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Chapter 1 is a non technical introduction to the thesis.

In chapter 2, Basics of Large Deviation Theory, we illustrate the basic idea of large devi-
ation theory and briefly review the history of its development. As a preparation, some of the
important theorems which we will employ in the following chapters are also introduced.

In chapter 3, Asymptotic Optimality of Empirical Likelihood Tests With Weakly Dependent
Data, we extend the result of Kitamura (2001) to stationary mixing data. The key thing in
proving the large deviation optimality is that the empirical measure of the independently and
identically distributed data will obey the large deviation principal (LDP) with rate function
equal to the relative entropy, but in general the large deviation performance of empirical measure
of dependent data is complicated. In this chapter we add S-mixing condition to the stationary
process and we show that the rate function of the LDP of S-mixing process is indeed equal to
the relative entropy, and then asymptotic optimality follows from the large deviation inequality.

In chapter 4, Large Deviations of Empirical Likelihood with Nuisance Parameters, we discuss
the asymptotic efficiency of empirical likelihood in the presence of nuisance parameters combined
with augmented moment conditions. We show that in the presence of nuisance parameters, the
asymptotic efficiency of the empirical likelihood estimator of the parameter of interest will
increase by adding more moment conditions, in the sense of the positive semidefiniteness of the
difference of information matrices. As a by-product, we point out a necessary condition for the
asymptotic efficiency to be increased when more moment condition are added. We also derive
asymptotic lower bounds of the minimax risk functions for the estimator of the parameter of
interest, and we show that the empirical likelihood estimator can achieve this bound.

In chapter 5, Empirical Likelihood Estimation of Auction Models via Simulated Moment
Conditions, we apply empirical likelihood estimation to the simplest first-price sealed bid auc-
tion model with independent private values. Through estimation of the parameter in the distri-
bution function of bidders’ private values we consider a potential problem in the EL inference
when the moment condition is not in an explicit form and hard to compute, or even not con-
tinuous in the parameter of interest. We deal with this issue following the method of simulated
moment through importance sampling. We demonstrate the convergence of the empirical likeli-
hood estimator from the simulated moment condition, and found that the asymptotic variance
is larger than usual which is disturbed by simulation.
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Chapter 1
Introduction

The empirical likelihood (EL) method is a developing technique for estimation
and inference, and it has attracted immense attention from both statisticians and
econometricians in recent years. As an nonparametric analogue of parametric
likelihood methods, EL is straightforward to be used to incorporate information
from the observations, but without assuming a specific parametric distribution,
and thus it is free of some forms of misspecification. It also shares many desirable
statistical properties with ordinary likelihood methods. For instance, EL has
been shown to be Bahadur optimal by Kitamura and Otsu (2005) in a minimax
setting, while such optimality of the maximum likelihood estimator (MLE) is well
known. Furthermore, EL has been found very convenient in dealing with moment
condition models, and it is now being widely used as an important alternative to
the generalized method of moments (GMM). Under some circumstances, EL has

more desirable asymptotic properties than GMM. See Newey and Smith (2004).

This thesis makes contributions to several aspects of the EL method, partic-
ularly combined with the large deviation (LD) theory. Like standard asymptotic
theory (SAT), LD also characterizes the limiting behavior of a sequences of ran-
dom variables. The difference between them is as follows. SAT considers the
typical behaviour of random variables, and checks if they will converge in proba-
bility or distribution to some fixed values or random variables when the sample
size is large, often by applying a law of large numbers (LLN) or a central limit
theorem (CLT'). However, to some extent contrarily, LD characterizes the deviant
behavior of random variables, which is sometimes called a rare event in the LD
theory. Furthermore, LD theory focuses on a rate that the probability of the

occurrence of a rare event vanishes. This accounts for the importance of LD in



probability and statistical theory, because many standard inference problems
involve an analysis of rare events. In this thesis we work with two examples of
this: type I and type II errors in hypothesis testing, and the inaccuracy or the

risk in estimation theory.

In Chapter 2 we briefly present a technical introduction to the theory of large
deviations. We begin the illustration of the basic idea of LD with some examples
in common probability and statistics problems, showing the exponential decay
of the tail of the normal distribution. A very short history of the development of
the LD theory and major contributors are also mentioned. We focus on the large
deviations principle (LDP) which plays a central role in the following chapters.
The LDP can be considered as a counterpart of CLT in SAT, since it provides
asymptotic upper and lower bounds for sequence of probability measures. More-
over, the LD bounds are described by rate functions, which determine the speed
of decay of the probability of rare events. Particularly, we introduce the famous
Sanov theorem, which states that the empirical measure of a sequence of i.i.d.
data satisfies the LDP, i.e., the probability that the empirical measure lies in
some subset of certain probability space (which can be treated as a rare event)
will be bounded.

We also review two methods of how to prove that a sequence of probability
measures satisfies the LDP. Firstly, sometimes it is convenient to show the ex-
istence of weak LDP, which is the LDP on compact sets. One can then extend
the weak LDP to general sets by showing the sequence of probability is exponen-
tially tight. Secondly, the contraction principle allows us to identify the LDP of

a continuous function of probability measure family which satisfies the LDP.

Chapter 3 considers the application of LD theory in empirical likelihood based
hypothesis testing. This is an extension of the work of Kitamura (2001) to
weakly dependent data. In his paper Kitamura applies the Sanov theorem to
show that the EL test of a set of moment conditions is optimal in Hoeffding
sense, since the type II error of the EL test achieves the large deviation lower
bound in an i.i.d. setting. The establishment of this optimality of EL test can
be summarized as follows. Firstly, it can be shown that the EL test is to check
if the empirical measure derived from the moment condition is ‘close enough’
to the true probability measure, and hence the rejection region of the EL test

can be set by a value of the distance between the two measures. On the other



hand, the Sanov theorem tells us that the empirical measure of i.i.d. observations
obeys the LDP with rate function being the Kullback-Leibler distance, i.e., the
probability that the empirical measure lies in some certain area of the probability
space is bounded by this rate function, and hence a large deviation lower bound
of the asymptotic type II error can be established. Therefore, if we take the
Kullback-Leibler distance as the distance between two probability measures, the
optimality of EL test can be proved. Indeed, this framework is an application of
the universal hypothesis problem in information theory, see Zeitouni and Gutman
(1991) and Dembo and Zeitouni (1998).

Our contribution - in Chapter 3 - is to show that this type of optimality
property of the EL test can also be obtained with dependent data. For this
purpose it is necessary to add some restriction on the dependence of the data to
make it satisfy the LDP with a suitable rate function which can be compared to
the Kullback-Leibler distance. We adopt the S-mixing condition introduced by
Bryc and Dembo (1996). The advantages of S-mixing are twofold. Firstly, it is a
very weak assumption, and is implied by a—mixing. Hence, the properties of EL
test statistics derived by Kitamura (1997) and Smith (2004) under the a—mixing
condition are applicable under S—mixing as well. Secondly, we find that the rate
function of the LDP of an S—mixing process equals the Kullback-Leibler distance
under a certain assumption. Therefore, we can prove the optimality of EL test

with an S—mixing process in a way similar to Kitamura (2001).

Chapter 4 considers the LD efficiency of EL estimation with nuisance para-
meters. Firstly, we present some standard asymptotic results of the EL. method
in the presence of nuisance parameters, particularly combined with augmented
moment conditions. We find that the asymptotic efficiency of the estimator for
the parameter of interest can be increased by additional nonorthogonal moment
conditions, since it provides extra information. Secondly, we discuss the large
deviation efficiency of the EL estimator for the parameter of interest, in the
framework of Puhalskii and Spokoiny (1998), who find that if a family of prob-
ability measures characterized by some parameter satisfies the LDP, then there
exists a asymptotic lower bound for the minimax risk of the estimator of the
parameter. Following Kitamura and Otsu (2005), we show that the set of prob-
ability measures which satisfy the moment condition with nuisance parameters
obeys the LDP with a particular rate function, and then a minimax risk bound

can be determined by the likelihood ratio, the risk function, and the rate func-



tion. We find that the LD efficiency of the estimator of the parameter of interest

can still achieve the lower bound.

In Chapter 5, we apply empirical likelihood to estimate the parameter of
bidders’ private values in auction models. At the beginning we describe the auc-
tion models in a game theoretical setting and briefly discuss the data generating
processes of different auction models. We focus on the first price auction model
with symmetric and independent private values, in which the winning bids can
always be observed, and the distribution of the private values can be identified

both parametrically and nonparametrically by the winning bids alone.

However, the moment condition derived from the Bayesian Nash equilibrium
of the game theoretical model is highly nonlinear and not in a explicit form,
and so is extremely hard to compute. Our contribution here is to suggest a
method to deal with such moment conditions using empirical likelihood. We
follow the method of simulated moment introduced by Pakes and Pollard (1989)
and McFadden (1989) to simulate a new moment condition which is easy to
handle. Particularly, we use importance sampling methods to do simulations,
and we also find that this method can be applied when the moment condition
is tractable, but is discrete in the parameter of interest, which is also the case
considered recently by Parente and Smith (2008). We show the convergence of
the empirical likelihood estimator from the simulated moment condition, and
that the asymptotic variance is larger than usual by a factor due to the need
for simulation, as one might imagine. A numerical simulation experiment is also

conducted to illustrate the properties of the suggested procedure.



Chapter 2

Basics of Large Deviation Theory

In this preliminary chapter, we illustrate the basic ideas of large deviation theory,
and briefly review the history of its development. As a preparation, some of the
important theorems which we will employ in the following chapters are also

introduced.

2.1 Introduction

Large deviation theory is now widely implemented in a variety of fields like
mathematical statistics, engineering and physics, where we sometimes need to
obtain detailed information on rare events. Rare events can be interesting and
crucial, although they happen with relatively small probabilities. For example,
in applications to queueing theory and communication systems, the rare event
could represent an overload or breakdown of the system. In this case, large
deviation methodology can lead to an efficient redesign of the system so that the
overload or breakdown does not occur.

As for the limiting behavior of random variables, which is the main object of
large deviation theory, actually we are familiar with some limit theorems such as
the weak and strong law of large numbers, and the central limit theorem. These
results depict the typical behavior of a random variable as converging to some
other random variable or distribution. However, they tell little about the rate
of convergence, or the deviant behavior at the tail of the distribution. Large
deviation theory addresses just these two aspects. To have a first impression of

large deviation theory in statistics, we begin with the following examples.

Example 1 (Dice Tossing) Suppose we toss a dice 5 times, with a sequence of

8



results (3,3,1,6,2).Then the empirical mean is 71 = (3+3+1+6+2) /5 =3,

and we can calculate the empirical distribution for the dice value (1,2,3,4,5,6)

11 2001
575757”5 .

However, we know that if the number of random throws are large enough, the

as

theoretical distribution for the dice value should be

111111
<6’ 6666 6)
and thus the mean value is T = (14+2+3+4+45+6) /6 = 3.5. Deviation from
the theoretical mean value and distribution comes from insufficient number of
throws, and large deviation theory tells us as the number of throws increases,
deviations vanish at specific exponential rate. Figure 1 in the appendix shows that
the tail of the distribution of the average value of dice decays exponentially as the

number of throws increases, and the following example explores more theoretically

of this issue.

Example 2 (Tails of Normal Distribution) Let z;...,z, be a sequence of
1.1.d., real-valued random wvariables drawn from standard normal distribution.
Probably the most classical topic of probability theory is to study the behavior

of the empirical mean:

Since T is again normally distributed, i.e, T ~ N(0,1/n), it is easy to see for

any interval A C R,

1
Pr(vnz € A) — —— [ e dx. (2.2)
n—oo 21 A
This can be explained as T takes the "typical” value of order 1/\/n, and this kind
of convergence in (2.2) has been rigorously studied by the central limit theorem.
An important and interesting problem is how frequently T takes some relatively

large values, i.e, T exhibits "deviant" behavior? And people often want to know

how "deviant” the behavior is. To see this, consider any € > 0,we have:

Pr(|z| >€) =1-—Pr(|7] <e¢)

e/n 2
:1—\/%—”f76\/ﬁ6 12dx



and this leads to:
&2

1
lim — log Pr(|Z| > €) = ——. 2.3
i~ log Pr(ja] > €) = - 23)
Equation (2.3) tells us that, T takes relatively large values with small probability

/2 S0 a natural question will be, if some results similar to

of the order e
equation (2.3) can be obtained if x; are not normally distributed? The answer is
that in i.i.d. case the limit of LlogPr(|Z] > €) always exists although its value
depends on the distribution of x;. Indeed, any probability measure of i.i.d. random
variables is exponentially bounded by some rate function. This is just the content

of the Sanov theorem, which we will discuss later on.

The earliest idea of large deviations can be traced back to Laplace in the early
19th century, among his many contributions to probability and statistics. The
first rigorous results concerning large deviations came from the Swedish math-
ematician Harald Cramer, who applied them to model the insurance business.
Cramer gave a solution to his question for i.i.d. Gaussian random variables,
where the rate function is expressed as a power series. However, the general
abstract framework for the large deviation principle was proposed by Varad-
han (1966, 1984), who may also have been the first to give such a terminology.
Ventzell and Freidlin (1979) also make big contributions, describing their theory
of small random perturbations of dynamic systems. A very incomplete list of
mathematicians who have made important advances would include R. Ellis, A.
Dembo and D. W. Strook. A systematic application of large deviations to statis-
tical mechanics can be found in Ellis’s work (1985), and Strook (1984) gave an
introduction to the theory of large deviations together with a thorough treatment
of the relation between empirical measure and analytical properties of Markov
semigroups. A more comprehensive treatment of large deviation theory with ap-
plication to statistics can be found in Dembo and Zeitouni (1998), and Deuschel
and Strook (1989).

The remaining sections are organized as follows. Firstly we introduce the for-
mal definition of the large deviation principle with related concepts. Section 2.3
provides some important theorems about large deviations which will be involved
in our following chapters. More details of these well established results can be
found in Dembo and Zeitouni (1998).

10



2.2 The Large Deviation Principle

2.2.1 Preliminaries

Let X be a topological space, so that open and closed subsets of it are well de-
fined. Also denote the Borel o-field on X as A. Moreover, to avoid possible
measurability problems, we assume all probability spaces to be complete and
separable. The large deviation principle (henceforth LDP) is to characterize the
limiting behavior of a sequence of probability measures {Q,,n > 1} C M; (X)
with respect to a rate function, where M; (X) represents the space of probability
measures. Note that M; (¥) includes discrete measures, such as empirical mea-
sure. Furthermore, we equip the measurable space (X,.A) with the T-topology

(strong topology) generated by the collection:

/Efdv—x

where x € R, ¢ > 0 and f € B(X,R), the vector space of all bounded, real

{v €M (X):

< s} (2.4)

valued, Borel measurable functions on . We equip f with the supremum norm.

Definition 1 A function I : ¥ — [0,00] is called a rate function if it is lower
semicontinuous. If I is lower compact, i.e., the level set {x : I(z) < a}, Va €

0, +00) is compact, then I is called a good rate function.'

Proposition 1 A function f is lower compact if and only if for each decreasing

sequence A, of closed sets,

lim inf f(x) = inf f(2).

n—oor€Any rENRAn

Proof. See, e.g., Puhalskii (2006). =

Throughout, for any set I, let I denote the closure of I', I'° the interior of T,
and I'® the complement of I'. The infimum of a function over an empty set is set
as oo (e.g., Dembo and Zeitouni (1998)).

Definition 2 (LDP) A sequence of probability measures {Q,,n > 1} on X is

!The reason that sometimes we want I to be a good rate function is that its infimum can
be attained over closed sets.

11



said to satisfy the LDP with a rate function I (x), if for allT € A,

1
liminf—log @, (I') > — inf I(x) (2.5)
n—oo 1 zeld
and .
limsup—log @, (I') < —infI(z). (2.6)
n—00 zel

We call the right hand side of (2.5) and (2.6) the large deviation lower and upper

bound, respectively.

Remark 1 Sometimes we say that a sequence of random variables satisfy the

LDP if the corresponding sequence of distributions does.

Remark 2 From the definition it is straightforward that if

inf I(z) = infI(z) = Ir, (2.7)
zel0 zel

then )
lim - log @, (') = —Ir. (2.8)

A set I satisfying (2.7) is called an I continuity set. The LDP implies a precise
limit in (2.8) only for I continuity sets.

Remark 3 The LDP is equivalent to stating that for any open set A C ¥, and
any closed set B C %,
inf I(z) < liminf— log O, (T) < limsup —log Qp (T) < —inf I(z).  (2.9)
—inf I(x im inf— log Q,, < limsup —log @, < —inf I(x). :
€A T n—ooo N & N—s00 P n & reEB
Note that the upper bound trivially holds when inf .t I(z) = 0, and the
lower bound trivially holds when inf,cro I(x) = 0o. And in practice, in proving

the large deviation upper bound, we often prove it first for compact sets. So we

have:

Definition 3 (Weak LDP) A sequence of probability measures {Q,,n > 1} is
said to satisfy the weak large deviation principle with rate function I (x) if the
upper bound in (2.2) holds only for compact sets I' € B. Accordingly, the LDP in
Definition 2 is referred as the full LDP.

To strengthen the weak LDP to a full LDP we need to show that most of the

probability mass is concentrated on compact sets. This motivates the following:

12



Definition 4 A family of probability measures {Q,} on X is exponentially tight

if for every a < oo, there exists a compact set K, C 3 such that

1

limsup—log @, (K;) < —a. (2.10)
n—oo n

If {Q,} is exponentially tight, then the large deviation upper bound for all

compact sets implies the bound for all closed sets. This result is useful because

it is often easier to prove upper bounds for compact sets by covering them by a

finite class of sets, such as balls and half-spaces. Indeed we have the following

theorem:

Theorem 1 If an exponentially tight family of probability measures {Q,,n > 1}
satisfies the weak LDP with a rate function I (-), then {Q,,n > 1} satisfies the
(full) LDP with good rate function I (-).

Proof. See Lemma 1.2.18 of Dembo and Zeitouni (1998). =
The following result states that there is at most one rate function governing
the large deviation of {@,,n > 1}.

Proposition 2 Suppose {Q,,n > 1} satisfies the LDP with two rate functions,
namely I, (x) and Iy (x), then I, (x) = I (z) a.s.

Proof. Let B(d,r) denote a ball centered at ¢ with radius » > 0. If the non-
increasing function r € (0,00) — infp(s, I; (), where x € B(d,r), and j =
1,2, is continuous at 7, we have infps,) [ (v) = infgs, I; (z) except for some

countable number of r. Therefore, B(d,r) is a I continuity set, and consequently

1
— lim ~log @, (B(5,7)) = inf I, (z) = inf I 2.11
Jim —log Qn (B(9,7)) nf 1 () Anf 2 (2) (2.11)

for every r. Since a rate function is lower semicontinuous, we have lim, ¢ inf g5, I;

I(9) for all § € . Combined with (2.11), we have I; (z) = I3 (z) a.s. See e.g.,
Deuschel and Strook (1989). =

2.2.2 Transformation of LDP

Given a large deviation principle on one space, it is often of interest to be able to
construct a large deviation principle on another space. There are several results

in this area:

13



Theorem 2 (Contraction Principle) Let X' be a complete and separable met-
ric space and f : ¥ — ¥ be a continuous function. If {Q,} obeys the LDP with
rate function I, then the image-measure {Q, o f~'} obeys the LDP on X with
rate function I', where I'(x') = T o f~Y(a') = inf ¢ po1 ) I().

Proof. Let T' be a closed subset of &', Since f is continuous, f~*(T) is a closed

subset of 3 and hence I' = I'. Therefore by the upper bound of the LDP for
{Qn},

lim s.mpl log (Qn o f71) (D) lim smpl log @, (f~1(D))

n—oo N n—o0

— inf I(x
zef~1(T) (@)

—inf {inf{]@) f(x)=a,z¢€ Z}}

T

—in/f[/ (z).

