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ABSTRACT

The components that are central to cellular processing are proteins, whose production

is regulated by other proteins known as transcription factors. Proteins are products of

genes that regulate the expression of one another, thereby forming large gene regulatory

networks that perform specific cellular functions. The complex connectivity between

genes of a network could result in various behaviours that are interesting. The assump-

tion then is that tracking subnetwork behaviour helps understand the characteristics of

the larger networks they are embedded in. For example, the structure of a subnetwork

could say a lot about its biological role. Theoretical models of such systems and their

deterministic dynamical properties have been the focus of study in the past. However,

the dynamics of transcriptional control involves small numbers of molecules and result

in significant fluctuations in protein and mRNA concentrations. Hence the recent shift

in focus has been towards stochastic modelling approaches. Experimentally, the issues

regarding average molecular numbers over a cell population draw our attention towards

single-cell techniques where these fluctuations in the numbers are captured. On under-

standing the fluctuation properties of the smaller networks, one could study or design a

combination of these networks leading to more complex regulatory networks.

The objective of this thesis is to characterize small subnetworks of genes, based on the

properties of their internal fluctuations. The correlations between these intrinsic fluc-

tuations then offer, via the fluctuation dissipation relation, the possibility of capturing

the system’s response to external perturbations, and hence the nature of the regula-

tory activity itself. Therefore we do a stochastic analysis and derive time-dependent

noise correlation functions between molecular species of the networks, and using these

functions we study simple networks by varying three of its factors. One is the type of

regulatory activity that is present between two genes or proteins, whose correlations we

are interested in. We show that the regulatory mechanism of activation, repression either

by monomers or dimers, produces different correlations. We also study the dependence

of the correlations on the values of the rate constants for the ingredient processes. We

demonstrate the influence of various rate constants on the protein correlations. Finally,

we analyze regulatory networks of different motifs such as cascades and feedforward

loops and explore the extent to which fluctuation correlations report on the network

structure. The distinct correlated fluctuations could then possibly be used as signatures

for identifying the regulatory mechanism present between two genes of a network. To

that end, in this thesis we present analytical and numerical results on features such as

the magnitudes and time delays in dynamic correlations between proteins within smaller

networks, and the dependence of these features on rate constants and regulatory and

network mechanisms.
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Chapter 1

Introduction

The existence and growth of cells, whether those of bacteria or humans, is in essence

sustained by molecular interactions that follow complex specific pathways in order to

robustly perform various cellular functions. A pathway represents a set of closely related

biochemical reactions describing molecular interactions between components of a cell.

Depending on the nature of the cellular processes, pathways are broadly classified as

metabolic, signalling or genetic. Just as metabolic networks describe the metabolism

of cellular components such as sugars, amino acids and lipids and signal transduction

networks describe the transfer of information from extracellular signals to the genetic

regulatory system inside the nucleus through enzymatic messengers, the genetic networks

describe all the molecular interactions that are specific to processes that regulate the

quantities of proteins that participate in metabolic and signalling pathways. A classic

example of interconnectivity that exists between the three networks is the JAnus Kinase-

Signal Transducer and Activator of Transcription (JAK-STAT) pathway that involves

activation of JAK through the binding of a ligand to an associated transmembrane

receptor. The JAK protein further induces the phosphorylation of STAT proteins that

travel into the cell nucleus and activate the transcription of certain genes.

Proteins are the most significant components of such complex cellular machinery and the

genome is a template or a codebook that directs the production of these proteins. The

sequencing of the genome is therefore viewed as a milestone in the quest for unravelling

the secrets of cellular functioning. Though genome sequencing is significant, it alone

does not explain the cellular functioning of an organism. One needs to understand

the complex interactions between genes, their products the proteins, and other genetic

components in order to dissect the numerous cellular processes that depend on these

molecular interactions. The basic requirement for this is a model of the regulatory

process. A model that captures the essential dynamics of the system would consist

of interactions between DNA, RNA and protein molecules. A pictorial depiction of a

simple model of gene expression, including the polymerases and ribosomes that initiate

1
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the transcription and translation processes, is given in figure 1.1. A brief mathematical

description of the transcription function generating out of these molecular interactions

is discussed in section 1.4.1. Apart from these core set of molecular interactions, some

of the supplementary events that are typical of a regulatory system are interactions

between various proteins, formation of multimolecular complexes, regulatory proteins

undergoing modifications such as phosphorylations, etc.

DNA

m RNA

Protein

Ribosome

RNAp
Transcription

Translation

Decay

Decay

Figure 1.1: Transcription Factor protein (red) up-regulating the production of another
protein (blue).

A Gene Regulatory Network (GRN) can then be viewed as a set of interacting compo-

nents, which controls and regulates the expression of various genes that are responsible

for a specific cellular function. Transcripts of a gene are used to produce particular pro-

tein complexes, which might then bind to various regulatory sequences of other genes

including its own and control their rate of transcription, thereby acting as a Transcrip-

tion Factor (TF). These genes in turn produce proteins, which may further act as TFs

for other genes, thus forming a regulatory network. The regulatory action of a TF on

another gene is loosely represented by an edge in the GRN.

A B

C D

E

Figure 1.2: A sample gene regulatory network of five genes encoding the proteins A,
B, C, D, E. Gene activation is denoted by an arrowhead and repression by a dashhead.
TFs A and D respond to external stimuli.
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1.1 Motivation

Retrieving the structure of a GRN is a challenging task due to its complexity and dy-

namic nature. Experimentalists have strived hard to accumulate the right type and

amount of data required to learn more about these genetic processes and to retrieve the

structure of GRNs. Recent years have seen great technological advances in data collec-

tion from cells. Microarray technologies that provide large scale genome-wide measure-

ments of mRNAs have proved to be of immense value in inference of the connectivities

and causal relationships between genes of a GRN. We shall call this the top-down ap-

proach. We shall elaborate a bit more on this in section 1.4.

Average concentration levels of molecular species taken from a population of cells could

be quite different from those seen in individual cells Novick and Weiner (1957); Vilar

et al. (2003). This is due to the random nature of the molecular interactions giving

rise to fluctuations in the concentration levels of the species. Therefore due to averag-

ing effects, the observed behaviour of GRNs in a population of cells could be different

compared to that in individual cells. As an example consider the gene regulation func-

tion (GRF), which is the relation between the concentration of active TFs and the rate

at which their downstream gene products are expressed. The shape of this function

determines key features of cellular behaviour such as developmental cell-fate decisions

or oscillations in the system. Rosenfeld et al. (2005) experimentally showed that the

single-cell GRF cannot be represented by a single valued function, as it fluctuates dy-

namically in individual cells, thereby limiting the accuracy with which genetic circuits

can transfer signals. Further, stochastic analysis reveals that the distribution of mRNA

and protein levels over population of cells could vary greatly for changes in certain reac-

tion parameters, while still maintaining constant levels of average expression. Hence, the

average response might not necessarily estimate the true character of the gene regulation

function and also the connections in a GRN. As a consequence of the above facts, the

estimated correlations between any two genes by making use of the average expression

levels over a population, might not be wholly true. Also, a stochastic description might

in some cases lead to qualitatively different outcomes than that of population averages.

Therefore the focus in recent years has been towards studying the cause and effects of

these molecular fluctuations in GRNs. A stochastic description of the models is used to

address this issue. A detailed discussion on the causes and consequences of the random

nature of the genetic process is given in the next chapter.

Secondly, the GRN under investigation has to perform in perfect synchrony in all the cells

so that its average behaviour when taken over the population is in close accordance with

its behaviour in a single cell. Therefore the average expression levels from a population of

cells might not necessarily estimate the true regulatory activity or the network structure

of GRNs. Such issues need to taken into account while characterizing the regulatory link
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between any two genes. In section 1.5 we shall briefly discuss the issue of synchronization

and other issues related to population averages.

However, investigating any GRN that comprises of hundreds if not thousands of genes

before knowing its components is doomed to failure. A GRN in reality is a complex sys-

tem whose functioning depends on the concerted performance of numerous subsystems

that in turn could have well defined characteristics. These subsystems could be simple

regulatory networks consisting of two to three genes that have well defined properties.

Since extensive knowledge about the parts would lead to a better understanding of the

functional properties of the whole system, it is vital to have a clear understanding of

these simple regulatory structures Sprinzak and Elowitz (2005). This forms the motiva-

tion for investigating molecular fluctuations in simple gene regulatory which is helpful

in characterizing the regulatory activity between the genes of the network. This is a

bottom-up approach that we are interested in Guido et al. (2006).

1.2 Objective of the Thesis

Due to the issues mentioned in the previous section:

The objective of this work is to design a framework, built upon the

stochastic nature of the biological process, that estimates the pres-

ence of and further characterizes the regulatory activity between

genes in small regulatory networks.

Towards this objective, we require a stochastic description of the regulatory system

which estimates the internal fluctuations in molecular numbers. Stationary as well as

time-dependent statistical features extracted from such fluctuations would then act as

signatures for characterizing the regulatory activity that gave rise to these fluctuations

in the first place. Therefore different types of regulatory mechanisms such as activa-

tion/repression via monomers/dimers would be expected to have their respective unique

signatures. Observing these signatures in simulated or real-time data would suggest the

type of regulatory action present between two genes. Since the molecular fluctuations

are captured in single-cell measurements, the ideal measurements for such an investi-

gation would come from single cells and would be valuable and informative. Emerging

technologies such as time-lapse spectroscopy provide us with such measurements. In

this work, we propose a mechanism wherein the fluctuating expression levels of mRNAs

and proteins at the single-cell level are sufficient to characterize the nature of regulatory

action between any two genes. On the other hand, the analytical framework presented

here would be valuable in studying the fluctuation properties of networks that exhibit

unique behaviours. Therefore by studying the internal fluctuations in networks through

variations in their structure and parameters one could gain insights into their biological
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functioning. This is a step towards elucidating the network structure of bigger and more

complex GRN, whose building blocks are the focus of investigation in this work.

Outline of the Thesis: In Chapter 2, we discuss the causes and effects of stochas-

ticity in GRNs. Various models of gene regulation and their corresponding analytical

formulations of noise are also discussed with examples. They form the basic aspects of

our analysis of GRNs. In Chapter 3 we derive an analytical framework based on the

statistical measures of a stochastic system. We derive the stationary as well as the time-

dependent correlations between components of a GRN. We show that the dynamics of

molecular fluctuations at the level of single cells acts as signatures in characterizing the

regulatory mechanism and structure of simple regulatory networks. We also show the re-

lation between these internal fluctuations and the response characteristics of the system.

On the other hand, for well-known regulatory networks, whose response characteristics

are unknown, we could utilize our framework to predict the same. In Chapter 4, we

derive a framework for estimating the sensitivity of molecular fluctuations for changes

to the reaction rate constants. In Chapter 5 we apply the time-correlation functions to

simple two-gene networks having different regulatory mechanisms and discuss the results

in detail. Finally, in Chapter 6, we investigate networks comprising of three genes that

demonstrate interesting behaviour both in the deterministic response and in the internal

fluctuations, for changes to their network structure and rate constants.

1.3 Single-Cell Measurements

Fluorescent reporters such as the green fluorescent protein (gfp1) Tsien (1998) and its

variants the yellow and cyan fluorescent proteins have increased our ability to track pro-

tein levels in individual cells, which is a major shift from the microarray realm where

bulk averages are the measured quantities. Technologies such as flow cytometry measure

the relative fluorescence intensities of individual cells as they flow in a fluid stream thus

enabling one to plot histograms of protein fluorescence levels Hooshangi et al. (2005);

Pedraza and van Oudenaarden (2005). Ozbudak et al. (2002) used flow cytometry to

observe variations in the protein distributions for changes in parameters values such as

the transcription and translation rates by incorporating the gfp into the chromosome of

Bacillus subtilis. Such analyses are however concerned with the stationary distribution

in proteins and could tell little about the dynamics of the reactions involved. On the

other hand, technologies such as time-lapse microscopy where fluorescently tagged pro-

teins could be tracked over time in individual cells, facilitate our understanding of the

dynamics of gene regulation Rosenfeld et al. (2005).

1The gfp gene is isolated from organisms such as the Pacific jellyfish, Aequoria victoria
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As an example, time-lapse microscopy was used by Elowitz and Leibler (2000) who

constructed a synthetic regulatory network consisting of three genes on a plasmid2,

where each of the genes repressed another in a cyclic order. To monitor the activity of

one of the three genes TetR, they built another plasmid with the sequence of the gfp gene

inserted into it. The gfp was placed under the regulatory action of tetR by constructing

a promoter sequence PLtet01 upstream to it. Consequently, when cells of Escherichia

coli containing the two plasmids were grown to a stationary state, the activity of the

TetR gene was observed via the fluorescence levels of expressed gfp. The fluorescence

levels of each cell over time was plotted by manually tracking back in time the individual

cell lineages in microcolonies of the culture. Similarly, promoter sequences, ribosome-

binding sites, gfp sequence and transcriptional terminator sites from the plasmids could

be integrated into the chromosome of a host organism. Elowitz et al. (2002) do the same

by incorporating green and yellow fluorescent proteins, controlled by identical promoters,

into the chromosome of E.coli and observe the stochastic effects of gene expression by

noting the difference in fluorescence levels of the two proteins.

Time-lapse measurements of molecular species in single cells would be of immense help in

estimating the presence of any regulatory activity between the corresponding genes. Due

to rapid technological advancements, obtaining such fine measurements that are needed

to track the causal dynamics as revealed by dynamic correlations, is fast becoming a

reality. A promising step in this direction is from the work of Yu et al. (2006), where

they track single molecules of yellow fluorescent protein (yfp) in living cells by assembling

them into the inner membrane of Escherichia coli cells thereby slowing their diffusion

and making their individual detection possible by fluorescence microscopy. Other single

molecule techniques such as Cai et al. (2006) suggests that the analytical techniques

presented in this thesis can be made relevant to experimental investigations.

Studies such as those by Vargas et al. (2005) and Raj et al. (2006) who use the FISH

technique to track single-molecules of mRNA in individual cells devote much attention to

the stationary distributions. Though such studies give immense amount of information

regarding the processes of production of mRNAs, some unanswered questions could be

better tackled when time-dependent behaviour of these species are studied. In this

regard, variations in protein levels in human cells was observed by Sigal et al. (2006b),

who tracked the fluorescently tagged proteins and concluded that the fluctuations in

the protein levels varied slowly in time, in comparison to the cell-cycle times. It was

also observed that genes of the same pathway showed correlations between them. The

analytical framework presented in this work would then be a useful tool in predicting

the type of regulatory activity or even the reaction structure between two genes. The

values for the parameters could also be estimated within the framework of sensitivity

analysis from such single-cell data. However, due to the underlying physical properties

2extrachromosomal self-replicating DNA molecule that contains a few genes
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of the protein molecules being tampered with by tagging them with heavier fluorescent

particles, learning the true parameter values from such data would be hard. Due to the

high sensitivity of the correlations to certain reaction rate constants, we could also hope

to extract more information about the underlying reactions or processes.

1.4 Background

1.4.1 Modelling gene expression

The pivotal work of Jacob and Monod (1961) gave us the first real glimpse of transcrip-

tional regulation. They studied various mutations in order to determine how regulation

of the lac operon in the bacteria Escherichia coli worked. They concluded that a repre-

sor, which is the product of the lacI gene, negatively regulated the transcription of

β-galactosidase. They also found that certain inducer molecules bind to the repressors

thereby altering their binding ability to the operator site on the DNA. The influence

of the repressor action on the amount of protein/enzyme produced out of the DNA is

described conveniently by what is known as a transcription function or as the gene reg-

ulation function (GRF). Yagil and Yagil (1971) demonstrated that in the case of the

lac operon, the transcription function was of sigmoidal shape. By elementary reaction

kinetics, these functions can be shown to be nothing but Hill functions of the type

f(R) = β
[1+(R/kD)n] where β is the basal transcription rate in the absence of repressor

binding the DNA, R being the amount of repressor. kD is the concentration of repressor

yielding half-maximal expression which is nothing but the dissociation constant of the

binding and un-binding process. A Hill coefficient of n = 1 indicates a Michaelis-Menten

kind of reaction mechanism, while n > 1 indicates cooperativity amongst the repressor

molecules in binding on to the operator region of the DNA. The Hill coefficients are

typically estimated by fitting the transcription functions with data of the amount of

proteins and mRNAs. These functions are then used to solve for the time-evolution

of the molecular species involved in gene regulation. One could also consider different

forms for the transcription functions, whether linear or non-linear, depending on the

nature of the regulatory activity between the TFs and the promoter.

Once the transcription functions are defined, the regulatory network is modelled by a set

of differential equations that describe the time-evolution of the variables. For example,

in a system with N genes or rather N variables having interactions with each other, the

time-evolution of each variable is given by,

dXi

dt
= fi(X1, X2, · · · , XN ) (i = 1, 2, , · · · , N) (1.1)

where f ’s are the corresponding transcription functions that capture the form of inter-

actions. Chen et al. (1999) use a protein-mRNA model involving first order differential
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equations with a linear transcription function on the rhs of the above equation. Their

model is

dM

dt
= f(P )− γmM,

dP

dt
= TpM − γpP (1.2)

where M and P are the vectors containing the concentrations of all the N number of

genes in the system and are functions of time t. While γm and γp are the N−dimensional

diagonal matrices of the decay rates of mRNAs and proteins, Tp has translation rates of

proteins as its diagonal elements. The transcription functions f(P ) were considered to

be linear functions of the protein variables P , thereby enforcing regulatory connections

between the various genes and also allowing for feedback regulation. However, regulatory

links can also be learnt by considering either just the proteins or the mRNAs. As

measurements from microarrays consist of only mRNA levels, Hoon et al. (2002) decide

to use the mRNAs as the variables in their model and consequently obtain promising

results in the case of Bacillus subtilis de Hoon et al. (2003). Whilst Sakamoto and Iba

(2001) use nonlinear transcription functions, Gebert et al. (2007) use piecewise linear

functions that are better in capturing the dynamical behaviour of different types of

systems. The parameters are then estimated through various learning methodologies

by utilizing the time-series data of the mRNA expression levels. Finally one obtains a

model that best fits the given data and reveals the possible regulatory links between

different genes.

1.4.2 Monitoring gene expression levels

To determine a gene regulatory network, one has to know the levels of mRNAs, which

represent the activities of the respective genes in a specific cellular function. Microarrays

help in this effort by measuring the mRNA levels corresponding to various genes that

are transcribed.

Complementary DNA or cDNA microarray technology Schena et al. (1995) involves

fabricating microscopic glass slides over which gene sequences are printed onto by first

amplifying these sequences through polymerase chain reaction (PCR). In order to quan-

tify the level of gene expression, the cells are subjected to varying environmental condi-

tions. Simultaneously, another set of cultures is grown in normal conditions, known as

the control sample. This allows for the comparison of gene expression of experimental

(treatment) samples to normal (control) samples. Infected cells such as cancerous or

tumour cells can also be considered as treatment samples. Once the cultures are grown,

mRNAs from the cells are harnessed and can now be used as indicators of the expression

levels of the corresponding genes under various stress conditions. As RNA is inherently

unstable, its complementary copy known as cDNA is synthesized for use in the microar-

rays. In order to quantify the amount of cDNA hybridized on the microarray, cDNA is
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coloured by adding dyes to the samples. The colouring represents the amount of cDNA

hybridized, in turn giving an indication of the number of gene transcripts present in

the treatment sample. The expression value is actually the ratio of intensity levels of

the treatment and normal samples which is log transformed so that a positive value

indicates an induced gene, and a negative value indicates a repressed gene. When such

expression data is being collected, it is important to note the use of temporal data for

any significant analysis being done over such datasets. This is the main principle behind

gene expression profiling.

Oligonucleotide technology Fodor et al. (1993); Lipshutz et al. (1999) is one of the

other promising types of arraying technologies to have emerged over the last decade. It

encourages the monitoring of large number of genes in parallel (about 500,000 probes3 in

a microarray of size of about 1 cm2). The probes are nucleotide sequences of length 20 bp

taken from a short sequence (around 300 bp) of a gene or an Expresssed Sequence Tag4

(EST). Since probes are designed to be complementary to the gene or EST sequence and

independent of sequences of other genes, they attach with high specificity to the target5

sequences of their own genes. Soukas et al. (2000) employed oligonucleotide arrays to

analyze changes in gene transcription with obesity in humans.

Serial Analysis of Gene Expression or SAGE is another such powerful method

for analysis of gene expression of thousands of genes Velculescu et al. (1995) and is

based on the principle that a short nucleotide sequence of length 10 bp (known as tags)

identifies a specific gene. Theoretically, as there are 4 nucleotides types, tags of length

10 bp can identify 410 different genes. This technology is widely used for analyzing gene

expressions as in the case of cancers Nacht et al. (1999) and cardiovascular tissues Patino

et al. (2002).

1.4.3 Retrieving gene interactions

Once the data related to expression levels are obtained the immediate task is then to es-

timate the presence of regulatory links between genes. As a first step towards this, genes

of similar biological function or those that are transcriptionally related, i.e., co-regulated

by the same set of regulators, are grouped together into clusters. The clustering is based

on analyzing the expression profiles of their mRNA products over varying environmen-

tal conditions and over a specific time-period. Such clustering of genes involved in a

common cellular function into one cluster, could lead to the functional annotation of an

unknown gene or could even help in mapping the topology of the regulatory network

representing the cellular process. Segal et al. (2003); Bar-Joseph et al. (2003) made use

3DNA sequences immobilized on the solid subtrate
4A short sub-sequence of a transcribed protein-coding or non-protein-coding DNA sequence
5DNA or RNA sequence from the experimental sample
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of genome-wide location and microarray expression data in reconstructing the regulatory

networks of gene modules that are sets of co-regulated genes having common transcrip-

tion factors as their regulators. This is a step in the direction towards identifying the

complex regulatory network behind the expression of these genes.

Since the process of gene expression is known to be random in nature and also the fact

that such measurements of gene expression levels on a microarray involve noise charac-

teristic of such experimental measurements, they treat the process as probabilistic by

considering the expression level of each gene as a random variable. Works such as those

by Friedman et al. (2000) and Kim et al. (2003) among others make use of the prob-

abilistic and dynamic properties of Bayesian networks to learn the network structures

GRNs. Perrin et al. (2003) and others use the framework of Dynamic Bayesian Network

(DBNs) to learn the regulatory connectivities. They assume that these measurements

of the mRNA expression levels are corrupted by the inherent biological noise and by the

measurement noise. The parameters for the Gaussian noise term are then learnt by the

well-known Expectation-Maximization algorithm Dempster et al. (1977). However, in

section 1.5.2 we shall discuss a statistical issue raised by Chu et al. (2003) with regard

to network inference using bulk measurements.

