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Wall-bounded turbulence in pressure gradients is studied using direct numerical
simulation (DNS) of a Couette–Poiseuille flow. The motivation is to include adverse
pressure gradients, to complement the favourable ones present in the well-studied
Poiseuille flow, and the central question is how the scaling laws react to a gradient
in the total shear stress or equivalently to a pressure gradient. In the case considered
here, the ratio of local stress to wall stress, namely τ+, ranges from roughly 2/3 to
3/2 in the ‘wall region’. By this we mean the layer believed not to be influenced by
the opposite wall and therefore open to simple, universal behaviour. The normalized
pressure gradients p+ ≡ dτ+/dy+ at the two walls are −0.00057 and +0.0037. The
outcome is in broad agreement with the findings of Galbraith, Sjolander & Head
(Aeronaut. Quart. vol. 27, 1977, pp. 229–242) relating to boundary layers (based on
measured profiles): the logarithmic velocity profile is much more resilient than two
other, equally plausible assumptions, namely universality of the mixing length � = κy

and that of the eddy viscosity νt = uτκy. In pressure gradients, with τ+ �= 1, these three
come into conflict, and our primary purpose is to compare them. We consider that
the Kármán constant κ is unique but allow a range from 0.38 to 0.41, consistent with
the current debates. It makes a minor difference in the interpretation. This finding of
resilience appears new as a DNS result and is free of the experimental uncertainty
over skin friction. It is not as distinct in the (rather strong) adverse gradient as it is
in the favourable one; for instance the velocity U+ at y+ =50 is lower by 3 % on
the adverse gradient side. A plausible cause is that the wall shear stress is small and
somewhat overwhelmed by the stress and kinetic energy in the bulk of the flow. The
potential of a correction to the ‘law of the wall’ based purely on p+ is examined, with
mixed results. We view the preference for the log law as somewhat counter-intuitive
in that the scaling law is non-local but also as becoming established and as highly
relevant to turbulence modelling.
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1. Introduction
The cornerstone of our knowledge of wall-bounded turbulent flows, which we

would describe as ‘semi-theoretical’, is the logarithmic law. The purest argument in its
favour is that this layer is dominated by the shear stress, equal to u2

τ (the density is
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set to 1, and uτ is the friction velocity). It is also dominated by the blocking effect of
the wall, so that the wall distance y sets the size of the largest, and stress-producing,
eddies. The rest is dimensional analysis. (An excellent source is Bradshaw & Huang
1995, who have also discussed the problem at hand here, on p. 173 of their work.
Based on their position then, we expect that they will not be surprised by the present
findings.)

Strictly, this reasoning applies only to a constant-stress layer: uτ is a wall quantity
but gives the shear stress across the entire layer in which universal behaviour is
expected. Thus, τ (y) = u2

τ . However, there is keen interest in layers with non-uniform
stress, for two reasons. The first, which is practical, is the need to predict such flows
via turbulence modelling; these are flows with pressure gradients and are of great
importance. The second is that logarithmic behaviour is observed even in flows with
favourable gradients (so that τ (y) < u2

τ , often to a ratio of the order of 2/3 or less).
Examples include Poiseuille flows in channels and pipes and the Ekman layer (Spalart,
Coleman & Johnstone 2009). This poses a theoretical challenge of great interest, for
the following reason.

Consider the flow outside the viscous-influenced layer. The log law can be motivated
directly in terms of the velocity profile. If the shear flow is controlled by uτ and y,
dimensional analysis dictates the following for the shear rate:

dU

dy
=

uτ

κy
, (1)

where κ is the Kármán constant. The integral of (1) is the log law. Another approach
to wall-bounded turbulence, attributed to Clauser, is through the eddy viscosity νt .
The shear stress is −u′v′ = νtdU/dy. Again by dimensional analysis,

−u′v′

dU/dy
≡ νt = uτκy. (2)

Finally, Prandtl’s mixing length equation is νt = �2dU/dy, and by dimensional analysis,
√

−u′v′

dU/dy
≡ � = κy. (3)

In a constant-stress layer, outside the viscous layer, (1)–(3) are equivalent, since
−u′v′ = τ (y) = u2

τ .
Although (2) and (3) make use of the concepts of mixing length and eddy viscosity,

they should not necessarily be viewed as ‘turbulence modelling’ while, in contrast,
regarding (1) as ‘theoretical’. All three amount to assertions about a length scale being
proportional to the wall distance y, with uτ setting the velocity scale. Note also that
(3) has a slightly different nature, in that it does not involve the wall quantity uτ ; it is
local in y. This may explain its prominence in algebraic turbulence models, without
indicating whether the primary reason is physics or convenience. In any case, in our
view, none of the three arguments is more rigorous than the other two.

