The University of Southampton
University of Southampton Institutional Repository

Microstructure variation effects on room temperature fatigue crack propagation and thresholds in Udimet 720Li Ni-base alloy

Microstructure variation effects on room temperature fatigue crack propagation and thresholds in Udimet 720Li Ni-base alloy
Microstructure variation effects on room temperature fatigue crack propagation and thresholds in Udimet 720Li Ni-base alloy
An assessment of the effects of microstructure on room temperature fatigue threshold and crack propagation behaviour has been carried out on microstructural variants of U720Li, i.e. as-received U720Li, U720Li-LG (large grain variant) and U720Li-LP (large intragranular coherent ?' variant). Fatigue tests were carried out at room temperature using a 20Hz sinusoidal cycling waveform at an R-ratio=0.1. U720Li-LG showed the highest threshold ?K (?Kth), whilst U720Li-LP showed the lowest ?Kth value. U720Li-LP also showed higher crack growth rates in the near-threshold regime and at high ?K (although at higher ?K levels the difference was less marked). Crack growth rates of U720Li and U720Li-LG were relatively similar both in the near-threshold and high ?K regime. The materials showed crystallographic stage I type crack growth in the near-threshold regime, with U720Li showing distinct crystallographic facets on the fracture surface while U720Li-LG and U720Li-LP showed mostly microfacets and a lower proportion of large facets. At high ?K, crack growth in the materials becomes flat and featureless indicative of stage II type crack growth. The observed performance of the materials is rationalised in terms of their microstructural characteristics. Enhanced room temperature fatigue threshold and long crack growth resistance are seen for larger grained materials due to increased extrinsic crack growth resistance contributions from crack closure. Differences in heterogeneity of deformation behaviour in this set of material variants appear to give approximately equivalent intrinsic crack growth resistance at room temperature due to the respective effects of each deformation behaviour on intrinsic crack growth resistance.
fatigue, nickel base superalloys, thresholds
8756-758X
685-701
Pang, H.T.
021f768b-408c-4a98-b6ae-0c7ae21dd4ce
Reed, P.A.S.
8b79d87f-3288-4167-bcfc-c1de4b93ce17
Pang, H.T.
021f768b-408c-4a98-b6ae-0c7ae21dd4ce
Reed, P.A.S.
8b79d87f-3288-4167-bcfc-c1de4b93ce17

Pang, H.T. and Reed, P.A.S. (2009) Microstructure variation effects on room temperature fatigue crack propagation and thresholds in Udimet 720Li Ni-base alloy. Fatigue & Fracture of Engineering Materials & Structures, 32 (8), 685-701. (doi:10.1111/j.1460-2695.2009.01366.x).

Record type: Article

Abstract

An assessment of the effects of microstructure on room temperature fatigue threshold and crack propagation behaviour has been carried out on microstructural variants of U720Li, i.e. as-received U720Li, U720Li-LG (large grain variant) and U720Li-LP (large intragranular coherent ?' variant). Fatigue tests were carried out at room temperature using a 20Hz sinusoidal cycling waveform at an R-ratio=0.1. U720Li-LG showed the highest threshold ?K (?Kth), whilst U720Li-LP showed the lowest ?Kth value. U720Li-LP also showed higher crack growth rates in the near-threshold regime and at high ?K (although at higher ?K levels the difference was less marked). Crack growth rates of U720Li and U720Li-LG were relatively similar both in the near-threshold and high ?K regime. The materials showed crystallographic stage I type crack growth in the near-threshold regime, with U720Li showing distinct crystallographic facets on the fracture surface while U720Li-LG and U720Li-LP showed mostly microfacets and a lower proportion of large facets. At high ?K, crack growth in the materials becomes flat and featureless indicative of stage II type crack growth. The observed performance of the materials is rationalised in terms of their microstructural characteristics. Enhanced room temperature fatigue threshold and long crack growth resistance are seen for larger grained materials due to increased extrinsic crack growth resistance contributions from crack closure. Differences in heterogeneity of deformation behaviour in this set of material variants appear to give approximately equivalent intrinsic crack growth resistance at room temperature due to the respective effects of each deformation behaviour on intrinsic crack growth resistance.

Text
FFEMStext.pdf - Author's Original
Download (271kB)
Text
FFEMSfig.pdf - Author's Original
Download (5MB)

More information

Published date: August 2009
Keywords: fatigue, nickel base superalloys, thresholds
Organisations: Engineering Mats & Surface Engineerg Gp

Identifiers

Local EPrints ID: 71708
URI: http://eprints.soton.ac.uk/id/eprint/71708
ISSN: 8756-758X
PURE UUID: 7e12496a-a2cd-44d9-ade6-78b930470be4
ORCID for P.A.S. Reed: ORCID iD orcid.org/0000-0002-2258-0347

Catalogue record

Date deposited: 18 Dec 2009
Last modified: 14 Mar 2024 02:37

Export record

Altmetrics

Contributors

Author: H.T. Pang
Author: P.A.S. Reed ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×