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Chapter 1 is a non technical introduction to the thesis.
In chapter 2, Basics of Large Deviation Theory, we illustrate the basic idea of large devi-

ation theory and brie�y review the history of its development. As a preparation, some of the
important theorems which we will employ in the following chapters are also introduced.

In chapter 3, Asymptotic Optimality of Empirical Likelihood Tests With Weakly Dependent
Data, we extend the result of Kitamura (2001) to stationary mixing data. The key thing in
proving the large deviation optimality is that the empirical measure of the independently and
identically distributed data will obey the large deviation principal (LDP) with rate function
equal to the relative entropy, but in general the large deviation performance of empirical measure
of dependent data is complicated. In this chapter we add S-mixing condition to the stationary
process and we show that the rate function of the LDP of S-mixing process is indeed equal to
the relative entropy, and then asymptotic optimality follows from the large deviation inequality.

In chapter 4, Large Deviations of Empirical Likelihood with Nuisance Parameters, we discuss
the asymptotic e¢ ciency of empirical likelihood in the presence of nuisance parameters combined
with augmented moment conditions. We show that in the presence of nuisance parameters, the
asymptotic e¢ ciency of the empirical likelihood estimator of the parameter of interest will
increase by adding more moment conditions, in the sense of the positive semide�niteness of the
di¤erence of information matrices. As a by-product, we point out a necessary condition for the
asymptotic e¢ ciency to be increased when more moment condition are added. We also derive
asymptotic lower bounds of the minimax risk functions for the estimator of the parameter of
interest, and we show that the empirical likelihood estimator can achieve this bound.

In chapter 5, Empirical Likelihood Estimation of Auction Models via Simulated Moment
Conditions, we apply empirical likelihood estimation to the simplest �rst-price sealed bid auc-
tion model with independent private values. Through estimation of the parameter in the distri-
bution function of bidders�private values we consider a potential problem in the EL inference
when the moment condition is not in an explicit form and hard to compute, or even not con-
tinuous in the parameter of interest. We deal with this issue following the method of simulated
moment through importance sampling. We demonstrate the convergence of the empirical likeli-
hood estimator from the simulated moment condition, and found that the asymptotic variance
is larger than usual which is disturbed by simulation.
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Chapter 1

Introduction

The empirical likelihood (EL) method is a developing technique for estimation

and inference, and it has attracted immense attention from both statisticians and

econometricians in recent years. As an nonparametric analogue of parametric

likelihood methods, EL is straightforward to be used to incorporate information

from the observations, but without assuming a speci�c parametric distribution,

and thus it is free of some forms of misspeci�cation. It also shares many desirable

statistical properties with ordinary likelihood methods. For instance, EL has

been shown to be Bahadur optimal by Kitamura and Otsu (2005) in a minimax

setting, while such optimality of the maximum likelihood estimator (MLE) is well

known. Furthermore, EL has been found very convenient in dealing with moment

condition models, and it is now being widely used as an important alternative to

the generalized method of moments (GMM). Under some circumstances, EL has

more desirable asymptotic properties than GMM. See Newey and Smith (2004).

This thesis makes contributions to several aspects of the EL method, partic-

ularly combined with the large deviation (LD) theory. Like standard asymptotic

theory (SAT), LD also characterizes the limiting behavior of a sequences of ran-

dom variables. The di¤erence between them is as follows. SAT considers the

typical behaviour of random variables, and checks if they will converge in proba-

bility or distribution to some �xed values or random variables when the sample

size is large, often by applying a law of large numbers (LLN) or a central limit

theorem (CLT). However, to some extent contrarily, LD characterizes the deviant

behavior of random variables, which is sometimes called a rare event in the LD

theory. Furthermore, LD theory focuses on a rate that the probability of the

occurrence of a rare event vanishes. This accounts for the importance of LD in
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probability and statistical theory, because many standard inference problems

involve an analysis of rare events. In this thesis we work with two examples of

this: type I and type II errors in hypothesis testing, and the inaccuracy or the

risk in estimation theory.

In Chapter 2 we brie�y present a technical introduction to the theory of large

deviations. We begin the illustration of the basic idea of LD with some examples

in common probability and statistics problems, showing the exponential decay

of the tail of the normal distribution. A very short history of the development of

the LD theory and major contributors are also mentioned. We focus on the large

deviations principle (LDP) which plays a central role in the following chapters.

The LDP can be considered as a counterpart of CLT in SAT, since it provides

asymptotic upper and lower bounds for sequence of probability measures. More-

over, the LD bounds are described by rate functions, which determine the speed

of decay of the probability of rare events. Particularly, we introduce the famous

Sanov theorem, which states that the empirical measure of a sequence of i.i.d.

data satis�es the LDP, i.e., the probability that the empirical measure lies in

some subset of certain probability space (which can be treated as a rare event)

will be bounded.

We also review two methods of how to prove that a sequence of probability

measures satis�es the LDP. Firstly, sometimes it is convenient to show the ex-

istence of weak LDP, which is the LDP on compact sets. One can then extend

the weak LDP to general sets by showing the sequence of probability is exponen-

tially tight. Secondly, the contraction principle allows us to identify the LDP of

a continuous function of probability measure family which satis�es the LDP.

Chapter 3 considers the application of LD theory in empirical likelihood based

hypothesis testing. This is an extension of the work of Kitamura (2001) to

weakly dependent data. In his paper Kitamura applies the Sanov theorem to

show that the EL test of a set of moment conditions is optimal in Hoe¤ding

sense, since the type II error of the EL test achieves the large deviation lower

bound in an i.i.d. setting. The establishment of this optimality of EL test can

be summarized as follows. Firstly, it can be shown that the EL test is to check

if the empirical measure derived from the moment condition is �close enough�

to the true probability measure, and hence the rejection region of the EL test

can be set by a value of the distance between the two measures. On the other
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hand, the Sanov theorem tells us that the empirical measure of i.i.d. observations

obeys the LDP with rate function being the Kullback-Leibler distance, i.e., the

probability that the empirical measure lies in some certain area of the probability

space is bounded by this rate function, and hence a large deviation lower bound

of the asymptotic type II error can be established. Therefore, if we take the

Kullback-Leibler distance as the distance between two probability measures, the

optimality of EL test can be proved. Indeed, this framework is an application of

the universal hypothesis problem in information theory, see Zeitouni and Gutman

(1991) and Dembo and Zeitouni (1998).

Our contribution - in Chapter 3 - is to show that this type of optimality

property of the EL test can also be obtained with dependent data. For this

purpose it is necessary to add some restriction on the dependence of the data to

make it satisfy the LDP with a suitable rate function which can be compared to

the Kullback-Leibler distance. We adopt the S-mixing condition introduced by

Bryc and Dembo (1996). The advantages of S-mixing are twofold. Firstly, it is a

very weak assumption, and is implied by ��mixing. Hence, the properties of EL
test statistics derived by Kitamura (1997) and Smith (2004) under the ��mixing
condition are applicable under S�mixing as well. Secondly, we �nd that the rate
function of the LDP of an S�mixing process equals the Kullback-Leibler distance
under a certain assumption. Therefore, we can prove the optimality of EL test

with an S�mixing process in a way similar to Kitamura (2001).

Chapter 4 considers the LD e¢ ciency of EL estimation with nuisance para-

meters. Firstly, we present some standard asymptotic results of the EL method

in the presence of nuisance parameters, particularly combined with augmented

moment conditions. We �nd that the asymptotic e¢ ciency of the estimator for

the parameter of interest can be increased by additional nonorthogonal moment

conditions, since it provides extra information. Secondly, we discuss the large

deviation e¢ ciency of the EL estimator for the parameter of interest, in the

framework of Puhalskii and Spokoiny (1998), who �nd that if a family of prob-

ability measures characterized by some parameter satis�es the LDP, then there

exists a asymptotic lower bound for the minimax risk of the estimator of the

parameter. Following Kitamura and Otsu (2005), we show that the set of prob-

ability measures which satisfy the moment condition with nuisance parameters

obeys the LDP with a particular rate function, and then a minimax risk bound

can be determined by the likelihood ratio, the risk function, and the rate func-
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tion. We �nd that the LD e¢ ciency of the estimator of the parameter of interest

can still achieve the lower bound.

In Chapter 5, we apply empirical likelihood to estimate the parameter of

bidders�private values in auction models. At the beginning we describe the auc-

tion models in a game theoretical setting and brie�y discuss the data generating

processes of di¤erent auction models. We focus on the �rst price auction model

with symmetric and independent private values, in which the winning bids can

always be observed, and the distribution of the private values can be identi�ed

both parametrically and nonparametrically by the winning bids alone.

However, the moment condition derived from the Bayesian Nash equilibrium

of the game theoretical model is highly nonlinear and not in a explicit form,

and so is extremely hard to compute. Our contribution here is to suggest a

method to deal with such moment conditions using empirical likelihood. We

follow the method of simulated moment introduced by Pakes and Pollard (1989)

and McFadden (1989) to simulate a new moment condition which is easy to

handle. Particularly, we use importance sampling methods to do simulations,

and we also �nd that this method can be applied when the moment condition

is tractable, but is discrete in the parameter of interest, which is also the case

considered recently by Parente and Smith (2008). We show the convergence of

the empirical likelihood estimator from the simulated moment condition, and

that the asymptotic variance is larger than usual by a factor due to the need

for simulation, as one might imagine. A numerical simulation experiment is also

conducted to illustrate the properties of the suggested procedure.
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Chapter 2

Basics of Large Deviation Theory

In this preliminary chapter, we illustrate the basic ideas of large deviation theory,

and brie�y review the history of its development. As a preparation, some of the

important theorems which we will employ in the following chapters are also

introduced.

2.1 Introduction

Large deviation theory is now widely implemented in a variety of �elds like

mathematical statistics, engineering and physics, where we sometimes need to

obtain detailed information on rare events. Rare events can be interesting and

crucial, although they happen with relatively small probabilities. For example,

in applications to queueing theory and communication systems, the rare event

could represent an overload or breakdown of the system. In this case, large

deviation methodology can lead to an e¢ cient redesign of the system so that the

overload or breakdown does not occur.

As for the limiting behavior of random variables, which is the main object of

large deviation theory, actually we are familiar with some limit theorems such as

the weak and strong law of large numbers, and the central limit theorem. These

results depict the typical behavior of a random variable as converging to some

other random variable or distribution. However, they tell little about the rate

of convergence, or the deviant behavior at the tail of the distribution. Large

deviation theory addresses just these two aspects. To have a �rst impression of

large deviation theory in statistics, we begin with the following examples.

Example 1 (Dice Tossing) Suppose we toss a dice 5 times, with a sequence of
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results (3; 3; 1; 6; 2) :Then the empirical mean is �x1 = (3 + 3 + 1 + 6 + 2) =5 = 3,

and we can calculate the empirical distribution for the dice value (1; 2; 3; 4; 5; 6)

as �
1

5
;
1

5
;
2

5
; 0; 0;

1

5

�
:

However, we know that if the number of random throws are large enough, the

theoretical distribution for the dice value should be�
1

6
;
1

6
;
1

6
;
1

6
;
1

6
;
1

6

�
and thus the mean value is �x = (1 + 2 + 3 + 4 + 5 + 6) =6 = 3:5: Deviation from

the theoretical mean value and distribution comes from insu¢ cient number of

throws, and large deviation theory tells us as the number of throws increases,

deviations vanish at speci�c exponential rate. Figure 1 in the appendix shows that

the tail of the distribution of the average value of dice decays exponentially as the

number of throws increases, and the following example explores more theoretically

of this issue.

Example 2 (Tails of Normal Distribution) Let x1;:::; xn be a sequence of
i.i.d., real-valued random variables drawn from standard normal distribution.

Probably the most classical topic of probability theory is to study the behavior

of the empirical mean:

�x =
1

n

nX
i=1

xi: (2.1)

Since �x is again normally distributed, i.e, �x � N(0; 1=n); it is easy to see for

any interval A � R;

Pr(
p
n�x 2 A) !

n!1

1p
2�

Z
A

e�x
2=2dx: (2.2)

This can be explained as �x takes the "typical" value of order 1=
p
n; and this kind

of convergence in (2:2) has been rigorously studied by the central limit theorem.

An important and interesting problem is how frequently �x takes some relatively

large values, i.e, �x exhibits "deviant" behavior? And people often want to know

how "deviant" the behavior is. To see this, consider any � > 0;we have:

Pr(j�xj � �) = 1� Pr(j�xj < �)

= 1� 1p
2�

R �pn
��
p
n
e�x

2=2dx
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and this leads to:

lim
n!1

1

n
log Pr(j�xj � �) = ��

2

2
: (2.3)

Equation (2:3) tells us that, �x takes relatively large values with small probability

of the order e�n�
2=2: So a natural question will be, if some results similar to

equation (2:3) can be obtained if xi are not normally distributed? The answer is

that in i.i.d. case the limit of 1
n
log Pr(j�xj � �) always exists although its value

depends on the distribution of xi: Indeed, any probability measure of i.i.d. random

variables is exponentially bounded by some rate function. This is just the content

of the Sanov theorem, which we will discuss later on.

The earliest idea of large deviations can be traced back to Laplace in the early

19th century, among his many contributions to probability and statistics. The

�rst rigorous results concerning large deviations came from the Swedish math-

ematician Harald Cramer, who applied them to model the insurance business.

Cramer gave a solution to his question for i.i.d. Gaussian random variables,

where the rate function is expressed as a power series. However, the general

abstract framework for the large deviation principle was proposed by Varad-

han (1966, 1984), who may also have been the �rst to give such a terminology.

Ventzell and Freidlin (1979) also make big contributions, describing their theory

of small random perturbations of dynamic systems. A very incomplete list of

mathematicians who have made important advances would include R. Ellis, A.

Dembo and D. W. Strook. A systematic application of large deviations to statis-

tical mechanics can be found in Ellis�s work (1985), and Strook (1984) gave an

introduction to the theory of large deviations together with a thorough treatment

of the relation between empirical measure and analytical properties of Markov

semigroups. A more comprehensive treatment of large deviation theory with ap-

plication to statistics can be found in Dembo and Zeitouni (1998), and Deuschel

and Strook (1989).

The remaining sections are organized as follows. Firstly we introduce the for-

mal de�nition of the large deviation principle with related concepts. Section 2.3

provides some important theorems about large deviations which will be involved

in our following chapters. More details of these well established results can be

found in Dembo and Zeitouni (1998).
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2.2 The Large Deviation Principle

2.2.1 Preliminaries

Let � be a topological space, so that open and closed subsets of it are well de-

�ned. Also denote the Borel �-�eld on � as A. Moreover, to avoid possible
measurability problems, we assume all probability spaces to be complete and

separable. The large deviation principle (henceforth LDP) is to characterize the

limiting behavior of a sequence of probability measures fQn; n � 1g � M1 (�)

with respect to a rate function, whereM1 (�) represents the space of probability

measures. Note that M1 (�) includes discrete measures, such as empirical mea-

sure. Furthermore, we equip the measurable space (�;A) with the � -topology
(strong topology) generated by the collection:�

v 2M1 (�) :

����Z
�

fdv � x

���� < "

�
(2.4)

where x 2 R, " > 0 and f 2 B (�;R) ; the vector space of all bounded, real
valued, Borel measurable functions on �:We equip f with the supremum norm.

De�nition 1 A function I : � ! [0;1] is called a rate function if it is lower
semicontinuous. If I is lower compact, i.e., the level set fx : I(x) � ag, 8a 2
[0;+1) is compact, then I is called a good rate function.1

Proposition 1 A function f is lower compact if and only if for each decreasing
sequence An of closed sets,

lim
n!1

inf
x2An

f(x) = inf
x2\nAn

f(x):

Proof. See, e.g., Puhalskii (2006).
Throughout, for any set �; let �� denote the closure of �, �o the interior of �,

and �c the complement of �: The in�mum of a function over an empty set is set

as 1 (e.g., Dembo and Zeitouni (1998)).

De�nition 2 (LDP) A sequence of probability measures fQn; n � 1g on � is

1The reason that sometimes we want I to be a good rate function is that its in�mum can
be attained over closed sets.
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said to satisfy the LDP with a rate function I (x) ; if for all � 2 A;

lim inf
n!1

1

n
logQn (�) � � inf

x2�0
I(x) (2.5)

and

lim sup
n!1

1

n
logQn (�) � �inf

x2��
I(x): (2.6)

We call the right hand side of (2.5) and (2.6) the large deviation lower and upper

bound, respectively.

Remark 1 Sometimes we say that a sequence of random variables satisfy the

LDP if the corresponding sequence of distributions does.

Remark 2 From the de�nition it is straightforward that if

inf
x2�0

I(x) = inf
x2��

I(x) = I�; (2.7)

then

lim
n!1

1

n
logQn (�) = �I�: (2.8)

A set � satisfying (2.7) is called an I continuity set. The LDP implies a precise

limit in (2.8) only for I continuity sets.

Remark 3 The LDP is equivalent to stating that for any open set A � �; and
any closed set B � �;

� inf
x2A

I(x) � lim inf
n!1

1

n
logQn (�) � lim sup

n!1

1

n
logQn (�) � � inf

x2B
I(x): (2.9)

Note that the upper bound trivially holds when infx2�� I(x) = 0; and the

lower bound trivially holds when infx2�0 I(x) = 1: And in practice, in proving

the large deviation upper bound, we often prove it �rst for compact sets. So we

have:

De�nition 3 (Weak LDP) A sequence of probability measures fQn; n � 1g is
said to satisfy the weak large deviation principle with rate function I (x) if the

upper bound in (2.2) holds only for compact sets � 2 B: Accordingly, the LDP in
De�nition 2 is referred as the full LDP.

To strengthen the weak LDP to a full LDP we need to show that most of the

probability mass is concentrated on compact sets. This motivates the following:
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De�nition 4 A family of probability measures fQng on � is exponentially tight
if for every � <1; there exists a compact set K� � � such that

lim sup
n!1

1

n
logQn (K

c
�) < ��: (2.10)

If fQng is exponentially tight, then the large deviation upper bound for all
compact sets implies the bound for all closed sets. This result is useful because

it is often easier to prove upper bounds for compact sets by covering them by a

�nite class of sets, such as balls and half-spaces. Indeed we have the following

theorem:

Theorem 1 If an exponentially tight family of probability measures fQn; n � 1g
satis�es the weak LDP with a rate function I (�) ; then fQn; n � 1g satis�es the
(full) LDP with good rate function I (�) :

Proof. See Lemma 1.2.18 of Dembo and Zeitouni (1998).
The following result states that there is at most one rate function governing

the large deviation of fQn; n � 1g :

Proposition 2 Suppose fQn; n � 1g satis�es the LDP with two rate functions,
namely I1 (x) and I2 (x), then I1 (x) = I2 (x) a.s.

Proof. Let B(�; r) denote a ball centered at � with radius r > 0: If the non-

increasing function r 2 (0;1) 7�! infB(�;r) Ij (x) ; where x 2 B(�; r); and j =

1; 2; is continuous at r, we have infB(�;r) Ij (x) = inf �B(�;r) Ij (x) except for some

countable number of r. Therefore, B(�; r) is a I continuity set, and consequently

� lim
n!1

1

n
logQn (B(�; r)) = inf

B(�;r)
I1 (x) = inf

B(�;r)
I2 (x) (2.11)

for every r: Since a rate function is lower semicontinuous, we have limr!0 infB(�;r) Ij (x) =

I (�) for all � 2 �: Combined with (2.11), we have I1 (x) = I2 (x) a:s: See e.g.,

Deuschel and Strook (1989).

2.2.2 Transformation of LDP

Given a large deviation principle on one space, it is often of interest to be able to

construct a large deviation principle on another space. There are several results

in this area:

13



Theorem 2 (Contraction Principle) Let �0
be a complete and separable met-

ric space and f : �! �
0
be a continuous function. If fQng obeys the LDP with

rate function I, then the image-measure fQn � f�1g obeys the LDP on X
0
with

rate function I
0
; where I

0
(x

0
) = I � f�1(x0) = infx2f�1(x0 ) I(x):

Proof. Let � be a closed subset of �0
. Since f is continuous, f�1 (�) is a closed

subset of � and hence � = ��. Therefore by the upper bound of the LDP for

fQng ;

lim sup
n!1

1

n
log
�
Qn � f�1

�
(�) = lim sup

n!1

1

n
logQn

�
f�1 (�)

�
� � inf

x2f�1(�)
I(x)

= �inf
x0

n
inf
n
I(x) : f (x) = x

0
; x 2 �

oo
= �inf

x0
I
0
(x

0
):

The lower bound can be proved if � is an open set by similar argument. See also

Dembo and Zeitouni (1998).

The next theorem shows that if two random variables are exponentially close

to each other, then they share the same LDP property.

De�nition 5 Two families of random variables Xn; Yn, which both take values

in �; are exponentially equivalent if for all & > 0;

lim
n!1

1

n
logP (d (Xn; Yn) > &) = �1 (2.12)

where P is a probability measure on �; and d (�; �) is a distance function de�ned
on �:

Theorem 3 If two families of random variables Xn; Yn are exponentially equiv-

alent, then one of them satis�es the LDP with good rate function I(x) if and only

if the other does as well.

Proof. It su¢ ces to show that the LDP for Xn implies the LDP for Yn. Suppose

that Xn satis�es the LDP with rate function I(x). For any closed set A 2 A; let
its closed � neighborhood denoted by A� = fx : 9y 2 A; d(x; y) � �g ; then we
have

P (Yn 2 A�) � P
�
Xn 2 A�

�
+ P (d(Xn; Yn) > �) (2.13)
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using (2.6) and the LDP for Xn;

lim sup
1

n
logP (Yn 2 A)

� lim sup

�
1

n
logP (Xn 2 A�) +

1

n
logP (d(Xn; Yn) > �)

�
� lim sup

1

n
logP (Xn 2 A�) _ lim sup

1

n
logP (d(Xn; Yn) > �)

� �I(A�) _ �1
� �I(A�)

Since I is a good rate function, I(A�) " I(A) as � # 0: And since � is arbitrary,
we have the upper bound:

lim sup
1

n
logP (Yn 2 A) � �I(A)

The lower bound can be proved in a similar way by considering an open set in

(2:13) :See also Puhalskii (2006).