1.5 Challenges

1.5.1 Estimating regulatory links

Estimating the presence of any regulatory action between any two genes involves witness-

ing correlated variations in the concentration levels of mRNAs when cells are subjected

to various environmental conditions. Here we shall give two examples where a simple

statistic such as the correlation coefficient is used to estimate the presence of any regu-

latory link between two genes. While in one case the correlation value is as expected the

results in the second case are contrary to what is expected. In Saccharomyces cerevisiae

GCN20 is said to activate the production of GCN2 under starvation conditions de Aldana

et al. (1995). We therefore expect positive correlations between the expression profiles

of their respective mRNAs. Gasch et al. (2000) provide the necessary experimental data

by subjecting a population of cells to varying environmental conditions. The correlation

coefficient for the GCN20 → GCN2 link is +0.0885. On the other hand, let us consider

FLO1 which is a protein involved in flocculation and is known to be activated by FLO8

that is a well-known transcription factor required for flocculation Kobayashi et al. (1996,

1999). Their mRNA expression levels are negatively correlated. This could be due to

the fact that the genes FLO1 and FLO8 are active only under flocculation, whereas the

data was acquired over a range of other conditions. Therefore functional annotation of
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genes becomes a necessity, without which such statistical analyses could give contrary

results.

Figure 1.3: On the left is the regression plot between mRNAs of the genes GCN20
and GCN2, for which the correlation coefficient is +0.0885. Similarly, on the right, the
correlation coefficient between the mRNAs of genes FLO1 and FLO8 is -0.126. The
data for this is from Gasch et al. (2000).

1.5.2 A statistical problem for Inference

If regulatory networks are represented by equivalent directed graphs, one could estimate

the causal relationships between the genes by evaluating their conditional probabilities.

However, for this to be true the variables of the directed graph need to be the expression

levels of the corresponding mRNAs or proteins taken from an individual cell. Such mea-

surements would satisfy the notion of a random variable that is necessary for evaluating

the conditional probabilities. However, a statistical problem is encountered when the

causal relations are estimated from bulk measurements of a variable that take binary

values. Danks and Glymour (2001) demonstrate this with the aid of an acyclic directed

graph of 4 variables.

X

Z

Y

W

Figure 1.4: An acyclic directed graph with genes as variables/nodes.

From the graph of Figure 1.4 one can infer that the random variable X is independent

of Y conditional on Z and W . However if measurements of the variables are from a

population of n number of cells, the summation of these measurements
∑n

i=1 Xi is not
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independent of
∑n

i=1 Yi conditional on
∑n

i=1 Zi and
∑n

i=1 Wi. Therefore the causal rela-

tionship learnt from such bulk measurements do not satisfy the Markov factorization of

p(W, X, Y, Z) = p(Y |Z, W )p(Z|X)p(W |X)p(X). However they further show that there

are exceptions such as singly connected graphs, where the conditional independencies

hold for the summations as well. Chu et al. (2003) derive two conditions that are suffi-

cient for the conditional independence to remain the same in the case of summation of

variables. Therefore while inferring causal relationships in GRNs care has to be taken

when the data is obtained from a population of cells.

1.5.3 Debates on Cell-Synchronization

Spellman et al. (1998) analyze and identify those genes whose mRNAs vary over the

period of the cell-cycle in the yeast Saccharomyces cerevisiae. For this purpose they

synchronized cell cultures so that each cell in the population is at the same point in time

of the cell-cycle. Since the microarrays measure the mRNAs levels in population of cells,

synchronization is necessary in order to estimate the true value of mRNA levels from a

single-cell. Cells in the population are arrested at a particular time point in the cell-

cycle, so that on withdrawal of these arresting conditions the cells are believed to grow in

synchrony. The concentration levels of mRNAs are then profiled from such a synchronous

population to identify those genes whose expression levels vary in accordance to the

progression of the cell-cycle. They cluster the expression profiles together as was done

by Eisen et al. (1998) based on their similarity of expression pattern over the cell-

cycle. They further identify potential binding sites upstream to these genes for well-

known regulators that might control their expression of these genes during the cell-cycle.

Therefore such grouping of co-regulated genes and further confirmation that such genes

share common promoter elements form a good foundation for inferring GRNs.

However, Shedden and Cooper (2002) have questioned the basis of the synchronization

techniques used in the above experiments. Since whole-culture synchronization is done

via starvation, inhibition of temperature arrest, they argue that the observed cyclic pat-

terns in the mRNA expressions could in essence be the stress response to synchronization

due to such perturbation of cells. Therefore they argue that the cyclic patterns might

not be a true representation of the real dynamics behind the cell-cycle of an unper-

turbed or a normal growing cell. Cooper and Shedden (2003) point that such methods

only align the cells with respect to a particular property such as equal amounts of DNA

in G1-phase, but not necessarily synchronize them so that they mimic the cell-cycle

of a normal unperturbed growing cell. In this regard, an interesting debate took place

between two sets of researchers holding differing views on the validity of synchronization

procedures — Cooper (2004a); Spellman and Sherlock (2004b); Cooper (2004b); Spell-

man and Sherlock (2004a). As a conclusion to these debates, Liu (2005) points towards
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new and better techniques for synchronizing based on cell age Liu (July 2004). In ad-

dition to the above arguments Cooper and Shedden (2007) suggest that the variation

in mRNA levels do not necessarily imply a corresponding variation in the respective

proteins level, thereby questioning the very notion of mRNAs as the only indicators of

cell-cycle control.

1.6 Summary

Irrespective of the above issues relating to synchronization, the ideal data that could

reveal more information with regard to biological processes would come from a single

cell that is growing normally in its natural environment. Further, such data would in-

clude not only the mRNA levels, but expression levels of proteins and other components

involved in the regulatory process. Acquiring such time-series measurements are fast

becoming a reality in the light of current technological advances in single-cell measure-

ments Muzzey and van Oudenaarden (2009) and advances in tracking single molecules

over time. Equipped with such data one can then move forward in the quest for re-

trieving and characterizing the regulatory activities between genes. The techniques and

analyses done in this work would prove to be valuable in such a quest.

——————————————————————————————————————



Chapter 2

Molecular Fluctuations in GRNs

Gene expression is an inherently stochastic process. As described in the previous chapter

the process of gene expression and its regulation consists of biochemical interactions that

are random events. This randomness greatly explains the inherent stochasticity that is

particular to such biochemical processes. Adding to this is the low number of individual

species which amplify the effects of stochasticity. Also, the reaction rates may fluctuate

due to variations in RNA polymerase and ribosome numbers. Proteins being central to

cellular processing, tracking fluctuations in their levels is important to understand the

way in which GRNs regulate the amount of these proteins and timing of their expression.

Various methods have been used in determining the source of these fluctuations, such

as measuring the variance of protein distribution in a population of cells for changes in

the reaction rates such as transcription or translation. Once fluctuations are quantified,

models of gene expression are required to explain these fluctuations. If the model is

assumed to include just the random birth-death processes, the variance should be equal

to the mean concentration levels, which is the character of a Poissonian process. Such

a strategy could be employed to identify or characterize the reaction steps that are the

source of the fluctuations. In the case of two or more genes forming a regulatory network,

the fluctuations in the levels of a protein species that regulates the expression of another

gene, would have an impact on the protein noise of the regulated gene. Therefore,

the network structure in a regulatory pathway too has a great influence on the protein

fluctuations.

Once we have an extensive knowledge of the properties of these fluctuations and the

processes causing them, a reverse engineering approach could be applied where these

fluctuations provide an insight not only into the actual process of gene expression with

its numerous reaction steps, but would also suggest possible network connectivities be-

tween various genes that gave rise to the observed fluctuations. Towards this goal,

14
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researchers over the last decade have studied various simplified models of gene expres-

sion and simultaneously validated them by tracking molecules in individual cells of a

population over time. In this respect:

The intriguing question is whether molecular fluctuations exhibit unique features corre-

sponding to different regulatory systems. By different systems we mean those GRNs that

are different in their network structures and/or values of kinetic parameters.

Throughout the thesis our aim is to answer the above question. Towards this objective,

it is of paramount importance that we build a good understanding of the sources, con-

sequences of these fluctuations, and the control strategies adopted by nature to utilize

this inherent stochasticity for its advantage. Also we shall elaborate various issues at

the level of single-gene expression that have generated huge interest in experimentalists

as well as system modellers. On the way we also identify some significant experimental

studies that claim to identify and assert the factors that determine the fluctuations in

the expression of a single-gene.

2.1 Consequences of Molecular Fluctuations

Fluctuations or noise is believed to be used by nature to perform certain important

regulatory functions. The most significant use of noise is in creating subpopulations of

different phenotypes within an isogenic population of cells. Noise is shown to be the

primal factor in the random lysis/lysogeny decision-making of bacteriophage - λ. Arkin

et al. (1998) analyzed the effect of fluctuations in the expression rates and other molec-

ular fluctuations on the phage λ-infected Escherichia coli cells. These cells consist of

a decision circuit known as λ lysis/lysogeny, which is a regulatory circuit comprising

mainly of four promoter regions and five genes. Arkin et al. (1998) simulate this regula-

tory network in detail, for which the reaction rates are known through a vast literature,

and they showed how fluctuations in the concentration of Cro2 and CI2 leads to the

division of the infected cells into lysis and lysogeny subpopulations. This brings to the

forefront the significance of noise for the purpose of choosing specific pathways, leading

to two different phenotypes.

Another interesting example of noise influencing cell fate decisions is seen in Bacillus

subtilis. In response to stressful conditions, it was found that a minority of Bacillus

subtilis cells became competent where they have the ability to take up DNA from the

environment, while the majority of cells are in the vegetative state. This phenotypic

variabilty is the result of a single-gene activator feedback loop formed by comK resulting

in bistability, where one state has high numbers of comK corresponding to the competent

state while the other state has low numbers of comK corresponding to the vegetative
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state. comK is initially low in concentration due to the action of various repressors on

its promoter region. As cells grow exponentially and approach stationary state, comS

represses the degradation of comK which along with the fluctuations in comK numbers

eventually leads to some cells transiting to the competent state.

ComK

o

ComS

ComK

Promoter-comK

Rok, CodY

AbrB

Degradation

Figure 2.1: Competence induction network in Bacillus subtilis.

Maamar et al. (2007) observed that the cells that transit to competent state revert back

to the incompetent state due to a relatively small decrease in comK transcription over

a time period of approximately 2 hours. Such an interesting behaviour is definitely a

result of a combination of small regulatory networks such as self-activators, repressors,

etc. To verify the influence of fluctuations on the transition phenomenon, Maamar

et al. (2007) increased the rate of transcription and also lowered the rate of translation

thereby decreasing the amplitude of fluctuations while maintaining the mean levels of

comK Thattai and van Oudenaarden (2001). These alterations in the rates did not allow

fluctuations in many cells to cross the threshold in comK level which was necessary

for the transition, thereby reducing the number of competent cells. On the whole,

fluctuations in the level of comK is believed to be the cause for the transition between

the two phenotypes.

Another example of noise influencing cell-fate decision can be found in the regulatory

circuit that is responsible for colour vision in fruit fly (Drosophila). In this organism

colour vision depends on the yellow(70%) and pale(30%) ommatidial subtypes Feiler

et al. (1992). These are distributed randomly in the retina, with corresponding frequen-

cies. The yellow subtype discriminates long wavelength light while the pale does so for

the short wavelength. The cell-fate decision is made in cells containing colour-sensitive

photoreceptor R7, which sends a signal to cells containing colour-sensitive photoreceptor

R8. Wernet et al. (2006) showed that the cell-fate decision was due to the fluctuations

in the level of the transcription factor spineless, large fluctuations of which lead to R7

cells committing to yellow fate. The 70% - 30% distribution of the ommatidia could be

due to fluctuations in spineless being in a particular range.
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Stochastic effects in transcription factor proteins affect the regulation of the genes whose

cis-regulatory upstream sequence it binds to. One of the best examples for this was pro-

vided experimentally by Nachman et al. (2007) who demonstrated the variability in the

timing of the onset of early meiosis genes due to fluctuations in the level of Ime1 protein.

They conducted experiments on diploid yeast cells by subjecting them to nutritional de-

privation conditions that results in the cells going into the meiosis stage of development.

While on the one hand, the Ime1 promoter is activated by depletion in nitrogen and glu-

cose, the Ime1 protein is a known regulator of several genes that are expressed during

early meiosis that make up the meiosis initiation pathway. Therefore nutritional starva-

tion induces these downstream genes through Ime1. However, on monitoring nearly 4000

individual cells over time using fluorecence microscopy, Nachman et al. (2007) observed

that the early meiosis genes regulated by Ime1 showed very large cell-to-cell variations

in their onset times (the time taken for the protein concentration levels to cross a partic-

ular threshold). They demonstrated that this variation was mainly due to fluctuations

in the level of Ime1 protein in different cells, rather than other sources of variation such

as nutrional history or cell-cycle phase. Though cell size was found to be another cause

for the variability of the onset times its effect was shown to be through Ime1. Therefore

fluctuations in transcription factors greatly influence the functioning of developmental

pathways whose genes they regulate.

Noise in protein levels is also believed to affect the functioning of regulatory networks

responsible for circadian rhythms in various organisms. Through a deterministic model

Leloup and Goldbeter (1998) showed that circadian rhythms in Drosophila employ os-

cillating proteins that have specific periods and amplitudes. Further, when the mRNA

and proteins molecules were low in number - typically tens and hundreds of molecules

respectively, they demonstrated through stochastic simulations that the oscillatory be-

haviour is still retained with variations in the period and amplitude. The reasoning

for the robustness was due to the network structure of the model. Barkai and Leibler

(2000) illustrated the effectiveness of certain class of networks that retained the oscil-

latory behaviour in the face of noise. Their model comprised of two sets of interacting

proteins - an activator activating its own expression as well as that of a repressor, while

in turn being regulated by the repressor. In respect to the oscillations being influ-

enced by stochasticity, Elowitz and Leibler (2000) demonstrated this by designing a

synthetic network known as the Repressilator comprising of three repressors regulating

each other’s expression. Another case of stochastic influence on the functioning of a

network was demonstrated by Gardner et al. (2000), where they constructed a synthetic

toggle switch in Escherichia coli that was bistable in nature. They showed that the

bifurcation point was blurred due to stochastic effects which lead to emergence of a

bimodal distribution. The above cases show that certain network structures and certain

range of parameter values enable the regulatory network to perform robustly in face of
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stochasticity. Therefore it becomes even more important to study the relation between

the molecular fluctuations and the structure and parameters of the network.

2.2 Sources of Molecular Fluctuations

It has for long been observed that protein and mRNA numbers fluctuate at the single-cell

level, i.e., the concentration levels of proteins and mRNAs vary from one cell to another

in a population or over time in a single cell. This is due to the inherent random nature of

the molecular interactions. Other factors such as cell-size, local environment, cell divi-

sion, and cell-cycle also add to the stochasticity. To get a grasp on the understanding of

these various factors, noise is usually classified as intrinsic and extrinsic to the process

of gene regulation. The events of transcription and translation being random in nature

cause fluctuations in the protein levels, which are labelled as intrinsic. The meaning is

more physical in the sense that the source of this noise is believed to be from within

the system, whereas extrinsic noise on the other hand is emerges due to factors outside

the system. A major concern in such categorization is to what is precisely inclusive

in this system. The general school of thought is that the events of promoter bind-

ing, transcription, translation and degradation of proteins need to be considered as the

sources of intrinsic noise. This seems logical as each protein is believed to have its own

set of operator regions and transcripts. Fluctuations in ribosomes, RNA polymerases,

RNases, or even TFs regulating promoter regions are then grouped under the extrinsic

noise category as their activity spans over all the genes. This is true if we go on and

accept that the system excludes these molecular species. Experimentally, extrinsic noise

affects two reporter proteins equally in any given cell but creates differences in two cells.

Extrinsic noise is further classified by many into global noise caused by fluctuations in

the reaction rates due to fluctuations in ribosomes, etc, and gene or pathway-specific

noise caused by fluctuations in a specific transcription factor or stochastic events in a

specific signal transduction pathway. These categorizations of noise are mainly used for

experimental confirmations and less so for analytical purposes. However Swain et al.

(2002); Thattai and van Oudenaarden (2001) derived analytic expressions for noise in

protein/mRNA levels that can then be interpreted conceptually as intrinsic/extrinsic

noise terms. Thattai and van Oudenaarden (2001) considered a basic model of single

gene expression (boxed area in figure 2.2) to derive the expression for noise in protein

levels in terms of the reaction rate constants. As the model excludes extrinsic variables

the protein noise was of intrinsic nature.

To quantify the fluctuations in the protein levels Swain et al. (2002) use the following

as an expression for protein noise,

η2(t) =
〈p(t)2〉 − 〈p(t)〉2

〈p(t)〉2 ,
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where p(t) is the protein concentration at time t and angled brackets denote averages

over a population of cells. The protein noise is therefore variance over mean squared.

Assuming that variables could be grouped as intrinsic or extrinsic, where time t is also

considered as an extrinsic variable, the total protein noise measured over a population

of identical cells is given by,

η2
tot =

〈p2〉 −
(
〈p〉

)2

(
〈p〉

)2 =
〈p2〉 − 〈p〉2

(
〈p〉

)2 +
〈p〉2 −

(
〈p〉

)2

(
〈p〉

)2 ≡ η2
int + η2

ext,

where overbar indicates the averaging over the extrinsic variables. Swain et al. (2002)

use the above classifications of noise and derive expressions for the same in terms of

the reaction rates for a detailed model comprising events such as binding and unbind-

ing of RNA polymerase to the promoter region and formation of an open complex for

transcription, binding and unbinding of ribosomes or degradosomes to the mRNA for

translation or degradation respectively. In the case of a simplified model they show that

the solutions to the intrinsic noise term is similar for the case of the detailed model.

Such a theoretical framework for the fluctuations paved the way for the design of exper-

iments using synthetic circuits that could identify the sources of noise by measuring the

variability in protein levels in a population of cells. Elowitz et al. (2002) built strains

of Escherichia coli incorporating cyan (cfp) and yellow (yfp) fluorescent proteins at a

specific chromosomal loci. These proteins were placed under the control of identical pro-

moters. The fluorescence levels were then measured in individual cells by a microscope

providing an indication of the protein concentration levels. Intrinsic noise was the cause

of variation in protein levels over time in a single cell and therefore its absence was indi-

cated by equal presence of cfp and yfp in single cells. Such experiments by dual reporters

provided a first direct glimpse of the effects of different noise sources in gene expression.

While the above analyses was in the case of a single gene, intrinsic fluctuations in levels

of its protein product act as a source of extrinsic fluctuations in the case of another gene

whose expression it regulates. Therefore noise in an upstream genetic component trick-

les downstream and has an effect on the functioning of downstream genes in a cascade

Pedraza and van Oudenaarden (2005).

To build a general model for noise in protein levels researchers performed genome-wide

studies on organisms where they monitored protein levels in hundreds of genes and

observed interesting properties of protein noise. Bar-Even et al. (2006) analyzed expres-

sion levels, at the cellular level, of 43 proteins in yeast under 11 different experimental

conditions and observed that the noise in their levels, defined by variance over mean

squared, increased for a proportional decrease in the average levels. They observed that

for proteins having intermediate levels of expression, this scaling of noise is similar to

the one derived through theoretical models Paulsson (2004, 2005) that not only consider

the random birth-death of proteins, but also include the random birth-death of mRNAs

and the random nature of gene activation-deactivation (as in Figure 2.2). However,
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Figure 2.2: A simple model of single gene expression. Activation of DNA could be
due to factors such as chromatin remodeling or due to activation by upstream TFs.
Transcriptional bursting is explained by the switching of DNA between the active and
inactive states. Thattai and van Oudenaarden (2001) consider the model [enclosed
area] where mRNA transcripts are produced by a DNA that is constantly in its active
state.

for proteins with high expression levels, the global factors might be the main source

for noise. They also observed high noise in stress-related genes that may be due to

variations in the expression level of a common regulator such as the MSN4 transcrip-

tion factor that is known to regulate the expression of many of these genes. Similarly,

Newman et al. (2006) observed in yeast that proteins belonging to different functional

groups exhibited different noise behaviours. For example, proteins that responded to

changes in the environment, such as those involved in stress-response, heat shock and

amino acid biosynthesis were all found to have high levels of protein noise. On the other

hand, ribosomal proteins and proteins involved in translation initiation and degradation

exhibited low variation. This could be due to common factors that equally affected all

the genes in the regulatory pathway. Such genome-wide analysis gave a broad picture

of the generalized protein noise.

2.3 Translational and Transcriptional Bursts

An interesting aspect to stochastic gene expression, which has been observed in recent

experimental studies, is that of bursting. It has been observed that proteins are produced

in bursts from each translation event and that the average burst size is geometrically

distributed Yu et al. (2006). The burst characteristics along with steady state protein

distributions enable one to propose models of gene expression that yield the observed

distributions. In section 2.5 we elabotare on ways of controlling the burst size and the

steady state protein distributions. Thattai and van Oudenaarden (2001) derived the

expression for protein noise (variance over mean) in terms of the protein burst size.

For this, they considered the representation of the single-gene expression (boxed area in

Figure 2.2) where m and p refer to the mRNA and protein molecules and k+
m, k+

p , k−
m, k−

p

represent the rate constants of the transcription, translation, and the decay processes.
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Protein noise or fluctuations is typically quantified by the Fano factor as,

σ2
p

〈p〉 =
b

1 + [k−
p /k−

m]
+ 1 ≈ b + 1, if (k−

p ≪ k−
m) (2.1)

where b = k+
p /k−

m is the burst size or the average number of proteins produced per single

mRNA. One could directly visualize the effect of various rate constants on noise from

such an expression. Since variance equals mean for a Poissonian process i.e., the Fano

factor is equal to 1, the protein noise in this case deviates from the Poissonian behaviour.

The mRNA noise is however Poissonian in character due to simple random birth-death

process with exponentially waiting times between events. Therefore σ2
m/〈m〉 = 1. Com-

ing back to the protein noise, it can be seen that as the burst size increases, the protein

noise along with the mean protein value 〈p〉 = k+
m.b/k−

p increases. To prove this, Ozbu-

dak et al. (2002) conducted experiments incorporating the green fluorescent protein (gfp)

reporter gene into the genome of Bacillus subtilis and performed point mutations in the

regulatory region of the promoter and the ribosome binding region to alter the tran-

scriptional and translational efficiencies so that k+
m and k+

p are respectively varied. This

resulted in larger bursts for low transcription and high translation rates, and smaller

bursts for high transcription and low translation rates. We demonstrate the influence

of reaction rates on the burst size through sample simulations in Figure 2.6, where the

average burst size b = 15
ln(2)/7 ≈ 150 and in Figure 2.7 where b = 3.7

ln(2)/7 ≈ 37. These sim-

ulations and the experimental studies of Ozbudak et al. (2002) show the correspondence

they have with the analytically derived expressions for protein noise.

