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The process of likelihood maximization can be found in many different areas of
computational modelling. However, the construction of such models via likelihood
maximization requires the solution of a difficult multi-modal optimization problem
involving an expensive O(n3) factorization. The optimization techniques used to
solve this problem may require many such factorizations and can result in a sig-
nificant bottle-neck. This article derives an adjoint formulation of the likelihood
employed in the construction of a kriging model via reverse algorithmic differen-
tiation. This adjoint is found to calculate the likelihood and all of its derivatives
more efficiently than the standard analytical method and can therefore be utilised
within a simple local search or within a hybrid global optimization to accelerate
convergence and therefore reduce the cost of the likelihood optimization.
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1. Introduction

Kriging was first used by geologists to estimate mineral concentrations within a par-
ticular region, (Krige 1951), and has since been adapted for use in the creation of
surrogate models of deterministic computational experiments; a process pioneered
by Sacks et al. (1989). Of the numerous types of response surface models, from
simple Shepard weighting to radial basis functions, kriging is perhaps one of the
most effective due to its ability to model complicated responses through interpo-
lation or regression whilst also providing an error estimate of the predictor. Since
its initial application to surrogate modelling, kriging has been applied to a variety
of aerodynamic (Hoyle et al. 2006; Forrester et al. 2006a), structural (Huang et al.
2006; Sakata et al. 2003) and multiobjective (Keane 2006; D’Angelo et al. 2005)
problems.

A typical response surface model optimization begins with an initial sampling
of the design space using an appropriate sampling plan. The objective function
at these points is then evaluated, and a response surface is fitted to the points.
The response surface, in this case constructed using a krig, models the response of
the objective to changes in the design variables. This model can then be searched
using a global optimizer, such as a genetic algorithm, in an attempt to minimize
the model’s prediction of the true objective function or to maximize the expected
improvement (Jones 2001) in the objective function. The points returned by the
global optimizer can then have their true objective functions calculated and can be
used to enhance the response surface in these regions of interest.

A typical surrogate modelling technique requires relatively few evaluations of
the true objective function compared to other global optimization techniques such
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as genetic algorithms or simulated annealing. The application of direct global tech-
niques to the optimization of problems where the objective function is calculated
using an expensive high fidelity simulation makes them impractical, even given the
recent proliferation of parallel computing. The interested reader can find compre-
hensive reviews of the state of the art in the field of surrogate modelling in Simpson
at al. (2001), Queipo et al. (2005) and Wang & Shan (2007).

While kriging response surfaces are extremely effective (Jones 2001; Jin et al.
2001) they require the selection of an appropriate set of hyperparameters in order
to accurately represent the design space (Martin & Simpson 2005). The selection
of these parameters through maximum likelihood estimation requires the use of
a global optimization algorithm to provide reliable results. As demonstrated by
Hollingsworth et al. (2003), the maximization of the likelihood is a highly multi-
modal problem, and therefore cannot be solved reliably with a local optimization
technique.

Unfortunately the cost of this optimization can be high when the kriging model
includes even a moderate number of data points. The subsequent tuning overhead
can form a considerable bottle-neck in a typical optimization and may result in
a substantial increase in total optimization time, as demonstrated by Toal et al.
(2008a).

Previous research has approached this issue in a number of different ways. Park
& Baek (2001) took advantage of the smoothness and the known equation of the
likelihood to derive an analytical gradient. This gradient was then utilised in a
local quasi-Newton optimization of the likelihood in order to optimize the kriging
hyperparameters. Zhang & Leithead (2005) took this process a step further by
deriving the analytical Hessian of the likelihood and used this in conjunction with
a trust region search to find the optimum hyperparameters. One of the most recent
techniques for the reduction of tuning cost is that of Leithead & Zhang (2007) which
reduces the cost of approximate likelihoods and derivatives to an O(n2) operation
through the utilisation of an approximation to the inverse of the covariance matrix
via the BFGS (Broyden 1970) updating formula.

Each of the methods discussed is a local optimization of the likelihood and as
such will only locate the global optimum if initialized in the region of that optimum
or if an appropriate restart procedure is adopted. It should be noted however, that
there are cases when such a local optimizer can be very effective in finding the best
set of hyperparameters. Zhang & Leithead (2005) note that given a sufficiently large
dataset upon which to build the surrogate model the modality of the likelihood
space is greatly reduced. Such densely populated design spaces are however very
rare in engineering design optimizations, especially when each objective function
evaluation involves a costly high fidelity simulation, but may be common place in
the field of Gaussian process regression.

Whereas the methods of Park & Baek (2001) and Zhang & Leithead (2005)
exploit an exact analytical gradient of the likelihood the approximation to the co-
variance matrix of Leithead & Zhang (2007) still requires an initial exact inverse of
the correlation matrix and may require additional exact inversions as the optimiza-
tion progresses due to the “corruption” of the approximate inverse. When used in
conjunction with an engineering optimization problem, where there are few sample
points and the likelihood is multi-modal in nature, the computational effort spent
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in carrying out the initial starting inversion and subsequent restart inversions, may
be better spent in performing a global exploration of the likelihood.

To ensure the selection of an optimal set of hyperparameters when the sampling
of the design space is sparse a global optimization of the likelihood is required. As
mentioned previously such optimization algorithms can require a significant number
of function evaluations to locate the global optimum accurately, but their perfor-
mance can be considerably enhanced when hybridized with a local optimization
strategy. Global optimizers tend to concentrate on locating the region of the global
optimum but can fail to exploit this effectively and hence are slow to converge to a
final solution. Genetic algorithms (Gudla & Ganguli 2005), particle swarms (Guo
et al. 2006) and simulated annealing have all been combined with various local
optimizers to aid their convergence.

An adjoint model computes the sensitivities of an output with respect to the
output’s intermediate variables. Such a model can compute the partial derivatives
of outputs with respect to thousands of inputs at a cost of no more than a few
function evaluations. The reverse mode of algorithmic differentiation can be utilised
to generate such adjoint models.