2.3 Sanov Theorem

Now we focus on the empirical measure of a sequence of random variables fxigni=1
which is de�ned as:

�n (A) =
1

n

nX
i=1

IA(xi) =
1

n

nX
i=1

�xi (A)

for all A � �; where IA(�) is the indicator function for the set A; and �xi denotes
the probability mass at xi. Since �n is again a random variable, it is interesting to

research into the large deviation property of the sequence of empirical measures

induced by increasing sample size, which plays a central role in our subsequent

two chapters. Note that as mentioned earlier in this chapter, �n is a probability

measure and �n 2 M1 (�) ; the distribution of �n, say, P
n is then an element

of the set M1 (M1 (�)) ; and if �n satis�es the LDP, the argument of its rate

function is also a probability measure. The following de�nition introduces such

a rate function which is very important in large deviation theory.
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De�nition 6 For two probability measures Q, P 2M1 (�) ; the quantity

H (Q jP ) =
( R

�
dQ
dP
log dQ

dP
dP if Q� P

0 otherwise
(2.14)

is called the relative entropy, or Kullback-Leibler distance between Q and P ,

where Q� P means Q is absolutely continuous with respect to, or dominated by

P; i.e., for some set A 2 A, P (A) = 0 implies Q(A) = 0:

The following theorem is about the large deviation property of the empirical

measure �n of i.i.d. random variables in �:

Theorem 4 (Sanov) Let fxigni=1 be a sequence of i.i.d. random variables, and

� 2 M1 (�) equipped with the � -topology be the probability law of xi. Then the

sequence fP n; n � 1g satis�es the full LDP with the good, convex rate function
H (� j�) de�ned as (2.14).

Proof. See section 2.1.1 of Dembo and Zeitouni (1998) for a simple illustration
in Rn; see also Theorem 3.2.17 of Deuschel and Strook (1989) for a proof in more
general Polish space.

Remark 4 Shikimi (2002) extends this result to the kernel type empirical dis-
tribution:

~�n =
1

n

nX
j=1

K

�
x� xj
h

�
where K (�) is a kernel and h is the bandwidth.

We will see later on that Sanov theorem provides a very useful tool in

analysing problems involving LDP in the simplest i.i.d. case, since the rate

function, the Kullback-Leibler distance is convenient to be employed in many

situations in statistics. Moreover, when dealing with non i.i.d. data where the

Sanov theorem is not applicable, we always want to �nd some kind of analogue of

Sanov theorem which characterizes the LDP of the data with a speci�c rate func-

tion. The next chapter presents such a situation and its important application

in hypothesis testing.
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2.4 Appendix

Figure1. histogram of average value of dice with increasing number of throws
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Chapter 3

Asymptotic Optimality of
Empirical Likelihood Tests With
Weakly Dependent Data

Abstract
In this chapter we extend the result of Kitamura (2001) to stationary mixing

data. Kitamura shows that empirical likelihood test of moment conditions is

asymptotically optimal in the sense that the type II error of the EL test in

i.i.d. context can achieve large deviation lower bound. The key thing in proving

the large deviation optimality is that the empirical measure of the i.i.d. data

will obey the large deviation principle with rate function equal to the relative

entropy. However, in general the large deviation performance of the empirical

measure for dependent data is more complicated. In this paper we impose an

S -mixing condition (Bryc and Dembo, 1996) to the stationary process, and we

show that the rate function derived by Bryc and Dembo is indeed equal to the

relative entropy, and then asymptotic optimality follows from the large deviation

inequality.

Key Words: weakly dependent, S -mixing, asymptotic relative e¢ ciency.
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3.1 Introduction

Literature on empirical likelihood (EL) method has been growing since being

introduced by Owen (1988). In the past few years it has been found especially

useful in inference in moment condition models as an alternative to the general-

ized method of moments (GMM). Therefore EL has a broad area of application,

since in practice many economic implications are given in terms of moment con-

ditions such as the Euler equation for instance. See the appendices of this chapter

(section 3.7) for an introduction of how EL deals with moment condition models

in an i.i.d. setting.

In this chapter we show that the asymptotic optimality of the EL test of

moment conditions can be extended to the context of dependent data. Our work

is an extension of the paper of Kitamura (2001), which proves that the type II

error of the EL test achieves the large deviation lower bound in an i.i.d. setting.

For a general introduction to EL, see the excellent monograph by Owen (2000).

See also recent results by Newey and Smith (2004), which present desirable higher

order properties of the EL estimator in �nite samples.

There are various approaches to comparing the e¢ ciency of tests with increas-

ing sample size, by checking the asymptotic behaviour of type I and type II error

probabilities. These methods include those of Pitman (1949), Cherno¤ (1952),

Hoe¤ding (1965) and Bahadur (1967), which are brie�y reviewed in section 3.4.

Considering type I and type II errors as large deviation events, Kitamura (2001)

follows Hoe¤ding�s (1965) approach, which is a generalized Neyman-Pearson cri-

terion, since a test will be called Hoe¤ding-optimal if it has the smallest large

deviation type II error among all the tests with the same type I error.

Kitamura (2001) shows that the EL test of moment conditions is optimal

in Hoe¤ding�s sense if the observations are i.i.d. The methodology is as follows.

Firstly, the EL test amounts to checking if the empirical measure derived from the

moment condition, namely �n; is close enough to the true probability measure,

and hence the rejection region of the EL test can be set by a value of the distance

between �n and the true measure. On the other hand, Sanov�s theorem tells

us that �n obeys the large deviation principle (LDP) with rate function being

the Kullback-Leibler distance, denoted by H (� j�) : That is, the probability that
�n lies in some certain area of the probability space is bounded by H (� j�) ;
and hence a large deviation lower bound of the asymptotic type II error can be

established. Therefore, if we take H (� j�) as the distance between two probability
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measures, the optimality of EL test can be proved. Indeed, this framework is

an application of the universal hypothesis problem in information theory, see

Zeitouni and Gutman (1991) and section 7.1 of Dembo and Zeitouni (1998).

To extend Kitamura�s (2001) result to the non i.i.d case, the �rst contribution

we make in this chapter is to show the equivalence of the rate function of the

LDP of S�mixing process and the Kullback-Leibler distance H (� j�) : It can be
seen that H (� j�) plays a critical role in proving the optimality of tests. When
the sample is i.i.d, the famous Sanov theorem provides a quite straightforward

tool to compare the large deviation probabilities. However, for the dependent

case we need to impose some restrictions on the stochastic processes to make the

e¤ects of the dependence between observations vanish as the sample size goes to

in�nity, and to ensure the processes satisfy certain LDP. Mixing, �rst studied

by Rosenblatt (1956), is such a condition that can ensure the processes satis�es

some large sample properties such as the weak law of large numbers (WLLN)

(e.g., van. der. Varrt (2001)), and central limit theorem (CLT) (e.g., Andrews

(1983), Andrews and Pollard (1994)). Various mixing types such as �-mixing,

 -mixing , ��mixing and ��mixing have been studied extensively in time series
analysis. See Bradley (2005) for a comprehensive introduction to properties of

di¤erent mixing conditions.

Also, the LDP has been proved valid for mixing stochastic processes as well.

However, the rate function of the LDP for processes with di¤erent mixing condi-

tions are not the same and, in general not equal to H (� j�) : See, e.g., chapters 5
and 6 of Deuschel and Strook (1989). In this chapter we adopt a certain mixing

condition, called S-mixing, introduced by Bryc and Dembo (1996). The advan-

tages of S-mixing are twofold. Firstly, it is a very weak assumption and is implied

by ��mixing as shown by Bryc and Dembo (1996). Hence the properties of EL
test statistics derived by Kitamura (1997) and Smith (2004) under ��mixing
conditions carry over to S�mixing processes as well. Secondly, we �nd that the
rate function of the LDP of S�mixing process equals the Kullback-Leibler dis-
tance H (� j�) ; under assumption H-1 to be de�ned in section 3.2.2, and therefore
we can prove the optimality of EL test with S�mixing process in a way similar
to Dembo and Zeitouni (1998) and Kitamura (2001).

Before studying its optimality, we also review the methods of deriving the EL

test statistic from the moment condition model with dependent data. It is not

di¢ cult to see that empirical likelihood will fail if the dependence of the data is

ignored when we construct the EL estimator and test. See Kitamura (1997) for
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a simple example. So techniques to handle dependence are needed in empirical

likelihood. Smith (2004) employs smoothed moment indicators instead of using

the moment conditions directly. Since the smoothed moment indicators satisfy

WLLN and CLT, a good asymptotic theory of empirical likelihood can then be

developed. On the other hand, considering the similarity of empirical likelihood

and the GMM, Kitamura(1997) uses blockwise resampling, which is similar to

the GMM dealing with mixing dependent process (Hall and Horowitz (1996)).

Reference to blocking techniques in bootstrapping can be found in Politis and

Romano (1992).

This chapter is organized as follows. Section 3.2 presents some general results

on mixing processes. Here we establish that the rate function of the LDP of

an S�mixing process equals the Kullback-Leibler distance. In section 3.3 we
review some methods to derive EL statistic with mixing data. Some criteria of

comparing the relative asymptotic e¢ ciency of tests are reviewed in section 3.4.

In section 3.5 we prove the asymptotic optimality of EL test in Hoe¤ding�s sense.

Section 3.6 concludes.
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3.2 Large Deviation of Weakly Dependent Data

To establish LDP for dependent data we need to put some restrictions on the

degree of dependence. The importance of weak dependence conditions in prob-

ability theory is that it gives certain requirements under which some limiting

properties of dependent processes will imitate their i.i.d. counterparts, such as

laws of large numbers, a central limit theorem, and of course, the large deviation

principle which we are working with. This section begins by introducing various

conditions for weak dependence. With the terminology of dependent data, we

will use time series, stochastic process or process interchangeably.

3.2.1 Weak Dependence and Mixing

M-dependence

Throughout (�;A; P ) will denote a probability space, where � is a compact

topological space, A is the associated ���eld and P is a probability mea-

sure. Let fXt : t 2 Zg be a stationary time series taking values in �; and
F b
a = � (Xi : a � i � b) denote the ��algebra generated by fXi : a � i � bg :
Dependence implies that Xt+s with s > 1 has memory from previous values

Xt+s�1; Xt+s�2; :::; or in terms of probability theory, two arbitrary ��algebras
F t+s
t and F t+n

t+m � A; where m > s; n > m, are dependent, i.e.,

P (A \B)� P (A)P (B) 6= 0 (3.1)

for any A 2 F t+s
t and B 2 F t+n

t+m: This inequality can be considered as a condition

for strong dependence, since it means that an arbitrary Xt will have memory

from all past values. Therefore, if we want to weaken the condition and let Xt

be �nitely dependent or, weakly dependent, it is natural to require that it only

has memory for a certain, say, m periods of time. This idea is generalized in the

following de�nition.

De�nition 7 A time series fXt : t 2 Zg is said to be m�dependent 1 if the two
��algebras F t

�1 and F+1
t+m+1 are independent, i.e.,

P (A \B)� P (A)P (B) = 0 (3.2)

1Note that as a special case, 0�dependent means independent indeed.

22



for any A 2 F t
�1; B 2 F+1

t+m+1; and at the same time, for any C 2 F+1
t+r where

r < m+ 1;

P (A \ C)� P (A)P (C) 6= 0

Example 3 The moving average process MA(q): Xt = "t +
Pq

i=1 �i"t�i, where

f"ig is a white noise process, is m-dependent with m = q, since for any t, Xt

and Xt+q+1 are independent and hence the ��algebras F t
�1 and F+1

t+q+1 are in-

dependent.

Mixing

Mixing conditions as a measure of weak dependence - a weaker form of (3:2) -

were introduced by Rosenblatt (1956) - describing the tendency that two random

variables will be approximately independent if they are separated far enough.

De�nition 8 (Rosenblatt, 1956) A strictly stationary time series fXt : t 2 Zg
is called ��mixing, or strong mixing, if when k !1; k 2 Z;

� (k) = sup
A2Ft�1; B2F1t+k

jP (A \B)� P (A)P (B)j ! 0; (3.3)

and � (k) is called the ��mixing coe¢ cient.

Note that if the process is m�dependent, � (k) = 0 for k > m; so an

m�dependent process is trivially strong mixing. Next we introduce some stan-
dard properties of ��mixing which is useful in the following sections. These
results can also be found in van. der. Varrt (2001) for instance.

Proposition 3 � (k) is decreasing in k with range 0 � � (k) � 1=4 = � (0) :

Proof. The monotonicity comes from its de�nition since as k increases the

��algebras are separated by longer distance. The range is obtained by noting
that from Cauchy Schwartz inequality we have

P (A \B)� P (A)P (B) = Cov(IA; IB)

�
p
V ar (IA)

p
V ar (IB)

=

q
P (A)� [P (A)]2

q
P (B)� [P (B)]2

� 1

4
:
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To see the value of � (0) ; just let the two sets A = B = fXtg ; therefore � (0) =
sup jV ar(IA)j = 1=4:

Proposition 4 If fXt : t 2 Zg is strong mixing, then it is ergodic.

Proof. Let D be any P�invariant set on �; i.e., ITD = ID where T is some

group transformation. Since Xt is strong mixing, we have

lim
t!1

P (P�tD \D) = P (P�tD)P (D) (3.4)

where P�tD is the t-times iterated inverse image of D: Note that P�tD = D

for any t; we have limt!1 P (P
�tD \ D) = P (D) : So (3:4) becomes P (D) =

[P (D)]2 ; which implies that P (D) = 1 or 0: Hence P is ergodic and so is Xt

(see, e.g., Walters, 1982, for de�nition of ergodicity).

Proposition 5 If a process fXt : t 2 Zg is ��mixing with coe¢ cient � (k) ; then
the process

�
X l
t : t 2 Z

	
, where X l

t = (Xt; Xt+1; ::: ; Xt+l�1) is an l-block of

fXt : t 2 Zg ; is also ��mixing with coe¢ cient �l (k) = � (lk) :

Proof. The result is straightforward just considering the ��algebra F1
t+k in

(3:3) replaced by F1
t+lk:

Proposition 6 If fXt : t 2 Zg is ��mixing, then for any real valued, monotonic
and continuous function f (�) ; the process ff (Xt) ; t 2 Zg is also ��mixing.

Proof. From the assumptions on f (�), we have P (fA \ fB) = P (A \B) and
P (fA) = P (A); P (fB) = P (B); where fA � ff (X) : X 2 Ag and fB �
ff (X) : X 2 Bg : Hence the result follows.

Example 4 An I.I.D sequence is strong mixing.

Example 5 Andrews (1983) shows that the stationary autoregressive process
AR(1): Xt = �Xt�1 + "t, where j�j < 1 and "t is Gaussian innovation, is

strong mixing. Indeed, stationary ARMA(p,q): process Xt =
Pp

i=1 �iXt�i +Pq
i=1 �i"t�i+"t is strong mixing with Gaussian innovation "t; see, e.g., Dedecker

et. al. (2007). However, if "t is binomial, Xt will not be strong mixing (e.g.,

Andrews (1984) and van. der. Varrt (2001)).

Rosenblatt (1956) shows that a stationary ��mixing process Xt with zero

mean and �nite variance satis�es the CLT. Also Durrett (1991) and Andrews

and Pollard (1994) show that Xt obeys a functional CLT. Subsequent research
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has obtained some other mixing conditions which can guarantee a speci�c sort of

CLT for stochastic process, such as ��mixing by Wolkonski and Rozanov (1959),
��mixing by Ibragimov (1962), and  �mixing by Blum et.al. (1963), among

others. These mixing conditions are de�ned di¤erently by mixing coe¢ cients.

Table I shows some commonly used di¤erent mixing coe¢ cients with their ranges.

Corresponding mixing processes are de�ned similarly to ��mixing process. For
instance, fXt : t 2 Zg is said to be ��mixing if � (k) ! 0 as k ! +1: For

a complete introduction to various mixing processes, see, e.g., Bradley�s (2005)

survey.

TABLE 1 Mixing Conditions

Coe¤. De�nition2 Range

� (k) sup jP (A \B)� P (A)P (B)j
�
0; 1

4

�
 (k) sup

���P (A\B)�P (A)P (B)P (A)P (B)

��� [0;1)
� (k) sup jP (B jA)� P (B)j [0; 1]

� (k) sup 1
2

PI
i=1

PJ
j=1 jP (Ai \Bj)� P (Ai)P (Bj)j [0; 1]

It may be necessary to clarify some terminologies. When we mention strong

mixing it refers to ��mixing particularly. However, sometimes people would use
strong mixing conditions (with plural) to call the four types of mixing mentioned

above, since the other three conditions are all at least as strong as ��mixing.
Table 2 presents the well-known chain of implication of these four types of mixing,

showing conditions for weak dependence from the strongest m�dependence to
the weakest ��mixing (see, e.g., Bryc and Dembo (1996) and Dedecker et al.
( 2007)).

TABLE 2 Transition of Weak Dependence Conditions

m�dependence
)
:

 �mixing )
:

��mixing )
:

��mixing )
:

��mixing

2In these de�nitions the supremums are taken over all t 2 Z and all the possible sets A and
B in the ��algebras F t�1 and F1t+k respectively.
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According to table 2, propositions 4-6 for the weakest ��mixing process
mentioned above are also valid for m�dependent,  �mixing, ��mixing and
��mixing processes. For instance, the process of l-block of a ��mixing process
is ��mixing with coe¢ cient � (lk) ; according to Proposition 5.
It is also worth mentioning that there are other measures of weak dependence

beyond mixing conditions. For example, Patrick et al. (2002) and Dedecker et

al. (2007) mention association as a description of weak dependence in term of

the covariance of functions of separated ��algebras.

De�nition 9 The stochastic process fXt : t 2 Zg is associated if for any increas-
ing real valued functions f and g;

Cov [f (Xt; Xt 2 A) ; g (Xt; Xt 2 B)] � 0

where A and B are sets de�ned as in (3:1)

Also, a stochastic process which is weakly dependent in this sense is not

necessarily mixing. For instance, Patrick et al. (2002) showed that the Bernoulli

shift de�ned as

Xt = F
�
�t�j : j 2 Z

�
;

where F : RZ ! � is a measurable function and f�t : t 2 Zg is a sequence of real
valued random variable , provides many examples of stochastic processes which

are weakly dependent but not mixing.

3.2.2 S-Mixing and Large Deviations

We shall be interested in large deviation properties of the empirical measure �n
of weakly dependent data. As many of the properties of I.I.D. processes, such

as the CLT, have been proved to hold for strong mixing process, and hence for

processes satisfying other strong mixing conditions mentioned above (e.g., see

chapter 4 of Billingsley (1999)), it is reasonable to think that there exist some

analogues of Sanov theorem for stochastic processes which are weakly dependent.

Furthermore, we are particularly interested in the rate function of the LDP of

the process, since it provides bounds on error probabilities.

There are some instances in the literature which provide di¤erent LD results

for various mixing conditions. For example, Bryc (1992) shows that LDP holds

for  -mixing processes, while the empirical measure of �n of a class of Doe-

26



blin chains, which are �-mixing, fails to obey the LDP (Baxter et al. ( 1991)).

Therefore it would be useful to �nd some mixing condition which can guarantee

the LDP for empirical measures of general weakly dependent stochastic process.

Bryc and Dembo (1996) found such a mixing condition, and called it S-mixing.

The reasons we focus on S�mixing processes are twofold. Firstly, S�mixing is
a fairly weak condition, since the ��mixing condition su¢ ces for S�mixing, so
it is suitable for a quite general class of stochastic processes (see also Dembo

and Zeitouni (1998)). Secondly, the rate function for the LDP of an S�mixing
process, as Theorem 6 below shows, is equivalent to the relative entropy, as in

the i.i.d case, which perfectly meets our needs.

De�nition 10 (Bryc and Dembo, 1996) A stationary process fXt : t 2 Zg
is said to be S�mixing if, for any �nite constant C < 1, there exists a non-
decreasing sequence l(n) 2 N with

1X
n=1

l(n)

n(n+ 1)
<1 (3.5)

such that the S�mixing coe¢ cient

S(n) � sup
��P (A)P (B)� el(n)P (A \B)

�� � e�Cn (3.6)

where A 2 Fk1
0 ; B 2 F

k1+k2+l(n)
k1+l(n)

, k1; k2 2 Z+.

Like other mixing coe¢ cients we mentioned above, S(n) is also a measure of

dependence of separated random variables in the sequence, and the relationship

of S-mixing and the other four types of mixing in Table 2 is indicated in the

following proposition.

Proposition 7 ��mixing implies S-mixing.

Proof. See proposition 2 of Bryc and Dembo (1996).
Hence according to the chain of implication in Table 2, S-mixing is the weak-

est mixing condition among the �ve. Also, Bryc and Dembo (1996) prove that

S�mixing will hold if the process satis�es the following two conditions (H-1) and
(H-2), which are sometimes called hypermixing conditions (see also section 5.4

of Deuschel and Strook (1989)).