The process of translational bursting could be best visualized by tracking single molecules

of proteins in time in individual cells. Cai et al. (2006) did exactly that and detected

single-molecules of proteins by monitoring fluorescence in single cells of Escherichia coli

that are trapped in microfluidic chambers. They observed that β-galactosidase was pro-

duced in bursts and that the distribution of this burst size was exponential with an

average of seven proteins per burst. Similarly Yu et al. (2006) too observed geometric

distributions of burst sizes of a fluorescent protein Venus. They fused Venus with a

membrane protein Tsr, in Escherichia coli cells thereby slowing down the diffusion of

the proteins which now bind to the cell membrane. This allowed for the detection of

single molecules of the protein. The average number of proteins per burst was 4.2. How-

ever, while single molecule measurements yielded geometric distributions of burst size in

gene expression, it has been shown by Ingram et al. (2008) that these single-parameter

geometric distributions that can be fit to the data cannot distinguish between various

combinations of the rate constants used in the models. The protein burst size distri-

bution was obtained by summing the distribution of the number of protein molecules

produced by a single mRNA McAdams and Arkin (1997), and the distribution of the

number of mRNAs produced during the active state of DNA. With the aid of a standard

model for gene expression (Figure 2.2 plus ribosomes and RNA polymerases) Ingram
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et al. (2008) demonstrated that the distribution of protein burst size is geometric in

character and is therefore determined by a single parameter. Consequently many com-

binations of the rate constants of the standard model resulted in the same distribution

making it impossible to ascertain the contributions of different reaction events towards

protein noise. However, they further showed that for the combinations of rate constants

that gave the same geometric distribution for the burst size, the steady state protein

distributions were quite different. Therefore, the hope was that both the burst size

distribution and the steady state distribution would together help in determining the

reaction events that are responsible for protein noise. However, while the moments of

the steady state distribution give more information with regard to the process behind it,

being stationary in nature they may not account for the dynamics of the reaction events.

This is particularly significant due to the inherent delays in transcription, translation

and decay processes. Therefore we employ a time-dependent statistic that can extract

more information regarding the processes.

The above issues are related to protein bursts. However, it has been widely observed that

mRNAs are also produced in bursts. Golding et al. (2005) observed that transcription

occured in bursts and that the mRNA burst size was geometrically distributed with time

intervals between each burst being exponentially distributed. To monitor individual

mRNA molecules they used in vivo tagging of mRNA in living Escherichia coli cells. It

was observed that though the variance in mRNA levels was proportional to the mean

value, the proportionality constant was around 4 which was more than that for a Poisson

distribution (σ2
m/〈m〉 = 1). To account for this deviation from the Poissonian statistics,

it was proposed that the gene was randomly being switched into the active and inactive

states. This switching is assumed to be at exponentially distributed time intervals and

when the gene is in the ON state, transcription is a Poissonian process giving rise to

geometrically distributed mRNA molecules being transcribed during the active state

of the DNA. Therefore the DNA switching between active and inactive states would

give rise to the experimentally observed behaviour in mRNA bursts. Becskei et al.

(2005) and Raser and O’Shea (2004) also observed bursts in mRNA production but in

eukaryotes. The reasons for the DNA switching between the ON and OFF states could

be many. Chromatin remodelling has been widely suggested as the primary reason in

eukaryotes. When the chromatin is in a condensed state, the DNA is said to be switched

OFF and mRNA production ceases. However, the burst effect could also be simulated

by considering the activation of DNA through binding of transcription factors to the

upstream regulatory sequences.

Raj et al. (2006) monitored cases of transcriptional bursting by doing a molecular count

of the mRNAs in single cells using Fluorescence In Situ Hybridization (FISH), which

is a highly efficient technique Vargas et al. (2005). They integrated a reporter gene

for a fluorescent protein, into whose 3′ untranslated region of the coding sequence was
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inserted 32 copies of probe-binding sequence, into Chinese hamster ovary cells by elec-

troporation. The cells were then subjected to hybridization with fluorophores that bind

to the mRNA molecules at the 32 probe-binding regions which made the detection of

individual mRNAs easy. With the aid of their experimental results, Raj et al. (2006) ar-

gued that this chromatin remodelling might strongly correspond to gene inactivation and

activation. They showed how these events are the principal reasons for transcriptional

bursts by studying bursts from two reporter genes incorporated at different locations of

the genome. They draw a fine line between gene activation by chromatin remodelling,

which may be an inherently random event, and the actual transcription process which is

regulated by transcription factors. They further showed that on decreasing the amount

of transcription factors that activate a gene, thereby decreasing the average level of

mRNA that is being transcribed, the noise properties of the mRNA does not alter. This

suggests that the conventional model of gene activation by association of transcription

factors does not fit smoothly in the case of higher eukaryotes. In support of the above

observations, Raser and O’Shea (2004); Becskei et al. (2005) showed how chromatin con-

densation with histones acetyltransferases and decondensation by deacetyltransferases

are the sources of transcriptional bursts. On the other hand, studies by Bar-Even et al.

(2006); Newman et al. (2006) on yeast indicated that noise in genetic activity is very

much independent of the histones. Irrespective of the actual causes for the gene acti-

vation, it seemed to be clear that variations in the switching characteristics of the gene

affected the burst size. With regard to this, Raj et al. (2006) found that for variations

in the transcriptional strength the average burst size was affected rather than the fre-

quency of occurrence of these bursts. The transcriptional strength was increased either

by increasing the number of operator sequences where the activator protein binds or by

simply controlling the amount of this protein. However, the models corresponding to

bacterial cells typically consider the gene to be activated by the binding of transcription

factor to it.

In spite of arguments for the occurrence of bursts and the processes behind it, the

fluctuations in protein and mRNA levels are in essence due to the inherent random

nature of the reactions. The bursts are an additional feature of these fluctuations.

To study the effect of reaction rate constants or each reaction step on the fluctuation

properties of molecules, it makes sense to start with the simplest of models and only

later include the additional processes that are required for bursting.

In Figure 2.3 we show the case where the gene is constantly in the active state and there-

fore mRNA does not experience bursting. However the random birth-death of mRNAs

causes fluctuations in its level and consequently results in a Poissonian distribution in

their numbers. The Fano factor for such a case is σ2
m/〈m〉 = 1.
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Figure 2.3: Time series of the mRNA species in the model of single-gene expression
[boxed area of Fig 2.2]. Simulations are done using an algorithm that employs a simple
Monte Carlo technique. 1 cell represents 1 run of the system. An ensemble of 5000 cells
is simulated and the 5000 runs are averaged to obtain the deterministic solution to the
model. The distribution of mRNA numbers around the mean value of 6.6 is given by a
histogram. The inconspicuous bursts and the distribution without much skewness are
reminiscent of a Poissonian process. This is due to DNA being constantly in the active
state. Reaction rates are as follows: transcription rate k+

m = 4 min−1, translation rate
k+

p = 0.5 min−1, mRNA and protein half-lives are 4 and 120 minutes respectively.

Now, let us consider the case where the gene switches between the active and inactive

states. For such a case, the Fano factor (which we shall derive in a later chapter) is,

σ2
m

〈m〉 = 1 +

[
k+

mkOFF

(kON + kOFF + k−
m)(kON + kOFF )

]
(2.2)

≈ 1 +

[
k+

mkOFF

(kON + kOFF )2

]
if (kON + kOFF ≫ k−

m)

≈ 1 +

[
k+

m

kOFF

]
if (kOFF ≫ kON )

≈ 1 if (kOFF ≫ k+
m)

From Figure 2.4 we instantly notice the bursts in mRNA level and also the heavy-tailed

distribution. mRNA noise in this case is given by Equation 2.2. For higher values of

kON and kOFF , the approximations in Equation 2.2 apply and the mRNA noise tends

to be Poissonian (Figure 2.5).
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Figure 2.4: Time series of the mRNA species in the full model of single-gene expression
[Fig 2.2]. The distribution of mRNAs at steady state is Gamma with a heavy tail and
also bursts are prominent. Therefore the process is of non-Poissonian character and is
due to DNA randomly switching between the inactive/OFF and the active/ON states.
ON and OFF rates are kON = 1 min−1 and kOFF = 2 min−1.

Figure 2.5: Time series of the mRNA species in the full model of single-gene expression
[Fig 2.2]. Though the bursts are prominent, the distribution loses its heavy tail due to
increase in the ON/OFF rates from the values in Figure 2.3 and due to approximation
of Equation 2.2. ON and OFF rates are kON = 10 min−1 and kOFF = 25 min−1.
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2.4 Steady state distributions

In the case of a model where the gene transits between the active and inactive states, the

mRNA production takes place during the ON state in a Poissonian manner. The steady

state distribution of mRNAs in such a case is a gamma distribution as shown Figure

2.4. Note that the discrete analog of the gamma distribution is the negative binomial

distribution which defines the probability P (k) that the nth success in a sequence of

Bernoulli trials occurs on the (n+k)th trial. In the simple case where the gene is always

in the ON state, the mRNA numbers are Poisson distributed as seen in Figure 2.3.

In both the cases where the gene is constantly in the ON state and where it switches

between the ON and OFF states, the protein numbers are gamma distributed as shown

in Figure 2.6. While at lower levels of protein the probability distribution is long-tailed

2.6, higher levels are of near-normal distribution (Figure 2.8).

For the case of mRNAs distributions, Raj et al. (2006) and Golding et al. (2005) observed

through experiments that mRNAs had distributions with long and heavy tails. Since

the variance scaled according to the mean values but with the proportionaly constant

far greater than 1, they proposed the gene activation-inactivation process as the cause

for such distributions. In the case of protein distributions, while Cai et al. (2006)

observed gamma-distributed β-galactosidase in living Escherichia coli cells, Sato et al.

(2003) observed log-normal distributions of mutant gfps in E. coli. The log-normal

distribution indicates that a long-tailed distribution when transformed to the logarithmic

scale is a near-normal distribution. Raj et al. (2006) too observed protein distributions

which were log-normal-like in their experiments. Through the above experiments and

analytical evaluations of relevant models we note that the shapes of the mRNA/protein

distributions are worthy of being analyzed in order to gain more insight into the actual

process behind them.

2.5 Effect of parameters and network structure on station-

ary fluctuations

The purpose of modelling noise in protein and mRNA levels is mainly to study the influ-

ence of various reaction mechanisms on it. Experimental verifications of such analytical

expressions strengthen the justification for the study and modelling of simple genetic

networks. One such example of experimental verification is the work of Ozbudak et al.

(2002) where they show that the level of phenotypic variation in an isogenic population

can be regulated by genetic parameters. They incorporated a green fluorescent protein

gene as a reporter into the chromosome of Bacillus subtilis. A gene with low transcrip-

tion but high translation rates produces bursts that are large, variable and infrequent,
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resulting in large fluctuations. Conversely, a gene with high transcription and low trans-

lation rates produces bursts that are small and frequent, causing only small fluctuations

in protein numbers and producing a smaller phenotypic variation in the population. We

demonstrate the above point through simulations for the cases of large translation rate

(Figure 2.6) and for low translation rate (Figure 2.7). An additional case is simulated

(Figure 2.8) where only the protein decay rate is decreased so that the mean protein

level increases and the steady state distribution is more Gaussian-like.

Figure 2.6: Protein numbers in a model of single-gene expression with parameters:
k+

p = 15 min−1, k+
m = 0.25 min−1, Protein and mRNA half-lives are of 7 min each.

Steady-state mean value of protein is 〈p〉 ≈ 375 nM .

Ozbudak et al. (2002) suggest that several inefficiently translated regulatory genes have

been naturally selected for their low-noise characteristics, even though efficient trans-

lation is energetically favourable. Inefficient translation is energetically unfavourable

because high energy phosphate groups are hydrolyzed to drive the synthesis of unused

or little-used transcripts. Similarly in the case where intrinsic noise is caused by promoter

fluctuations, frequent promoter activation events followed by an inefficient transcription

will result in less noise in mRNA levels than infrequent promoter fluctuations followed by

efficient transcription Rosenfeld et al. (2005). Such simple analysis invariably shows that

the process of gene expression has inherent mechanisms for controlling noise. Ozbudak

et al. (2002) to a large extent have substantiated this by simple yet powerful experi-

ments. Their experiments validated the work of Thattai and van Oudenaarden (2001)

who adopted a simple analytic approach to prove that the mean and variance of protein

number can be controlled by varying system parameters for single gene expression.
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Figure 2.7: Protein half-life is increased from 7 min (Figure 2.6) to 28 min while the
translation rate is reduced to k+

p = 3.7 min−1 from the values in Figure 2.6, so that
mean protein value remains the same, while the average burst size b and the variance
σ2

p reduce (Equation (2.1)).

Figure 2.8: The only change in the parameters is to the protein half-life which is
increased four-fold from 7 min (Figure 2.6) to 28 min. Consequently the mean pro-
tein value increases to 〈p〉 ≈ 1500 nM with a corresponding increase in the variance
(Equation (2.1)). Notice the Gaussian-like distribution as compared to Figure 2.6.
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Once protein noise is characterized in single genes the next step is to study the influ-

ence of regulating proteins on the expression of the regulated gene. In other words the

interest now lies in analyzing the effect of the network structure on noise. Towards this

end, Pedraza and van Oudenaarden (2005) designed a synthetic linear gene regulatory

network of four genes, where three of them were monitored in single Escherichia coli

cells by cyan, yellow and red fluorescent proteins. The response of single cells to various

amounts of inducers such as isopropyl-β-D-thiogalactopyranoside (IPTG) was measured

using fluorescence microscopy or flow cytometry. This allowed them to analyze the effect

of noise in the upstream proteins on the downstream protein. A corresponding model

was developed that considered noise in a gene to be determined by its intrinsic fluctua-

tions, propagated noise from upstream genes, and global noise affecting all genes. Their

model is based on the Langevin approach, where deterministic differential equations

representing the system are modified by adding stochastic terms that represent both

the intrinsic noise, as well as the global fluctuations in cellular components that change

the reaction rates for all genes. These experiments clearly demonstrated how noise in a

expression of a gene is affected by fluctuations in the levels of the transcription factors

that regulate it expression, i.e., how noise propagated in a network of genes.

Hooshangi et al. (2005) conducted similar experimental studies involving synthetic tran-

scriptional networks. They analyzed a cascade of genes that repressed the production

of the downstream gene. They arrived at many conclusions from their experiments.

Firstly, they observed that the steady-state switching behaviour showed high sensitivity

with increasing cascade length. Through simulations they showed that the Hill coef-

ficients that represent the steepness of the switching functions were 2.8, 7.5, 11 and

29 for cascade lengths of one, two, three and seven respectively. The more interesting

observation was that the longer cascades increased variations in the protein levels that

is seen as variability in levels of cells in the population. Further, the time taken for the

downstream components of the cascade to respond to signals at the top of the cascade,

which is the response time, increased with increase in the length of the cascade. This

was accompanied by loss of synchronization in these response times for longer cascades.

This was again a problem in a population of cells in their ability to respond uniformly

to a signal. The most important conclusion of their work was that as the cascade length

increased, the ability of the system to filter out rapid fluctuations in protein levels i.e.,

the system behaved as a low-pass filter. This was advantageous since the downstream

component respond to only legitimate changes in the levels of the upstream component

rather than responding to rapid and often unwanted fluctuations.
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Regulation could also be effected through negative feedback loops where gene expression

is repressed by its own product or by other TFs. It has been observed that negative

feedback reduces noise while maintaining the mean levels in proteins. Becskei and Ser-

rano (2000); Austin et al. (2006) analyzed autoregulated negative feedback loops in

Escherichia coli cells where the protein product of the gene represses its own expression

and demonstrated that indeed noise reduced for negative feedback. Similarly, Dublanche

et al. (2006) analyzed the negative feedback experimentally and through simulations.

They showed that not only is noise reduced in proteins which are auto-repressed but

these proteins show stronger negative correlation with the downstream protein whose

production they regulate.

2.6 Summary

In this chapter we have described in detail how analytical expressions that quantify the

molecular fluctuations are useful in analyzing the various aspects of gene expression. Re-

searchers have recently quantified molecular fluctuations through elegant and powerful

analytical models Kepler and Elston (2001); Swain et al. (2002) and also substantiated

through experimental studies. To understand the mechanisms by which molecular fluc-

tuations arise it makes sense to study synthetic regulatory networks and also networks

in live cells where noise is seen to have a profound effect on the overall functioning of the

regulatory system. The numerous experimental studies described here and some signif-

icant single molecule techniques such as Sigal et al. (2006a) Yu et al. (2006), Raj et al.

(2008) greatly enhance our knowledge of the microscopic world. As more useful data is

churned out through such experiments, it is imperative that analytical formulations and

numerical simulations are used beforehand to increase our understanding of GRNs by

analyzing the inherent molecular fluctuations.

——————————————————————————————————————



Chapter 3

Dynamic Correlation Functions

Given the stochasticity of the very processes that constitute regulatory responses to

stimuli, it is likely that correlated fluctuations of the molecular species will illuminate the

dynamics of regulatory interactions. In fact, this is the intuition behind the regression

hypothesis by Onsager (1931) who said that the average regression of fluctuations will

obey the same laws as the corresponding macroscopic irreversible process and which

has been developed further in several fluctuation-dissipation theorems even away from

equilibrium Keizer (1987); Speck and Seifert (2006). A simplest case demonstrating the

Fluctuation Dissipation Relations (FDR) is Brownian motion, where the frictional force

exerted by the medium in which the Brownian particle is present and the random force

due to the collisions of other particles are interlinked. This relation is formalized into the

Fluctuation-Dissipation Theorem (FDT) stating that the systematic part of the frictional

force is determined by the correlations in the random force. Marconi et al. (2008) give an

extensive review of FDR and demonstrate its relevance in many applications. Coming

back to our problem, we consider correlated fluctuations in elementary fragments of

GRNs to illustrate what they can tell us about the nature of the regulatory function

enacted by the network. On the way, we shall also give a simple demonstration of the

relation between the deterministic response to perturbation and the internal fluctuations

of molecular species.

The analytical framework of this chapter builds upon the relations between the macro-

scopic dynamics and the fluctuation properties of the system. This is given by the FDT.

In statistical physics, the FDT states that if a thermodynamic system responds linearly

to an external perturbation, then the amount by which it responds is simply related

to the fluctuation properties of the system. In other words, it proposes that there is

an explicit relationship between the internal fluctuating force that is random in nature,

and the observed macroscopic or deterministic response of the system to an external

force that governs the dynamics of the averages. In the present context of biochemical

reacting systems, this relation emerges naturally out of a system-size expansion of the

31
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chemical master equation van Kampen (2007). This linear noise approximation (LNA)

is equivalent to the Fokker-Planck equation for these processes Gillespie (2000). The

distributions of the fluctuations around the average concentrations of the molecules,

which is assumed to be Gaussian in nature, is then the solution to the LNA. In the next

section, we start out by solving for the moments of the distribution of the molecular

concentrations and go on to derive the dynamic correlations between the fluctuations

of these molecular species. On the way, we observe the emergence of a relationship be-

tween the dynamics of the averages and the fluctuating part of the distributions through

a common source.

In the previous chapter we demonstrated how noise has been quantified by simple for-

mulations allowing one to study the effect of various network topologies, regulatory

mechanisms and parameters on the second-order stationary statistics of GRNs Tao et al.

(2007); Tomioka et al. (2004); Pedraza and van Oudenaarden (2005). Such observations

made it possible for the quantification of noise to reveal the regulatory links between

genes Austin et al. (2006); Cox et al. (2008). However, a crucial element missing in

such studies was the temporal aspect. Since the entire process of gene expression is dy-

namic in nature, crucial insights could be gained by tracking the fluctuations in species

numbers over time. For example, due to the inherent time-delay in the transcription

and translation steps, a perturbation in the upstream process of gene activation say,

would result in a delayed response in the protein fluctuations. Such a response could

be evaluated by the temporal correlations that are more likely to be characteristic of

the structure, regulatory mechanisms and parameter values of the system. Such studies

are possible with advances in technology in tracking of mRNA/protein numbers over

time in individual cells becoming a reality Raj et al. (2008). With the aid of time-lapse

fluorescence measurements, recent reports suggest that the time dependent correlations

of fluctuations in protein levels indicate the presence of regulatory activity in simple

GRNs Dunlop et al. (2008); Sigal et al. (2006b). That is the object of our study.

Hence, our main focus in this work is to derive the time-correlation functions in a

sum-of-exponentials form (Equation (3.14)) and use them for studying the dynamic cor-

relations between two species in a GRN, such as proteins of the regulator and regulated

genes. We expect distinct behavioural patterns in the correlated fluctuations for varia-

tions in the regulatory networks. We consider two-gene regulatory networks and shall

introduce the variations in these networks by employing three strategies: (i) adopting

different sets of values for the reaction rate constants (ii) adopting different regulatory

mechanisms; such as simple activation and repression with or without dimerization, and

(iii) introduction of an additional player i.e., an additional gene into the model. They

amount to varying the parameters, regulatory mechanisms and the network structure

respectively, and hence form the basis for deriving qualitative relationships between the

system characteristics and the fluctuation properties of the GRN. In chapters 4, 5 and
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6, we demonstrate how the dynamic correlation function between protein species of two

genes, changes its shape, magnitude and temporal features for changes in the values of

the rate constants, the type of regulatory mechanism between the two genes and finally

the structure of the regulatory network. Therefore, by tracking the species numbers in

single cells over time, one could predict the type of regulatory activity present in a GRN

and also the network structure. In this thesis, we show that this is possible at least in

the simple cases of two-gene networks. In essence, the thesis aims at providing a firm

theoretical foundation necessary for analyzing complex and larger regulatory networks

and illustrates the usefulness of dynamic correlations in distinguising these networks.

Some of the terms that we shall use consistently throughout are:

• The mRNAs and proteins are the species or variables of the regulatory network.

• A genetic unit comprising of the mRNA and protein of a gene is termed as a node

of the regulatory network. If X is a gene-node then Mx would represent the mRNA

of X.

• The rate constants of the reactions are the parameters of the gene regulatory

system.

• System refers to a regulatory network that works independently and has 2 to 3

genes at most.

• By model, we mean a system having specific constituent species. Hence, the greater

the number of types of constituent species, the more complex the model.

• The regulatory mechanism determines the form of the regulating function between

two genes, which means that an activator system has a different regulatory mech-

anism to that of a repressor system. Similarly regulation via protein dimers is

considered a different mechanism.

• A system built up of a set of elementary reactions that are specific to it, is termed

to have a specific structure or connectivity.