Il IAN I

The lower bound can be proved if I' is an open set by similar argument. See also
Dembo and Zeitouni (1998). =
The next theorem shows that if two random variables are exponentially close

to each other, then they share the same LDP property.

Definition 5 Two families of random variables X,,, Y,, which both take values

in X, are exponentially equivalent if for all ¢ > 0,

1
lim —log P (d(X,,Y,) >¢) = —0 (2.12)

n—oon,

where P is a probability measure on ¥, and d (-,-) is a distance function defined

on .

Theorem 3 If two families of random variables X,,, Y, are exponentially equiv-
alent, then one of them satisfies the LDP with good rate function I(z) if and only

if the other does as well.

Proof. It suffices to show that the LDP for X,, implies the LDP for Y,,. Suppose
that X, satisfies the LDP with rate function I(z). For any closed set A € A, let
its closed J neighborhood denoted by A° = {x:3y € A,d(x,y) <6}, then we

have
P(Y, € A°) < P (X, € A°) + P(d(X,,Y,) > 9) (2.13)
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using (2.6) and the LDP for X,

1
lim sup — logP(Y € A

IN

1 1
lim sup {H log P(X, € A%) + - log P (d(X,,Y,) > 5)}

IA

1 1

limsup — log P(X,, € A%) V limsup — log P (d(X,,,Y,) > 0)
n n

—I(A%) V —oc0

—I(A%)

IN

IN

Since I is a good rate function, I(A%) 1 I(A) as § | 0. And since § is arbitrary,

we have the upper bound:
) 1
limsup —log P(Y,, € A) < —I(A)
n

The lower bound can be proved in a similar way by considering an open set in
(2.13) .See also Puhalskii (2006). m

2.3 Sanov Theorem

Now we focus on the empirical measure of a sequence of random variables {z;}}_,

which is defined as:

Z]A xz — 2517

for all A C ¥, where 14(+) is the indicator function for the set A, and ¢,, denotes
the probability mass at x;. Since p,, is again a random variable, it is interesting to
research into the large deviation property of the sequence of empirical measures
induced by increasing sample size, which plays a central role in our subsequent
two chapters. Note that as mentioned earlier in this chapter, u,, is a probability
measure and p, € M (X), the distribution of y,, say, P" is then an element
of the set M; (M; (X)), and if pu,, satisfies the LDP, the argument of its rate
function is also a probability measure. The following definition introduces such

a rate function which is very important in large deviation theory.
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Definition 6 For two probability measures Q, P € My (X), the quantity

Qg QP ifQ < P

H(QIP) = { il (2.14)

otherwise

15 called the relative entropy, or Kullback-Leibler distance between () and P,

where QQ < P means Q) is absolutely continuous with respect to, or dominated by

P, i.e., for some set A € A, P(A) =0 implies Q(A) = 0.

The following theorem is about the large deviation property of the empirical

measure f,, of i.i.d. random variables in ¥.

Theorem 4 (Sanov) Let {x;};_, be a sequence of i.i.d. random variables, and
w € My () equipped with the T-topology be the probability law of x;. Then the
sequence {P™,n > 1} satisfies the full LDP with the good, convex rate function
H (-|p) defined as (2.14).

Proof. See section 2.1.1 of Dembo and Zeitouni (1998) for a simple illustration
in R"; see also Theorem 3.2.17 of Deuschel and Strook (1989) for a proof in more

general Polish space. m
Remark 4 Shikimi (2002) extends this result to the kernel type empirical dis-

tribution:
1 — T —T;
=YK (1)

=1

where K (-) is a kernel and h is the bandwidth.

We will see later on that Sanov theorem provides a very useful tool in
analysing problems involving LDP in the simplest i.i.d. case, since the rate
function, the Kullback-Leibler distance is convenient to be employed in many
situations in statistics. Moreover, when dealing with non i.i.d. data where the
Sanov theorem is not applicable, we always want to find some kind of analogue of
Sanov theorem which characterizes the LDP of the data with a specific rate func-
tion. The next chapter presents such a situation and its important application

in hypothesis testing.
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2.4 Appendix

Figurel. histogram of average value of dice with
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Chapter 3

Asymptotic Optimality of
Empirical Likelihood Tests With
Weakly Dependent Data

Abstract

In this chapter we extend the result of Kitamura (2001) to stationary mixing
data. Kitamura shows that empirical likelihood test of moment conditions is
asymptotically optimal in the sense that the type II error of the EL test in
i.i.d. context can achieve large deviation lower bound. The key thing in proving
the large deviation optimality is that the empirical measure of the i.i.d. data
will obey the large deviation principle with rate function equal to the relative
entropy. However, in general the large deviation performance of the empirical
measure for dependent data is more complicated. In this paper we impose an
S-mixing condition (Bryc and Dembo, 1996) to the stationary process, and we
show that the rate function derived by Bryc and Dembo is indeed equal to the
relative entropy, and then asymptotic optimality follows from the large deviation
inequality.

Key Words: weakly dependent, S-mixing, asymptotic relative efficiency.
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3.1 Introduction

Literature on empirical likelihood (EL) method has been growing since being
introduced by Owen (1988). In the past few years it has been found especially
useful in inference in moment condition models as an alternative to the general-
ized method of moments (GMM). Therefore EL has a broad area of application,
since in practice many economic implications are given in terms of moment con-
ditions such as the Euler equation for instance. See the appendices of this chapter
(section 3.7) for an introduction of how EL deals with moment condition models
in an i.i.d. setting.

In this chapter we show that the asymptotic optimality of the EL test of
moment conditions can be extended to the context of dependent data. Our work
is an extension of the paper of Kitamura (2001), which proves that the type II
error of the EL test achieves the large deviation lower bound in an i.i.d. setting.
For a general introduction to EL, see the excellent monograph by Owen (2000).
See also recent results by Newey and Smith (2004), which present desirable higher
order properties of the EL estimator in finite samples.

There are various approaches to comparing the efficiency of tests with increas-
ing sample size, by checking the asymptotic behaviour of type I and type II error
probabilities. These methods include those of Pitman (1949), Chernoff (1952),
Hoeffding (1965) and Bahadur (1967), which are briefly reviewed in section 3.4.
Considering type I and type II errors as large deviation events, Kitamura (2001)
follows Hoeffding’s (1965) approach, which is a generalized Neyman-Pearson cri-
terion, since a test will be called Hoeffding-optimal if it has the smallest large
deviation type II error among all the tests with the same type I error.

Kitamura (2001) shows that the EL test of moment conditions is optimal
in Hoeffding’s sense if the observations are i.i.d. The methodology is as follows.
Firstly, the EL test amounts to checking if the empirical measure derived from the
moment condition, namely y,,, is close enough to the true probability measure,
and hence the rejection region of the EL test can be set by a value of the distance
between p, and the true measure. On the other hand, Sanov’s theorem tells
us that p, obeys the large deviation principle (LDP) with rate function being
the Kullback-Leibler distance, denoted by H (-|-) . That is, the probability that
i, lies in some certain area of the probability space is bounded by H (-|-),
and hence a large deviation lower bound of the asymptotic type II error can be

established. Therefore, if we take H (- |-) as the distance between two probability
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measures, the optimality of EL test can be proved. Indeed, this framework is
an application of the universal hypothesis problem in information theory, see
Zeitouni and Gutman (1991) and section 7.1 of Dembo and Zeitouni (1998).

To extend Kitamura’s (2001) result to the non i.i.d case, the first contribution
we make in this chapter is to show the equivalence of the rate function of the
LDP of S—mixing process and the Kullback-Leibler distance H (-|-). It can be
seen that H (-|-) plays a critical role in proving the optimality of tests. When
the sample is i.i.d, the famous Sanov theorem provides a quite straightforward
tool to compare the large deviation probabilities. However, for the dependent
case we need to impose some restrictions on the stochastic processes to make the
effects of the dependence between observations vanish as the sample size goes to
infinity, and to ensure the processes satisfy certain LDP. Mixing, first studied
by Rosenblatt (1956), is such a condition that can ensure the processes satisfies
some large sample properties such as the weak law of large numbers (WLLN)
(e.g., van. der. Varrt (2001)), and central limit theorem (CLT) (e.g., Andrews
(1983), Andrews and Pollard (1994)). Various mixing types such as a-mixing,
1-mixing , p—mixing and S—mixing have been studied extensively in time series
analysis. See Bradley (2005) for a comprehensive introduction to properties of
different mixing conditions.

Also, the LDP has been proved valid for mixing stochastic processes as well.
However, the rate function of the LDP for processes with different mixing condi-
tions are not the same and, in general not equal to H (- |-) . See, e.g., chapters 5
and 6 of Deuschel and Strook (1989). In this chapter we adopt a certain mixing
condition, called S-mixing, introduced by Bryc and Dembo (1996). The advan-
tages of S-mixing are twofold. Firstly, it is a very weak assumption and is implied
by a—mixing as shown by Bryc and Dembo (1996). Hence the properties of EL
test statistics derived by Kitamura (1997) and Smith (2004) under a—mixing
conditions carry over to S—mixing processes as well. Secondly, we find that the
rate function of the LDP of S—mixing process equals the Kullback-Leibler dis-
tance H (-|-), under assumption H-1 to be defined in section 3.2.2, and therefore
we can prove the optimality of EL test with S—mixing process in a way similar
to Dembo and Zeitouni (1998) and Kitamura (2001).

Before studying its optimality, we also review the methods of deriving the EL
test statistic from the moment condition model with dependent data. It is not
difficult to see that empirical likelihood will fail if the dependence of the data is

ignored when we construct the EL estimator and test. See Kitamura (1997) for
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a simple example. So techniques to handle dependence are needed in empirical
likelihood. Smith (2004) employs smoothed moment indicators instead of using
the moment conditions directly. Since the smoothed moment indicators satisfy
WLLN and CLT, a good asymptotic theory of empirical likelihood can then be
developed. On the other hand, considering the similarity of empirical likelihood
and the GMM, Kitamura(1997) uses blockwise resampling, which is similar to
the GMM dealing with mixing dependent process (Hall and Horowitz (1996)).
Reference to blocking techniques in bootstrapping can be found in Politis and
Romano (1992).

This chapter is organized as follows. Section 3.2 presents some general results
on mixing processes. Here we establish that the rate function of the LDP of
an S—mixing process equals the Kullback-Leibler distance. In section 3.3 we
review some methods to derive EL statistic with mixing data. Some criteria of
comparing the relative asymptotic efficiency of tests are reviewed in section 3.4.
In section 3.5 we prove the asymptotic optimality of EL test in Hoeffding’s sense.

Section 3.6 concludes.
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3.2 Large Deviation of Weakly Dependent Data

To establish LDP for dependent data we need to put some restrictions on the
degree of dependence. The importance of weak dependence conditions in prob-
ability theory is that it gives certain requirements under which some limiting
properties of dependent processes will imitate their i.i.d. counterparts, such as
laws of large numbers, a central limit theorem, and of course, the large deviation
principle which we are working with. This section begins by introducing various
conditions for weak dependence. With the terminology of dependent data, we

will use time series, stochastic process or process interchangeably.

3.2.1 Weak Dependence and Mixing
M-dependence

Throughout (X,.4, P) will denote a probability space, where ¥ is a compact
topological space, A is the associated o—field and P is a probability mea-
sure. Let {X;:t € Z} be a stationary time series taking values in ¥, and
FP = o(X;:a<i<b) denote the oc—algebra generated by {X;:a <i < b}.
Dependence implies that X;,, with s > 1 has memory from previous values
Xiis-1, Xiys_2,..., or in terms of probability theory, two arbitrary o—algebras

F{** and Fyf) C A, where m > s,n > m, are dependent, i.e.,
P(ANnB)—P(A)P(B)#0 (3.1)

for any A € F/** and B € F/]. This inequality can be considered as a condition
for strong dependence, since it means that an arbitrary X, will have memory
from all past values. Therefore, if we want to weaken the condition and let X;
be finitely dependent or, weakly dependent, it is natural to require that it only
has memory for a certain, say, m periods of time. This idea is generalized in the

following definition.

Definition 7 A time series {X; : t € Z} 1is said to be m—dependent ! if the two

o—algebras F'  and F'5 ., are independent, i.e.,

P(ANB) — P(A)P(B) =0 (3.2)

'Note that as a special case, 0—dependent means independent indeed.
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forany A€ Ft . B € FL% . 1, and at the same time, for any C' € F15 where
r<m-+1,
P(ANC)—-P(APC)#0

Example 3 The moving average process MA(q): X, = ¢ + 23:1 Oiei_;, where
{e:} is a white noise process, is m-dependent with m = q, since for any t, X,
and Xy 411 are independent and hence the o—algebras F' . and '7:#«)111 are in-

dependent.

Mixing
Mixing conditions as a measure of weak dependence - a weaker form of (3.2) -

were introduced by Rosenblatt (1956) - describing the tendency that two random

variables will be approximately independent if they are separated far enough.

Definition 8 (Rosenblatt, 1956) A strictly stationary time series {X; : t € Z}

is called a—mixing, or strong mixing, if when k — oo, k € 7Z,

a(k) = sup |P(ANB)— P(A)P(B)| — 0, (3.3)

AeFt , BEFX®,

and « (k) is called the a—mizing coefficient.

Note that if the process is m—dependent, a (k) = 0 for & > m, so an
m—dependent process is trivially strong mixing. Next we introduce some stan-
dard properties of a—mixing which is useful in the following sections. These

results can also be found in van. der. Varrt (2001) for instance.

Proposition 3 « (k) is decreasing in k with range 0 < a (k) < 1/4 =« (0).

Proof. The monotonicity comes from its definition since as k increases the
o—algebras are separated by longer distance. The range is obtained by noting

that from Cauchy Schwartz inequality we have

P(ANB)— P(A)P(B) Cov(Ia, Ip)
< /Var (Iy)\/Var (Ip)

VP(A) — [P P(B) - [P(B)?
1

IA

1
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To see the value of a(0), just let the two sets A = B = {X}}, therefore o (0) =
sup |[Var(I4)|=1/4. =

Proposition 4 If {X, :t € Z} is strong mizing, then it is ergodic.

Proof. Let D be any P—invariant set on %, v.e., Irp = Ip where T is some
group transformation. Since X, is strong mixing, we have

tlim P(P'DN D)= P(P'D)P(D) (3.4)
where P~'D is the t-times iterated inverse image of D. Note that P~'D = D
for any ¢, we have lim; ., P(P"*D N D) = P (D). So (3.4) becomes P (D) =
[P (D)]?, which implies that P (D) = 1 or 0. Hence P is ergodic and so is X;
(see, e.g., Walters, 1982, for definition of ergodicity). =

Proposition 5 If a process {X; : t € Z} is a—mizing with coefficient o (k) , then
the process {Xf it e Z}, where X! = (X, X1, ..., Xiy11) 48 an l-block of
{X;:t € Z}, is also a—mizing with coefficient o' (k) = a (Ik).

Proof. The result is straightforward just considering the o—algebra Fp7, in
(3.3) replaced by F7,,. =

Proposition 6 If{X;:t € Z} is a—maixing, then for any real valued, monotonic

and continuous function f (), the process {f (X;),t € Z} is also a—mixing.

Proof. From the assumptions on f (), we have P (fAN fB) = P(AN B) and
P(fA) = P(A), P(fB) = P(B), where fA = {f(X): X € A} and fB =
{f(X): X € B}. Hence the result follows. m

Example 4 An I.I.D sequence is strong mixing.

Example 5 Andrews (1983) shows that the stationary autoregressive process
AR(1): Xy = 0X, 1 + &, where |0] < 1 and &, is Gaussian innovation, is
strong mizing. Indeed, stationary ARMA(p,q): process X, = >0 . Xi +
23:1 Oici_; + € 18 strong mixing with Gaussian innovation £;, see, e.g., Dedecker
et. al. (2007). However, if g, is binomial, X; will not be strong mixing (e.g.,
Andrews (1984) and van. der. Varrt (2001)).

Rosenblatt (1956) shows that a stationary a—mixing process X; with zero
mean and finite variance satisfies the CLT. Also Durrett (1991) and Andrews
and Pollard (1994) show that X; obeys a functional CLT. Subsequent research
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has obtained some other mixing conditions which can guarantee a specific sort of
CLT for stochastic process, such as f—mixing by Wolkonski and Rozanov (1959),
¢—mixing by Ibragimov (1962), and ¢—mixing by Blum et.al. (1963), among
others. These mixing conditions are defined differently by mixing coefficients.
Table I shows some commonly used different mixing coefficients with their ranges.
Corresponding mixing processes are defined similarly to a—mixing process. For
instance, {X; :t € Z} is said to be ¢—mixing if ¢ (k) — 0 as k — +o0. For

a complete introduction to various mixing processes, see, e.g., Bradley’s (2005)

survey.
TABLE 1 Mixing Conditions
Coeft. Definition? Range
o () sup |P (AN B) — P(A)P(B) 0.1]
P(ANB)—P(A)P(B

b (k) sup | EACDLPAP(D) 0,00)
¢ (k) sup [P (B[A) — P(B)| [0,1]
B(k) sup3 iy Y, [P (AN By) — P(A)P(B)| [0, 1]

It may be necessary to clarify some terminologies. When we mention strong
mixing it refers to a—mixing particularly. However, sometimes people would use
strong mizing conditions (with plural) to call the four types of mixing mentioned
above, since the other three conditions are all at least as strong as a—mixing.
Table 2 presents the well-known chain of implication of these four types of mixing,
showing conditions for weak dependence from the strongest m—dependence to
the weakest a—mixing (see, e.g., Bryc and Dembo (1996) and Dedecker et al.
(2007)).

TABLE 2 Transition of Weak Dependence Conditions

m—dependence
=
&

. = .. = .. = .
1—mixing ¢—mixing [S—mixing a—mixing
& & &

2In these definitions the supremums are taken over all t € Z and all the possible sets A and
B in the o—algebras F! _ and F7y respectively.
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According to table 2, propositions 4-6 for the weakest a—mixing process
mentioned above are also valid for m—dependent, 1 —mixing, ¢—mixing and
[—mixing processes. For instance, the process of [-block of a ¢p—mixing process
is p—mixing with coefficient ¢ (Ik), according to Proposition 5.

It is also worth mentioning that there are other measures of weak dependence
beyond mixing conditions. For example, Patrick et al. (2002) and Dedecker et
al. (2007) mention association as a description of weak dependence in term of

the covariance of functions of separated c—algebras.

Definition 9 The stochastic process {X; : t € Z} is associated if for any increas-

ing real valued functions f and g,
Cov [f (Xt7 Xt € A) , g (Xt,Xt € B)] Z 0

where A and B are sets defined as in (3.1)

Also, a stochastic process which is weakly dependent in this sense is not
necessarily mixing. For instance, Patrick et al. (2002) showed that the Bernoulli
shift defined as

Xt:F(ntfj:jEZ),

where F' : R — ¥ is a measurable function and {n, : t € Z} is a sequence of real
valued random variable , provides many examples of stochastic processes which

are weakly dependent but not mixing.

3.2.2 S-Mixing and Large Deviations

We shall be interested in large deviation properties of the empirical measure f,,
of weakly dependent data. As many of the properties of I.I.D. processes, such
as the CLT, have been proved to hold for strong mixing process, and hence for
processes satisfying other strong mixing conditions mentioned above (e.g., see
chapter 4 of Billingsley (1999)), it is reasonable to think that there exist some
analogues of Sanov theorem for stochastic processes which are weakly dependent.
Furthermore, we are particularly interested in the rate function of the LDP of
the process, since it provides bounds on error probabilities.

There are some instances in the literature which provide different LD results
for various mixing conditions. For example, Bryc (1992) shows that LDP holds

for 1)-mixing processes, while the empirical measure of p, of a class of Doe-
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blin chains, which are ¢-mixing, fails to obey the LDP (Baxter et al. (1991)).
Therefore it would be useful to find some mixing condition which can guarantee
the LDP for empirical measures of general weakly dependent stochastic process.
Bryc and Dembo (1996) found such a mixing condition, and called it S-mixing.
The reasons we focus on S—mixing processes are twofold. Firstly, S—mixing is
a fairly weak condition, since the a—mixing condition suffices for S—mixing, so
it is suitable for a quite general class of stochastic processes (see also Dembo
and Zeitouni (1998)). Secondly, the rate function for the LDP of an S—mixing
process, as Theorem 6 below shows, is equivalent to the relative entropy, as in

the i.i.d case, which perfectly meets our needs.