When the shear stress is not constant, (1)–(3) conflict. In a planar flow which is
homogeneous in x, as here, the momentum equation reduces to dτ/dy = dp/dx, so
that the relationship between the stress gradient in y and the pressure gradient in x

is simple. Furthermore, these quantities do not depend on y; so τ (y) is linear. This
conflict has of course been known for a long time, and the desire to determine which
argument survives, if any, is highly justified. In a series of papers, Galbraith, Sjolander
and Head forcefully argued that experimental evidence favours (1) (Galbraith & Head
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1975; Head & Galbraith 1975; Galbraith, Sjolander & Head 1977). Direct numerical
simulation (DNS) evidence has been in agreement with this, but in a very limited
manner (Spalart & Watmuff 1993), outside of Poiseuille flows of course. This open
question is quite important especially as the mixing-length equation (3) has been
so widely used, but the challenge to it does not seem to have been followed up,
other than by Johnson & Coakley (1990). Naturally, no experimental measurement
is perfect, especially for skin friction, but we have not found discussions that argue
against the conclusions of these three papers on those grounds.

The circular aspect of these papers that came out in the mid-1970s is noted here, as
it was then: they used an assumed logarithmic velocity profile to fit the measurements
and calculate derivatives and in the end concluded that the log law is approximately
valid. However, the fits are used to calculate the shear stress and then the mixing
length via the momentum equation, which is not direct and has a chance of exposing
the log-law assumption if it fails grossly. Nevertheless, independent measurement of
the skin friction and near-wall profiles would have been preferable. Modern techniques
in this field may prompt a fresh attempt at clearing the issue.

Two of the experimental Couette–Poiseuille cases of El Telbany & Reynolds (1980)
bracket ours, in terms of wall-to-wall stress ratio, and are close in Reynolds number.
Their figures quite strongly support the law of the wall for velocity (1), with the skin
friction obtained by extrapolating the shear stress to the wall, rather than velocity-
gradient measurements near the walls. They do not cite Galbraith et al. (1977),
although their purposes had much overlap. Remarkably, they give for κ a range of
roughly 0.38–0.41, and so the support they provide does not include a determination
of the value of κ that would be considered precise by today’s standards.

It now appears possible to study this question by DNS, without excessively low
Reynolds numbers obscuring the findings. While a vast body of Poiseuille-flow results
is available and consistent, we feel that cases with adverse pressure gradient (APG) are
essential. Each Couette–Poiseuille flow provides an APG and a favourable pressure
gradient (FPG). These flows form a two-parameter family, conveniently described
with the Reynolds number Re (based on full channel width 2h and the wall-velocity
difference �U ) and with the ratio of shear stress at the two walls, that is to say the
ratio of the stress at the APG wall to that at the FPG wall, by convention made
smaller than 1. In this study, we set Re to 40 000 and the stress ratio to 0.287. These
provide y+ ranges which, while not record setting, are far above the minimum needed
to sustain turbulence.

A didactic reason to seek APG cases is the following: (1) and (2) are non-
local, which creates the need to explain why the wall value of stress, through uτ ,
should dominate in a region in which τ is different. In FPG flows, the stress is
weaker away from the wall, which could explain why the region closer to the wall
dictates the velocity scale. Turbulent kinetic energy from below would be permeating
the log layer. The weakness in this argument is that the eddy sizes are larger
in the outer region and that the energy cascade is normally from large to small
eddies. Furthermore, the turbulent diffusion of kinetic energy is very weak in the log
layer, relative to production and dissipation. Sweeping statements are better avoided
here.

In general, the Poiseuille-flow DNS has agreed with (1) fairly well (Hoyas & Jiménez
2006), as has the Ekman-layer DNS (Spalart et al. 2009). Recall that the latter flow
also has a favourable gradient, to the point that logarithmic behaviour is still observed
fairly closely when the shear stress has already fallen by roughly 30 %. This is enough
to bring out the conflict between (1)–(3), in the direction τ+ < 1.
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Wall uτ /�U p+ Λ+
x Λ+

z �x+ �z+ y+
10 �y+

c �t+

APG 0.0168 0.0037 4217 2108 5.9 2.4 2.3 4.4 0.033
FPG 0.0313 −0.00057 7877 3939 10.9 4.6 4.3 8.2 0.12

Table 1. Run parameters in wall units.