De�nition 11 For any given integers r > k > 2; l > 0, a family of functions

ffigki=1 2 B(�;R) is called l-separated if there exist k disjoint intervals J1; :::; Jr,
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such that dist (Jm; Jm0) � l for 1� m < m0 � r and fm is Jm measurable for any

1� m < n:

Assumption 1 (H-1) There exist l; � < 1 such that , for all k; r < 1, and
any l-separated functions fi 2 B(�;R);

E

�����
kY
i=1

fi (X1; :::Xr)

����� �
kY
i=1

(E [jfi (X1; :::Xr)j�])1=� : (3.7)

Assumption 2 (H-2) There is some constant l0 and functions.� (l) � 1; ! (l) �
0 such that for all l > l0; all r < 1; and any two l�separated functions f;
g 2 B(�;R);

jE [f (X1; :::Xr)]E [g (X1; :::Xr)]� E [f (X1; :::Xr) g (X1; :::Xr)]j

� ! (l)
�
E
h
jf (X1; :::Xr)j�(l)

i�1=�(l) �
E
h
jg (X1; :::Xr)j�(l)

i�1=�(l)
The following theorem is essential throughout this chapter, for with it we are

able to evaluate large deviation probabilities of weakly dependent data. For a

process fXt : t 2 Zg ; let Q be the underlying probability measure for the whole
process and letQn denote the measure for a realization of xt: x1; :::; xn on �n; i.e.,

Qn is the n�th marginal of Q and particularly, Q1 2 M1(�) is the probability

measure of a single realization.

Theorem 5 (Bryc and Dembo, 1996) If a stationary process fXt : t 2 Zg is
S-mixing, the empirical measure �n satis�es the LDP with respect to the � -

topology in M1(�) and this LDP is governed by the good rate function

I(v) = sup
f2B(�;R)

�Z
�

fdv � �(f)
�

(3.8)

i.e, for every set � �M1(�);

lim inf
n!1

1

n
logP n (�n 2 �) � � inf

v2�0
I(v) (3.9)

lim sup
n!1

1

n
logP n (�n 2 �) � �inf

v2��
I(v) (3.10)
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where P n 2M1 (M1 (�)) is the distribution of �n and

�(f) = lim
n!1

1

n
�n(f) = lim

n!1

1

n
logEQ

"
exp

 
nX
i=1

f(xi)

!#
(3.11)

And the limit exists for every f 2 B(�;R).

Proof. See theorem 1 of Bryc and Dembo (1996) or theorem 6.4.14 of Dembo

and Zeitouni (1998).

Bryc and Dembo (1996) also point out that the result can also be extended

to product measures: if the S�mixing condition holds for
�
X l
t : t 2 Z

	
; then for

each r 2 N, the process f(Xi; ...; Xi+r�1)gni=1 taking values in the product space
�r; is also S�mixing, according to Proposition 5. Hence the r-fold empirical
measure:

�n;r =
1

n

nX
i=1

�xi;:::;xi+r�1

will also satisfy the LDP in M1(�
r) equipped with the � -topology and with a

convex rate function �r(�) which is the Fenchel-Legendre transform of

�(r) (f) = lim
n!1

n�1 logE

"
exp

 
nX
i=1

f (xi; :::; xi+r�1)

!#

On the rate function of the LDP, Bryc and Dembo (1996) mentioned roughly

in their paper that I(v) in general will be less than speci�c Kullback-Leibler

distance, which is di¤erent from the i.i.d. case, but they did not provide any

proof. However, we �nd that I(v) will be equal to the Kullback-Leibler distance

if the S�mixing condition are combined with assumption (H-1) which is part
of hypermixing condition. To show this result we �rstly introduce the following

lemma from Dembo and Zeitouni (1998).

Lemma 1 (Dembo and Zeitouni (1998)) Given assumption (H-1) ; we have

�(f) � 1



log

Z
�

e
f(x)dQ1: (3.12)

Proof. Since the limit in (3:11) �(f) exists, we can set n = ml; where m; l 2 N,
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then according to Jensen�s inequality,

EQ

"
exp

 
mlX
i=1

f(xi)

!#
= EQ

"
exp

 
l�1

lX
k=1

l

m�1X
j=0

f(xk+jl)

!#

� l�1
lX

k=1

EQ

"
exp

 
l
m�1X
j=0

f(xk+jl)

!#

� l�1
lX

k=1

m�1Y
j=1

fEQ [exp (�lf(xk+jl))]g1=�

= fEQ [exp (�lf(xi))]gm=�

where the second inequality follows from (3:7) by noting that f(xk+jl) with k;

j 2 N are l�separated. The last equation comes from the stationary of Xt: So

we have

1

ml
logEQ

"
exp

 
mlX
i=1

f(xi)

!#
� 1

l�
logEQ [exp (alf(xi))]

Now let l� = 
 and we get the result.

Assumption 3 If v � Q1; then the density dv=dQ1 is bounded.

With these results and conditions, now we can prove our main result which

can be applied to prove the asymptotic optimality of the EL test.

Theorem 6 If assumption (H-1) is satis�ed, the rate function I(v) in (3:8) of
Theorem 5 satis�es:

I(v) = H(v jQ1 )

Proof. Firstly we show that I(v) � H(v jQ1 ): From lemma 1 we have

I(v) = sup
f2B(X ;R)

�Z
�

fdv � �(f)
�

> sup
f2B(X ;R)

�Z
�

fdv � 1



log

Z
�

e
f(x)dQ1

�
>

Z
�

fdv � 1



log

Z
�

e
f(x)dQ1 (3.13)

The last inequality implies that v is absolute continuous with respect to Q1:

To see this, let � 2 A satisfying Q1 (�) = 0: Because the inequality holds for
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any f 2 B (X ;R) ; we can take f = �I�; where � > 0 and I� is the indicator

function of the set �: Note that
R
�
e
�I�dQ1 = 1, so we have I(v) > �v (�) for

any � > 0. Since I(v) is non-negative, we conclude v (�) = 0; i.e., v � Q1:

Therefore the Radon-Nikodym derivative of v with respect to Q1 exists, namely,

' � dv
dQi
. Hence I(v) � H(v jQ1 ) is implied by (3:13) if we take f = log' with

assumption 3.

On the other hand, by Jensen�s inequality and the stationarity of fxig ; we
obtain

lim
1

n
logE

"
exp

 
nX
i=1

f(xi)

!#

� lim
n!1

1

n
E

"
log exp

 
nX
i=1

f(xi)

!#
= E [f(x)]

>
Z
�

f(x)dv �H(v jQ1 )

) H(v jQ1 ) �
Z
�

f(x)dv � �(f)

which completes the proof.

The importance of this theorem is that it links the rate function of the LDP

of S-mixing process with the Kullback-Leibler distance. Therefore, we can apply

Theorem 5 to analyse problems related to the LDP (such as test e¢ ciency) of

weakly dependent data, just in a similar way that we apply the Sanov theorem

in i.i.d case. Before going on to discuss its asymptotic relative e¢ ciency, in the

next section we introduce the empirical likelihood test statistic obtained in the

weakly dependent case.
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3.3 Empirical Likelihood Inference of Weakly

Dependent Data

3.3.1 Moment Condition Model

In this section we brie�y review current methods of EL tests of moment conditions

when the observations are weakly dependent. Let fxigni=1 be a realization of
a stationary ��mixing (and hence ergodic and S-mixing) process fXt : t 2 Zg
taking values on �:We are interested in applying EL to test the following moment

condition:

E [g (xi; �0)] =

Z
�

g(xi; �0)dQ1 = 0 (3.14)

where the moment indicator g: Rd��! Rm is continuous for all d-dimensional
xi 2 �, and Qi is the unknown distribution of xi; i,e., Qi is the marginal of Q
at xi: Also �0 2 � 2 Rp is the true parameter vector. We consider the over-
identifying case where m � p: Furthermore, to avoid identi�cation problem we

assume that �0 uniquely solves (3:14) : For notation, let

gi (�) = g(xi; �); 
 = E
�
gi (�0) gi (�0)

0�
G = E

�
@gi(�0)

@�

�
; V =

�
G

0

�1G

��1
:

When fxigni=1 are i.i.d, well established results (e.g., Qin and Lawless (1994),
Newey and Smith (2004)) show that, under mild regularity conditions the em-

pirical likelihood test statistic for testing (3:14) is

W1 = inf
�2�

sup
�2Rm

2

nX
i=1

log (1 + �0g(xi; �)) (3.15)

d! �2m�p (3.16)

where � is the Lagrangian multiplier vector. The validity of the convergence

in distribution in (3:16) depends critically on the i.i.d. assumption on fxigni=1,
which implies that the weak law of large numbers and central limit theorem hold

as:
1

n

nX
i=1

g(xi; �0)
p! E [g (xi; �0)] (3.17)
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1p
n

nX
i=1

g(xi; �0)
d! N (0;
) (3.18)

However, as Kitamura (1997) shows, the convergence results with dependent

processes will be di¤erent from (3:17) and (3:18), so the test statistic W1 con-

structed by ignoring the dependence is not valid. A usual remedy to this problem

is to remove (at least asymptotically) the dependent structure and make the data

satisfy certain WLLN and CLT. In the following we introduce two techniques to

remove the dependence, used respectively by Smith (2004) and Kitamura (1997),

who both assume fXt : t 2 Zg is strong mixing.

3.3.2 Kernel Smoothing EL

Instead of using the moment indicator g directly, Smith (2004) suggests con-

structing a kernel smoothed moment indicator as

~gi (�) =
1

SN

i�1X
s=i�N

k

�
s

SN

�
gi�s (xi; �) (3.19)

where SN is a bandwidth and k (�) is a kernel. This method of kernel smoothing
is similar to that used in heteroskedastic and autocorrelation consistent (HAC)

covariance matrix estimation, see Andrews (1991). Smith (2004) put some re-

strictions on SN and k (�) so that the EL estimator and test statistic derived from
~gi (�) can achieve desired asymptotic properties (see assumption 2.2 of Smith

(2004)). Smith shows that ~gi (�) satis�es a uniform weak law of large numbers

(UWLLN) and a central limit theorem:

sup
�2�






 1n
nX
i=1

~gi (�)� k1E [g (�)]






 = op (1) (3.20)

1p
n

 
1

n

nX
i=1

~gi (�)� E

"
1

n

nX
i=1

~gi (�)

#!
d! N

�
0;
 (�) k21

�
where ki =

R1
�1 k (t)

i dt and
 (�) = limn!1 V ar
�
n�1=2

Pn
i=1 g (�)

�
:Also, Smith�s

version of EL statistic for testing (3:14) is

W2 = 2
nk21
Snk2

R
�
�̂; �̂
�

(3.21)
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where �̂ and �̂ are the solutions to inf�2� sup�2RmR (�; �) and

R (�; �) =
nX
i=1

log(1 +
k1
k2
�
0
g(xi; �)) (3.22)

Theorem 7 (Smith (2004)) Under the following conditions:
1) � is compact and �0 2 int (�).
2) For su¢ ciently small � > 0 and � > 0, E

h
sup��2�(�;�) kg (xi; ��)k

2(1+�)
i
<

1; for all � 2 �:
3) If a sequence f�jg1j=1 converges to some � 2 �; then g (x; �j)! g (x; �j) ;a.s.

4) Var
�
n�1=2

Pn
i=1 g (xi; �0)

�
! 
 > 0

5) E
�
@g (x; �0) =@�

0
�
is of full column rank.

We have

W2
d! �2m�p:

Proof. See theorem 4.1 of Smith (2004).

3.3.3 Blockwise EL

Kitamura (1997) uses block technique in EL which is widely applied in boot-

strapping of time series (see, e.g., Hall and Horowitz (1996) as a classic example

of blocking and boostrapping in GMM). The idea of blocking mixing stochas-

tic processes comes from the intuition of strong mixing which implies that the

dependence of the random variables will asymptotically vanish if they are sepa-

rated far enough. Speci�cally, to make inference based on the moment condition

(3:14), instead of using the observations fxigni=1 directly, we �rstly block them to
create a new sequence of data. Let M > 1 denote the block length and L be the

separation between block starting points, then the i-th block of M consecutive

data can be written as:

Bi =
�
x(i�1)L+1; :::; x(i�1)L+M

�
; i = 1; :::; T

where

T =

�
n�M

L
+ 1

�
:

Here [�] denotes the integer part of �. Thus we separate the original sequence
of observations into T blocks, and from proposition 5 we know that the new

sequence of the T blocks is still strong mixing. Note that reasonable choices of L

can be between 1 and M inclusive. When L = M; the T blocks do not overlap,
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and Bi�s are asymptotically independent as n ! 1; M ! 1 (see, also Owen

(2000)). However, some observations will be omitted if L > M: and if L :
= �M

with � < 1, the dependencies do not become negligible, because there is a �xed

fraction of overlap.

Thus we can construct a new moment indicator from the blocks as:

b(Bi; �) =
1

M

MX
j=1

g
�
x
(i�1)L+j ; �

�
Obviously E [g(xi; �0)] = 0 implies E [b(Bi; �0)] = 0: Therefore the corre-

sponding EL test statistic will be (Kitamura (1997) and Owen (2001)):

W3 = inf
�2�

sup
�2Rm

2
� n

TM

� TX
i=1

log(1 + �
0
b(Bi; �)) (3.23)

where the factor (n=TM) is needed to obtain the asymptotic chi-squared property

of W2; and it accounts for the e¤ects of data overlapping between consecutive

blocks.

Theorem 8 (Kitamura (1997)) Under the same assumptions of theorem 7,

as n!1;

W3
d! �2m�p:

Proof. See theorem 3 of Kitamura (1997).
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3.4 Asymptotic Relative E¢ ciency of Tests

Before we show the asymptotic optimality of EL test considered previously, in this

section we review some criteria for comparing two tests asymptotically. Suppose

we want to decide whether the random variable fxigni=1 in the compact topolog-
ical space � is from probability distribution Q1 or alternatively from Q2: A test

TA is conducted through a sequence of partitions �(n) = (�1(n);�2(n)) of �,

with �2(n) being the critical region, and �1(n)\�2(n) = ?, �1(n)[�2(n) = �:
Often the partition is decided by a threshold value of the statistic TA: Note that

TA is also a sequence which depends on the sample size n:

Let x denote the vector of observations and de�ne

�n = Q1(x 2 �2(n)); �n = Q2(x 2 �1(n))

where �n and �n are the type I and type II error respectively. Also � is called

the size of the test, and 1��n is the power. Generally to improve the asymptotic
performance of the test when n increase, we try to minimize �n while holding �n
�xed at a low level, with requirement that 1 � �n � �n which implies that the

test is unbiased.

Consider another sequence of tests TB with partitions ��(n) =
�
��1(n); ��2(n)

�
.

Pitman (1949) introduces the concept of asymptotic relative e¢ ciency (ARE) to

compare the quality of these test sequences. We will review Pitman�s ARE

criteria and several alternative approaches. These methods of comparison di¤er

in the manner in which the Type I and Type II error probabilities vary with

increasing sample size n; which is summarized in Table 3. In practice they are

chosen according to both intuitive aspects and mathematical consideration to

obtain the relative e¢ ciency criterion.

TABLE 3

Type of ARE Asy. Behavior of �n Asy. Behavior of �n Behavior of H1

Pitman �n ! � > 0 �n ! � > 0 H1 ! H0

Bahadur �n ! 0 �n ! � > 0 H1 �xed

Cherno¤ �n ! 0 �n ! 0 H1 �xed

Hoe¤ding �n ! 0 �n ! 0 H1 �xed
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3.4.1 The Pitman Criterion

The intuition of Pitman�s approach is that two test sequences TA and TB are com-

pared as �n and �n tend to positive limits � and � respectively. The asymptotic

relative e¢ ciency of TA to TB is de�ned as

ARE(TA;TB) = lim
n!1

�
n1
n2

�
where n1 and n2 are sample sizes such that TA and TB have the same power �,

and the limit is taken as both n1 and n2 tend to in�nity. So if ARE(TA;TB) < 1;

the test TA is asymptotically more e¢ cient than TB; and vice versa.

It is important to notice that although the ratio n1=n2 will depend on the

speci�c alternative generally, in asymptotic case this situation may be avoided.

Indeed, the power with respect to a �xed alternative will be 1 with su¢ ciently

large sample size. Consequently the asymptotic power will no longer provide a

good criterion for ARE. So as Noether (1955) points out in Pitman�s approach

�n should be evaluated at an alternative which converge to the null hypothesis.

Speci�cally, if the distribution of x can be characterized by some parameters

� 2 � and the null hypothesis Q1 = Q (x; �0), then we want to test

H0 : � = �0 against H1 : � > �0

where � = �n and limn!1 �n = �0 at some reasonable rate. For two tests TA and

TB, the ARE can be determined by the following theorem introduced by Pitman

(1949) and Neother (1955).

Theorem 9 Assume that :
(i) There exist a function �n (�) which is k times di¤erentiable, a function

�n (�), and a continuous, strictly increasing distribution function G, such that

for the test TA, the quantity (TA � �n (�)) =�n (�) uniformly converges to G in

[�0; �0 + �] where � > 0:

(ii) �(1)n (�0) = �
(2)
n (�0) = ::: = �

(k�1)
n (�0) = 0 < �

(k)
n (�0) and

�n (�) = cA
�
(k)
n (�0)

nq
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for some q > 0 and some constant cA: Then

cA = lim
n!1

nq�n (�0)

�
(k)
n (�0)

(3.24)

and for another test TB which also satis�es (i) and (ii), we have

ARE(TA;TB) =

�
cB
cA

�1=q
(3.25)

where cB is obtained in the same way as cA:

Proof. See Ser�ing (1980) or Rothe (1981).

Example 6 Assume we have an i.i.d. sample x1; :::; xn from a normal distribu-

tion N (�; �2) with �2 <1: If we want to test

H0 : � = 0 versus H1 : � > 0:

We consider the following two test statistics:

TA = �x =
1

n

nX
i=1

xi; TB =
�x

S
;

where S2 = 1
n�1

Pn
i=1 (xi � �x)

2 is the sample variance.

For TA; comparing to the conditions in the above theorem, we have �n (�) = �

with k = 1, �n (�) =
p
�2=n; q = 1

2
and G being the standard normal distribu-

tion. So cA = lim
n!1

n1=2
p
�2=n

1
= �: Likewise for TB; the t�statistic, we can take

�n (�) = �=� with k = 1; �n (�) = 1=n; q = 1=2 and G being the standard normal

distribution as well. So cB = lim
n!1

n1=21=n
1=�

= �: Hence we have

ARE(TA;TB) =

�
cB
cA

�1=q
= 1

which implies that in this hypothesis testing problem the mean statistic and

t�statistic are asymptotically equivalent in Pitman�s sense.

3.4.2 Bahadur�s Approach

The idea behind Bahadur�s (1967) approach is as follows. Supposing that the

alternative is true, a better test statistic should be the one which is more likely
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to reject the null hypothesis, or equivalently speaking, it should provide more

evidence against the null. Consider the following hypothesis testing problem:

H0 : � 2 �0 versus H1 : � 2 �1 (3.26)

where �1 = �n�0: Suppose a test rejects H0 if Tn > c, where Tn is a test statistic

and c is a constant. De�ne the p�value of Tn as

Hn (t) = sup
�2�0

Q�0 (Tn � t) = sup
�2�0

[1� F�0 (t)]

where Q�0 is the probability measure characterized by �0 and F�0 is the distrib-

ution of the test statistic under �0: So Hn (t) ; also called the �level attained�by

Bahadur, is the maximum probability that the test will produce a test statistic

exceeding t; under all possible null hypothesis. Thus it represents a measure to

which the test statistic tend to reject H0: Speci�cally, the smaller the Hn (t) is,

the more likely the test will reject the null hypotheses. Bahadur (1967) suggests

that for two sequences of tests TA and TB, if the alternative is true, TA is more

e¢ cient than TB if

HnA (t) < HnB (t)

or equivalently, HnA (t) goes to 0 at an exponential rate faster than HnB (t) :

Indeed, a test sequence Tn is said to have slope c (�) if

� 2
n
logHn (t)! c (�) a:s:

So in the nonnull case Tn tends to reject H0 faster with larger c (�) ; and TA and

TB can be compared by the ratio (Bahadur ARE)

ARE(TA;TB) =
cA (�)

cB (�)
:

Bahadur (1967) also proves a large deviation theorem which gives the lower

bound for the exponential rate that the p�value decreases to zero.

Theorem 10 For any real measurable test statistic Tn for the hypothesis problem
(3:26), the p�value Hn (t) satis�es

lim inf
n!1

1

n
logHn (t) � � inf

�2�0
H(P� jP�0) a:s:
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where H (� j�) is the Kullback-Leibler distance between Q�0 and Q�1 :

Proof. See Bahadur (1967) or Raghavachari (1970).

Example 7 (optimality of LR test) Let ff(�; �) : � 2 �g be a family of pdf�s
and fxigni=1 be a sequence of i.i.d random variables with density f(�; �) where �
is unknown and � 2 �: Consider a simple hypothesis testing problem to decide

whether � = �0 or � = �1; where �0; �1 2 �: De�ne the likelihood ratio test

statistic as

Tn =
1

n

nX
i=1

ln
f (xi; �1)

f (xi; �0)

and accordingly the p�value: Hn (t) = P�0 (Tn � t) : Suppose that H (P�0 jP�1)) <
1; and that the sequence

n
1
n

Pn
i=1 ln

f(xi;�1)
f(xi;�0)

o
satis�es the LDP, then when � = �1

is true,

lim inf
n!1

1

n
logHn (t) = � inf

�2�0
H(P� jP�0) a:s:

See, e.g., Hsieh (1979) for a proof of this result. According to the theorem above,

likelihood ratio test statistic is optimal in Bahadur�s sense since it achieves the

lower bound. See also Godambe (1960).

3.4.3 The Cherno¤Criterion

Cherno¤ (1952) introduces a measure of ARE which is particularly useful to

such tests and is based on the sum of i.i.d. observations x1; :::; xn; which is a

realization of random variable X: Let Sn =
Pn

i=1 xi be the test statistic for a

simple hypothesis, and when Sn > cn we reject H0 where cn is the critical value.

