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Direct numerical simulation (DNS) is used to study the effects of mean lateral
divergence and convergence on wall-bounded turbulence, by applying uniform
irrotational temporal deformations to a plane-channel domain. This extends a series
of studies of similar deformations. Fast and slow straining fields are considered,
leading to a matrix of four cases, all corresponding to zero-pressure-gradient (ZPG)
flows along the centreplane in ducts with constant rectangular cross-sectional area
but varying aspect ratio. The results are used to address basic physical and modelling
questions, and create a database that allows detailed yet straightforward testing
of turbulence models. Initial tests of three representative one-point models reveal
meaningful differences. The extra-strain effects introduced by the matrix of fast and
slow divergence and convergence are documented, separating the direct effects of the
strain from the indirect ones that alter the shear rate and change the distance from
the wall. Some findings are predictable, and none contradict experimental findings.
Others require more thought, notably an asymmetry between the effect of convergence
and divergence on the peak turbulence kinetic energy.

1. Introduction
Most real-world flows contain regions where conditions rapidly change over a short

downstream distance. Examples are found in turbomachinery, over automobiles, ships
and submarines, and along wings and bodies of aircraft. Any turbulent boundary
layers present in these flows are therefore suddenly subjected to perturbations that
upset the upstream ‘equilibrium’ that may have existed between the turbulence and the
mean flow. These types of non-equilibrium turbulent flows are quite difficult to predict
(Smits & Wood 1985). (Non-equilibrium is used here as a synonym for perturbed or
non-stationary to describe a flow subjected to an impulsive change of the mean field to
which the turbulence has not yet adjusted.) Since many one-point turbulence closures
depend critically upon equilibrium-turbulence concepts, non-equilibrium conditions
can cause serious problems. In many instances, the major shortcoming of a model
lies in its failure to correctly reproduce the response of the turbulence to a mean-
flow perturbation. The objective of this study is to better understand this response.
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Ultimately, we hope to contribute to better predictions of non-equilibrium turbulent
boundary layers.

The various types of perturbed boundary layers found in practice can be defined
according to the extra strain component involved – extra in the sense of being in
addition to the primary shear ∂U/∂y of a canonical two-dimensional boundary layer.
In this paper we use x, y and z respectively to denote the streamwise, wall-normal and
spanwise directions, and U , V and W the corresponding mean velocity components,
with respect to an upstream two-dimensional equilibrium reference flow to which
a perturbation is applied. That extra strains can have an unexpectedly profound
influence has been well documented: the effect is typically an order of magnitude
larger than the magnitude of the new source term(s) introduced by the extra strain
into the turbulence-transport equations (Bradshaw 1990). In other words, the implicit
changes, often associated with alterations in the turbulence structure, to the terms
that are present before the extra strain is applied can be more important than the
new explicit production effects identified in the Reynolds-stress transport equations.
Examples of classical extra strains include (Smits & Wood 1985) longitudinal (i.e.
streamwise) curvature ∂V/∂x, lateral skewing ∂W/∂x = ∂U/∂z, and, the subject of
this study, lateral divergence ∂W/∂z > 0 and convergence ∂W/∂z < 0. More recently,
Coleman, Kim & Spalart (2003) have suggested that the streamwise deceleration/wall-
normal divergence ∂U/∂x = −∂V/∂y induced by an adverse pressure gradient (APG)
should also be included in this category, because of its distorting/realigning influence
on the outer-layer turbulence.

In order to isolate effects solely due to the lateral perturbation, we consider the two-
dimensional zero-pressure-gradient (ZPG) case for which ∂U/∂x = 0, with no lateral
skewing and no wall curvature. Attention is limited to incompressible flows such
that the non-zero lateral strain induces an equal and opposite wall-normal distortion,
∂V/∂y = −∂W/∂z. This approach was first taken by Saddoughi & Joubert (1991) and
Pompeo, Bettelini & Thomann (1993), who performed experiments on ZPG diverging
and converging boundary layers, respectively. Pompeo et al. (1993) also examined the
diverging ZPG case, as did Pauley, Eaton & Cutler (1993); Pachapakesan et al. (1997)
later considered the inverse of the Saddoughi–Joubert lateral divergence (Saddoughi &
Joubert 1991), investigating a non-accelerating turbulent boundary layer subject to
lateral convergence. Although lateral-straining studies were made earlier (e.g. of flow
past a conical flare by Smits, Eaton & Bradshaw 1979, and a body of revolution at
incidence by Patel & Baek 1987), those also included streamwise curvature, streamwise
pressure gradients and/or mean three-dimensionality. Saddoughi & Joubert (1991)
and Pompeo et al. (1993) introduced a class of experiments with the advantage that
they nominally contain one and only one extra strain at a time. Unfortunately, it is not
possible in the experiments to entirely remove all effects of, for example, streamwise
pressure-gradient or lateral skewing. The advantage of the present study, a numerical
idealization of the ZPG lateral straining experiments, is that it is completely unaffected
by all but the extra strain of interest. Results can thus be used to unambiguously isolate
and quantify the extra-strain effects induced by ∂W/∂z = −∂V/∂y perturbations.
Another benefit is that the present case can be compared to previously studied
strained-channel flows in order to determine the relative importance of individual
velocity gradients to the overall strain. In what follows, we shall contrast the
effect of the ZPG lateral straining ∂W/∂z = −∂V/∂y to that of the APG strain
∂U/∂x = −∂V/∂y considered in Coleman et al. (2003), and thereby infer the
importance of the wall-normal divergence ∂V/∂y, which is common to both.

The next section gives an overview of the strained-channel strategy used for this
work, along with the physical and numerical parameters used for the direct numerical
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Figure 1. (a) Laterally converging duct. (b, c) Time-developing strained-channel idealization
at (b) initial and (c) later times.

simulation (DNS). Results are then presented, along with a preliminary model-testing
study, for fast and slow ZPG lateral-divergence and lateral-convergence strains. The
final section contains a summary and general conclusions.

2. Approach and run parameters
A spatially developing laterally strained boundary layer is idealized by subjecting

fully developed incompressible turbulent channel flow to an appropriate irrotational
deformation and in-plane motion of the channel walls. The in-plane wall motion
emulates the ZPG condition, by ensuring that the difference between the mean
centreline velocity and wall velocity remains constant. The irrotational strain,
which deforms the entire domain (including the walls), supplies the simultaneous
spanwise divergence/convergence and wall-normal convergence/divergence imposed
in constant-area ducts such as the one illustrated in figure 1(a). The strategy is
therefore similar to that of Rogallo (1981), except that instead of distorted spatially
homogeneous turbulence u′(x, t), the affected flow u(x, t) is between two no-slip
surfaces and contains both fluctuations u′(x, t) and an inhomogeneous mean u(y, t) .
The three-dimensional flow domain is spatially periodic in the streamwise x and
spanwise z directions and has two no-slip ‘elastic’ plane walls. The unphysical near-
wall behaviour introduced by deforming the walls is negligible provided the magnitude
of the applied strain is small compared to the mean shear at the walls, which will be
the case here (see table 1). Spatial changes are thus replaced with temporal ones, as
the turbulence in the outer layer of the channel is subjected to the deformation history
experienced by boundary-layer fluid in the spatial case. Note that in this study outer
layer is used to refer to both the wake region of a boundary layer and the core of the
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Case A33h(0)/uτ (0) B0(0) B1/2(0)

FD +4.0 +0.010 +0.64
FC −4.0 −0.010 −0.64
SD +0.40 +0.0010 +0.064
SC −0.40 −0.0010 −0.064

Table 1. DNS parameters for ZPG lateral strain: A33 = −A22 and A11 = 0, with initial Reynolds
number Rτ (0) = uτ (0)h(0)/ν = 392. Bradshaw parameter B = A33/(∂u/∂y), where B0(0) and
B1/2(0) are initial values respectively at yw = 0 and h/2 (FD: fast divergence, FC: fast
convergence, SD: slow divergence, SC: slow convergence).

channel. It should be kept in mind, however, that the two are not formally equivalent,
primarily because the strained-channel flow does not include the intermittency effects
associated with the sharp interface between vortical and irrotational/free-stream fluid
found in the outer part of a boundary layer.

This strained-channel approach has been previously used to study the effect of
mean three dimensionality (spanwise pressure gradients) with and without the mean
deceleration of a streamwise APG (Coleman, Kim & Spalart 2000). It has also
been used to idealize two-dimensional APG boundary layers (Coleman et al. 2003).
These spatially periodic/temporal simulations can be realized much more efficiently
than can simulations of a spatial boundary layer, allowing a much more extensive
study for a given cost. Another benefit is that straining effects are revealed solely by
deviations from the initial conditions, rather than by differences between the natural
spatial development of the unperturbed boundary layer and the downstream changes
caused by the mean-flow perturbation. From a modellers’ point of view an even
greater advantage is that the Reynolds-averaged statistics for these flows satisfy a
one-dimensional unsteady problem that shares many of the defining characteristics
of the spatial flow. They thus provide an efficient means of testing one-point closure
models (Yorke & Coleman 2004; Sciberras & Coleman 2007).

We use U= (U1, U2, U3) = (U, V, W ) and u = (u, v, w) respectively to denote the
imposed deformations and the ensuing (deformation-induced) temporally evolving
mean profiles in the channel (averaging the latter over the directions parallel to the
walls). The spatially uniform imposed strain field Aij ≡ ∂Ui/∂xj steps from zero
to a constant value at time t = 0+, after which Ui = Aijxj and ∂Aij/∂t =0. For this
study, the only non-zero values of Aij are the spanwise A33 = ∂W/∂z and wall-normal
A22 = ∂V/∂y components, such that

Aij ≡ ∂Ui

∂xj

=

⎡
⎢⎣0 0 0

0 ∂V/∂y 0

0 0 ∂W/∂z

⎤
⎥⎦ , (2.1)

where

A22 + A33 = 0. (2.2)

See Coleman et al. (2000) for the problem formulation for more general strain fields.
Four straining fields are imposed, defined by the components summarized in table 1.