Definition 10 (Bryc and Dembo, 1996) A stationary process {X;:t € Z}
s said to be S—mixing if, for any finite constant C' < oo, there exists a non-

decreasing sequence l(n) € N with

> l(—”)l) < 00 (3.5)

n(n +

n=1

such that the S—mizing coefficient
S(n) = sup |P(A)P(B) — ' ™P(ANB)| < e " (3.6)

where A € Fy*, B € f,]:f:l]zi;rl(n), ki, ke € Zy.

Like other mixing coefficients we mentioned above, S(n) is also a measure of
dependence of separated random variables in the sequence, and the relationship
of S-mixing and the other four types of mixing in Table 2 is indicated in the

following proposition.
Proposition 7 a—mixing implies S-mizing.

Proof. See proposition 2 of Bryc and Dembo (1996). =

Hence according to the chain of implication in Table 2, S-mixing is the weak-
est mixing condition among the five. Also, Bryc and Dembo (1996) prove that
S—mixing will hold if the process satisfies the following two conditions (H-1) and
(H-2), which are sometimes called hypermixing conditions (see also section 5.4
of Deuschel and Strook (1989)).

Definition 11 For any given integers v > k > 2, 1 > 0, a family of functions
{fi}le € B(X,R) is called I-separated if there exist k disjoint intervals Jy, ..., J,,
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such that dist (Jp,, Jp) > 1 for 1I<m <m’ <r and f,, is J,, measurable for any
1<m<n.

Assumption 1 (H-1) There exist [, « < oo such that , for all k,r < oo, and
any l-separated functions f; € B(X,R),

k

15X

=1

k

< [T E s (X1, X1 (3.7)

i=1

E

Assumption 2 (H-2) There is some constant ly and functions.3 (1) > 1, w (I) >
0 such that for all | > ly, all r < oo, and any two |—separated functions f,
g € B(E,R),

BIf (X1, X)] Elg (X1,.X,)] = E[f (X1, X,) g (X1, .|

< w) (B |17 (x1, ._.XT)|B(1)]>1/B(Z) (5 [lsxs, ---Xr>\ﬂ(l)Dl/ﬁ(l)

The following theorem is essential throughout this chapter, for with it we are
able to evaluate large deviation probabilities of weakly dependent data. For a
process {X; : t € Z}, let @ be the underlying probability measure for the whole
process and let (),, denote the measure for a realization of z;: 1, ..., x, on X", i.e.,
@, is the n—th marginal of @ and particularly, @Q; € M;(X) is the probability

measure of a single realization.

Theorem 5 (Bryc and Dembo, 1996) If a stationary process {X; : t € Z} is
S-mizing, the empirical measure p, satisfies the LDP with respect to the -

topology in Mi(X) and this LDP is governed by the good rate function

1= sw { [ ja-am} (33)

fe€B(Z,R)

i.e, for every set ' C M;(X),

1
liminf— log P" (u,, € I') > — inf I(v) (3.9)
n—oo 1 vel®
: 1 :
lim sup— log P" (u,, € I') < —infI(v) (3.10)
n—oo 1 vel
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where P™ € M, (M (X)) is the distribution of p,, and

exp <Z f(a:))] (3.11)

i=1

A(f) = lim lAn(f) = lim llogEQ

n—oon, n—oo

And the limit exists for every f € B(3,R).

Proof. See theorem 1 of Bryc and Dembo (1996) or theorem 6.4.14 of Dembo
and Zeitouni (1998). m

Bryc and Dembo (1996) also point out that the result can also be extended
to product measures: if the S—mixing condition holds for {th 't e Z} , then for
each r € N, the process {(X;, ..., X;4,—1)},—, taking values in the product space
3", is also S—mixing, according to Proposition 5. Hence the r-fold empirical

measure:

will also satisfy the LDP in M;(X") equipped with the 7-topology and with a

convex rate function A, (-) which is the Fenchel-Legendre transform of

exp (Z f (.l“i, ceny x¢+r_1)>]

=1

AP (f) = limn 'log B

n—oo

On the rate function of the LDP, Bryc and Dembo (1996) mentioned roughly
in their paper that I(v) in general will be less than specific Kullback-Leibler
distance, which is different from the i.i.d. case, but they did not provide any
proof. However, we find that I(v) will be equal to the Kullback-Leibler distance
if the S—mixing condition are combined with assumption (H-1) which is part
of hypermixing condition. To show this result we firstly introduce the following

lemma from Dembo and Zeitouni (1998).

Lemma 1 (Dembo and Zeitouni (1998)) Given assumption (H-1), we have

A(f) < %log / 7@ dQ,. (3.12)

by

Proof. Since the limit in (3.11) A(f) exists, we can set n = ml, where m, [ € N,
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then according to Jensen’s inequality,

ml
oo (S0 -
l

m—1
exp( ZlZf $k+gl>
Jj=0 i

m—1 T
exp (l f(%ﬂz))
Jj=0 i
m—1

l
< Iy H {Eq lexp (al f(wr0)]}

k=1 j=

= {Eqlexp (Oélf(ﬂfi))]}m/a

< Iy B

k=1

where the second inequality follows from (3.7) by noting that f(zx,;) with &,

7 € N are [—separated. The last equation comes from the stationary of X;. So

exp (Z f(fﬁz')>

Now let [ = v and we get the result. m

we have

1 1
i < — ;
— log Eg < o~ log Eq [exp (al f(x:))]

Assumption 3 If v < Q1, then the density dv/dQ; is bounded.

With these results and conditions, now we can prove our main result which

can be applied to prove the asymptotic optimality of the EL test.

Theorem 6 If assumption (H-1) is satisfied, the rate function I(v) in (3.8) of
Theorem 5 satisfies:

I(v) = H(v[Q1)

Proof. Firstly we show that I(v) > H(v|Q;). From lemma 1 we have

I(v) = feJSBI(l/ER){/ fdv—A(f)}

> sup {/ fdv——log/e”f(x dQ, }
FfEB(X,R)

> / fdv — —log / 7@ dQ, (3.13)
) Y )

The last inequality implies that v is absolute continuous with respect to Q.
To see this, let I' € A satisfying @)1 (I') = 0. Because the inequality holds for
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any f € B(X,R), we can take f = &£Ir, where £ > 0 and It is the indicator
function of the set I'. Note that [, e*"dQ; = 1, so we have I(v) > v (T) for
any £ > 0. Since I(v) is non-negative, we conclude v (I') = 0, i.e., v <€ Q1.
Therefore the Radon-Nikodym derivative of v with respect to (); exists, namely,
p = d%}i' Hence I(v) > H(v|Q1) is implied by (3.13) if we take f = log¢ with
assumption 3.

On the other hand, by Jensen’s inequality and the stationarity of {z;}, we

o (31100
osesn (316 )|

i=1

obtain

1
lim — log £
n

1
lim —F

n—oon

v

Ef(2)]
> / f(@)dv — H(v|Qy)

4

Hw|Q) > / f(@)dv — A(f)

which completes the proof. m

The importance of this theorem is that it links the rate function of the LDP
of S-mixing process with the Kullback-Leibler distance. Therefore, we can apply
Theorem 5 to analyse problems related to the LDP (such as test efficiency) of
weakly dependent data, just in a similar way that we apply the Sanov theorem
in i.i.d case. Before going on to discuss its asymptotic relative efficiency, in the
next section we introduce the empirical likelihood test statistic obtained in the

weakly dependent case.
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3.3 Empirical Likelihood Inference of Weakly
Dependent Data

3.3.1 Moment Condition Model

In this section we briefly review current methods of EL tests of moment conditions
when the observations are weakly dependent. Let {z;}; , be a realization of
a stationary a—mixing (and hence ergodic and S-mixing) process {X; : t € Z}
taking values on ¥. We are interested in applying EL to test the following moment

condition:

E g (x1,00)] = / 92, 00)d01 = 0 (3.14)

b
where the moment indicator g: R? x © — R™ is continuous for all d-dimensional
xr; € X, and ); is the unknown distribution of z;, 7,e., ); is the marginal of @)
at z;. Also 0y € © € RP is the true parameter vector. We consider the over-
identifying case where m > p. Furthermore, to avoid identification problem we

assume that 6y uniquely solves (3.14) . For notation, let
gi(0) = g(x;,0), Q=F [gi (6o) gi (90),}

G=F [agggo)] V= (G’Q*G) -

When {z;};_, are i.i.d, well established results (e.g., Qin and Lawless (1994),

1=

Newey and Smith (2004)) show that, under mild regularity conditions the em-
pirical likelihood test statistic for testing (3.14) is

— 1 f 2 1 ]. ! 3 '1
I o
4\ . (3.16)

where A is the Lagrangian multiplier vector. The validity of the convergence
in distribution in (3.16) depends critically on the i.i.d. assumption on {z;}._,,
which implies that the weak law of large numbers and central limit theorem hold

as:

% Zg(wi, 0o) LNy lg (z4,60)] (3.17)
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% Z g(zi,00) > N (0,9) (3.18)

However, as Kitamura (1997) shows, the convergence results with dependent
processes will be different from (3.17) and (3.18), so the test statistic W; con-
structed by ignoring the dependence is not valid. A usual remedy to this problem
is to remove (at least asymptotically) the dependent structure and make the data
satisfy certain WLLN and CLT. In the following we introduce two techniques to
remove the dependence, used respectively by Smith (2004) and Kitamura (1997),
who both assume {X; : t € Z} is strong mixing.

3.3.2 Kernel Smoothing EL

Instead of using the moment indicator ¢ directly, Smith (2004) suggests con-

structing a kernel smoothed moment indicator as

gi (0) = % i k (%) Gi—s (i, 0) (3.19)

s=i—N

where Sy is a bandwidth and & (-) is a kernel. This method of kernel smoothing
is similar to that used in heteroskedastic and autocorrelation consistent (HAC)
covariance matrix estimation, see Andrews (1991). Smith (2004) put some re-
strictions on Sy and k () so that the EL estimator and test statistic derived from
g; (0) can achieve desired asymptotic properties (see assumption 2.2 of Smith

(2004)). Smith shows that g; (¢) satisfies a uniform weak law of large numbers
(UWLLN) and a central limit theorem:

sup
0cO

=0, (1) (3.20)

LN G 0) - kBl (6)]

n <

% (%Zgi(e)—E %ZM&)D 5N (0,Q(0) k)

where k; = [*° K (t)" dt and Q (0) = lim,,_o, Var [n"/23°" g (0)] . Also, Smith’s
version of EL statistic for testing (3.14) is

nk? PN
=921 0, )\ 21
W, snkf( A) (3.21)
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where 6 and A are the solutions to infgco supcrm R (6, A) and

R(0,0) = log(1 + %Xg(xi, 0)) (3.22)
i=1 2
Theorem 7 (Smith (2004)) Under the following conditions:
1) © is compact and 0y € int (©).
2) For sufficiently small >0 andn >0, E [SUPe*er(e,é) g (i, 6%)]* | <
00, for all § € O.
3) If a sequence {Qj};il converges to some 6 € ©, then g (v,0;) — g (z,6,) ,a.s.
4) Var(n™23°" g (2:,60)) = Q>0
5) E (8g (x,00) /80/) is of full column rank.
We have
W < X

Proof. See theorem 4.1 of Smith (2004). m

3.3.3 Blockwise EL

Kitamura (1997) uses block technique in EL which is widely applied in boot-
strapping of time series (see, e.g., Hall and Horowitz (1996) as a classic example
of blocking and boostrapping in GMM). The idea of blocking mixing stochas-
tic processes comes from the intuition of strong mixing which implies that the
dependence of the random variables will asymptotically vanish if they are sepa-
rated far enough. Specifically, to make inference based on the moment condition
(3.14), instead of using the observations {z;},_, directly, we firstly block them to
create a new sequence of data. Let M > 1 denote the block length and L be the
separation between block starting points, then the i-th block of M consecutive

data can be written as:

B = (x(ifl)L+17 ---7517(1‘71)L+M) , 1=1,...,T

where

Here [-] denotes the integer part of -. Thus we separate the original sequence
of observations into 7" blocks, and from proposition 5 we know that the new
sequence of the T" blocks is still strong mixing. Note that reasonable choices of L
can be between 1 and M inclusive. When L = M, the T blocks do not overlap,
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and B;’s are asymptotically independent as n — oo, M — oo (see, also Owen
(2000)). However, some observations will be omitted if L > M. and if L = aM
with o < 1, the dependencies do not become negligible, because there is a fixed
fraction of overlap.

Thus we can construct a new moment indicator from the blocks as:

b(B;,0) = Zg( (i—1)L45 >

Obviously F [g(x;,0p)] = 0 implies F [b(B;,6y)] = 0. Therefore the corre-
sponding EL test statistic will be (Kitamura (1997) and Owen (2001)):

W3 = 612(%)\8%%2 ( ) Zlog + \'b(B;,0)) (3.23)

where the factor (n/T M) is needed to obtain the asymptotic chi-squared property
of Wy, and it accounts for the effects of data overlapping between consecutive
blocks.

Theorem 8 (Kitamura (1997)) Under the same assumptions of theorem 7,
asn — oo,

d 2
W3 = Xon—p-

Proof. See theorem 3 of Kitamura (1997). m
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3.4 Asymptotic Relative Efficiency of Tests

Before we show the asymptotic optimality of EL test considered previously, in this
section we review some criteria for comparing two tests asymptotically. Suppose
we want to decide whether the random variable {x;}!_, in the compact topolog-
ical space ¥ is from probability distribution ), or alternatively from Q5. A test
T, is conducted through a sequence of partitions A(n) = (Ai(n), Ay(n)) of X,
with Ay(n) being the critical region, and A;(n) NAz(n) = @, Aj(n) UAs(n) = X.
Often the partition is decided by a threshold value of the statistic T4. Note that
Ty is also a sequence which depends on the sample size n.

Let x denote the vector of observations and define

an = Q1(z € Az(n)), B, = Qa(z € Ai(n))

where «,, and f3,, are the type I and type II error respectively. Also « is called
the size of the test, and 1—f3,, is the power. Generally to improve the asymptotic
performance of the test when n increase, we try to minimize /3,, while holding av,
fixed at a low level, with requirement that 1 — 3, > «,, which implies that the
test is unbiased.

Consider another sequence of tests T with partitions A(n) = (A1(n), As(n)).
Pitman (1949) introduces the concept of asymptotic relative efficiency (ARE) to
compare the quality of these test sequences. We will review Pitman’s ARE
criteria and several alternative approaches. These methods of comparison differ
in the manner in which the Type I and Type II error probabilities vary with
increasing sample size n, which is summarized in Table 3. In practice they are
chosen according to both intuitive aspects and mathematical consideration to

obtain the relative efficiency criterion.

TABLE 3
Type of ARE Asy. Behavior of o, Asy. Behavior of 8, Behavior of H;
Pitman a, —a>0 B, — B3>0 Hy — Hy
Bahadur a, — 0 B, — B3>0 H; fixed
Chernoff a, — 0 B, — 0 H, fixed
Hoeftding o, — 0 B, —0 H, fixed
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3.4.1 The Pitman Criterion

The intuition of Pitman’s approach is that two test sequences T4 and Tz are com-
pared as «,, and [3,, tend to positive limits o and /3 respectively. The asymptotic

relative efficiency of Ty to Tz is defined as

. n
ARE( ) = (5

where n; and n, are sample sizes such that Ty and Tg have the same power (3,
and the limit is taken as both n; and ns tend to infinity. So if ARE(TATB) <1,
the test T4 is asymptotically more efficient than Tz, and vice versa.

It is important to notice that although the ratio n;/ny will depend on the
specific alternative generally, in asymptotic case this situation may be avoided.
Indeed, the power with respect to a fixed alternative will be 1 with sufficiently
large sample size. Consequently the asymptotic power will no longer provide a
good criterion for ARE. So as Noether (1955) points out in Pitman’s approach
B,, should be evaluated at an alternative which converge to the null hypothesis.
Specifically, if the distribution of x can be characterized by some parameters
0 € © and the null hypothesis Q1 = Q (z;60p), then we want to test

Hy:0=20, against H,:0 >0,

where 0 = 0,, and lim,,_,, 0,, = 0y at some reasonable rate. For two tests T4 and
Ts, the ARE can be determined by the following theorem introduced by Pitman
(1949) and Neother (1955).

Theorem 9 Assume that :

(i) There exist a function o, (0) which is k times differentiable, a function
pn (0), and a continuous, strictly increasing distribution function G, such that
for the test Ta, the quantity (Ta — o, (0)) /p,, (0) uniformly converges to G in
00, 00 + 0] where 6 > 0.

(ii) o) (00) = o2 (6p) = ... = o F "V (6) = 0 < o (6y) and
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for some ¢ > 0 and some constant cy. Then

npy (o) (3.24)

and for another test Tg which also satisfies (i) and (i), we have

(67

ARE|(y, 1,) = <C—B) " (3.25)

where cp s obtained in the same way as c4.

Proof. See Serfling (1980) or Rothe (1981). =

Example 6 Assume we have an i.i.d. sample x4, ...,z, from a normal distribu-

tion N (u, 0%) with 0 < co. If we want to test
Hy:0=0 VETSUS H,:0>0.

We consider the following two test statistics:

T

oo
n S
i=1

Th=2=—-) uz T =

2 __ 1 n =\2 - ;
where S* = — 3" | (x; — ¥)" is the sample variance.

For Ty, comparing to the conditions in the above theorem, we have o, (0) =0

with k = 1, p, (0) = \/0%/n, ¢ = L and G being the standard normal distribu-

2
nl/2\ /o2 /n

tion. So cy = lim i = 0. Likewise for Ty, the t—statistic, we can take
on(0)=0/c withk =1, p,(0) =1/n, q=1/2 and G being the standard normal

distribution as well. So cg = lim "lij—}/" = o. Hence we have
ARE _ ()" 1
(Ta,T5) — a -

which 1mplies that in this hypothesis testing problem the mean statistic and

t—statistic are asymptotically equivalent in Pitman’s sense.

3.4.2 Bahadur’s Approach

The idea behind Bahadur’s (1967) approach is as follows. Supposing that the

alternative is true, a better test statistic should be the one which is more likely
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to reject the null hypothesis, or equivalently speaking, it should provide more

evidence against the null. Consider the following hypothesis testing problem:
Hy: 0 €0, Versus H,:0ec06, (3.26)

where ©; = ©\0y. Suppose a test rejects Hy if T,, > ¢, where T, is a test statistic

and c is a constant. Define the p—value of T,, as

H, (t) = sup Qo (T, > 1) = Sup [1— Fy, ()]
0 0

where )y, is the probability measure characterized by 6y and Fy, is the distrib-
ution of the test statistic under 6. So H, (t), also called the ’level attained’ by
Bahadur, is the maximum probability that the test will produce a test statistic
exceeding t, under all possible null hypothesis. Thus it represents a measure to
which the test statistic tend to reject Hy. Specifically, the smaller the H, () is,
the more likely the test will reject the null hypotheses. Bahadur (1967) suggests
that for two sequences of tests T4 and Tz, if the alternative is true, T4 is more
efficient than T if
H,a(t) < Hup (1)

or equivalently, H, (t) goes to 0 at an exponential rate faster than H,p (t).

Indeed, a test sequence T, is said to have slope c () if
2

——log H, (t) — c(0) a.s.
n

So in the nonnull case T}, tends to reject Hy faster with larger ¢ (), and T4 and
T can be compared by the ratio (Bahadur ARE)

CA (9)

ARE(r, 1,) = o5

Bahadur (1967) also proves a large deviation theorem which gives the lower

bound for the exponential rate that the p—value decreases to zero.

