotes the Dirac delta. Here, the Dirac delta should be understood as a limit of a non-negative
function of Ψ with finite support as the size of the support tends to zero while the integral of this function
over the support domain remains equal to unity. The stream function vanishes along the body boundaries.

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The separatrix is the curve where Ψ = 0, with Ψ > 0 outside and Ψ < 0 inside the vortex cell. At infinity the
velocity tends to a given value. With these boundary conditions (1) has a two-parameter family of solutions
depending on the constant vorticity ω0 in the eddy and of the jump B in the total pressure across the mixing
layer. Enforcing the Kutta-condition at the cusp SA determines one of the parameters, say B for a fixed ω0,
but the other cannot be found within the framework of inviscid flow. Its value must be determined by the
condition that the solution in the cyclic layer exists and matches the Batchelor model flow.

The second component of the model is the thin viscous layers. It consists of the oncoming and outgoing
boundary layers upstream of the cusp A and downstream of the reattachment point B and the cyclic
boundary layer including the mixing layer around the separatrix between A and B and the boundary layer
developing in the reversed flow along the vortex cell wall between B and A. In the boundary layers it is
natural to use a coordinate system attached to the wall and/or separatrix with streamwise s and normal
n coordinates. The oncoming boundary layer starts somewhere upstream (say, at the forward stagnation
point in the case of a flow past a body) and ends at the cusp s = 0. The mixing layer is between s = 0 and
s = sB . The outgoing boundary layer is not considered in the present paper. The reversed-flow boundary
layer is between s = sB and s = sA. Let p denote the static pressure and u the velocity component in the
streamwise direction. It is convenient to use the von-Mises formulation, in which n is substituted by the
stream function ψ under the transformation (s, n) ! (s, ψ) via

ψ(s, n) =
∫ n

0
u(s, ñ) dñ, so that n(s, ψ) =

∫ ψ

0

1
u(s, ψ̃)

dψ̃ (2)

as discussed in Schlichting [27]. With the introduction of so-called “total head” or total pressure

g(s, ψ) =
u(s, ψ)2

2
+ p(s) (3)

the boundary layer equation reduces to

∂ g

∂s
(s, ψ) = u(s, ψ)

∂

∂Ψ

[
1

Reeff (s, ψ)
· ∂ g

∂Ψ
(s, ψ)

]
. (4)

All the quantities here are assumed to be suitably nondimensionalised. The effective Reynolds number
Reeff = (Lr ur)/(ν + νt) based on a characteristic reference velocity ur and length scale Lr is a function of
the so-called effective viscosity. The effective viscosity can be expressed as the sum of the molecular viscosity
ν and a much larger artificial “eddy-viscosity” νt(s, ψ), which models the local effect of the Reynolds stresses
on the turbulent mean flow through turbulence models. Obtaining g from (4) is equivalent to solving the
full boundary layer equations, as one can readily recover u from

u(s, ψ) =
√

2 (g(s, ψ)− p(s)) (5)

which allows the other velocity component to be determined by integration from the continuity equation.
In the same way as in the asymptotic theory [22], the regions near the points A and B are assumed

to be effectively inviscid. This means that inside these regions the Bernoulli equation applies. As a result,
inside these regions the total pressure g is constant along the streamlines. Therefore, one can calculate the
oncoming boundary layer and then use the profile of g at the end of it (that is at point A at s = 0) as
the initial profile for the upper part of the mixing layer. Equivalently, one can simply include the oncoming
boundary layer into the cyclic layer domain. At the point B the mixing layer divides. Its upper part continues
downstream as on outgoing boundary layer, while the lower part turns, giving rise to the boundary layer
inside the vortex cell. The total pressure profile at the end of this layer serves then as the initial profile in
the lower part of the mixing layer. This is expressed by the condition

g(0, ψ) = g(sA, ψ), ψ < 0. (6)

A resulting schematic of the flow is shown in Fig. 1(b). Assuming that the oncoming boundary layer starts
at, say, s = ss, one should impose also the initial condition

g(ss, ψ) = gs(ψ) (7)