The friction–velocity Reynolds number Rτ = uτh/ν of the fully developed channel flow
to which each of the strain fields is applied is 392, the same as that used in our earlier
two-dimensional APG study (Coleman et al. 2003). The equivalent initial momentum-
thickness Reynolds number Rθ = θuc/ν is 716 (where θ is the momentum thickness
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Λx(0)/h(0) Λz(0)/h(0) Λx(0) uτ (0)/ν Λz(0) uτ (0)/ν mx my mz nx ny nz

2.4π π 2959 1233 320 193 128 480 193 192

Table 2. Numerical parameters.

of the half channel). All cases correspond to the ZPG lateral strain, with A11 = 0
and A33 = −A22 equal to either ±0.04 or ±0.40 of uτ (0)/h(0), the ratio of the initial
friction velocity to the initial channel half-width. This coincides to either ±2 % or
±20 % of uc(0)/h(0), where uc(0) is the initial mean velocity at the channel centreline.
These A33 values allow us to consider both mild and strong perturbations of both
signs. The strain rates for slow divergence (SD) and slow convergence (SC) cases are
0.1 % of the initial surface shear (∂u/∂y)w,0 and 6.4 % of ∂u/∂y at yw = 0.5h, the
midpoint of the half-width, of the pre-strained channel flow. In other words, at t =0
the local Bradshaw parameter B = A33/(∂u/∂y) at the surface and at the mid-layer are
respectively B0 = 0.001 and B1/2 = 0.064. This is characteristic of the mildly strained
experiments of Saddoughi & Joubert (1991); Pauley et al. (1993); Panchapakesan
et al. (1997) and, for lateral divergence, Pompeo et al. (1993). (The lateral convergence
used by Pompeo et al. (1993) is outside the mild-perturbation regime, with maximum
|B1/2| ≈ 0.22.) It is also comparable in magnitude to the two-dimensional/APG strain
considered in Coleman et al. (2003), where A11 = −A22 = −0.31uτ (0) /h(0) . The strain
rates for fast divergence (FD) and fast convergence (FC) cases are an order of
magnitude larger, such that the initial B0 = 0.01 and B1/2 = 0.64. These four cases will
allow us to examine the effect of the sign and magnitude of the strain on the mean
velocity and Reynolds stresses.

The time-dependent mean DNS results (denoted by an overbar ( )) presented
below were gathered by averaging over the homogeneous/periodic streamwise x

and spanwise z directions, doubling the sample by invoking symmetry about the
centreline, and this for an ensemble of 24 statistically independent realizations. These
were generated by applying the strain to instantaneous fields from 24 distinct times
of a preliminary unstrained plane-channel computation.

Solutions were obtained with a modified version of the Fourier/Chebyshev-τ
algorithm developed by Kim, Moin & Moser (1987), as described in Coleman et al.
(2000). The numerical parameters used for all cases are listed in table 2, where Λx(0)
and Λz(0) are the initial horizontal domain sizes, and (mx, my, mz) and (nx, ny, nz)
are respectively the number of Fourier or Chebychev expansion coefficients and
collocation/quadrature points in the x, y and z directions.

The quality of the domain size and spatial resolution are demonstrated by the
spectra and two-point correlations shown in Appendix A. The computations were
performed on the UK HPCx p690+ cluster. The four cases required a total of the
order of 105 CPU-processor hours.

3. Results
3.1. Mean profiles and histories

The strain rates defining the four runs are illustrated in figures 2(a) and 2(b) by the
vertical lines indicating the A33 magnitudes in units of the initial friction–velocity/half-
width ratio uτ (0)/h(0). Also shown is the evolution of the mean shear ∂u/∂y from
t = 0 to At = |A33|t = |A22|t = 0.38. The slower (SD and SC) and faster (FD and FC)
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Figure 2. Mean velocity for ZPG lateral (a, c, e) divergence and (b, d, f ) convergence
at At = |A33|t = 0.38: , Case SD; , Case FD; , Case SC; ,
Case FC; , unstrained initial condition (At = 0). Vertical lines in (a) and (b) indicate
locations at which ∂u/∂y = |A33| for each case. Open symbols in (a) and (b) denote
(∂u/∂y)/(∂u/∂y)t = 0 = exp(A33t) idealization at At = 0.38. All velocities measured with respect
to reference frame attached to streamwise-moving walls. The distance to the nearest wall
yw = |y − h(t)|.
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strains are respectively equivalent to the initial ∂u/∂y at yw/h= 0.965 and 0.72.
As mentioned earlier, this corresponds to initial values of the mid-layer Bradshaw
parameter B1/2(0) of 6.4 % and 64 % (table 1). The Case SD strain is thus similar
in magnitude to the divergence created by the ducts used by Saddoughi & Joubert
(1991) (B1/2(0) ≈ 0.07) and Pompeo et al. (1993) (maximum B1/2 ≈ 0.1), and by the
embedded vorticies of Pauley et al. (1993) (maximum B1/2 ≈ 0.1). (The divergence in
Saddougi & Joubert (1991) was created by a duct whose lateral dimension increased
linearly with downstream distance, such that ∂W/∂z stepped suddenly from zero
to a maximum and then slowly decreased. For the constant-area duct of Pompeo
et al. (1993), the divergence increased smoothly with downstream distance from zero
to a maximum before falling symmetrically to zero again. (They also used the same
streamwise variation of |∂W/∂z| but with opposite sign to impose the convergence.)
The Pauley et al. (1993) ZPG divergence was formed between two counter-rotating
streamwise vortices generated by a delta wing embedded in the boundary layer; as
in the Saddoughi–Joubert flow (Saddoughi & Joubert 1991), their ∂W/∂z also fell
monotonically from an upstream maximum.)

Case SC also has an experimental analogue, in terms of initial A33 magnitude, in
the flow in Panchapakesan et al. (1997), for which the inlet B1/2 ≈ −0.08. On the other
hand, the duct in Pompeo et al. (1993) created a ZPG-convergence whose maximum
value (at a point well downstream of the inlet) corresponded to B1/2 ≈ −0.2,
which falls roughly midway between Cases SC and FC, in terms of A33. The major
difference between the present and experimental flows (apart from Reynolds number
and the channel versus boundary-layer geometries) is that the strain history is
‘shorter and/or sharper’ for the DNS than it is for the experiments – either because
none of the experiments impose constant ∂W/∂z or because the total time period
considered in the constant-A33 DNS is limited to At = 0 to 0.38. Note that a total
strain of exp(0.38) = 1.46 corresponds to passing through about the first 15 % of the
duct in Saddoughi & Joubert (1991) and 10 % of the embedded-vortex-generated
divergence field in Pauley et al. (1993). A total strain of 1.5 did not occur in the
divergence/convergence in Pompeo et al. (1993) until roughly halfway through the
duct, near the maximum ∂W/∂z station. There is thus no point in making detailed
comparisons with the experiments, although it turns out Cases SD and SC exhibit
many of the qualitative features found in the diverging/converging ducts or between
the embedded vortices.

Figures 2(a) and 2(b) reveal the manner in which the lateral straining increases
or decreases the mean spanwise vorticity ωz, which is equal to −∂u/∂y in this
parallel-flow idealization. In general, in the strained channel, ωz at fixed η = yw/h(t)
satisfies ∂ ωz/∂t = −(A11 +A22) ωz − ∂2τ/∂y2, where τ = ν ∂u/∂y −u′v′ (Coleman et al.
2000). Here, ∂/∂t is taken at fixed η, which is equivalent to the streamfunction in
spatially developing flows; it is the material derivative. Thus, for the A11 = −A22

APG strain considered in Coleman et al. (2003), ∂u/∂y is conserved for any strain
magnitude, in regions where τ is linear (such as in the outer layer of the channel;
see figures 4(c) and 5(a) of Coleman et al. 2003). For the present A11 = 0, A33 = −A22

strain, the mean spanwise vorticity is governed by ∂ ωz/∂t = A33ωz −∂2τ/∂y2, and thus
ωz(η, t) = ωz(η, 0) exp(A33t) if either (i) ∂τ/∂y is constant (regardless of the magnitude
of A33), or (ii) A33 is large (regardless of the τ (y) variation). This is the reason for
the close agreement of the ∂u/∂y profiles at At =0.38 in the outer layers of the slow-
and fast-A33 flows (note the nearly linear τ profiles in figure 4). It also explains the
even better agreement, across the entire layer, between the Fast Case FD and FC
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Figure 3. Histories of surface shear stress for ZPG lateral (a) divergence: ,
Case SD; , Case FD; , Case VFD (same as Cases SD and FD except
A33 = −A22 = +40uτ (0)/h(0)); (b) convergence: , Case SC; , Case FC; ,
Case VFC (same as Cases SC and FC except A33 = −A22 = −40uτ (0)/h(0)). �, rapid-distortion
limit, τw(t)/τw(0) = exp(A33t) (VFD: very fast divergence, VFC: very fast convergence).

results (chain-dashed and chain-dotted curves, respectively) and the linear/inviscid
idealization (open symbols).

The change with time of the wall values of the mean velocity gradient, and how
it is influenced by the strain-rate magnitude, is presented in figure 3, in the form
of histories of the surface shear τw . These are in qualitative agreement with the
experiments of Pauley et al. (1993), who observed that divergence enhances the
skin friction, and of Panchapakesan et al. (1997), who found that convergence does
the opposite. (Note that both of these would also occur in a laminar boundary
layer.) Also shown are the τw(t) results for a ‘very fast’ divergence (VFD) and ‘very
fast’ convergence (VFC), which are equivalent to either Cases SD/FD or SC/FC
except that A33h(0)/uτ (0) = ±40.0. This strain magnitude is quite close to the rapid-
distortion limit, τw(t)/τw(0) = exp(A33t), which is indicated by the open symbols in
figure 3. Recall that within rapid-distortion theory, all quantities depend solely upon
the total strain, and not upon the strain-rate magnitude and duration separately. The
Cases FD and FC values are also moderately close to this limit. However, the
disparate τw histories indicate that, even for Cases FD and FC, the behaviour of
the near-wall turbulence is not completely determined by linear processes associated
with the applied strain. The turbulence has non-trivial behaviour, more so for slow
strains.

A summary of integral parameters involving the mean velocity is given in table 3.
The shape factor H = δ∗/h (where δ∗ is the displacement thickness of the half
channel) changes very little with time for all four cases, especially FD and FC.
Similar behaviour was found in both the divergence and convergence experiments.
As pointed out by Panchapakesan et al. (1997), the straining introduced by streamwise
pressure gradients has a much greater effect on the shape factor than lateral straining
does (cf. Coleman et al. 2003).