The following paper describes the formulation of an adjoint of the likelihood
which calculates the derivatives more efficiently than the traditional analytical
method of Park & Baek (2001). It is proposed that such an adjoint could be used
in local searches of the likelihood or within the framework of a hybridized global
optimization. The paper commences by discussing the importance of an efficient
hyperparameter tuning process in the context of design optimization. The analyt-
ical gradient of the likelihood, which could be considered as a direct competitor
to the adjoint method, is then derived. For those unfamiliar with the process of
algorithmic differentiation, a simple example is used to demonstrate the technique.
The same processes are then applied to the adjoint of the likelihood and the pa-
per concludes with a comparison of the computational efficiency of the adjoint and
analytical methods.

2. Kriging and the Importance of Efficient Hyperparameter
Tuning

Before considering the adjoint of the likelihood it is necessary to first consider the
basic process of kriging and the likelihood function itself as well as the importance
of an efficient method of optimising the likelihood.

To demonstrate the basic process of kriging we consider the optimization of an
objective function, y, which is dependant on the vector of variables, x. In general
the objective function values y(xi) and y(xj), which depend on d variables will be
similar if the distance between xi and xj is small. This can be modelled statistically
by considering the correlation between two points as,

Rij = exp

(
−

d∑

l=1

10θl‖xil
− xjl

‖pl

)
, (2.1)

where θl and pl are known as the hyperparameters and determine the rate of corre-
lation decrease and the degree of smoothness in the lth direction, respectively and
xil

denotes the lth element of the vector xi. These hyperparameters, including a
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regression constant if required (Forrester et al. 2006b), are chosen to maximize the
likelihood on the observed dataset y, where y is a vector of n objective function
values found by sampling the problem space.

The concentrated likelihood function (Jones 2001),

φ = −n

2
ln(σ̂2)− 1

2
ln(|R|), (2.2)

is evaluated by first calculating the mean,

µ̂ =
1T R−1y

1T R−11
(2.3)

and then the variance,

σ̂2 =
1
n

(y − 1µ̂)T
R−1 (y − 1µ̂) , (2.4)

where 1 is an n×1 vector of ones and R is the correlation matrix, the i, jth elements
of which are calculated using equation (2.1).

The concentrated likelihood is dependent only on the symmetric matrix R and
therefore only upon the hyperparameters which are then optimized to maximize the
likelihood. This optimization is often referred to as hyperparameter tuning. With
the hyperparameters defined, the surrogate model can be used to predict regions
which either minimize the model’s prediction of the objective function or maximize
its expected improvement (Jones 2001). For more information on the intricacies of
kriging the interested reader can consult either Jones et al. (1998) or Forrester et
al (2008).

It can be observed from the above equations that the calculation of the con-
centrated likelihood requires the factorization of the correlation matrix, R. If using
the Cholesky factorization this can be of order O(n3) and, therefore, extremely ex-
pensive if the correlation matrix is large. One of the reasons kriging is not typically
adopted for design problems with more than 20 variables is the cost of the global
optimization necessary to maximize the likelihood. When the number of variables
in the problem is large, a large number of sample points are needed to produce an
adequate response surface. Jones et al. (1998), for example, advocate the use of 10d
initial sample points. Jin et al. (2001) demonstrate that on some test functions,
kriging models constructed from 3d sample points can be reasonably accurate.

At high dimensions the number of initial design points can be large causing
each evaluation of the likelihood to be quite expensive. As the number of dimen-
sions increases so too does the number of hyperparameters requiring optimization
and therefore the length of the optimization. As a typical optimization progresses
this cost will only increase further as update points are added and the correla-
tion matrix increases in size. Coupling the increasing expense of a single likelihood
evaluation with the application of a global optimizer, such as a genetic algorithm,
which requires a large number of such evaluations, the total hyperparameter opti-
mization cost can quickly spiral out of control and may even approach that of the
high fidelity simulations used in the underlying design problem.

Figure 1 helps to demonstrate the cost which can be incurred in optimising the
likelihood by demonstrating the increase in time taken to make a single evaluation
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Figure 1. Demonstration of the real time cost of a single evaluation of the concentrated
likelihood as the number of sample points increases for an arbitrary 50 variable design
problem

as the number of sample points increases for an arbitrary 50 variable problem, the
Keane Bump Function taken from Keane & Nair (2005). Assume for example that
300 sample points are included in the initial sampling of the problem, based on this
plot a single evaluation of the likelihood will take approximately 1 second on a desk-
top computer. An optimization of the likelihood which carries out a total of 10,000
evaluations will therefore take approximately 2.8 hours. This represents a significant
bottle-neck in the optimization process as a series of these likelihood optimizations,
of increasing cost due to the addition of updates, are required throughout the course
of a typical kriging based optimization.

As well as the local hyperparameter optimization strategies mentioned previ-
ously (Park & Baek 2001; Zhang & Leithead 2005; Leithead & Zhang 2007), a
number of other strategies have been developed which approach the issue of the
cost of hyperparameter tuning from different directions. Initial investigations de-
termined that updating the hyperparameters used to define the krig is extremely
important as an optimization progresses. However, it was observed that by opti-
mising the hyperparameters after every other set of updates to the model the total
tuning cost could be halved with minimal effect on the efficiency of the optimization
(Toal et al. 2008a). Gano et al. (2006) utilised a trust region ratio as a measure of
how well a kriging approximation represents the true model. This metric was then
used to determine if a model’s hyperparameters required updating.