Theorem 10 For any real measurable test statistic T,, for the hypothesis problem
(3.26), the p—value H, (t) satisfies

1
liminf—log H, (t) > — inf H(Fy|FPy,) a.s.
[USICH)

n—oo M
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where H (- |-) is the Kullback-Leibler distance between (g, and Qy,.

Proof. See Bahadur (1967) or Raghavachari (1970). m
Example 7 (optimality of LR test) Let {f(-,0) : 6 € ©} be a family of pdf’s
and {z;};_, be a sequence of i.i.d random variables with density f(-,0) where ¢

is unknown and 0 € ©. Consider a simple hypothesis testing problem to decide
whether 0 = 0y or 8 = 61, where 0y, 01 € O. Define the likelihood ratio test

statistic as
1, f(x:,0)
- E In L2v -1/
n i=1 f(xlaeﬂ)

o (T, > t) . Suppose that H (Py, | Py,)) <
)} satisfies the LDP, then when 6 = 0,

and accordingly the p—value: H, (t) = Py,
0,01
f(z fo

00, and that the sequence { LS In

18 true,

1
liminf—log H,, (t) = — inf H(FPy|F,) a.s.
[ASSH

n—oo M

See, e.g., Hsieh (1979) for a proof of this result. According to the theorem above,
likelihood ratio test statistic is optimal in Bahadur’s sense since it achieves the
lower bound. See also Godambe (1960).

3.4.3 The Chernoff Criterion

Chernoff (1952) introduces a measure of ARE which is particularly useful to
such tests and is based on the sum of i.i.d. observations z, ..., z,, which is a
realization of random variable X. Let S, = Z’;:l x; be the test statistic for a
simple hypothesis, and when S,, > ¢, we reject Hy where ¢, is the critical value.
Examples of this kind of test include the mean test in Example 6, and also it
is well-known that the LR statistic can be written in this form. Chernoff firstly
shows that there is a bound for the probability of |S,| exceeding some value, as

the following theorem shows.

Theorem 11 (Chernoff Bounds) Suppose the distribution function of X is
P(z), with moment generating function M(t) = E (e'*). Define

m(k) = iItle [et(x_k)} = irgfe_tkM(t).
If E(X) > —o0 and k < E(X), then
P(S, <nk) < [m(k)]",
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orif E(X) < oo and k > E(X) then
P(S, > nk) < [m(k)]".

Proof. The proof is based on Markov inequality. See Chernoff (1952). m

Now suppose we want to test the null hypothesis that x is from distribution
Q(z) = @, against the alternative that Q(z) = Q2. The test is to reject Q) if
S, > nk for each k. So v, = @1 (S, > nk) and §,, = Q1 (S, < nk). Chernoff
(1952) argues that the traditional procedure of minimizing £, for a fixed value
of a,, might not be very appropriate as sample size goes to infinity. Instead
he suggests that both type of error probability should decrease to zero as a
reward of infinitely increasing sample size, and two tests can be compared with
the rate of convergence of a,, and f3, converging to zero.> Specifically, we can
minimize o, + AS,, for some constant A\, 0 < A < oo , and Chernoff shows that if
py = Ep, (X) < py = Ep, (X), according to Theorem 11, the rate of exponential
convergence of a,, +Af3,, to zero can be characterized by the Chernoff index which

is defined as
p= inf p(k) (3.27)

po<k<py
where

p(k) = maxm;(k) and mi(k) = infEp, [¢f@P] =12

Hence two tests T4 and 1’5 which are both based on sums of observations and
have respective indices p, and pg defined according to (3.27), the asymptotic

performance of T’y can be compared with that of Tz through the following ratio

_ logpy
TaTs) ™ log pg

ARE(

and T4 is more efficient in Chernoff sense than 15 if ARE( > 1.

TA,TB)

Example 8 (optimality of LR test, continued) Wilbert (1982) shows that
for the hypothesis problem (3.26) within exponential family, the Chernoff indices

3This is contrary to Pitman’s approach, where two tests are compared when both type of
errors are treated in an unbalanced way, i.e., o, and [3,, tend to limits o and 8 which may be
different.
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of any test satisfy:

1
limsup ——log p > aing H(Py|Fy,), ¥V 0 € 0Oy
€090

n—oo n

And limsup,, ., —% log p® achieves the lower bound where p“® is the Chernoff

index of the LR test. See also Brown (1971).

3.4.4 Hoeffding’s Approach

Hoeffding (1965) considered a similar method of comparison to Chernoff in the
way that tests are compared as both types of error probability asymptotically
approach 0 with fixed alternatives. Also like Bahadur and Chernoff, Hoeffding’s
approach relies on large deviation probabilities. Basically, in Hoeffding’s sense a

test T4 is asymptotically superior to another test Ty if:

1 1
lim sup— log 37} < limsup— log 52 (3.28)
n

n—o0 n—oo

when both of them satisfy:

lim supl loga,, <1 (3.29)
for some n > 0.

Within a multinomial model Hoeffding (1965) shows that the likelihood ratio
(LR) test is asymptotically superior to the chi-squared test in the sense that as
(3.28) describes, the exponential rate of the type II error of LR test approaching
zero is higher than that of chi-squared test. Indeed, the LR test is optimal among
all the test with the same %log o, because %log Bf of LR test can achieve the
lower bound which is the Kullback-Leibler distance, as Sanov (1965) shows.

Hoeftding’s classic work deals with where the sample space is a finite set.
Zeitouni and Gutman (1991) extend the optimality to more general infinite
spaces. Another of their important contributions is that we can always focus

on such tests based only on the empirical measure f,,.

Theorem 12 If there is a test T which satisfy (3.29), then there always exists
a test A which depends on the observations only through the empirical measure
i, such that

lim inf 1 log o/ < liminf 1 log ol

n—oo N, n—oo M
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and

1 1
lim inf— log 32 < lim inf— log A%
n—oo M,

n—oo 711
Proof. See lemma 3.5.3 of Dembo and Zeitouni (1998). m
Based on the theorem, Zeintouni and Gutman (1991) suggest that when
studying optimality of tests we can consider tests only depending on the em-
pirical measure p,, and they introduce the following theorem used by Kitamura
(2001).

Theorem 13 Consider (A1(n), Ax(n)) is a partition of My (3) induced by a test
statistic T.If T is to reject the null hypothesis when

for some constant A\, then the exponential convergence rate of type I error «y, is

bounded above by —\, i.e.,

lim Supl log a, < —A. (3.30)

Proof. See Zeintouni and Gutman (1991). =
(3.30) tells us that the size of the test 7" based on the empirical measure f,,
through H(u,, |@Q1) is always bounded. So if we can show that 7" minimises the
exponential convergence rate of type II error 3, : limsup,,_, % log 3,,, among
all the tests satisfying (3.30), then it is optimal in Hoeffding’s sense. So this
theorem indicates a generalized version of the Neyman-Pearson criterion, which
is extended to the large deviation context. This uniform optimality is also called
a universal property in information theory, e.g., see Zeitouni and Gutman (1991)
and Dembo and Zeitouni (1998). We will use this framework to discuss the

optimality of the EL test in the next section.
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3.5 Asymptotic Relative Efficiency of the EL
Test

In this section, we show the asymptotic relative efficiency of EL test of moment
conditions mentioned previously, in Heoffding’s sense. The reason we consider
this criterion is that the EL test can be considered as to compare the Kullback-
Leibler distance between the empirical measure and the hypothetical probability
measure. This idea falls into the framework provided by Theorem 13, within
which we will show the following argument similar to Dembo and Zeitouni (1998)
and Kitamura (2001).

3.5.1 The Test

Following the setup at the beginning of section 3.3, define

Q(0) = {u € My(S) /Zg(xi,ﬁg)d,u _ o} | (3.31)

Let Q@ = UpcoP(f), thus Q is the set of probability measures which satisfy
the moment condition over the parameter space. Hence the hypothesis testing

problem can be written as:
Hy:p, €Q Versus Hy:p, ¢ Q (3.32)

where p,, is the empirical measure of {z;};_, . Intuitively, both of the empirical
likelihood test statistic Wy and W3 which we have obtained in section 3.3 is to
check whether the empirical measure p, which is constructed to be as close to
the true probability measure as possible, is too far away from any of the measures
in Q or not. Therefore, considering the Kullback-Leibler distance as a measure
of distance between two probability measures (see appendix for a more detailed
discussion of Kullback-Leibler distance), the EL test statistics Wy and W3 are

indeed a result of the following minimizing problem:

Anf H (1| Qu)- (3.33)

Consequently, the empirical likelihood ratio test is to reject Hy if:

inf H 3.34
Jnf (1| @1) > ¢ (3.34)
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for some threshold constant ¢ > 0. This is to say, under the null hypothesis,
the empirical measure p,, € Q, and therefore, if the distance between p, and
any of the probability measures in Q is too large, then we shall reject the null
hypothesis. It also tells that the test depends on the data only through g, (see,
e.g., section 3.4 of Dembo and Zeitouni (1998)). Thus empirical likelihood test
can be considered as a sequence of partitions A (n) = (A; (n), Az (n)) of M (X)

where n = 1,2.... and
Ai(n) = {,u e M((X): QilnEfQH(MQl) < c} . Ao (n) = Mi(2)\Ay (3.35)

In the following we abbreviate (A (n),As(n)) as (A1, Az) for economy of
notation, but its dependence on the sample size n should not be ignored. Since
in general framework, pointwise bounds on error probabilities are not available (
see Dembo and Zeitouni (1998) or Kitamura, 2001), we consider the §-smoothing
of the set Ay :

A= B9
HEA2

and

A(15 = M1(2)\Ag

where B (p,0) denotes an open ball of radius § around g, and the balls are taken

in the Levy metric:
A (1) = inf e > 05 1, (A) < ig(A) +¢ VA € A}

which is compatible with the weak, strong and uniform convergence of discrete

probability measures (e.g., see Zeitouni and Gutman (1991)).

3.5.2 Optimality Argument

To directly apply large deviation property of p,, in Theorem 5 and Theorem 6
to establish the optimality of the EL test, we firstly need some tightness and

continuity conditions.

Assumption 4 a). supgg ||g (x,0)| is bounded almost surely and thus it is a
random wvariable under all Q1 € Q; b). The functional infg,co H(p|Q1) is
uniformly continuous in p € My(X) in the T—topology.
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Lemma 2 A, = {u € My(X2): QinefQH(u]Ql) < c} .
1

Proof. The argument is similar to lemma 2 of Zeitouni and Gutman (1991).
Since H (11|Q1) is a lower-semicontinuous function, the set {i € M;(X) : infg,eo H(p|Q1) <

c} is closed. So we have:

To see the other direction, notice that assumption 4-b implies that p € {u :
infg,co H(p|@Q1) = ¢} is a limit point of A. Hence the lemma follows. m

Now we present our main theorem, which gives the optimality of EL test
uniformly among all the tests with the same size in large deviation sense. Our

result is new in that it extends Kitamura’s (2001) result to a non i.i.d case.

Theorem 14 (optimality of EL test) Let P with i = 0,1 be the law of the
empirical measure under the hypothesis Hy and Hy respectively. Then the em-

pirical likelihood test (A1, Ao) satisfies

1
limsup—log P} {1, € A3} < —e. (3.36)
n

n—oo

Moreover, for any another test (Q4,$s) which is also a partition of M;(X) and

satisfies:
1
lim sup— log P/’ {,un € Qg} < —c,
n—oo n
we have
. 1 ) 1
limsup—log Py’ {i,, € 1} > limsup—log Py’ {p,, € A1} . (3.37)

Proof. The inequality (3.36) implies that the type I error of the EL test is
bounded above by e~"¢. This boundness is straightforward from the LDP of the

empirical measure y,, indicated in theorem 5 and theorem 6 given assumption 4:

1
limsup—log P/ {u,, € Ao} < —inf I(v) = — H (v|Q1) < —c
n

n—oo vEA, vEAg

The proof of (3.37) is similar to Zeitouni and Gutman (1991) and Kitamura
(2001). Firstly we show that there exists some ny € N, such that A; C Q (n) for

all n > ng along the limit supremum. Suppose it is not so. Then there exists a
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subsequence ny, such that w,,, € A; and W, € Qg. Since the set A; is compact due
to lemma 2, there exists some w € A; such that Wy, — w. Note that w,, € Qg,
thus B (wy,,d) C Q5(k) and B (w,5/2) C Q5(ny) hold for infinitely many ny. So,

1
hmsup—log Py {u, € 1} > hmmf—log Py {p,, € (i)}

n—0o00 n—oo 1

1
hmmf—logP” {1, € B(w,0/2)}

>
n—oo
> —1nf I(v)
vEB(w,6/2)
- _UEB(w(S/Q) ( |Q1)
2 —C,

this contradicts (3.36) and thus A C QF is verified. Consequently

lim sup— log Py {y,, € 1} > lim sup— log Py {1, € A1}

n—oo n—oo

It is worth mentioning that in our model the observations {z;}._, are discrete.
As Zeitouni and Gutman (1991) show, to extend the results to continuous case
it needs some modifications, mainly because lemma 2 will no longer hold and the
smoothing of Ay to AS will not be valid. To overcome these problems, Zeitouni
and Gutman (1991) suggests restricting the test, i.e., the partition (Ay, A2) of
M;(X) to be regular, namely,

1
(lgir% limsup— log Py {11, € A3} > lim sup-— log P} {p, € Ao}
- n n— oo

They also point out that this regularity condition is often satisfied.
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3.6 Concluding Remarks

In this chapter, we have established asymptotic optimality of the empirical like-
lihood test with S—mixing processes, in Hoeffding’s sense. And, as the examples
7 and 8 show, the LR test is optimal in both Bahadur and Chernoff sense, and
it is reasonable to guess that the EL test is also Bahadur and Chernoff opti-
mal, considering the similarity of EL and parametric likelihood. More impor-
tantly, because the p—value of tests in Bahadur’s criterion is also bounded by
the Kullback-Leibler distance as the case in Hoeffding’s approach, which possibly
provides us with a starting point from which to consider this issue.

Moreover, we restrict the data to be S—mixing and our results rely on the
rate function of the LDP of S—mixing process. Although there are quite a lot
econometric models which adopt S—mixing condition (such as ARMA model),
so our results have broad application, it will be difficult to discuss the ARE of
EL test with more general dependency. As shown in chapters 5 and 6 of Deuschel
and Strook (1989) for instance, if a dependent process with other mixing rate
(or possibly not mixing as we mentioned at the end of section 3.2.1) satisfies
the LDP, it’s rate function could be either larger or smaller than the Kullback-
Leibler distance, or even extremely complicate to compare. Therefore if we want
to establish the asymptotic optimality of EL test in more general circumstances,
we might have to define the test by some other quantity which is more related

to the specific rate function, other than the Kullback-Leibler distance.
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3.7 Appendices

3.7.1 Moment Condition Models and the Empirical Like-
lihood Methodology

In the seminal paper of EL, Owen (1988) derives an EL confidence interval for
the population mean of an i.i.d. sample. Since then the EL method has been
extensively studied. Particularly, Qin and Lawless (1994) applies EL to inference
of moment condition models, which attracts attention from econometricians. In
this appendix we briefly review how EL deals with moment condition models in
i.i.d. case, for simplicity.

Suppose that we have a random ii.d. sample {z;},_, which satisfies the

following moment condition:

Eg (i, 8,)] = 0, (3.38)

where g is an m x 1 real function, 3, is a p x 1 vector (p < m) of true parameter,
and the expectation is taken with respect to the distribution of x;. For a simple
example, g can be x; minus the population mean to be estimated, as the case
considered by Owen (1988). To estimate [3,, usually a GMM estimator can be

derived as

Benin = argmin § (B) Wog (B), (3.39)

where B is the parameter space, § () is the sample average of g (z;, 5,), and
W, is a positive semi-definite matrix and converges in probability to a positive
definite matrix matrix W.

As an alternative of GMM, EL assigns a multinomial distribution F' (py, ..., pp)

n
=1

to the i.i.d observation {z;} with p; being the probability at x;. Note that

p; > 0 and X' ;p; = 1. The empirical log-likelihood function is:
log L (p1, .- pn) = Y _log pi. (3.40)
i=1

The idea of EL is that we maximize (3.40) subject to the moment restriction

¥ 1 pig (x;, 8) = 0. This can be done by setting up a Lagrangian:

L=) logp+ A1 =%p) —nu' Y pig (2:.5),
=1

i=1
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where \ and p are Lagrangian multipliers. The solution for p; is

1
n(1+p'g(x;,B))

A

Di =

At the same time, p can be expressed as a function of 5 (Qin and Lawless (1994)),
namely g (). Therefore, the maximized empirical log-likelihood function with

moment restriction is
[(;8) = > logp
i=1
= —nlogn— ) log (1 +u(8) g (i, 6)) :
i=1

An EL estimator (5, for 8, can be obtained by maximizing [ (z; 3) with respect

to 3, or equivalently,

By, = arg inf max Zlog < +uyg xl,ﬁ)) (3.41)

BeBueR™ 4

Standard asymptotic properties of B gL, €., asymptotic normality and consis-
tency, have been proved by Qin and Lawless (1994). Furthermore, they also
show that the moment condition model (3.38) can be tested by the following EL
statistic: .
W= "tog (1+ u(3) (g1, 5))
i=1

which is asymptotically Xﬁl_p

From the above procedure we can see that EL is a nonparametric analogue
of maximum likelihood method. Without any parametric assumption, EL in-
corporates the information from the data directly and conveniently, and the EL
estimator 35, has a data driven confidence region (Owen 1988). Newey and
Smith (2004) also show that higher order asymptotic properties of B 1, bartic-
ularly compared to those of the GMM estimator BGM v+ They find that 3 L 18
asymptotically less biased than BGMM since EL does not need to estimate the
weighting matrix W, in (3.39), which is an important source of bias of BGM M-
They also find that after bias correction, B g, inherits the higher order properties
of the maximum likelihood estimator (MLE). See also DiCiccio et al (1991) for
the Bartlett-correctability of EL.
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3.7.2 The Relative Entropy As a Measure of Distance

The Kullback-Leibler distance, or the relative entropy, was introduced by Kull-
back and Leibler (1951) and Kullback (1958). Now it is widely employed in
probability theory and information theory. Let F} (x) and F3 (x) be two prob-
ability measures on the measurable space (¥,.4), with density fi(z) and fo(x)

respectively.

Definition 12 If F| (z) < Fy (z), ie., [5(A) =0= Fi(A) =0, for A € A.
Then the Kullback-Leibler distance of Fy (z) and Fy () is defined as

dF
H(F |F) = / log —ldFl / flog fdFs,
where f (z) = Eg > 0.
Proposition 8 H (F; |Fy) > 0, and the equality holds if and only if F1 = Fy

Proof. It is obvious to see that Fy = Fy = log 45 dF1 — (). For the inequality, let
h = flog f and expand h at f = 1:

1
h=f—1+=

S =D (F@)) (3.42)

where f () is between f(z) and 1. Note that Js fdFy = [ fi(z)dx =1, so by
integrating both sides of (3.42) with respect to I, we obtain:

/Eflogdezz/Z(f—l)zh” <f(x)> dz > 0.

The inequality comes from A" (f) = 1 > 0 and f(z) > 0. =

It is easy to see that H (F} |F») is not symmetric and does not satisfy triangle
inequality, and consequently is not a real metric, so in this sense H (F} |Fy)
is more often called divergence rather than distance. However, it still can be
considered as some sort of measure of distance between probability measures and
is especially useful in hypothesis testing problem. Suppose we have a random

variable X taking values in ¥ with observations {z;}!_, and we want to test

H, : X is from Fy (2) Versus Hj : X is from F (z)
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Starting from the conditional probability

_ P (H;) fi(x) »_
P(H;|x) = PO, ho) + P L) fa(0) i=1,2 (3.43)
we have
f@) _ P(Hi|e) | P(H)
log () =1 8 B (I 17 (s [7) 1 gP<H2). (3.44)

The quantity on the left hand side, i.e., the log-likelihood ratio, can be considered
as the information contained in the observations for discrimination in favor of
F (x) against I} (x). Integrating log (fi(z)/f2(x)) with respect to Fy (z) gives
H (Fy |Fy), which provides the mean information over the entire sample space

by which we can discriminate F} (z) and Fy (z) :

H(F1|F2):/1 ;;Egdﬂ /Elog %ﬁdﬂ-logigi (3.45)

Example 9 (distance between two normal distributions) Suppose two ran-
dom variables X1 ~ N (0,0%), Xy ~ N (0,03) and we want to test

H, : Xy and X5 are dependent with joint density f(xy,x2)
against
H,y : Xy and X5 are independent with density f(x1) and f(xq) respectively.