In spite of the constant-H tendency, all four cases are far from a Clauser-type
outer-layer equilibrium, even though the effective streamwise Clauser parameter
−δ∗ucA11/u

2
τ (Coleman et al. 2003) is identically zero, and therefore constant

throughout the straining. This is consistent with the rapid changes of the
effective lateral-divergence equilibrium parameter β∗

D = −δ∗ucA33/u
2
τ . Panchapakesan



Laterally strained wall-bounded turbulence 451

Case SD Case FD

At h(t)/h(0) Rθ H τw/τw(0) uτ /uc −β∗
D Rθ H τw/τw(0) uτ /uc −β∗

D

0 1 716 1.45 1 0.0497 1.06 716 1.45 1 0.0497 10.6
0.19 0.826 584 1.47 1.064 0.0513 0.824 591 1.46 1.167 0.0537 7.54
0.38 0.682 455 1.50 1.167 0.0537 0.598 486 1.47 1.277 0.0562 5.72

Case SC Case FC

At h(t)/h(0) Rθ H τw/τw(0) uτ /uc −β∗
D Rθ H τw/τw(0) uτ /uc −β∗

D

0 1 716 1.45 1 0.0497 1.06 716 1.45 1 0.0497 10.6
0.19 1.211 879 1.44 0.934 0.0481 1.38 869 1.45 0.844 0.0457 15.2
0.38 1.466 1088 1.43 0.872 0.0465 1.82 1055 1.44 0.741 0.0428 21.0

Table 3. Mean results from ZPG lateral-divergence/convergence strained-channel DNS. Mean
centreline velocity uc given with respect to reference frame attached to streamwise moving
walls.

et al. (1997) and Nickels (2009) suggest that variations of this parameter can be
used to determine departure from equilibrium of laterally strained boundary layers.
Because δ∗ will grow and u2

τ will decrease when A33 < 0, we cannot expect β∗
D ∼ δ∗/u2

τ

to approach a constant value for Cases SC or FC. The proposal in Panchapakesan
et al. (1997) implies that this is an indication that, by monotonically driving the
flow further from equilibrium, lateral convergence will affect a turbulent wall layer
more profoundly than will lateral divergence, which at least in theory can lead to
a constant-βD outer-layer equilibrium. The implication is that divergence will be
more difficult to model than convergence. Although the rate of change dβ∗

D/dt is
slightly greater for A33 < 0, and the qualitative trends agree with the experiments (i.e.
that βD becomes increasingly large for convergence, and −βD increasingly small for
divergence), there is no evidence of a dβD/dt → 0 state here for the A33 > 0 cases, for
either the fast or slow strain rate. The comparable |β∗

D|(t) variations for positive and
negative A33 are compatible with the behaviour of the Reynolds-averaged Navier–
Stokes (RANS) models observed below, in that they are equally challenged by the
convergence and divergence. It appears that either a constant ZPG lateral divergence
does not always drive the flow to a constant-βD condition, or that a total strain of
exp(0.38) = 1.46 is not sufficient for one to develop. Given that, as mentioned earlier,
At = 0.38 corresponds to travelling about 15 % of the total distance through the
Saddoughi–Joubert duct (Saddoughi & Joubert 1991), the latter option is perhaps
the most likely (cf. figure 11 of Panchapakesan et al. 1997). In either case, we can
conclude that all four flows represented in table 3 are likely to contain wall-bounded
turbulence that has not yet adjusted to the lateral-strain perturbation.

The total change of the mean velocity during the At = 0 to 0.38 interval is shown in
figures 2(c) and 2(d ) for both the fast and slow distortions. The reduced or increased
thickness associated with the negative or positive A22 is apparent, as is the lack of
variation of the mean centreline velocity uc from its initial value, as required by
the A11 = 0 ZPG condition. For convenience and clarity, in what follows, all mean
channel velocities u(y, t) are presented with respect to the frame of reference attached
to the accelerating walls, which are subject to the time-dependent in-plane velocity uw .
Note that once the strain is applied the effective mean streamwise pressure gradient
in the channel is imposed by prescribing uw(t), such that the history of the relative
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Figure 4. Total and Reynolds shear stress in local uτ (t) scaling for ZPG lateral (a) divergence
and (b) convergence at At = 0.38: , Case SD; , Case FD; , Case
SC; , Case FC; , unstrained initial condition (At = 0); �, APG strain at
A22t = 0.365 from Coleman et al. (2003) (inset in (b) only); �, rapid-distortion limit,
−u′v′(t, yw) = −u′v′(0, yw) exp(−(1/2)A33t), normalized by u2

τ at At = 0.38 from Cases (a)
FD and (b) FC.

mean centreline velocity uc(t) − uw(t) is given by uc(0) exp(A11t) = uc(0), where uc(0)
is the initial mean centreline velocity (see Coleman et al. 2000). Because ∂τ/∂y is
approximately constant in the outer layer, the strain-induced increase (or decrease)
in ∂u/∂y is nearly exactly counteracted by the decrease (or increase) in the layer
thickness (with the former given by exp(A33t), the latter exp(A22t) = exp(−A33t)), the
centreline value at At = 0.38 is very close to its initial value uc(0). For Cases SD and
SC, uw grows from zero to a maximum of the order of 5 % of uc(0) at At =0.38; the
faster strain causes Cases FD and FC to depart even less, with uw/uc(0) less than
1% at At = 0.38.

The inner-layer scaling of the mean velocity is shown in figures 2(e) and 2(f ). The
standard log law is not drawn to reduce clutter, but the solid line from At = 0 serves
as a reference. The tendency found in the experiments for the wake component to be
reduced by lateral divergence, and increased by lateral convergence, is also observed
here – although the trend is rather subtle, owing to the small wake inherent to plane-
channel flow. Nearer the wall the situation is more straightforward. As in the mild-
strain experiments (Saddoughi & Joubert 1991; Pauley et al. 1993; Panchapakesan
et al. 1997), the slower strains cause little change to the slope and additive constant
in the logarithmic region. These points of qualitative agreement with the experiments
support the relevance of the strained-channel strategy. When A33 is larger, it affects
the slope less than the additive constant, corresponding to a U+ decrease of about 1.25
when A33 > 0, and an increase of about 2 when A33 < 0. These changes are consistent
with the skin-friction increase or decrease from At = 0 to 0.38 observed in figure 3.

3.2. Reynolds stresses

Having found that the evolution of the mean flow is primarily set by A33, we now
consider how the turbulence is affected by the lateral strain. The total and −u′v′

stresses in figure 4 demonstrate a characteristic feature of perturbed boundary layers,
namely, the independent behaviour of the inner and outer layers. It takes a finite
time for the effects of the near-wall ∂u/∂y change associated with the larger or
smaller wall stress τw to propagate into the outer region, and for the outer-layer
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Figure 5. Inner scaling of eddy viscosity νT = −u′v′/(∂u/∂y) for ZPG lateral (a) divergence
and (b) convergence at At = 0.38: , Case SD; , Case FD; , Case SC;

, Case FC; , unstrained initial condition (At = 0); �, rapid-distortion limit,
νT (t, yw)/νT (0, yw) = exp(−(3/2)A33t), with y+(t)/y+(0) = exp(−(1/2)A33t). Thin solid straight
line is 0.4 y+.

turbulence to respond to the direct warping or eddy re-orienting influence of the
applied strain. Details of the respective rates at which the inner- and outer-layer
processes occur can be determined from the Reynolds-stress budgets presented in
Appendix B. Here we simply note that the more rapid the rate of strain, the more
pronounced the inner/outer layer mismatch, and the further from the unstrained
plane-channel equilibrium the inner and outer layers become.

The open symbols in figures 4(a) and 4(b) represent the rapid-distortion limit at
At = 0.38 for −u′v′, which predicts that when |A33| 	 ∂u/∂y the shear stress at
each yw/h(t) varies as exp(−(1/2)A33t). This can be inferred from the −u′v′ budget
information shown in Appendix B (figures 19 and 22), from the profiles at At = 0+,
the time immediately after the strain is applied. The changes to the −u′v′ profile
caused by the fast divergence are noticeably closer to the rapid-distortion prediction
than those induced by the fast convergence. However, even the Case FD result differs
enough from the large-A33 idealization to imply that the ‘fast’ strains are not deeply
within the formal rapid-distortion regime.

Also shown in figure 4(b) (inset) are the total and turbulent shear-stress profiles from
the APG strain considered in Coleman et al. (2003) (A11 = −A22 = −0.31uτ (0)/h(0))
at A22t =0.365. Comparing these to the Case SC counterparts (solid symbols versus
dotted lines) illustrates the profoundly different manner in which the inner/outer layer
interaction can be affected by different types of perturbations of the same magnitude.

Further evidence of the lag between changes to the mean flow and to the turbulence
is found in the eddy-viscosity profiles (figure 5). The statistical oscillations are
especially noteworthy for the eddy viscosity, since it is formed from the ratio of
two quantities – one of which is a derivative – that both approach zero in the outer
layer. Although the slow strains produce the same trend in ∂u/∂y and −u′v′ (both
increasing due to the divergence, and both decreasing due to the convergence; see
figures 2a, b and 8), figure 5 implies that they affect the mean shear ∂u/∂y more
than they do the −u′v′ shear stress. This is because νT = −u′v′/(∂u/∂y) decreases and
increases respectively for the A33 > 0 and A33 < 0 cases, compared to the unstrained
channel flow. The departure from the unstrained state is even more pronounced for
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the faster strains. The shear stress −u′v′ falls while ∂u/∂y rises for Case FD and vice
versa for Case FC (figures 8a, b and 2a, b). The trend observed in the −u′v′ profiles,
for the results from Case FD to come closer than those from Case FC to the rapid-
distortion limit (open symbols in figure 5), is also reflected in νT . When νT is scaled
by the mean centreline velocity uc and the half-channel displacement thickness δ∗, the
situation is very different (figure 6). Recall that uc remains constant and δ∗ changes in
proportion to h(t) = h(0) exp(A22t) during the ZPG lateral straining. The behaviour
of the slower-strain cases agrees with the mildly perturbed experiments, in that
divergence leads to increased νT /ucδ

∗ (Saddoughi & Joubert 1991), while convergence
does the opposite (Pompeo et al. 1993). For the Cases FD and FC strains, however,
νT is roughly the same fraction of ucδ

∗ at At = 0.38 as it is in the unstrained initial
flow. This is because in the outer-layer scaling, νT /ucδ

∗ = [−u′v′/(∂u/∂y)]/ucδ
∗, the

changes are largely defined by −u′v′ (since ∂u/∂y(t) ≈ ∂u/∂y(0) exp(A33t) and to first
order δ∗(t) ∼ h(0) exp(A22t) =h(0) exp(−A33t)). Note the approach of Cases FD and
FC towards the rapid-distortion limit (open symbols), with the fast divergence again
coming closer than the fast convergence to the A 	 ∂u/∂y ideal.