Recently, the authors also demonstrated that the byproduct of a reparameteri-
zation of the design problem in order to reduce the total number of variables was a
substantial reduction in hyperparameter tuning cost due to a reduction in the size
of the correlation matrix (Toal et al. 2008b). The strategies of Toal et al. (2008a,
2008b) , however, involved a substantial global optimization using a genetic al-
gorithm followed by a dynamic hill climber to tune the hyperparameters. In the
remainder of this paper we begin to move away from a pure global optimization
of the hyperparameters with terminal search towards a hybridized approach by
developing an efficient adjoint calculation of the likelihood for use within such a
scheme.
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3. Traditional Analytical Derivative Calculation

The derivation of the analytical gradients of the likelihood with respect to the hy-
perparameters θl or pl begins by first considering the derivative of the concentrated
likelihood, (equation 2.2),

∂φ

∂ψ
= − n

2σ̂2

∂σ̂2

∂ψ
− 1

2|R|
∂|R|
∂ψ

, (3.1)

where ψ represents any of the hyperparameters or indeed the regression constant,
λ. The derivative of the determinant of a matrix can be expressed in terms of the
derivative of the matrix, (Kubota 1994),

∂|R|
∂ψ

= |R|Tr
[
R−1 ∂R

∂ψ

]
. (3.2)

The derivative of the variance with respect to any hyperparameter can be expressed
as,

∂σ̂2

∂ψ
=

1
n

[
(y − 1µ̂)T ∂R−1

∂ψ
(y − 1µ̂)−

−
(
1

∂µ̂

∂ψ

)T

R−1 (y − 1µ̂)− (y − 1µ̂)T
R−1

(
1

∂µ̂

∂ψ

)]
. (3.3)

However the terms involving ∂µ̂
∂ψ are significantly smaller than the ∂R−1

∂ψ term, and
can therefore be neglected. Equation 3.3 can therefore be simplified considerably,
(Park & Baek 2001),

∂σ̂2

∂ψ
=

1
n

(y − 1µ̂)T ∂R−1

∂ψ
(y − 1µ̂) . (3.4)

The derivative of the inverse of the correlation matrix can be expressed in terms of
the derivative of the correlation matrix (Petersen & Pederson 2007),

∂R−1

∂ψ
= −R−1 ∂R

∂ψ
R−1. (3.5)

Substituting equation 3.5 into equation 3.4 and then into equation 3.1 along with
equation 3.2 produces the following expression for the derivative of the concentrated
likelihood function with respect to any hyperparameter (Park & Baek 2001),

∂φ

∂ψ
=

1
2σ̂2

[
(y − 1µ̂)T

R−1 ∂R

∂ψ
R−1 (y − 1µ̂)

]
− 1

2
Tr

[
R−1 ∂R

∂ψ

]
. (3.6)

The derivative of the correlation matrix, R with respect to any hyperparameter
is therefore the only remaining unknown and this can be expressed in terms of
the derivative of every value within the matrix. Given that the i, jth value of the
correlation matrix is given by equation 2.1, the partial derivative with respect to
the lth, θ hyperparameter is,

∂Ri,j

∂θl
= −10θl ln 10 ||xil

− xjl
||plRi,j , (3.7)
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and the partial derivative with respect to the lth, p hyperparameter is,

∂Ri,j

∂pl
= −10θl ln ||xil

− xjl
|| ||xil

− xjl
||plRi,j . (3.8)

The derivatives of the concentrated likelihood function can therefore be calculated
using equation 3.6 once the matrices of derivatives of the correlation matrix with
respect to each hyperparameter have been defined.

In summary, the partial derivatives of the likelihood can be calculated by first
calculating the correlation matrix along with the 2d matrices of first derivatives
of the correlation matrix, ∂R

∂ψ . The mean, variance and inverse of the correlation
matrix can be calculated as normal and then combined to calculate the likelihood as
per equation 2.2 and the 2d partial derivatives as per equation 3.6. The calculation
of all of the partial derivatives using this method therefore requires the storage
of the 2d matrices of first derivatives as well as a number of additional matrix
multiplications.

The inclusion of a regression constant λ in the correlation matrix (Forrester et al.
2006b) results in a kriging surface which no longer interpolates through the sample
points. Adding the regression constant 10λ to the diagonal of the correlation matrix
results in the sample points no longer being correlated with themselves. Like the
other hyperparameters, θ and p, the regression constant is optimized via maximising
the likelihood. Therefore it is important to consider the calculation of the derivative
of the likelihood with respect to this constant. As with both θ and p the derivative
first requires the calculation of the derivative of the correlation matrix with respect
to the hyperparameter of interest. As only the diagonal of the correlation matrix
is dependent on the regression constant, the partial derivative of the correlation
matrix with respect to the regression constant is itself diagonal in nature,

∂Rii

∂λ
= 10λ ln 10. (3.9)

Using this derivative in conjunction with equation 3.6 will therefore result in the
partial derivative of the concentrated likelihood with respect to the regression con-
stant.

4. Introduction to Algorithmic Differentiation

Algorithmic differentiation approaches the calculation of derivatives in a slightly
different manner to that of traditional analytical differentiation. Here the original
computer algorithm used in the calculation of a function is differentiated line by
line through application of the chain rule. There are a number of programs which
perform this operation automatically given a program’s source code, this is termed
automatic differentiation. However, in some circumstances this can lead to an inef-
ficient program as the automatic differentiation process may fail to take account of
the structure of the original problem. Mader et al. (2008) for example found that
the efficiency of their automatically differentiated computational fluid dynamics
solver could be drastically improved after careful consideration of the structure of
the underlying problem. Automatically differentiating the entire residual routine
resulted in a series of unnecessary computations as the differentiation tool took no
account of the sparsity of the flux Jacobian.
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There are two modes of algorithmic differentiation, the forward and reverse, or
adjoint, mode. Forward mode is akin to traditional differentiation with the differ-
entiated program run once for every input. This produces a partial derivative of
every output with respect to a single input each time the program is run. Reverse
mode however runs the differentiated program once for every output and therefore
obtains all of the partial derivatives of a single output with respect to all inputs for
a single run of the differentiated program. The choice of method therefore depends
on the nature of the problem. Simplistically, if there are more outputs than inputs it
is more efficient to use the forward mode, but if there are more inputs than outputs
then it is more efficient to use the reverse mode.

The assumption of a pass through the forward differentiated code for every in-
put and a reverse pass for every output is a rather simplistic one. Some automatic
differentiation tools can facilitate a vector forward mode which can evaluate multi-
ple partial derivatives in a single pass. Likewise some automatic differentiation tools
can facilitate a vector reverse mode whereby the derivatives of multiple outputs can
be calculated in a single pass. Both methods save on computation time but incur a
memory overhead.