4
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with gs(ψ) given. The solution of (4) is sought in the domain I+II+III in Fig. 1(b), that is in {s, ψ : ss ≤
s ≤ 0, 0 ≤ ψ ≤ +∞} ∪ {s, ψ : 0 ≤ s ≤ sB ,−∞ ≤ ψ < +∞} ∪ {s, ψ : sB ≤ s ≤ sA,−∞ ≤ ψ ≤ 0}. The
standard no-slip condition is imposed at the walls: u|wall = 0, or, equivalently,

g|wall = p(s). (8)

The pressure distribution in the boundary layer is obtained from a so-called matching condition with the
outer inviscid flow. Let P (s, n) and G(s, n) denote respectively the static and total pressures in the Batchelor-
model flow (1). Then

p(s) = P (s, 0). (9)
A matching condition should also be imposed on the velocity or, equivalently, the total pressure. If the initial
velocity profile in the oncoming boundary layer satisfies this condition then the boundary layer solution will
satisfy it automatically on the external side of the cyclic layer. However, there is no initial profile on its
internal side. Noting that G(s, n) is discontinuous across n = 0 : G(s,+0)−G(s,−0) = B, the appropriate
matching condition for the total pressure there is

lim
ψ→−∞

g(s, ψ)−G(s,−0) = 0. (10)

Equations (1-10) give the full formulation of the problem to be solved. With the Kutta condition imposed
this system can have a solution only for one value of ω0, thus determining this value, because for an arbitrarily
selected ω0 the viscous part of the problem, that is (7-10), has no solution. It also has no solution if one of
the boundary layers separates, or the mixing layer breaks down under the action of an unfavourable pressure
gradient.

Note the way the inviscid and viscous problems are coupled. The viscous part depends on the pressure
distribution from the inviscid solution. The parameter ω0 of the inviscid solution is determined from the
solvability condition for the viscous part. The solvability condition is inconvenient for numerical calculations.
One can replace (10) with a weaker condition ∂g(s, ψ)/∂ψ → 0 as ψ → −∞. Then the solution can be found
for a given ω0, so that limψ→−∞ g(s, ψ)−G(s,−0) = f(ω0), and then ω0 can be found numerically by solving
the equation f(ω0) = 0.

This model gives two values at a point for every quantity. Say, the velocity and total pressure are given
by G(s, n) and by g(s, n). These correspond to two different distinguished limits arising in the asymptotic
prototype of the model. To obtain the final result one needs to build the composite expansion in the standard
way [23]. For the total pressure inside the eddy, for example, it is given by

g = g(s, ψ) + G(s, n)−G(s,−0). (11)

3. Finite-difference scheme and solution procedure

The overall approach to solving the boundary layer equations in von-Mises variables is the same as that
used in [22] for laminar flow, where more details are given. A grid with nodes at s = si and ψ = ψj is
introduced, and what effectively is a weighted sum of a fully implicit first order scheme and a second-order
scheme is implemented, with the weight controlled by the step size, thus improving the stability of the
scheme without reducing the overall order of approximation. The main difference is that in the present case
the turbulent viscosity varies from point to point. Accordingly, the two schemes used in the present case are
documented below. The first-order scheme is

g̃j − gj

∆si
= ũj

{
1

1
2 (∆ψj+1 + ∆ψj)

[
µ̃eff j+

1
2

(
g̃j+1 − g̃j

∆ψj+1

)
− µ̃eff j− 1

2

(
g̃j − g̃j−1

∆ψj

) ]}
(12)

and the second order scheme is

t
g̃j − gj

∆si
= u

i+
1
2 ,j

· 1
2

{
1

1
2 (∆ψj+1 + ∆ψj)

[
µ̃eff j+

1
2

(
g̃j+1 − g̃j

∆ψj+1

)
− µ̃eff j− 1

2

(
g̃j − g̃j−1

∆ψj

) ]