One of the distinctive features of this flow is the asymmetric manner in which the
two signs of lateral strain can affect the evolution of the Reynolds stresses. We have
already found evidence of this in the closer agreement, for the fast divergence, with
the rapid-distortion predictions of −u′v′ and νT . It can also be seen for the turbulence
kinetic energy histories (figure 7). For the divergence (figure 7a), the fast and slow
strains lead on the one hand to a monotonic decrease with time of the near-wall peak
turbulence kinetic energy kmax (Case FD), and on the other hand an initial decrease
then growth of kmax (Case SD). In contrast, for both fast and slow convergence,
dkmax/dt is initially positive before becoming negative (figure 7b). The initial slopes of
the kmax histories are controlled by the sign of the new/explicit production introduced
by the A33 = −A22 strain (see Reynolds-stress budgets in Appendix B). The solid lines
in figure 7 show the kmax histories for the ‘very fast’ cases (VFD and VFC), which
essentially correspond to the rapid-distortion limit (cf. figure 3). When compared to
the Case FD and FC results, these again demonstrate the asymmetry between the net
effects of positive and negative A33, and in particular that Case FC quickly departs



Laterally strained wall-bounded turbulence 455

0 0.1 0.2 0.3 0.4
0.9

1.0

1.1

At
0 0.1 0.2 0.3 0.4

At

k m
ax

/k
m

ax
(0

)

0.9

1.0

1.1(a) (b)

A33 > 0 A33 < 0

Figure 7. Histories of peak turbulence kinetic energy for ZPG lateral (a) divergence: ,
Case SD; , Case FD; , Case VFD (same as Cases SD and FD except
A33 = −A22 =+40uτ (0)/h(0)); (b) convergence: , Case SC; , Case FC; ,
Case VFC (same as Cases SC and FC except A33 = −A22 = −40uτ (0)/h(0)). Vertical lines mark
time for which net ∂k/∂t profiles are shown in figure 9.

0.5 1.00

1

2

3

4

5

10–3 10–2 10–1 100 10–3 10–2 10–1 100
0

5

0

5

yw/h(t)

0.5 1.00

yw/h(t)

–
u'
v'

/u
2 τ
(0

)
k/

u2 τ
(0

)

1

2

3

4

5

(a) (b)A33 > 0 A33 < 0

Figure 8. Turbulence kinetic energy k = (1/2)q2 and Reynolds shear stress −u′v′ for ZPG
lateral (a) divergence and (b) convergence at At = 0.38: , Case SD; , Case FD;

, Case SC; , Case FC; , unstrained initial condition (At = 0). Insets show
same data in semi-logarithmic axes.

from the rapid-distortion trajectory, to the extent that dkmax/dt is of opposite sign for
At > 0.1. The fast and very fast divergence, on the other hand, lead to very similar
kmax histories.

Figure 8 presents the net changes of the k and −u′v′ shear-stress profiles created
by the four strain fields at At =0.38. (The profiles of k and −u′v′ at At = 0.19 are
included in Appendix B.) The Case SD results are consistent with the observations
of Saddoughi & Joubert (1991), Pauley et al. (1993) and Pompeo et al. (1993), all
of whom also found (for similar strength positive ∂W/∂z) that k and −u′v′ increase
slightly in the outer layer. At the time, there was significant uncertainty surrounding
this result, due to the magnitude of the changes involved, and especially the potential
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influence in the experiments of streamwise and spanwise pressure gradients (see
discussion in Pauley et al. 1993). The present findings indicate that a mild ZPG
lateral divergence can indeed cause a non-negligible growth of the Reynolds stresses.

Although the milder perturbations yield flows more nearly in equilibrium with their
local surface shear stress (recall figure 4), surprisingly, the smaller ±A33 ultimately has
a greater effect on both k and −u′v′ than the larger one does. Comparing figure 8(a)
with figure 7(a), for example, we find that the correlation between the magnitude of
the A33 = −A22 divergence and whether the turbulence becomes more or less energetic
holds not just at the near-wall peak-k location, but over the bulk of the layer. Very
near the wall, yw/h(t) < 0.03, both the FD and SD divergence causes k and −u′v′

to fall. Figure 8(a) also shows that the net changes to k are accompanied by −u′v′

changes of the same sign. It is striking that the fast and slow divergence can cause
k and −u′v′ to behave in such different ways, and that this happens while the mean
shear ∂u/∂y increases by about the same amount for both cases. The expectation
that the turbulence ultimately will become more energetic due to the mean stretching
of the spanwise component of turbulent vorticity in a laterally diverging flow is thus
not always realized. In fact figure 8(a) implies that the more rapid the strain, the less
likely this will be.

In the outer layer, the qualitative trends for k and −u′v′ are broadly set by
the sign of A33: the faster divergence (convergence) causes a decrease (increase) in
both quantities, while the slower divergence (convergence) causes a more significant
increase (decrease). The magnitude of the changes, however, again exhibit the ±A33

asymmetry. This is apparent in figures 9 and 10, which contain for each of the
cases the net ∂k/∂t and −∂ u′v′/∂t (solid lines) at At = 0.19 (i.e. midway through
the At = 0 to 0.38 strain) resulting from the sum of the strain-induced changes to
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the individual production, dissipation, transport and velocity–pressure-gradient terms
in the k and −u′v′ transport equations. The asymmetry is most pronounced below
yw ≈ 0.3h(t). In Appendix B we show that this behaviour can be traced to the details
of the ‘tug-of-war’ between large changes of opposite signs to individual terms in the
Reynolds-stress budget. Whether an individual term increases or decreases is uniquely
set by the sign of A33, but – unfortunately, from a modelling point of view – for
some terms, the magnitude of the change also depends on the sign of the lateral
strain. For example, since the production of −u′v′ due to the ZPG lateral strain is
−u′v′ A33, the production magnitude will grow or diminish in proportion to −∂ u′v′/∂t .
Therefore, since the changes to the shear production v′v′ ∂u/∂y and velocity–pressure-
gradient correlation −Π12 (the other two dominant terms; see Appendix B) are nearly
symmetric in ±A33, the net |∂ u′v′/∂t | is different for divergence and convergence.

Figures 9 and 10 also quantify the extra-strain effects at At =0.19. These can
be inferred by comparing ∂k/∂t and −∂ u′v′/∂t with the corresponding explicit
production terms (open symbols) introduced by the divergence/convergence ((v′v′ −
w′w′) A33 and −u′v′ A33, respectively). The significant differences in magnitude – and
in some cases the sign – between the net rates of change and the A33 production,
serve as a warning against using the new/explicit production terms to estimate how
the turbulence will respond to ZPG lateral strains. We note in particular that the
evolution of k for both slow strains, and of −u′v′ for both fast ones, is exactly
opposite to what one would predict based on the sign of the A33 = −A22 production.

3.3. Turbulence structure

The impact of positive and negative A33 on the structure of the turbulence can be
observed in figure 11, where components of the Reynolds-stress anisotropy tensor
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bij = u′
iu

′
j /q

2 − (1/3)δij are displayed. These reveal that the net growth or decay of
the turbulence kinetic energy k = (1/2)q2 is not due to uniform growth or decay of the
individual normal-stress components. Both the fast and slow divergence drive the
streamwise u′u′ and spanwise w′w′ normal stresses further from isotropy, with u′u′

becoming a larger fraction of the total q2 = 2k = u′
iu

′
i , and w′w′ a smaller one,

than they are in the plane channel. (We focus here upon the outer layer, above
yw ≈ 0.05h(t).) This increased anisotropy occurs even though the slower divergence
causes k to increase while the faster divergence causes it to decrease slightly. For both
strain rates, in the outer layer, the sign of the net change of w′w′ (not shown) matches
that of the net change of k (namely, an increase for SD and decrease for FD). On the
other hand, u′u′ (also not shown) in the outer layer increases for both fast and slow
divergence, although only slightly for Case FD.

Negative A33 has the opposite effect: the fast and slow convergence both lead to
u′u′ being a smaller proportion of the u′u′ + v′v′ + w′w′ sum than in the unstrained
flow, while w′w′ becomes a larger fraction of the total, so that in both cases these two
components both become more isotropic – and this for flows in which the outer-layer
k both increases (FC) and decreases (SC). The tendency for w′w′ to increase relative
to q2 in the outer layer was also observed in the converging duct of Panchapakesan
et al. (1997).

Because the wall-normal v′v′ component increases for both the fast and slow
divergence in the outer layer (Appendix B, figure 20a, c), but k increases only for the
slow divergence, this stress moves closer to the isotropic limit (1/3)u′

iu
′
i for Case FD.

It exhibits little change, compared to the unstrained channel flow, for Case SD.
The slow convergence also has little effect on b22 in the outer layer, since the A33-
induced reduction in v′v′ (figure 23c) is compensated by a comparable reduction in k

(figures 8b and 21c). It is again the fast strain that has the greater outer-layer effect,
in that the v′v′ reduction for Case FC (figure 23a) is accompanied by a slight increase
in k (figures 8b and 21a), leading to a pronounced decrease of b22 in the outer layer.
The fast strains of both signs are thus both able to produce fairly deep changes to
this aspect of the turbulence structure, with positive and negative A33 forcing the v′v′

component respectively closer towards and further away from the isotropic state.
The changes to the normal-stress anisotropies for the four cases are consistent

with the conjecture in Panchapakesan et al. (1997) that alterations to the turbulence
structure are proportional to the rate of change of the lateral-strain equilibrium
parameter βD . Comparing table 3 and figure 11, we find that larger changes to b11,
b22 and b33 do indeed correspond to larger dβ∗

D/dt , for both the divergence and
convergence. The story for the −u′v′ component is different, however, in that the β∗

D

variation is not in-and-of-itself a reliable indicator of the sign and magnitude of its
change relative to the sum of the normal components.