To demonstrate the basic process of algorithmic differentiation we consider the
simple analytical function y which is dependent on the variables x1 and x2,

y = sin(x1x2) +
(

x1

x2

)2

. (4.1)

Although the partial derivatives of this function can be easily calculated, the sim-
plicity of this function allows the basics of algorithmic differentiation to be demon-
strated.

The process commences with the definition of the algorithm to calculate the
function y. Each line of this algorithm, shown in table 1 using the notation of
Griewank (2000), carries out a single operation, i.e. an addition, multiplication,
division or trigonometric operation, and terminates in the calculation of y. In this
case we begin with the initialisation of the input variables x1 and x2 to v0 and v1

respectively, where vi refers to the ith intermediate variable calculated as the algo-
rithm progresses. The third line multiplies v0 and v1 to give v2 which is equivalent
to x1x2 in equation 4.1, the fourth line calculates x1

x2
, the fifth, sin(x1x2) and so

fourth until the function is calculated.
The forward mode of algorithmic differentiation, differentiates each line of this

original algorithm in order, resulting in a tangent, (a first derivative vector), of
the ith intermediate variable vi, denoted here by v̇i. For example, the third line of
the original algorithm calculated v2 = v0v1 the tangent of this line is therefore the
derivative of v2 with respect to v0 plus the derivative with respect to v1. Repeat-
ing the process through the entire algorithm results in an expression for ẏ which
is equivalent to the derivative of the original function with respect to an input,
providing appropriate seedings of ẋ1 and ẋ2 are defined. These seedings equate to
the derivative of each input variable with respect to the required derivative of the
overall algorithm. If, for example, the overall derivative of y with respect to x1 is
required then ẋ1 = ∂x1

∂x1
= 1 and ẋ2 = ∂x2

∂x1
= 0. One can observe from table 1 that

given these seedings, ẏ will indeed correspond to ∂y
∂x1

. The forward differentiation
of the original algorithm must therefore be run twice, with the seedings adjusted
accordingly, for each input variable.
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Table 1. A simple example of forward & reverse algorithmic differentiation

original algorithm forward differentiation reverse differentiation

v0 = x1 v̇0 = ẋ1 ȳ = 1

v1 = x2 v̇1 = ẋ2 v̄6 = ȳ

v2 = v0v1 v̇2 = v̇0v1 + v0v̇1 v̄5 = v̄6

v3 = v0
v1

v̇3 = v̇0
v1
− v̇1

v3
v1

v̄4 = v̄6

v4 = sin(v2) v̇4 = v̇2 cos(v2) v̄3 = 2v̄5v3

v5 = v2
3 v̇5 = 2v3v̇3 v̄2 = v̄4 cos(v2)

v6 = v4 + v5 v̇6 = v̇4 + v̇5 v̄1 = v̄2v0 − v̄3
v3
v1

y = v6 ẏ = v̇6 v̄0 = v̄2v1 + v̄3
v1

The reverse, or adjoint mode, proceeds backwards through the original algorithm
commencing with the outputs and ending with the inputs. Each line of the reverse
algorithm represents the adjoint of the variable defined by the ith line in the original
algorithm, with v̄i here denoting the adjoint of the ith variable of the original
algorithm. The adjoint of the ith intermediate variable is equivalent to the sum of
the partial derivatives of those intermediate variables which are dependant on vi,
multiplied by the corresponding adjoint of the dependant intermediate variables.
The intermediate variable v6, for example, affects only y hence the adjoint of v6 is,

v̄6 = ȳ
∂y

∂v6
= ȳ. (4.2)

Likewise, v5 affects only v6 hence v̄5 = v̄6. Things are complicated somewhat when
an intermediate variable in the original algorithm affects a number of the following
intermediate variables. Consider, for example, the adjoint of v1; as v1 affects both
v2 and v3 the adjoint of v1 is the sum of the partial derivatives of v2 and v3 with
respect to v1 multiplied by their respective adjoints,

v̄1 = v̄2
∂v2

∂v1
+ v̄3

∂v3

∂v1
= v̄2v0 − v̄3

v3

v1
. (4.3)

When this reverse differentiation process is completed and the algorithm run, the
resulting values of the adjoints, v̄0 and v̄1, are equivalent to the partial derivatives,
∂y
∂x1

and ∂y
∂x2

. Unlike the forward mode the reverse mode, presented in table 1,
requires only a single run to calculate all of the partial derivatives of y given the
initial seeding of ȳ, which as there is only one output, equals one. If the original
algorithm contained a number of outputs then the reverse mode would be run
once for each output with the seeding adjusted in a manner similar to that for the
forward mode. A single pass of the reverse mode may, however, be possible if a
vector reverse mode is utilised.

Even though the above example is very simple, it demonstrates the performance
improvements offered when partial derivatives of a single output, as is the case in
likelihood maximization, are required. Exactly the same techniques can be applied
to any computer algorithm though we now apply them to the calculation of the
partial derivatives of the likelihood.
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5. Reverse Algorithmic Differentiation of the Likelihood

The calculation of the concentrated likelihood, equation 2.2, consists of a single
output which is dependent on d pairs of hyperparameters θ and p and a single re-
gression constant, λ, if included. Reverse algorithmic differentiation is therefore the
most efficient method to apply to this particular problem, and it is the application
of this technique which we now consider.

The algorithm to calculate the partial derivatives of the concentrated likelihood
via reverse algorithmic differentiation begins with the calculation of the likelihood
as normal. This is then followed by a reverse differentiation of the original algorithm
which, using information stored during the calculation of the likelihood, calculates
all of the partial derivatives.