+
1

1
2 (∆ψj+1 + ∆ψj)

[
µeff j+

1
2

(
gj+1 − gj

∆ψj+1

)
− µeff j− 1

2

(
gj − gj−1

∆ψj

) ]} (13)
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Fig. 2. Streamwise velocity as a function of ψ. From left to right: profile at cusp, middle of mixing layer, end of mixing layer,
immediately after the reattachment point, and in the middle of the wall bounded section.

where tilde denotes the values at the new next layer in s (say, q̃j = qi+1,j), ∆sj+1 = si+1 − si, ∆ψj+1 =
ψj+1−ψj and µeff = 1/Reeff (s, ψ). These formulae provide a marching scheme in s. At every step in s simple
iterations are performed for determining ũ and µ̃eff .

Each simulation is started from an initial profile in the oncoming boundary layer. A single boundary layer
calculation through sub-region I in Fig. 1(b) provides the upper half of the initial condition for the mixing
layer in the form of a cusp profile. The initial condition for the lower half of the g-profile is taken arbitrarily
as piecewise polynomial of a suitable shape. Then a sequence of calculations in the sub-regions II and III is
performed until convergence, with the use of (6) as indicated with a dashed line in Fig. 1(b). Additionally,
an Aitken extrapolation of the g-profile at the end of each full vortex cell cycle is used to speed up this
process. As in [22], condition (10) is imposed at a sufficiently large but finite negative value of ψ = ψ−∞.
A secant method is then used to find the vorticity ω0 such that ∂g/∂ψ = 0 at a point on the boundary
ψ = ψ−∞ of the computational domain. Note that the convergence of the cyclic iterations is due to the
action of viscosity, and this has certain implications for the selection of the model of turbulence, see below.

The implementation of the scheme without turbulence models was verified against the exact solution [19]
for the constant vorticity ω of the fluid in a cylinder, whose walls are partly in steady rotation and partly
fixed. Within the vortex cell code the moving wall could be mimicked by a ”mixing layer” of one grid point
in the wall-normal direction, which moves with the prescribed wall velocity as an upper free stream velocity.
Usual grid refinement and computational domain size sensitivity test were made to ensure that numerical
errors are less than the variance of the experimental results.

The simulations with the use of turbulence modelling also allow a qualitative comparison with the laminar
flow field in an elongated vortex cell investigated by [22]. Fig. 2 exemplifies the development of turbulent
boundary layer profiles within a vortex cell. (This corresponds to the flow in the experimental facility for
φ = 40◦ and Red = 94, 000 described below but these details are not essential for our illustration here.) At
the cusp the inner boundary layer merges with the external oncoming boundary layer. The now separated
flow develops into a mixing layer, which exhibits a shear layer profile with a pronounced velocity deficit
near the dividing streamline, stemming from the presence of the wall in both streams upstream at the
cusp. Further downstream this deficit is smoothed out to some extent under the influence of friction until
the impinging shear layer divides into an inner and an outer flow at the stagnation point. Note that the
velocity on the dividing streamline just before impingement is noticeably higher than the flow velocity at
the edge of the boundary layer inside, as the local velocity minimum has moved downwards. This leads to
a velocity excess in the near wall region at the start of the wall-bounded part of the cell. However, it is
quickly smoothed out by the wall friction, so that an ordinary boundary profile redevelops before the cusp
is encountered again.

All these features appear in the laminar flow field of the vortex cell in [22] (see Figs. 2 and 7 there), the
only differences stemming from three tangential wall jets employed by Bunyakin et al. towards the end of
the wall-bounded part to avoid secondary separation.
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4. Turbulence modelling

For the wall bounded parts of the geometry the two-layer models of Baldwin-Lomax [24] and Cebeci-Smith
[25] were tested in several variants described in White [26] against measurements described in the following
sections. For the mixing layer “free shear layer” models can be employed, the simplest of which dates back
to Prandtl, who considered a zero pressure gradient shear layer between two streams with a higher velocity
umax at the top and a lower one umin at the bottom [27] and wrote