The effect of the four strains on −b12 (i.e. the stress/energy ratio a1 = −u′v′/q2) is
shown in figure 11(g, h). Physically, this quantity can be viewed as a measure of how
‘efficiently’ the turbulence is able to utilize its kinetic energy to mix momentum across
the mean velocity gradient, and thus how effectively the velocity fluctuations extract
energy from the mean flow. As found in the experiments, both divergence (Saddoughi
& Joubert 1991) and convergence (Panchapakesan et al. 1997) cause outer-layer
reductions in this quantity. The amount of the reduction found here varies with the
sign and strength of A33 (but is not proportional to |dβ∗

D/dt |). Both the slow and
especially the fast divergence reduce the stress/energy ratio near the wall, in one case
(SD) because −u′v′ rises slower than k does, in the other (FD) because it falls faster
than k (cf. figure 8a). In the outer layer the impact of the slow divergence is negligible.
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The convergence, on the other hand, affects −b12 near the wall in the opposite way to
that of the divergence, since negative A33 causes −u′v′ to become an increasing larger
fraction of k; unlike for the divergence, however, here it is the slower strain that has
the greater impact (contrast the dotted and chain-dotted curves in figure 11h), which
is another symptom of the asymmetry in the response of the flow to the two signs of
the lateral strain. Another difference with respect to the A33 > 0 cases is that in the
outer layer both the fast and slow convergence produce essentially the same reduction
above yw =0.5h(t), even though both −u′v′ and k increase for one and decrease for
the other. As for positive A33, the changes to −u′v′ lag those to k.

Of the four strain fields considered here, the fast divergence is the most effective,
across the layer, at reducing the mixing efficiency of the turbulence. But despite its
greater potential for altering the turbulence structure, the magnitude required for
positive A33 to do so, in the outer layer, is higher than that of the convergence
(compare solid, dashed and dotted curves in figures 11g and 11h). In this sense,
the outer-layer turbulence is more sensitive to the slow convergence than it is
to the slow divergence. Comparable outer-layer reductions in −b12 are brought
about by the fast and slow convergence (A22 = −A33 > 0) and the slow APG strain
(A22 = −A11 =+0.31uτ (0)/h(0), where the strain components were also uniform in
space and constant in time, and applied between t = 0 and 0.365/|A11|; see Coleman
et al. 2003). We thus conclude that positive A22 has more influence than either the
streamwise deceleration, A11 < 0, or the lateral convergence, A33 < 0, on this measure
of the outer-layer structure of the Reynolds-stress tensor.

An alternative (coordinate-independent) perspective on the net turbulence-structure
effects induced by the lateral strains is provided in figure 12, which maps the
relationship between the two non-zero invariants of the Reynolds-stress anisotropy
tensor bij , and the variation of the principal-axes direction, across the width of the
channel. All possible states must lie within the Lumley triangle described by η = ± ξ

and η2 = (1/27) + 2ξ 3, indicated by the thin dotted curves in figure 12. (Recall that
purely isotropic conditions occur at (ξ, η) = (0, 0), and two-component turbulence (for
which, in principal-axes coordinates, one of the normal stresses is zero) exists along
the upper boundary; the axisymmetric limits (i.e. two of the principal-axes normal
stresses equivalent) are given by the η = −ξ and +ξ boundaries, the former when the
third normal stress is less than the two equal ones, the latter when it is greater (Pope
2000).)

The solid- and broken-line trajectories in figure 12(a–d ) denote the full 0 �
yw/h(t) � 1 range for the four cases, while open and closed symbols refer respectively
to the strained and unstrained flows at selected wall-normal locations. The turbulence
within the unstrained channel (solid curve and closed symbols) falls within two distinct
qualitative states (cf. Pope 2000): very near the wall (y+ < 5) the two-component limit
is closely approximated, while further away the flow tends to follow the positive-ξ
axisymmetric boundary, becoming increasingly isotropic as yw increases. (Although
even at the centreline, the flow is not completely isotropic.) Below yw/h(t) = 0.1
(where y+ ≈ 40 in the unstrained channel), the four strains have little effect on
the turbulence structure, other than to relocate a given yw/h(t) state to another
point on the unstrained-channel trajectory. Above yw/h(t) = 0.25 (initial, unstrained
y+ ≈ 100), both fast strains have a profound influence, in that they drive the ξ > 0
axisymmetric outer-layer turbulence towards the opposite, ξ < 0, axisymmetric limit.
The fast convergence affects more of the outer layer in this regard than the fast
divergence does, since the Case FC strain changes the sign of ξ down to wall-
normal locations less than yw/h(t) = 0.25, while for Case FD this is restricted to
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Figure 12. Invariant map of Reynolds-stress anisotropy tensor bij for ZPG lateral
(a, c) divergence and (b, d) convergence at At = 0.38. Curves denote 0 � yw/h(t) � 1 variation:

, Case SD; , Case FD; , Case SC; , Case FC; , unstrained
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Reynolds stresses, including (upper boundary) the two-component limit, η = ((1/27) + 2ξ 3)1/2,
and (η = ± ξ ) axisymmetric states (Pope 2000). Inset plots show wall-normal variation of
orientation θ∗ of principal axes of Reynolds stress in x–y plane with respect to (x, y)-axes:
tan 2θ∗ = 2 u′v′/(u′u′ − v′v′).

yw/h(t) > 0.8. Between yw/h(t) = 0.25 and 0.8, the fast divergence acts to drive the
quasi-axisymmetric (ξ > 0) flow closer to the η =+ξ limit.

Although less pronounced than the Case FC counterpart, the qualitative outer-
layer effect of the slow convergence is more significant than that produced by the
slow divergence. The Case SD trajectory varies from the unstrained version primarily
in its shift from an already nearly axisymmetric (ξ > 0) state to one more exactly
axisymmetric and slightly less isotropic (at the same yw/h(t)), in the region below
yw/h(t) = 0.8 and well above yw/h(t) = 0.25 (the lower limit for which the Case FD
flow is essentially axisymmetric after the same total strain). On the other hand, at
At = 0.38 the outer-layer of the Case SC flow is significantly less axisymmetric, and
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slightly more isotropic at the same yw/h(t), than the outer layer of the unstrained
channel flow. The Case SC behaviour is thus qualitatively different from that observed
in the APG strained-channel (Coleman et al. 2003) (compare the open and shaded
symbols in figure 12d); both flows have been subjected to positive A22 of comparable
magnitudes (A22h(0)/uτ (0) = 0.4 and 0.31) and duration (exp(A22t) = 1.46 and 1.44).
In fact, the alterations to the outer-layer structure (less isotropic, more axisymmetric)
effected by the APG strain are more characteristic of those found here for Case SD
than for Case SC. So, while we have found that mild positive A22 has a deeper
influence on the stress/energy ratio −b12 = a1 = −u′v′/q2 than do the streamwise
deceleration A11 < 0 or lateral convergence A33 < 0 of comparable magnitudes (cf.
figure 11g, h), figures 12(c) and 12(d ) imply that the non-zero non-A22 components,
and especially the extra-strain effects they induce, also contribute to modifications in
the relationship between the components of the Reynolds-stress tensor.

Both signs of the ZPG lateral strain can thus disrupt the structure of the outer-
layer turbulence, and these modifications can be as important as those found in
APG boundary layers. Nevertheless, it must be said that the structural changes are
small enough that they could be reasonably neglected in some situations or some
frameworks; for instance, linear eddy-viscosity turbulence models are oblivious to
them. In fact, the change to the stress/energy ratio seen here (figure 11g, h) is not
drastically different from that observed in the outer layer of the experiments of
Saddoughi & Joubert (1991), who concluded its practical implications for predictions
of boundary layers subject to lateral streamline divergence is negligible.

3.4. Reynolds-averaged Navier–Stokes (RANS) model predictions

Models of increasing complexity are considered, including the Spalart & Allmaras
(1994) one-equation, Menter (1994) two-equation shear stress transport (SST) and
Wilcox (1998) second-order Stress-ω schemes. The strained-channel version of the
model equations and numerical procedures used to obtain these solutions are described
in Yorke & Coleman (2004) and Sciberras & Coleman (2007). The finite-difference
implementation of each closure was applied for each of the four lateral strains,
employing 400 grid points between the wall and the channel centreline (with the first
point 0.12 initial wall units above the wall), and a constant time step of 1.0×10−3 initial
wall units. As in the DNS, the RANS solutions impose the effective-ZPG condition
by dynamically adjusting the in-plane wall velocity uw(t) such that the difference
between the mean centreline velocity uc and uw remains constant during the straining.

The net mean mass flux Um = (1/h(t))
∫ h(t)

0
[u(y, t) − uw(t)] dy thus varies in time.

RANS closures bring into play opposing terms, with varying degrees of physical
justification, and success in the steady flow does not rule out compensating errors.
Assembling a class, however small, of unsteady cases has a chance of detecting these
compensations, as some strong terms can very well have inadequate reactions to the
deformations. We also recognize that for the most empirical models, such as Spalart–
Allmaras (Spalart & Allmaras 1994), it is even not possible to define the correct value
for each term, and testing is the only tool to assist the modeller’s intuition. While wall
stress and velocity profiles are obvious criteria to assess models, turbulence quantities
are also instructive, and available from DNS with the same level of confidence.

The ability of three representative RANS models to reproduce the wall shear-stress
history is illustrated in figure 13. Besides demonstrating the modelling challenge posed
by this flow, this figure reveals the somewhat surprising result that for all four cases,
the simplest (Spalart & Allmaras (1994), one-equation) model is more accurate than
the other two (not only is it simpler, but its production term is insensitive to strain).
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Figure 13. DNS and RANS model predictions of wall shear-stress history: , DNS;
, Spalart–Allmaras; , Menter SST; , Wilcox Stress-ω.

Moreover, except for Case FD (for which it comes closer to the DNS result than
the two-equation SST prediction does), the Wilcox (second-moment) stress-ω closure
is the least accurate, especially for the slower divergence and convergence. This was
unexpected, both because of its extra complexity and because the Wilcox model
performed so impressively when applied to an APG strain with magnitude similar
to the Case SD/SC value (Sciberras & Coleman 2007). The Fast cases appear easier
to predict, which is not unusual, but the differences between models indicate that
the flows do not only have inviscid dynamics (possibly modified by viscous near-wall
physics). Curiously, the errors with convergence do not mirror those with divergence.
This could result from the models using absolute values in some terms. It is only
apparent at later times; the initial effects appear to mirror closely.