With adverse gradient, the shear stress is relatively weak at the wall, raising the
possibility that its influence on the region that is a candidate for universal behaviour
would also be weakened. In any case, the simulation task here is to produce flows
with appreciable deviations of τ (y) from u2

τ , in both directions, and to test the three
candidate length scales. Possible outcomes include a clear ‘win’ for one of the three
or a trend towards an intermediate behaviour. Unclear trends, or conflicting trends
between the two walls, could of course not be ruled out. Note that (3) will fall between
(1) and (2), in terms of deviations from universal behaviour, because(

�

κy

)
=

√(
uτ

κy dU/dy

)(
νt

κyuτ

)
. (4)

In a constant-stress layer, this amounts to 1 =
√

1 × 1. Note also that for the present
linear variations of τ (y) – which are typical of flows with moderate pressure gradients
for which one or another universal behaviour might be found – the classic framework
assumed here will not admit the outcome that two of the properties are both satisfied
but with a different value of κ . (This work certainly does not involve a search for
‘adaptive’ κ values.) We thus expect that one candidate will succeed, at most.

2. Numerical considerations
The simulation is performed using a version of the Fourier/Chebyshev spectral

channel code of Kim, Moin & Moser (1987), from which it differs algorithmically
in the time integration: a third-order Runge–Kutta/Crank–Nicolson scheme is used
here. Moving-wall boundary conditions have also been added, and the reference frame
for time integration is at the average velocity of the two walls.

The computational domain is of size 4πh × 2h × 2πh, in x, y, z respectively, with a
grid resolution (in real space) of 720 × 241 × 864 (the 3/2 rule is applied in x and z

for dealiasing). The corresponding resolution is given in wall units in table 1 (y+
10 is

the height of the 10th wall-normal grid point and �y+
c is the centreline resolution).

These numbers improve on or match those found adequate by Kim et al. (1987)
in their channel. (The Runge–Kutta scheme is also a slight improvement on their
Adams–Bashforth scheme.) The channel-flow DNS and pipe flow from other codes
with comparable resolutions show good agreement at similar pressure gradients (cf.
figure 2 and the internal flows near the origin of figure 6), typically within 0.1 unit in
U+, which is sufficient for present purposes.

Regarding the streamwise and lateral domain sizes Λx and Λz, Lee & Kim (1991)
concluded, after extensive DNS studies of Couette flow in larger domains, that
4πh × (8π/3)h is optimal. Our domain width, the one that is time honoured in
Poiseuille flow, is 3/4 of theirs; its effect is discussed in § 3.4. Pure Couette flow
simulations (not discussed in detail here) have also been carried out by the authors
at Reτ comparable to that of the FPG side of the Couette–Poiseuille simulation, once
with the same grid and domain as above and once with a double-length domain (and
the same resolution). These indicated that the smaller domain size is less than ideal
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Figure 1. Shear stress.

for Couette flow; the x-direction two-point correlation Ruu remains above 0.56 on the
centreline. This measure is below 0.36 in the Couette–Poiseuille simulation discussed
here (and 0.32 for the double-length Couette flow). The lengths defined by (1)–(3) were
not found to be very sensitive to domain size in Couette flow, certainly for y+ < 400.

3. Results
3.1. General presentation

Figure 1 shows the Reynolds and total shear stresses across the channel (yc is the
distance from the centreline), to exhibit the extent of the variation from one wall
to the other and to outline the thickness of the viscous-influenced layers. This will
serve as a reference for later figures. The skin-friction ratio of about 0.3 is the major
design parameter. The left wall will be referred to as ‘FPG’ and the right one as
‘APG’. The FPG wall is, at first sight, very similar to a Poiseuille wall, but the shear
stress does not reach zero before the influence of the opposite wall is felt. As a result,
attempting to define an equivalent Poiseuille Reynolds number Reτ ≡ −1/p+ would
not be appropriate. The APG wall layer is more distinctive. The total stress reaches
about twice the wall value before the opposite wall is felt, based on intuition and on
the findings of § 3.2. Thus, the pressure gradient is strong, which seemed a sensible
choice for this first case. In wall units, the pressure gradient is +0.0037, compared
with −0.00057 for FPG. At y+ = 100, where universal behaviour might be found, the
two walls have τ+ =1.37 and 0.943, respectively.