• Upstream gene is one whose protein product is a transcription factor for a down-

stream gene and hence regulates its transcription.

The most common approach of mathematical modelling of the gene expression process,

or in fact most biochemical processes, is by considering them to be of deterministic na-

ture. The deterministic approach is based on the law of mass action, an empirical law

deriving a simple relation between the concentrations of all variables and the reaction

rates. Here, the dynamics or rather the time-evolution of all the variables in the system

is described in a deterministic and continuous sense by first-order differential equations
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better known here as Chemical Kinetics Equations. But as chemical reactions are proba-

bilistic events invariably involving discrete, random collisions of reactant molecules, it is

feasible that deterministic formalisms will leave out essential aspects of the behaviour of

the network. Hence, one needs to resort to stochastic modelling in order to characterize

such biochemical systems based on the properties of their internal fluctuations, which

would otherwise be not possible by macroscopic analyses. Biochemical systems within

individual cells occur typically in heterogeneous environments which have small volumes.

This combined with the low copies of the involved molecules, accentuates the effect of

fluctuations, which is better studied by adopting the stochastic approach as opposed to

macroscopic methods. The biological significance of these fluctuations was discussed in

detail in the previous chapter. These fluctuations have been studied experimentally and

analytically in simpler ways. Since a biochemical system constitutes reacting species

that are treated as stochastic random variables, they are described by probability dis-

tributions that evolve in time. The means or averages of these distributions evolve in

time according to the system’s deterministic dynamics. The Chemical Master Equation

(CME) describes the time evolution of these probability distributions, whose variance

also evolve in time. This would then be the source for deriving the dynamic covariances

between any two species of the biochemical system.

3.1 The Chemical Master Equation

Let us consider a system with N reacting species {s1, ....., sN} that react according to

M reactions {r1, ....., rM} within a small volume v at a constant temperature. The dy-

namical state of this system can be specified as X(t) ≡ (X1(t), ....., XN (t)), where

Xi(t) ≡ the number of si molecules in the system at time t.

X(t) = state of the system at time t.

For such a reacting system, let us consider an infinitesimal time interval dt within which

the probability for two or more reactions to occur is negligible. We then have the fol-

lowing definitions:

aj(X)dt ≡ the probability that one rth
j reaction will occur inside

the system of volume Ω in the next infinitesimal

time interval [t, t + dt) (j = 1, . . . , M)

νij ≡ the change in the number of si molecules

produced by one rth
j reaction (j = 1, . . . , M) (i = 1, . . . , N)
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aj(X) is called the propensity function which has been shown to have solid microphysical

basis rather than just a way of shochastization of deterministics chemical kinetics Gille-

spie (1976). It is the product of the reaction parameter kj and the number of reactant

combinations hj for each rth
j reaction, where

kjdt ≡ average probability, to first order in dt, that a particular combination of

rj reactant molecules will react accordingly in the next time interval dt.

hj ≡ number of distinct molecules reactant combinations for reaction

rj found to be present in v at time t.

The propensity function is then aj(X)dt ≡ hjkjdt indicating that the evolution of

the state vector X(t) is a jump-type Markov process on a non-negative N -dimensional

integer lattice. One can then easily establish that the evolution of such a system in

time is given by the CME. This is shown below. If P (X, t | X0, t0)d
MX, (which is the

probability that X(t) = X, given X(t0) = X0), is the singly conditioned probability

mass function of the random variable X, we are then interested in the time evolution

of this probability function. Then the probability of the system being in state X at

time t + dt is the sum of the probabilities of all mutually exclusive ways in which that

can happen via zero or one reaction in [t, t + dt). Therefore, the Chapman-Kolmogorov

equation for such a case is:

P (X, t + dt|X0, t0) = P (X, t|X0, t0)×
[
1−

M∑

j=1

aj(X)dt
]

+
M∑

j=1

[P (X− νj , t|X0, t0)aj(X− νj)dt] (3.1)

Now, since the master equation describes how the probability P (X, t | X0, t0) for the

state of the system evolves in time, it becomes obvious that the CME is the differential

form of the Chapman-Kolmogorov equation. Therefore on taking the limit (dt → 0) in

equation (3.1), the probability of the system being in state X at time t + dt is defined

by the CME as:

∂

∂t
P (X, t | X0, t0) =

M∑

j=1

[
P (X− νj , t | X0, t0)aj(X− νj)

− P (X, t | X0, t0)aj(X)
]
, (3.2)

the initial condition being P (X, t0) = δ(X−X0). The CME thus describes how the joint

probability distribution of all the species of a spatially homogeneous chemical system

evolve in time. Analytical or numerical solutions to the CME are not available in general,

i.e., the CME is generally analytically intractable. However, van Kampen’s Ω-expansion
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provides a way of approximating perturbatively the Master Equation to the Linear Noise

Approximation van Kampen (2007).

3.1.1 Numerical simulations

While the CME or its approximations are of prime importance in analytically describ-

ing a stochastic system, it is of equal interest to numerically simulate the time evolution

of the molecular species within such a system. The Stochastic Simulation Algorithm

(SSA) serves this purpose. The SSA allows one to numerically simulate the time evo-

lution of all the molecular species in a chemical system such that it properly takes into

account the inherent stochasticity of such systems. The SSA can be said to be an exact

equivalent to the Chemical Master Equation as both are based on the same microphys-

ical premise. Gillespie (1976) proposed a stochastic simulation algorithm based firmly

on microphysical premises, and used simple Monte Carlo techniques to generate the

randomness required to evolve the system through discrete time. Gillespie’s algorithm

was robust and simple to understand and immediately found acceptance by numerical

simulators. Once again, the propensity function aj(X)dt is at the core of the SSA.

The algorithm basically runs by generating a random pair (τ, ν) that control the next-

reaction probability density function P (τ, ν | X, t)dτ , which is the probability at time t

that the next reaction in v will occur in the differential time interval [t + τ, t + τ + dτ)

and will be an rµ reaction. The algorithm continues by advancing time t by τ and by

changing the number of molecules of those species that are involved in the rth
ν reaction.

The details of the SSA are given in Appendix A. Efficient variations of this algorithm

such as the τ -leap method Gillespie (2001) and the Next-Reaction method Gibson and

Bruck (2000) also generated good interest among simulators. It has to be kept in mind

that these algorithms do not derive numerical solutions to the Master Equation. Both

are different in this aspect. In conclusion, we note that aj(X)dt acts as the basis of

the stochastic formulation as exemplified in the Chemical Master Equation and also the

Stochastic Simulation Algorithm.

3.2 Dynamic Correlation Functions

Coming back to the formulation of the Master equation, the means 〈Xi〉 and covariances

Cov(Xi, Xj) = 〈XiXj〉− 〈Xi〉〈Xj〉 of the probability distribution are obtained by multi-

plying the CME (3.2) with Xi and XiXj respectively and taking expectations resulting

in

d〈Xi〉
dt

=
M∑

j=1

〈νijaj(X)〉 (3.3)
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and

d Cov(Xi, Xj)

dt
=

M∑

k=1

[
〈Xiνjkak(X)〉+ 〈Xjνikak(X)〉

+ 〈νikνjkak(X− νk)〉
]

(3.4)

where the R.H.S of Equation (3.3) is the jump moment with the propensity functions

aj being equivalent to the transition probabilities per unit time and stoichiometries ν

equivalent to the step sizes of a general Markov process. We get an exact equation (in

place of the approximate equation (3.5)) for the time-evolution of 〈Xi〉’s only when the

propensity functions are linear in X. Now, in terms of concentrations of the species

xi = Xi/Ω, we see that the rate equations of the averages obey the mass action kinetics

of the biochemical system,

d〈xi〉
dt

=
M∑

j=1

νijRj(〈x〉) ≃
N∑

k=1

Aik〈xk〉 (3.5)

where Rj(x) := limΩ→∞
1
Ω〈aj(

X
Ω )〉 are the deterministic rates of the M reactions and A

is the Jacobian matrix whose elements are:

Aik =
∂(

∑M
j=1 νijRj(〈x〉))

∂〈xk〉
and

If the rates Rj(x) were linear in x, the terms in equation (3.4) do not involve higher

order covariances and thus form a closed set. This yields the closed form equation for

the covariances:

∂C

∂t
= AC + CAT + BBT (3.6)

where elements of C are Cov(xi, xj) and BBT is the diffusion matrix:

B = ν
√

diag(R(〈x〉))
BBT = ν diag(R(〈x〉)) νT .

where, ν is the stoichiometric matrix whose elements are νij .

Before we proceed any further, we would like to mention that the above matrices and

their inter-relationship can also be obtained through the Fokker-Planck equation. By

considering X(t) to be real-numbered and the function fj(X) ≡ aj(X)P (X, t | X0, t0)

to be analytic in this variable, the Taylor’s expansion of f(X) in the order ν is possible,

which on substituting in the CME (3.2) and on passing to the limit dt → 0 results in

the Chemical Kramers-Moyal equation. The truncation of the Kramers-Moyal equation

to the second order results in the linear multivariate Fokker-Planck equation Gillespie
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(1980, 1996):

∂P (X, t | X0, t0)

∂t
= −

N∑

i=1

∂

∂Xi
[Ai(X, t)P (X, t | X0, t0)]

+

N∑

i,i
′
=1

∂2

∂Xi∂Xi
′

[BBT ]ii′ (X, t)P (X, t | X0, t0) (3.7)

where,

Ai(X, t) =
M∑

j=1

νjiaj(X, t), [BBT ]ii′ (X, t) ≡
M∑

j=1

bij(X, t)bi
′
j(X, t)

and

bij(x, t) = νjia
1/2
j (x)

The above formulation is an approximate description of Markov processes whose step-

sizes are small. The solution P (X, t | X0, t0) to Equation (3.7) is Gaussian with mean

and covariances given by Equations (3.5) and (3.6). This is seen by multiplying equation

(3.7) with Xi and integrating upon which we get (3.3). Similarly by multiplying equation

(3.7) with XiXj and integrating and by further considering the covariances 〈XiXj〉 −
〈Xi〉〈Xj〉 in place of the moments 〈XiXj〉 we get to equation (3.4). Equation (3.7) is

generally valid only for diffusion-type Markov processes. In a diffusion process it is

hypothesized that P (X+ ξ, t+ dt | X, t) describes, for vanishingly small dt, a Gaussian-

distributed diffusion away from X with mean drift ofA’s and covariances given by BBT ’s.

Note the relation between the A and the A matrices which is as follows:

Ai =
N∑

k=1

Aik〈xk〉 =
M∑

j=1

νijRj(〈x〉)

∴ Aik =
∂Ai

∂〈xk〉

An equivalent formulation by approximating the Master equation is obtained through

van-Kampen’s Ω-expansion van Kampen (2007) where the Master equation is Taylor-

expanded in the system volume Ω in powers of Ω−1/2, X = Ωφ(t) + Ω1/2ξ, so that

the fluctuations ξ are proportional to the square root of the volume. The expansion

gives rise to the Kramers-Moyal form of the Master Equation, while a truncation of the

expansion to first order returns the macroscopic equations similar to equation (3.5) but

in terms of molecular concentrations φ(t); and to second order gives rise to the Linear

Noise Approximation (LNA) which has the form of the Fokker-Planck equation. The

idea behind the expansion is that for constant average values, fluctuations in the species

numbers vary proportional to the inverse of the square root of the volume whereas the

macroscopic values of the species varies proportional to the inverse of the volume. The

LNA provides analytical formulations that are locally valid around stationary points of
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the chemical system, which quantify the fluctuations around macroscopic values of the

molecular species. It also describes how these fluctuations are correlated with each other

at the stationary state and over time. The LNA has the form of a Fokker-Planck equation

as in equation (3.7) above, but is in terms of the new variables that are the fluctuating

parts ξ of the macroscopic variables. The solution to this equation then predicts that the

fluctuations ξ have Gaussian probability distributions around the macroscopic values φ.

Hence, as seen in the Fokker-Planck equation, the time-evolution of a species involves a

drift term given by the A matrix that controls the dynamics of the averages, and a fluc-

tuating part BBT that defines the width of the distributions. Since both are essentially

defined by the stoichiometries ν’s and propensities a’s, they both arise from the same

source. This is the essence of the fluctuation-dissipation relations. In conclusion, the

solution to the Fokker-Planck equation is a probability distribution which is Gaussian

with mean given by the deterministic equations and the stationary Covariance matrix

given by the solution to the Lyapunov equation (3.6). The stationary covariance matrix

and also the time-dependent covariance matrix are derived next.

The contribution of our work lies in the form in which we derive the time-covariance

matrix. The functional form of each of the elements of the matrix is derived in a simple

sum-of-exponentials form (3.14). As we go along providing results for different regulatory

networks, we demonstrate the benefit of such a functional form for the time-covariances

in gaining valuable insight into the working of these regulatory networks. This insight

in further useful in identifying or recognizing regulatory networks by their structure,

regulatory mechanism and also the parameter values that they take.

Continuing with our derivation, to solve for the stationary covariance matrix C, we

employ the Lyapunov equation AC + CAT + BBT = 0, which in general is not possible

to solve explicitly, but can be solved easily by a set of transformations as shown in Elf

and Ehrenberg (2003) and reproduced below.

Stationary Covariance Matrix: The stationary covariance matrix contains the second-

order moments of the stationary Gaussian probability distribution obtained as a solution

to the Fokker-Planck equation, and hence is significant as it reveals the correlations be-

tween various species of the chemical system. It is given by the Lyapunov Equation,

AC + CAT + BBT = 0 (3.8)

Let V be the matrix whose columns are the right eigenvectors of the Jacobian matrix

A. UT ≡ V−1 is then the matrix whose rows are the left eigenvectors of A. Now, pre
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and post-multiplying the above equation by UT and U respectively,

UT ACU + UT CAT U + UT BBT U = 0

ΛUT CU + UT C(ΛUT )T + UT BBT U = 0

ΛUT CU + UT CUΛT + UT BBT U = 0

From the transformation of variables, Z = UT X which is associated with the linearly

transformed stoichiometric matrix ν = UT ν and also by defining C = UT CU and

B = UT B, Equation (3.8) is transformed as:

ΛC + CΛT + BBT = 0

(C)ij =
−(BBT )ij

Λii + Λjj
=
−(BBT )ij

λi + λj
(3.9)

The original stationary covariance matrix C is backtransformed as VCVT . Here, we

should note that analytical solutions are possible. In fact, at this point one can do

a detailed analysis and could hope to derive analytical relations between the terms of

the covariance matrix and the structure of the network. This is a matter for further

investigation. However, in all the gene regulatory networks that we consider here, we

are able to evaluate Cij analytically. In the next section, we specifically show this for

the case of a single-gene system.

For deriving the time-covariances of fluctuations, firstly we note that the deviations

δx(t) := x(t)−〈x〉s follow deterministic dynamics, where 〈x〉s is the stationary solution

that satisfies
�

x = 0 in Equation (3.5). This is seen from linearization of Equation (3.5)

around the steady state solutions
�

xi = 0 resulting in

(
d

dt

)
δx = Aδx, (3.10)

where A is the Jacobian defining the deterministic dynamics. Now, since the means

in the kinetic rates Rj are time-independent, and hence the elements of the A and B

matrices are also time-independent that solution of the deterministic equation (3.5) is

no longer of the form 〈x(t)〉 = etAx(t0), but has the general form 〈x(t)〉 = Y(t)x(t0),

where Y(t) is the propagator matrix which is the solution of

dY(t)

dt
= A(t)Y(t) (3.11)

with Y(0) = 1. Since the deviations δx are also controlled by A as shown in equa-

tion (3.10), it is clear that the propagator matrix governs δx and determines the time-

dependence of covariances of fluctuations from the stationary covariances C

〈 δx(t + τ) δx(t)T 〉 = Y(τ).C. (3.12)
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Below we reduce this propagator matrix to the form Y(t) = VeΛtUT , where V and UT

are the matrices comprising of the right and left eigenvectors of the Jacobian matrix

A respectively and Λ is the diagonal matrix of the eigenvalues (λ1, · · · , λN ). They are

related as A . V = V . Λ and UT . A = Λ . UT .

Propagator Matrix: Suppose we have a system with N variables. The rate equations

are:

dx(t)

dt
= Ax(t)

resulting in a set of N -coupled differential equations, as A is a non-diagonal matrix (and

also generally unsymmetric). Therefore we first need to uncouple these equations in the

variables and then transform them back in terms of the old variables x = [x1, x2, ..., xN ].

As the eigenvectors Vi’s are independent, the vector x can be written as the sum of

these N eigenvectors as

x(t) =
∑

i

zi(t)Vi = Vz(t)

Since UT = V−1 the above is nothing but a transformation z(t) = UT .x(t) to a new set

of variables zi’s. Therefore the transformed variables are,

zi(t) = UT
i x(t) =

∑

j

zj(t)U
T
i Vj =

∑

j

zj(t)δij

which is due to the bi-orthogonality of the eigenvectors. Applying the transformation

to the rate equations,

dx(t)

dt
= Ax(t) = A

∑

i

zi(t)Vi =
∑

i

zi(t)λiVi (∵ AVi = λiVi)

⇒ d
∑

i zi(t)Vi

dt
=

∑

i

zi(t)λiVi

⇒
∑

i

Vi
dzi(t)

dt
=

∑

i

zi(t)λiVi

⇒ dzi(t)

dt
= zi(t)λi

We now have a set of uncoupled equations in the new variables zi’s. These can now be

solved easily to obtain,

zi(t) = eλitzi(0)

Writing the solution in the original variables x(t),

x(t) =
∑

i

zi(t)Vi =
∑

i

eλitzi(0)Vi =
∑

i

eλitUT
i x(0)Vi.
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This means that the time evolution of each species in the system is a sum of a set of

exponentials. Writing the above equation in matrix form,

x(t) = Y(t) . x(0)

where Y(t) = VeΛtUT is the propagator/evolution matrix. Each element of the propa-

gator matrix is therefore,

Yij(t) =
N∑

k=1

eλktUT
kjVik (3.13)

Coming back to the equation for the time-covariance matrix 〈 δx(t+τ) δx(t)T 〉 = Y(τ).C

and re-writing it element-wise, we obtain the time-covariance functions between two

molecular species xi and xj as:

〈 δxi(t + τ) δxj(t) 〉 =
∑

k

Yik(τ) . Ckj

=
∑

k

( ∑

l

eλlτUT
lkVil

)
Ckj

=
N∑

l=1

eλlτVil

N∑

k=1

UT
lkCkj (3.14)

For effective comparison of results from different GRNs, we use dynamic correlations by

normalizing Equation (3.14). Use of stationary auto-covariances for normalization helps

in retaining the dynamic character along the τ -axis, though the magnitudes are rescaled

between 0 and 1.

Corr [δxi(t + τ), δxj(t)] =
〈 δxi(t + τ) δxj(t) 〉√

〈 (δxi(t + τ))2 〉 〈 (δxj(t))2 〉
(3.15)

The form of the Equation (3.14) brings out the existing relation between the covariances

and the deterministic characteristics of the system. The system Jacobian A and diffusion

matrix BBT are derived through the stoichiometry ν and reaction rates R that are in turn

obtained from the deterministic rate equations. Therefore these rate equations that are

responsible for the time-evolution of averages also influence the internal fluctuations of

the system. The analytical framework presented above allows one to visualize the effect

of various attributes of the system such as the rate constants, regulatory mechanism

and the network structure on the fluctuation properties of the molecular species which

are the mRNAs and proteins. Firstly, this helps in analyzing the sensitivity of the

dynamic correlations w.r.t the rate constants thereby providing significant biological

insights into the working of a GRN when stochastic effects are included. Secondly, this

would be of help in drawing qualitative distinctions between different GRNs, as each
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GRN is expected to generate dynamic correlations that are unique to its regulatory

mechanism and network structure. In other words, this would make way for the possible

identification of the type of regulation present between two genes and also in predicting

the corresponding network structure, given the time-series of any two molecular species

of a GRN. The dynamic correlations therefore act as signatures of the GRNs, and to

demonstrate which, we consider the following regulatory and network mechanisms:

I Regulatory Mechanisms

(a) Elementary activation: where the protein of X is the activator or positive reg-

ulator of Y .

(b) Elementary repression: where the protein of X is the repressor or negative

regulator of Y .

(c) Activation via dimerization: where dimers of the protein Px are the activators

of Y .

II Network Mechanisms

(a) Regulation through an Intermediary gene: Gene Y is indirectly activated or

repressed by protein of X via another gene.

(b) Co-operative regulation: Gene Y is not only regulated by protein of X but also

by proteins of other elements.

(c) Coherent and Incoherent FeedForward loops.

3.3 Time-covariance in a single gene

The best way to give an intuition of the time-covariance function is by applying it to

the simplest of cases, that of a single gene. In this section we derive the time-covariance

function between the mRNA and protein molecules in the case of a single gene. The

model includes a single gene which spontaneously switches to the ON or active state G∗

at a rate kon and back to the OFF or inactive state G at the rate koff . Therefore the

stationary distribution of G∗ is of the Binomial type. In the ON state the mRNA M is

transcribed out of the gene at a rate of k+
M and is further translated to the protein P at

a rate k+
P .

Let 〈G∗〉 represent the average amount of active genes in concentration form and in units

of nano-Molar. Then the rate of production of 〈G∗〉 follows the deterministic dynamics

of the system given by,

d〈G∗〉
dt

= kon〈G〉 − koff 〈G∗〉
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Figure 3.1: Schematic representation of the working of a single gene where the gene
G switches between active and inactive states. M is transcribed from G∗.

Gene inactive/active G
kon−−−⇀↽−−−

koff

G∗ koff = 20 min−1, kon = 5 nM−1min−1

Transcription G∗
k+

M−−→ G∗ + M k+
M = 2 min−1

Translation M
k+

P−−→M + P k+
P = 1 min−1

mRNA degradation M
k−

M−−→ φ k−
M = 0.1 min−1

Protein degradation P
k−

P−−→ φ k−
P = 0.01 min−1

Table 3.1: Elementary reactions in the case of a single-gene system where x → φ
denotes spontaneous decay of x. The decay rates are k− = ln(2)/(halflife), where
the half-lives of mRNAs and proteins are chosen to be 7 and 70 minutes respectively.
Other rate constants are chosen to be biologically meaningful. nM is nano-Molar.