Since

flave) = (2m)7 [oio (1—p )}71/2
X exp [— (2 (1 — p2)>—1 (x2/gf — (2pz122) /0102) 4 xg/ag] 7

where p is the correlation coefficient of X, and X, (3.45) can be written as

H(F|Fy) = /log%dﬂ—lgﬁgg

= //f 71, 79) log ](c(x)l’f%))d 1dxs

= —ilog(l —p%). (3.46)

The quantity in (3.46) implies that the Kullback-Leibler distance between two
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normal distributions is a function of their correlation coefficient p only. If Xy
and Xy are independent, the Kullback-Leibler distance or divergence is 0, while

it will be oo if X1 and Xs are linearly dependent.
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Chapter 4

Large Deviations of Empirical
Likelihood with Nuisance

Parameters

Abstract

In this chapter we investigate the asymptotic efficiency of empirical likelihood
in the presence of nuisance parameters combined with augmented moment condi-
tions with i.i.d data, via both standard large sample theory and large deviations.
We show that in the presence of nuisance parameters, the asymptotic efficiency
of the empirical likelihood estimator of the parameter of interest will increase by
adding more moment conditions, in the sense of the positive semidefiniteness of
the difference of information matrices. As a by-product, we point out a neces-
sary condition for the asymptotic efficiency to be increased when more moment
conditions are added. Also, the asymptotic lower bound of the minimax risk
function for the parameter of interest is derived.

Key words: empirical likelihood, minimax risks, nuisance parameter
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4.1 Introduction

Likelihood inference may have some failings when estimating a parameter of in-
terest in the presence of nuisance parameters. For example, Neyman and Scott
(1948) treated this problem and found that maximum likelihood estimation could
not be either consistent nor efficient in the presence of many nuisance parame-
ters. As a nonparametric analogue of maximum likelihood, empirical likelihood
has proved to have inherited many properties from ordinary parametric likeli-
hood. However, Lazar and Mykland (1999) demonstrated through an Edgeworth
expansion that the empirical likelihood ratio in the presence of nuisance para-
meters can not be corrected to X? to the high order that ordinary likelihood
achieves and it is no longer the dual likelihood statistic.

This chapter deals with empirical likelihood estimation in the presence of
nuisance parameters, combined with selection of moment conditions. We show
that in the presence of nuisance parameters, the asymptotic efficiency of the
empirical likelihood estimator of the parameter of interest will increase by adding
more moment conditions, in the sense of the positive semidefiniteness of the
difference of information matrices.

There are quite a lot of examples in the literature which address the problem
of inference with many instruments and moment conditions. It is well known
that in over-identified models, the asymptotic variance of \/ﬁ(B — [3) cannot
decrease if a moment condition is dropped (Qin and Lawless (1994)). On the
other hand, asymptotic properties of GMM estimator based on increasing number
of moment conditions have been well established, see e.g., Newey (2001), Newey
and Windmeijer (2005). They show that using many moment conditions can
improve asymptotic efficiency. Koenker and Machado (1999) proves that in GMM
estimation, whenever optimal instruments are not available, it can frequently be
shown that adding over-identifying restrictions will increase asymptotic precision.
In these cases, it should be noticed that the GMM estimator can be improved
by adding more information on the data by augmenting moment conditions as
a result of increasing the sample size. In our work, we discuss whether the
asymptotic performance of our EL estimator for the parameter in the presence
of nuisance parameter can be improved with more information by adding more
moment conditions but with sample size fixed. If put it in another way, we want
to check if the side effect of nuisance parameter can be counteracted by more

moment conditions.
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Particularly, we focus on a special case, where nuisance parameters only occur
in some of the moment conditions. This case leads to an important result that
the asymptotic efficiency can increase with added moment condition only if it is
not orthogonal with the original moment conditions.

Furthermore, we investigate large deviation properties of the empirical likeli-
hood inference of moment condition models in the presence of nuisance parame-
ters. Puhalskii and Spokoiny (1998) established a unified framework dealing with
statistical problems via large deviations. Within the framework of Puhalskii and
Spokoiny (1998), we want to investigate whether the LD efficiency bound for the
parameter of interest will remain valid in the presence of nuisance parameters,
and then to investigate whether the empirical likelihood estimator and test can
achieve the bound, as it does in the case of no nuisance parameters (Kitamura
and Otsu ( 2005)).

The remaining of this chapter is organized as follows. In section 4.2 we derive
EL estimator in the presence of nuisance parameters in standard asymptotic
theory. We discuss conditions under which the asymptotic efficiency can be
improved by more moment conditions. In section 4.3 we analyze the LD risk of

EL estimator for the parameter of interest. Section 4.4 concludes.
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4.2 Moment Condition with Nuisance Parame-

ters

We present some standard asymptotic results on the EL estimator in the presence

of nuisance parameters.

4.2.1 Model Setup and the Estimate of (3

Consider a sequence of i.i.d. realizations {z;},_, of a random variable x from an
unknown distribution F', with n being the sample size. Let 6 be a p-dimensional
vector of parameters in a compact parameter space © C RP associated with F.
Suppose that for a true value of  which is denoted as 0y, {z;},_, satisfies the

following moment condition
Elg (2:6)] = 0 (4.1)

where ¢ is a m x 1 vector of real functions, and the expectation is taken with
respect to F'. We consider the over-identified case where m > p. Unlike Qin
and Lawless (1994), we don’t assume that the m functions of ¢ are independent,
since correlation between these functions plays an important role in the aspect
of asymptotic efficiency, which we will discuss in the following section.

Now suppose the parameter 6 can be decomposed as 0 = (ﬁ/, gb/)' with corre-
sponding 0y = (66, (;56)/, where € BCRY, ¢ € & C RP~% and © = Bx®. If we
are only interest in 5 but not in ¢, then ¢ is a nuisance parameter in the model,

and we write the corresponding moment condition as

Elg(z;8,¢) =0 (4.2)

for the true value 3, of 3. The empirical likelihood ratio statistic for this model
is

R(5.0) =2 log (1+Ng (2:0.0)). (4.3)

where X is an m x 1 vector of Lagrangian multipliers, which is a continuous
differentiable function of (ﬁl,qb/)' (see, e.g., Qin and Lawless (1994)), and is
determined by

1 g(xi;8,0)
n T Ng (i) 4
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To simplify notations, let

g(xi;0) =g (0), §(0) =n""S,9;(0)
dg (x; 0o)
00

Like ordinary parametric likelihood, empirical likelihood deals with nuisance pa-
rameter by profiling out ¢ (see, e.g., section 3.5 of Owen (2000)). Let ¢ = ¢ () be
the minimizer of R (3, ¢) with respect to ¢. The profile log-empirical likelihood

Gle[ } Oy =E g(m;eo)g(g;;eo)’].

ratio for (3 is

R (8) = minR (4, ) (1.5
and EL estimator for [ is
B =argminR (B) . (4.6)
BeB

Assumption 5 6y = (8, ¢y) solves E [g(x;0)] = 0 uniquely, or equivalently,
both B, and ¢, are strongly identified.

Remark 5 This condition combined with m > p makes the parameter well iden-
tified. In the paper of Stock and Wright (2000), they considered the problem
of weak identification of the parameter, by assuming that the subvector [ of 6
1s completely identified, but ¢ is not, in the sense that the population moment
function is steep in [ around (B, but is nearly flat in . This idea provides us
a framework to analysis problems mixed with nuisance parameters, weak identi-
fication and partial identification (Phillips (1989)). See also Guggenberger and
Smith (2003).

Assumption 6 a). 0y € int(©); b). Q1 is positive definite and nonsingular;
c). g(x,0) is twice continuously differentiable in a neighborhood of 6y and G,
is of full rank p. d). ||g (z,0)|*, ||0g (x,0) /88|, and ||82g (x,0) /00| are all
bounded from above.

We derive the properties of the EL estimator of 3, in the next theorem.

Theorem 15 Under assumption 1-2,

Vi (B=8,) % N (0,V3)
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where
!

- ~ -1
[ pfoo, 0000] o oo 0000
vi-{e|2- 22 ae |2 22

O =FE [g (5% B) g (&ﬂ)l] :

Proof. The proof is similar to Qin and Lawless (1994). Differentiate R () with

respect to § and A respectively gives:

IR(B) _1& 1 g (/3,q3> dg; (ﬁ,q}) 90 /
s N 51:1 1+ )\’gi <5,§~b> ( op + &Nb % A, (4.7)
OR (B n 9i 579%
gi ! :% ( ) (4.8)

H1+ g (8.9)

Denote the right hand side of (4.7) and (4.8) as Q1,(58, ) and Q2,(3, \) respec-
tively. Since 3 and A maximize R (B), an(B, 5\) = an(B, 5\) = 0, and first order

Taylor expansion around (3, 0) gives:

0 = an(ﬁaj‘)
= Quly 0+ X200 ) o TnleD o)
0 = Q2n(375‘)
0 n ) b 0 n ) 1
= Qui(80,0) + XD 5 )+ W5,

where 0 = HB — BOH + HS\H . So /3 and A can be solved as:

[~ A ] = S [_Q1n<5070)+0p(5)]
B — By " 0p(9)

E (S—g T 2—;2—;‘;) 51 Q1n(B4,0) + 0,(1)

99

[(z - 5B (5+ 292) S5 (8 + 28) ) S22 Qu(50,0) + 0,1
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where

0Q1n O0Q1n
g g;’ gﬁl ] [511 S12
" WMo Ser 0
L ou (B0,0) 2
~E(gg) B (6—2 + §—g§—¢)
B 09, 0308
B (aﬁ + 2 86) 0

From lemma 1 of Qin and Lawless (1994) under Assumption 6 we have 0Q1,,(5,,0) =
(1/n) Y0, g(24,0) = O,(n~Y?) and § = O,(n~2). So we obtain

. dg 0995\
\/ﬁ (5 - ﬁo) = 5272%1E (% + 87%%) Sﬂlan(ﬁO, 0) + Op(l)
LN (0,V)).

Remark 6 a). The structure of the asymptotic variance-covariance matric Vﬁl
is different from those in Stock and Wright (2000) and Guggenberger and Smith
(2003), in which they decompose E[G(0)] as E[g(0)] = n=2my (0) + my (B),
where my (0) involves both of the two parameters and msy () involves 5 and the
true value of ¢.

b). Lazar and Mykland (1999) consider higher order properties ofB through
Edgeworth expansion of R (3, ). They find that i may not achieve higher order
accuracy which can be obtained by ordinary likelihood in the presence of nuisance
parameters, also they show that the empirical likelihood ratio statistic does not

admit Bartlett correction, unlike the case without nuisance parameters.

4.2.2 More Moment Conditions

Now we focus on the asymptotic efficiency of B when there are more moment
condition being added. Suppose based on model (4.1), we have the following new

model by adding one more moment indicator f (-):

. _ g('ri;ﬁngbO) _ 0
Eh (zi; 89, ¢0)] = E [f(xi,ﬂo,%)] = H : (4.9)
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Similar to section 4.2.1, we define

B Oh (x;0,) _ - [0f (w;00)
B i Q11 Qo
0 = E[noonhGea)]=| )" |

In this model, following the setup in the previous section, the parameter vector
0= (6,, QS,)/ can be identified by (4.1) alone, and now we are interested in whether
the covariance matrix Vﬁl can be improved with extra information given by f. Let
the estimator of § based on both g and f denoted as (3, and the corresponding
covariance matrix as Vg . In general, well established results have shown that
at least using f will not be harmful, i.e., it will not increase the asymptotic
variance of 0. And, nor will dropping f will decrease the asymptotic variance
of the estimator, relative to that of the estimator based on both g and f. See,
corollary 1 of Qin and Lawless (1994).

Remark 7 A similar and relevant situation may be worth mention, which is
described in Newey and Windmeijer (2005) and Han and Philips (2006), for
instance. They assume that the number of moment conditions is increased with
the sample size. Thus in this case extra information are provided by both extra
data and extra moment conditions, while in our case only by the latter one with
fixed sample size n. They also allow the moment conditions are weak, while we
assume both g and f are strong as indicated in assumption 5. Fstimation under

many weak moment conditions is also discussed by Andrews and Stock (2005).

Proposition 9 The asymptotic efficiency of EL estimator of 5 can be increased

by adding more moment conditions.

Proof. Since we can always block the component of the vector of the moment
function, for simplicity and without loss of generality, we assume that both g
and f are of dimensional one.

For convenience let F (3,3 + % ag) =F, F <8ﬁ + 95 ag) = b,.

The inverse of VBZ, or the information matrix of § with both ¢ and f is:

2 _ %/ m—1 %
72 = EL%] (E[hh]) E[aﬁ}
B Qo Q| B

- [El EQ] S I (4.10)
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Since without f, the information on f is

I} = E\[E(g9)] " Ex
= E,S;'F,

oh7’ 1 [oh , 1
-75 = B|5] @) e || - B e B
= B [S1'S12022521 57 ] Ei + Bz [—00250151] Ex

+E1 [—S11' S12Q22] Es 4+ B2 s

= (E;S;llsm — E1> Qoo (E15ﬁ1312 - Ez)/,

which is positive semidefinite, providing (gg') is p.d as Assumption 6 indicates.
|

Example 10 Suppose we have a sequence of i.i.d observations of univariate ran-
dom variable 1, ...x,. Let E(x) = p and var(z) = 0. Thus we have the following

two moment conditions:
Eg(z; 8)] = E(z — p) =0, (4.11)

E[f(z;8,9)] = E((x — p)* — %) = 0. (4.12)

And now we are only interested in the estimation of u. The empirical likelihood

estimator of 1 1s:

N L. / Ti—
= arg min log |1+t ,

and
E(gg) E(gf) Trar)”
nVar(p) = [S—f; %] E(fg) E(ff) [g_gl
= O

<o’ (4.13)
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Notice that without gy, nVar(ji) equals o® .

af
oB
the calculation dramatically. So we consider the following more special model,

In the above example, we notice that ( ) = 0, and this feature simplifies

where ¢ does not have nuisance parameter, but f has a nuisance parameter only,

although it brings some information from the data.

Eh (z; 8y, 00)] = E g(x;BO)] = H : (4.14)

The gradient vector of h in (4.14) is:
Oh [g—g 0 ]
- or |
00 0 5
the information on [ is:

oh
9B

- [e(8) o |22 o

97 _ _ _ of
= F [%:| [Qlll(I—F 912(922 — 9129111921) 19219111} E [%:| s

B

2
IB_E[

}, [E (kW) ' E [ah}

=

0

£ (1)

where [ is the corresponding identity matrix. Now we have

/ f
2 71 _ _8J _8
Iﬁ IB—E{ ] VE{ ] (4.15)
where
V = [Qfllle(ng — 91291*11921)*19219;11] ) (4.16)

By assumption E(gg') is positive semidefinite, so (Qay — Q129071 Q1) " is also
p-s.d, and so is V. Thus we see that f provide extra information for 5. However,
if in (4.10), E(gf) = Q2 = 0, V = 0, so Z§ = Zj. So we have the following

proposition.

Proposition 10 Additional moment conditions which contains only nuisance
parameters will provide extra information on the parameter of interest only if

they are correlated to the original moment conditions.
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Remark 8 Whether g and f are correlated is a testable condition. Since E [g (x, B,)] =
Ef (z,0¢)] =0, to test the correlation of g and f it is equivalent to test the fol-

lowing additional moment condition

Ep(x; By, d)] = Elg (2, Bo) f (€, d)] = 0 (4.17)

and this can be done by standard EL test procedure.
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4.3 Large Deviation Efficiency

In this section we use the same framework as in the previous section to analyse
the large deviation efficiency of EL estimator with nuisance parameters and aug-
mented moment conditions. Our work is similar to Kitamura and Otsu (2005),
which shows that the minimax loss of EL estimator can achieve the large de-
viation lower bound in the framework of Puhalskii and Spokoiny (1998). Our
result is new in that we incorporate nuisance parameter in the moment condition
model. However, the large deviation efficiency in both cases depends on the LDP

of statistical experiment, which is introduced below.

4.3.1 Preliminaries
Statistical Experiment

Following the terminology of statistical decision theory as in Blackwell (1953),
Strasser (1985, 1996), LeCam (1986), and LeCam and Yang (2000), we call a
family of probability measures P ={F : § € ©} a statistical experiment, where
Py is on a o—field A (X) of subsets of a set 3. Let {P,,n > 1} be a sequence
of statistical experiments indexed by sample size n, where P,, = {P,4: 6 € O}
and P, is the set of probability measures which satisfy the moment condition
model (4.9) :

Pn,ez{PeMl(z);Lg(x,e)dP:o},

where M; (X) is the space of all probability measures on ¥ equipped with the
Levy metric. We say {P,,n > 1} is dominated by a probability measure F
if for all n» and all # € ©, P,y is absolutely continuous with respect to Fj,
ie. P,y < Py, and in this case we also denote {P,,n > 1} as {P,, Fy,n > 1}.
See, e.g, Puhalskii and Spokoiny (1998). Note that as our setup in section 4.2,
0= (3,¢), where 3 € B, ¢ € ®, and BUD = O. In the following we will use 6
and (', ¢') interchangeably. Now we define:

1 dP,

AP, ,\ "
Znp = ’ ., Zw=logZ,e=—1
b ( dP() ) 0 Og 9 n Og dP()

(4.18)

and let Z, 0 = {Z,p e R:0 €O} and =, = {E,0 € R:0 € O}, 50 Z,0 and

En,e are the process of likelihood ratio and the log-likelihood ratio respectively.
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LDP of Statistical Experiment

Also, let L (=, |Fy,n > 1) denote the distribution of =, ¢ under Py. Now we

have the following definition.

Definition 13 A sequence of dominated statistical experiments {P,,n > 1} is
said to obey the LDP if

1. the sequence of distributions of likelihood ratio L (Z,e |Py,n > 1) obeys
the LDP with some rate function I : R — [0, 00] .

2. the likelihood ratio Z,, g satisfies:

lim limsupEY™ [exp(nZ,9)1 (Eng > M)] =0, € © (4.19)

M—co poo
where B[] = (B, [])"".

Remark 9 (4.19) is called the exponential tightness condition, and it is to en-
sure that lower bounds of minimax risks of the estimate of the parameter 6 are
independent of the choice of dominating measure Py. See, Puhalskii and Spokoiny
(1998) or LeCam and Yang (2000).

Example 11 (Exponential Family) Let X,, = (Xi,,..., X,n) be n i.i.d sam-

ples drawn from a exponential family with density of the standard form:
J (Xin) =exp{0Xpn +6(0)+h(Xin)}, k=1..n

where K (+) and h(-) are some real functions. For this model, Q, = R™ and

n

P,y =exp {9 Yo Xign +nk(0)+ > h(Xk,n)} , #e®CR
k=1 k=1

If we take P, 1 as the dominating measure, the corresponding log-likelihood ratio
will be:
1 dP,

Zne = —1
0 n 8 del

=13 X 5 (0) — k(1)

N =1

= 0-1)Y,+r(0)—r(1),

(Xn)
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where
Y, =15 X n> 1.
N k=1

It is well known that {L (Y, |P,),n > 1}, the sequence of distributions of the
empirical mean Y, satisfies the LDP on R with the rate function I (y) = y?/2,
y € R, see Dembo and Zeitouni (1998) for instance. Hence the distribution of
the log-likelihood ratio L (=,p |P,,n > 1) satisfies the LDP by the contraction
principle of the LDP.