In figure 2(a), the velocity profile is shown with the same axes as in figure 1,
displaying a modified Couette-flow shape, with a shift towards the velocity of the
APG wall as could be expected from the smaller friction velocity there. The inflection
point may serve as a notional border between ‘zones of influence’.

The velocity profiles now in wall units and logarithmic y axis in figure 2(b) reveal
a ‘visual’ log layer to y+ of about 250 on the FPG side (where the shear stress has
fallen by 14 %) and very close agreement with Poiseuille results by Hoyas & Jiménez
(2006). Its approximate Kármán constant, simply using a ruler, is 0.42. However, the
Kármán measure d(log y+)/dU+ (not shown), used in our flat-plate and Ekman-layer
studies, does not remain constant to ±0.01 over any appreciable range of y+. On the
APG side, the visual log layer is much shorter, barely to 120, if it exists at all; many
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Figure 2. Velocity profiles in (a) the outer layer and (b) wall units. The plane Poiseuille
results of Hoyas & Jiménez (2006) are included for comparison (p+ = −5.0 × 10−4).
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Figure 3. (a) Normal Reynolds stresses and turbulent kinetic energy. (b) Production and its
integral. The wall shear stress is 0.00098 and 0.00028 at the FPG and APG walls, respectively.

observers will only see an inflection point with a slope about 1/0.45. In addition, this
part of the curve is decidedly lower than the standard law, the one that applies over
a wide range of weaker pressure gradients, making it highly suspect as a log layer.
This lower reach in y+ is partly due to the lower friction velocity, which lowers y+ for
the same y/h, but as mentioned earlier the pressure gradient is also about six times
larger in wall units. The differences in this figure are examined again in § 3.3.

Figure 3(a) contains the normal Reynolds stresses, revealing moderately different
levels in FPG and APG (wall units not used here). The reduction of the near-wall
peak on the APG side is a result of both lower effective Reynolds number and lower
energy relative to the centre region. Figure 3(b) shows the production of turbulent
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Figure 4. Turbulence length scales. The inset shows results for pure Couette flow (for which
(1)–(3) are essentially coincident).

kinetic energy, again with an eye towards determining zones of influence. The peak
value at the FPG wall is over 10 times larger than that at the APG wall, following
as expected the fourth power of uτ (0.32 is 0.09). The amount of energy production
plausibly attributed to each of the layers via its integral versus y is in a ratio closer
to six, which still corroborates the dominance of the FPG wall.

3.2. Test of the scaling laws

Figure 4(a) displays a direct test of (1)–(3), providing the answer to the central
question of this study. The three quantities, each of which equals κy in the ideal
situation, are shown. The viscous buffer layers are thin enough not to invade the
regions of interest. The curves for (1) and (2) are discontinuous by a factor

√
0.3

because they involve the friction velocity of the wall they are associated with. Some
overlap has been allowed, bracketing y = 0.25, which appears to separate the zones
of influence of the two walls. The inset in figure 4 shows the result of a pure Couette
flow DNS with Reτ ≈ 600. Except very near the wall, (1)–(3) collapse, and between
y+ =100 and |yc/h|> 0.3 they are consistent with � = κy. Figure 5 additionally shows
the length scales derived from (1)–(3) in wall units, to illustrate the degree to which
they exhibit near-wall universality.

The indications in figures 4 and 5 are strong: (1) is much closer to being satisfied
than (3), which in turn is closer to being satisfied than (2). Yet even on the FPG side,
(1) is not precisely satisfied; the implied κ peaks near 0.43 just above the buffer layer,
falling to 0.38 at about y+ = 200 and gradually dropping to 0.32 at the centreline.
The peak and approach to a universal κ from above are, very probably, part of the
ideal law of the wall, as indicated by the fit of Chauhan, Nagib & Monkewitz (2007).
On the APG side, it may again be debated whether a convincing log layer exists; if
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Figure 5. Turbulence length scales in wall units.

it does, it requires a higher κ , which we do not consider acceptable on theoretical
grounds. However, (1) is clearly a much better approximation than (3) and of course
(2) (recall (4)); near-linear behaviour applies roughly up to where the normalized
stress τ+ has increased to 3/2, i.e. where the deviation from an ideal constant-stress
layer is strong. The result is not trivial.