The calculation of the likelihood begins with the construction of the correla-
tion matrix R. This symmetrical matrix is then decomposed using the Cholesky
factorization into a lower triangular matrix L where,

LLT = R. (5.1)

This matrix can then be used to calculate the mean, µ̂ and variance, σ̂2 using
equations 2.3 and 2.4 respectively in conjunction with forward and backward sub-
stitution. The variance, for example, is calculated through the forward substitution,

T1 = L−1 (y − 1µ̂) , (5.2)

which is followed by the back substitution,

T2 = (LT )−1T1, (5.3)

and finally the vector multiplication,

σ̂2 =
1
n

(y − 1µ̂)T
T2. (5.4)

The vectors T1 and T2 represent two temporary vectors which are necessary for the
subsequent calculation of the derivatives. The Cholesky factorization is also used
to calculate the natural log of the determinant via,

1
2

ln(|R|) =
∑

i

ln Lii. (5.5)

With the variance and the log of the determinant known, the concentrated likelihood
can be easily calculated using equation 2.2.

The reverse mode works backwards beginning from an initial seeding of the
adjoint of the likelihood, φ̄ = 1. From this starting point the seeding for the adjoint
T̄2 can be calculated to be,

T̄2 = − (y − 1µ̂)
2σ̂2

, (5.6)

where once again ∂µ̂
∂ψ ≈ 0. This seeding can then be used to calculate T̄1 and L̄1 using

the reversely differentiated back substitution algorithm, where L̄1 is the adjoint of
the upper triangular matrix LT used in the back substitution, equation 5.3. The
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adjoint, L̄2, of the lower triangular matrix L used in the forward substitution of
equation 5.2 is then calculated using T̄1 and the reversely differentiated forward
substitution algorithm. Smith (1995) demonstrated that the adjoint of the log of
the determinant of a matrix is equal to the negative of the reciprocal of the diagonal
of the lower triangular matrix L resulting from the Cholesky factorization. The
component of the total adjoint due to the log of the determinant, L̄3, is therefore,

L̄3ii = − 1
Lii

. (5.7)

Hence, the total adjoint for use in Smith’s reversely differentiated Cholesky factor-
ization is,

L̄ = L̄T
1 + L̄2 + L̄3. (5.8)

When this is then used in conjunction with the original matrix L in Smiths reverse
Cholesky factorisation, the lower triangular matrix R̄ is calculated. This can then be
used along with information stored during the original calculation of the correlation
matrix to calculate all of the partial derivatives. The derivative of the likelihood
with respect to the lth, θ hyperparameter is therefore,

∂φ

∂θl
= ln 10

∑

ij

−10θl ||xil
− xjl

||plRijR̄ij (5.9)

and the derivative with respect to the lth, p hyperparameter is

∂φ

∂pl
=

∑

ij

−10θl ||xil
− xjl

||pl ln ||xil
− xjl

||RijR̄ij . (5.10)

The derivative of the likelihood with respect to a regression constant λ can be easily
calculated from R̄,

∂φ

∂λ
= 10λ ln 10

∑

i

R̄ii, (5.11)

assuming that 10λ has been added to the diagonal of the correlation matrix. The
algorithms for the Cholesky factorization, forward and backward substitution and
their respective reversely differentiated algorithms are presented in the appendix of
this paper for the interested reader.

Although not an issue in the above formulation, due to the application of the re-
gression term in the construction of the correlation matrix, this matrix may become
ill-conditioned when regression is neglected. In such a case the adjoint formulation
would not hold, but neither would the initial pass through the algorithm to cal-
culate the likelihood. A small constant regression term could be employed in the
construction of the correlation matrix to help prevent ill-conditioning and would
have very little impact on the quality of the final kriging model. When a model is
constructed through a series of computational experiments exhibiting some form of
noise, regression is a necessity and ill-conditioning becomes less of an issue.

6. Computational Efficiency of Derivative Calculations

Having described in detail the procedure for calculating the partial derivatives of
the likelihood via both the analytical and the reverse algorithmic differentiation
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12 Toal, Forrester, Bressloff, Keane & Holden

methods, one must now consider each method’s computational efficiency. The an-
alytical method requires the calculation of equation 3.6 for each hyperparameter
while the reverse method requires only a single reverse pass of the forward sub-
stitution, the backward substitution and the Cholesky factorization to obtain the
matrix R̄ which can be used to calculate the partial derivatives via equations 5.9,
5.10 and 5.11. The question is therefore, by how much does this reduction in the
number of calculations improve the performance of the derivative calculation.
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Figure 2. A comparison of the relative costs of calculating all of the partial derivatives of
the likelihood via reverse algorithmic differentiation and the analytical formulation

We now consider the relative cost of calculating the likelihood and all derivatives
to the cost of calculating only the likelihood. Figure 2 shows the change in this
relative cost as the number of dimensions of the underlying problem, to which a
kriging surface is fitted, increases. It must be noted that here the number of sample
points remains a constant as the number of dimensions increases, 50 points in this
case, and that the relative cost includes the calculation of all of the derivatives with
respect to θ and p for every dimension as well as the cost of calculating the likelihood
itself. The cost obtained for 20 variables therefore equates to the calculation of 40
partial derivatives and the likelihood. By retaining a constant n, Figure 2 shows the
effect of purely an increase in problem dimensionality. All of the presented methods
were coded and analysed in Matlab.

A total of 100 different Latin hypercube sampling plans of the Keane Bump
Function, (Keane & Nair 2005), were calculated and stored. Each evaluation of the
likelihood and corresponding partial derivatives in Figure 2 were therefore made
from a common data set. The likelihood and derivatives of a single set of hyperpa-
rameters were evaluated for each of these sample plans. The time for each of these
calculations was then recorded and compared to the time taken to calculate of only
the likelihood, the resulting relative times were then averaged.

The results presented in Figure 2 demonstrate a clear performance advantage
when all of the partial derivatives are calculated via the reverse method, with the
cost remaining just over half that of the analytical method. The reverse method
can also be observed to be less sensitive to an increase in dimensionality with the
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relative cost of the reverse method increasing at a slower rate than the analytical
method for an increase from five to 50 dimensions.