Examples of this kind of test include the mean test in Example 6, and also it

is well-known that the LR statistic can be written in this form. Cherno¤ �rstly

shows that there is a bound for the probability of jSnj exceeding some value, as
the following theorem shows.

Theorem 11 (Cherno¤Bounds) Suppose the distribution function of X is

P (x), with moment generating function M(t) = E (etx) : De�ne

m(k) = inf
t
E
�
et(x�k)

�
= inf

t
e�tkM(t):

If E(X) > �1 and k � E(X); then

P (Sn � nk) � [m(k)]n ;
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or if E(X) <1 and k � E(X) then

P (Sn � nk) � [m(k)]n :

Proof. The proof is based on Markov inequality. See Cherno¤ (1952).
Now suppose we want to test the null hypothesis that x is from distribution

Q(x) = Q1 against the alternative that Q(x) = Q2: The test is to reject Q1 if

Sn > nk for each k: So �n = Q1 (Sn > nk) and �n = Q1 (Sn < nk). Cherno¤

(1952) argues that the traditional procedure of minimizing �n for a �xed value

of �n might not be very appropriate as sample size goes to in�nity. Instead

he suggests that both type of error probability should decrease to zero as a

reward of in�nitely increasing sample size, and two tests can be compared with

the rate of convergence of �n and �n converging to zero.
3 Speci�cally, we can

minimize �n+��n for some constant �; 0 < � <1 , and Cherno¤ shows that if

�1 = EP1 (X) � �2 = EP2 (X), according to Theorem 11, the rate of exponential

convergence of �n+��n to zero can be characterized by the Cherno¤ index which

is de�ned as

� = inf
�0�k��1

�(k) (3.27)

where

�(k) = max
i=1;2

mi(k) and mi(k) = inf
t
EPi

�
et(x�k)

�
; i = 1; 2:

Hence two tests TA and TB which are both based on sums of observations and

have respective indices �A and �B de�ned according to (3:27), the asymptotic

performance of TA can be compared with that of TB through the following ratio

ARE(TA;TB) =
log �A
log �B

and TA is more e¢ cient in Cherno¤ sense than TB if ARE(TA;TB) > 1:

Example 8 (optimality of LR test, continued) Wilbert (1982) shows that
for the hypothesis problem (3.26) within exponential family, the Cherno¤ indices

3This is contrary to Pitman�s approach, where two tests are compared when both type of
errors are treated in an unbalanced way, i.e., �n and �n tend to limits � and � which may be
di¤erent.
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of any test satisfy:

lim sup�
n!1

1

n
log � � inf

�2�0
H(P� jP�0) ; 8 � 2 �0:

And lim supn!1� 1
n
log �LR achieves the lower bound where �LR is the Cherno¤

index of the LR test. See also Brown (1971).

3.4.4 Hoe¤ding�s Approach

Hoe¤ding (1965) considered a similar method of comparison to Cherno¤ in the

way that tests are compared as both types of error probability asymptotically

approach 0 with �xed alternatives. Also like Bahadur and Cherno¤, Hoe¤ding�s

approach relies on large deviation probabilities. Basically, in Hoe¤ding�s sense a

test TA is asymptotically superior to another test TB if:

lim sup
n!1

1

n
log �An < lim sup

n!1

1

n
log �Bn (3.28)

when both of them satisfy:

lim sup
n!1

1

n
log�n � � (3.29)

for some � > 0:

Within a multinomial model Hoe¤ding (1965) shows that the likelihood ratio

(LR) test is asymptotically superior to the chi-squared test in the sense that as

(3:28) describes, the exponential rate of the type II error of LR test approaching

zero is higher than that of chi-squared test. Indeed, the LR test is optimal among

all the test with the same 1
n
log�n because 1

n
log �An of LR test can achieve the

lower bound which is the Kullback-Leibler distance, as Sanov (1965) shows.

Hoe¤ding�s classic work deals with where the sample space is a �nite set.

Zeitouni and Gutman (1991) extend the optimality to more general in�nite

spaces. Another of their important contributions is that we can always focus

on such tests based only on the empirical measure �n:

Theorem 12 If there is a test T which satisfy (3:29), then there always exists

a test A which depends on the observations only through the empirical measure

�n such that

lim inf
n!1

1

n
log�An � lim inf

n!1

1

n
log�Tn
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and

lim inf
n!1

1

n
log �An � lim inf

n!1

1

n
log �Tn :

Proof. See lemma 3.5.3 of Dembo and Zeitouni (1998).
Based on the theorem, Zeintouni and Gutman (1991) suggest that when

studying optimality of tests we can consider tests only depending on the em-

pirical measure �n and they introduce the following theorem used by Kitamura

(2001).

Theorem 13 Consider (�1(n);�2(n)) is a partition of M1 (�) induced by a test

statistic T:If T is to reject the null hypothesis when

H(�n jQ1 ) > �

for some constant �; then the exponential convergence rate of type I error �n is

bounded above by ��; i.e.,

lim sup
n!1

1

n
log�n � ��: (3.30)

Proof. See Zeintouni and Gutman (1991).
(3:30) tells us that the size of the test T based on the empirical measure �n

through H(�n jQ1 ) is always bounded. So if we can show that T minimises the
exponential convergence rate of type II error �n : lim supn!1

1
n
log �n; among

all the tests satisfying (3:30) ; then it is optimal in Hoe¤ding�s sense. So this

theorem indicates a generalized version of the Neyman-Pearson criterion, which

is extended to the large deviation context. This uniform optimality is also called

a universal property in information theory, e.g., see Zeitouni and Gutman (1991)

and Dembo and Zeitouni (1998). We will use this framework to discuss the

optimality of the EL test in the next section.
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3.5 Asymptotic Relative E¢ ciency of the EL

Test

In this section, we show the asymptotic relative e¢ ciency of EL test of moment

conditions mentioned previously, in Heo¤ding�s sense. The reason we consider

this criterion is that the EL test can be considered as to compare the Kullback-

Leibler distance between the empirical measure and the hypothetical probability

measure. This idea falls into the framework provided by Theorem 13, within

which we will show the following argument similar to Dembo and Zeitouni (1998)

and Kitamura (2001).

3.5.1 The Test

Following the setup at the beginning of section 3.3, de�ne

Q(�) =
�
� 2M1(�) :

Z
�

g(xi; �0)d� = 0

�
: (3.31)

Let Q = [�2�P(�); thus Q is the set of probability measures which satisfy

the moment condition over the parameter space. Hence the hypothesis testing

problem can be written as:

H0 : �n 2 Q versus H1 : �n =2 Q (3.32)

where �n is the empirical measure of fxig
n
i=1 : Intuitively, both of the empirical

likelihood test statistic W2 and W3 which we have obtained in section 3.3 is to

check whether the empirical measure �n which is constructed to be as close to

the true probability measure as possible, is too far away from any of the measures

in Q or not. Therefore, considering the Kullback-Leibler distance as a measure

of distance between two probability measures (see appendix for a more detailed

discussion of Kullback-Leibler distance), the EL test statistics W2 and W3 are

indeed a result of the following minimizing problem:

inf
Q12Q

H(�njQ1): (3.33)

Consequently, the empirical likelihood ratio test is to reject H0 if:

inf
Q12Q

H(�njQ1) > c (3.34)

44



for some threshold constant c > 0: This is to say, under the null hypothesis,

the empirical measure �n 2 Q; and therefore, if the distance between �n and
any of the probability measures in Q is too large, then we shall reject the null

hypothesis. It also tells that the test depends on the data only through �n (see,

e.g., section 3.4 of Dembo and Zeitouni (1998)). Thus empirical likelihood test

can be considered as a sequence of partitions � (n) = (�1 (n) ;�2 (n)) of M1(�)

where n = 1; 2:::. and

�1 (n) =

�
� 2M1(�) : inf

Q12Q
H(�jQ1) < c

�
; �2 (n) =M1(�)n�1 (3.35)

In the following we abbreviate (�1 (n) ;�2 (n)) as (�1;�2) for economy of

notation, but its dependence on the sample size n should not be ignored. Since

in general framework, pointwise bounds on error probabilities are not available (

see Dembo and Zeitouni (1998) or Kitamura, 2001), we consider the �-smoothing

of the set �2 :

��2 =
[
�2�2

B (�; �)

and

��1 =M1(�)n��2

where B (�; �) denotes an open ball of radius � around �, and the balls are taken

in the Levy metric:

d (�1; �2) = inf f� > 0 : �1 (A) � �2(A) + � 8A 2 Ag

which is compatible with the weak, strong and uniform convergence of discrete

probability measures (e.g., see Zeitouni and Gutman (1991)).

3.5.2 Optimality Argument

To directly apply large deviation property of �n in Theorem 5 and Theorem 6

to establish the optimality of the EL test, we �rstly need some tightness and

continuity conditions.

Assumption 4 a). sup�2� kg (x; �)k is bounded almost surely and thus it is a
random variable under all Q1 2 Q; b). The functional infQ12QH(�jQ1) is
uniformly continuous in � 2M1(�) in the ��topology.
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Lemma 2 ��1 =

�
� 2M1(�) : inf

Q12Q
H(�jQ1) � c

�
:

Proof. The argument is similar to lemma 2 of Zeitouni and Gutman (1991).
SinceH(�jQ1) is a lower-semicontinuous function, the set f� 2M1(�) : infQ12QH(�jQ1) 6
cg is closed. So we have:

��1 �
�
� 2M1(�) : inf

Q12Q
H(�jQ1) 6 c

�
:

To see the other direction, notice that assumption 4-b implies that � 2 f� :
infQ12QH(�jQ1) = cg is a limit point of �: Hence the lemma follows.
Now we present our main theorem, which gives the optimality of EL test

uniformly among all the tests with the same size in large deviation sense. Our

result is new in that it extends Kitamura�s (2001) result to a non i.i.d case.

Theorem 14 (optimality of EL test) Let P ni with i = 0; 1 be the law of the
empirical measure under the hypothesis H0 and H1 respectively. Then the em-

pirical likelihood test (�1;�2) satis�es

lim sup
n!1

1

n
logP n1

�
�n 2 ��2

	
� �c: (3.36)

Moreover, for any another test (
1;
2) which is also a partition of M1(�) and

satis�es:

lim sup
n!1

1

n
logP n1

�
�n 2 
�2

	
� �c;

we have

lim sup
n!1

1

n
logP n2 f�n 2 
1g > lim sup

n!1

1

n
logP n2 f�n 2 �1g : (3.37)

Proof. The inequality (3:36) implies that the type I error of the EL test is
bounded above by e�nc: This boundness is straightforward from the LDP of the

empirical measure �n indicated in theorem 5 and theorem 6 given assumption 4:

lim sup
n!1

1

n
logP n1 f�n 2 �2g � � inf

v2��2
I(v) = � H

v2��2
(vjQ1) 6 �c

The proof of (3:37) is similar to Zeitouni and Gutman (1991) and Kitamura

(2001). Firstly we show that there exists some n0 2 N, such that �1 � 
 (n) for
all n > n0 along the limit supremum. Suppose it is not so. Then there exists a
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subsequence nk such that !nk 2 ��1 and !nk 2 
�2: Since the set ��1 is compact due
to lemma 2, there exists some ! 2 ��1 such that !nk ! !: Note that !nk 2 
�2;
thus B (!nk ; �) � 
�2(k) and B (!; �=2) � 
�2(nk) hold for in�nitely many nk: So,

lim sup
n!1

1

n
logP n2 f�n 2 
1g > lim inf

n!1

1

nk
logP nk2

�
�nk 2 


�
2(nk)

	
> lim inf

n!1

1

n
logP n2 f�n 2 B (!; �=2)g

> � inf
v2B(!;�=2)

I(v)

= � inf
v2B(!;�=2)

H(vjQ1)

> �c;

this contradicts (3:36) and thus ��1 � 
�1 is veri�ed. Consequently

lim sup
n!1

1

n
logP n2 f�n 2 
1g > lim sup

n!1

1

n
logP n2 f�n 2 �1g :

It is worth mentioning that in our model the observations fxigni=1 are discrete.
As Zeitouni and Gutman (1991) show, to extend the results to continuous case

it needs some modi�cations, mainly because lemma 2 will no longer hold and the

smoothing of �2 to ��2 will not be valid. To overcome these problems, Zeitouni

and Gutman (1991) suggests restricting the test, i.e., the partition (�1;�2) of

M1(�) to be regular, namely,

lim
�!0

lim sup

n!1

1

n
logP n2

�
�n 2 ��2

	
> lim sup

n!1

1

n
logP n2 f�n 2 �2g :

They also point out that this regularity condition is often satis�ed.

47



3.6 Concluding Remarks

In this chapter, we have established asymptotic optimality of the empirical like-

lihood test with S�mixing processes, in Hoe¤ding�s sense. And, as the examples
7 and 8 show, the LR test is optimal in both Bahadur and Cherno¤ sense, and

it is reasonable to guess that the EL test is also Bahadur and Cherno¤ opti-

mal, considering the similarity of EL and parametric likelihood. More impor-

tantly, because the p�value of tests in Bahadur�s criterion is also bounded by
the Kullback-Leibler distance as the case in Hoe¤ding�s approach, which possibly

provides us with a starting point from which to consider this issue.

Moreover, we restrict the data to be S�mixing and our results rely on the
rate function of the LDP of S�mixing process. Although there are quite a lot
econometric models which adopt S�mixing condition (such as ARMA model),
so our results have broad application, it will be di¢ cult to discuss the ARE of

EL test with more general dependency. As shown in chapters 5 and 6 of Deuschel

and Strook (1989) for instance, if a dependent process with other mixing rate

(or possibly not mixing as we mentioned at the end of section 3.2.1) satis�es

the LDP, it�s rate function could be either larger or smaller than the Kullback-

Leibler distance, or even extremely complicate to compare. Therefore if we want

to establish the asymptotic optimality of EL test in more general circumstances,

we might have to de�ne the test by some other quantity which is more related

to the speci�c rate function, other than the Kullback-Leibler distance.
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3.7 Appendices

3.7.1 Moment Condition Models and the Empirical Like-

lihood Methodology

In the seminal paper of EL, Owen (1988) derives an EL con�dence interval for

the population mean of an i.i.d. sample. Since then the EL method has been

extensively studied. Particularly, Qin and Lawless (1994) applies EL to inference

of moment condition models, which attracts attention from econometricians. In

this appendix we brie�y review how EL deals with moment condition models in

i.i.d. case, for simplicity.

Suppose that we have a random i.i.d. sample fxigni=1 which satis�es the
following moment condition:

E [g (xi; �0)] = 0; (3.38)

where g is an m�1 real function, �0 is a p�1 vector (p < m) of true parameter,

and the expectation is taken with respect to the distribution of xi: For a simple

example, g can be xi minus the population mean to be estimated, as the case

considered by Owen (1988). To estimate �0, usually a GMM estimator can be

derived as

�̂GMM = arg
�2B

min ĝ (�)0Wnĝ (�) ; (3.39)

where B is the parameter space, ĝ (�) is the sample average of g (xi; �0) ; and
Wn is a positive semi-de�nite matrix and converges in probability to a positive

de�nite matrix matrix W:

As an alternative of GMM, EL assigns a multinomial distribution F (p1; :::; pn)

to the i.i.d observation fxigni=1 ; with pi being the probability at xi. Note that
pi � 0 and �ni=1pi = 1: The empirical log-likelihood function is:

logL (p1; :::; pn) =

nX
i=1

log pi: (3.40)

The idea of EL is that we maximize (3:40) subject to the moment restriction

�ni=1pig (xi; �) = 0: This can be done by setting up a Lagrangian:

L =
nX
i=1

log pi + � (1� �ni=1pi)� n�
0
nX
i=1

pig (xi; �) ;
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where � and � are Lagrangian multipliers. The solution for pi is

p̂i =
1

n (1 + �0g (xi; �))
:

At the same time, � can be expressed as a function of � (Qin and Lawless (1994)),

namely � (�) : Therefore, the maximized empirical log-likelihood function with

moment restriction is

l (x; �) =

nX
i=1

log p̂i

= �n log n�
nX
i=1

log
�
1 + � (�)

0
g (xi; �)

�
:

An EL estimator �̂EL for �0 can be obtained by maximizing l (x; �) with respect

to �; or equivalently,

�̂EL = arg inf
�2B
max
�2Rm

nX
i=1

log
�
1 + �

0
g (xi; �)

�
: (3.41)

Standard asymptotic properties of �̂EL, i.e., asymptotic normality and consis-

tency, have been proved by Qin and Lawless (1994). Furthermore, they also

show that the moment condition model (3:38) can be tested by the following EL

statistic:

W =
nX
i=1

log
�
1 + �(�̂)

0
(gxi; �̂)

�
which is asymptotically X 2

m�p:

From the above procedure we can see that EL is a nonparametric analogue

of maximum likelihood method. Without any parametric assumption, EL in-

corporates the information from the data directly and conveniently, and the EL

estimator �̂EL has a data driven con�dence region (Owen 1988). Newey and

Smith (2004) also show that higher order asymptotic properties of �̂EL; partic-

ularly compared to those of the GMM estimator �̂GMM : They �nd that �̂EL is

asymptotically less biased than �̂GMM since EL does not need to estimate the

weighting matrix Wn in (3:39) ; which is an important source of bias of �̂GMM :

They also �nd that after bias correction, �̂EL inherits the higher order properties

of the maximum likelihood estimator (MLE). See also DiCiccio et al (1991) for

the Bartlett-correctability of EL.
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3.7.2 The Relative Entropy As a Measure of Distance

The Kullback-Leibler distance, or the relative entropy, was introduced by Kull-

back and Leibler (1951) and Kullback (1958). Now it is widely employed in

probability theory and information theory. Let F1 (x) and F2 (x) be two prob-

ability measures on the measurable space (�;A) ; with density f1(x) and f2(x)
respectively.

De�nition 12 If F1 (x) � F2 (x) ; i.e., F2 (A) = 0 ) F1 (A) = 0; for A 2 A:
Then the Kullback-Leibler distance of F1 (x) and F2 (x) is de�ned as

H (F1 jF2 ) �
Z
�

log
dF1
dF2

dF1 =

Z
�

f log fdF2;

where f (x) = f1(x)
f2(x)

> 0:

Proposition 8 H (F1 jF2 ) � 0, and the equality holds if and only if F1 = F2:

Proof. It is obvious to see that F1 = F2 ) log dF1
dF2

= 0: For the inequality, let

h = f log f and expand h at f = 1:

h = f � 1 + 1
2
(f � 1)2 h00

�
_f (x)

�
; (3.42)

where _f (x) is between f(x) and 1: Note that
R
�
fdF2 =

R
�
f1 (x) dx = 1; so by

integrating both sides of (3:42) with respect to F2 we obtain:Z
�

f log fdF2 =

Z
�

(f � 1)2 h00
�
_f (x)

�
dx � 0:

The inequality comes from h00 (t) = 1
t
> 0 and f (x) > 0:

It is easy to see that H (F1 jF2 ) is not symmetric and does not satisfy triangle
inequality, and consequently is not a real metric, so in this sense H (F1 jF2 )
is more often called divergence rather than distance. However, it still can be

considered as some sort of measure of distance between probability measures and

is especially useful in hypothesis testing problem. Suppose we have a random

variable X taking values in � with observations fxigni=1 and we want to test

H1 : X is from F1 (x) versus H2 : X is from F2 (x)
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Starting from the conditional probability

P (Hi jx) =
P (Hi) fi(x)

P (H1) f1(x) + P (H1) f1(x)
; i = 1; 2 (3.43)

we have

log
f1(x)

f2(x)
= log

P (H1 jx)
P (H2 jx)

� log P (H1)

P (H2)
: (3.44)

The quantity on the left hand side, i.e., the log-likelihood ratio, can be considered

as the information contained in the observations for discrimination in favor of

F1 (x) against F2 (x) : Integrating log (f1(x)=f2(x)) with respect to F1 (x) gives

H (F1 jF2 ) ; which provides the mean information over the entire sample space
by which we can discriminate F1 (x) and F2 (x) :

H (F1 jF2 ) =
Z
�

log
f1(x)

f2(x)
dF1 =

Z
�

log
P (H1 jx)
P (H2 jx)

dF1 � log
P (H1)

P (H2)
(3.45)

Example 9 (distance between two normal distributions) Suppose two ran-
dom variables X1 � N (0; �21) ; X2 � N (0; �22) and we want to test

H1 : X1 and X2 are dependent with joint density f(x1; x2)

against

H1 : X1 and X2 are independent with density f(x1) and f(x2) respectively.

Since

f(x1; x2) = (2�)�1
�
�21�

2
2

�
1� �2

���1=2
� exp

h
�
�
2
�
1� �2

���1 �
x2=�21 � (2�x1x2) =�1�2

�
+ x22=�

2
2

i
;

where � is the correlation coe¢ cient of X1 and X2, (3:45) can be written as

H (F1 jF2 ) =

Z
�

log
P (H1 jx)
P (H2 jx)

dF1 � log
P (H1)

P (H2)

=

Z Z
f(x1; x2) log

f(x1; x2)

f(x1)f(x1)
dx1dx2

= �1
2
log(1� �2): (3.46)

The quantity in (3:46) implies that the Kullback-Leibler distance between two
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normal distributions is a function of their correlation coe¢ cient � only. If X1

and X2 are independent, the Kullback-Leibler distance or divergence is 0, while

it will be 1 if X1 and X2 are linearly dependent.
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Chapter 4

Large Deviations of Empirical
Likelihood with Nuisance
Parameters

Abstract
In this chapter we investigate the asymptotic e¢ ciency of empirical likelihood

in the presence of nuisance parameters combined with augmented moment condi-

tions with i.i.d data, via both standard large sample theory and large deviations.