To check the first condition in definition 13, it is often convenient to use the
following sufficient and necessary condition, see Varadhan (1984), Deuschel and
Strook (1989) and also Puhalskii (1993, 2006).

Proposition 11 A sequence of probability distributions {Q,,n > 1} obeys the
LDP with a rate function I if and only if

1/n
lim [/ (f(z)" Qn(dx)} = sugf(x)V(x) (4.20)
holds for all nonnegative, bounded and continuous functions f on %, where ¥
is a metric space and V(x) = exp(—I(z)) : ¥ — [0,1] is called the deviability
Y of {Qn,n > 1}. Moreover, if f is also nonnegative and lower semicontinuous,
(4.20) implies

i | [ (70" Qu(a) "5 wpf @V ), (121)

n—oo IEZ

Proof. See page 493 of Puhalskii (1993). m

Definition 14 If (4.20) holds, we say {Qn,n = 1} converges to V in large devi-
ation and denote this by Q, Ly Therefore, by Proposition 11, Q, Ly if and
only if {Qn,n = 1} obeys the LDP with rate function I(x) = —log V (z).

The next theorem of Puhalskii and Spokoiny (1998) and Kitamura and Otsu
(2005) states that the statistical experiment of our moment condition model
obeys the LDP.

dPn,G

Theorem 16 Suppose X is a compact metric space, and the likelihood ratio o

'Note that the range of the rate function I(z) is [0,00), and the mapping I(x) to V(z) is
one to one.
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18 continuous and bounded from above, then the sequence of the dominated sta-
tistical experiments {P,, Py,n > 1} obeys the LDP.

Proof. The procedure of proof is firstly showing that the distribution of likeli-

dj;(;g satisfies the LDP, so the condition 1 in Definition 13 is verified.

Secondly, it needs to show the likelihood ratio process is exponential tight, so

hood ratio

it satisfies the second condition in Definition 13. See Puhalskii and Spokoiny
(1998) or Kitamura and Otsu (2005). =

4.3.2 Efficiency of Estimation
Minimax Risk Bound

In this section, we show that a large deviation efficiency bound of estimation of
the parameter in the model (4.9) can be obtained by the LDP of the statistical
experiment {P,,, Py,n > 1}. In terms of statistical decision theory, an estimator
of the parameter 6, : ¥— D is a decision in a decision space D 36,,, and the
efficiency of 6,, can be evaluated by a loss function W : © x D —R*. We define

the maximum logarithmic LD risk of the decision p,, in the experiment as

1
R(0,) =sup sup —logE, p , [Ws(0,)], (4.22)
0O P, P, T ’
where Wp (0,,) denotes the loss of 6,, as an estimator of the parameter 6.
Following LeCam and Yang (2000), we make the following assumptions to

ensure the existence of E, p, [Ws (6,,)] .

Assumption 7 a). infpco W3 (0,,) > —o0. b). the function Wg(6,,) is mea-

surable.

Assumption 8 The parameter space © is compact.

An estimator ¢, will be called LD optimal if it minimises R (#,,) , and hence
07 is a minimax estimator. See, e.g., Lehmann and Casella (1998). The reason
we consider the minimax estimator, or the reason that we judge the estimator by
its worst behavior along a sequence of alternatives converging to a fixed model,
is that the uniformity has mathematical appeal because it excludes supereffi-
cient estimators, which exploit the weakness in a definition influenced only by
pointwise limit behavior (see, e.g., Pollard (2003), and LeCam (1986)).
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Bahadur (1960) shows that LD optimality of maximum likelihood estimates in
the restricted setting of exponential families. For more general settings, Puhalskii
and Spokoiny (1998) gives a framework through the following theorem for LD
efficiency of estimates in a statistical experiment, which provides a asymptotic
LD lower bound for appropriately defined risk functions if the experiment obeys
the LDP. And in fact it is the motivation for introducing the concept of the LDP

for sequence of statistical experiments.

Theorem 17 (Minimax LD Risk Bound) Let 0, be an estimator of 0 in the
dominated experiment {P,, Poy,n > 1}, which obeys the LDP with rate function
I(x). If 0,, is assessed by a level compact loss function W, then with assumption
7-8

liminf inf R (6,) > R

n—oo 60,c0

where

R* = sup inf supWy (0,)) Z,oV (Zns).
Zn9€R+In€O0pco

and V' (-) is the deviability of the experiment.

Proof. See theorem 3.1 of Puhalskii and Spokoiny (1998). m

Remark 10 This result is indeed an LD analogue of LeCam’s minimax theorem,
which says that if a sequence of statistical experiments weakly converges, then

there exists asymptotic lower bound for the risk of the estimator. See, e.g., LeCam
and Yang (2000).

Remark 11 From the theorem we know that the minimax LD risk bound is
determined by the loss function, the likelihood ratio and the rate function of the

LDP of the sequence of experiments.

Remark 12 The existence of R* requires the loss function to be level compact,
see Puhalskii and Spokoiny (1998). In practice this condition is often satisfied.
For example, the Bahadur type loss function which we will use in the following

is level compact given assumption 8. See Kitamura and Otsu (2005).

Let b,, : ¥— B be an estimator for our parameter of interest 5. The Bahadur-

type loss function which we employ in this paper for estimation of [ is given by

Wg (bn) =1(||br, = B|| >¢), ¢ >0 (4.23)
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and we can evaluate the exponential rate of convergence of the LD error proba-

bility in estimating § by the following maximum risk function:

R (b,) = sup sup 1 log E,, p, W5 (by,)] - (4.24)

BeBPcP(H) T
Puhalskii and Spokoiny’s (1998) result shows that in a sequence of statisti-
cal experiments which obey the LDP, the minimax lower bound of estimates is
just the supremum of the product of the rate function and loss function over
the sample space, decision space and parameter space. In this framework, the
following new theorem gives the lower bound of the minimax risk for our model

with nuisance parameters.

Theorem 18 Define
dP

I'p (1) —/log d_Pgd'u
s

where 1 € M,y (X). For any estimator b,, of the true parameter [3,, we have

liminf inf R (b,) > R",

n—oo b,EB

where

R* = sup infsup  sup  (Up(u) — H (u|Ry))
peM, (3)0nE€BBeBPEP(0):||b—B|>c

= sup infsup sup —H(u|R).
peM; (2)0nEBBeBPEP(0):||bn—B|>c

Proof. Firstly we show that

lim inf inf sup sup E,,ll/en Wg (b,) > sup inf sup sup Wp(b,) ZpVa (Z4)
n—00 bn€BReBpep(s) peM; (2)0n€BgeBPep(0)

(4.25)

where A is some finite subset of B.
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By the definition of Z,, 4, we have

lim infsup sup E}/glwg (b,) = liminfsup sup Erll/;OWg‘ (bn) Zy pa
n—co BeBpep() n—00 BB Pep(9)
1 1/n
2 llm lnf (WE,,LA 2969 Wg (bn) 22797/‘)

n—oo

> lim infE}L’/ﬁozlégWél (bn) Zy g.n

> lim infE}l(;Own (Zg,e;A)

n—oo

where

w (zp) = inf supWp (b,) Zy, Zx = (Zp,0 € A) .
b"EBBGB

Considering L (Z,, . |P,,n > 1) is large deviation converges to Vj, by (4.21)
we have
lim inf Ei//?w” (Zn) > sup w(Zp) Va (2a)

n—00 ZAERﬁ\r
which implies (4.25).
Since w (Z,) is nonnegative, continuous and homogeneous, by Lemma 2.5 of

Puhalskii and Spokoiny (1998) , we can get

sup inf supWp (b,) ZpVa (2a) = sup inf supW;s (b,) ZsVe (Ze),

2neRAnEBEB 22eROUnEBEB

so combined with (4.25), we have

lim inf inf supE./" W5 (b,) > sup inf supWp (b,) 29Ve (2e) -
n—0o00 bpEBgc A ’ ZAEREb”EBﬁEB

Note that for every Zg = (Zy,0 € ),

sup inf supWy (b,) Zg = inf supWjs (b,) Zg
Ac@bnEBgcp 5 (bn) bn€Byco 5 (bn)

and the proof is completed by taking logs of both sides. m

Remark 13 Here we see that finally the efficiency bound turns out to be not

dependent on the dominating measure.

Now we consider the empirical likelihood estimator after profiling out the
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nuisance parameter ¢

A

f = arginfR (3)

p bEB

where .
R (8) = minmax 3 log (1+ 4’ (8,6) g (v:3 3. 6)) .

¢€‘I’ MERm i=1

From theorem 18 we know that liminfR (B) > R*, we will check whether
limsup R (B) is smaller than R*i.e.,

limsup R (B) < R*.

Firstly we present an important result which connects the EL estimation with

the statistical experiment.

Lemma 3 For each 0 € ©, let p,, € My (X) be the empirical measure, we have

P
sup /logd—dﬂn
)

PeP(9) dPy
n , dP,
= —g%g;%(r+uww@mm)—ékg@;mn
= R(9) — L.

Proof. See Borwein and Lewis (1993) or Kitamura and Otsu (2005). m

Theorem 19 Suppose B solves

inf sup R(H),
BEBBEB:||by—pl|>c

then

A

hmR@):m.

n—oo
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Proof. Let (a A b) denote min (a,b). We have

n (1(3) = o 228 (15> = s 2 1 (5] =)

PeP(6) PeP(6)

< s B [1(][5= 5] > ¢) (Zur ne)']
PeP(h)
+ sup E:Lg[ (Hﬁ BH c) Znpl(Zyp > € )}

PeP(0)

< BRD (B> o]
PcP(0)
+ sup E}Lg [anl(an > eM)}

PeP(9)

Since

sup Enp0 [anl(an > eM)} <0
PeP(6)

we can just show

sup Eég[ (Hﬁ BH >c) Zap N\ € ) ]gexp(R*)

PcP(0)
Note that
a2 1 >) o
PeP(0)
< E:ng sup { (HB 6H>c) an}/\e
| \PEP(0)
— E}lg ( sup sup {an}/\eM)]
| \BEB:|[b—B[>cPeP(0)
n dpP
< Erlléo sup sup {exp/ longdun}/\eM
BeB:||B—B||>EPO)

where the last inequality follows form Lemma 3 and the definition of B . Thus,
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from the LD convergence of Z,,p

B n
lim E}Lg; sup sup {Z,p} AeM
oo ,368:”375H>0P€P(9)
B n
< lim E}Lg sup sup {Z.p}
e 6€B:HB—BH>CP€7)(9)

— s swp  sup {Zupexp(~1(Q))
HEML(Z)BeB: || B—B||>EPO)

- R*

The proofs of our main results, theorem 18 and 19, resemble those of theorem
3.1 and 4.1 in Puhalskii and Spokoiny’s (1998), because the key thing is that as
we mentioned at the beginning of this section, we need to show the LDP of the

likelihood ratio process df;f induced by the parameter of interest, hence the

LDP of the statistical experiment. Intuitively, it is not hard to believe that if
dPn,B
Py
the LDP, since (3 is a subvector of 6.

satisfies the LDP, the process Pns o150 satisfies

the likelihood ratio process B
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4.4 Concluding Remarks

In this chapter we have discussed the efficiency of the EL estimator in the pres-
ence of nuisance parameters, via both standard asymptotic method and large
deviations. We are particularly interested in whether the asymptotic efficiency
of the parameter of interest can be improved by adding more moment conditions.
We found that a necessary condition for augmented moment condition to be use-
ful to improve the asymptotic efficiency, is that it is correlated to the original
moment condition. It is worth mentioning that here we incorporate more mo-
ment conditions with sample size being fixed, while researchers like Newey and
Windmeijer (2005) and Han and Philips (2006) consider increasing the number
of moment conditions brought by increasing sample size.

It would be interesting to extend our results to the non i.i.d case. We have
shown some LDP results for weakly dependent data, and so it is not difficult
to obtain a corresponding large deviation efficiency bound. But if we want to
show that the EL estimator can achieve this bound it would be complicated
since Lemma 3 depends on i.i.d assumption. Therefore some other results which

connects the EL criterion and the likelihood ratio process may be needed.
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Chapter 5

Empirical Likelihood Estimation
of Auction Models via Simulated

Moment Conditions

Abstract

In this chapter we apply empirical likelihood (EL) estimation to the simplest
first-price sealed bid auction model with independent private values. Through
estimation of the parameter in the distribution function of bidders’ private value
we consider a potential problem in the EL inference when the moment condition
is not in an explicit form and is hard to compute, or even not continuous in the
parameter of interest. We deal with this issue following the method of simulated
moment (MSM) introduced by Pakes and Pollard (1989) and McFadden (1989),
since in structural auction models the first moment of the optimal bid is highly
nonlinear and thus intractable. Particularly we use the importance sampling
method to simulate the moment condition, which is derived from the Bayesian
Nash equilibrium in the game theoretical auction model. We demonstrate the
convergence of the empirical likelihood estimator from the simulated moment
condition, and find that the asymptotic variance is larger than usual, and is
modified by simulation.

Key words: first-price auction, simulated moments, importance sampling
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5.1 Introduction

We consider empirical likelihood estimation of a simple auction model in this
chapter. Auctions are nowadays widely implemented as an efficient mechanism
to allocate resources, to determine prices and to mitigate transaction costs. Al-
though the use of auctions has a long history and can be traced back to Roman
times, the theory of auctions in economics has flourished since Vickrey’s (1961)
seminal paper, showing how Pareto-optimal results can be achieved through auc-
tions in imperfect markets. Particularly, the development of game theory has en-
hanced the research into auctions in the past decades. One of the most earliest
and most general results is contributed by Milgrom and Weber (1982), who an-
alyze English auctions !, Dutch auctions 2, first price auctions *and second-price

auctions *

using a general game theoretical model and derive the equilibrium con-
ditions in a setting of competitive and noncooperative bidding. Literature about
other equilibrium strategies under different settings of auctions is also growing.
For instance, Maskin and Riley (1984) consider the optimal auctions from the
point of view of sellers who want to maximize the transaction price, assuming
bidders are risk-averse. Swinkels (1998) discusses the strategy and conditions
needed to make a large number of auctions to be efficient, in the sense that bid-
ders who value the object the most will have the biggest possibility of winning it.
For general reference and a recent survey of auction theory, Klemperer’s (2004)
book can be referred to.

One of the interesting features of auction models in empirical study is that
they are fully structural ®, which means the model is derived from economic
theory directly incorporating restrictions from the theory as assumptions of
econometric models, and randomness enters the auction model naturally without

adding stochastic error terms, unlike the usual econometric models. Based upon

'English auction: Aslo called ascending auction. The auctioneer begins the auction by
announcing a starting price or reserve for the item on sale and then accepts increasingly higher
bids from the bidders.

2Dutch auction: Also called descening auction. The auctioneer begins the auction by an-
nouncing a high price, then he lowers the price continuously until some bidder accept the price
and the player win the object at that price.

3First-price (sealed bid) auction: All bidders submit their bids in an envelope simultaneously
to the auctioneer. Bidder with the highest bid wins, paying a price equal to the exact amount
that he or she bid.

4Second-price (sealed bid) auction: Also called Vickrey auction. All bidders submit their
bids in an envelope simultaneously to the auctioneer. Bidder with the highest bid wins, paying
a price equal to the exact amount of the second highest bid.

5 Application of structural approach to auction model began from Paarsch (1992).
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the structural approach, researchers are interested in testing economic theories
implied by the auction model through both field and experimental data. Early
examples include the work done by Hansen (1985) which aims to test the famous
revenue equivalence theorem, which asserts that a seller will always get the same
revenue from any allocation mechanism given some specific features of the bid-
ders. Recently Haile, Hong and Shum (2003) conduct tests to examine whether
the bidders have common value or private value on the objects. Paarsch and
Robert (2003) generate laboratory data to test equilibrium behavior when bid-
ders bid in discrete increments. See also Athey and Haile’s (2005) introduction
and a list of comprehensive references.

On the other hand, this empirical testing procedures rely on the distribution
functions which characterize the bidders’ valuation, or demand on the auctioned
goods. As Milgrom and Weber (1982) have shown, in equilibrium the optimal
bid is a function of bidders’ private value, the number of bidders, the reservation
price of the objects, and the optimal bid is monotonically increasing in bidders’
private values, i.e., the bidder with higher value will bid more. Based upon this
result econometricians have attempted to estimate the distribution function of
bidder’s private value by the relationship between the optimal bid and private
value, assuming the Bayesian Nash Equilibrium in the competitive bidding.

However, there are some difficulties in the structural analysis of the auction
models. For the relevant variables, we can observe the number of bidders and the
reservation price, but sometimes not all the bids can be observed 6. Moreover,
bidders’ private values are latent, i.e., the data generation process (DGP) which
can be observed is incomplete. This leads to two problems. The first one is
identification: can the distribution functions of the private value be recovered
from the data in various types of auctions? Secondly, the equilibrium strategy is
in a highly nonlinear form, so explicit calculation of the private value out of the

strategy is unfeasible.”

5How many bids can be observed depends on the type of auctions. In an English auction,
sometimes not all of the bids can be observed, since the potential bidders whose valuations of
the object are lower than the current bids will not bid at all. In an Dutch auction, since the
auction will end right after someone has made a bid, only the wining bid is observed. In first
price and second price sealed bid auctions, all the bids can be observed.

TApart from these two problems, some researchers like Albano and Jouneau (1998) who
suggested a Bayesian approach to the first price auction model, pointed out that in the existing
frequentist approach the auction models cannot indeed be fully structured indeed, since they
need asymptotics and the proposed estimator is on a product space. Specifically, asymptotics
on the number of bidders will involve an infinite number of bidders and if it is not the case,
the econometric model will not be fully structured. However, the structural formula which
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Athey and Haile (2002, 2005) have examined the condition for nonparametric
identification in different model settings. One of their conclusions based on the
equilibrium strategy found by Milgrom and Weber (1982) is that the distribu-
tion function can be identified even when only the winning bid is observed in
the simplest independent private value (IPV) setting with symmetric bidders.
This means that the bidder’s private values are independently drawn from the
same distribution function and each bidder only knows his/her own value. In-
deed, Guerre et.al (2000) propose a two step nonparametric kernel estimator for
the distribution function with optimal convergence rate, which does not need
calculation of the equilibrium strategy.

In a parametric approach, early research by Paarsch (1992), and Donald and
Paarsch (1993, 1996), also concludes that the parameter in the distribution func-
tion of private values can be identified through the winning bid within the IPV
paradigm, assuming that the bidders’s private value distribution is from some
specific parametric family. Since the support of the bid distribution involved
depends on the parameter of interest, the maximum likelihood estimator (MLE)
from directly maximizing the likelihood function is not consistent. They there-
fore suggest pseudo maximum likelihood (PML) to estimate the parameter, but
computation of likelihood function is challenging due to its high degree of non-
linearity. To avoid calculating the density function, Laffont, Ossard and Vuong
(1995), (hereafter Laffont et al. (1995)) consider simulating the first moment
of the winning bid, and using non-linear least squares (NLLS) estimation which
minimizes the sample analogue of the simulated moments.

Laffont et al. (1995)’s estimation method is an application of method of
simulated moment (MSM) introduced by Pakes and Pollard (1989) (hereafter
PP), McFadden (1989) and McFadden and Ruud (1994) (hereafter MR). In their
paper they discuss the problem when the general method of moments (GMM)
encounters moment conditions which cannot be handled as usual, specifically,
when we estimate a parameter 6, based on the following population moment

condition:

GMM and also empirical likelihood (EL) will be difficult if the moment indicator

provides the optimal bidding strategy as a function of private values will converge uniformly
to identity function when the number of bidders goes to infinity. On the other hand, if we do
asymptotics on the number of repeated auctions instead of bidders, the equilibrium strategy
in repeated auctions can be much more complex than the one in a static auction.
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g (x,0) is intractable and hard to compute, or even discontinuous in the para-
meter of interest, since both GMM and EL require explicit calculation of the
sample analogue of the moment condition and existence of the derivative ma-
trix of g (x, 8) with respect to 6. PP have established general asymptotic results
of the estimator based upon simulation of the moment condition, confining the
parameter space to some specific class. As an immediate application but in an
independent piece of work, McFadden (1989) estimates a discrete response model
by simulating the intractable response probability forming the moment condition.
A similar case worth mentioning is that, the functional form of g (x,0) itself is
tractable but it contains some unknown function, say, g (z,0) = g (z,h(x),0)
where h (x) is unknown. MR consider sample analogue based on simulation of
h (x), while Ai and Chen (2003) approximate h(x) nonparametrically by sieve
minimum distance (SMD) method. .