νt = α δmix (umax − umin) . (14)

This gives a constant eddy-viscosity distribution νt in the vertical direction with the eddy viscosity assumed
to be proportional to the product of the thickness δmix of the mixing layer

δmix = yup − ydown, with yup =
{

y ∈ [ymin, ymax]
∣∣∣

(u(y)− umin)2

(umax − umin)2
=

9
10

}
(15)

ydown =
{

y ∈ [ymin, ymax]
∣∣∣

(u(y)− umin)2

(umax − umin)2
=

1
10

}
(16)

and the velocity difference across the shear layer. The only closure coefficient is the factor α = 0.014 in (14),
which gives excellent agreement to an experiment with umin = 0 (see Schlichting [27], fig. 23.3). A slightly
more advanced approach described by Wilcox [28], section 3.3.2, utilises Prandtl’s mixing length theory

νt(y) = l2mix

∣∣∣∣
∂ u

∂y
(y)

∣∣∣∣ using lmix = α δmix (17)

where δmix is defined as in (15); in this case the only closure coefficient is the factor α = 0.071 in (17).
Best agreement for the wall-bounded parts was obtained with the Baldwin-Lomax model subjected to the

Cebeci-Smith pressure gradient correction

A+ = A+
o

[
1 + y

∂P/∂x

ρ u2
τ

]− 1
2

applied to lmix = κ y
[
1− e−y+/A+

]
(18)

which adjusts the standard model parameter A+
o = 26 for the van Driest damping to changing pressure

gradients. While Wilcox’s model (17) was more accurate than Prandtl’s (14) for the mixing layer, the code
takes significantly longer to converge for high domains with the former due to a quickly vanishing viscosity
outside of the core region of the shear layer. The linear combination

νt = C νt,Prandtl + (1− C) νt,Wilcox (19)

combines both advantages. A fine-tuning of C to 0.1 even resulted in a slightly better overall agreement
compared to the original Wilcox-model. Thus, this model in connection with the Baldwin-Lomax model
subject to (18) was used in the computations presented below.

5. The validation of the cyclic boundary layer code

5.1. Experimental realisation of a generic model vortex cell

The model we develop is intended for use with flows with trapped vortices, that is flows with closed-
streamline eddies but without large-scale vortex shedding. A special facility (Fig. 3) was built, the geometry
of which ensures that no large-scale vortex shedding occurs even without active stabilisation measures (see
[29] for more detail). It consists of a centrifugal fan, expansion section, a settling chamber and a two-
dimensional contraction leading to a rectangular channel. The maximum main stream velocity ur in the
channel section, which was monitored with a Pitot-static tube during all experiments, was 14 m/s. The
cylindrical vortex cell is mounted at the bottom end of the rectangular channel section, with the flow guided
around it by a larger cylinder section. Its spanwise dimension is 8.6 diameters. The key parameter of a
vortex cell, the length of its separatrix, was varied by adjusting the opening angle φ (see Fig. 3) between 20◦
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Fig. 3. Measurement section of the rig. The contraction exit is 1m upstream of the separation point (φ = 0◦), the so-called
cusp.

and 120◦. The plexi-glass construction of the set-up enabled the application of Laser-Doppler Anemometry
(inside the cell), which comprised a two-component Dantec Fibreflow system using a Spectra Physics 5 W
Argon-Ion laser.

Experiments were undertaken for Reynolds numbers Red = 54, 000, 94, 000 and 132, 000 based on the
velocity ur at the reference station sr depictured in Fig. 3, the inner vortex cell diameter d = 0.14 m and a
dynamic viscosity of 14.6 · 10−6m2/s. Experimental results are available for the opening angles φ = 40◦ and
60◦ for all Reynolds numbers, with an additional measurement for a smaller opening angle of φ = 20◦ for
Red = 94, 000 only.