We show that in the presence of nuisance parameters, the asymptotic e¢ ciency

of the empirical likelihood estimator of the parameter of interest will increase by

adding more moment conditions, in the sense of the positive semide�niteness of

the di¤erence of information matrices. As a by-product, we point out a neces-

sary condition for the asymptotic e¢ ciency to be increased when more moment

conditions are added. Also, the asymptotic lower bound of the minimax risk

function for the parameter of interest is derived.

Key words: empirical likelihood, minimax risks, nuisance parameter
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4.1 Introduction

Likelihood inference may have some failings when estimating a parameter of in-

terest in the presence of nuisance parameters. For example, Neyman and Scott

(1948) treated this problem and found that maximum likelihood estimation could

not be either consistent nor e¢ cient in the presence of many nuisance parame-

ters. As a nonparametric analogue of maximum likelihood, empirical likelihood

has proved to have inherited many properties from ordinary parametric likeli-

hood. However, Lazar and Mykland (1999) demonstrated through an Edgeworth

expansion that the empirical likelihood ratio in the presence of nuisance para-

meters can not be corrected to X 2 to the high order that ordinary likelihood

achieves and it is no longer the dual likelihood statistic.

This chapter deals with empirical likelihood estimation in the presence of

nuisance parameters, combined with selection of moment conditions. We show

that in the presence of nuisance parameters, the asymptotic e¢ ciency of the

empirical likelihood estimator of the parameter of interest will increase by adding

more moment conditions, in the sense of the positive semide�niteness of the

di¤erence of information matrices.

There are quite a lot of examples in the literature which address the problem

of inference with many instruments and moment conditions. It is well known

that in over-identi�ed models, the asymptotic variance of
p
n(~� � �) cannot

decrease if a moment condition is dropped (Qin and Lawless (1994)). On the

other hand, asymptotic properties of GMM estimator based on increasing number

of moment conditions have been well established, see e.g., Newey (2001), Newey

and Windmeijer (2005). They show that using many moment conditions can

improve asymptotic e¢ ciency. Koenker andMachado (1999) proves that in GMM

estimation, whenever optimal instruments are not available, it can frequently be

shown that adding over-identifying restrictions will increase asymptotic precision.

In these cases, it should be noticed that the GMM estimator can be improved

by adding more information on the data by augmenting moment conditions as

a result of increasing the sample size. In our work, we discuss whether the

asymptotic performance of our EL estimator for the parameter in the presence

of nuisance parameter can be improved with more information by adding more

moment conditions but with sample size �xed. If put it in another way, we want

to check if the side e¤ect of nuisance parameter can be counteracted by more

moment conditions.
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Particularly, we focus on a special case, where nuisance parameters only occur

in some of the moment conditions. This case leads to an important result that

the asymptotic e¢ ciency can increase with added moment condition only if it is

not orthogonal with the original moment conditions.

Furthermore, we investigate large deviation properties of the empirical likeli-

hood inference of moment condition models in the presence of nuisance parame-

ters. Puhalskii and Spokoiny (1998) established a uni�ed framework dealing with

statistical problems via large deviations. Within the framework of Puhalskii and

Spokoiny (1998), we want to investigate whether the LD e¢ ciency bound for the

parameter of interest will remain valid in the presence of nuisance parameters,

and then to investigate whether the empirical likelihood estimator and test can

achieve the bound, as it does in the case of no nuisance parameters (Kitamura

and Otsu ( 2005)).

The remaining of this chapter is organized as follows. In section 4.2 we derive

EL estimator in the presence of nuisance parameters in standard asymptotic

theory. We discuss conditions under which the asymptotic e¢ ciency can be

improved by more moment conditions. In section 4.3 we analyze the LD risk of

EL estimator for the parameter of interest. Section 4.4 concludes.
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4.2 Moment Condition with Nuisance Parame-

ters

We present some standard asymptotic results on the EL estimator in the presence

of nuisance parameters.

4.2.1 Model Setup and the Estimate of �

Consider a sequence of i.i.d. realizations fxigni=1 of a random variable x from an
unknown distribution F , with n being the sample size. Let � be a p-dimensional

vector of parameters in a compact parameter space � � Rp associated with F .
Suppose that for a true value of � which is denoted as �0, fxigni=1 satis�es the
following moment condition

E [g (xi; �)] = 0 (4.1)

where g is a m � 1 vector of real functions, and the expectation is taken with
respect to F . We consider the over-identi�ed case where m > p: Unlike Qin

and Lawless (1994), we don�t assume that the m functions of g are independent,

since correlation between these functions plays an important role in the aspect

of asymptotic e¢ ciency, which we will discuss in the following section.

Now suppose the parameter � can be decomposed as � = (�
0
; �

0
)
0
with corre-

sponding �0 = (�
0

0; �
0

0)
0
; where � 2 B � Rq, � 2 � � Rp�q and � = B��: If we

are only interest in � but not in �; then � is a nuisance parameter in the model,

and we write the corresponding moment condition as

E [g (xi; �; �)] = 0 (4.2)

for the true value �0 of �: The empirical likelihood ratio statistic for this model

is

R (�; �) = 2
nX
i=1

log
�
1 + �

0
g (xi; �; �)

�
; (4.3)

where � is an m � 1 vector of Lagrangian multipliers, which is a continuous
di¤erentiable function of (�

0
; �

0
)
0
(see, e.g., Qin and Lawless (1994)), and is

determined by
1

n

nX
i=1

g (xi; �; �)

1 + �
0
g (xi; �; �)

= 0: (4.4)
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To simplify notations, let

g (xi; �) = gi (�) ; ĝ (�) = n�1�ni=1gi (�)

G1 = E

�
@g (x; �0)

@�

�
; 
11 = E

h
g (x; �0) g (x; �0)

0
i
:

Like ordinary parametric likelihood, empirical likelihood deals with nuisance pa-

rameter by pro�ling out � (see, e.g., section 3.5 of Owen (2000)). Let ~� = ~� (�) be

the minimizer of R (�; �) with respect to �. The pro�le log-empirical likelihood
ratio for � is

R (�) = min
�2�

R (�; �) (4.5)

and EL estimator for � is

�̂ = arg
�2B

minR (�) : (4.6)

Assumption 5 �0 = (�0; �0) solves E [g (x; �)] = 0 uniquely, or equivalently,

both �0 and �0 are strongly identi�ed.

Remark 5 This condition combined with m > p makes the parameter well iden-

ti�ed. In the paper of Stock and Wright (2000), they considered the problem

of weak identi�cation of the parameter, by assuming that the subvector � of �

is completely identi�ed, but � is not, in the sense that the population moment

function is steep in � around �0 but is nearly �at in �: This idea provides us

a framework to analysis problems mixed with nuisance parameters, weak identi-

�cation and partial identi�cation (Phillips (1989)). See also Guggenberger and

Smith (2003).

Assumption 6 a). �0 2 int(�); b). 
11 is positive de�nite and nonsingular;
c). g (x; �) is twice continuously di¤erentiable in a neighborhood of �0 and G1
is of full rank p: d). kg (x; �)k3 ; k@g (x; �) =@�k ; and k@2g (x; �) =@�@�0k are all
bounded from above.

We derive the properties of the EL estimator of �0 in the next theorem.

Theorem 15 Under assumption 1-2,

p
n
�
~� � �0

�
d! N

�
0; V 1

�

�
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where

V 1
� =

(
E

"
@g

@�
+
@g

@~�

@~�

@�

#0
~
�111 E

"
@g

@�
+
@g

@~�

@~�

@�

#)�1
;

~
11 = E

�
g
�
~�; �
�
g
�
~�; �
�0�

:

Proof. The proof is similar to Qin and Lawless (1994). Di¤erentiate R (�) with
respect to � and � respectively gives:

@R (�)
@�

=
1

n

nP
i=1

1

1 + �
0
gi

�
�; ~�

�
0@@gi

�
�; ~�

�
@�

+
@gi

�
�; ~�

�
@~�

@~�

@�

1A
0

�; (4.7)

@R (�)
@�

=
1

n

nP
i=1

gi

�
�; ~�

�
1 + �

0
gi

�
�; ~�

� : (4.8)

Denote the right hand side of (4.7) and (4.8) as Q1n(�; �) and Q2n(�; �) respec-

tively. Since �̂ and �̂ maximize R (�), Q1n(�̂; �̂) = Q2n(�̂; �̂) = 0; and �rst order

Taylor expansion around (�0; 0) gives:

0 = Q1n(�̂; �̂)

= Q1n(�0; 0) +
@Q1n(�0; 0)

@�
(~� � �0) +

@Q1n(�0; 0)

@�
�̂+ op(�)

0 = Q2n(�̂; �̂)

= Q2n(�0; 0) +
@Q2n(�0; 0)

@�
(~� � �0) +

@Q2n(�0; 0)

@�
�̂+ op(�)

where � =



~� � �0




+ 


�̂


 : So ~� and �̂ can be solved as:
"

�̂
~� � �0

#
= S�1n

"
�Q1n(�0; 0) + op(�)

op(�)

#

=

264
�
I � S�111 E

�
@g
@�
+ @g

@~�

@~�
@�

�
S�122:1E

�
@g
@�
+ @g

@~�

@~�
@�

�0�
S�111 Q1n(�0; 0) + op(1)

E
�
@g
@�
+ @g

@~�

@~�
@�

�0
S�111 Q1n(�0; 0) + op(1)

375 ;
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where

Sn =

"
@Q1n
@�0

@Q1n
@�

@Q2n
@�0

0

#
(�0;0)

!
"
S11 S12

S21 0

#

=

24 �E(gg0) E
�
@g
@�
+ @g

@~�

@~�
@�

�
E
�
@g
@�
+ @g

@~�

@~�
@�

�0
0

35 :
From lemma 1 of Qin and Lawless (1994) under Assumption 6 we have @Q1n(�0; 0) =

(1=n)
Pn

i=1 g(xi; �) = Op(n
�1=2) and � = Op(n

�1=2): So we obtain

p
n
�
~� � �0

�
= S�122:1E

 
@g

@�
+
@g

@~�

@~�

@�

!0
S�111 Q1n(�0; 0) + op(1)

d! N
�
0; V 1

�

�
:

Remark 6 a). The structure of the asymptotic variance-covariance matrix V 1
�

is di¤erent from those in Stock and Wright (2000) and Guggenberger and Smith

(2003), in which they decompose E [ĝ (�)] as E [ĝ (�)] = n�1=2m1 (�) + m2 (�),

where m1 (�) involves both of the two parameters and m2 (�) involves � and the

true value of �:

b). Lazar and Mykland (1999) consider higher order properties of �̂ through
Edgeworth expansion of R (�; �) : They �nd that �̂ may not achieve higher order
accuracy which can be obtained by ordinary likelihood in the presence of nuisance

parameters, also they show that the empirical likelihood ratio statistic does not

admit Bartlett correction, unlike the case without nuisance parameters.

4.2.2 More Moment Conditions

Now we focus on the asymptotic e¢ ciency of �̂ when there are more moment

condition being added. Suppose based on model (4.1), we have the following new

model by adding one more moment indicator f (�):

E [h (xi; �0; �0)] = E

"
g (xi; �0; �0)

f(xi; �0; �0)

#
=

"
0

0

#
: (4.9)
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Similar to section 4.2.1, we de�ne

G � E

�
@h (x; �0)

@�

�
; G2 � E

�
@f (x; �0)

@�

�

 � E

h
h (�0; �0)h (�0; �0)

0
i
=

"

11 
12


21 
22

#
:

In this model, following the setup in the previous section, the parameter vector

� = (�
0
; �

0
)
0
can be identi�ed by (4.1) alone, and now we are interested in whether

the covariance matrix V 1
� can be improved with extra information given by f: Let

the estimator of � based on both g and f denoted as ~�, and the corresponding

covariance matrix as V 2
� : In general, well established results have shown that

at least using f will not be harmful, i.e., it will not increase the asymptotic

variance of �̂. And, nor will dropping f will decrease the asymptotic variance

of the estimator, relative to that of the estimator based on both g and f . See,

corollary 1 of Qin and Lawless (1994).

Remark 7 A similar and relevant situation may be worth mention, which is

described in Newey and Windmeijer (2005) and Han and Philips (2006), for

instance. They assume that the number of moment conditions is increased with

the sample size. Thus in this case extra information are provided by both extra

data and extra moment conditions, while in our case only by the latter one with

�xed sample size n. They also allow the moment conditions are weak, while we

assume both g and f are strong as indicated in assumption 5. Estimation under

many weak moment conditions is also discussed by Andrews and Stock (2005).

Proposition 9 The asymptotic e¢ ciency of EL estimator of � can be increased
by adding more moment conditions.

Proof. Since we can always block the component of the vector of the moment
function, for simplicity and without loss of generality, we assume that both g

and f are of dimensional one.

For convenience let E
�
@g
@�
+ @g

@~�

@~�
@�

�
� E1; E

�
@f
@�
+ @f

@~�

@~�
@�

�
� E2:

The inverse of V 2
� ; or the information matrix of � with both g and f is:

I2� = E

�
@h

@�

�0
(E [hh0])

�1
E

�
@h

@�

�
=

h
E1 E2

i "
11 
12


21 
22

#�1 "
E1

E2

#
: (4.10)
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Since without f , the information on � is

I1� = E1 [E (gg
0)]
�1
E1

= E
0

1S
�1
11 E1;

we have:

I2� � I1� = E

�
@h

@�

�0
(E [hh0])

�1
E

�
@h

@�

�
� E

0

1 (E [gg
0])
�1
E1

= E
0

1

�
S�111 S12
22S21S

�1
11

�
E1 + E2

�
�
22S21S�111

�
E1

+E1
�
�S�111 S12
22

�
E2 + E2
22E2

=
�
E

0

1S
�1
11 S12 � E1

�

22

�
E

0

1S
�1
11 S12 � E2

�0
;

which is positive semide�nite, providing E
�
gg

0�
is p.d as Assumption 6 indicates.

Example 10 Suppose we have a sequence of i.i.d observations of univariate ran-
dom variable x1; :::xn: Let E(x) = � and var(x) = �2: Thus we have the following

two moment conditions:

E [g(x; �)] = E(x� �) = 0; (4.11)

E [f(x; �; �)] = E((x� �)2 � �2) = 0: (4.12)

And now we are only interested in the estimation of �: The empirical likelihood

estimator of � is:

�̂ = argmin
�

nX
i=1

log

 
1 + t

0

 
xi � �

(xi � �)2 � �̂2

!!
;

and

nV ar(�̂) =

0@h @g
@�

@f
@�

i "E(gg) E(gf)

E(fg) E(ff)

#�1 " @g
@�
@f
@�

#1A�1

= 
�111

= �2 �
�
E (x� �)3

�2
E
�
(x� �)2 � �2

�2 � �2: (4.13)
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Notice that without g2, nV ar(�̂) equals �2 .

In the above example, we notice that E
�
@f
@�

�
= 0; and this feature simpli�es

the calculation dramatically. So we consider the following more special model,

where g does not have nuisance parameter, but f has a nuisance parameter only,

although it brings some information from the data.

E [h (x; �0; �0)] = E

"
g (x; �0)

f(x; �0)

#
=

"
0

0

#
: (4.14)

The gradient vector of h in (4:14) is:

@h

@�
=

"
@g
@�

0

0 @f
@�

#
;

the information on � is:

I2� = E

�
@h

@�

�0
[E (hh0)]

�1
E

�
@h

@�

�
=

h
E
�
@g
@�

�
0
i "
11 
12


21 
22

#�1 "
E
�
@f
@�

�
0

#

= E

�
@g

@�

�0 �

�111 (I + 
12(
22 � 
12
�111 
21)�1
21
�111

�
E

�
@f

@�

�
;

where I is the corresponding identity matrix. Now we have

I2� � I1� = E

�
@f

@�

�0
V E

�
@f

@�

�
(4.15)

where

V =
�

�111 
12(
22 � 
12
�111 
21)�1
21
�111

�
: (4.16)

By assumption E(gg
0
) is positive semide�nite, so (
22 � 
12
�111 
21)�1 is also

p.s.d, and so is V: Thus we see that f provide extra information for �: However,

if in (4.10), E(gf) = 
12 = 0; V = 0; so I2� = I1�: So we have the following
proposition.

Proposition 10 Additional moment conditions which contains only nuisance
parameters will provide extra information on the parameter of interest only if

they are correlated to the original moment conditions.
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Remark 8 Whether g and f are correlated is a testable condition. Since E [g (x; �0)] =
E [f (x; �0)] = 0; to test the correlation of g and f it is equivalent to test the fol-

lowing additional moment condition

E [� (x; �0; �0)] = E [g (x; �0) f (x; �0)] = 0 (4.17)

and this can be done by standard EL test procedure.
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4.3 Large Deviation E¢ ciency

In this section we use the same framework as in the previous section to analyse

the large deviation e¢ ciency of EL estimator with nuisance parameters and aug-

mented moment conditions. Our work is similar to Kitamura and Otsu (2005),

which shows that the minimax loss of EL estimator can achieve the large de-

viation lower bound in the framework of Puhalskii and Spokoiny (1998). Our

result is new in that we incorporate nuisance parameter in the moment condition

model. However, the large deviation e¢ ciency in both cases depends on the LDP

of statistical experiment, which is introduced below.

4.3.1 Preliminaries

Statistical Experiment

Following the terminology of statistical decision theory as in Blackwell (1953),

Strasser (1985, 1996), LeCam (1986), and LeCam and Yang (2000), we call a

family of probability measures P = fP� : � 2 �g a statistical experiment, where
P� is on a ���eld A (�) of subsets of a set �. Let fPn; n � 1g be a sequence
of statistical experiments indexed by sample size n, where Pn = fPn;� : � 2 �g
and Pn;� is the set of probability measures which satisfy the moment condition

model (4:9) :

Pn;� �
�
P 2M1 (�) :

Z
�

g (x; �) dP = 0

�
;

where M1 (�) is the space of all probability measures on � equipped with the

Levy metric. We say fPn; n � 1g is dominated by a probability measure P0
if for all n and all � 2 �; Pn;� is absolutely continuous with respect to P0;

i.e. Pn;� � P0; and in this case we also denote fPn; n � 1g as fPn; P0; n � 1g.
See, e.g, Puhalskii and Spokoiny (1998). Note that as our setup in section 4.2,

� = (�0; �0)
0
; where � 2 B, � 2 �, and B[� = �. In the following we will use �

and (�0; �0)0 interchangeably. Now we de�ne:

Zn;� =

�
dPn;�
dP0

�1=n
, �n� � logZn;� =

1

n
log

dPn;�
dP0

(4.18)

and let Zn;� = fZn;� 2 R : � 2 �g and �n;� = f�n;� 2 R : � 2 �g ; so Zn;� and
�n;� are the process of likelihood ratio and the log-likelihood ratio respectively.
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LDP of Statistical Experiment

Also, let L (�n;� jP0; n � 1) denote the distribution of �n;� under P0. Now we
have the following de�nition.

De�nition 13 A sequence of dominated statistical experiments fPn; n � 1g is
said to obey the LDP if

1. the sequence of distributions of likelihood ratio L (Zn;� jP0; n � 1) obeys
the LDP with some rate function I : R! [0;1] :
2. the likelihood ratio Zn;� satis�es:

lim
M!1

lim sup
n!1

E1=nn [exp(n�n�)1 (�n� > M)] = 0; � 2 � (4.19)

where E1=nn [�] = (En [�])1=n :

Remark 9 (4:19) is called the exponential tightness condition, and it is to en-
sure that lower bounds of minimax risks of the estimate of the parameter � are

independent of the choice of dominating measure P0. See, Puhalskii and Spokoiny

(1998) or LeCam and Yang (2000).

Example 11 (Exponential Family) Let Xn = (X1;n; :::; Xn;n) be n i.i.d sam-

ples drawn from a exponential family with density of the standard form:

f (Xk;n) = exp f�Xk;n + � (�) + h (Xk;n)g ; k = 1; :::; n

where � (�) and h (�) are some real functions. For this model, 
n = Rn and

Pn;� = exp

�
�

nP
k=1

Xk;n + n� (�) +
nP
k=1

h (Xk;n)

�
; � 2 � � R

If we take Pn;1 as the dominating measure, the corresponding log-likelihood ratio

will be:

�n;� =
1

n
log

dPn;�
dPn;1

(Xn)

= (� � 1) 1
n

nP
k=1

Xk;n + � (�)� � (1)

= (� � 1)Yn + � (�)� � (1) ;
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where

Yn =
1

n

nP
k=1

Xk;n; n � 1:

It is well known that fL (Yn jPn ) ; n � 1g ; the sequence of distributions of the
empirical mean Yn, satis�es the LDP on R with the rate function IN(y) = y2=2;

y 2 R, see Dembo and Zeitouni (1998) for instance. Hence the distribution of

the log-likelihood ratio L (�nP jPn; n � 1) satis�es the LDP by the contraction
principle of the LDP.

To check the �rst condition in de�nition 13, it is often convenient to use the

following su¢ cient and necessary condition, see Varadhan (1984), Deuschel and

Strook (1989) and also Puhalskii (1993, 2006).

Proposition 11 A sequence of probability distributions fQn; n � 1g obeys the
LDP with a rate function I if and only if

lim
n!1

�Z
�

(f(x))nQn(dx)

�1=n
= sup

x2�
f(x)V (x) (4.20)

holds for all nonnegative, bounded and continuous functions f on �, where �

is a metric space and V (x) = exp(�I(x)) : � ! [0; 1] is called the deviability
1 of fQn; n � 1g : Moreover, if f is also nonnegative and lower semicontinuous,
(4:20) implies

lim
n!1

�Z
�

(f(x))nQn(dx)

�1=n
� sup

x2�
f(x)V (x): (4.21)

Proof. See page 493 of Puhalskii (1993).