These differences in cost can be explained by analysing the way in which the
derivatives are calculated. Consider first the analytical method. In this case the fi-
nal calculation of a derivative, equation 3.6, requires one additional matrix-matrix
multiplication in the calculation of the derivative of the determinant, and three
additional matrix-vector multiplications and a vector-vector multiplication in the
calculation of the derivative of the variance. Calculating the partial derivative of the
likelihood with respect to all of the hyperparameters when fitting a krig to a d di-
mensional problem therefore requires 2d additional matrix-matrix multiplications,
6d additional matrix-vector multiplications and 2d additional vector-vector multi-
plications. Including the regression constant increases the expense of calculating all
of the derivatives slightly but the cost of calculating this derivative is smaller than
for the other hyperparameters due to the sparse nature of the ∂R

∂λ matrix which
simplifies the calculations in equation 3.6.

The reverse mode however, requires a single reverse pass of the back substitution
which is followed by a reverse pass of the forward substitution and then a reverse
pass of the Cholesky factorization. Each of these calculations are performed only
once and are therefore independent of the number of dimensions in the underlying
problem. Only the final step in the derivative calculation, equations 5.9 and 5.10,
are dependent on the number of dimensions in the underlying problem, with d
calculations of each required.

These final calculations are simplified somewhat by the fact that R̄ is lower
triangular and that the elemental multiplication of the correlation matrix R with R̄
is common to all calculations and can therefore be carried out only once. These final
calculations do however require d lower triangular matrices of −10θl ||xil

− xjl
||pl

and d matrices of ||xil
− xjl

|| to be stored during the initial likelihood calculation.
The calculation of a derivative with respect to p is slightly more expensive than
calculating a derivative with respect to θ as the natural log of ||xil

−xjl
|| is required.
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Figure 3. A comparison of effect of sampling density on the relative costs of calculating
all of the partial derivatives of the likelihood via reverse algorithmic differentiation and
the analytical formulation
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14 Toal, Forrester, Bressloff, Keane & Holden

Figure 3 demonstrates how the relative cost of calculating the likelihood and all
of the partial derivatives changes as the sampling density of the underlying problem
alters. Once again the Keane Bump function is sampled but this time the number of
sample points is adjusted according to the number of dimensions in the underlying
problem. Sampling densities of 2d, 5d and 10d are all employed. An underlying
problem with 25 dimensions will therefore have either 50, 125 or 250 sample points.

The results of Figure 3 demonstrate the adjoint method’s relative resistance
to an increase in sampling density. The relative cost of the analytical method for
example increases by 24.7% when the sample density of the 50 variable problem
increases from 2d to 10d whereas the relative cost of the adjoint only increases by
9.3%. These results can be explained by once again analysing the way in which the
derivatives are calculated. The number of sample points directly influences the size
of the kriging correlation matrix and hence the size of any matrices or vectors used
in the subsequent calculations. More importantly this directly affects the cost of the
additional matrix-matrix, matrix-vector and vector-vector multiplications required
to calculate the likelihood derivatives. As the number of sample points increases so
too does the cost of these additional calculations. The problem is compounded at
higher dimensions where not only are there more of these calculations, but their
cost increases as more sample points are required to produce an accurate response
surface. This can be observed in Figure 3 in the divergence of the relative costs of
the analytical method as the number of dimensions increases.

The calculations carried out by the adjoint method are also affected by the
number of sample points and hence size of the correlation matrix. The cost of
the reverse forward and backward substitutions and the reverse Cholesky are all
dependent on the number of sample points, however unlike the analytical method,
these are only carried out once no matter the number of dimensions. Likewise
the cost of elemental multiplication of the correlation matrix R with the lower
triangular matrix, R̄, is dependent on the number of sample points but this is again
only carried out once. The calculation of equations 5.9 and 5.10 are dependent on
both the number of sample points and the number of dimensions. However, due to
the lower triangular nature of the previous elemental multiplication the impact of
the number of sample points is reduced somewhat. Combining all of these features
produces a method of calculating the partial derivatives of the likelihood which is
both more efficient than the analytical method and less prone to large increases in
relative cost as sampling density increases.

Least squares fitting a quadratic polynomial to the relative costs of the adjoint
method, results in an expression for the relative cost with an r2 correlation of 0.993,

(−1.43d2 − 2.37s2 + 170d + 237s + 14900)× 10−4, (6.1)

where s denotes the sampling density. Fitting a polynomial to the relative costs of
the analytical method results in,

(−0.9d2 + 13.7s2 + 36.6ds + 121d− 823s + 32350)× 10−4, (6.2)

giving an r2 correlation of 0.997. The equations of these polynomials reflect the
more extensive cross coupling between the number of sample points and the dimen-
sionality of the underlying problem when employing the analytical method. Given
a fixed dimensionality the expression for the cost of analytical method also reflects
the method’s sensitivity to increasing sampling size.
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Table 2. A comparison of the RMS error in the gradients calculated via reverse
differentiation and finite differencing to that of the traditional analytical method

No. of Variables Reverse Differentiation Finite Differencing

2 4.41× 10−13 2.17× 10−3

5 3.80× 10−13 4.95× 10−5

10 6.71× 10−13 2.00× 10−5

15 2.16× 10−13 3.42× 10−5

25 1.14× 10−13 3.94× 10−6

The analytical derivative of the likelihood, equation 3.6, assumes a simplified
formulation of the derivative of the variance, where the terms due to ∂µ̂

∂ψ are ne-

glected due to the difference in their magnitude relative to the ∂R−1

∂ψ term. The
adjoint formulation presented above also employs this assumption, hence the ad-
joint of the mean, µ̂, and it’s subsequent effect on the initial seeding of the adjoint
of the reversely differentiated Cholesky factorisation, L̄, is not calculated. An au-
tomatic differentiation of the likelihood however, may not take into account the
relative insignificance of this term and calculate the adjoint of the mean. These ad-
ditional calculations may result in a less efficient algorithm than the one presented
above.