Figure 5 confirms the ranking between the equations, in that (2) and (3) rapidly fan
out in response to pressure gradients. They fail comprehensively in the framework of
a law of the wall (for their respective quantities), which implies a unique profile. To be
impartial, we note these two figures would not definitely defeat the proposal of using
(2) or (3) with an adjustment of κ for each wall. Proposal (3) would require κ > 0.6
in APG and κ < 0.3 for FPG; in the case of (2) somewhat more moderate values
could be used (perhaps 0.5 and slightly over 0.3). Both would require virtual origins.
However, these changes can hardly be conceived as ‘adjustments’. Furthermore, they
would be very unlikely to apply close to the wall at high Reynolds number, since
that region would have τ+ close to 1 and p+ much smaller than here, and we would
strongly expect κ to return to typical values there, rather than values such as 0.3 or
0.6. Thus the recovery of (2) or (3) via a variable κ is very problematic, far more
so than the attitude that (1) is ‘resilient’ without being exact. The local character
of the mixing-length formula would also be lost if p+ dependence were to be
introduced.

3.3. Pressure-gradient correction to the law of the wall

The downward shift of the APG profile in figure 2(b) evokes earlier results, both
experimental and from DNS (Nagano, Tagawa & Tsuji 1992; Spalart & Watmuff
1993). Seeing such results and having now noted that the velocity law of the wall is
favoured over the other two scaling laws, it is tempting to conjecture the existence a
‘pressure-gradient law of the wall’ in which U+ is a function of y+ and p+, say, instead
of only y+. The word ‘adjustment’ would be justified here. Such conjectures have been
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et al. (1972) and Thielbar, Kays & Moffatt (1969) adjusted as in Volino & Simon (1997).

discussed in the literature, usually to improve wall functions and derived from mixing-
length assumptions (Volino & Simon 1997), without being widely accepted. There
has been too little systematic comparison with data, and there are conceptual hurdles
linked to the non-uniqueness of the measure of the pressure gradient or the stress
gradient. Using p+ rather than dτ+/dy+

y = 0 is arbitrary; these two quantities are equal
at plane walls but differ by a factor of 2 in the pipe. In other flows such as sink
flows and Ekman layers, the y dependence of τ is not linear, and a function of
(y+, (τ+ − 1)/y+) would be as justified as a function of (y+, p+).

Stimulated by two reviews, the p+ conjecture is given a test at face value in figure 6,
which shows U+ at y+ = 50 versus p+ for a range of flows, from experiments and
DNS (Spalart 1986; Nagano et al. 1992; Spalart & Watmuff 1993; Volino & Simon
1997; Hoyas & Jiménez 2006; Spalart et al. 2009; Wu & Moin 2008). The same test
applied at y+ = 1, limited to DNS, agrees very well with the viscous Taylor expansion
∂U+/∂p+ = (1/2)y+2, neglecting the Reynolds shear stress. Note that using dτ+/dy+

instead of p+ would move the pipe-flow point of Wu & Moin to the right, half-way
to the origin, placing it well outside the band of channel results. Using (τ+ − 1)/y+

would move all the boundary-layer results towards the origin (p+ = 0).
The results confirm a general tendency for U+(50) to decrease in increasingly

adverse gradients (whereas U+(1) increases), except in the Ekman layer which shows
the opposite trend. Deciding on the conjecture that U+ at fixed y+ is a unique function
of p+, based on this figure, is a matter of judgement. If scatter of the order of ±0.4
in U+ is accepted and the Ekman results are for some reason ignored, the conjecture
might be correct. Poiseuille results agree with the conjecture, but trivially so, since
dimensional analysis dictates for U+ a function of (y+, Reτ ) and p+ = 1/Reτ . The
difference between the Poiseuille and pipe DNSs at p+ ≈ −0.0018, namely about
0.1 in U+, can probably be viewed as scatter (because of grid, discretization or time
sample). The Couette and Couette–Poiseuille results are consistent with the Poiseuille
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trend, and non-trivially so. The channel and pipe results are not far from a line
U+(50) = 17.75 − 105p+ (although the pipe result would be well above this line if
dτ+/dy+ were used rather than p+). Older experimental results show less slope, but
this is precisely what would be expected from indirect methods of evaluating skin
friction.