De�nition 14 If (4:20) holds, we say fQn; n > 1g converges to V in large devi-

ation and denote this by Qn
l:d! V . Therefore, by Proposition 11, Qn

l:d! V if and

only if fQn; n > 1g obeys the LDP with rate function I(x) = � log V (x):

The next theorem of Puhalskii and Spokoiny (1998) and Kitamura and Otsu

(2005) states that the statistical experiment of our moment condition model

obeys the LDP.

Theorem 16 Suppose � is a compact metric space, and the likelihood ratio dPn;�
dP0

1Note that the range of the rate function I(x) is [0;1) ; and the mapping I(x) to V (x) is
one to one.

67



is continuous and bounded from above, then the sequence of the dominated sta-

tistical experiments fPn; P0; n � 1g obeys the LDP.

Proof. The procedure of proof is �rstly showing that the distribution of likeli-
hood ratio dPn;�

dP0
satis�es the LDP, so the condition 1 in De�nition 13 is veri�ed.

Secondly, it needs to show the likelihood ratio process is exponential tight, so

it satis�es the second condition in De�nition 13. See Puhalskii and Spokoiny

(1998) or Kitamura and Otsu (2005).

4.3.2 E¢ ciency of Estimation

Minimax Risk Bound

In this section, we show that a large deviation e¢ ciency bound of estimation of

the parameter in the model (4:9) can be obtained by the LDP of the statistical

experiment fPn; P0; n � 1g. In terms of statistical decision theory, an estimator
of the parameter �n : �! D is a decision in a decision space D 3�n; and the
e¢ ciency of �n can be evaluated by a loss function W : ��D !�R+: We de�ne
the maximum logarithmic LD risk of the decision �n in the experiment as

R (�n) = sup
�2�

sup
Pn;�2Pn

1

n
logEn;Pn;� [W� (�n)] ; (4.22)

where W� (�n) denotes the loss of �n as an estimator of the parameter �:

Following LeCam and Yang (2000), we make the following assumptions to

ensure the existence of En;P� [W� (�n)] :

Assumption 7 a). inf�2�W� (�n) > �1: b). the function W� (�n) is mea-

surable.

Assumption 8 The parameter space � is compact.

An estimator ��n will be called LD optimal if it minimises R (�n) ; and hence

��n is a minimax estimator. See, e.g., Lehmann and Casella (1998). The reason

we consider the minimax estimator, or the reason that we judge the estimator by

its worst behavior along a sequence of alternatives converging to a �xed model,

is that the uniformity has mathematical appeal because it excludes supere¢ -

cient estimators, which exploit the weakness in a de�nition in�uenced only by

pointwise limit behavior (see, e.g., Pollard (2003), and LeCam (1986)).
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Bahadur (1960) shows that LD optimality of maximum likelihood estimates in

the restricted setting of exponential families. For more general settings, Puhalskii

and Spokoiny (1998) gives a framework through the following theorem for LD

e¢ ciency of estimates in a statistical experiment, which provides a asymptotic

LD lower bound for appropriately de�ned risk functions if the experiment obeys

the LDP. And in fact it is the motivation for introducing the concept of the LDP

for sequence of statistical experiments.

Theorem 17 (Minimax LD Risk Bound) Let �n be an estimator of � in the
dominated experiment fPn; P0; n � 1g ; which obeys the LDP with rate function
I(x). If �n is assessed by a level compact loss function W , then with assumption

7-8

lim inf
n!1

inf
�n2�

R (�n) � R�

where

R� = sup
Zn;�2R+

inf
�n2�

sup
�2�

W� (�n)Zn;�V (Zn;�):

and V (�) is the deviability of the experiment.

Proof. See theorem 3.1 of Puhalskii and Spokoiny (1998).

Remark 10 This result is indeed an LD analogue of LeCam�s minimax theorem,
which says that if a sequence of statistical experiments weakly converges, then

there exists asymptotic lower bound for the risk of the estimator. See, e.g., LeCam

and Yang (2000).

Remark 11 From the theorem we know that the minimax LD risk bound is

determined by the loss function, the likelihood ratio and the rate function of the

LDP of the sequence of experiments.

Remark 12 The existence of R� requires the loss function to be level compact,
see Puhalskii and Spokoiny (1998). In practice this condition is often satis�ed.

For example, the Bahadur type loss function which we will use in the following

is level compact given assumption 8. See Kitamura and Otsu (2005).

Let bn : �! B be an estimator for our parameter of interest �. The Bahadur-
type loss function which we employ in this paper for estimation of � is given by

W� (bn) = 1 (kbn � �k > c) ; c > 0 (4.23)
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and we can evaluate the exponential rate of convergence of the LD error proba-

bility in estimating � by the following maximum risk function:

R (bn) = sup
�2B

sup
P2P(�)

1

n
logEn;P� [W� (bn)] : (4.24)

Puhalskii and Spokoiny�s (1998) result shows that in a sequence of statisti-

cal experiments which obey the LDP, the minimax lower bound of estimates is

just the supremum of the product of the rate function and loss function over

the sample space, decision space and parameter space. In this framework, the

following new theorem gives the lower bound of the minimax risk for our model

with nuisance parameters.

Theorem 18 De�ne

�P (�) =

Z
�

log
dP

dP0
d�

where � 2M1 (�) : For any estimator bn of the true parameter �0; we have

lim inf
n!1

inf
bn2B

R (bn) � R�;

where

R� = sup
�2M1(�)

inf
bn2B

sup
�2B

sup
P2P(�):kbn��k>c

(�P (�)�H (� jP0 ))

= sup
�2M1(�)

inf
bn2B

sup
�2B

sup
P2P(�):kbn��k>c

�H (� jP0 ) :

Proof. Firstly we show that

lim inf
n!1

inf
bn2B

sup
�2B

sup
P2P(�)

E
1=n
n;� W

n
� (bn) � sup

�2M1(�)

inf
bn2B

sup
�2B

sup
P2P(�)

W� (bn)Z�V� (Z�)

(4.25)

where � is some �nite subset of B:
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By the de�nition of Zn;�; we have

lim inf
n!1

sup
�2B

sup
P2P(�)

E
1=n
n;� W

n
� (bn) = lim inf

n!1
sup
�2B

sup
P2P(�)

E
1=n
n;P0

W n
� (bn)Z

n
n;�;�

� lim inf
n!1

�
1

j�jEn;�
P

�2�W
n
� (bn)Z

n
n;�;�

�1=n
� lim inf

n!1
E
1=n
n;P0
sup
�2B

W n
� (bn)Z

n
n;�;�

� lim inf
n!1

E
1=n
n;P0

wn
�
Znn;�;�

�
where

w (z�) = inf
bn2B

sup
�2B

W� (bn)Z�; Z� = (Z�; � 2 �) :

Considering L (Zn;� jPn; n � 1) is large deviation converges to V�; by (4.21)
we have

lim inf E
1=n
n;�

n!1
wn (Zn;�) � sup

z�2R�+
w (Z�)V� (z�)

which implies (4.25).

Since w (Z�) is nonnegative, continuous and homogeneous, by Lemma 2.5 of

Puhalskii and Spokoiny (1998) , we can get

sup
z�2R�+

inf
bn2B

sup
�2B

W� (bn)Z�V� (z�) = sup
z�2R�+

inf
bn2B

sup
�2B

W� (bn)Z�V� (Z�) ;

so combined with (4.25), we have

lim inf
n!1

inf
bn2B

sup
�2�

E
1=n
n;� W

n
� (bn) � sup

z�2R�+
inf
bn2B

sup
�2B

W� (bn) z�V� (z�) :

Note that for every Z� = (Z�; � 2 �) ;

sup
�2�

inf
bn2B

sup
�2�

W� (bn)Z� = inf
bn2B

sup
�2�

W� (bn)Z�

and the proof is completed by taking logs of both sides.

Remark 13 Here we see that �nally the e¢ ciency bound turns out to be not
dependent on the dominating measure.

Now we consider the empirical likelihood estimator after pro�ling out the
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nuisance parameter �

�̂ = arg
b
inf
b2B
R (�)

where

R (�) = min
�2�

max
�2Rm

nP
i=1

log
�
1 + �

0
(�; �) g (xi; �; �)

�
:

From theorem 18 we know that lim infR
�
�̂
�
� R�, we will check whether

lim supR
�
�̂
�
is smaller than R�;i.e.,

lim supR
�
�̂
�
� R�:

Firstly we present an important result which connects the EL estimation with

the statistical experiment.

Lemma 3 For each � 2 �; let �n 2M1 (�) be the empirical measure, we have

sup
P2P(�)

Z
�

log
dP

dP0
d�n

= �max
�2Rm

nP
i=1

log
�
1 + �

0
(�) g (xi; �)

�
�
Z
�

log
dP0
d�n

d�n

� R (�)� ~L:

Proof. See Borwein and Lewis (1993) or Kitamura and Otsu (2005).

Theorem 19 Suppose �̂ solves

inf
�2B

sup
�2B:kbn��k>c

R (�) ;

then

lim
n!1

R
�
�̂
�
= R�:
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Proof. Let (a ^ b) denote min (a; b). We have

exp
�
R
�
�̂
��

= sup
P2P(�)

E
1=n
nP�

h
1
�


�̂ � �




 > c
�i
= sup

P2P(�)
E
1=n
nP0

h
1
�


�̂ � �




 > c
�
ZnnP

i
� sup

P2P(�)
E
1=n
nP0

h
1
�


�̂ � �




 > c
� �
ZnP ^ eM

�ni
+ sup
P2P(�)

E
1=n
nP0

h
1
�


�̂ � �




 > c
�
ZnP1(ZnP > eM)

i
� sup

P2P(�)
E
1=n
nP0

h
1
�


�̂ � �




 > c
� �
ZnP ^ eM

�ni
+ sup
P2P(�)

E
1=n
nP0

�
ZnP1(ZnP > eM)

�
Since

sup
P2P(�)

E
1=n
nP0

�
ZnP1(ZnP > eM)

�
� 0

we can just show

sup
P2P(�)

E
1=n
nP0

h
1
�


�̂ � �




 > c
� �
ZnP ^ eM

�ni � exp (R�)
Note that

sup
P2P(�)

E
1=n
nP0

h
1
�


�̂ � �




 > c
� �
ZnP ^ eM

�ni
� E

1=n
nP0

" 
sup
P2P(�)

n
1
�


�̂ � �




 > c
�
ZnP

o
^ eM

!n#

= E
1=n
nP0

" 
sup

�2B:kb��k>c
sup
P2P(�)

fZnPg ^ eM
!n#

� E
1=n
nP0

240@ sup
�2B:k�̂��k>c

sup
P2P(�)

�
exp

Z
X
log

dP

dP0
d�n

�
^ eM

1An35
where the last inequality follows form Lemma 3 and the de�nition of �̂: Thus,
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from the LD convergence of ZnP

lim
n!1

E
1=n
nP0

240@ sup
�2B:k�̂��k>c

sup
P2P(�)

fZnPg ^ eM
1An35

� lim
n!1

E
1=n
nP0

240@ sup
�2B:k�̂��k>c

sup
P2P(�)

fZnPg

1An35
= sup

�2M1(�)

sup
�2B:k�̂��k>c

sup
P2P(�)

fZnPg exp(�I(Q))

= R�

The proofs of our main results, theorem 18 and 19, resemble those of theorem

3.1 and 4.1 in Puhalskii and Spokoiny�s (1998), because the key thing is that as

we mentioned at the beginning of this section, we need to show the LDP of the

likelihood ratio process dPn;�
dP0

induced by the parameter of interest, hence the

LDP of the statistical experiment. Intuitively, it is not hard to believe that if

the likelihood ratio process dPn;�
dP0

satis�es the LDP, the process dPn;�
dP0

also satis�es

the LDP, since � is a subvector of �:
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4.4 Concluding Remarks

In this chapter we have discussed the e¢ ciency of the EL estimator in the pres-

ence of nuisance parameters, via both standard asymptotic method and large

deviations. We are particularly interested in whether the asymptotic e¢ ciency

of the parameter of interest can be improved by adding more moment conditions.

We found that a necessary condition for augmented moment condition to be use-

ful to improve the asymptotic e¢ ciency, is that it is correlated to the original

moment condition. It is worth mentioning that here we incorporate more mo-

ment conditions with sample size being �xed, while researchers like Newey and

Windmeijer (2005) and Han and Philips (2006) consider increasing the number

of moment conditions brought by increasing sample size.

It would be interesting to extend our results to the non i.i.d case. We have

shown some LDP results for weakly dependent data, and so it is not di¢ cult

to obtain a corresponding large deviation e¢ ciency bound. But if we want to

show that the EL estimator can achieve this bound it would be complicated

since Lemma 3 depends on i.i.d assumption. Therefore some other results which

connects the EL criterion and the likelihood ratio process may be needed.
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Chapter 5

Empirical Likelihood Estimation
of Auction Models via Simulated
Moment Conditions

Abstract
In this chapter we apply empirical likelihood (EL) estimation to the simplest

�rst-price sealed bid auction model with independent private values. Through

estimation of the parameter in the distribution function of bidders�private value

we consider a potential problem in the EL inference when the moment condition

is not in an explicit form and is hard to compute, or even not continuous in the

parameter of interest. We deal with this issue following the method of simulated

moment (MSM) introduced by Pakes and Pollard (1989) and McFadden (1989),

since in structural auction models the �rst moment of the optimal bid is highly

nonlinear and thus intractable. Particularly we use the importance sampling

method to simulate the moment condition, which is derived from the Bayesian

Nash equilibrium in the game theoretical auction model. We demonstrate the

convergence of the empirical likelihood estimator from the simulated moment

condition, and �nd that the asymptotic variance is larger than usual, and is

modi�ed by simulation.

Key words: �rst-price auction, simulated moments, importance sampling
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5.1 Introduction

We consider empirical likelihood estimation of a simple auction model in this

chapter. Auctions are nowadays widely implemented as an e¢ cient mechanism

to allocate resources, to determine prices and to mitigate transaction costs. Al-

though the use of auctions has a long history and can be traced back to Roman

times, the theory of auctions in economics has �ourished since Vickrey�s (1961)

seminal paper, showing how Pareto-optimal results can be achieved through auc-

tions in imperfect markets. Particularly, the development of game theory has en-

hanced the research into auctions in the past decades. One of the most earliest

and most general results is contributed by Milgrom and Weber (1982), who an-

alyze English auctions 1, Dutch auctions 2, �rst price auctions 3and second-price

auctions 4 using a general game theoretical model and derive the equilibrium con-

ditions in a setting of competitive and noncooperative bidding. Literature about

other equilibrium strategies under di¤erent settings of auctions is also growing.

For instance, Maskin and Riley (1984) consider the optimal auctions from the

point of view of sellers who want to maximize the transaction price, assuming

bidders are risk-averse. Swinkels (1998) discusses the strategy and conditions

needed to make a large number of auctions to be e¢ cient, in the sense that bid-

ders who value the object the most will have the biggest possibility of winning it.

For general reference and a recent survey of auction theory, Klemperer�s (2004)

book can be referred to.

One of the interesting features of auction models in empirical study is that

they are fully structural 5, which means the model is derived from economic

theory directly incorporating restrictions from the theory as assumptions of

econometric models, and randomness enters the auction model naturally without

adding stochastic error terms, unlike the usual econometric models. Based upon

1English auction: Aslo called ascending auction. The auctioneer begins the auction by
announcing a starting price or reserve for the item on sale and then accepts increasingly higher
bids from the bidders.

2Dutch auction: Also called descening auction. The auctioneer begins the auction by an-
nouncing a high price, then he lowers the price continuously until some bidder accept the price
and the player win the object at that price.

3First-price (sealed bid) auction: All bidders submit their bids in an envelope simultaneously
to the auctioneer. Bidder with the highest bid wins, paying a price equal to the exact amount
that he or she bid.

4Second-price (sealed bid) auction: Also called Vickrey auction. All bidders submit their
bids in an envelope simultaneously to the auctioneer. Bidder with the highest bid wins, paying
a price equal to the exact amount of the second highest bid.

5Application of structural approach to auction model began from Paarsch (1992).
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the structural approach, researchers are interested in testing economic theories

implied by the auction model through both �eld and experimental data. Early

examples include the work done by Hansen (1985) which aims to test the famous

revenue equivalence theorem, which asserts that a seller will always get the same

revenue from any allocation mechanism given some speci�c features of the bid-

ders. Recently Haile, Hong and Shum (2003) conduct tests to examine whether

the bidders have common value or private value on the objects. Paarsch and

Robert (2003) generate laboratory data to test equilibrium behavior when bid-

ders bid in discrete increments. See also Athey and Haile�s (2005) introduction

and a list of comprehensive references.

On the other hand, this empirical testing procedures rely on the distribution

functions which characterize the bidders�valuation, or demand on the auctioned

goods. As Milgrom and Weber (1982) have shown, in equilibrium the optimal

bid is a function of bidders�private value, the number of bidders, the reservation

price of the objects, and the optimal bid is monotonically increasing in bidders�

private values, i.e., the bidder with higher value will bid more. Based upon this

result econometricians have attempted to estimate the distribution function of

bidder�s private value by the relationship between the optimal bid and private

value, assuming the Bayesian Nash Equilibrium in the competitive bidding.

However, there are some di¢ culties in the structural analysis of the auction

models. For the relevant variables, we can observe the number of bidders and the

reservation price, but sometimes not all the bids can be observed 6. Moreover,

bidders�private values are latent, i.e., the data generation process (DGP) which

can be observed is incomplete. This leads to two problems. The �rst one is

identi�cation: can the distribution functions of the private value be recovered

from the data in various types of auctions? Secondly, the equilibrium strategy is

in a highly nonlinear form, so explicit calculation of the private value out of the

strategy is unfeasible.7

6How many bids can be observed depends on the type of auctions. In an English auction,
sometimes not all of the bids can be observed, since the potential bidders whose valuations of
the object are lower than the current bids will not bid at all. In an Dutch auction, since the
auction will end right after someone has made a bid, only the wining bid is observed. In �rst
price and second price sealed bid auctions, all the bids can be observed.

7Apart from these two problems, some researchers like Albano and Jouneau (1998) who
suggested a Bayesian approach to the �rst price auction model, pointed out that in the existing
frequentist approach the auction models cannot indeed be fully structured indeed, since they
need asymptotics and the proposed estimator is on a product space. Speci�cally, asymptotics
on the number of bidders will involve an in�nite number of bidders and if it is not the case,
the econometric model will not be fully structured. However, the structural formula which
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Athey and Haile (2002, 2005) have examined the condition for nonparametric

identi�cation in di¤erent model settings. One of their conclusions based on the

equilibrium strategy found by Milgrom and Weber (1982) is that the distribu-

tion function can be identi�ed even when only the winning bid is observed in

the simplest independent private value (IPV) setting with symmetric bidders.

This means that the bidder�s private values are independently drawn from the

same distribution function and each bidder only knows his/her own value. In-

deed, Guerre et.al (2000) propose a two step nonparametric kernel estimator for

the distribution function with optimal convergence rate, which does not need

calculation of the equilibrium strategy.

In a parametric approach, early research by Paarsch (1992), and Donald and

Paarsch (1993, 1996), also concludes that the parameter in the distribution func-

tion of private values can be identi�ed through the winning bid within the IPV

paradigm, assuming that the bidders�s private value distribution is from some

speci�c parametric family. Since the support of the bid distribution involved

depends on the parameter of interest, the maximum likelihood estimator (MLE)

from directly maximizing the likelihood function is not consistent. They there-

fore suggest pseudo maximum likelihood (PML) to estimate the parameter, but

computation of likelihood function is challenging due to its high degree of non-

linearity. To avoid calculating the density function, La¤ont, Ossard and Vuong

(1995), (hereafter La¤ont et al. (1995)) consider simulating the �rst moment

of the winning bid, and using non-linear least squares (NLLS) estimation which

minimizes the sample analogue of the simulated moments.

La¤ont et al. (1995)�s estimation method is an application of method of

simulated moment (MSM) introduced by Pakes and Pollard (1989) (hereafter

PP), McFadden (1989) and McFadden and Ruud (1994) (hereafter MR). In their

paper they discuss the problem when the general method of moments (GMM)

encounters moment conditions which cannot be handled as usual, speci�cally,

when we estimate a parameter �0 based on the following population moment

condition:

E [g (x; �0)] = 0:

GMM and also empirical likelihood (EL) will be di¢ cult if the moment indicator

provides the optimal bidding strategy as a function of private values will converge uniformly
to identity function when the number of bidders goes to in�nity. On the other hand, if we do
asymptotics on the number of repeated auctions instead of bidders, the equilibrium strategy
in repeated auctions can be much more complex than the one in a static auction.
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g (x; �) is intractable and hard to compute, or even discontinuous in the para-

meter of interest, since both GMM and EL require explicit calculation of the

sample analogue of the moment condition and existence of the derivative ma-

trix of g (x; �) with respect to �: PP have established general asymptotic results

of the estimator based upon simulation of the moment condition, con�ning the

parameter space to some speci�c class. As an immediate application but in an

independent piece of work, McFadden (1989) estimates a discrete response model

by simulating the intractable response probability forming the moment condition.

A similar case worth mentioning is that, the functional form of g (x; �) itself is

tractable but it contains some unknown function, say, g (x; �) = g (x; h (x) ; �)

where h (x) is unknown. MR consider sample analogue based on simulation of

h (x), while Ai and Chen (2003) approximate h(x) nonparametrically by sieve

minimum distance (SMD) method. .

In this chapter, we apply empirical likelihood to estimate a �rst-price auction

model under symmetric IPV assumption in a parametric setting. The moment

condition we are based on, which is the same as La¤ont et al. (1995) used, is from

the expectation of the winning bid derived according to the equilibrium strategy.