6. Rig calculations

To apply our model for a particular situation one needs to have a solution for the inviscid Batchelor model
problem (1) and the initial velocity, or total pressure profile (7). In practice one needs also to know the state
of the oncoming boundary layer, which was in fact laminar or transitional in the particular experiments in
the rig.

The Batchelor-model flow solution for the experimental facility was found approximately by assuming the
separatrix to be a part of the same circle as the vortex cell. In this case the constant vorticity flow inside the
cell is a simple solid-body rotation. Outside, the irrotational flow is found by means of a chain of conformal
mappings inspired by the procedure suggested by Ives [30] 2 . Note that, according to this solution, the flow
accelerates along the wall while approaching the cusp, so that the oncoming boundary layer is under the
action of a relatively strong favourable pressure gradient. The Bernoulli constant jump B is the only free
parameter. Within our approximation its value affects only the flow inside the eddy. Hence, the oncoming
boundary layer need be calculated only once for each value of Red. This gives the initial profile for the upper
part of the mixing layer. In principle, one could use the velocity profiles measured above the cusp as the
initial profiles for the mixing layer. However, calculating the oncoming boundary layer between the start
section and the cusp gives additional information about the state of the boundary layer, as discussed below.

The initial velocity profiles were measured at the reference station sr of Fig. 3, which was nearly four
times the cell diameter d upstream of the cusp, where the influence of variations in the opening angle φ
was negligible. Accordingly, only the 40◦-case was measured. Fig. 4(a) shows the measured velocity profiles
and the best fits by laminar Blasius profile and by a turbulent 1/7-power-law profile. Blasius profiles fit the
measurements for the two lower Reynolds numbers, but for the higher one neither fit is good. This confirms

2 The authors would like to express their gratitude to their project partner Prof. L. Zannetti from the Politecnico di Torino,
who kindly provided this inviscid solution but thought it so simple as not to justify him becoming a co-author of this paper.
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(a) Best fit of Blasius profiles to measurements at
Red = 54, 000 (dashed) and Red = 94, 000 (line).
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(b) Best fit by a Blasius-profile (dash-dotted) and
a turbulent 1/7-power law profile (dashed) to ex-
periments at Red = 132, 000.

Fig. 4. Initial profiles at the reference station sr ≈ 4 d upstream of the cusp. Lines: BL-code, symbols: LDA-measurements.

the experimental findings that the flow is laminar at sr for the two lower Reynolds numbers, while for the
highest Reynolds number the flow is transitional at sr.

The further development of the oncoming flow is influenced by the flow acceleration upstream of the cusp
induced by an upstream effect of the semi-circular end-section and the associated 1/radius distribution of
the inviscid channel core velocity. Within this region the inviscid wall velocity increases by 40%. The inviscid
flow solution for the oncoming flow is in a very good agreement with experimental data in the potential
flow region, as demonstrated by Fig. 3 in Savelsberg & Castro [29]. The experiments also showed that the
opening angle (for φ ∈ [20◦; 60◦]) had very little effect on the profiles of the velocity above the cusp. The
acceleration manifests itself by the deviation of these cusp profiles from the vertical channel flow profile,
which can be seen above the boundary layer in Fig. 5. Low levels of turbulent shear stresses measured above
the cusp indicate that even for the highest Reynolds number the flow has been relaminarised to some extent
as a result of the favourable pressure gradient. However, all velocity measurements inside the vortex cell
yielded turbulent fluctuations on the order of 10% relative to the upstream reference velocity. This confirms
that regardless of the state of the oncoming boundary layer the separating shear layer is turbulent for all
Red.