The Ekman-layer results strongly disagree with the idea of a unique curve (Spalart
et al. 2009). We do note that they were also generated by us, which could raise
the question of a bias; however, another code was used. Other measures such as
(τ+ − 1)/y+ would not lessen this conflict, and the Ekman three-dimensional effects
at this wall distance are very weak. Results from a boundary layer with zero pressure
gradients would line up vertically at p+ = 0, with that for Rδ∗ = 500 about 0.5 units
higher than that for Rδ∗ =2000 (Spalart 1988). This would make them protrude
strongly upwards, but using (τ+ − 1)/y+ would this time move these points left
and would reduce the discrepancy. Thus, different interpretations can be made. In
addition, at the Reynolds numbers of many of the flows used for figure 6 especially
for p+ < −0.005, it is far from obvious that the compromise height we have chosen,
namely y+ = 50, is not already somewhat into the outer region of the flow. Therefore,
using these points in a quest for a ‘law of the wall’ is questionable.

Faced with the Ekman-layer results, some analysts will argue that all channel
flows obey the same law, while pipes and especially boundary layers each have
their own. We believe this runs against all classical arguments given in favour of a
law of the wall, but this must be regarded as an open question at present. While
recording our position that the idea of a p+ correction is probably unsuccessful, we
leave this point, which is finer than the one which motivated our study, for future
debates.

3.4. Narrow domain

This test was also suggested by a reviewer; its purpose is to separate the effect of
the opposite wall from that of the nearest wall, by introducing a third length scale
which is more intrusive than the opposite wall. In particular, this should suppress the
largest turbulent structures responsible for communication between the walls, which
are expected to have transverse dimensions comparable to the channel height 2h

(Lee & Kim 1991). The simulation was repeated with the same parameters, except
with a lateral period of πh/2 rather than 2πh, expecting this to be sufficient to
remove the largest turbulent structures. (The reviewer ventured that the turbulence
may not even survive but had suggested an extremely narrow domain of h/2; we
compromised.)

Results indeed reveal a very strong effect (figures 7 and 8); the mixing length now
has a plateau near 0.13h, very plausibly dictated by the confinement. Figure 7 is to
the same scale as figure 4 to aid comparison. This is a favourable result in that the
same plateau for the standard domain would logically be near 0.52h, but the mixing
length in figure 4 does not exceed 0.28h. It follows that confinement of large-scale
turbulence is by the other wall, not the lateral domain size, and the value of the latter
given in table 1 is adequate for our purposes, which concern the length scales shown
in the figure.

Figure 8 is also favourable in that the ranking between (1)–(3) remains the same
as before. The only difference is that the agreement between curves associated with
the FPG and APG walls does not extend as far as it did, and the region dominated
by the nearest wall is better indicated, as was hoped for.
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4. Conclusion
This Couette–Poiseuille study points to a strong preference among the three

hypotheses, one that is the same on the FPG and APG sides. This is only a preference,
and there is no indication of any of the equations being exact or even accurate within
a few per cent. The Reynolds number is marginal on the APG side, but a decisive
increase will have to wait for more powerful computers. We believe that the present
results, limited as they are, deserve some attention and that this short paper may
initiate fruitful reflection and further experimental and DNS studies. The experimental
benchmark used here is from 1980. The agreement is strong with, in our view, an
under-appreciated set of mid-1970s experiments. Perhaps it is time to use modern
measurement techniques to revisit these experiments.
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In terms of the prevalent ‘semi-theory’ of turbulence, the findings are arguably
unfortunate, in that the most successful formula, namely (1), is not the one with
the most intuitive appeal, at least to the authors. It is not local, and there is no
doubt that it will break down in very strong APG. Millikan overlap arguments can
be made in Couette–Poiseuille flow and will predict logarithmic behaviour, which
we also expect DNS at higher Reynolds number would confirm. However they are
asymptotic (τ+ → 1, y/h 
 1), when the interest here is in the regions in which τ+

is not very close to 1, say where its values reach 2/3, or 3/2. In other words, the
difficulty is to explain the manifest, if approximate, maintenance of the log law deep
into the defect-law region, in the terminology of overlap arguments. The closeness of
Poiseuille velocity profiles to the log law almost to the centreline was noticed long
ago and was viewed as a coincidence, which the boundary layer does not share. This
issue may not be truly a theoretical one, but its practical importance to turbulence
modelling is paramount.

This work was sponsored by the Engineering and Physical Sciences Research
Council through the UK Turbulence Consortium (Grant EP/D044073/1) and the
Turbulence Platform Grant (GR/582947/01). Computations were made on the
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