Graphs of the velocity u versus yw , not shown, are not very revealing, as the
outer-layer behaviour almost follows the inviscid equations, so that the errors are
essentially inherited from the initial condition. Graphs in wall units, in contrast,
exhibit strong departures from standard behaviour closer to the wall (figure 14). The
U+ level is altered by up to 2 units. Success then depends on the balance of terms in
the buffer layer, which has few legitimate reasons to be accurate, since these terms
reflect mingled wall-blockage and viscous effects in a very empirical manner. In fact



464 G. N. Coleman, D. Fedorov, P. R. Spalart and J. Kim

0

10

20

100 101 102

100 101 102

0

10

20

100 101 102

100 101 102

y+

100 101 102

y+

U
+

0

10

20

0

10

20

U
+

0

10

20

FD FC

SD SC

(a) (b)

(c) (d)

Figure 14. DNS and model predictions of mean velocity in inner scaling at At = 0.38: ,
DNS; , Spalart–Allmaras; , Menter SST; , Wilcox Stress-ω. Shaded
regions indicate strain-induced departure of DNS from unstrained initial conditions, denoted
by thin-solid ( ) curve. Inset plot in (a) illustrates DNS and model profiles at At = 0.

the level of success in the buffer layer is gratifying. The consistent under-prediction
by the SST model for y+ between about 10 and 100 is a known trait of the k-ω model.

Figure 15 with the shear stresses, again with some contrast, suggests some level
of ‘disorientation’ in the interplay between terms, for the Fast cases. The Stress-ω
model is superior away from the wall, less so near the wall. The agreement in the wall
stress is surprising, in view of the poor agreement away from the wall. Evidently, the
Reynolds stress is too weak to overcome the inviscid changes in the velocity profile
in the centre region. However, the two simpler models closely conserve eddy viscosity
during the rapid strain, whereas the physics nearly conserves Reynolds stress. This
logic (or lack thereof) exposes the crude nature of the models, and might suggest
production terms sensitized to strain. The Slow cases are sedate, for SA and SST, and
troublesome for Stress-ω.

Figure 16 confirms this by directly showing the eddy viscosity. In this parallel flow,
it can be defined from the DNS fields, and is the ratio of two transported quantities,
the Reynolds stress and the vorticity, which gives some legitimacy to the present
comparisons. In simple channel flow, the agreement is poor in the centre region, but



Laterally strained wall-bounded turbulence 465

0 0.5 1.00.10

0.5

1.0

yw/h(t)yw/h(t)

τ/
u2 τ(0

)
τ/

u2 τ(0
)

(a) (b)

(c) (d)

FD

0 0.5 1.00 0.1

0.5

1.0

FC

0 0.5 1.00.10

0.5

1.0
SD

0 0.5 1.00 0.1

0.5

1.0

SC
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, DNS; , Spalart–Allmaras; , Menter SST; , Wilcox Stress-ω.

Shaded regions indicate strain-induced departure of DNS from unstrained initial conditions,
denoted by thin-solid ( ) curve.

the effect on the velocity profile is weak because the velocity gradients are small.
During straining, the models have some success following the DNS near the wall
(except for Stress-ω in Slow cases), but essentially none in the centre region, probably
reflecting the lack of connection between their production terms and the strain field,
in addition to the initial disagreement of course. The SST limiter is activated by the
divergence cases, not the convergence cases.

4. Summary and closing comments
DNS of a set of time-developing strained-channel flows has been performed in

order to better understand the response of turbulent wall layers to lateral-straining
perturbations. This approach has the advantage of isolating lateral-strain effects
without having to account for unwanted complicating features (such as streamwise and
spanwise pressure gradients) that are present in the corresponding laboratory studies.
Since statistics vary only in one spatial direction and time, the analysis, and turbulence-
model testing and development, are considerably simplified. We have considered four
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Figure 16. DNS and model predictions of eddy viscosity νT at At =0.38: ,
−u′v′/(∂u/∂y) from DNS; , Spalart–Allmaras; , Menter SST; , Wilcox
Stress-ω. Shaded regions indicate strain-induced departure of DNS from unstrained initial
conditions, denoted by thin-solid ( ) curve. Inset plot in (a) illustrates DNS and model
profiles at At = 0.

cases in detail – fast and slow divergence, and fast and slow convergence – all
corresponding to ZPG conditions, such that the lateral deformations are accompanied
by equal and opposite wall-normal deformations.

Some of the observed strain-induced effects (such as changes in the magnitude
and relationship of the components of the Reynolds-stress tensor) are unexpectedly
subtle – especially in light of the profound effect the lateral strain has upon the
primary shear ∂u/∂y. The subtlety of these effects caused considerable ambiguity in
the experimental studies, since the latter were potentially affected by measurement
uncertainties and/or unwanted residual extra strains. Otherwise, the simulations
presented here did not cause surprises, relative to the experimental knowledge base.
They provide a precise, if low-Reynolds-number, database for RANS model testing;
the testing reported here produced an unforeseen ranking of three well-used models.
A motivated modeller could well find direct suggestions in the present results to
sensitize the model to lateral strain (or in fact remove a disruptive sensitivity). The
availability of complete Reynolds-stress tensors and budgets (Appendix B) should
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aid future studies of more complex, particularly Reynolds-stress transport, turbulence
models. Another attractive feature is the well-understood initial conditions, which
allow models to begin the history in good agreement with DNS (except for the
centre-region eddy viscosity), thus isolating the effects of the perturbation. Exploiting
fast and slow cases, and distinguishing the inner and outer layers, some behaviours
can be understood in hindsight in terms of inviscid dynamics (weak turbulence), or
conversely in terms of mature layers (strong turbulence). The various cases can also be
compared to each other to determine the importance of the individual components of
the straining perturbation. In the present study, this was done to isolate the importance
of the wall-normal stretching A22 = ∂V/∂y term: we find that comparable reductions
of the stress/energy ratio are caused by this term whether it is accompanied by a
streamwise deceleration A11 = ∂U/∂x < 0 (in a previous study) or lateral convergence
A33 = ∂W/∂z < 0, pointing to the central role it plays in distorting or realigning the tur-
bulence. Positive A22 by itself, however, does not solely define the changes in the rela-
tionship between the invariants of the Reynolds-stress anisotropy tensor, which implies
that the overall structure of the turbulence is affected by the entire straining tensor.

Extra-strain effects associated with ZPG lateral strains have been benchmarked.
One of the most striking is that the direct production terms due to the strain
can in some cases be of opposite sign to the net rates-of-change to which they
are contributing. A related modelling challenge associated with this flow (and other
suddenly perturbed turbulent wall layers) is that net changes are determined by larger
changes of opposite sign to individual terms in the Reynolds stress budget. While the
direction of the changes to the individual budget terms is set by the sign of A33, the
magnitude of those changes can differ for divergence and convergence of the same
rate (see Appendix B). For example, the −u′v′ production caused by A33 = −A22 is
−u′v′ A33, and thus it grows or diminishes with −∂ u′v′/∂t . This results in a potentially
difficult-to-model asymmetry between the effects of divergence and convergence on
the Reynolds stresses. The budget information in Appendix B may be beneficial in
future attempts to capture this asymmetry.

We close with a few general comments regarding the present and future studies. Tur-
bulence research by DNS is steered by the desire to harness the present level of CPU
power, which is decidedly superior to that of the 1980s when the first wall-bounded
flows were treated, in the most useful manner possible. One direction is towards higher
Reynolds numbers, with as the most visible goals the confirmation (or disproval) of
the logarithmic law and the determination of the Kármán constant, or the equivalent
for the energy-cascade theory of Kolmogorov. In this area, the results are thought-
provoking, but competing with experiment on Reynolds number would be senseless.
Still, synergy between experiments, DNS and theory is not completely absent.

Another direction and one of at least as much interest to turbulence modellers
is to settle for intermediate Reynolds numbers, although noticeably higher than the
minimum that sustains turbulence, and to perturb the flow in a realistic manner and
strongly enough to defeat the basic theory, and to push a turbulence model out of
its calibration domain. Preferably, the perturbation is ‘friendly’ to DNS, which means
allowing periodic directions, and to model testing, which means limiting the number
of dimensions. Early examples included two-dimensional and three-dimensional
oscillating boundary layers. Preferably also, a range of Reynolds numbers is treated;
however, the fact that the flow now has a history often removes time as an averaging
direction, which strongly impacts the computing cost. The oscillating boundary layers
have rich histories of their shear rate, but no other deformation. The present work
is one in a series with, precisely, those other deformations, addressed one at a time
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and isolated in a manner reminiscent of series of experimental campaigns over the
years. The DNS flow problems are similar to experimental ones, but the confidence
now placed in DNS means that a direct, quantitative experimental confirmation is
not now considered necessary.

It is not obvious which kind of perturbation is the best candidate for a further
study of the present type, i.e. incompressible channel flow with strains. Studies with
a matrix of perturbation strengths and Reynolds numbers may be most helpful in
documenting how wall-bounded turbulence deviates from the log law; often, theory
is not even capable of predicting in which direction the deviation will be. Conversely,
the log law sometimes applies when common sense would have predicted its failure;
examples include channel flow, pipe flow, and Ekman layers, in the sense that they
do not satisfy the constant-stress criterion. The theory remains weak, and rigorous
improvements are, sadly, not expected.

This work was sponsored by the UK Engineering and Physical Sciences Research
Council (Grant EP/C001214/1) and the UK Turbulent Consortium (EP/D044073/1).
The DNS was done on the UK EPSRC HPCx cluster. We are grateful to
Dr C. P. Yorke for his many useful contributions to this study.

Appendix A. Spectra and two-point correlations
Selected velocity spectra and two-point correlations from Cases SD and SC

are shown in figure 17, at t =0 and At = |A33|t = 0.38 (the end of the straining
period considered). These were chosen because they convey the most pessimistic
message regarding the numerical parameters. Results involving other cases, velocity
components and wall-normal locations are much more favourable.

The streamwise spectra and correlations for the streamwise component u′ for the
A33 = 0 and the slow A33 > 0 and A33 < 0 cases are presented in figures 17(a) and
17(b). The trend seen in the outer layers of the experiments, for the u′u′ energy to
shift respectively to lower and higher streamwise wavenumbers due to divergence
(Saddoughi & Joubert 1991) and convergence (Panchapakesan et al. 1997) is not
observed here (see pre-multiplied spectra in the inset in figure 17a). This is perhaps
due to the ‘short/sharp’ strain history applied in the DNS. On the other hand, the
behaviour at the lowest streamwise wavenumbers kx of the u′ spectra suggests the
results are not completely unaffected by the streamwise extent Λx of the domain.
This is a perennial issue for DNS, indicating that the energy that naturally occurs
at non-zero wavenumbers smaller than our domain allows is instead carried by the
kx = 0 modes: that is, all scales larger than the domain size are treated as if they were
infinitely long. However, the two-point correlations at Λx/2 separation (figure 17b)
are small enough that the influence of the ‘missing scales’ on first- and second-order
statistics can reasonably be neglected.