For many practical applications the oncoming boundary layer would be fully turbulent, but for the com-
parisons of the theoretical prediction with the experiment in the rig one has to guess the transition position
where the turbulence model is switched on. This guess can be made on the basis of the comparison of the
predicted and measured velocity profiles above the cusp. For the highest Reynolds number a fully turbulent
calculation starting from the already transitional initial-condition-profile from Fig. 4(b) results in the outer
cusp profile shown in Fig. 5(a). For the medium Reynolds number the laminar flow conditions from Fig. 4(a)
at the reference station suggests that transition takes place between sr and the cusp. Best agreement with
the measured cusp-profile of Fig. 5(c) is obtained if the turbulence model is switched on after 15% of the
total distance to the cusp. Finally, a fully laminar calculation for the lowest Reynolds number yields the cusp
profile depictured in Fig. 5(e). The excellent agreement of the resulting cusp profiles with the experiment
shows that the channel flow of the oncoming boundary for an opening angle of φ = 40◦ can be modelled
to be laminar, transitional and turbulent for the Reynolds numbers Red = 54, 000, 94, 000, 132, 000, respec-
tively. For calculating the flow inside the cell these initial conditions and flow regimes were applied also
to the other opening angles. This gave a comparable but in some cases slightly worse agreement with the
respective measurements at the cusp.
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(a) Comparison of cusp-profile at Red = 132, 000.

Re=91000: experiments LDA

Re=91000: analytical model
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(b) Comparison of urot for Red = 132, 000.

U/Uref

Y
/d

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

(c) Comparison of cusp-profile at Red = 94, 000.

Re=129000: experiments LDA

Re=129000: analytical model

Re=129000: cyclic BL-code
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(d) Comparison of urot for Red = 94, 000.
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(e) Comparison of cusp-profile at Red = 54, 000.
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Re=91000: analytical model

Re=91000: cyclic BL-code
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(f) Comparison of urot for Red = 54, 000.

Fig. 5. Left hand side: Comparison of the measured profiles (symbols) above the cusp for the φ = 40◦ case against fully turbulent
(line) and laminar (dashed) calculations of the oncoming boundary layer. Re = 94, 000 only: line indicates result of modelling
of transitional flow with turbulence model switched on at a position located 15% of the distance to the cusp after reference
station sr. Additionally the inviscid profile is shown (dash-dotted). Right hand side: Comparison of the rotational velocity urot

inside the vortex cell derived from experiment (open symbols), to simulations (filled symbols, calculations based on turbulent,
transitional and laminar oncoming boundary layers from top to bottom) and a simple estimate[29] (lines). Re = 54, 000 only:
Additional triangles show simulation results, if the oncoming boundary layers are assumed to be turbulent.
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Fig. 6. Comparisons of the predicted (lines) and measured velocity profile for Re = 94, 000 and opening angle of φ = 40◦. Note
the S-shaped deviation of the measurements from the straight line in the eddy core.

7. Comparisons

We define rotational velocity urot as the velocity at the vortex cell walls and below the mixing layer for a
solid-body rotation. For the cyclic boundary layer code urot can be readily calculated from the total pressure
P

in

o of the converged solution and the constant static pressure p inside the cell by invoking (5). Ideally, in
order to obtain the rotational velocity urot from the experimental data one would fit a straight line to the
measured velocity profile through the core of the cell. Then the slope of the line is the angular velocity
σ, and urot = σ d/2. However, despite the circular shape of the rig the measured velocity profiles have a
S -shape visible in Fig. 6 in the inviscid core outside of the near-wall region. For this reason σ was calculated
by taking the average of the derivatives ∂u/∂y at each measurement point instead. Points in the boundary
layer, identifiable by the large value of the second derivative ∂2u/∂y2, were excluded from this average.

We suspect that three-dimensional effects are responsible for the observed “S”-shape in the experiment.
Indications come from additional experiments documented in [29] and from the recent three-dimensional
LES-calculations by Hokpunna & Manhart [31] for a near-circular vortex cell. While infinite aspect ratio
simulations (with periodic boundary conditions in the spanwise direction) result in essentially straight veloc-
ity profiles in the potential core regions outside the boundary layer [31], Hokpunna & Manhart [32] observed
qualitatively an S-shape comparable to the current measurements in Fig. 6 for cases with sidewalls.