Due to the conservation of the gene molecules, 〈G(t)〉 = G(t0)− 〈G∗(t)〉, where G(t0) is

the initial amount of the DNA molecule present in the medium. Using this substitution

in the rate equation for G∗ we have the following rate equations of the three variables

describing their deterministic behaviour:

d〈G∗〉
dt

= kon(G(t0)− 〈G∗〉)− koff 〈G∗〉
d〈M〉

dt
= k+

M 〈G∗〉 − k−
M 〈M〉

d〈P 〉
dt

= k+
P 〈M〉 − k−

P 〈P 〉

The expression for the mean steady state value of the variables are obtained by equating

the above rate equations to zero, upon which we arrive at 〈G∗〉 = G(t0)kon

kon+koff
= 0.2 nM ,

〈M〉 =
k+

M
〈G∗〉

k−

M

= 4.04 nM and 〈P 〉 =
k+

P
〈M〉

k−

P

= 408 nM . Taking the vector of the system

variables as X = [G∗, M, P ], the corresponding Jacobian matrix derived from the rate

equations is:

A =




(−kon − koff ) 0 0

k+
M −k−

M 0

0 k+
P −k−

P



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Further, the vector of the deterministic rates and the stoichiometric matrix are also

derived from the same rate equations as:

R =
[
kon(G(t0)− 〈G∗〉), koff 〈G∗〉, k+

M 〈G∗〉, k+
P 〈M〉, k−

M 〈M〉, k−
P 〈P 〉

]T

ν =




+1 −1 0 0 0 0

0 0 +1 0 −1 0

0 0 0 +1 0 −1




The diffusion matrix which is given by BBT = ν diag(R) νT is:

BBT =




(kon(α− 〈G∗〉) + koff 〈G∗〉) 0 0

0 (k+
M 〈G∗〉+ k−

M 〈M〉) 0

0 0 (k+
P 〈m〉+ k−

P 〈P 〉)




Once the drift (Jacobian) and diffusion matrices are obtained, the next step is to solve

for the stationary covariance matrix C. This is done by solving the Lyapunov equation

(3.8) through a set of transformations resulting in equation (3.9) or by simply solving

for the elements in the stationary covariance matrix as we do here. The stationary

covariance matrix for the three variable case can be written as:

C =




C11 C12 C13

C21 C22 C23

C31 C32 C33




(3.16)

=




Var[G∗(t), G∗(t)] Cov[G∗(t), M(t)] Cov[G∗(t), P (t)]

Cov[M(t), G∗(t)] Var[M(t), M(t)] Cov[M(t), P (t)]

Cov[P (t), G∗(t)] Cov[P (t), M(t)] Var[P (t), P (t)]




where Var and Cov represent the stationary auto-covariance and covariance terms be-

tween the variables of the system. It is important to note that the stationary covariance

matrix is symmetric and due to its stationary nature is applicable at any time t during

steady state conditions. Under steady state conditions, each element of the above ma-

trix are equated to zero and solved systematically to obtain the stationary covariances

between two variables. For example, the first element of AC + CAT + BBT = 0 is:

kon〈G∗〉+ 2(−kon − koff )C11 + koff (α−G∗) = 0

which on solving gives the auto-variance of G∗,

Var[G∗(t), G∗(t)] =
(kon − koff )〈G∗〉+ G(t0)koff

2(kon + koff )
= 〈G∗〉

[ koff

kon + koff

]
(3.17)



Chapter 3 Dynamic Correlation Functions 46

Similarly, progressively solving for all the elements of the C matrix, we get the covari-

ances between all the variables. In these expressions of the covariances, we em-

ploy approximations to obtain simpler expressions. The approximations are

that the decay rates are much smaller when compared to the ON and OFF

rates of the gene (kon + koff )≫ k−
(M,P) and that the OFF rate is much larger

than the ON rate koff > kON. Both these approximations are valid for biologically

plausible values of rate constants Bundschuh et al. (2003).

Cov[G∗(t), M(t)] = 〈M〉 k−
Mkoff

(kon + koff + k−
M )(kon + koff )

≈ 〈M〉 k−
Mkoff

(kon + koff )2

≈ 〈M〉 k−
M

koff
(3.18)

Var[M(t), M(t)] = 〈M〉+ 〈M〉
[

k+
Mkoff

(kon + koff + k−
M )(kon + koff )

]

≈ 〈M〉+ 〈M〉
[

k+
M

koff

]

≈ 〈M〉 (3.19)

Cov[M(t), P (t)] = 〈M〉 k+
P

k−
M + k−

P

[
1 +

k+
Mkoff

(kon + koff )(kon + koff + k−
M )

(
1 +

k−
M

(kon + koff + k−
P )

)]

≈ 〈M〉 k+
P

k−
M + k−

P

[
1 +

k+
Mkoff

(kon + koff )2

(
1 +

k−
M

(kon + koff )

)]

≈ 〈M〉 k+
P

k−
M + k−

P

[
1 +

k+
M

koff

(
1 +

k−
M

koff

)]

≈ 〈M〉 k+
P

k−
M + k−

P

[
1 +

k+
M

koff

]

≈ 〈M〉 k+
P

k−
M + k−

P

(3.20)

Var[P (t), P (t)] = 〈P 〉+ k+
P

k−
P

Cov[M(t), P (t)]

≈ 〈P 〉+ 〈P 〉 k+
P

k−
M + k−

P

(3.21)

As mentioned in the previous chapter it has been observed in various real biological

systems that the noise in the mRNA distribution which is nothing but its variance over

mean squared has sometimes the characteristics of a Poissonian process while in other

cases is far from it. A Poisson process being reflected in the fact that the distribution

resulting out of such a process has its variance equal to its mean. Therefore in the case

where the gene is constantly in the ON state, the transcription process results in mRNA

molecules that are Poissonian distributed, while in the above described gene ON/OFF

model the distribution of mRNAs and proteins are skewed and are non-Poissonian in

character. However, with the approximation of (kon + koff ) ≫ k−
(M,P ) and koff > kon
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the expressions for the stationary covariance terms are exactly as would be obtained

in the model where the gene is constantly in the ON state and the mRNAs are being

produced by random birth-death events leading to a Poissonian distribution. Previous

works Thattai and van Oudenaarden (2001); Paulsson (2005) have involved investigat-

ing the stationary auto-covariance which is, as seen above, a function of the system

parameters. However, as our aim is to include the additional factor of time into the

analyses, the dynamic covariance between the mRNA and the protein variables are em-

ployed as representative of the system’s internal fluctuations. In order to determine the

time-covariance between the mRNA and protein Cov[M(t), P (t+ τ)] we need the eigen-

vectors of the system. The right eigenvectors of the Jacobian are the column vectors of

the following matrix:

V =




0
(kon+koff−k−

M
)(kon+koff−k−

P
)

k+

M
k+

P

0

−(k−

M
−k−

P
)

k+

P

−(kon+koff−k−

P
)

k+

P

0

1 1 1




and by the bi-orthogonal property of the right and left eigenvectors UT V = I, we get

the left eigenvectors as:

UT =




−k+

M
k+

P

(kon+koff−k−

M
)(k−

M
−k−

P
)

−k+

P

(k−

M
−k−

P
)

0

k+

M
k+

P

(kon+koff−k−

M
)(kon+koff−k−

P
)

0 0

k+

M
k+

P

(kon+koff−k−

P
)(k−

M
−k−

P
)

k+

P

(k−

M
−k−

P
)

1




The corresponding eigenvalues of the A matrix are:

λ = [−k−
M , − (kon + koff ), − k−

P ]

Therefore the time-covariance between the mRNa and protein species is:

Cov[M(t), P (t + τ)] = Cov[X2(t), X3(t + τ)]

=
3∑

l=1

eλlτV3l

( 3∑

k=1

UT
lkCk2

)

= e−k−

P
τ

[
k+

Mk+
P

(kon + koff − k−
M )(k−

M − k−
P )

C12 +
k+

P

(k−
M − k−

P )
C22

]

− e−k−

M
τ

[
k+

Mk+
P

(kon + koff − k−
M )(k−

M − k−
P )

C12 +
k+

P

(k−
M − k−

P )
C22 + C32

]

+ e−(kon+koff )τ

[
k+

Mk+
P

(kon + koff − k−
M )(kon + koff − k−

P )
C12

]
(3.22)
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Since (kon + koff ) is assumed to be much larger than the decay rates, we neglect the

fast decaying exponential e−(kon+koff )τ and its allied term leading to,

Cov[M(t), P (t + τ)] ≈ e−k−

P
τ

[
k+

Mk+
P

(kon + koff − k−
M )(k−

M − k−
P )

C12 +
k+

P

(k−
M − k−

P )
C22

]

− e−k−

M
τ

[
k+

Mk+
P

(kon + koff − k−
M )(k−

M − k−
P )

C12 +
k+

P

(k−
M − k−

P )
C22 + C32

]

(3.23)

On substituting for the C terms and doing approximations (kon +koff ≫ k−
(M,P ), koff >

kon), we get

Cov[M(t), P (t + τ)] ≈ 〈M〉 k+
P

(k−
M − k−

P )

[
e−k−

P
τ
( 2k−

M

k−
M + k−

P

)
− e−k−

M
τ

]
(3.24)

This function is a sum or rather difference of two exponentials which in all possibility

could be a non-monotonic function. To find if this is truly the case, we differentiate

the above covariance term partially w.r.t τ and equate to 0, yielding the τ at which

the covariance reaches peak magnitude. We denote the corresponding τ as τ∗ and is

obtained on solving the following equation:

∂

∂t
Cov[M(t), P (t + τ)] = 0

e−k−

M
τ∗ − e−k−

P
τ∗

( 2k−
p

k−
M + k−

P

)
= 0

τ∗ =
ln

[
k−

M
+k−

P

2k−

p

]

k−
M − k−

P

(3.25)

and is equal to 19.1 minutes for the decay rates given in Table 3.1. The plot of the

dynamic covariance is shown to the left in Figure 3.2. The shape of the covariance func-

tion signifies the fact that there is an inherent delay in the response of the downstream

variable to perturbations in the upstream one. Talking in terms of the systems’ internal

fluctuations, the shape of the dynamic covariance simply means that any fluctuation in

the mean value of the upstream variable at time (t), which in this case is the mRNA,

is highly correlated to the fluctuations in the downstream variables that is the protein

at time (t + τ). This time delay τ is shown to be a function of the decay rates and

therefore the temporal character of the covariances can be controlled via these param-

eters. The interesting aspect of this time-delay is that it is related to the time delay

in the response of the mean value of the regulated variable to a perturbation in the

mean value of the regulator. This relation between the internal fluctuations and the

deterministic response is what the FDT is about. Instead of going into cumbersome

details of the relation between the fluctuations and the dissipation parts of the system,

we shall simply show here that they are both in essence interlinked via common factors.

For this, we focus on the temporal aspect of the deterministic response. Suppose the
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system is at steady-state equillibrium conditions before say time t = 0, and the mean

value of the mRNA is denoted by 〈M(tss)〉, where tss is the steady state time-period

before t = 0. Now, let us introduce a perturbation at time t = 0 in this mean value by

an amount △ M and then allow M(t) to fall back freely to its initial condition which is

the mean steady-state value 〈M(tss)〉. This induces a deterministic response in 〈P (t)〉
which follows the deterministic rate equation but now, with the initial concentration of

M being equal to 〈M(tss)〉+ △ M . On solving for the rate equation for the protein, we

get:

〈P (t)〉 = 〈P (tss)〉+
k+

P (∆M −M(tss))

k−
M − k−

P

[
e−k−

P
t − e−k−

M
t
]

(3.26)

The plots of the mean steady-state mRNA and protein levels are given on the right side

of the Figure 3.2. The response in the protein level also has the characteristic peak after

a time-delay of (tresp), which in this case is 26 minutes. The expression for tresp is given

by equating the time-evolution of 〈P 〉 to zero,

∂〈P (t)〉
∂t

= 0

k−
Me−k−

M
tresp − k−

P e−k−

P
tresp = 0

tresp =
ln

[
k−

M

k−

P

]

k−
M − k−

P

(3.27)

This is smallest for the case where k−
M = k−

P and is evaluated using l’Hopital’s rule.

Letting k−
M/k−

P = x, the expression for tresp is now,

lim
x→1

tresp = lim
x→1

1

k−
P

ln(x)

(x− 1)

= lim
x→1

1

k−
P

1/x

1

=
1

k−
P

In the present case, where k−
M 6= k−

P , tresp is given by Equation (3.27) and is equal to

25.6 minutes for the decay rates given in Table 3.1. This delay which is greater than

τ∗ by about 7 minutes is self-explainatory. This is because 〈M〉 after being perturbed

externally was allowed to go back to its original state by decaying freely. This means

that at every infinitesimal time instant after the perturbation M is virtually still at a

perturbed value. This is almost equivalent to many perturbations in M which sustains

the response in P for a longer duration. Intuitively the duration for which the decay

in M has a perturbation type of effect on P should be around the value of its half-life.

Evaluating the difference between tresp and τ∗, we find that this indeed is the case. This

difference in the time-delays would be close to zero had the perturbation in M lasted
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only for a very short time-interval after which it is forced back to its original value.

tresp − τ∗ =
ln

[
k−

M

k−

P

]

k−
M − k−

P

−
ln

[
k−

M
+k−

P

2k−

p

]

k−
M − k−

P

=
ln

[
2k−

M

k−

M
+k−

P

]

k−
M − k−

P

(3.28)

For large half-life of the protein in comparison to that of the mRNA molecule i.e., for

(k−
P ≪ k−

M ) the time difference tresp − τ∗ ≈ ln(2)

k−

M

= τ1/2m
, which in the present case is

equal to 7 minutes, which is what is observed in Figure 3.2.

Figure 3.2: On the left is the time-correlation function between M and P . The time
at which the correlation attains maximum value is τ∗ = 19 minutes. To the right we
show the deterministic response in P for a perturbation in the steady state value of M
from a value of 〈M(tss)〉 = 4.04 nM to a value of 〈M(tss)〉 + ∆M = 6.04 nM . The
time at which the response in P (t) attains its maximum value is tresp = 26 minutes.

3.4 Summary

In conclusion, the time-covariance of the deviations δx are fully described by the Jaco-

bian matrix whose elements are in turn functions of the average values (〈x1〉, · · · , 〈xN 〉)
of the molecular species. Simply put the molecular fluctuations of a stochastic system

can be estimated by the knowledge of the deterministic dynamics of the system. Since

the deterministic behaviour of the system can be observed in the form of a response to

a perturbation, in effect we have shown here that the fluctuation dissipation relation

holds true in such systems. This relation says that the internal fluctuations and the

deterministic response to an external perturbation arise from the same source which is

described by the deterministic dynamics of the system.

——————————————————————————————————————
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Sensitivity Analysis

In the previous chapter, for the case of a single gene, we derived the expression for τ∗

which was the time required for the covariance between the mRNA and the protein

species to reach the maximum value of Cov∗. This was given in equation (3.25). This

time-delay τ∗ is the same amount of time taken by the dynamic correlations as well to

reach a corresponding peak value of Corr∗, since the dynamic correlations are simply the

normalized form of the dynamic covariances and hence retain their temporal character.

Coming back to the case of the single gene, where the expression for the τ∗ corresponding

to the dynamic correlations between the mRNA and the proteins, given by equation

(3.25) involves the decay rates of these species. It is therefore obvious that this τ∗ is

sensitive to changes in these parameters. The question now is by how much it is sensitive.

This question is important for a couple of reasons at least. One use of these sensitivities

would be in inferring the values of these parameters through the experimentally observed

correlation plots. However, whether one is able to easily do such an inference or not,

the sensitivities basically improve our understanding about the biological processes that

are responsible for the expression of τ∗ that we obtained earlier. Therefore, in the case

where the set of biochemical reactions are known beforehand, the sensitivity analyses

would turn the focus of biologists onto a selected few reactions whose rate constants

greatly affect the fluctuation properties represented by features such as τ∗. This would

then provide a means of controlling the internal fluctuations of the reacting species by

altering the most sensitive rate constants. Therefore it is important to evaluate the

sensitivities of not only of τ∗ but also of the term Corr∗ w.r.t each of the reaction rate

constants of the system. This is made particularly easy by the functional form of the

covariance that we derived earlier in equation (3.14).

Therefore, our goal here is to monitor changes in the dynamic correlation functions for

changes in the values of the rate constants. Instead of monitoring the entire correlation

plot, we focus on its defining features such as Corr∗, which is the peak value and the

time taken to achieve this peak which is τ∗. Therefore the feature vector that defines

51
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the major features of the covariance function is [Corr∗, τ∗]. If pα are the rate constants

or rather the parameters of the system, then the sensitivites that we are interested in

are defined as ∂ Corr∗

∂pα
and ∂τ∗

∂pα
. Since Corr∗ is nothing but the normalized form of Cov∗,

we first derive ∂ Cov∗

∂pα
. Now, for the sake of convenience, let us denote the covariance

〈δxi(t + τ) δxj(t)
T 〉 between the species xi and xj , as Cov(τ,p)ij . This is because the

covariances are basically functions in the variable τ and p, where p is the vector whose

M elements are the parameters pα. Hence,

Cov(τ,p)ij =
N∑

l=1

eλlτVil

( N∑

k=1

UT
lkCkj

)
(4.1)

where, N is the number of reacting species, λl is the lth eigenvalue, Vil is the ith element

of the lth right eigenvector, UT
lk is the kth element of the lth left eigenvector and finally,

Ckj is the (k, j)th element of the stationary covariance matrix C. The elements of this

stationary covariance matrix are derived through the Lyapunov equation (3.8). The

Jacobian matrix and the stationary covariance matrix being made up of the parameters

pα, it is obvious that all the elements on the RHS of the above expression are functions

of the system parameters. Therefore any change in the value of the parameters, i.e.,

the reaction rate constants has an obvious effect on the dynamic covariances. Therefore

from the above expression it is clear that the dynamic covariance is basically a function

in M + 1 variables, one being:

• τ - the time difference between the two variables δxi and δxj at which we measure

their covariance, while the other M are the elements of,

• p - the M -dimensional vector of the system parameters pα, which in the case of a

biochemical reacting system are the rate constants.

A simple illustration of the use of sensitivities is given below. Suppose one is interested

in quantifying the change in the correlations between mRNAs and proteins in the case

of the single-gene system, for small changes in the protein decay rate k−
P . The plots of

the correlations for the two values of k−
P are given in Figure 4.1.
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Figure 4.1: The plot of the dynamic correlation function Corr[M(t), P (t + τ)] in the

case of the single-gene system, for two different values of the protein decay rate k−
P . k−

P

is reduced from its original value of 0.01 min−1 to 0.007 min−1 for which there is not
only a decrease in the correlation peak Corr∗ but also the time-delay of this peak τ∗

increases.

As k−
P is decreased from 0.01 min−1 to 0.007 min−1, the dynamic correlation decreases

which can be seen as a change in its features Corr∗ and τ∗. Denoting this change by

△ Corr∗ and △ τ∗, they can be evaluated via their sensitivites at the original value of

k−
P as follows:

△

∗
Corr ≃ ∂ Corr∗

∂k−
P

∣∣∣∣∣
k−

P
=0.01

× △ k−
P (4.2)

△ τ∗ ≃ ∂τ∗

∂k−
P

∣∣∣∣∣
k−

P
=0.01

× △ k−
P (4.3)

which would hold true for small changes in k−
P . For large △ k−

P these equations might

not hold. This is because the derivative might be highly sensitive in the rate constants

implying that it needs to be re-evaluated for small changes in them and is correspondingly

termed as non-linearly sensitive in these parameters, i.e., the sensitivities are classified

as being non-linear in character if the parameters (pα) induce different sensitivities for

larger changes in their values, implying that ∂ Corr∗

∂k−

P

and ∂τ∗

∂k−

P

have to be re-evaluated

if the change in the value of those parameters is significantly large, say by more than

±5% of their original value. However, if the expressions in equation (4.2) hold true

approximately, then the sensitivities are termed as linear in those parameters. In the

next section we derive the term ∂ Cov∗

∂k−

P

, which is in fact applicable at any Cov, i.e., for
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the covariance at any time instant τ and not just at τ = τ∗.

4.1 Sensitivity of Covariance Amplitude w.r.t the system

parameters

Differentiating the covariance term of equation (3.14) w.r.t. the parameters pα partially,

and noting that,

∂eλlτ

∂pα
=

∂eλlτ

∂λl

∂λl

∂pα
= τeλlτ

∂λl

∂pα

we have,

∂ Cov(τ,p)ij

∂pα
=

N∑

l=1

τeλlτ
∂λl

∂pα
Vil

N∑

k=1

UklCkj +
N∑

l=1

eλlτ
∂Vil

∂pα

N∑

k=1

UklCkj

+

N∑

l=1

eλlτVil

N∑

k=1

∂Ukl

∂pα
Ckj +

N∑

l=1

eλlτVil

N∑

k=1

Ukl
∂Ckj

∂pα

(4.4)

Firstly we shall obtain the derivatives of the eigenvalues and eigenvectors w.r.t the

parameters pα as follows.

4.1.1 Derivatives of Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are fundamental to the dynamic behaviour of the system.

Since these quantities are functions of the parameters of the system, any variation in

these parameters lead to changes in the dynamic response of the system. The response

in our case is measured by the time-covariance functions. Hence, we expect any change

in the values of the parameters to result in changes in the time-covariance functions.

Since the time-covariance function is of the sum-of-exponentials form and involves the

eigenvalues and eigenvectors, we deduce the following derivatives to estimate numerically

the change in the time-covariance function w.r.t changes in the parameter values.