The effect of the lateral strain can be seen in the changes in the minimum spanwise
wavenumber kz and in the maximum spanwise separation rz observed in figures 17(c)
and 17(d ). Recall that the domain deforms in time according to Λz(t) = Λz(0) exp(A33t)
and h(t) = h(0) exp(A22t) (Coleman et al. 2000). Both the spectra and correlations
imply that the Case SD and SC numerical parameters are adequate for the time
considered, although figure 17(c) suggests that the near-wall resolution in z for
Case SD would have been compromised if the straining had been continued much
beyond |A33|t = 0.38.
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Appendix B. Reynolds-stress budgets
The non-dimensionalized Reynolds-stress transport equations for the strained

channel can be written, for an arbitrary Aij , as

∂u′
iu

′
j

∂ t̂
= Pij + Tij + Dij + Πij − εij , (B 1)

where the material derivative is ∂/∂t̂ = ∂/∂t + A22y ∂/∂y (see Coleman et al. 2000),
and right-hand-side terms are the rates of

production: Pij = −u′
iv

′ ∂ uj

∂y
− u′

j v
′ ∂ ui

∂y
− u′

iu
′
�Aj� − u′

ju
′
�Ai�,

dissipation: −εij = − 2

Rτ (0)

∂u′
i

∂x�

∂u′
j

∂x�

,

turbulent transport: Tij = − ∂

∂y
(v′u′

iu
′
j ),
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viscous diffusion: Dij =
1

Rτ (0)

∂2

∂y2
(u′

iu
′
j ), and the

velocity–pressure-gradient correlation: Πij = −
(

u′
i

∂p′

∂xj

+ u′
j

∂p′

∂xi

)
.

The Reynolds number Rτ (0) = 392 is based on the initial friction velocity uτ (0) and
half-width h(0). The velocity u′

i and kinematic pressure p′ fluctuations in (B 1) have
been scaled by uτ (0), while the spatial variable xi is in units of h(0). The Reynolds
stresses u′

iu
′
j are functions solely of time t = t̂ and the wall-normal coordinate yw . We

shall find it useful to decompose the production term, in order to distinguish between
the direct effects of the (irrotational) applied strain Aij and those arising indirectly
through changes to the mean channel-flow velocity u(y, t) . The total production rate
Pij is separated into shear and applied-strain components, Pij =P S

ij +P A

ij respectively,
where

P S

ij = −u′
iv

′ ∂ uj

∂y
− u′

j v
′ ∂ ui

∂y
,

(B 2)

P A

ij = −u′
iu

′
�Aj� − u′

ju
′
�Ai�.

B.1. Lateral divergence

Figures 18–20 respectively contain the k, −u′v′ and v′v′ budgets at At = 0.19 for the
divergence, with Cases FD (b) and SD (d) compared in each; the corresponding plots
for the convergence are shown in figures 21–23. Note that the horizontal axis of the
budget figures in (b) and (d) is expanded in the near-wall region by a logarithmic
scale below yw = 0.1h(t). Included on the left-hand side (a and c) of these figures are
profiles of the Reynolds-stress component(s) in question at At = 0, 0.19 and 0.38, to
illustrate the change created by the sum of the individual budget terms. The budget
plots (b and d) also show, via the upper inset, the state at At = 0+, immediately after
the strain is applied. This involves the two components that are immediately altered
by non-zero Aij : (i) the applied-strain production P A

ij (denoted by the open symbols),
and (ii) the velocity–pressure-gradient correlation Πij , which impulsively jumps from
its plane-channel variation to a new At =0+ profile defined by the sign and strength
of the strain (the difference between the strain-modified Πij and the unstrained plane-
channel value is indicated by the ‘+’ symbols in the At = 0+ insets). The net ‘initial
pulse’ due to the sum of the applied-strain production and Πij difference is shown
by the solid symbols. The shaded regions in the main budget plots reveal the extent
to which each of the terms have departed at At = 0.19 from their unstrained plane-
channel state (thin solid lines), as a result of the ZPG lateral strains. The thick-solid
curves (in the main plots and lower right-hand-side insets in b and d) trace the net
rate of change ∂( )/∂t given by the sum of the individual production, dissipation,
transport and velocity–pressure-gradient terms at At = 0.19, leading to the evolution
seen in the left-hand-side (a and c) profiles.

The primary reason the fast divergence causes a slight drop in turbulence
kinetic energy (figure 18a, b) is that positive A33 introduces negative applied-strain
‘production’ P A

k = (1/2)P A

ii = (v′v′−w′w′)A33 (cf. kmax histories in figure 7a). The reason
the drop is so small is that the net effect of the strain upon the balance of the other
terms is essentially negligible, especially in the outer layer, allowing P A

k to have a
deciding role in the net negative ∂k/∂t . This implies that very large divergence will
cause the flow to relaminarize.
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Figure 18. (a, c) Turbulence kinetic energy k profiles for (a) Case FD and (c) Case SD:
, At = 0; , At =0.19; , At = 0.38. (b, d) Terms in k budget for (b) Case FD

and (d) Case SD at t =0 (before strain; thin solid curves) and At = 0.19: , mean-shear
production; , dissipation; , turbulent transport; , viscous diffusion;

, velocity–pressure-gradient correlation; �, applied-strain production (also shown in
lower inset with expanded vertical scale); thick-solid curve ( ), sum of all terms (≈ ∂k/∂t)
at At = 0.19 (also shown in lower inset); ∗ (in lower inset in (b) and (d)), net change in
velocity–pressure-gradient term from At = 0 (before strain applied) and 0.19. Upper insets
in (b) and (d) show terms at At =0+, immediately after strain applied to plane-channel
initial conditions: 	, applied-strain production; +, net change of velocity–pressure-gradient
correlation due to application of strain (i.e. value at At =0+ minus value at t = 0); �, sum of
all terms at At = 0+. Curves in (b) and (d) normalized by u4

τ (0)/ν. (Note difference in vertical
scales of insets in (b) and (d).)

As mentioned above, it is somewhat surprising that k is so unaffected by the
fast strain. We now see that for Case FD the divergence also induces relatively
little change in the shear production term P S

k = (1/2)P S

ii = −u′v′ ∂u/∂y. This was also
unexpected, given the controlling effect A33 has on the mean shear ∂u/∂y (cf. figure 2a).
Examination of the terms in the −u′v′ balance that are linearly dependent upon
A33 = −A22 (see figure 19b) reveals that when A33 	 ∂u/∂y, −u′v′ ∼ exp(−(1/2)A33).
As a consequence, for Case FD the ∂u/∂y growth (∼ exp(A33t)) combines with the
−u′v′ reduction such that P S

k (∼ exp((1/2)A33)) has only increased by about 10 % at
At = 0.19. In contrast, the significant outer-layer increase to k invoked by the slower
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Figure 19. (a, c) Turbulent shear-stress −u′v′ profiles for (a) Case FD and (c) Case SD: ,
At = 0; , At = 0.19; , At = 0.38. (b, d) Terms in −u′v′ budget for (b) Case FD and
(d) Case SD at t = 0 (before strain; thin solid curves) and At = 0.19: , mean-shear
production; , dissipation; , turbulent transport; , viscous diffusion;

, velocity–pressure-gradient correlation; �, applied-strain production (also shown in
lower inset with expanded vertical scale); thick-solid curve ( ), sum of all terms
(≈ −∂u′v′/∂t) at At = 0.19 (also shown in lower inset); ∗ (in lower inset in b and d), net
change in velocity–pressure-gradient term from At = 0 (before strain applied) and 0.19. Upper
insets in (b) and (d) show terms at At = 0+, immediately after strain applied to plane-channel
initial conditions: 	, applied-strain production; +, net change of velocity–pressure-gradient
correlation due to application of strain (i.e. value at At = 0+ minus value at t = 0); �, sum of
all terms at At = 0+. Normalization as in figure 18. (Note difference in vertical scales of insets
in (b) and (d).)

divergence is associated with amplified shear production (figure 18d). After an initial
decrease due to the negative applied-strain production P A

k = (1/2)P A

ii (see expanded-
scale At = 0+ inset in figure 18d and kmax history in figure 7a), the Case SD strain
increases both ∂u/∂y and −u′v′ (figures 2a and 8a). Their product thus eventually
more than compensates for the negative applied-strain production, leading to positive
∂k/∂t over the bulk of the layer (see At = 0.19 inset in figure 18d). Figure 18 also
reveals the subtleties inherent to extra-strain perturbations, since one would obtain a
qualitatively incorrect picture of the effect of the ZPG divergence if the prediction of
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Figure 20. (a, c) Wall-normal velocity variance v′v′ profiles for (a) Case FD and (c) Case SD:
, At = 0; , At =0.19; , At = 0.38. (b, d) Terms in v′v′ budget for (b) Case FD

and (d) Case SD at t = 0 (before strain; thin solid curves) and At = 0.19: , dissipation;
, turbulent transport; , viscous diffusion; , velocity–pressure-gradient

correlation; �, applied-strain production (also shown in lower inset with expanded vertical
scale); thick-solid curve ( ), sum of all terms (≈ ∂v′v′/∂t) at At = 0.19 (also shown in
lower inset); ∗ (in lower inset in b and d), net change in velocity–pressure-gradient term
from At = 0 (before strain applied) and 0.19. Upper insets in (b) and (d) show terms at
At = 0+, immediately after strain applied to plane-channel initial conditions: 	, applied-strain
production; +, net change of velocity–pressure-gradient correlation due to application of strain
(i.e. value at At = 0+ minus value at t = 0); �, sum of all terms at At = 0+. Normalization as
in figure 18. (Note difference in vertical scales of insets in (b) and (d).)

whether the divergence caused the flow to become more or less energetic were based
solely on the sign of the applied-strain production term.