Note that the main vortices at the downstream end of rectangular cavities frequently display a similar
behaviour. The reader might want to compare the simulations of a quadratic cavity without side walls of
Shu, Wang & Chew [33] and of Ghia, Ghia & Shin [34], which both show extended, straight core regions,
with the measurements of Grace, Dewar and Wroblewski [35] in a shallow, rectangular cavity, which yields
a distinct S-shape.

This preliminary evidence suggests that this phenomenon is not restricted to circular vortex cells walls and
should be taken into account for applications of cavities in general. Additionally, measurements in the cyclic
rig show that while the mean rotational core velocity urot is fairly independent of the spanwise position,
the spanwise velocity component w is non-zero and shows a roughly sinusoidal structure in span with peak
velocities of up to 9%ur for the current width-to-cell-diameter ratio of 8.6. Interestingly these large scale
oscillations with a spanwise wavelength of more than two d were absent for measurements in cells with
aspect ratios of 2 and 5. Further data on these three-dimensional effects in cylindrical vortex cells with finite
aspect ratio can be found in Savelsberg & Castro [29].

The right hand side of Fig. 5 shows the rotational velocity urot as a function of the opening angle for
different values of the Reynolds number. Results from the cyclic boundary layer code are compared with the
experimental data and a straightforward analytical estimate proposed by Savelsberg & Castro [29] in which
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Table 1
Deviations of the cyclic boundary layer model result from experiment in percent of the respective reference velocity ur. Values
in brackets for lowest Red are the results obtained assuming a fully turbulent oncoming boundary layer.

Red ur, [ms ] φ = 20◦, [%] φ = 40◦, [%] φ = 60◦, [%]

132, 000 13.8 ! −2.2 −2.6

94, 000 9.75 +9.1 +1.8 −0.9

54, 000 5.6 ! −11.2 (3.4) −15.9 (−2.4)

the wall stress τw inside the vortex cell is approximated using a standard correlation for a planar turbulent
boundary layer (see Schlichting [27]) and the shear stress in the mixing layer is modelled like in a planar
mixing layer as τs ∝ (uc − urot)2, where uc = 1.402ur is the inviscid wall velocity above the cusp, obtained
from the inviscid solution of the external oncoming flow. The rotational velocity for a given opening angle
φ then follows from the required balance between these stresses (2π − φ)τw = φτs.

In both test cases for Red = 132, 000 and the two higher opening angles φ = 40◦ and 60◦ at Red = 94, 000
the comparisons in Fig. 5 show good agreement between our cyclic-boundary-layer model, experiment, and
the analytic estimate. For φ = 20◦ at Red = 94, 000 the cyclic boundary layer model still agrees well with
the analytic estimate but the experimental value of urot is 9% lower. A smaller opening angle results in
slower rotation inside the cell, which in turn may lead to thickening of wall boundary layer or to an increase
in the relative importance of the 3D effects, thus explaining the observed deviation.

In the case of the lowest Reynolds number of Red = 54, 000 experiments and the analytic estimate are in
good agreement with each other, but the results of the cyclic layer model are about 13% lower, despite the
obviously good agreement with the cusp profile demonstrated for the 40◦-case in Fig. 5(e). The assumption
of a fully turbulent oncoming boundary layer on the other hand would lead to rotational velocities matching
the results of the theory quite accurately (see triangles in Fig. 5(f)), although the cusp profile deviates
noticeably from the measured profile as demonstrated for the 40◦-case in Fig. 5(e). Note that although the
laminar cusp profile in Fig. 5(e) exhibits higher velocities over the greater portion of the boundary layer, the
resulting rotational speed is noticeably lower than for its turbulent counterpart. This is due to the structure
of the turbulence models (17) and (14). In determining the value of the turbulent viscosity they rely on the
boundary layer thickness, which is more than twice as large in the turbulent case, as demonstrated by the
comparison with the corresponding inviscid velocity profile for the 40◦-case in Fig. 5(e). Large turbulent
viscosity increases the calculated friction in the mixing layer thus driving a stronger rotation inside.