Table 2 provides an indication of the numerical accuracy of the gradients ob-
tained via the adjoint method relative to those obtained via the analytical gradient
of equation 3.6. Using the test problem of Toal et al. (2008a), a series of DOEs of
increasing complexity were created for the purposes of likelihood calculation. The
partial derivatives of the likelihood with respect to each of the hyperparameters
were then calculated for 50 sets of kriging hyperparameters for each method and
compared to those resulting from the analytical method. Table 2 demonstrates such
a negligible difference in the magnitude of the results that one could consider the
gradients calculated to be almost identical.
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Figure 4. Algorithmic differentiation and the analytical methods compared to finite
differencing and forward algorithmic differentiation
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The relative cost of calculating the partial derivatives via the additional meth-
ods of finite differencing and a forward algorithmic differentiation are presented in
Figure 4. The forward mode results were obtained via a manual forward differen-
tiation of the likelihood calculation. The forward differentiation of the Cholesky
factorisation presented in Smith (1995) was employed along with a manually de-
rived forward differentiation of the forward and backward substitutions employed
in the calculation of the variance. As with the reverse and analytical formulations,
the forward mode takes advantage of the reduction in cost associated with the re-
dundancy of the calculation of µ̇. Although the pseudo code of the forward mode
is not considered within this paper, this figure serves to reinforce the importance
of selecting the appropriate method of algorithmic differentiation for a particular
problem.

As one can observe, compared to both the analytical and reverse methods, the
forward method is more sensitive to an increase in problem dimensionality. Consid-
ering that the forward mode requires a pass through the differentiated algorithm
for every hyperparameter it is therefore unsurprising that the cost of the derivative
calculation becomes an issue. In this case, finite differencing is the most expensive
method of calculating the derivatives, requiring two additional full likelihood cal-
culations for every additional variable in the predictive surrogate. Unlike the other
methods considered, finite differencing will not produce an exact derivative but
rather an approximation to it which is dependent on the step length used, as shown
in table 2.

The above results indicate that the reverse algorithmic differentiation of the
likelihood is the most efficient method of calculating exact partial derivatives. This
performance improvement allows for a faster gradient descent search of the likeli-
hood but will also reduce the effort per generation employed in the calculation of
gradients when a local search is hybridized with a global search.

7. Conclusions

An efficient calculation of the derivatives of the likelihood via an adjoint derived
using reverse algorithmic differentiation has been presented. This formulation has
been demonstrated to be more efficient than calculating gradients via the traditional
analytical method, calculating the likelihood and all of its derivatives for less than
twice the cost of a single likelihood evaluation even on a 50 variable problem.
The process has also been demonstrated to be less sensitive to an increase in the
dimensionality of the problem.

Although the reverse algorithmic differentiation process has been applied to a
traditional kriging Gaussian kernel, it could be easily extended to other kernels of
an alternate formulation or indeed to any other process where a likelihood maxi-
mization is required. A similar process could even be applied to the hyperparameter
optimization of gradient or Hessian enhanced surrogate models.

The adjoint of the likelihood could be employed in a simple local hyperparam-
eter optimization, which may be effective if the sampling density is large, though
such an optimization does not guarantee a global optimal set of hyperparameters
in a multi-modal likelihood space when the sampling density is small. However it
has been proposed that a hybrid global search of the likelihood utilising the adjoint
would accelerate hyperparameter optimization considerably. The efficient gradients
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provide by the adjoint can be employed in local improvements while global explo-
ration takes place simultaneously. As the derivatives are available more cheaply
via the adjoint, the over all tuning cost can be reduced or more extensive global
exploration can be carried out for an equivalent total cost.

The presented work was undertaken as part of an Airbus funded activity. The authors
would like to thank Dr. I. Voutchkov, Dr. A. Sóbester and Mr. G. Endicott of the University
of Southampton for their advice and input.

Appendix A.

Cholesky factorization, (Smith 1995)

function [L ] = Cholesky [R ]

% i n i t i a l i z e L as the lower t r i a n g l e o f R
for k = 1 :n

L(kk) =
√

L(kk)
for j = k+1:n

L(jk) = L(jk)
L(kk)

end
for j = k+1:n

for i = j :n
L(ij) = L(ij)−L(ik)L(jk)

end
end

end

Reverse Cholesky factorization, (Smith 1995)

function [ R̄ ] = Reverse Cholesky [L ,L̄ ]

R̄ = L̄
for k = n : 1

for j = k+1:n
for i = j :n

R̄(ik) = R̄(ik)− R̄(ij)L(jk)
R̄(jk) = R̄(jk)− R̄(ij)L(ik)

end
end
for j = k+1:n

R̄(jk) = R̄(jk)
L(kk)

R̄(kk) = R̄(kk)−L(jk)R̄(jk)
end
R̄(kk) = R̄(kk)

2L(kk)

end
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18 Toal, Forrester, Bressloff, Keane & Holden

Forward Substitution, (Press et al. 1988)

function [T1 ] = fwardsub [L ,a ]
% Where a = (y − 1µ̂)

T1(1) = a(1)
L(11)

for i = 2 :n
S = 0
for j = 1 : i− 1

S = S + L(ij)T1(j)
end
T1(i) = a(i)−S

L(ii)

end

Reverse Differentiation of Forward Substitution

function [ L̄2 ] = Reverse fwardsub [ T̄1 ,L ,T1 ]

for i = n : 2
ā(i) = T̄1(i)

L(ii)

L̄2(ii) = −ā(i)T1(i)
for j = 1 : i− 1

L̄2(ij) = −ā(i)T1(j)
T̄1(j) = T̄1(j)− ā(i)L(ij)

end
end
ā(1) = T̄1(1)

L(11)

L̄2(11) = −ā(1)T1(1)

Back Substitution, (Press et al. 1988)

function [T2 ] = bwardsub [LT ,T1 ]

T2(n) = T1(n)
LT (nn)

for i = n− 1 : 1
S = 0
for j = i + 1 :n

S = S + LT (ij)T2(j)
end
T2(i) = T1(i)−S

LT (ii)

end
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Reverse Differentiation of Back Substitution

function [ L̄1 , T̄1 ] = Reverse bwardsub [ T̄2 ,LT ,T2 ]

for i = 1 :n− 1
T̄1(i) = T̄2(i)

LT (ii)

L̄1(ii) = −T̄1(i)T2(i)
for j = i + 1 :n

L̄1(ij) = −T̄1(i)T2(j)
T̄2(j) = T̄2(j)− T̄1(i)LT (ij)

end
end
T̄1(n) = T̄2(n)

LT (nn)

L̄1(nn) = −T̄1(n)T2(n)
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Forrester, A. I., Sóbester, A. & Keane, A. J. 2008 Engineering Design via Surrogate Mod-
elling, John Wiley & Sons, Chichester. ISBN 978-0-470-06068-1.