Let A be a N th order Jacobian matrix of the system. The matrix eigenproblem can be

written down as:

A Vi = λi Vi (4.5)

All eigenvalues are assumed to be distinct. The corresponding adjoint problem is:

UT
i A = λi UT

i (4.6)
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The matrix A and hence the eigenvectors Vi, UT
i and the eigenvalues λi are functions

of the parameter vector p of the system, whose elements are denoted as pα. Hence our

objective now is to obtain the derivatives of the eigenvectors and eigenvalues w.r.t. these

parameters. Differentiating Equation (4.5) w.r.t pα,

∂A

∂pα
Vi + A

∂Vi

∂pα
=

∂λi

∂pα
Vi + λi

∂Vi

∂pα
(4.7)

Pre-multiplying throughout by UT
i and using Equation (4.6), we arrive at,

∂λi

∂pα
=

UT
i

∂A
∂pα

Vi

UT
i Vi

(4.8)

Since the eigenvalues are assumed to be distinct, the set of eigenvectors forms a basis

for the N -space and the first derivatives of eigenvectors can be expressed in terms of the

eigenvectors as,

∂Vi

∂pα
=

N∑

j=1

gijαVj and
∂Ui

∂pα
=

N∑

j=1

hijαUj (4.9)

Now, the calculation of the first derivatives of the eigenvectors reduces to the evaluation

of the co-efficients gijα and hijα . Pre-multiplying Equation (4.7) by UT
j where j 6= i,

UT
j

∂A

∂pα
Vi + UT

j A
∂Vi

∂pα
= UT

j

∂λi

∂pα
Vi + UT

j λi
∂Vi

∂pα
(4.10)

Now, substituting the expansions (4.9) and using Equation (4.6), and the bi-orthogonal

property of UT
i Vj = 0 iff i 6= j, we obtain,

gijα =
UT

j
∂A
∂pα

Vi(
λi − λj

)
UT

j Vj
, i 6= j (4.11)

Proceeding in a similar fashion, after differentiating Equation (4.6) w.r.t pα,

hijα =
UT

i
∂A
∂pα

Vj(
λi − λj

)
UT

j Vj
, i 6= j (4.12)

The above expressions for gijα and hijα were obtained by Rogers (1970). Since UT
i Vi = 1

which is the normalization condition due to bi-orthogonality,

∂λi

∂pα
= UT

i

∂A

∂pα
Vi (4.13)

gijα =
UT

j
∂A
∂pα

Vi(
λi − λj

) , i 6= j (4.14)

hijα =
UT

i
∂A
∂pα

Vj(
λi − λj

) , i 6= j (4.15)
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It can be observed that,

hijα = −gjiα

UT
i Vi

UT
j Vj

= − gjiα (4.16)

To calculate the diagonal terms giiα and hiiα , Nelson (1976), used the index, mj such

that,

| Vmjj | = max
i

(
| Vij |

)
(4.17)

which gives the diagonal elements of g as,

gkkα
= −

N∑

l=1
l 6=k

gklαVmkl (4.18)

Equations (4.9) and (4.13) give the required first-order derivatives of the eigenvectors

and the eigenvalues w.r.t. each of the parameters pα of the system. The derivative of

the Jacobian ∂A
∂pα

has to be evaluated beforehand.

Coming back to the expression of
∂ Cov(τ,p)ij

∂pα
given by the equation (4.4) we now

require the derivative of the stationary covariance terms w.r.t pα. Firstly, the stationary

Covariance Matrix C is given by,

C = V . C̃ . VT (4.19)

where C̃ is the covariance matrix for a new set of variables δX̃ = V−1δX, i.e., fluctu-

ations as normal modes. The other transformations are, ν̃ = V−1ν which is the new

Stoichiometric Matrix, B̃ = UT BU which is the new Diffusion Matrix. These transfor-

mations are necessary to solve the Lyapunov Matrix Equation AC + CAT + BBT = 0

for the covariance term C analytically Elf and Ehrenberg (2003). Rewriting the above

equation element-wise,

Cij =
N∑

m=1

Vim

(
C̃ . VT

)
mj

=
N∑

m=1

Vim

N∑

n=1

C̃mnVjn
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whose partial derivative w.r.t pα is,

∂Cij

∂pα
=

N∑

m=1

∂Vim

∂pα

N∑

n=1

C̃mnVjn

+
N∑

m=1

Vim

N∑

n=1

∂C̃mn

∂pα
Vjn

+
N∑

m=1

Vim

N∑

n=1

C̃mn
∂Vjn

∂pα
(4.20)

The expression for C̃mn as derived in the previous chapter (equation (3.9)) is

C̃mn = − B̃mn

λm + λn
(4.21)

whose derivative w.r.t pα is,

∂C̃mn

∂pα
=

∂C̃mn

∂B̃mn

∂B̃mn

∂pα
+

∂C̃mn

∂λm

∂λm

∂pα
+

∂C̃mn

∂λn

∂λn

∂pα

= −∂B̃mn/∂pα

(λm + λn)
+

B̃mn

(λm + λn)2

(∂λm

∂pα
+

∂λn

∂pα

)
(4.22)

Now, this expression contains the term ∂ eBmn

∂pα
which needs to be evaluated first. The

elements of B̃ are,

B̃mn =
N∑

q=1

Uqm

N∑

r=1

BqrUrn

whose partial derivative w.r.t pα is,

∂B̃mn

∂pα
=

N∑

q=1

∂Uqm

∂pα

N∑

r=1

BqrUrn

+
N∑

q=1

Uqm

N∑

r=1

∂Bqr

∂pα
Urn

+
N∑

q=1

Uqm

N∑

r=1

Bqr
∂Urn

∂pα
(4.23)
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Once more, to evaluate this expression, we need another derivative term which is
∂Bqr

∂pα
,

where

Bqr =
(
ν . diag(R) . νT

)

qr

=

M∑

s=1

νqs

M∑

t=1

(diag(R))stν
T
tr

=
M∑

s=1

νqs(diag(R))ssνrs , since diag(R) is a diagonal matrix

=
M∑

s=1

νqsRsνrs (4.24)

ν is the stoichiometry matrix and diag(R) is the diagonal matrix whose diagonal elements

are the elements of the vector R. R is a vector whose elements are the deterministic

rates or fluxes of each reaction. The derivative of Bqr w.r.t pα is therefore,

∂Bqr

∂pα
=

M∑

s=1

νqs
∂Rs

∂pα
νrs (4.25)

Since the Rs terms are readily available from the deterministic rate equations, it is

straight forward to obtain ∂Rs

∂pα
. For example, let Rs be say k−

M 〈M〉, where 〈M〉 is the

expression for the mean steady state value of the mRNA, which is turn is a function of

the parameters pα. Therefore Rs is wholly a function in the parameters and is therefore

readily differentiated w.r.t these parameters. Finally, evaluating all the derivatives in

the reverse order, i.e., starting with ∂Rs

∂pα
and then

∂Bqr

∂pα
[equation (4.25)], ∂ eBmn

∂pα
[equation

(4.23)], ∂ eCmn

∂pα
[equation (4.22)], we arrive at the expression for

∂Cij

∂pα
[equation (4.20)].

This brings us back to
∂ Cov(τ,p)ij

∂pα
of equation (4.4) where all the terms on the R.H.S

are now available. Note that the derivatives of the eigenvalues and the eigenvectors are

obtained from equations (4.13) and (4.9) respectively. Representing Corr(τ,p) simply

as Corr(τ), the dynamic correlations are nothing but,

Corr(τ)ij =
Cov(τ)ij√

Cov(0)i Cov(0)j

≡ Cov(τ)ij√
Var(0)i Var(0)j

(4.26)

their sensitivity w.r.t the parameters are given by the expression,

∂ Corr(τ)ij

∂pα
=

∂ Cov(τ)ij/∂pα√
Var(0)i Var(0)j

− Cov(τ)ij

2

[
∂ Var(τ)i/∂pα√
Var(0)3i Var(0)j

+
∂ Var(τ)j/∂pα√
Var(0)i Var(0)3j

]

(4.27)
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4.2 Sensitivity of τ ∗ w.r.t system parameters

In this section we deduce the sensitivity of τ∗ w.r.t. the parameters of the system. As

the expression for τ∗ involves the parameters, it is dependent on p. This sensitivity

which is denoted as ∂τ∗

∂pα
= ∂τ

∂pα

∣∣∣
τ=τ∗

is our object of interest. The expression for τ∗ is

obtained via differentiating Cov(τ,p) w.r.t τ (at τ∗) and equating to zero,

∂ Cov(τ,p)

∂τ

∣∣∣∣∣
τ=τ∗

= 0

For the sake of simplicity denoting ∂ Cov(τ,p)
∂τ as ̥(τ,p), the expression for τ∗ is obtained

from,

̥(p)
∣∣∣
τ=τ∗

=
∑

l

λle
λlτ

∗

Vil

( ∑

k

UT
lkCkj

)
= 0

Therefore ̥(τ,p) at time τ = τ∗ can be said to be a function only in the M independent

variables p, while the dependent variable is τ∗. Differentiating ̥ w.r.t one of these

independent variables pα, while holding the other M − 1 parameters constant,

d̥

dpα
=

∂̥

∂τ
.

∂τ

∂pα
+

∂̥

∂pα

The above equation makes sense only if τ is at some value such as τ∗, which is when it

is dependent on pα. Now, since ̥(τ,p)
∣∣∣
τ=τ∗

= ∂ Cov(τ,p)
∂τ

∣∣∣∣∣
τ=τ∗

= 0, we have

d̥

dpα

∣∣∣∣∣
τ∗

= 0

=⇒ ∂τ

∂pα

∣∣∣∣∣
τ∗

= −∂̥/∂pα

∂̥/∂τ

∣∣∣∣∣
τ∗

(4.28)

where,

∂̥

∂pα

∣∣∣∣∣
τ∗

=
∂2 Cov(τ,p)

∂τ∂pα

∣∣∣∣∣
τ∗

=
∑

l

∂λl

∂pα
eλlτ

∗

Vil

∑

k

UklCkj +
∑

l

λlτ
∗eλlτ

∗ ∂λl

∂pα
Vil

∑

k

UklCkj

+
∑

l

λle
λlτ

∗ ∂Vil

∂pα

∑

k

UklCkj +
∑

l

λle
λlτ

∗

Vil

∑

k

∂Ukl

∂pα
Ckj

+
∑

l

λle
λlτ

∗

Vil

∑

k

Ukl
∂Ckj

∂pα
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and

∂̥

∂τ

∣∣∣∣∣
τ∗

=
∂2 Cov(τ,p)

∂τ2

∣∣∣∣∣
τ∗

=
∑

l

λ2
l e

λlτ
∗

Vil

( ∑

k

UklCkj

)

The expression for ∂τ∗

∂pα
holds true only at specific values of pα denoted as (p̃α) and at

time τ∗, which is equivalent to saying that the terms on the R.H.S of equation (4.28)

are applicable only in a small region around (p̃α, τ∗), due to the effect of linearization

of the highly nonlinear covariance function. Hence, equation (4.28) is rewritten more

specifically as:

∂τ

∂pα

∣∣∣∣∣ at a specific
value of (pα,τ)=(p̃α,τ∗)

= −∂̥/∂pα

∂̥/∂τ

∣∣∣∣∣
(p̃α,τ∗)

(4.29)

NOTE:

• τ∗ is the τ at which the covariance function Cov(τ, pα)ij attains maximum value

(at a specific fixed value of pα = p̃α). Hence, each p̃α corresponds to a specific, or

in other words, results in a specific τ∗

• ∂τ
∂pα

∣∣∣
(p̃α,τ∗)

is the sensitivity of τ∗ to a very small variation in p̃α. Hence, equation

(4.29) is applicable only in a very small region around p̃α. Moving further away

from this value p̃α, i.e., for a different value of pα, one would obtain a different

value for τ∗ which requires recalculation of the sensitivity. This is true even for
∂ Corr∗

∂pα
.

• This is due to the highly non-linear nature of Cov(τ,p)ij . The non-linearity is

due to both p and τ . In the next chapter where we tabulate the numerical values

of the sensitivities in cases of some regulatory systems, we mention whether these

sensitivities are of the type linear or non-linear depending on whether for larger

changes in the parameter values, the sensitivities that are evaluated, do or do not

hold true. In simple words, if △Corr∗

△pα
≡ ∂ Corr∗

∂pα
for large changes in the values of pα,

then the sensitivity w.r.t this parameter is said to be of type linear else of type

non-linear.
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4.3 Summary

The reaction rate constants, termed as parameters pα in the present context, influence

the fluctuation properties of the system and this influence is what we have quantified

as sensitivities in the present chapter. This quantification also serves the purpose of

estimating the values of rate constants given the experimental values for the correla-

tions. In the previous chapter, τ∗ was shown to be a function in the decay rates of the

mRNA and proteins and therefore sensitive to changes in their values. Likewise, in the

next chapter (and in Appendix B) where we derive the expressions for τ∗ in the case

of a two-gene elementary activator system, the techniques demonstrated in this chapter

would prove useful in deriving numerical values for the sensitivities of τ∗ w.r.t each of

the parameters of the system. This would give useful insight into the effect that these

parameters have on the dynamic correlation functions or simply on the features of these

correlations that are [Corr∗, τ∗].

——————————————————————————————————————



Chapter 5

Regulatory Mechanisms

As was demonstrated in chapter 3, for the case of a single gene, the dynamic correlation

between two molecular species gives insight into the process behind their interactions.

The defining features of the correlation function are the stationary correlations (at time

τ = 0), the peak value of dynamic correlations labelled as Corr∗ and the time τ∗ at which

this peak occurs. From the analytical expression for τ∗ it was clear that the decay rates

of mRNAs and proteins (k−
M and k−

P ) were in effect controlling the temporal aspect of the

dynamic correlations, which meant that the sensitivities ∂τ∗

∂k−

M

and ∂τ∗

∂k−

P

would be high. In

Tables 5.3 and 5.6 where numerical values for these sensivities are calculated for the two-

gene activator and repressor systems, we find that indeed τ∗ is sensitive only to the decay

rates of mRNAs and proteins. On similar lines, we notice that the correlation magnitudes

are also sensitive in various parameters of the GRN. With this background in mind, our

intention here is therefore to evaluate the dynamic correlation functions between two

species of a GRN and monitor their behaviour as observed in their features, for significant

variations in certain factors of the GRN. These factors are (i) the values that the rate

constants take, for which the correlations are sensitive, (ii) the regulatory mechanisms

that are involved in the transcription process, such as activation or repression and finally

(iii) the network mechanism describing the connectivity between genes. In this chapter

we shall deal with the first two factors, while the last factor of network mechanism is

dealt with in the next chapter. Because the dynamic correlations between any two species

are effectively due to the reaction rate constants, they are expected to behave uniquely

for variations in each of the above factors, i.e., for different values of the rate constants,

different regulatory mechanisms present between two genes and for different network

connectivities between them. Therefore the dynamic correlation serves as a signature

that could be used to differentiate or characterize various regulatory networks. The

choice of species for most of our work are the two proteins, one that acts as regulator

protein or the transcription factor and the other that is the regulated protein.

62
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Firstly, we consider the case of a two-gene activator system, which we refer to as the ele-

mentary activator, where the element X activates the element Y or realistically speaking,

protein Px acts as the activating transcription factor for the production of protein Py.

Variations are then introduced in the values of rate constants which result in changes

in the correlation between Px and Py. Next, the regulatory mechanism which in this

case is that of activation by Px, is replaced by activation that is effected via the protein

dimerization process, i.e., the proteins Px now form dimers Px2
which then bind to the

upstream sequences of the gene of Y . This regulatory mechanism throws up distinct

protein correlations. We further study the regulatory mechanism wherein Px acts as

a repressor, and for which there is a qualitative change in the protein correlations as

compared to the case of activation.

To effectively analyze the dynamic correlations of a gene network we need a basic model

of the gene regulation process. Simple yet effective models are those that not only incor-

porate the essence of the regulatory process but are easy to understand and replicate.

Therefore we choose a set of elementary reactions that captures the significant steps of

the regulatory process. We take into account the translation process of the mRNAs,

decay of mRNAs and proteins, and transcription of the downstream gene. If X and Y

denote the regulator and regulated elements, the constituent molecular species of such

a model would then be the regulated gene Gy, mRNAs Mx, My and the proteins Px, Py.

Px acts as a transcription factor and regulates the transcription of the mRNA My. The

non-constituent elements are the RNA polymerases and ribosomes that increase the

complexity of the model. By employing fewer elements we intend to reduce the com-

plexity of the model, while retaining the essence of transcriptional regulation. Since the

focus of study is the regulatory link between genes, the production of mRNA transcripts

of upstream gene X is assumed to be through a constant source and at a constant rate

of flux.

5.1 Elementary Activator

Px

Py

My

Gy

Mx

X Y

Figure 5.1: The figure on the left is a schematic representation of the regulatory
process where the mRNA My is transcribed from the coding sequence of its gene Gy.
Px is a positive regulator or an activator of this transcription. The equivalent network
representation is shown on the right where the activation of Py by Px is represented as
element Y being activated by the element X, arrow indicating activation.
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A schematic representation of an elementary activator is given in Figure 5.1, where

the gene-node X directly activates Y without any other intervening influences on the

promoter region of Gy, and the resulting biochemical reactions of which are given in

Table 5.1. The regulatory sequence upstream of Gy is bound by the transcription factor

Px, which is an activator in the present case, resulting in the complex Cy which is in

effect the active or ON state of the gene Gy. The transcription of the mRNA of the

downstream gene My is then initiated from this complex. The remaining reactions are

similar to the case of the single-gene system. The values for the rate constants that are

biologically relevant are chosen such that the mean steady state values of the mRNAs

and proteins and their decay rates correspond to a regulatory network in the yeast

organism. This is the {CHA4 → CHA1} regulatory link, on which we shall elaborate

later.

[
φ

k+

Mx−−−→Mx

] [
Px + Gy

kon−−−⇀↽−−−
koff

Cy
] [

My

k+

Py−−→My + Py

] [
Mx

k−

Mx−−−→ φ

] [
Px

k−

Px−−→ φ

]

[
Mx

k+

Px−−→Mx + Px

] [
Cy

k+

My−−→ Cy + My

] [
My

k−

My−−→ φ

] [
Py

k−

Py−−→ φ

]

Table 5.1: Reaction set describing the process of activation between elements X and
Y . Production of Mx is assumed to be of Poissonian birth-death process. φ → Mx

therefore denotes spontaneous creation of Mx from a constant source φ.

The deterministic dynamics of this system are governed by a set of coupled ODEs that

describe the time-evolution of the mean concentration levels of the species. Referring

back, this is nothing but the evolution of the mean of the Gaussian distributions of

the species, where the distributions are the solution to the Fokker Planck equation

(3.7). Alternatively, these rate equations could also be obtained by simply ignoring the

fluctuations around them through linearization of the propensity functions, as was done

for obtaining equation (3.5). The significance of the fluctuation dissipation relations

comes to the fore, where we show that these deterministic rate equations are sufficient

for deriving the covariances between the species that are stochastic variables in reality.



Chapter 5 Regulatory Mechanisms 65

Hence, the internal fluctuations and the deterministic dynamics of the system are inter-

related. The rate equations are as follows:

dGy

dt
= −konPxGy + koffCy

dCy
dt

= −koffCy + konPxGy

dMx

dt
= k+

Mx
− k−

Mx
Mx

dMy

dt
= k+

My
Cy − k−

My
My

dPx

dt
= k+

Mx
Mx − k−

Px
Px − konPxGy + koffCy

dPy

dt
= k+

Py
My − k−

Py
Py

where the angled brackets, in 〈Mx〉 etc that represent the mean concentration levels,

are omitted for convenience. The total amount of Gy present in the cell at time t is

Cy(t) + Gy(t) = Gy(t0). Hence, Cy(t) = α − Gy(t) where α = Gy(t0) is the initial

concentration. Assuming the presence of a single copy of the gene in the yeast nucleus

of volume 1 µm3 the approximate initial concentration of Gy is 1 nM . Using the

above substitution for Cy and solving for the second of the above rate equations we

have at steady state, Cy = αPx

KD+Px
and Gy = αKD

KD+Px
, where KD = koff/kon is the

dissociation constant associated with the binding and unbinding of Px to the regulatory

region upstream of Gy. The mean steady state value of the product My then follows

the kinetics of Michaelis-Menten (hyperbolic) type where 〈My〉 =
k+

My

k−

My

αPx

KD+Px
where k+

My

is the transcription rate. The Hill-coefficient in this case is equal to 1 corresponding

to activation through protein monomers. Note that the basal transcription rate is not

included in this model, as it does not represent the regulatory link between the two

genes. Now, retaining Gy as the non-redundant variable and substituting for Cy in the

other equations, we eliminate the redundancy in the above set of ODEs. The molecular

species or simply the variables that completely define the dynamics of the system now

are [Gy, Mx, My, Px, Py] whose rate equations are,

dGy

dt
= −kon(PxGy) + koff (α−Gy) (5.1)

dMx

dt
= k+

Mx
− k−

Mx
Mx (5.2)

dMy

dt
= k+

My
(α−Gy)− k−

My
My (5.3)

dPx

dt
= k+

Mx
Mx − k−

Px
Px − kon(PxGy) + koff (α−Gy) (5.4)

dPy

dt
= k+

Py
My − k−

Py
Py. (5.5)

These rate equations not only describe the system’s deterministic behaviour but, by

the fluctuation-dissipation relations, also describe the internal (linear) fluctuations of
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the system. This is clear from the very expression of the dynamic covariances of these

fluctuations. The basic quantities required to solve for the dynamic covariances are

the deterministic rates and the stoichiometry which are obtained from the above rate

equations. The deterministic rates of the system are nothing but the individual fluxes

responsible for the increase or decrease in the production rate of the five variables. They

are the terms on the R.H.S of the ODEs. Therefore the vector of deterministic rates is,

R =

(
konPxGy, koff (α−Gy), k

+
My

(α−Gy), k
+
Mx

, k+
Px

Mx, k+
Py

My,

k−
Mx

Mx, k−
My

My, k
−
Px

Px, k−
Py

Py

)T

The elements of the stoichiometric matrix ν simply indicate whether the above deter-

ministic rates either increase or decrease each of the variables and if so, by what amount.

ν =




−1 +1 0 0 0 0 0 0 0 0

0 0 0 +1 0 0 −1 0 0 0

0 0 +1 0 0 0 0 −1 0 0

−1 +1 0 0 +1 0 0 0 −1 0

0 0 0 0 0 +1 0 0 0 −1




The relation between the Jacobian A, and the above quantities is therefore,

Aik =
∂(

∑M
j=1 νijRj(〈x〉))

∂〈xk〉

where x is the vector of the variables [Gy, Mx, My, Px, Py]. The Jacobian matrix for the

system of these variables is,

A =




−(koff + konPx) 0 0 −konGy 0

0 −k−
Mx

0 0 0

−k+
My

0 −k−
My

0 0

−(koff + konPx) k+
Px

0 −(k−
Px

+ konGy) 0

0 0 k+
Py

0 −k−
Py




. (5.6)

It now becomes essential to work within the range of the parameter values that is bio-

logically plausible. For this purpose we search through the well-documented database of

the organism Saccharomyces cerevisiae more commonly known as baker’s yeast. Tran-

scriptional regulation in yeast is mediated through cis-acting sequence elements that are

located upstream to the gene sequence. The transcription factors that bind to these

Upstream Activating Sequences (UASs) work as activators when they assist the tran-

scription initiation complex in binding strongly to the promoter region of the gene and

thus transcribing the mRNAs. Since it would be extreme to expect two genes working
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together, but in isolation to other genes, we assume that the downstream gene is regu-

lated entirely by the product of the upstream gene. In reality, however, this regulation

would involve tens of different TFs acting in a coordinated combinatorial fashion on the

UASs. As a first step towards modelling such a complex process, we assume the presence

of a single type of TF. This assumption is later expanded to account for the presence of

more than one type of TF.