In this chapter, we apply empirical likelihood to estimate a first-price auction
model under symmetric IPV assumption in a parametric setting. The moment
condition we are based on, which is the same as Laffont et al. (1995) used, is from
the expectation of the winning bid derived according to the equilibrium strategy.
Also following Laffont et al. (1995), we simulate the intractable moment condi-
tion by importance sampling, which is used to evaluate the moment condition
through observations from a different probability distribution and is easier to
handle, rather than using g (z, 6) directly. General references about importance
sampling technique can be found in Rubinstein (1981) and Hesterberg’s thesis
(1988), among others.

We notice that as McFadden (1989) points out, importance sampling can be
used to smooth discrete moment conditions. So we extend our estimation method
to more general case where the moment conditions may be either intractable or
discrete. Similar to the results of PP, the proof of consistency of our EL estimator
based on MSM requires only the continuity of the simulated moment condition,
but not that of the original one. However, the proof of asymptotic normality
dose require differentiability of the moment condition at the true parameter and
the derivative matrix must be full rank.

This chapter is organized as follows. Firstly in section 5.2 we describe the
game theoretical auction model. We review the derivation of equilibrium strategy
and the conditions for identification in our symmetric IPV setup. In Section 5.3
we consider the empirical likelihood estimator using simulated moment condition

by importance sampling, and asymptotic properties of the estimator will be
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established. Also extension from an auction model to a more general moment
condition is mentioned. Section 5.4 provides experimental results. Section 5.5

concludes and proposes some extensions to further research.
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5.2 First Price Auction with Symmetric IPV
Bidders

5.2.1 The Game Theoretic Model

Consider a first price sealed bid auction as a noncooperative game. Some risk
neutral ® bidders which are indexed by i = 1, ..., with I > 2, bid for a single
and indivisible object. Bidders submit their bids to the auctioneer simultaneously
and the bidder with the highest bid wins, provided that her /his bid is no smaller
than the reservation price ug set by the seller. Suppose that bidder ¢ holds his
own value ? u; on the object which is from a probability distribution F' (u) with a
bounded support suppU = [u,u] where 0 <u< @ < oo. Furthermore, each bidder
knows the number I and the function F' (u) and he knows that the others know,
etc. As shown by Riley and Samuelson (1981), by making the bid b; = § (u;)
according to her/his private value, in the game bidder 7 want to maximize her/his
expected utility U; = U (ug, b;), i.e.,

E U] = (u; — B (ui)) X pi (5.1)

where p; is the probability of the bidder ¢ wins.
For the value u; and the distribution function F' (u) we make the following

assumptions which form the IPV model:

2

Assumption 9 (Symmetric and independent bidders) All the I bidders

values are independently drawn from the same distribution F (u) .

Symmetric bidders are not identical however, since their private signal will be
different. Indeed, in a symmetric game heterogeneity across bidders is embodied
in differences among private signals. The case of asymmetric bidders can arise
from the fact that some of them are well informed, some of them may have collu-
sion, or they have different sizes and locations that can affect their distribution
of private signal.

Sometimes it is convenient to use order statistics for explaining independent

private values drawn from F'(u). For the set of I private values {uy,...us}, let

8In general, models with risk averse or risk seeking bidders are nonidentifiable if no addi-
tional restrictions are given. See, e.g. Maskin and Riley (1984) or Campo et al. (2000). So for
simplicity and concentration on estimation methods we only consider risk neutral bidders.

9Here ’value’ can also be termed as ’utility’. See Athey and Haile (2002). Indeed, the
bidder ¢ will receive utility u; — p if he wins the object at price p.
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u®1) denote the kth order statistic, and u"*Y) = max {uy,...u;}. Correspond-
ingly, b1 will denote the kth order statistic of the I independent bids.

Assumption 10 (Private value) Fach bidder knows only her/his value but
does not know others’ values. FEquivalently, each bidder does not know any in-

formation relevant to other bidders’ utility.

In contrast, if bidders have common value '°, a bidder’s belief would be
influenced by other bidders’ information or signal other than her/his own. And
by private value assumption we avoid the problem of ’winners curse’, which

means the winner will tend to overpay.'’.

Assumption 11 The distribution function F(u) is absolute continuous with
density f(u) with respect to Lebesque measure and the expectation of the pri-

vate value is finite, i.e., E(u) = [uf(u)du < cc.

5.2.2 The Equilibrium Bid Function

Suppose now we have incomplete knowledge of F(u) and we want to estimate
it. '?Since in an auction bidders’ private values v cannot be observed, we have
to obtain the relationship between v and b which we can observe. The optimal
bidding strategy for bidder i is a result of symmetric Bayesian-Nash equilibrium
(SBNE), obtained by Riley and Samuelson (1981). A bidding strategy 3 (u;) is
a SBNE strategy if for all valuations, it is a best response for bidder ¢ if for all
bidders j # i also use [ (u;). Maskin and Riley (2000) show that if 5 (u;) is a

10To test whether bidders have private value or common value. Hailey etl. (2003) conducted
a nonparametric test based on their finding that in a first price auction with private values
the equilibrium optimal bid is invariant to the number of bidders I, while in a common value
model it is strictly increasing in I.

For a formal illustration of this result obtaied by conditional expectation, see e.g., McFad-
den’s note: http://elsa.berkeley.edu/ mcfadden/eC103 {03 /curse2.pdf

12 An example of the significance of finding F(u) in economic practice. From the point of the
seller, his expected revenue R is

B(r) =N [ :m (u (Fa) - [ (Fa)~~" dx> f(w)du 3)

A seller who wants to set a optimal reservation price p* which can maximizes E(R) +
ug (F(ug))N needs to know F(u). According to Laffont and Maskin (1980), p* should solve

1—F(p*)

* 0
P T
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bidder’s best response then it is monotonic in valuations. Riley and Samuelson
(1981) showed the unique symmetric Bayesian-Nash equilibrium which is our
structural econometric model with which we estimate the distribution of the

unobserved private values using the observed bids.

Theorem 20 (Riley and Samuelson,1981) Suppose Assumption 9-10 hold.
In a first price sealed bid auction with reservation price ug, the optimal bidding

strategy of a risk neutral bidder v with private value u; > pg 18

1 “" -1
b= ) == [ (F(O) e (5.2)
(F (u:)' ™" Juo
Proof. Consider bidder ¢ makes a bid of x. Note that x is also a function of ;.
The probability of bidder ¢« wins with bid x is equal to the probability of all the

other I — 1 bidder’s bids are smaller than z'3, i.e.,

pi= [] POj<z)=[F@)] ", (5.3)

=1, i

since bidders are independent and symmetric. Now the bidder’s problem (5.2)

can be expressed as
Maz  E[U;) = [u; — 2 (u;)] % [F(x)]"". (5.4)

The first order condition of (5.4) with respect to x is

OB [ ()] ¢ P ™ 4 (1 = 1) = e ()] @) () =0,
which implies that the optimal bid S (u;) satisfies the following differential equa-
tion:

B () = (I —1) [u; — b(u;)] ;,((ZZ)) (5.5)

Note that in equilibrium, if the bidder’s private value is exactly the reservation
price ug, she/he will bid wy, i.e., the boundary condition for (5.5) is 5 (ug) = uo.
Since otherwise, if 3 (ug) > ug, the utility will be negative; and if 5 (ug) < uo,
the object will remain unsold. Hence by integrating (5.5) with the boundary

condition the result follows. m

13We ignore the case of ties in the highest bids and private values.
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Remarks.

1. In Dutch auction the equilibrium bid also satisfies (5.2), i.e., Dutch auction
and first price sealed bid auction are strategically equivalent.**

2. The model (5.2) is only valid when bidder’s private value is no less than
the reservation price ug. Otherwise if u; < ug, b; can take any value strictly less
than ug, and the auctioned object remains unsold.

3. A special case of this relationship is that when [=1, i.e., there is only one
bidder, the optimal strateqy is to bid his own private value, given it is no smaller

than the reservation price.

Since b; is a function of u; which is random, b; is also a random variable
from a probability distribution, say, ® (-) with density ¢ (-), which is uniquely
determined by (5.2). Note that b; is strictly increasing in u; on [ug, ul, i.e, a
bidder will bid more if his private value is higher. Hence in a first price auction,
a bid of particular interest, the winning bid b is a function of the highest private

value u::

b = Bu) (5.6)

where the density of u'*) is f(u")) = n[F (u)]""" f (u) (see e.g. David (1981)).
The structural approach of auction models to estimate the latent private value
distribution using observed bids is based on the relationship of ® (b) and F' (u)
through (5.2). For the distribution ® (b) we have the following two results from
the theorem, which have been mentioned by some authors without proof, see
e.g., Guerre et. al. (2000).

Corollary 1 Given assumption 11, the support of the distribution of the equi-
librium strategy suppB :[b,g] is finite.

Proof. From (5.2) we have

b = /uu(]—l)f(u)FI_Q(u)du

uo

< (I-1) /ﬂuf(u)du < 00,

0

since F(u) is finite according to assumption 11. =

14 Similarly, English and second price sealed bid auction are strategically equivalent. See,
e.g., Milgrom and Weber (1982).
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Corollary 2 The private value u; can also be written as a function of b; and

G(b;) as following:
1 @ (b)

I—1¢(b)
Proof. Let 57! (b) denote the inverse function of the bidding strategy according
to (5.2), so u; = 5 (b;) . Note that

®(b) =Pr(B<b)=Pr(U<p (b)) =F (B (b)=F(u),

and hence, ¢ (b;) = 0®(b;)/0b; = OF (u;) /Ob (u;) = f(u;)/b (u;) . Now we have

P0) o )
o ") Ty

and the result follows by combining (5.7) and (5.5) =

(5.7)

5.2.3 Nonparametric Identification

The identification problem in the structural auction model consists of whether the
distribution of private values can be uniquely determined from observable data,
including the number of bidders I, reservation price ug, and bids, and therefore
the first problem we often consider is data availability, which varies in different
types of auctions. In an English auction, the reservation price ug is announced
by the auctioneer but bids are only observed when they are called out by the
bidders. Moreover, the last bid called out by a bidder only provides an upper
bound on the private value of that bidder. In Dutch auctions, only one bid-the
winning bid is observed, and the reservation price is not necessarily revealed.
The number of potential bidders I is also unknown. In Vickrey auctions and
first price auction, we can observe the number of bidders and all the bids.

Athey and Haile (2002) considered the nonparametric identification problem
in various situations including both different assumptions on bidders’ value and
types of auctions. They found the following result in the simplest symmetric
IPV case.

Theorem 21 (Athey and Haile (2002)) For the simplest symmetric IPV case,
F(u) can be identified even when only the winning bid, or the the transaction price

in first price auctions, is observed.

Proof. The distribution of kth order statistic u*!) of independent samples of
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size I from distribution F'(u) is (see, e.g., David (1981))

Flu®D) = = k){('k — /0 N1 — 1) rdt. (5.8)

The right hand side of (5.8) is strictly increasing in F'(u), therefore if we know
the distribution of u®? for any k, including the Ith order statistic u("*D), F(u)
is uniquely determined. Hence F'(u) can be identified by the wining bid which is
a monotonic function of the highest value u(*!). m

Remarks.

1. This result applies not only to first price and Dutch auction, but also
to second price and English auctions, although they have different equilibrium
strategies.

2. To sketch how F(u) can be nonparametrically estimated by the winning bid
b following this theorem, we firstly estimate nonparametrically the distribution
@ (V™) of b and its density ¢ (b™) by the empirical distribution function and the

kernel density, respectively:

=

N RIS, . 1 & b—bY
n=1

where K, (+) is some kernel, hy is a bandwidth and N is the number of auction
being repeated. Then we can construct pseudo highest private value by corollary
2:

1 G

S _ pw
KBS VIR

and then the density of ul"D can be estimated by

I:1)

1 & u— 4
K _n
Nhu; “< hu >

where K, () is some kernel and h, is a bandwidth. Guerre et.al (2000) estab-

lished uniform consistency of f (u,,(f:[)>

F ) -

and show that it has the best uniform
convergence rate for estimating the latent density of private values from observed
bids.

However, the identification problem will be complicated if the symmetric IPV

assumption is violated. Specifically, if bidders are not symmetric, the distribu-
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tions of their private values cannot be identified by a single bid unless more
observations about the auction and bidders are available. Also, identifiability
depends on type of auctions if bidders value are not independent. For instance,
in second price auctions F'(u) is not identified unless all bids are observed. See

also Athey and Haile (2002) for a complete treatment in different settings.

5.2.4 Parametric Setting

More often in the analysis of field auction data, the researcher assumes that the
random variable u come from some specific family of probability distributions.
From now on, following Laffont and Vuong (1996) we suppose that we know the

true distribution of the private value F'(u) takes the following form:
F(u) = F (u; 0, 2), (5.9)

which involves an unknown parameter vector y € © C RP. Accordingly, the den-
sity is f(u) = f (u; 0o, z) . In the function the vector z represents some observable
variables which affect bidders’ value. In practice z could be some features of the
auctioned objects, e.g., the estimated oil reserve of an oil well in an auction for
drilling rights.

Similar to theorem 21, the parameter 6, can also be identified using only the
winning bid, given z and the number I are observed. Specifically, Donald and
Paarsch (1996) showed that the density of the winning bid 5" at first price and
Dutch auctions can be written in terms of F'(-) and the inverse bid function
BH() as

Ix F (7 (b";0),0,2)
(1—1) [0 " P (0,2 d¢

o (b 1,0,z2) = (5.10)

and identification of 6y means there is no element in © other than 6y which solves

(5.10), where b is expressed according to Theorem 20.
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5.3 Estimation

Based on the result that F'(u; 6, z) can be identified by the winning bid, we fo-
cus on b* ' and suppose we observed a sequence of identical auctions!® indexed
by n = 1,..., N and by identical we assume that an auction is independently
repeated N times and the joint distribution F' (uy,...,u;) is the same across the
N auctions. So now we have a sequence of i.i.d random variables by, ..., b%, with
density as (5.10). Since we are focusing on the wining bid, for simplifying nota-
tion and without confusion, from now on we will sometimes drop the superscript
of b?, e.g. b, will denote the winning bid in the nth auction.

Donald and Paarsch (1996) consider maximum likelihood (ML) for estimating
fo. One of the problems they mentioned is that the support of the distribution
of b depends on 6,'", and thus the standard assumptions of ML estimation are
violated. Moreover, the calculation of the inverse strategy in the density of b"
is computationally complicated. Indeed 8! (+) cannot be expressed explicitly
and numerical methods is needed. They solved these problem by maximizing an
approximated objective function subject to some binding constraints, making it
uniformly convergent to the joint density which is maximized at 6.

Alternatively, instead of considering the density of ", Laffont et al. (1995)
used the first moment of the winning bid and avoided exact computation of
the inverse bidding strategy. Specifically, if m (z,60,) denotes the expectation of

b*, i.e. E(b,) = m(z,0), a nonlinear least squares (NLLS) estimator can be

15 However, if all the bids are available, they can be helpful to estimate 6y as well. See Li
and Vuong (1997) for their extension of the framework of Laffont et al. (1995) to estimation
by all bids.

16 Asymptotics on many auctions may cause some theoretical problems, however. Since
bidders’ strategies in repeated auctions will be very complex compared to strategies in a single
auction, the model implied by (5.2) is not fully structured (Albano and Jouneau (1998)). To
simplify this situation we make two more assumptions.

Assumption 12 The number of bidders in each auction is fixed and known to the researcher.

This rules out the problem of entry and the number I remains fixed in the model (5.2). For
how to deal with different numbers of bidders in each auction, see Li (2005).

Assumption 13 The private values of bidder i are independent across auctions.

If a bidder’s private value is not independent, i.e., it depends on private values and bids
in previous auctions, the optimal bidding strategy will no longer be the model (5.2). See
Birhchandani (1988) for the equilibrium solution in repeated auctions.

17See also Corollary 1, considering F'(u) replaced by F(u;0, 2).
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obtained by minimizing the objective function

= (1/N) ZN: M (2n, 0))?
n=1

with respect to 0, where m(z,, 0) is an unbiased simulated estimator of m (2, 6y) .1®

Following this framework, we propose here an alternative estimator based on
the simulated moment condition, but using, instead of NLLS as in Laffont et al.
(1995), empirical likelihood methods to estimate 6. Let

g (xn,0) =0, —m(z,,0), (5.11)

where x,, denotes the vector of observable data including b,, and z,. Then the

i.i.d random variables by, ..., by satisfy the following moment condition:
E g (wn,00)] =0, (5.12)

where the expectation is taken with respect to F (u; 6y, z) . The difficulty for both
NLLS and other methods of estimation, is that m (z,, ), and hence g (x,,0o),

is not directly available.

5.3.1 Simulated Moment Condition

The Problem

Following the usual setup (e.g., Qin and Lawless (1994), Kitamura (2001), Newey
and Smith (2004)), the EL estimator based on (5.12) is defined as

6 = arg min sup R (0, X)),

0€0 \eRrp

where

RON =Y log (1 + N g (2, 9)) (5.13)

and \ is a vector of Lagrangian multipliers.

8Indeed, NLLS estimator from directly minimizing Q(6) will be inconsistent, so LOV instead
minimize

Qn(6) = (1/N) SV (by — X(20,0))* = (L/N) SV (b — m(20,6)) — A (6)

where A () = (1/N) SV E [var (X (2,,0))] .

90



However, a problem in empirical likelihood estimation of # by minimizing
(5.13), as Laffont et al. (1995) also encountered in NLLS estimation, is that
g (z,00) , in particular m(z, @), is intractable and not in an explicit form so that
we cannot calculate its sample analogue, nor we can get its derivative. In a
different context, a similar case is also considered by Ai and Chen (2003) who use
sieve method to estimate ¢ () which may contains unknown functions. Another
situation in which we cannot use the moment indicator ¢ (-) directly, is that
sometimes ¢ (+) is not continuous in 6, but usual empirical likelihood estimation
assumes that ¢ (-) should be continuous and differentiable in the parameter of
interest, so that we can demonstrate the consistency of EL estimator. (see, e.g.,
assumption 1 of Newey and Smith (2004)). Parente and Smith (2008) discuss
another example of this non-smooth case, where ¢(-) is not even differentiable.

To summarize these situations we list the following cases.
Case 1 ¢(+) is discontinuous in 0.

Example 12 McFadden (1989) considered estimation of discrete response model.

Suppose we have obtained the model like
yi = I(Bxi +; > 0) (5.14)

where I (-) is the indicator function and ; is i.i.d with density p(g). So we
have the moment conditions E [g (z, 8)] = E y; — I[(Bx; + &; > 0)] and the GMM

estimatorB is based on the following sample analogue:

S - 1+ > 0)].

=1

9(z,B) =

Problems arises because g (x, ) is not continuous in f3.

Our auction model provides an example for the second case due to the high

nonlinearity of the equilibrium strategy.

Case 2 Computation of g (-) is infeasible.