The influence of positive A33 is thus felt indirectly, through its modification of
∂u/∂y and −u′v′. Whereas the faster divergence has less impact than the slower one
on the balance of turbulence kinetic energy k, its influence on the −u′v′ shear-stress
balance is more profound. This can be seen by comparing figures 19(b) and 19(d).
We note that both fast and slow divergence initially lead to net negative −∂u′v′/∂t ,
due to a drop in the −Π12 velocity–pressure-gradient term that is larger than the
increase in the (positive) −P A

12 = −u′v′A33 applied-strain production. This imbalance
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Figure 21. (a, c) Turbulence kinetic energy k profiles for (a) Case FC and (c) Case SC:
, At = 0; , At = 0.19; , At = 0.38. (b, d) Terms in k budget for (b) Case FC

and (d) Case SC at t = 0 (before strain; thin solid curves) and At = 0.19: , mean-shear
production; , dissipation; , turbulent transport; , viscous diffusion;

, velocity–pressure-gradient correlation; �, applied-strain production (also shown in
lower inset with expanded vertical scale); thick-solid curve ( ), sum of all terms (≈ ∂k/∂t)
at At = 0.19 (also shown in lower inset); ∗ (in lower inset in b and d), net change in
velocity–pressure-gradient term from At = 0 (before strain applied) and 0.19. Upper insets
in (b) and (d) show terms at At = 0+, immediately after strain applied to plane-channel
initial conditions: 	, applied-strain production; +, net change of velocity–pressure-gradient
correlation due to application of strain (i.e. value at At = 0+ minus value at t = 0); �, sum of
all terms at At = 0+. Normalization as in figure 18. (Note difference in vertical scales of insets
in (b) and (d).)

at At = 0+ scales nearly linearly with A33. Note the order-of-magnitude difference
in the vertical axes in the At = 0+ insets in figures 19(b) and 19(d). For Case FD,
the initial trend for the Π12 reduction to control the sign of −∂u′v′/∂t across the
layer is maintained at At = 0.19, with −P A

12 and increased −P S

12 = v′v′ ∂u/∂y reducing
the strength of the reduction. (The difference between −Π12 at At =0.19 and its
unstrained initial profile is shown by the ‘∗’ symbols in the lower right-hand-side inset
in figure 19b.) This accounts for the uniform −u′v′ reduction seen in figure 19(a). The
reduced −u′v′ in turn weakens the ability of the applied strain term −P A

12 = −u′v′A33
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Figure 22. (a, c) Turbulent shear-stress −u′v′ profiles for (a) Case FC and (c) Case SC: ,
At = 0; , At = 0.19; , At = 0.38. (b, d) Terms in −u′v′ budget for (b) Case FC and
(d) Case SC at t = 0 (before strain; thin solid curves) and At = 0.19: , mean-shear
production; , dissipation; , turbulent transport; , viscous diffusion;

, velocity–pressure-gradient correlation; �, applied-strain production (also shown in
lower inset with expanded vertical scale); thick-solid curve ( ), sum of all terms
(≈ −∂u′v′/∂t) at At = 0.19 (also shown in lower inset); ∗ (in lower inset in b and d), net
change in velocity–pressure-gradient term from At = 0 (before strain applied) and 0.19. Upper
insets in (b) and (d) show terms at At = 0+, immediately after strain applied to plane-channel
initial conditions: 	, applied-strain production; +, net change of velocity–pressure-gradient
correlation due to application of strain (i.e. value at At =0+ minus value at t = 0); �, sum of
all terms at At = 0+. Normalization as in figure 18. (Note difference in vertical scales of insets
in (b) and (d).)

to counteract the larger negative −Π12, which tends to drive the flow further from
equilibrium. The −Π12 drop is stronger than the sum of the positive −P A

12 and the
shear production −P S

12 = v′v′ ∂u/∂y across the layer, even thought in the outer layer
the latter is enhanced by a strain-induced increase to v′v′ (see below). Paradoxically,
it is for the smaller strain that the explicit applied-strain production −P A

12 eventually
dictates the sign of the outer-layer −∂u′v′/∂t , such that at At = 0.19 these two terms
are very nearly equivalent above yw = 0.5h. Nearer the wall, the −Π12, −P S

12 and
−P A

12 balance is more delicate, leading to the non-monotonic behaviour of −∂u′v′/∂t
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Figure 23. (a, c) Wall-normal velocity variance v′v′ profiles for (a) Case FC and (c) Case SC:
, At = 0; , At = 0.19; , At =0.38. (b, d) Terms in v′v′ budget for (b) Case FC

and (d) Case SC at t = 0 (before strain; thin solid curves) and At = 0.19: , dissipation;
, turbulent transport; , viscous diffusion; , velocity–pressure-gradient

correlation; �, applied-strain production (also shown in lower inset with expanded vertical
scale); thick-solid curve ( ), sum of all terms (≈ ∂v′v′/∂t) at At = 0.19 (also shown in
lower inset); ∗ (in lower inset in b and d), net change in velocity–pressure-gradient term
from At = 0 (before strain applied) and 0.19. Upper insets in (b) and (d) show terms at
At = 0+, immediately after strain applied to plane-channel initial conditions: 	, applied-strain
production; +, net change of velocity–pressure-gradient correlation due to application of strain
(i.e. value at At = 0+ minus value at t = 0); �, sum of all terms at At = 0+. Normalization as
in figure 18. (Note difference in vertical scales of insets in (b) and (d).)

implied by the −u′v′ evolution in figure 19(c). The changes of the shear-production
term −P S

12 = v′v′ ∂u/∂y, which increases in the outer layer and decreases near the wall,
are connected to the growth/decay of the wall-normal stress v′v′.

Figure 20(b) implies that for Case FD the v′v′ growth in the outer layer is due to the
large positive applied-strain production P A

22 = 2v′v′A33 introduced by the divergence.
This term dominates the v′v′ evolution above yw = 0.2h(t) throughout the At = 0+ to
0.19 straining period, with Π22 (despite changing sign) playing only a mitigating role
(figure 20b). This direct production effect is self reinforcing, in that larger outer-layer
v′v′ leads to still larger P A

22 = 2v′v′A33, with Π22 never able to change the sign of
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∂v′v′/∂t . Closer to the wall, the velocity–pressure-gradient drop is strong enough,
compared to P A

22, for the v′v′ reduction to be maintained from At = 0+ to 0.19.

B.2. Lateral convergence

The effect of the fast and slow convergence upon the k, −u′v′ and v′v′ budgets can be
seen respectively in figures 21–23. The first two of these can be compared to the k and
−u′v′ budgets from the mild convergence experiment of Panchapakesnan et al. (1997).
The comparison is complicated by Panchapakesan and colleagues’ consideration of
the budgets of k and −u′v′ as fractions of the local u2

τ , and their use of the local
boundary layer thickness and skin friction, along with the mean velocity at each
wall-normal location, to non-dimensionalize the results. Nevertheless, it is possible
to infer that their convergence reduces the total production of both k and −u′v′, in
absolute terms. For the bulk of the present flow (yw > 0.05h(t)), the net P S

k + P A

k also
decreases for Case SC (but not for Case FC), while both the Case FC and SC strain
decreases −(P S

12 + P A

12) (figure 22b, d).
Comparing figures 21–23 with the A33 > 0 counterparts above, one can observe the

manner in which the individual budget terms are affected by the sign and magnitude
of the lateral strain. The qualitative tendency for the sign of the change in each term
to correlate with the sign of A33 is clear. There are, however, quantitative differences
between the divergence- and convergence-induced effects that cause the net rate of
change of the Reynolds stresses to differ by more than just sign. These differences,
whose symptoms were noted in § 3.2, are greatest for Cases FD and FC, which implies
the ±A33 asymmetry in net ∂u′

iu
′
j /∂t is driven by the fast/linear terms.

An example of these growth-rate asymmetries can be seen in the differences
between the near-wall ∂k/∂t for Cases FD and FC (compare thick-solid curves
below yw = 0.1h(t) in lower right-hand insets in figures 18b and 21b). Note that ∂k/∂t

is negative at At =0.19 near yw ≈ 0.05h(t) for both signs of A33 (figure 7a, b). This
occurs because the −u′v′ decrease for Case FD is stronger than the −u′v′ increase for
Case FC (figures 19a and 22a). As a result, the slight increase in P S

k = −u′v′ ∂u/∂y for
the fast divergence is not as large as the decrease in P S

k for the fast convergence. (Recall
that for these two cases, the behaviour of ∂u/∂y is determined almost entirely by the
total lateral strain, with positive A33 causing it to grow and negative A33 doing the
opposite; see figure 2a, b.) Consequently, the fast convergence causes the contribution
of P A

k = (v′v′ − w′w′)A33 to the overall ∂k/∂t balance to be more effectively mitigated
by a stronger P S

k , such that the signs of P A

k and ∂k/∂t agree at fewer yw locations for
Case FC than they do for Case FD.

The ∂k/∂t asymmetry has its roots in the behaviour of the −Π12 term in the
−u′v′ balance. The fast convergence acts to increase −u′v′ across the layer, primarily
through a significant reduction in this term (see dotted curve and ‘∗’ symbols in
figure 22b); this in turn increases the magnitude of the (negative) applied-strain
term −P A

12 = −u′v′A33, which leads for Case FC to a more effective −∂u′v′/∂t ≈ 0
‘stalemate’ between −P A

12 and the strain-induced changes to Π12 and −P S

12, than
is found for the A33 > 0 counterpart. Recall that the fast divergence, on the other
hand, acts to reduce −u′v′ (again via a large change to −Π12), which thus reduces the
magnitude of −P A

12 = −u′v′A33, driving the balance further from equilibrium. Compare
figures 19(b) and 22(b), especially their lower right-hand-side insets.

Further evidence of the divergence/convergence asymmetry in the Reynolds-stress
growth rates can be observed in the v′v′ budget. Here the dual effect of A33 on v′v′

(largely through Π22; see figures 20b and 23b) and P A

22 = 2v′v′A33 causes the fast
divergence to amplify the v′v′ growth and the fast convergence to diminish the v′v′
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decay. This affects the −u′v′ budget, since for example the outer-layer increase of
−P S

12 = v′v′ ∂u/∂y is slightly stronger for Case FD than the decrease of −P S

12 is for
Case FC. These trends are just discernable in the v′v′ and −u′v′ budgets for Cases FD
and FC. Although it is not as important as the asymmetry caused by the coupling
between −Π12 and −P A

12, discussed above, it is noteworthy that the interaction between
Π22 and P A

22 acts in opposition, through its effect on −P S

12, to the net effect caused
by the −Π12 versus −P A

12 imbalance, demonstrating the unfortunate tendency for the
evolution of suddenly perturbed flows to be governed by small differences in large
changes to individual terms. This illustrates yet again the challenge associated with
analysis and prediction of suddenly perturbed wall-bounded turbulence.
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