The information regarding the TFs that regulate each gene in yeast, is made available to

the general public by projects such as the Saccharomyces cerevisiae systematic sequenc-

ing project well known as the SGD project1 and more recently by the YEASTRACT 2

group Teixeira and et al. (2006); Monteiro and et al. (2008). From this database we

adopt a regulatory system where there is direct evidence of an activating link between

two genes. Such an activating link exists between the genes CHA4 and CHA1 of yeast

Bornaes and et al. (1993); Holmberg and Schjerling (1996). The CHA1 gene encodes the

catabolic L-serine deaminase responsible for the utilization of serine as nitrogen sources.

The protein Cha4p acts as a DNA-binding transcription factor and activates the regula-

tion of the CHA1 gene. In reality, there may be numerous other TFs other than Cha4p

that activate/repress the production of the mRNA of CHA1 gene. In fact, a YEAS-

TRACT search for the TFs of CHA1 results in 22 of which one is Cha4p. However, our

assumption combines the effect of all the other TFs onto the one TF Cha4p. In the next

chapter, we study the effect of including other TFs, such as the activator binding to the

upstream region of CHA1 in the presence of a repressor protein. In the present case, we

consider CHA4 to be the upstream X gene and CHA1 to be the regulated downstream

gene, Y .

Activator System

Std Name Sys Name mRNA protein mRNA t1/2 protein t1/2

(nM) (nM) (min) (min)

CHA4 YLR098C 0.2 395.6 21 65

CHA1 YCL064C 4.5 36602 10 70

Table 5.2: The values are of the CHA4 → CHA1 activator link in yeast. Nuclear
volume is taken to be around 1 µm3, resulting in nano-Molar concentrations for the
mRNA and protein species. The mRNA and protein half-lives t1/2 are in minutes.

The mean steady state protein and mRNA levels of the CHA4 and CHA1, and their

respective decay rates or half-lives are obtained from the experimental datasets of Arava

et al. (2003); Ghaemmaghami and et al. (2003); Wang et al. (2002); Belle et al. (2006)

and are reproduced in Table 5.2. It is important to note that the experimental conditions

under which each of the above values were obtained could be quite different. However,

since closely linked genes work together under varying conditions, we assume that the

1http://www.yeastgenome.org
2http://www.yeastract.com



Chapter 5 Regulatory Mechanisms 68

network connectivity is static in nature. Hence, we utilize the above values in our

models. The time taken for the yeast cells to divide, denoted as tdouble is assumed to be

90 minutes. The mRNA and protein decay rates are therefore:

k−
(M,P ) =

ln(2)

(t1/2)(M,P )
+

ln(2)

tdouble
(5.7)

Therefore, the decay rates in the case of the CHA4→ CHA1 system are:

k−
Mx

=
ln(2)

21
+

ln(2)

90
= 0.0407 min−1

k−
My

=
ln(2)

10
+

ln(2)

90
= 0.0770 min−1

k−
Px

=
ln(2)

65
+

ln(2)

90
= 0.0184 min−1

k−
Py

=
ln(2)

70
+

ln(2)

90
= 0.0176 min−1

To derive the values for the other rate constants, we do the following. The expressions

for the levels of mRNAs and proteins at steady state are derived by setting the rate

equations to zero. They are,

k+
Mx

= k−
Mx

Mx = 8.14× 10−3 nM min−1

k+
My

=
k−

My
My

Px
= 0.52 min−1

k+
Px

=
k−

Px
Px

Mx
= 36.3 min−1

k+
Py

=
k−

Py
Py

My
= 143.2 min−1

The only remaining rate constants which are the ON and OFF rates of the DNA are

chosen such that their ratio which is the dissociation constant KD = koff/kon is equal to

200 nM . Though this value is biologically respectable, the logical reasoning is as follows.

If the amount of protein Px is very large compared to the dissociation constant KD, the

gene is present mostly in the active state and hence My ≈
k+

My
α

k−

My

involves a constant

flux k+
My

α similar to the case of Mx. On the other hand, if protein concentration is

less than the dissociation constant, My =
k+

My

k−

My

αPx

KD
as the gene is now mostly present in

the inactive state. Hence, in our model of the elementary activator, we take a value of

200 nM which is of the order of the mean concentration of Px = 395.6 nM and hence

allows the gene to be in the active state and also includes the effect of Px and Gy in

the rate of production of My. Individually, the rates are kon = 1 nM−1 min−1 and

koff = 200 min−1.
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5.1.1 Dynamic correlation between regulated and regulator proteins

Correlations between molecular species of a regulatory network are interesting to observe.

We focus on the correlations between the regulator and the regulated proteins. The

Corr[Px(t), Py(t+τ)] function as defined by equation (3.15) is the covariance normalized

by the stationary auto-covariances. For example, at time τ = 0, we have

Corr[Px(t), Py(t)] =
Cov[Px(t), Py(t)]√

Cov[Px(t), Px(t)] Cov[Py(t), Py(t)]

=
4.219× 106

√
(2.436× 105)(2.029× 108)

= 0.6

Likewise, the correlation at all other times τ > 0 is calculated and is plotted in Figure

5.3. Note that the dynamic character of the covariances is preserved in the correlations.

For convenient reference in further sections, we shall term the correlation in Figure 5.3 as

that corresponding to the base case, where the parameter values that are used to derive

this correlation are from the CHA4→ CHA1 system and these values are equivalently

referred to as base values.

Figure 5.2: Exponentials raised to the negative power of the eigenvalues of the X → Y
system are shown in figure (a). The coefficients of these exponentials are obatined
from equation (3.14), but are scaled in the figure above. The resulting sum of these
exponentials gives a characteristic shape to the time-covariance function, shown in
figure (b). Also, the magnitude of the stationary covariance between the two proteins
is marked for reference.

Positive regulation between any two genes of a network not only induces positive corre-

lations between their respective proteins but also gives a characteristic shape to them,

as seen in Figure 5.3, where the characteristic peak Corr∗ is due to the type of the regu-

latory mechanism which in this case is that of activation. Corr∗ and τ∗ are the defining

features of the correlation functions, which are functions in the rate constants and hence

are sensitive in them and also sensitive in the type of regulatory mechanism. In the

present case, Corr∗ = 0.8 and τ∗ = 49 minutes. Physically, this means that at steady-

state, the deviations δPy from the average protein concentration 〈Py〉 are influenced
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Figure 5.3: The dynamic autocovariances Cov[Px(t), Px(t+ τ)] and Cov[Py(t), Py(t+
τ)] are exponentially decreasing functions. Due to the stationary nature of the fluc-
tuations these functions are time-independent and hence Cov[Px(t), Px(t + τ)] ≡
Cov[Px(t1), Px(t1 +τ)]. The characteristic shape of the time-covariance function is pre-
served in the time-correlation function due to the normalization of the time-covariances
by stationary auto-covariance values as done in equation (3.15).

mostly by δPx occuring 49 minutes earlier to it. This time delay is the obvious result of

the causal link between the two genes. On the other hand, the stationary correlation (at

τ = 0), which is of non-zero value (0.6) would ideally not indicate of any such causality

and hence the significance of the dynamic correlations. This is supported by the simple

fact that the Corr[Py(t), Px(t + τ)] function has the same non-zero value at time τ = 0,

while for τ > 0, is a monotonically decreasing function. Hence, stationary correlation

alone cannot in effect predict the direction of the causal link between the genes. Ideally

it would not make much sense for the stationary correlation to have a non-zero value,

since that would mean that δPx would have an instantaneous effect on δPy. However

the actual reason behind the non-zero value of the stationary correlations is the slow

decaying auto-correlation function of Px. This dynamic auto-correlation is essentially

due to the decay process of the protein. Therefore, if δPy at say time (t) is influenced

by δPx at say time (t− t1), the stationary correlation between the two proteins at time

(t) could still be non-zero if the auto-correlation function of δPx is non-zero for a time-

period (> t1), which is what is happening here. Therefore, the stationary correlation
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between the two proteins at some time t is non-zero and positive and is in all likelihood

the result of the causal link between them, but this causality cannot be established by

this stationary correlation alone.

5.1.2 Eliminating fast reactions

Reacting systems such as gene regulatory networks are usually composed of elementary

reactions that can be broadly classified based on their operating timescales. For example,

elementary reactions such as the binding and unbinding of the TFs to the upstream

sequences of the regulated gene can be categorized as fast reactions whose timescales

are in seconds. These reactions are fast in comparison to the other elementary reactions

such as the transcription, translation and degradation that are in the range of minutes.

For simulation purposes it is obvious that the elimination of these fast reactions would

not only speed up the numerical simulations but also simplify the representation of

the reaction set. The speed up in the simulations is obviously due to the elimination

of reactions that occur thousands of times more frequently than the slower reactions

during the same period of simulation time. One way of elimination is to simply neglect

the fast reactions occuring at equilibrium and substitute equivalent expressions for the

rate constants in the slower reactions. These equivalent expressions would then be of

the Michaelis-Menten form with appropriate Hill co-efficients. Bundschuh et al. (2003)

employ such simple procedures in the case of three sample regulatory networks and

demonstrate that the stationary variances of a molecular species such as proteins would

remain very much the same as for the case with the original set of reactions comprising

the fast reactions. On similar lines we would like to show here that on eliminating the fast

reactions of binding and unbinding
[
Px +Gy

kon−−−⇀↽−−−
koff

Cy
]
, the dynamic correlation function

between the proteins Px and Py remain the same. The reduced system now has the

same reaction set as in Table 5.1 but without the above binding/unbinding reactions

and the
[
Cy

k+

My−−→ Cy + My

]
being substituted for by the new elementary reaction of

[
φ

keff−−−→ My

]
, where keff is the effective rate constant for this slow reaction which is

keff = k+
My

(
αPx

KD+Px

)
and follows the Michaelis-Menten kinetics. keff is obtained by

the simple fact that at steady state the mean concentration of the bound complex Cy
of the regulated gene is of the same MM-form. Now, the reduced system of reactions,

whose timescales are comparable to each other, result in the following deterministic rate
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equations,

dMx

dt
= k+

Mx
− k−

Mx
Mx

dMy

dt
= keffPx − k−

My
My

dPx

dt
= k+

Mx
Mx − k−

Px
Px

dPy

dt
= k+

Py
My − k−

Py
Py

whose Jacobian is now a 4× 4 matrix,

A =




−k−
Mx

0 0 0

0 −k−
My

(
αk+

My
KD

(KD+Px)2

)
0

k+
Px

0 −k−
Px

0

0 k+
Py

0 −k−
Py




.

The usual procedure for obtaining the dynamic correlation functions is followed as in

the case of the original system and as expected, the correlations are exactly of the same

values as shown in Figure 5.3 for the original case. Such effective simplification is helpful

not only for simulation purposes but also for ease in representation. Suppose a regulatory

network is made up of n number of activators, each activator system comprising of 3

variables which are the proteins, mRNAs and the gene. The total number of variables

would then be 3n which could easily be reduced to 2n by employing the above reduction

technique, whilst the dynamic correlations remain effectively the same.

5.1.3 Deterministic response to perturbations

The relation between the internal fluctuations and the system’s deterministic response

to perturbation commonly referred to as fluctuation-dissipation relations was described

earlier in chapter 3 with the aid of a sample system of a single-gene. Here, we shall

extend the investigation of fluctuation-dissipation relations in the case of the elementary

activator system. To get a clear picture let us represent the network structure of the

elementary activator simply as φ → Mx → Px → My → Py instead of the schematic

of Figure 5.1. Firstly, the deterministic response, which is the response in the average

or mean values of the molecular species for external perturbation, is determined. The

external perturbation in this case is simulated by instantaneously increasing the mean

steady state value of the mRNA Mx represented as 〈Mx(tss)〉 to 〈Mx(tss)〉 + ∆Mx.

Due to the above network structure of the system, the responses in the downstream

molecular species of Px, My and Py are as shown on the right side of Figure 5.4. The

time at which these responses attain maximum value are labelled as tresp, which is

36, 53, 104 minutes for Px(t), My(t) and Py(t) respectively. In Appendix B we derive the
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analytical expressions for tresp with the suitable approximations where decay rates of

proteins are much smaller than that of the mRNAs. Though this approximation might

not be perfectly true for the decay rates in the case of the CHA4 → CHA1 system,

for many other genes where the half-lives of proteins are of the order of 60-120 minutes

and the mRNAs are known to be in the range of a few minutes (around 4-10), these

approximations hold true. However, the qualitative relation between the expressions of

tresp and τ∗ is what we are really interested in, and not the exact expressions themselves.

The fluctuation-dissipation theorem says that the source behind these deterministic

responses is also responsible for the internal fluctuations. While the deterministic dy-

namics are in effect described by the rate equations and the equivalent Jacobian matrix,

the covariances that represent the internal fluctuations are also described by the same

rate equations and Jacobian. This was shown in chapter 3 and that the FDT holds true

in such chemical reacting systems. The comparison between the response curves and the

dynamic correlations is only for confirmation. Internal fluctuations as represented by

the dynamic correlations between the molecular species have similar characteristics as

the deterministic response curves. The corresponding time delay for attaining maximum

correlation represented by τ∗ are functions in the same decay rates as in the case of tresp.

For comparison with the response curves, the dynamic correlations between Mx and the

other downstream species are plotted on the left of Figure 5.4. These are correlations

between Mx at time t and the downstream species at a time-delay of t + τ and have the

characteristic non-monotonic shape with τ∗ 6= 0. In the correlations between the pairs

of (Mx, Px), (Mx, My) and (Mx, Py) respectively, the τ∗ corresponding to each of the

three correlation functions, are of the value of 21, 36 and 81 minutes respectively. The

analytical expressions for these times are also derived in Appendix B.

The progressively higher values of τ∗ are due to the progressive inclusion of additional

reaction steps that correspond to the production of Px, My and Py. This progressive

shift of τ∗ is due to the decay rates of the additional species Px, My and Py. Similarly

in the dynamic correlation Corr[Px(t), My(t + τ)] the corresponding τ∗ = 11 minutes is

the smallest of the τ∗’s of all the possible correlation functions out of the four molecular

species. This is due to the proximity of the species Px and My within the network

structure and also due to the half-life of My being 10 minutes which is the smallest

among that of all the other species. It is therefore evident that the reaction structure

and the values taken on by the parameters have a significant influence on the time-

correlation functions. More importantly the regulatory activity, which in this case is that

of activation, is clearly reflected in these plots that have a non-monotonic shape. Coming

back to the times tresp and τ∗, the difference between the two is due to the fact that

〈Mx(tss)〉 after being perturbated was allowed to go back to its original state by decaying

freely. This meant that at every infinitesimal time instant after the perturbation Mx

was at a perturbed value, thereby sustaining the response in the dowstream species

for a longer duration. In the case of the response of Px, the duration for which the
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Figure 5.4: To the left are the dynamic correlation functions between Mx and the
other variables of the X → Y network and to the right are the deterministic responses
in the other variables for perturbation in the mean steady state value of Mx.

decay in Mx has a perturbation type of effect on Px should be intuitively around the

value of the half-life of Mx which is
(
21−1 + 90−1

)−1
≈ 17 minutes, while the actual

difference (tresp − τ∗) is around 36− 21 = 15 minutes. The reasoning is on similar lines

for the difference between tresp and τ∗ values in the case of My and Py. The difference

in these time-delays would have been close to zero had the perturbation in Mx lasted

only for a very short time-interval after which it is instantaneously forced back to its

original steady state value. Through the above exercise we have demonstrated that the

fluctuation-dissipation relation is a reliable guide in such biological systems.

5.1.4 Effect of parameters on stationary correlations

The stationary covariance between molecular species is a function of various parameters

of the system. These parameters being nothing but the reaction rate constants, the

stationary covariances could easily be controlled by varying the values of these rate

constants. Thattai and van Oudenaarden (2001) showed this in the case of a simple

model comprising of only mRNA and protein species. They derived a simple expression

for the stationary variance of the proteins in terms of the parameters as

(
〈P 〉.k+

P
/k−

M

1+k−

P
/k−

M

)
.

As a continuation to their work, Ozbudak et al. (2002) experimentally demonstrated

the validity of this expression by altering the transcription and translation rates and
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then measuring the protein variance. In section 3.3 we derived the expressions for the

stationary variances and covariances in the case of a model comprising of not only

mRNA and proteins but also a gene. The additional parameters in this model were

the ON/OFF rates of the gene. The expressions of the covariances in this case act

as a clear guidance for experimentalists who are interested in altering the fluctuation

behaviour of the system. Conversely, the change in the fluctuation behaviour or in other

words the change in the covariances, due to variations in parameter values, will provide

us with some knowledge with regard to the system at hand. Though inference of the

analytical expression of covariances is too much to ask for, a basic understanding of the

network structure, regulatory mechanism and the values of the parameters is obtained

via such simple procedures. As our focus here is on the protein-protein stationary

covariance Cov[Px(t), Py(t)], we derive the same by solving the Lyapunov Equation

AC + CAT + BBT = 0, for the case of the elementary activator system. Since the

set of variables for this system are [Gy, Mx, My, Px, Py], the element of the C matrix

corresponding to Cov[Px(t), Py(t)] is C45. Therefore,

Corr[Px(t), Py(t)] =
C45√

C44C55

The analytical expression for the above correlation can be derived but is way too cum-

bersome to be reproduced here and also to be of any sensible use. We evaluate the

numerical values instead. By varying each of the ten rate constants individually, over

a vast range, we note the change in value of the above correlation. In Figure 5.5, the

change in the correlation for changes in the decay rates is shown. The behaviour of the

correlation for variations in the other six parameters is shown in Figure 5.6. Note that

the stationary correlation is nothing but the dynamic correlation Corr[Px(t), Py(t + τ)]

at time τ = 0. The parameters are varied from {0.05 times their base value} to {30×
base value}, where the base values are those derived from the CHA4→ CHA1 system.

Firstly, from Figure 5.5, we see that the correlations are smaller for lower values of the

decay rates, i.e., for higher half-life times. As the proteins/mRNAs decay slowly, the

number of molecules present at any given time remain mostly constant and hence any

fluctuations in Px would not be prominently correlated with the fluctuations in Py. On

the other hand, for smaller half-lives or larger decay rates, due to the lesser number

of protein/mRNA molecules present, any fluctuations in them are highly correlated.

Also, from the expression for Px at steady state, which is
k+

Px
Mx

k−

Px

and similarly from

Py =
k+

Py
My

k−

Py

, it is obvious that for increase in the decay rates the mean levels of protein

concentration decreases whilst from Figure 5.5 it is clear that the stationary correlation

increases. The increase in the stationary correlation is greater in the range where the

decay rates are smaller in value. A notable difference amongst the four decay rates is

the way in which the correlation increases faster and later decreases for increasing k−
Mx
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and k−
Px

. This could possibly point towards the network structure which in this case is

X → Y .

Figure 5.5: The above figure shows the variation in the stationary correlation
Corr[Px(t), Py(t)] (Figure 5.2(b)) for variations in the decay rates. The decay rates
are varied individually whilst keeping the other parameters fixed at their base val-
ues. The range of the variation in the parameter value is from {0.05 × base value} to
{30×base value}. The parameter values are on the x-axis, whose scale-type is changed
to non-linear for ease in representating the plots.

Similar reasoning suffices for the variation in the correlation for changes in the other

six parameters. In Figure 5.6, the values of the transcription rate, translation rate and

the ON and OFF rates of the DNA are varied from the base value in steps. Firstly,

for the case of the ON and OFF rates, for lower values of kON and for higher values of

kOFF , the stationary correlation is high. That is, for higher values of the dissociation

constant, defined by kOFF /kON , the transcription factor binds less to the DNA-complex

thereby reducing the rate of production of My and inturn of Py. However, the stationary

correlation depicts a different picture, mainly due to the fact that the fluctuations in

Px are now less rapid and therefore correlate more with other species of the system.

On the other hand, for higher values of the transcription rate, logic dictates that the

stationary correlation between the proteins be high, which definitely is the case as seen

in the Figure 5.6. Finally, translation rates have no effect on the stationary correlations

since they donot directly contribute to the transcription process. Analyzing the effects of

these rate constants on the fluctuation properties of the molecular species is important

for two reasons. One is that the molecular fluctuaions as observed in the correlations

provide significant information regarding the rate constants of the reaction processes.

The other complementary reason is that, such an analyses act as analytical tools that
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aid in designing new synthetic regulatory networks whose fluctuation properties and

performance in general, could be controlled.

Figure 5.6: The above figure shows the variation in the stationary correlation
Corr[Px(t), Py(t)] for variations in the transcription rate, translation rates, binding/un-
binding rates etc. The parameters are varied individually whilst keeping the other
parameters fixed at their base values. Note: the correlations corresponding to varia-
tions in k+

Px
are nearly the same as the correlations corresponding to variations in kon,

hence the overlap in their plots.

5.1.5 Effect of parameters on dynamic correlations

Though the sensitivity of the stationary correlation for variations in the parameters is

significant, it is the dynamic correlation that reveals the causality between the genes and

is therefore a very important statistic. In Figures 5.7 to 5.11 the dynamic correlation

between the proteins is plotted over a range of values for the four decay rates and also

the dissociation constant KD. The dynamic covariances given by equation (3.14) have

the general form
∑N

l=1 hle
λlτ , where the co-efficient (h’s) of the exponentials are some

functions in the eigenvectors of the Jacobian and λ’s are the eigenvalues. In the case of

GRNs involving two or three genes, the eigenvalues are mostly simple functions in the

parameters of the system, whereas the elements of the eigenvectors and hence the h’s are

complicated functions in the parameters p. It is therefore difficult to derive any explicit

relation between p and the correlations. One way of getting around this difficulty is by

simply studying the effect pα ± △ pα has on the magnitude and the temporal character

of the correlations or more specifically on the features Corr∗ and τ∗. The observed

sensitivity of τ∗ especially in the decay rates is re-confirmed by performing a sensitivity

analysis as described in chapter 4 and whose results are tabulated in Table 5.3.
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Elementary Activator

Genetic Process Parameter (pα) value ∂ Corr∗

∂pα
≈ Sensitivity ∂τ∗

∂pα
≈ Sensitivity

Constant flux k+
Mx

8.14× 10−3 −27 yes / non-Linear −10 no

Translation
k+

Px
36.3 −3× 10−3 no −0.01 no

k+
Py

143.2 5× 10−7 no −0.002 no

Transcription k+
My

0.52 0.2 yes / Linear −0.2 no

Decay process

k−
Mx

4.07× 10−2 2.2 yes / non-Linear −124 yes / non-Linear

k−
My

7.70× 10−2 −0.08 yes / non-Linear −168 yes / non-Linear

k−
Px

1.84× 10−2 6.1 yes / non-Linear −302 yes / non-Linear

k−
Py

1.76× 10−2 1.2 yes / non-Linear −1410 yes / non-Linear

TF binding/unbinding
kon 1 −0.1 yes / non-Linear −0.08 no
koff 200.0 5× 10−4 yes / non-Linear 9× 10−5 no

Table 5.3: Sensitivities of Corr∗[Px(t), Py(t + τ)] w.r.t each of the parameters of the elementary activator system. Though the expression for the

partial derivative ∂ Corr

∂pα
is applicable at any value of τ and not just at τ∗, here we evaluate ∂ Corr

∂pα
only at τ∗ = 49 minutes, which is nothing but

∂ Corr
∗

∂pα
. ∂τ∗

∂pα
, which is the the sensitivity of τ∗ w.r.t the parameters is also given. The type of sensitivity i.e., the way in which the Corr∗ and τ∗

vary for slight variations in pα, is mentioned. Non-linearity implies that the sensitivities are applicable only around small regions of pα. The terms
yes or no in the sensitivity column depend on whether the product of the parameter’s value and its corresponding ∂ Corr

∗

∂pα
are significant or not.
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The mathematical reasoning for the sensitivity of the feature τ∗ w.r.t only the decay

rates is as follows. While the constituent and non-redundant variables of the elementary

activator are [Gy, Mx, My, Px, Py], the DNA-TF complex Cy is the redundant variable.