Also following La¤ont et al. (1995), we simulate the intractable moment condi-

tion by importance sampling, which is used to evaluate the moment condition

through observations from a di¤erent probability distribution and is easier to

handle, rather than using g (x; �) directly. General references about importance

sampling technique can be found in Rubinstein (1981) and Hesterberg�s thesis

(1988), among others.

We notice that as McFadden (1989) points out, importance sampling can be

used to smooth discrete moment conditions. So we extend our estimation method

to more general case where the moment conditions may be either intractable or

discrete. Similar to the results of PP, the proof of consistency of our EL estimator

based on MSM requires only the continuity of the simulated moment condition,

but not that of the original one. However, the proof of asymptotic normality

dose require di¤erentiability of the moment condition at the true parameter and

the derivative matrix must be full rank.

This chapter is organized as follows. Firstly in section 5.2 we describe the

game theoretical auction model. We review the derivation of equilibrium strategy

and the conditions for identi�cation in our symmetric IPV setup. In Section 5.3

we consider the empirical likelihood estimator using simulated moment condition

by importance sampling, and asymptotic properties of the estimator will be
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established. Also extension from an auction model to a more general moment

condition is mentioned. Section 5.4 provides experimental results. Section 5.5

concludes and proposes some extensions to further research.
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5.2 First Price Auction with Symmetric IPV

Bidders

5.2.1 The Game Theoretic Model

Consider a �rst price sealed bid auction as a noncooperative game. Some risk

neutral 8 bidders which are indexed by i = 1; :::; I with I > 2, bid for a single

and indivisible object. Bidders submit their bids to the auctioneer simultaneously

and the bidder with the highest bid wins, provided that her/his bid is no smaller

than the reservation price u0 set by the seller. Suppose that bidder i holds his

own value 9 ui on the object which is from a probability distribution F (u) with a

bounded support suppU = [u
¯
,�u] where 0 �u

¯
< �u <1: Furthermore, each bidder

knows the number I and the function F (u) and he knows that the others know,

etc. As shown by Riley and Samuelson (1981), by making the bid bi � � (ui)

according to her/his private value, in the game bidder i want to maximize her/his

expected utility Ui � U (ui; bi), i.e.,

E [Ui] = (ui � � (ui))� pi (5.1)

where pi is the probability of the bidder i wins.

For the value ui and the distribution function F (u) we make the following

assumptions which form the IPV model:

Assumption 9 (Symmetric and independent bidders) All the I bidders�
values are independently drawn from the same distribution F (u) :

Symmetric bidders are not identical however, since their private signal will be

di¤erent. Indeed, in a symmetric game heterogeneity across bidders is embodied

in di¤erences among private signals. The case of asymmetric bidders can arise

from the fact that some of them are well informed, some of them may have collu-

sion, or they have di¤erent sizes and locations that can a¤ect their distribution

of private signal.

Sometimes it is convenient to use order statistics for explaining independent

private values drawn from F (u). For the set of I private values fu1; :::uIg ; let
8In general, models with risk averse or risk seeking bidders are nonidenti�able if no addi-

tional restrictions are given. See, e.g. Maskin and Riley (1984) or Campo et al. (2000). So for
simplicity and concentration on estimation methods we only consider risk neutral bidders.

9Here �value�can also be termed as �utility�. See Athey and Haile (2002). Indeed, the
bidder i will receive utility ui � p if he wins the object at price p.
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u(k:I) denote the kth order statistic, and u(I:I) = max fu1; :::uIg. Correspond-
ingly, b(k:I) will denote the kth order statistic of the I independent bids.

Assumption 10 (Private value) Each bidder knows only her/his value but
does not know others�values. Equivalently, each bidder does not know any in-

formation relevant to other bidders�utility.

In contrast, if bidders have common value 10, a bidder�s belief would be

in�uenced by other bidders�information or signal other than her/his own. And

by private value assumption we avoid the problem of �winners curse�, which

means the winner will tend to overpay.11.

Assumption 11 The distribution function F (u) is absolute continuous with

density f(u) with respect to Lebesgue measure and the expectation of the pri-

vate value is �nite, i.e., E(u) =
R
uf(u)du <1:

5.2.2 The Equilibrium Bid Function

Suppose now we have incomplete knowledge of F (u) and we want to estimate

it. 12Since in an auction bidders�private values u cannot be observed, we have

to obtain the relationship between u and b which we can observe. The optimal

bidding strategy for bidder i is a result of symmetric Bayesian-Nash equilibrium

(SBNE), obtained by Riley and Samuelson (1981). A bidding strategy � (ui) is

a SBNE strategy if for all valuations, it is a best response for bidder i if for all

bidders j 6= i also use � (ui). Maskin and Riley (2000) show that if � (ui) is a

10To test whether bidders have private value or common value. Hailey etl. (2003) conducted
a nonparametric test based on their �nding that in a �rst price auction with private values
the equilibrium optimal bid is invariant to the number of bidders I, while in a common value
model it is strictly increasing in I.
11For a formal illustration of this result obtaied by conditional expectation, see e.g., McFad-

den�s note: http://elsa.berkeley.edu/~mcfadden/eC103_f03/curse2.pdf
12An example of the signi�cance of �nding F (u) in economic practice. From the point of the

seller, his expected revenue R is

E(R) = N

Z +1

u0

�
u (F (u))

N�1 �
Z u

u0

(F (x))
N�1

dx

�
f(u)du (3)

A seller who wants to set a optimal reservation price p� which can maximizes E(R) +
u0 (F (u0))

N needs to know F (u). According to La¤ont and Maskin (1980), p� should solve

p� = u0 +
1� F (p�)
f(p�)
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bidder�s best response then it is monotonic in valuations. Riley and Samuelson

(1981) showed the unique symmetric Bayesian-Nash equilibrium which is our

structural econometric model with which we estimate the distribution of the

unobserved private values using the observed bids.

Theorem 20 (Riley and Samuelson,1981) Suppose Assumption 9-10 hold.
In a �rst price sealed bid auction with reservation price u0, the optimal bidding

strategy of a risk neutral bidder i with private value ui > p0 is

bi � � (ui) = ui �
1

(F (ui))
I�1

Z ui

u0

(F (�))I�1 d�: (5.2)

Proof. Consider bidder i makes a bid of x. Note that x is also a function of ui.
The probability of bidder i wins with bid x is equal to the probability of all the

other I � 1 bidder�s bids are smaller than x13, i.e.,

pi =
IY

j=1; j 6=i

P (bj < x) = [F (x)]I�1 ; (5.3)

since bidders are independent and symmetric. Now the bidder�s problem (5.2)

can be expressed as

Max
x

E [Ui] = [ui � x (ui)]� [F (x)]I�1 : (5.4)

The �rst order condition of (5.4) with respect to x is

@E (Ui)

@x
=
h
�x0 (ui)

i
� [F (x)]I�1 + (I � 1) [ui � x (ui)] [F (x)]

I�2 f(x) = 0;

which implies that the optimal bid � (ui) satis�es the following di¤erential equa-

tion:

�
0
(ui) = (I � 1) [ui � b (ui)]

f(ui)

F (ui)
: (5.5)

Note that in equilibrium, if the bidder�s private value is exactly the reservation

price u0, she/he will bid u0, i.e., the boundary condition for (5.5) is � (u0) = u0:

Since otherwise, if � (u0) > u0; the utility will be negative; and if � (u0) < u0,

the object will remain unsold. Hence by integrating (5.5) with the boundary

condition the result follows.
13We ignore the case of ties in the highest bids and private values.
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Remarks.

1. In Dutch auction the equilibrium bid also satis�es (5.2), i.e., Dutch auction

and �rst price sealed bid auction are strategically equivalent.14

2. The model (5.2) is only valid when bidder�s private value is no less than

the reservation price u0: Otherwise if ui < u0; bi can take any value strictly less

than u0, and the auctioned object remains unsold.

3. A special case of this relationship is that when I=1, i.e., there is only one

bidder, the optimal strategy is to bid his own private value, given it is no smaller

than the reservation price.

Since bi is a function of ui which is random, bi is also a random variable

from a probability distribution, say, � (�) with density � (�) ; which is uniquely
determined by (5.2). Note that bi is strictly increasing in ui on [u0; �u], i.e, a

bidder will bid more if his private value is higher. Hence in a �rst price auction,

a bid of particular interest, the winning bid bw is a function of the highest private

value u(I:I):

bw = �(u(I:I)) (5.6)

where the density of u(I:i) is f(u(I:i)) = n [F (u)]n�1 f (u) (see e.g. David (1981)).

The structural approach of auction models to estimate the latent private value

distribution using observed bids is based on the relationship of � (b) and F (u)

through (5.2). For the distribution � (b) we have the following two results from

the theorem, which have been mentioned by some authors without proof, see

e.g., Guerre et. al. (2000).

Corollary 1 Given assumption 11, the support of the distribution of the equi-
librium strategy suppB=

�
b
¯
,�b
�
is �nite.

Proof. From (5.2) we have

�b =

Z �u

u0

u(I � 1)f(u)F I�2 (u) du

� (I � 1)
Z �u

u0

uf(u)du <1;

since E(u) is �nite according to assumption 11.

14Similarly, English and second price sealed bid auction are strategically equivalent. See,
e.g., Milgrom and Weber (1982).
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Corollary 2 The private value ui can also be written as a function of bi and
G(bi) as following:

ui = bi +
1

I � 1
� (bi)

� (bi)
:

Proof. Let ��1 (b) denote the inverse function of the bidding strategy according
to (5.2), so ui = ��1 (bi) : Note that

�(b) = Pr (B � b) = Pr
�
U � ��1 (b)

�
= F

�
��1 (b)

�
= F (u) ;

and hence, � (bi) = @�(bi)=@bi = @F (ui) =@b (ui) = f(ui)=b
0
(ui) : Now we have

� (bi)

� (bi)
= b

0
(ui)

F (u)

f(ui)
: (5.7)

and the result follows by combining (5.7) and (5.5)

5.2.3 Nonparametric Identi�cation

The identi�cation problem in the structural auction model consists of whether the

distribution of private values can be uniquely determined from observable data,

including the number of bidders I, reservation price u0, and bids, and therefore

the �rst problem we often consider is data availability, which varies in di¤erent

types of auctions. In an English auction, the reservation price u0 is announced

by the auctioneer but bids are only observed when they are called out by the

bidders. Moreover, the last bid called out by a bidder only provides an upper

bound on the private value of that bidder. In Dutch auctions, only one bid-the

winning bid is observed, and the reservation price is not necessarily revealed.

The number of potential bidders I is also unknown. In Vickrey auctions and

�rst price auction, we can observe the number of bidders and all the bids.

Athey and Haile (2002) considered the nonparametric identi�cation problem

in various situations including both di¤erent assumptions on bidders�value and

types of auctions. They found the following result in the simplest symmetric

IPV case.

Theorem 21 (Athey and Haile (2002)) For the simplest symmetric IPV case,
F (u) can be identi�ed even when only the winning bid, or the the transaction price

in �rst price auctions, is observed.

Proof. The distribution of kth order statistic u(k:I) of independent samples of
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size I from distribution F (u) is (see, e.g., David (1981))

F (u(k:I)) =
I!

(I � k)!(k � 1)!

Z F (u)

0

tk�1(1� t)I�kdt: (5.8)

The right hand side of (5.8) is strictly increasing in F (u), therefore if we know

the distribution of u(k:I) for any k, including the Ith order statistic u(I:I), F (u)

is uniquely determined. Hence F (u) can be identi�ed by the wining bid which is

a monotonic function of the highest value u(I:I):

Remarks.

1. This result applies not only to �rst price and Dutch auction, but also

to second price and English auctions, although they have di¤erent equilibrium

strategies.

2. To sketch how F (u) can be nonparametrically estimated by the winning bid

bw following this theorem, we �rstly estimate nonparametrically the distribution

� (bw) of bw and its density � (bw) by the empirical distribution function and the

kernel density, respectively:

~� (bw) =
1

N

NX
n=1

1 (bwn � b) ; ~� (bw) =
1

Nhb

NX
n=1

Kb

�
b� bwn
hb

�
;

where Kb (�) is some kernel, hb is a bandwidth and N is the number of auction

being repeated. Then we can construct pseudo highest private value by corollary

2:

�u(I:I)n = bwn+
1

I � 1
~G (bw)

~g (bw)
;

and then the density of u(I:I)n can be estimated by

~f
�
u(I:I)n

�
=

1

Nhu

NX
n=1

Ku

�
u� �u(I:I)n

hu

�
;

where Ku (�) is some kernel and hu is a bandwidth. Guerre et.al (2000) estab-

lished uniform consistency of ~f
�
u
(I:I)
n

�
and show that it has the best uniform

convergence rate for estimating the latent density of private values from observed

bids.

However, the identi�cation problem will be complicated if the symmetric IPV

assumption is violated. Speci�cally, if bidders are not symmetric, the distribu-
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tions of their private values cannot be identi�ed by a single bid unless more

observations about the auction and bidders are available. Also, identi�ability

depends on type of auctions if bidders value are not independent. For instance,

in second price auctions F (u) is not identi�ed unless all bids are observed. See

also Athey and Haile (2002) for a complete treatment in di¤erent settings.

5.2.4 Parametric Setting

More often in the analysis of �eld auction data, the researcher assumes that the

random variable u come from some speci�c family of probability distributions.

From now on, following La¤ont and Vuong (1996) we suppose that we know the

true distribution of the private value F (u) takes the following form:

F (u) = F (u; �0; z) ; (5.9)

which involves an unknown parameter vector �0 2 � � Rp. Accordingly, the den-
sity is f(u) = f (u; �0; z) : In the function the vector z represents some observable

variables which a¤ect bidders�value. In practice z could be some features of the

auctioned objects, e.g., the estimated oil reserve of an oil well in an auction for

drilling rights.

Similar to theorem 21, the parameter �0 can also be identi�ed using only the

winning bid, given z and the number I are observed. Speci�cally, Donald and

Paarsch (1996) showed that the density of the winning bid bw at �rst price and

Dutch auctions can be written in terms of F (�) and the inverse bid function
��1 (�) as

� (bw; I; �; z) =
I � F

�
��1 (bw; �) ; �; z

�
(I � 1)

R ��1 (bw;�)
u0

F (�; �; z) d�
; (5.10)

and identi�cation of �0 means there is no element in � other than �0 which solves

(5.10), where bw is expressed according to Theorem 20.
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5.3 Estimation

Based on the result that F (u; �0; z) can be identi�ed by the winning bid, we fo-

cus on bw 15 and suppose we observed a sequence of identical auctions16 indexed

by n = 1; :::; N and by identical we assume that an auction is independently

repeated N times and the joint distribution F (u1; :::; uI) is the same across the

N auctions. So now we have a sequence of i.i.d random variables bw1 ; :::; b
w
N with

density as (5.10). Since we are focusing on the wining bid, for simplifying nota-

tion and without confusion, from now on we will sometimes drop the superscript

of bwn ; e.g. bn will denote the winning bid in the nth auction.

Donald and Paarsch (1996) consider maximum likelihood (ML) for estimating

�0. One of the problems they mentioned is that the support of the distribution

of bw depends on �017, and thus the standard assumptions of ML estimation are

violated. Moreover, the calculation of the inverse strategy in the density of bw

is computationally complicated. Indeed ��1 (�) cannot be expressed explicitly
and numerical methods is needed. They solved these problem by maximizing an

approximated objective function subject to some binding constraints, making it

uniformly convergent to the joint density which is maximized at �0:

Alternatively, instead of considering the density of bw; La¤ont et al. (1995)

used the �rst moment of the winning bid and avoided exact computation of

the inverse bidding strategy. Speci�cally, if m (z; �0) denotes the expectation of

bw; i.e. E (bn) = m (zn; �0), a nonlinear least squares (NLLS) estimator can be

15However, if all the bids are available, they can be helpful to estimate �0 as well. See Li
and Vuong (1997) for their extension of the framework of La¤ont et al. (1995) to estimation
by all bids.
16Asymptotics on many auctions may cause some theoretical problems, however. Since

bidders�strategies in repeated auctions will be very complex compared to strategies in a single
auction, the model implied by (5.2) is not fully structured (Albano and Jouneau (1998)). To
simplify this situation we make two more assumptions.

Assumption 12 The number of bidders in each auction is �xed and known to the researcher.

This rules out the problem of entry and the number I remains �xed in the model (5.2). For
how to deal with di¤erent numbers of bidders in each auction, see Li (2005).

Assumption 13 The private values of bidder i are independent across auctions.

If a bidder�s private value is not independent, i.e., it depends on private values and bids
in previous auctions, the optimal bidding strategy will no longer be the model (5.2). See
Birhchandani (1988) for the equilibrium solution in repeated auctions.
17See also Corollary 1, considering F (u) replaced by F (u; �; z):
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obtained by minimizing the objective function

Q (�) = (1=N)
NX
n=1

(bn � �m(zn; �))
2

with respect to �; where �m(zn; �) is an unbiased simulated estimator ofm (zn; �0) :18

Following this framework, we propose here an alternative estimator based on

the simulated moment condition, but using, instead of NLLS as in La¤ont et al.

(1995), empirical likelihood methods to estimate �0: Let

g (xn; �) = bn �m (zn; �) ; (5.11)

where xn denotes the vector of observable data including bn and zn: Then the

i.i.d random variables b1; :::; bN satisfy the following moment condition:

E [g (xn; �0)] = 0; (5.12)

where the expectation is taken with respect to F (u; �0; z) : The di¢ culty for both

NLLS and other methods of estimation, is that m (zn; �) ; and hence g (xn; �0) ;

is not directly available.

5.3.1 Simulated Moment Condition

The Problem

Following the usual setup (e.g., Qin and Lawless (1994), Kitamura (2001), Newey

and Smith (2004)), the EL estimator based on (5.12) is de�ned as

�̂ � argmin
�2�

sup
�2Rp

R (�; �) ;

where

R (�; �) �
NX
n=1

log
�
1 + �

0
g (xn; �)

�
(5.13)

and � is a vector of Lagrangian multipliers.

18Indeed, NLLS estimator from directly minimizing Q(�) will be inconsistent, so LOV instead
minimize

QN (�) = (1=N) �
N
1

�
bn � �X(zn; �

�
)2 � (1=N)�N1 (bn �m(zn; �))2 ��(�)

where �(�) = (1=N)�N1 E
�
var

�
�X(zn; �)

��
:
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However, a problem in empirical likelihood estimation of � by minimizing

(5.13), as La¤ont et al. (1995) also encountered in NLLS estimation, is that

g (x; �0) ; in particular m(z; �); is intractable and not in an explicit form so that

we cannot calculate its sample analogue, nor we can get its derivative. In a

di¤erent context, a similar case is also considered by Ai and Chen (2003) who use

sieve method to estimate g (�) which may contains unknown functions. Another
situation in which we cannot use the moment indicator g (�) directly, is that
sometimes g (�) is not continuous in �, but usual empirical likelihood estimation
assumes that g (�) should be continuous and di¤erentiable in the parameter of
interest, so that we can demonstrate the consistency of EL estimator. (see, e.g.,

assumption 1 of Newey and Smith (2004)). Parente and Smith (2008) discuss

another example of this non-smooth case, where g(�) is not even di¤erentiable.
To summarize these situations we list the following cases.

Case 1 g (�) is discontinuous in �:

Example 12 McFadden (1989) considered estimation of discrete response model.
Suppose we have obtained the model like

yi = I(�xi + "i > 0) (5.14)

where I (�) is the indicator function and "i is i.i.d with density p ("). So we
have the moment conditions E [g (x; �)] � E [yi � I(�xi + "i > 0)] and the GMM

estimator �̂ is based on the following sample analogue:

ĝ (x; �) =
1

N

NX
i=1

[yi � I(�xi + "i > 0)] :

Problems arises because ĝ (x; �) is not continuous in �:

Our auction model provides an example for the second case due to the high

nonlinearity of the equilibrium strategy.

Case 2 Computation of g (�) is infeasible.

Pakes and Pollard (1989) considered simulating a good estimate ~g (�) of g (�)
when the expectation of g (x; �0) is di¢ cult to evaluate, including the case that

g (x; �) is nonsmooth or even discontinuous. Speci�cally, if we let Gn (�) be a

simulation of E [g (x; �)] and ~� be the GMM estimator based on Gn (�), then the

conditions under which ~� converges to �0 are described in the following theorem.
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Theorem 22 ~� converges in probability to �0 if

a.



Gn �~��


 � inf�2� kGn (�)k+ op(1)

b. Gn (�0) = op(1)

c. supk���0k>� kGn (�)k
�1 = Op(1); 8� > 0:

where k�k is some norm depending on �:

Proof. See Pakes and Pollard (1989).

Remarks

The intuition for these conditions is to require the simulation Gn (�) be as
close to E [g (x; �)] as possible. Speci�cally,

a. Gn (�) evaluated at the estimator ~� cannot be much bigger than the smallest
value of Gn (�) in �.

b. Gn (�) evaluated at the true parameter �0 cannot be much bigger than zero.
c. Gn (�) evaluated outside some neighborhood of �0 should be large.

Based on this approach, La¤ont et al. (1995) show that the optimal bid bw

can be written as the expectation of the maximum of the second highest bid and

the reservation price conditional on the highest private value, which provides a

way to simulate the �rst moment of bw:

Proposition 12 (La¤ont et al. (1995)) Given the number of bidders I, the
reservation price u0; and F (�), then for u � u0; the optimal bidding strategy

� (u) can be expressed as

� (u) = E
�
max

�
u(I�1) ; u0

�
ju(I:i) = u

�
: (5.15)

Proof. The result is obtained by combining Milgrom andWeber (1982) Theorem
14 and the equilibrium strategy (5.2), noticing that the conditional cdf. of u((I�1):i)

given u(I:i) = u is
�
F (u) =F

�
u(I:i)

��I�1
:

Taking expectation of (5.15) with respect to u(I:i), we have

E (bw) = E
�
max

�
u(I�1) ; u0

��
: (5.16)

(5.16) can be viewed as an integral with respect to the density of u((I�1):i) , which

is a function of u1; :::; uN , independently drawn from F (�). So (5.16) can be
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written as

E (bw) =

Z
v1

:::

Z
vn

max
�
u(N�1); p

0
�
f (u1) :::f (un) du1:::dun: (5.17)

Since in the above integral, the private values ui is not observable, E (bw) cannot

be obtained directly. Following La¤ont et al. (1995), we use importance sam-

pling methods to get an estimator of E (bw), through sampling ui from another

distribution. In the next section we give a brief introduction to the importance

sampling method.