Pakes and Pollard (1989) considered simulating a good estimate § (-) of g (-)
when the expectation of g (x,6y) is difficult to evaluate, including the case that
g (z,0) is nonsmooth or even discontinuous. Specifically, if we let G,, (6) be a
simulation of E [g (z,0)] and 6 be the GMM estimator based on G,, (f), then the

conditions under which 6 converges to 6, are described in the following theorem.
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Theorem 22 # converges in probability to 0y if

a. HG" (0) H < infyeo [|Gy (0)] + 0,(1)
G (00) = 0p(1)
C. SupH9,90”>5 HGn (9)”71 = Op(l), Vo > 0.

where ||-|| is some norm depending on 6.
Proof. See Pakes and Pollard (1989). =

Remarks

The intuition for these conditions is to require the simulation G, (-) be as
close to F g (x,0)] as possible. Specifically,

a. Gy, (+) evaluated at the estimator 0 cannot be much bigger than the smallest
value of Gy, (0) in O.

b. G, () evaluated at the true parameter 0y cannot be much bigger than zero.

c. Gy, (+) evaluated outside some neighborhood of 0y should be large.

Based on this approach, Laffont et al. (1995) show that the optimal bid 5"
can be written as the expectation of the maximum of the second highest bid and
the reservation price conditional on the highest private value, which provides a

way to simulate the first moment of b*.

Proposition 12 (Laffont et al. (1995)) Given the number of bidders I, the
reservation price ug, and F (-), then for u > wug, the optimal bidding strategy

B (u) can be expressed as
B (u) = E [max (ut-1,u°) u" =] . (5.15)

Proof. The result is obtained by combining Milgrom and Weber (1982) Theorem
14 and the equilibrium strategy (5.2), noticing that the conditional cdf. of w(-1:)
given u') = w is [F (u) /F (u(”))}l_l. u

Taking expectation of (5.15) with respect to u!/*?), we have
E (b*) = E [max (u¢-1,u°)] . (5.16)

(5.16) can be viewed as an integral with respect to the density of u(-v=) which

is a function of wy,...,uy, independently drawn from F' (). So (5.16) can be
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written as
E @) = / / max (un—_1),p") f (u1) ...f (un) duy...du,. (5.17)

Since in the above integral, the private values u; is not observable, E (b*) cannot
be obtained directly. Following Laffont et al. (1995), we use importance sam-
pling methods to get an estimator of F (b"), through sampling wu; from another
distribution. In the next section we give a brief introduction to the importance

sampling method.

Importance sampling

Importance sampling is a simulation method which is useful to estimate an in-
tegral about a probability distribution from a different distribution. Suppose we

want to evaluate the integral

B, lg(z)] = /D g(2)p(x)dz

where g(x) is a function of x and p(z) is the density of z. If it is difficult to

sample from p(z) '

, we can choose another probability distribution Q(z) with
density ¢(z), which is called the importance function ?°and has the same support

as p(z), and transform E, [g(z)] as

Bylata) = [ a0)2 Data)ds = £,y (5.9
where w(z) = p(x)/q(x) is called the importance weight (also inverse likelihood
ratio). Note that w (x) is always positive, E, [w(z)] = 1, and this weight function
reflects the important regions of the sampling space. A special case is that
q(z) = p(x), when w () = 1.

(5.18) motivates an unbiased estimator for E, [g(z)] by sampling S indepen-

dent values from @Q(z) and calculating

&> glrnulan) (5.19)

Ye.g., Owen and Zhou (2000) considered the case that g(z) is a spiky function, which means
that the variance of g(x) is may depend on a subset of D having relatively small probability
under sampling from g(z).

20g(x) is also called the importance sampling density, proposal density, or instrumental den-
sity as we use it as an instrument to obtain information about the integral.
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as simulated value of g(x)w(z). Hence E, [g(x)] can be estimated by

1

Ey[9(0)] = 575 D D 9(@ns)w(tns). (5.20)

Note that g(x)w(z) is an unbiased estimator of £, [¢(x)] by construction, with
expectation taken with respect to ¢(x). It is interesting to check the expectation
of g(x)w(z) with respect to p(z). Generally it will depend on the choice of ¢(z),
but in some circumstances this expectation can be bounded by a function that

does not depend on the choice of ¢(x). The following result will be useful later:

Proposition 13 Assume that g(x) is nonnegative and the importance weight
w(x) = p(x)/q(x) is infinitely integrable, i.e., E>° [w(x)] < M, where M is finite,

then E, [g(x)w(x)] is also bounded, in particular
Eplg(x)w(x)] < By [g(x)] M. (5.21)

Proof. The result is directly from the Holder inequality:

Bl@uw)] - [ 9()P % p(2)de

q(z)
< ([ stomaras ) jutol.
< Bl M,

where ||-|| denotes the norm in L> space. m
The following example shows importance sampling can also smooth discon-

tinuous moment conditions.

Example 13 Let u = fx; + ¢; and p(u|x, ) be the conditional density of u

giwen x, 3, through change of variables we have

E[I(Br:+ & > 0)] = / [(Bai +2; > 0)p (&) de

= /I(u>0)p(u!x,5)du
>

where q(u) is an arbitrary non zero density with a support which contains that
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of u. Now we can draw S independent samples uy, ...us from q(u) and construct

Note E[I(Bx; +¢; > 0)] is an unbiased estimator of E [I(fx; +&; > 0)] since

_ Lo I(us > 0)p (us |, B)
E BBz +2 > 0)]] = 50 on

- Iw>0p (e d) o

q(u)
= BE[I(fzi +e > 0)].

The critical thing in E [I(Bx; +¢; > 0)] is that it is continuous in 3. Thus
through importance sampling we have obtained a smooth approrimation of the

discrete moment conditions.

5.3.2 Large Sample Theory

Following Laffont et al. (1995), we simulate the expectation of the optimal bid
E (b*) according to (5.17):

/ / max (1), uo)J; E“l)::f (un) (5.22)

Xq (u1) ...q (up) duy...du,.

For each n =1,..., N, we draw S independent samples from another distrib-

ution ¢(-), each of size I, denoted u??,...,usl, s = 1,...,.S. Hence by using (5.22)

Y )

we can construct a estimator for m (z,, ) for each n :

: - f ) f ()
n: 0 Z up) Tl . (5.23)

Remarks.

a. m(zn,0) is by construction an unbiased estimator for m(z,,0) even for
S =1, E;[m(2,0)] =m(2,,0).
b. The simulations, hence the simulated moments m (z,,0), are not condi-

tional on the observation b™.

95



c. Let k (0) = max <un(I b 0) Fshy o f (wl), then vary [ (z,,0)] = $02,

where

2 _ K (0) (2
= B g } (5:24)
= max (v y f (). f( )—m z 2 U
- /( (170, 0) i gt 20 ) o
- I=1 2f— w—2m [ max (u*UV u i u 4 m? u
= /[max (u( ) uo)} 7 Sqdu — 2 / ( s ), 0) qqd + /qd
= [ Do (0] Lt o 0 (529

Therefore, if ¢ =m (z,0)"" & (0), then the variance will be zero, although this is
not realistic since 0 is as yet unknown. However, we can choose q(x) which is of
roughly the same shape as k (0), i.e., q(x) is proportional to k (0): q(x) o k(0),
so that the variance of the estimator can be as small as possible. (e.g., see
Rubinstein (1981), Owen and Zhou (2000)).

Now let
g (x,,0) =0, —m(z,,0), (5.26)
§(0) = % Z G (@), (5.27)
G=FE {x—"e")} , (5.28)
and

O=FE [g (2 00) G (2, 90)] , (5.29)

and let their counterparts from ¢ (z,,0) be defined analogously, and denoted
without accent above, e.g., g () = + ZN _19 (x,,,0) . To apply the results of the-
orem 22 we define the empirical hkehhood estimator 0 as the solution to the

following problem:

R(0,7) < nalinsupfz (0,7) + 0,(N71), (5.30)

YERP

where

R (0,7) = 5 D log(1 473 (x:,0)

n=1
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and v is a vector of Lagrangian multipliers which is a function of 6 implicitly

defined through
N -
1 ny 0
Ly et
N = 14+7'g(z,,0)
e.g., see Qin and Lawless (1994).

For the general asymptotic properties of empirical likelihood estimator, we

make the following regularity assumption.

Assumption 14 a. 0, € int (0), and © is a compact subset of RP.
b. E[supgeq |9 (7,0)]] < 00, Ve > 2.
c. Q=F [g (T, 6o) g(mn,Ho)} s nonsingular.

Furthermore, we need a smoothing condition for uniform convergence. Let

the simulation residual process defined as
w(0) = VN (§(0) — B, [3 (=,0)]). (5.31)

Assumption 15 The process w () is stochastically equicontinuous®' at 0y, i.e.,

for any € > 0, there exists a neighborhood U of 6y, which satisfies

supjw (0) —w ()] <e a.s
ocU
Although we have mentioned that 6y can be identified by our model under
symmetric IPV setting, we make the following more specific assumption about
identification of 6y through g (-).

Assumption 16 For any § > 0, supjy_g,=s |l @) = O0,(N ).

The following theorem demonstrates the consistency of 0, by checking similar

conditions given in theorem 22.

Theorem 23 Given assumption 14-16, we have the following results:
1. supjg_gy>s 19 )7 = Op(N7H).
2. g(0o) = 0p(1)
3. §(0) = 0p(1)

21 Detailed illustration of stochastically equicontinuous and uniform convergence can be found
in e.g., Pollard (1984) chapter 7 or Newey (1991). Indeed, to make w () be stochastically
equicontinuous, we can choose a importance function ¢(z) such that g (z,,8) is probably Lip-
schitz. See, e.g., lemma 3 of McFadden and Ruud (1994).
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4. R(00,%) =0, (NY2) | where 7 = arg sup77~€ (0o, 7) -

and then 0 converges in probability to 0.

Proof. The first result is to say that g (6) is big outside some neighborhood of
0o, which is from the identification of 6y. To see this, note that from triangle

inequality we have

sup [[g(0)] = sup ||=g(0) —(5(0) —g ()l
16—60]|>6 |6—60]>6
> sup |[lg(@)— sup [|g(0) —g (O]
16—60]|>0 l6—60]|>6
> sup |[lg(@)|| —sup|lg (@) —g @),
10—60]>0 0

given the assumption 15 of stochastic equicontinuity, supy ||g (#) — g (0)|| = 0, (1),
and with assumption 16 we have supy_g, s |9 07" = 0,(N 7).

Secondly we follow the way of McFadden (1989), McFadden and Ruud (1994),
where /N (0) is decomposed as

VNG (0) = Ay + [w () — w (6)] + By (6) + C (6) (5.32)
where N
1 _
Ay =g (2, 60) + \/_N; G (zn,00) — [g (zn,00)])
) = \/—%Zlg T, 0) — g (s, 00),

By () (Eq (9 (20, 0)] = g (20, 0)) -

1
Vip:
McFadden and Ruud (1994) have shown that Ay = 0,(N'/?), with i.i.d assump-
tion on the observations and simulations. Also note that Cy (6y) = 0,(N'/?), and
By (69) = 0, so we haveyv/N§ (0y) = 0,(N'/?)40,(N'/?) and hence § (6y) = 0,(1).

To see the third results, a second order Taylor expansion of R (0,~) around

\\Mz

v = 0 gives

!

R(O,7) =~ (G(0) ——7 NZ? .;i (n,6) v, (5.33)

)2

where 7 lies between 0 and . According to Lemma Al and A2 of Newey and
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Smith (2004) we have 7 = O, (N~/?) and ———— < —1/2. Thus from
(1+"Y 9(93n79)>
(5.33) and result 1 we have

R(00,7) < Op (N72) 0,(1) + O ( ( Z g (@n,0 §mn,9)>

= (N +0, (N
— 0,(N?).

Now from the definition of # we have

R@,7) = O, (N~ 1/2) (é) +0, (N (5.34)
< r%insgﬂng (0,7) + 0p(N )
<

7@(90, )+Op<N 1)
O,

(1),
Solving §(f) out of (5.34) gives
3@ = op0). (5.35)

Then the following argument is similar to Pakes and Pollard (1989). By result 1
we have just proved, for arbitrary § > 0, there exists a bounded, positive constant
M such that supjs_g,|=s 1 ()] ~" < M. On the other hand, since Hg(é) is 0,(1),

-1
for N large enough g(Q)H > M with probability approaching one. Hence

sp (g @) < M < [Ja @)

l6—00(|>6
which implies § must be within the neighborhood of 6, of radius 8, by noting
that §(0) is continuous. The convergence follows since § can be arbitrary small.

Remarks
1. The consistency of 0 does not depend on the choice of number of simula-

tions S, although S does affect the asymptotic efficiency of 0.
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2. The result also holds if ™ (z,,0) is a biased estimator for m (z,,0) if
sup N2 |B| = o(1)
S

where B = E, [m (z,,0)] —m (z,,0) is the simulation bias. See, e.g., McFadden

(1989), who uses smoothed kernel simulator, which is biased.

Before we consider asymptotic normality of é, we look at the variance covari-

ance matrix of § with respect to f. Let ¥ = var [ (z,, 00)] -

Lemma 4 (Decomposition of Covariance Matrix) Given i.i.d observations

b, and simulations for u,,

VNG (2n,00) % N (o, i) (5.36)
with )
B =T+ Vg = T + 5T,
where

S = var[g (z,00)]. s = E, (var, [§ (,00)]).

Proof. By the law of total variance we have

Var[g(xz,,0)|u]

= E(vary[g(x,00)] [u) +var [E g (x,60)] [u]

1
= Zm _Zma
T3

where the second equality follows the law of iterated expectations and the fact
that the estimator through importance sampling simulation is unbiased.

Note that under the i.i.d assumption and with the Lindberg-Levy central
limit theorem we have v Ng (z,,60) = N (0,%,,). So

\/Nf] (Tn,00) = \/N(bn —m (2, 00)) — VN (M (20, 00) — m (21, 00))

d 1
N S o+-2 ).
- (“(’"*S ’”)>

Assumption 17 g (z,0) is differentiable at 0y and G = E[0g (z,6y) /00| is of
full rank.
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Theorem 24 Given assumption 14-17, \/n (é — 90> LR N(0,V), where

-1

v=(¢'se)

Proof. First we show that v/n (é — 90> is stochastically bounded. Since §(8) =
0p(1), hence Cy (9) = Op(1) and by expanding Cy (9) we have

CN(Z)) - \/ﬁ(é—eo)( Z(am Zn, bo) o(é—eo))>

= 0,(1).
With Assumption 17 and 6 2 6, we have \/n <é - 90> = 0,(1).
Now we define
(9, f'y) — arg min sup R (6, 7). (5.37)
0 yeRrp

Let G, (0) = 0y, (0) /00, G (6o) = Zn 1 Gn (90) n= % Z _1 My, (o) Ty, (90) :
Expand the first order condition for the saddlepoint problem of (5.37) around 6
and vy =0:

IR (0,7) 0= — EN: Cin <0> 7 : (5.38)

12
2|
(1=
Q
3
S
>

(5.39)

(5.38) and (5.39) imply

VN (9 - 9) ~ (G (60) QG (90))_ G (00) VNG (6o) .
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Note that from Lemma 4 we have
VNG (6) & N (o, i) .
Also from i.i.d assumption and unconditional simulation,
N

> Gu(fo) & E[Gn(00)] = G.

n=1

1
N

So \/n <6? — 90> — N(0, V). Next we show 0 and f are asymptotically equiv-
alent. The definition of  implies:

R(0,%) < R(0,%) + o, (N7Y) < R(0,%) + o, (N7H).
Then with the similar expansion as (5.34) we have

0, (N2 (9) + 0, (N7)
O (N12) 3 (0) + 0y (N1) + 0, (N)

:g(@)—g(@) 0, (N-1/2).

So §(A) — §(6) = o0, (1). Thus according to the continuity of § we have f =
0+0,(1). m

Remarks

It turns out that the asymptotic variance-covariance matriz of 0 does not
depend on the choice of importance function q(-), but on the number of simula-
tions S. This is the case which MR called unconditional simulation. As S goes
to infinity the disturbance of simulation vanishes, and thus 0 is asymptotically

equivalent to usual EL estimators.

These asymptotic results follows closely that of McFadden and Ruud (1994).
In their paper they also get a consistent GMM estimator for 6y based on general
simulations. The covariance matrix of their estimator is larger than usual GMM
estimator due to simulations, which is slightly different from the covariance ma-
trix of our EL estimator. However, both of our proofs aim to show that, the
simulated moment indicator evaluated at the true parameter and at the estima-
tor satisfies similar conditions indicated in the proof of theorem 3.1 of Pakes and
Pollard (1989).
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5.4 Numerical Results

In this section, simulation results are presented to check the performance of EL
estimator. For the data generation processes, throughout the experiment, let the

private value be the exponential distribution, i.e.,
F(u;0) =1—exp(—uf), f(u;0)=0exp(—ub)

where 0 = }1. We take the reservation price ug = 0, the number of bidders I = 2,
and the number of independent repetition of auctions N = 100. Moreover, for
each n, the observed bids (optimal bids in equilibrium) can be calculated through
F(u) according to (5.2) in Theorem 20:

u; +4exp(—%) — 4

bi:ui

And for each n we take b, = max;_; 2 b; as the winning bid. Then we simulate
m(zp,0) through importance sampling indicated by (5.23), and the simulated
moment indicator is b, — m(z,, ). Specifically, we choose two importance func-
tions g(z) = %exp(—%), and g(z) = 5 exp(—+3) to compare. Also to check
performance of the asymptotic variance according to the number of simulations
S, we calculate 6 under S = 300, S = 500, S = 1000 respectively. At last, for the
above procedure of DGP we repeat 500 times.

For computation of the empirical likelihood estimator we use Bruce Hansen’s
package,?? whose algorithm is to separately evaluate the inner loop and the
outer loop, 1.e., firstly to compute the log value of the profile likelihood at each
0, and then maximize it over 6. Also for comparison, we calculate 2-step GMM
estimator from the simulated moments.

As the results in table 4 and 5 showing, the variance is decreasing as S
increasing, i.e., the randomness from the simulation will be counteracted by the

number of simulations.

228ee, http://www.ssc.wisc.edu/“bhansen /progs/progs gmm.html
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Table 4: g(z) = L exp(—2)

S =300 S=500 S=1000

OrL
MEAN 0.2473 0.2545 0.2521
MEDIAN  0.2416 0.2561 0.2507
SD 0.0129 0.0112 0.0084

02—
MEAN 0.2512 0.2388 0.2446
MEDIAN  0.2471 0.2413 0.2427
SD 0.0140 0.0121 0.0103

Table 5: ¢(z) = L exp(—%)

S =300 S=500 S=1000

OrL
MEAN 0.2371 0.2530 0.2437
MEDIAN 0.2390  0.2519 0.2468
SD 0.0147  0.0122 0.0116

O2-crm
MEAN 0.2613  0.2452 0.2429
MEDIAN 0.2570  0.2490 0.2458
SD 0.0152  0.0141 0.0136

104



5.5 Concluding Remarks

We have presented EL estimation of first price auction models under symmetric
IPV setting, as an example showing how to deal with moment condition which
is intractable in empirical likelihood. Based on simulated first moment of the
winning bid by importance sampling, our estimator for the parameter of the
distribution of private values has the usual asymptotic properties such as consis-
tency and asymptotic normality, but it is different in that the covariance matrix
is larger with additional part (1/.5)X%,,, which represents the randomness from
simulation.

We also mentioned that simulation by importance sampling can be used to
smooth moment condition with discreteness in parameter. This is a different way
from Parente and Smith (2008) approach. Rather than simulating the moment
indicator, they put different assumption on it to ensure the EL estimator to have
standard first order asymptotic properties.

It is important to note that these asymptotic results of our estimator rely
heavily on i.i.d assumptions on observations and simulations, and for time series
model our EL estimator may fail since the general conditions for uniform conver-
gence and the law of large numbers will not be satisfied. So if we want to use EL
by simulating moment conditions with dependent data through importance sam-
pling, more assumptions on stochastic convergence (e.g., see Pollard (1984) and
chapter 4 of Billingsley (1999)) should be added, and the choice of importance
function should also be carefully considered, to make the simulated moments

satisfy certain conditions. These are the directions of our further research.
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