Table 1 summarises the results of the comparisons. It shows that the model works only moderately with
errors in the order of 10% − 15% for vortex cells with short mixing layers, low Reynolds numbers and
dominantly laminar or even relaminarised oncoming boundary layers, but very well with errors of only
2% for high Reynolds numbers, long mixing layers and turbulent oncoming boundary layers. It follows
that the sophisticated transitional character of the oncoming boundary layer at the cusp, which is under a
relaminarising influence due to the outer flow acceleration but merges with a turbulent boundary layer from
within the cell, is clearly beyond the scope of the algebraic turbulence models employed here, which implicitly
assume a turbulent flow field in equilibrium. For dominantly turbulent flow fields, however, the model delivers
convincing results. Finally, Fig. 6 shows the good agreement between the experimental measurements of the
velocity profile and the prediction of the model obtained by composite expansion (11) for the Red = 94, 000,
φ = 40◦ case. Note however that the experimental points plotted were measured on the symmetry plane of
the experimental rig. While the velocity profile in the core region is approximately spanwise-independent,
in the boundary layer the velocity distribution shows significant three-dimensional effects.

8. Concluding remarks

According to our results, the fastest and the most accurate method of predicting the rotation speed inside
the circular vortex cell similar to that in our experimental rig is the simple estimate of Savelsberg & Castro
[29]. However, it is not clear how this estimate can be extended to non-circular cells where the pressure
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gradient is not zero. The cyclic layer model we proposed takes the pressure gradient into account quite
naturally; however, we have only tested it for the case of zero pressure gradient. It appears to work well for
higher Reynolds numbers but, perhaps not surprisingly, is less satisfactory when laminar-turbulent transition
is involved. Unlike the model proposed here the estimate of [29] gives no means of determining the probability
of any secondary separation – i.e. separation of the boundary layer on the wall of the cell – or the probability
of a possible breakdown of the mixing layer under the action of an unfavourable pressure gradient. These
effects, however, are likely to be the limiting factors in any attempt to optimise the performance of a vortex
cell.

Importantly, the calculations with the present model are relatively fast. An alternative method would be
to solve the Reynolds-averaged Navier-Stokes equations (RANS). We did compare our calculation times with
calculations of a flow past a vortex cell made by our project partners at the Italian Aerospace Research Center
(CIRA) using the commercial CFD package Fluent, and our calculations are about two orders of magnitude
faster. However, such a comparison does not take into account our use of an approximate analytic solution to
(1). Therefore, one should expect that for a generic vortex cell shape the relative speed of calculations will be
determined by the relative speed of solving (1) as compared to RANS. Naturally, (1) is much simpler to solve.
While the method proposed in the present paper is faster, implementing it numerically is more complicated
than using one of the many available RANS solvers but is particularly beneficial in situations when a large
number of calculations is required, as, for example, in procedures of vortex cell shape optimisation.

Concerning the use of RANS, the results of the present study provide guidance on the selection of the
turbulence model. Our results confirm that at least for vortex cells of near-circular shape it is sufficient to
model the turbulent viscosity properly only in thin layers, while away from these, including the within vortex
core, it is sufficient for the turbulence model to ensure that the flow is effectively inviscid. The restriction
to near-circular cavities has to be made because if the geometry allows then solid body rotation in the core
will be the solution for any turbulence model, and it is the solid body rotation which is given also by (1).
Now, (1) is valid for high-Reynolds-number asymptotics of steady laminar flows, which implies small and
constant viscosity. Turbulent viscosity inside the core of the vortex cell may also be small but it is likely
to be not constant: therefore, the Prandtl-Batchelor theorem justifying the right-hand side of (1) does not
apply. However, from the practical viewpoint this restriction may be unimportant, since if the cell shape is
far from circular there will be significant unfavourable pressure gradients, which are likely to cause secondary
separation.

It can be concluded that the results obtained reveal certain physical features of flows in vortex cells and
indicate that the proposed method of calculating such flows is useful.
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