Importance sampling

Importance sampling is a simulation method which is useful to estimate an in-

tegral about a probability distribution from a di¤erent distribution. Suppose we

want to evaluate the integral

Ep [g(x)] =

Z
D

g(x)p(x)dx

where g(x) is a function of x and p(x) is the density of x: If it is di¢ cult to

sample from p(x) 19; we can choose another probability distribution Q(x) with

density q(x), which is called the importance function 20and has the same support

as p(x); and transform Ep [g(x)] as

Ep [g(x)] =

Z
g(x)

p(x)

q(x)
q(x)dx = Eq [g(x)w(x)] ; (5.18)

where w(x) = p(x)=q(x) is called the importance weight (also inverse likelihood

ratio). Note that w (x) is always positive, Eq [w(x)] = 1; and this weight function

re�ects the important regions of the sampling space. A special case is that

q(x) = p(x); when w (x) = 1.

(5.18) motivates an unbiased estimator for Ep [g(x)] by sampling S indepen-

dent values from Q(x) and calculating

1

S

SX
s=1

g(xns)w(xns) (5.19)

19e.g., Owen and Zhou (2000) considered the case that g(x) is a spiky function, which means
that the variance of g(x) is may depend on a subset of D having relatively small probability
under sampling from q(x).
20q(x) is also called the importance sampling density, proposal density, or instrumental den-

sity as we use it as an instrument to obtain information about the integral.
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as simulated value of g(x)w(x): Hence Ep [g(x)] can be estimated by

~Ep [g(x)] =
1

NS

NX
n=1

SX
s=1

g(xns)w(xns): (5.20)

Note that g(x)w(x) is an unbiased estimator of Ep [g(x)] by construction, with

expectation taken with respect to q(x): It is interesting to check the expectation

of g(x)w(x) with respect to p(x): Generally it will depend on the choice of q(x),

but in some circumstances this expectation can be bounded by a function that

does not depend on the choice of q(x): The following result will be useful later:

Proposition 13 Assume that g(x) is nonnegative and the importance weight
w(x) = p(x)=q(x) is in�nitely integrable, i.e., E1p [w(x)] < M; where M is �nite,

then Ep [g(x)w(x)] is also bounded, in particular

Ep [g(x)w(x)] � Ep [g(x)]M: (5.21)

Proof. The result is directly from the Hölder inequality:

Ep [g(x)w(x)] =

Z
g(x)

p(x)

q(x)
p(x)dx

�
�Z

g(x)p(x)dx

�
kw(x)k1

� Ep [g(x)]M;

where k�k1 denotes the norm in L1 space.

The following example shows importance sampling can also smooth discon-

tinuous moment conditions.

Example 13 Let u = �xi + "i and p (u jx; � ) be the conditional density of u
given x; �; through change of variables we have

E [I(�xi + "i > 0)] =

Z
I(�xi + "i > 0)p (") d"

=

Z
I(u > 0)p (u jx; � ) du

=

Z
I(u > 0)p (u jx; � )

q(u)
q(u)du;

where q(u) is an arbitrary non zero density with a support which contains that
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of u. Now we can draw S independent samples u1; :::uS from q(u) and construct

~E [I(�xi + "i > 0)] �
1

S

SX
s=1

p (us jx; � )
q(us)

:

Note ~E [I(�xi + "i > 0)] is an unbiased estimator of E [I(�xi + "i > 0)] since

E
h
~E [I(�xi + "i > 0)]

i
= E

"
1

S

SX
s=1

I(us > 0)p (us jx; � )
q(us)

#

=

Z
I(u > 0)p (u jx; � )

q(u)
q(u)du

= E [I(�xi + "i > 0)] :

The critical thing in ~E [I(�xi + "i > 0)] is that it is continuous in �. Thus

through importance sampling we have obtained a smooth approximation of the

discrete moment conditions.

5.3.2 Large Sample Theory

Following La¤ont et al. (1995), we simulate the expectation of the optimal bid

E (bw) according to (5.17):

E (bw) =

Z
u1

:::

Z
un

max
�
u(I�1); u0

� f (u1) :::f (un)
q (u1) :::q (un)

(5.22)

�q (u1) :::q (un) du1:::dun:

For each n = 1; :::; N , we draw S independent samples from another distrib-

ution q(�); each of size I, denoted us1n ; :::; usIn ; s = 1; :::; S: Hence by using (5.22)
we can construct a estimator for m (zn; �) for each n :

~m (zn; �) =
1

S

SX
s=1

max
�
us(I�1)n ; u0

� f (us1n ) :::f �usIn �
q (us1n ) :::q (u

sI
n )

: (5.23)

Remarks.

a. ~m (zn; �) is by construction an unbiased estimator for m (zn; �) even for
S = 1; Eq [ ~m (zn; �)] = m (zn; �) :

b. The simulations, hence the simulated moments ~m (zn; �) ; are not condi-
tional on the observation bw:
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c: Let � (�) � max
�
u
s(I�1)
n ; u0

�
f (us1n ) :::f

�
usIn
�
; then varq [ ~m (zn; �)] = 1

S
�2�,

where

�2� = Eq

�
� (�)

q (us1n ) :::q (u
sI
n )
�m (zn; �)

�2
(5.24)

=

Z  
max

�
us(I�1)n ; u0

� f (us1n ) :::f �usIn �
q (us1n ) :::q (u

sI
n )

�m (z; �)

!2
qdu

=

Z �
max

�
us(I�1)n ; u0

��2 f 2
q2
qdu� 2m

Z
max

�
us(I�1)n ; u0

� f
q
qdu+m2

Z
qdu

=

Z �
max

�
us(I�1)n ; u0

��2 f 2
q
du� [m (z; �)]2 : (5.25)

Therefore, if q = m (z; �)�1 � (�), then the variance will be zero, although this is

not realistic since � is as yet unknown. However, we can choose q(x) which is of

roughly the same shape as � (�) ; i.e., q(x) is proportional to � (�): q(x) _ � (�),

so that the variance of the estimator can be as small as possible. (e.g., see

Rubinstein (1981), Owen and Zhou (2000)).

Now let

~g (xn; �) = bn � ~m (zn; �) ; (5.26)

~g (�) � 1

N

NX
n=1

~g (xn; �) ; (5.27)

~G � E

�
@~g (xn; �0)

@�

�
; (5.28)

and
~
 � E

h
~g (xn; �0)

0
~g (xn; �0)

i
; (5.29)

and let their counterparts from g (xn; �) be de�ned analogously, and denoted

without accent above, e:g:; g (�) � 1
N
�Nn=1g (xn; �) : To apply the results of the-

orem 22 we de�ne the empirical likelihood estimator ~� as the solution to the

following problem:

~R(~�; ~
) � min
�
sup

2Rp

~R (�; 
) + op(N
�1); (5.30)

where

~R (�; 
) = 1

N

NX
n=1

log(1 + 

0
~g (xn; �))
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and 
 is a vector of Lagrangian multipliers which is a function of � implicitly

de�ned through
1

N

NX
n=1

~g (xn; �)

1 + 
0~g (xn; �)
= 0;

e.g., see Qin and Lawless (1994).

For the general asymptotic properties of empirical likelihood estimator, we

make the following regularity assumption.

Assumption 14 a. �0 2 int (�) ; and � is a compact subset of Rp:
b. E [sup�2� kg (x; �)k

�] <1 ; 8� > 2:
c. 
 � E

h
g (xn; �0)

0
g (xn; �0)

i
is nonsingular.

Furthermore, we need a smoothing condition for uniform convergence. Let

the simulation residual process de�ned as

! (�) =
p
N (~g (�)� Eq [~g (x; �)]) : (5.31)

Assumption 15 The process ! (�) is stochastically equicontinuous21 at �0; i.e.,
for any � > 0, there exists a neighborhood U of �0, which satis�es

sup
�2U

j! (�)� ! (�0)j � " a.s

Although we have mentioned that �0 can be identi�ed by our model under

symmetric IPV setting, we make the following more speci�c assumption about

identi�cation of �0 through g (�) :

Assumption 16 For any � > 0; supk���0k>� kg (�)k
�1 = Op(N

�1):

The following theorem demonstrates the consistency of ~�; by checking similar

conditions given in theorem 22.

Theorem 23 Given assumption 14-16, we have the following results:
1. supk���0k>� k~g (�)k

�1 = Op(N
�1):

2. ~g (�0) = op(1)

3. ~g(~�) = op(1)

21Detailed illustration of stochastically equicontinuous and uniform convergence can be found
in e.g., Pollard (1984) chapter 7 or Newey (1991). Indeed, to make ! (�) be stochastically
equicontinuous, we can choose a importance function q(x) such that ~g (xn; �) is probably Lip-
schitz. See, e.g., lemma 3 of McFadden and Ruud (1994).
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4. ~R (�0; �
) = Op
�
N�1=2� ; where �
 = arg sup
 ~R (�0; 
) :

and then ~� converges in probability to �0:

Proof. The �rst result is to say that ~g (�) is big outside some neighborhood of
�0; which is from the identi�cation of �0. To see this, note that from triangle

inequality we have

sup
k���0k>�

k~g (�)k = sup
k���0k>�

k�g (�)� (~g (�)� g (�))k

� sup
k���0k>�

kg (�)k � sup
k���0k>�

k~g (�)� g (�)k

� sup
k���0k>�

kg (�)k � sup
�
k~g (�)� g (�)k ;

given the assumption 15 of stochastic equicontinuity, sup� k~g (�)� g (�)k = op (1) ;

and with assumption 16 we have supk���0k>� k~g (�)k
�1 = Op(N

�1):

Secondly we follow the way of McFadden (1989), McFadden and Ruud (1994),

where
p
N~g (�) is decomposed as

p
N~g (�) = AN + [! (�)� ! (�0)] +BN (�) + CN (�) (5.32)

where

AN � g (z; �0) +
1p
N

NX
n=1

(~g (xn; �0)� Eq [~g (xn; �0)]) ;

CN (�) �
1p
N

NX
n=1

g (xn; �)� g (xn; �0) ;

BN (�) �
1p
N

NX
n=1

(Eq [~g (xn; �)]� g (xn; �)) :

McFadden and Ruud (1994) have shown that AN = op(N
1=2); with i.i.d assump-

tion on the observations and simulations. Also note that CN (�0) = op(N
1=2); and

BN (�0) = 0; so we have
p
N~g (�0) = op(N

1=2)+op(N
1=2) and hence ~g (�0) = op(1).

To see the third results, a second order Taylor expansion of ~R (�; 
) around

 = 0 gives

~R (�; 
) = 

0
(~g (�))� 1

2


0

"
1

N

NX
n=1

~g (xn; �) ~g (xn; �)
0�

1 + _

0
~g (xn; �)

�2
#

; (5.33)

where _
 lies between 0 and 
: According to Lemma A1 and A2 of Newey and
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Smith (2004) we have �
 = Op
�
N�1=2� and 1

(1+ _
0 ~g(xn;�))
2 � �1=2: Thus from

(5.33) and result 1 we have

~R (�0; �
) � Op
�
N�1=2� op(1) +Op

�
N�1� 1

N

NX
n=1

~g (xn; �)
0
~g (xn; �)

!
= op(N

�1=2) +Op
�
N�1�

= Op
�
N�1=2� :

Now from the de�nition of ~� we have

~R(~�; ~
) = Op
�
N�1=2� ~g �~��+Op

�
N�1� (5.34)

� min
�
sup

2Rp

~R (�; 
) + op(N
�1)

� ~R (�0; �
) + op(N
�1)

= Op
�
N�1=2� :

Solving ~g(~�) out of (5.34) gives 


~g(~�)


 = op(1): (5.35)

Then the following argument is similar to Pakes and Pollard (1989). By result 1

we have just proved, for arbitrary � > 0; there exists a bounded, positive constant

M such that supk���0k>� k~g (�)k
�1 < M: On the other hand, since




~g(~�)


 is op(1);
for N large enough




~g(~�)


�1 > M with probability approaching one. Hence

sup
k���0k>�

k~g (�)k�1 < M <



~g(~�)


�1 ;

which implies ~� must be within the neighborhood of �0 of radius �; by noting

that ~g(�) is continuous. The convergence follows since � can be arbitrary small.

Remarks

1. The consistency of ~� does not depend on the choice of number of simula-

tions S, although S does a¤ect the asymptotic e¢ ciency of ~�:
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2. The result also holds if ~m (zn; �) is a biased estimator for m (zn; �) if

sup
�
N1=2 jBj = o(1)

where B � Eq [ ~m (zn; �)]�m (zn; �) is the simulation bias. See, e.g., McFadden
(1989), who uses smoothed kernel simulator, which is biased.

Before we consider asymptotic normality of ~�; we look at the variance covari-

ance matrix of ~� with respect to f: Let ~� � varf [~g (xn; �0)] :

Lemma 4 (Decomposition of Covariance Matrix) Given i.i.d observations
bn and simulations for un,

p
N~g (xn; �0)

d! N
�
0; ~�

�
(5.36)

with
~� = �m + �S = �m +

1

S
�m;

where

�m = var [g (x; �0)] ; �S = Ep (varq [~g (x; �0)]) :

Proof. By the law of total variance we have

V ar [~g (xn; �) ju ]
= E (varq [~g (x; �0)] ju) + var [E [g (x; �0)] ju ]

= �m +
1

S
�m;

where the second equality follows the law of iterated expectations and the fact

that the estimator through importance sampling simulation is unbiased.

Note that under the i.i.d assumption and with the Lindberg-Levy central

limit theorem we have
p
Ng (xn; �0)

p! N (0;�m). So

p
N~g (xn; �0) =

p
N (bn �m (xn; �0))�

p
N ( ~m (xn; �0)�m (xn; �0))

d! N

�
0;

�
�m +

1

S
�m

��
:

Assumption 17 g (x; �) is di¤erentiable at �0 and G = E [@g (x; �0) =@�] is of

full rank.

100



Theorem 24 Given assumption 14-17,
p
n
�
~� � �0

�
d! N(0; V ), where

V =
�
G

0 ~��1G
��1

:

Proof. First we show that
p
n
�
~� � �0

�
is stochastically bounded. Since ~g(~�) =

op(1); hence CN
�
�̂
�
= Op(1) and by expanding CN

�
~�
�
we have

CN

�
~�
�
=

p
n
�
~� � �0

� 1
N

NX
i=1

�
@m (xn; �0)

@�
+O

�
~� � �0

��!
= Op(1):

With Assumption 17 and ~�
p! �0; we have

p
n
�
~� � �0

�
= Op(1):

Now we de�ne �
_�; _

�
= argmin

�
sup

2Rp

~R (�; 
) : (5.37)

LetGn (�) = @ ~mn (�) =@�; G (�0) =
1
N

PN
n=1Gn (�0) ;

~
n =
1
N

PN
n=1 ~mn (�0) ~mn (�0)

0
:

Expand the �rst order condition for the saddlepoint problem of (5.37) around �0
and 
0 = 0 :

@ ~R (�; 
)
@�

= 0 = �
NX
n=1

Gn

�
_�
�0



1 + _

0
�
bn � ~mn

�
_�
�� (5.38)

' 1

N

NX
n=1

Gn (�0)
0
_
;

@ ~R (�; 
)
@


= 0 = �
NX
n=1

~mn

�
_�
�0

1 + _

0
�
bn � ~mn

�
_�
�� (5.39)

' �~g (�0)�
1

N

NX
n=1

Gn (�0)
�
� � _�

�
+ ~
n _
;

(5.38) and (5.39) imply

p
N
�
_� � �

�
' �

�
G (�0)

0 ~
�1n G (�0)
��1

G (�0) ~

�1
n

p
N~g (�0) :
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Note that from Lemma 4 we have

p
N~g (�0)

d! N
�
0; ~�

�
:

Also from i.i.d assumption and unconditional simulation,

1

N

NX
n=1

Gn (�0)
p! E [Gn (�0)] = G:

So
p
n
�
_� � �0

�
! N(0; V ): Next we show ~� and _� are asymptotically equiv-

alent. The de�nition of ~� implies:

~R(~�; ~
) � ~R( _�; _
) + op
�
N�1� � ~R( _�; ~
) + op

�
N�1� :

Then with the similar expansion as (5.34) we have

Op
�
N�1=2� ~g �~��+Op

�
N�1�

� Op
�
N�1=2� ~g � _��+Op

�
N�1�+ op

�
N�1�

) ~g
�
~�
�
� ~g

�
_�
�
= Op

�
N�1=2� :

So ~g(~�) � ~g( _�) = op (1) : Thus according to the continuity of ~g we have ~� =
_� + op (1) :

Remarks

It turns out that the asymptotic variance-covariance matrix of ~� does not

depend on the choice of importance function q(�), but on the number of simula-
tions S: This is the case which MR called unconditional simulation. As S goes

to in�nity the disturbance of simulation vanishes, and thus ~� is asymptotically

equivalent to usual EL estimators.

These asymptotic results follows closely that of McFadden and Ruud (1994).

In their paper they also get a consistent GMM estimator for �0 based on general

simulations. The covariance matrix of their estimator is larger than usual GMM

estimator due to simulations, which is slightly di¤erent from the covariance ma-

trix of our EL estimator. However, both of our proofs aim to show that, the

simulated moment indicator evaluated at the true parameter and at the estima-

tor satis�es similar conditions indicated in the proof of theorem 3.1 of Pakes and

Pollard (1989).
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5.4 Numerical Results

In this section, simulation results are presented to check the performance of EL

estimator. For the data generation processes, throughout the experiment, let the

private value be the exponential distribution, i.e.,

F (u; �) = 1� exp (�u�) ; f(u; �) = � exp (�u�)

where � = 1
4
:We take the reservation price u0 = 0, the number of bidders I = 2;

and the number of independent repetition of auctions N = 100: Moreover, for

each n, the observed bids (optimal bids in equilibrium) can be calculated through

F (u) according to (5.2) in Theorem 20:

bi = ui �
ui + 4 exp(�ui

4
)� 4

1� exp(�ui
4
)

:

And for each n we take bn = maxi=1;2 bi as the winning bid. Then we simulate

m(zn; �) through importance sampling indicated by (5.23), and the simulated

moment indicator is bn � ~m(zn; �). Speci�cally, we choose two importance func-

tions q(x) = 1
8
exp(� �

8
); and q(x) = 1

12
exp(� �

12
) to compare. Also to check

performance of the asymptotic variance according to the number of simulations

S; we calculate �̂ under S = 300; S = 500; S = 1000 respectively. At last, for the

above procedure of DGP we repeat 500 times.

For computation of the empirical likelihood estimator we use Bruce Hansen�s

package,22 whose algorithm is to separately evaluate the inner loop and the

outer loop, i.e., �rstly to compute the log value of the pro�le likelihood at each

�; and then maximize it over �. Also for comparison, we calculate 2-step GMM

estimator from the simulated moments.

As the results in table 4 and 5 showing, the variance is decreasing as S

increasing, i.e., the randomness from the simulation will be counteracted by the

number of simulations.

22See, http://www.ssc.wisc.edu/~bhansen/progs/progs_gmm.html
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Table 4: q(x) = 1
8
exp(� �

8
)

S = 300 S = 500 S = 1000

�EL

MEAN 0.2473 0.2545 0.2521

MEDIAN 0.2416 0.2561 0.2507

SD 0.0129 0.0112 0.0084

�2�GMM

MEAN 0.2512 0.2388 0.2446

MEDIAN 0.2471 0.2413 0.2427

SD 0.0140 0.0121 0.0103

Table 5: q(x) = 1
12
exp(� �

12
)

S = 300 S = 500 S = 1000

�EL

MEAN 0.2371 0.2530 0.2437

MEDIAN 0.2390 0.2519 0.2468

SD 0.0147 0.0122 0.0116

�2�GMM

MEAN 0.2613 0.2452 0.2429

MEDIAN 0.2570 0.2490 0.2458

SD 0.0152 0.0141 0.0136
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5.5 Concluding Remarks

We have presented EL estimation of �rst price auction models under symmetric

IPV setting, as an example showing how to deal with moment condition which

is intractable in empirical likelihood. Based on simulated �rst moment of the

winning bid by importance sampling, our estimator for the parameter of the

distribution of private values has the usual asymptotic properties such as consis-

tency and asymptotic normality, but it is di¤erent in that the covariance matrix

is larger with additional part (1=S) �m, which represents the randomness from

simulation.

We also mentioned that simulation by importance sampling can be used to

smooth moment condition with discreteness in parameter. This is a di¤erent way

from Parente and Smith (2008) approach. Rather than simulating the moment

indicator, they put di¤erent assumption on it to ensure the EL estimator to have

standard �rst order asymptotic properties.

It is important to note that these asymptotic results of our estimator rely

heavily on i.i.d assumptions on observations and simulations, and for time series

model our EL estimator may fail since the general conditions for uniform conver-

gence and the law of large numbers will not be satis�ed. So if we want to use EL

by simulating moment conditions with dependent data through importance sam-

pling, more assumptions on stochastic convergence (e.g., see Pollard (1984) and

chapter 4 of Billingsley (1999)) should be added, and the choice of importance

function should also be carefully considered, to make the simulated moments

satisfy certain conditions. These are the directions of our further research.
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