Gano, S.E., Renaud, J.E., Martin, J.D. & Simpson, T.W. 2006 Update Strategies for
Kriging Models Used in Variable Fidelity Optimization. Structural and Mulitdisciplinary
optimization, 32, 287–298.

Griewank, A. 2000 Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation, Society for Industrial and Applied Mathematics

Gudla, P. & Ganguli, R. 2005 An Automated Hybrid Genetic-Conjugate Gradient Algo-
rithm for Multimodal Optimization Problems. Applied Mathematics and Computation
167, 1457–1474.

Guo, Q., Yu, H. & Xu, A. 2006 A Hybrid PSO-GD Based Intelligent Method for Machine
Diagnosis. Digital Signal Processing 16, 402–418.

Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., & Tucker, P.K. 2005
Surrogate-Based Analysis and Optimization. Progress in Aerospace Sciences 41, 1–28.

Hollingsworth, P., & Mavris, D. 2003 Gaussian Process Meta-Modelling: Comparison of
Gaussian Process Training Methods. AIAA 3rd Annual Aviation Technology, Integration
and Operations (ATIO)

Hoyle, N., Bressloff, N. W. & Keane, A. J. 2006 Design Optimization of a Two-Dimensional
Subsonic Engine Air Intake. AIAA Journal 44, 2672–2681. (doi:10.2514/1.16123).

Huang, D., Allen, T., Notz, W. & Miller, R. 2006 Sequential Kriging Optimization Using
Multiple-Fidelity Evaluations. Structural and Mulitdisciplinary optimization 32, 369–
382.

Article submitted to Royal Society



20 Toal, Forrester, Bressloff, Keane & Holden

Jin, R., Chen, W. & Simpson, T. 2001 Comparative Studies of Metamodelling Techniques
Under Multiple Modelling Criteria. Structural and Mulitdisciplinary optimization 23,
1–13.

Jones, D., Schonlau, A. & Welch, W. 1998 Efficient Global Optimization of Black-Box
Functions Journal of Global optimization 13, 455–492.

Jones, D. 2001 A Taxonomy of Global Optimization Methods Based on Response Surfaces.
Journal of Global optimization 21, 345–383.

Keane, A. J. & Nair, P.B. 2005 Computational Approaches for Aerospace Design, John
Wiley & Sons, Chichester. ISBN 978-0-470-85540-9.

Keane, A. J. 2006 Statistical Improvement Criteria for Use in Mulitobjective Design Op-
timization. AIAA Journal 44, 879–891.

Krige, D.G. 1951 A statistical Approach to Some Basic Mine Valuation Problems on the
Witwatersrand. Journal of the Chemical, Metallurgical and Mining Engineering Society
of South Africa 52, 119–139.

Kubota, K. 1994 Matrix Inversion Algorithms by Means of Automatic Differentiation.
Applied Mathematics Letters 7, 19–22.

Leithead, W. & Zhang, Y. 2007 O(N2)-Operation Approximation of Covariance Matrix
Inverse in Gaussian Process Regression Based on Quasi-Newton BFGS Method. Com-
munications in Statistics - Simulation and Computation 36, 367–380.

Mader, C., Martins, J., Alonso, J. & van der Weide, E. 2008 ADjoint: An Approach
for the Rapid Development of Discrete Adjoint Solvers. AIAA Journal 46, 863–873.
(doi:10.2514/1.29123).

Martin, J. & Simpson, T. 2005 Use of Kriging Models to Approximate Deterministic
Computer Models. AIAA Journal 43, 853–863.

Park, J. & Baek, J. 2001 Efficient Computation of Maximum Likelihood Estimators in a
Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences
27, 1–7.

Petersen, K. & Perderson, M. 2007 The Matrix Cookbook

Press, W., Flannery, B., Teukolsky, S. & Vetterling, W. 1988 Numerical Recipes: The Art
of Scientific Computing, Cambridge University Press

Sacks, J., Welch, W., Mitchell, T. & Wynn, H. 1989 Design and Analysis of Computer
Experiments. Statistical Science 4, 409–435.

Sakata, S., Ashida, F., & Zako, M. 2003 Structural Optimization Using Kriging Approxi-
mation. Computer Methods in Applied Mechanics and Engineering 192, 923–939.

Simpson, T.W., Peplinski, J.D., Koch, P.N., & Allen, J.K. 2001 Metamodels for Computer-
based Engineering Design: Survey and Recommendations. Engineering with Computers
17, 129–150.

Smith, S.P. 1995 Differentiation of the Cholesky Algorithm. Journal of Computational and
Graphical Statistics 4, 134–147.

Toal, D. J. J., Bressloff, N. W., & Keane, A. J. 2008a Kriging Hyperparameter Tuning
Strategies. AIAA Journal 46, 1240–1252. (doi:10.2514/1.34822).

Toal, D. J. J., Bressloff, N. W., & Keane, A. J. 2008b Geometric Filtration Using POD for
Aerodynamic Design Optimization. Collection of Technical Papers - 26th AIAA Applied
Aerodynamics Conference, Honolulu, HI, United States, 18th − 21st August

Wang, G.G., & Shan, S. 2007 Review of Metamodeling Techniques in Support of Engi-
neering Design Optimization. ASME Journal of Mechanical Design 129, 370–380.

Zhang, Y., & Leithead, W. 2005 Exploiting Hessian Matrix and Trust-Region Algorithm in
Hyperparameter Estimation of Gaussian Process. Applied Mathematics & Computation
171, 1264–1281.

Article submitted to Royal Society