Thus, there are five eigenvalues for the deterministic system, of which three are the decay

rates [−k−
Mx

,−k−
My

,−k−
Py

] whilst the remaining two are roots to the quadratic equation

x2 + bx + c = 0, where

b = koff + Pxkon + Gykon + k−
Px

c = k−
Px

(koff + konPx)

Considering the initial amount of Gy to be 1 nM , the expression for its mean concentra-

tion at steady state is 〈Gy〉 = KD

KD+〈Px〉
=

koff

koff+konPx
. We conveniently omit the angled

brackets 〈〉 for the rest of the section. Therefore, koff + konPx =
koff

Gy
, which makes

b =
koff

Gy
+ konGy + k−

Px
=

(
Gy + KD

Gy

)
kon + k−

Px
. Since the dissociation constant KD is

usually of the order of hundreds of nM in concentration and whereas the mean steady

state value of Gy is less than 1 nM , the approximation b ≈ koff

Gy
+k−

Px
is valid. Similarly,

c can be re-written as
koff k−

Px

Gy
. The roots of the quadratic equation x2 + bx + c = 0

with the approximated expressions for b and c are now −koff/Gy and −k−
Px

. With this

approximation, four out of the five eigenvalues are the decay rates of the mRNAs and

proteins whilst the fifth eigenvalue, which is of high magnitude, is −koff/Gy. Since the

covariance function is a sum of exponentials that are raised to the power of these eigen-

values, the slow eigenvalues corresponding to the decay rates have a predominant effect.

For lower (higher) values in these decay rates (half-life times) the exponentials decay

slowly to zero. Now, since the covariance at each point in the τ -axis is a summation

of these exponentials, the slow decaying exponential induces a delay in the covariance

attaining its peak magnitude which appears as a shift in τ∗ for the new covariances.

This is the reason for the high sensitivity values of ∂τ∗

∂pα
for the four decay rates. This

behaviour is observed in the correlations of the mRNAs or in fact between any two

molecular species of the system.

Though all the four decay rates show up as the eigenvalues, only those connected with the

element Y induce more sensitivity in τ∗ as shown in Figures 5.9 and 5.10 and further

verified from Table 5.3, where the terms ∂τ∗

∂pα
for the decay rates of [Mx, My, Px, Py]

are [−124,−168,−302,−1410] respectively. As the decay rates (half-life) of Py and

My decrease (increase) the Corr∗ shifts in time, i.e., τ∗ increases with a simultaneous

decrease in the amplitude of the correlation. As the half-life of say Py increases, more of

its molecules are present in the environment due to the continuation in its production at

a constant rate. With more protein present in the medium at any given time, it becomes

difficult to keep track of those protein molecules that came into existence due to the

action of a specific set Px molecules. Therefore the relation between the protein species

is now masked or, in other words, the correlation between them is no more prominent
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than was otherwise. Hence, for any small perturbation in upstream protein values at

steady state the effect now seen in the downstream protein levels are lessened and appear

after an increased time-delay of τ∗.

Figure 5.7: On the left is shown the time-correlation function between Px and Py

for various values of the decay rate k−
Mx

of the mRNA Mx. To vary k−
Mx

, the half-life
(t1/2)Mx

is assigned values of 2, 4, 6, 10, 14, 18, 24, 30, 40, 50, 80 minutes. We notice that
τ∗ increases marginally from 43 minutes to 54 minutes for increase in (t1/2)Mx

. For
higher values of (t1/2)Mx

, τ∗ gets capped at around 54 minutes, due to the effect of the
cell-doubling time tdouble of equation (5.7). On the right is shown a 3 dimensional view
of the effect of the decay rate on the correlations. The correlation plots corresponding
to half-lives of 2 and 80 minutes are marked out explicitly. The relation between the
decay rate and the half-life is given in equation (5.7).

Figure 5.8: k−
Px

is varied by assigning the values of 2, 4, 8, 15, 25, 40, 60, 90, 150, 300, 600
minutes to the half-life (t1/2)Px

. In the Corr[Px(t), Py(t + τ)] function τ∗ marginally
increases from 37 minutes to 52 minutes at which point gets capped due to the effect
of tdouble.
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Figure 5.9: k−
My

is varied by assigning the values of 2, 4, 6, 10, 14, 18, 24, 30, 40, 50, 80

minutes to the half-life (t1/2)My
. In the Corr[Px(t), Py(t + τ)] function τ∗ increases

from 38 minutes to 85 minutes for increase in the mRNA half-life.

Figure 5.10: k−
Py

is varied by assigning the values of

2, 4, 8, 15, 25, 40, 60, 90, 150, 300, 600 minutes to the half-life (t1/2)Py
. In the

Corr[Px(t), Py(t + τ)] function τ∗ progressively increases from 14 minutes to 68
minutes for increase in the protein half-life.

Finally with regard to the dissociation constant KD taking on a wide range of values

and corresponding changes in the probability of the TF binding to the operator region,

the average amount of mRNA and protein of the regulated element also vary greatly.

However, interestingly the dynamic correlation between the TF protein Px and the

regulated protein Py remains unchanged and nearly the same as that of the base case,

except for KD values less than around 200 nM when there is progressive reduction only in

Corr∗ while τ∗ still remains stagnant at its base value of 49 minutes. The insensitivity

of τ∗ to the binding/unbinding rates is due to the nature of the binding/unbinding

reactions which are very much faster that the other elementary reactions. This issue

was discussed in detail in section 5.1.2. Further, the correlations are totally insensitive
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to cases where kon and koff take on different values such that their ratio KD =
koff

kon

remains constant.

Figure 5.11: The dynamic correlation is evaluated for different values of the dis-
sociation constant KD = koff/kon. This dissociation constant is assigned values of
10, 20, 40, 80, 140, 200, 300, 400, 600, 1000, 1600 nM , by either increasing koff or by de-
creasing kon.

5.1.6 Effect of parameters on dynamic correlations - with mean steady

state values fixed

On solving for the deterministic rate equations at steady state, the expressions for the

mean values of the species are obtained in terms of the rate constants, indicating that

these rate constants would impact both the deterministic as well as the fluctuation prop-

erties at steady state. For the time-independent case of fluctuations, Thattai and van

Oudenaarden (2001) demonstrated that some rate constants exert influence simultane-

ously on the mean protein levels and also on their variances. In this section we study

the effect of parameters on just the fluctuations, with the mean concentration levels

held constant at the values given in Table 5.2. For example, supposing that the pair

[k+
Mx

, k−
Mx

] are at their base values, any deviations of equal measures in them does not

affect 〈Mx〉 = k+
Mx

/k−
Mx

. However there is a profound effect on the correlations for

equal variations in [k+
Mx

, k−
Mx

] as seen in Figure 5.12(a). The sensitivity of the dynamic

correlations to changes in the parameter values is suggestive of possible ways in which

biological networks could alter their fluctuation properties without affecting the mean

concentration levels of proteins and mRNAs. In Figure 5.12(a) we show the variation in

the correlations between the proteins for equal changes in the values of the parameters

[k+
Mx

, k−
Mx

]. On comparison with Figure 5.7, where only the decay rate k−
Mx

is varied,

we notice that the change in the correlations is larger due to variation in k+
Mx

. It also

suggests that this parameter only influences the magnitude of correlations and not its

temporal character.
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Figure 5.12: (a) The dynamic correlation between Px and Py is sensitive to changes in
the production and decay rates of Mx. The correlation with all the parameters at their
base values is in red, whereas the correlations that are due to changes in [k+

Mx
, k−

Mx
]

so that 〈Mx〉 =
k+

Mx

k−

Mx

remains constant, is in black. The other eight parameters are

fixed at their base values. While Corr∗ decreases significantly for increase in the two
parameters, τ∗ registers miminal change from 56 to 46 minutes. (b) The translation

and protein decay rates k+

Px
and k−

Px
are varied simultaneously so that 〈Px〉 =

〈Mx〉k
+

Px

k−

Px

remains constant. While there is not much difference in Corr∗, τ∗ decreases from 55 to
45 minutes for increase in these parameters.
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Figure 5.13: (a) Transcription rate constant k+

My
, and k−

My
are varied simultaneously

in steps, such that 〈My〉 remains constant. While Corr∗ does change by an appreciable
amount, there is a huge decrease in τ∗, from 87 to 43 minutes. (b) Similar is the
case for variations in k+

Py
and k−

Py
. There is again a large reduction in τ∗, from 102

to 36 minutes accompanied by noticable change in the shape of the plots, as was in
the case of [k+

Px
, k−

Px
]. The observed variation in τ∗ is due to the decay rate rather

than the translation rate. This is confirmed from the sensitivities of Table 5.3, where
∂τ∗

∂k−

Py

= −1410, whereas ∂τ∗

∂k+

Py

= −0.002.



Chapter 5 Regulatory Mechanisms 85

Similarly, for simultaneous variations in [k+
My

, k−
My

] the effect on Corr∗ of the protein

correlations is more (Figure 5.13(a)), whilst in the case where only k−
My

is varied Corr∗

just shifts in time (Figure 5.9). Therefore, the rate of production of the mRNAs have an

effect on the correlations, under conditions where the mean levels of species are constant.

On the other hand, the translation rates do not have such a prominent effect.

5.2 Effect of Dimerization

Px2

Py

My

Gy

Mx

X YPx

Figure 5.14: On the left is a schematic representation of the transcription of My from
the dimer (Px2

) bound gene complex. The equivalent network representation is shown
to the right.

In the previous section on the elementary activator, we studied in detail how changes in

parameter values causes different behaviour in the dynamic correlations. These corre-

lations show different behaviours also for changes in the type of regulatory mechanism.

In this section the mechanism is of activation via dimerization. Often TFs act in co-

operation for activating or repressing the transcription of genes. Dimerization is the basic

co-operativite mechanism where the protein monomers associate to form dimers, which

then bind to the upstream region of the promoters to influence transcription. Incorpo-

rating the dimerization reactions into the model of the elementary activator, the steps

that describe the transcription process now are: As in the case of activation through

[
φ

k+

Mx−−−→Mx

] [
2Px

ka−⇀↽−
kb

Px2

] [
Cy

k+

My−−→ Cy + My

] [
Mx, My

k−

Mx
,k−

My−−−−−−→ φ

]

[
Mx

k+

Px−−→Mx + Px

] [
Px2

+ Gy
kon−−−⇀↽−−−

koff

Cy
] [

My

k+

Py−−→My + Py

] [
Px, Py

k−

Px
,k−

Py−−−−−→ φ

]

Table 5.4: Reaction set describing the process of activation via protein dimerization

between 2 genes. The dissociation constant of the dimerization process is KDim = kb

ka

whose value in this case is set equal to the value of the gene dissociation constant
KD = 200 nM .

non-cooperativity, the redundant variable is chosen as Cy, while the non-redundant vari-

ables are now [Gy, Mx, My, Px, Px2
, Py] and the corresponding rate equations describing
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the time evolution of the deterministic or mean concentration levels of the variables are,

dGy

dt
= koff (α−Gy)− konGyPx2

dMx

dt
= k+

Mx
− k−

Mx
Mx

dMy

dt
= k+

My
(α−Gy)− k−

Mx
Mx

dPx

dt
= k+

Px
Mx − k−

Px
Px + 2kbPx2

− 2kaP
2
x

dPx2

dt
= koff (α−Gy)− konGyPx2

− kbPx2
+ kaP

2
x

dPy

dt
= k+

Py
My − k−

Py
Py.

The vector of the deterministic rates, the stoichiometric matrix and the Jacobian are

all derived from the above rate eqautions and are then used to obtain the dynamic

correlation between Px and Py as described in the case of the elementary activator

system.

R =

(
konGyPx2

, koff (α−Gy), k
+
My

(α−Gy), kbPx2
, kaP

2
x , k+

Mx
, k+

Px
Mx, k+

Py
My,

k−
Mx

Mx, k−
My

My, k
−
Px

Px, k−
Py

Py

)T

ν =




−1 +1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 +1 0 0 −1 0 0 0

0 0 +1 0 0 0 0 0 0 −1 0 0

0 0 0 +2 −2 0 +1 0 0 0 −1 0

−1 +1 0 −1 +1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 +1 0 0 0 −1




A =




(−koff − konPx2
) 0 0 0 −konGy 0

0 −k−
Mx

0 0 0 0

−k+
My

0 −k−
My

0 0 0

0 k+
Px

0 (−4kaPx − k−
Px

) 2kb 0

(−koff − konPx2
) 0 0 2kaPx (−kb − konGy) 0

0 0 k+
Py

0 0 −k−
Py




.

A value of 200 nM is set for the dimer dissociation constant KDim = kb/ka so that the

mean concentration of the dimers Px2
= P 2

x/KDim is 783 nM which is approximately

twice that of the monomers Px = 395 nM . The dynamic correlation between Px and

Py are evaluated for these parameter values and are as shown in Figure 5.15 (blue

curves). The dimerization process clearly alters the shape of the correlations from that
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of the elementary activator (red curves), such that the correlations are now nearly equal

to 1 and decays very slowly. The increase in correlation magnitude is because, the

fluctuations in Px are now amplified by the equilibrium expression of the dimer which

is proportional to Px squared and it is this dimer that then activates the production

of Py. Therefore fluctuations in Px have an amplifying influence on the fluctuations of

Py and hence the increase in the correlation magnitude. As for the slow decay of these

correlations, it is once again the coupled reactions of dimerization that do not forget the

fluctuations in Px for a long time and hence the influence on Py fluctuations is sustained.

In other words, this is due to the coupled nature of the dimerization reactions, which

forces the Px fluctuations to influence Px2
fluctuations which influence the Px back again

and so on, thereby sustaining the correlations. In Figure 5.15(a) we see that for short

half-lives of Px (about 8 minutes), the effect of dimerization begins to wear off, the

possible reason being that Px molecules are now being produced and degraded faster

(due to increase in values of [k+
Px

, k−
Px

]) and consequently not able to participate much in

the dimerization process. On the other hand, in Figure 5.15(b) we do not see any such

effect for decrease in the half-life of Py due to its non-participation in the dimerization

process.

Figure 5.15: (a) k−
Px

is varied in steps from its base value of 0.0184 min−1 that
corresponds to a half-life of (t1/2)Px

= 65 minutes. The correlation corresponding to

this value of k−
Px

is shown in blue. k+

Px
is simultaneously varied such that 〈Px〉 remains

unchanged. For increase in the values of [k+

Px
, k−

Px
], there is an observable increase in

Corr∗, whilst τ∗ decreases from 53 to 46 minutes. (b) Likewise, for step-wise increase
in the parameters [k+

Py
, k−

Py
], τ∗ once again reduces from 81 to 20 minutes, whilst Corr∗

is nearly constant.

The effect of different values of KDim on the protein correlations is shown in Figure

5.16. For each value that KDim takes, the transcription rate k+
My

= k−
My

My/Cy takes

on corresponding values since the amount of gene present in active state has the form

Cy =
αPx2

KD+Px2

= αP 2
x

KDKDim+P 2
x
. Therefore Figure 5.16 shows the resultant effect of the pair
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[KDim, k+
My

]. The overall effect of dimerization is that there is a higher level of correla-

tion between the proteins and more importantly, the shape of the dynamic correlations

is different than that in the monomer case. In fact, for a low value of KDim = 40 nM ,

corresponding to Px2
= 3913 nM , the correlation function loses its characteristic bell -

shape and its magnitude remains nearly constant at around 0.98 for a long duration

of time. Under such conditions, any perturbation in Px has an equivalent effect on Py

over a long period of time, i.e., the effect of correlation is sustained over time. Further,

(a) only the dissociation constants KD and KDim affect the correlations and not the

corresponding individual forward and reverse rates, (b) though Cov[Px2
(t), Py(t + τ)]

and Cov[Px(t), Py(t + τ)] exhibit distinct behaviours, their normalized dynamic corre-

lations are exactly the same, due to normalization by their respective stationary auto-

covariances. Therefore either Px or Px2
could be considered as the output variable.

Figure 5.16: Activation by dimers: The base value of KDim is 200 nM and the
correlation corresponding to this value is plotted in blue. Black curves represent the
correlations that correspond to variations in the value of KDim, which is assigned
values of 40, 80, 600 and 1400 nM [by adjusting either kb and/or ka so that their ratio
is KDim as desired]. An equivalent variation in the value of k+

My
is done such that

the mean value of My remains unchanged from its original value. For increase in the
values of [k+

My
,KDim], τ∗ decreases marginally from 53 to 47 minutes. For purposes of

comparison, the base case correlation corresponding to the elementary activator system
is included and is shown in red.
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5.2.1 Eliminating fast reactions

As in the case of the elementary activator system, coupled fast reactions in the dimer-

ization system are the ones corresponding to the binding and unbinding events of the

dimers to the regulatory sequences of the gene. However, an additional set of fast reac-

tions are those of protein dimerization. On eliminating the binding/unbinding reactions

as in the case of the elementary activator (section 5.1.2), an effective rate constant

keff = k+
My

(
αPx2

KD+Px2

)
is introduced in the rate equation for My. The fast variable,

which is Gy, is eliminated thus and the dynamic correlation between Px and Py for such

a reduced system is found that gives very nearly the same dynamic behaviour as that

of the original unreduced system.

dMx

dt
= k+

Mx
− k−

Mx
Mx

dMy

dt
= k+

My

(
αPx2

KD + Px2

)
− k−

My
My

dPx

dt
= k+

Mx
Mx − k−

Px
Px

dPx2

dt
= −kbPx2

+ kaP
2
x

dPy

dt
= k+

Py
My − k−

Py
Py

A =




−k−
Mx

0 0 0 0

0 −k−
My

0

(
αk+

My
KD

(KD+Px2
)2

)
0

k+
Px

0 (−4kaPx − k−
Px

) 2kb 0

0 0 2kaPx −kb 0

0 k+
Py

0 0 −k−
Py




.

However, further elimination of the other pair of fast reactions that are of the dimeriza-

tion process, does not result in the same correlation. To eliminate the dimer Px2
and its

corresponding dimerization reactions, the equilibrium value of Px2
= P 2

x/KDim is used

in the first reduced system. The rate equations for this second reduced system are now,

dMx

dt
= k+

Mx
− k−

Mx
Mx

dMy

dt
= k+

My

(
αP 2

x

KDKDim + P 2
x

)
− k−

My
My

dPx

dt
= k+

Mx
Mx − k−

Px
Px

dPy

dt
= k+

Py
My − k−

Py
Py
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A =




−k−
Mx

0 0 0

0 −k−
My

(
2αk+

My
KDKDimPx

(KDKDim+P 2
x )2

)
0

k+
Px

0 −k−
Px

0

0 k+
Py

0 −k−
Py




.

On reducing the first set of fast reactions, the stationary covariance between the proteins

remains the same as in the original system at 5.04 × 108. However, this stationary

covariance in the second reduced system decreases to a value of 5.12×106. Consequently,

the dynamic correlation between Px and Py in this case is found to be of quite less

value when compared to the original and the first reduced systems. This is shown

in Figure 5.17, where the stationary correlations for the original and second reduced

systems are 0.92 and 0.63 respectively. Therefore the dimer reactions hold the key in

characterizing this regulatory system, which is reflected in the dynamic correlations

between the proteins.

Figure 5.17: Correlations between proteins Px and Py of the dimer activator system,
where two sets of fast reactions are eliminated.

On similar lines, Bundschuh et al. (2003) give an example case of a negative feedback

gene where the second reduced system results in large stationary variances in the pro-

teins. They reasoned that the buffering of fluctuations in monomer proteins was not

possible in the second reduced system due to the absence of the dimerization process,

since any large fluctuations in the total number of proteins Px + 2Px2
results in smaller

fluctuations in the population of the monomers in the presence of the dimerization reac-

tions. Overestimation of the stationary fluctuations was a problem in their system due

to the presence of a feedback mechanism, but in our system that has no such feedback,

underestimation is the issue. Therefore, the dynamic correlations are underestimated

in our second reduced system. Also, unlike the other works that studied the effect of

dimerization, our focus here is on the dynamic correlations between proteins and not

just on the stationary variances.
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5.3 Elementary Repressor

Px

Py

My

Gy

Mx

X Y

X

XX

Figure 5.18: The figure on the left is a schematic representation of the regulatory
process where the transcription of mRNA My from the coding sequence of its gene Gy

is blocked by the action of the repressor Px on the promoter region of the DNA. The
equivalent network representation is shown to the right where the dashhead indicates
repression of element Y by X.

Repression by a transcription factor is as common an event as activation. Protein Px

acting as a repressor of Py binds upstream to the promoter region of Gy and blocks its

transcription by the RNA polymerase molecule. However transcription continues at a

basal rate of k+
My

when there is no binding of Px. On comparing the reaction set to that of

the activator system the only difference here is in the step corresponding to the produc-

tion of My, whose mean steady state value now is (basal transcription rate)×Gy/k−
My

=

k+
My

Gy/k−
My

. This change in the reaction structure results in negative correlations that

is an exact mirror image of the correlations of the activator network. The rate con-

stants and the mean concentrations of mRNAs and proteins are of the same value as

in the case of the activator network. This is deliberately done so that the effect of the

regulatory mechanism, which in this case is repression, gets illuminated in the dynamic

correlations.

[
φ

k+

Mx−−−→Mx

] [
Px + Gy

kon−−−⇀↽−−−
koff

Cy
] [

My

k+

Py−−→My + Py

] [
Mx

k−

Mx−−−→ φ

] [
Px

k−

Px−−→ φ

]

[
Mx

k+

Px−−→Mx + Px

] [
Gy

k+

My−−→ Gy + My

] [
My

k−

My−−→ φ

] [
Py

k−

Py−−→ φ

]

Table 5.5: Reaction set describing the process of repression in X ⊣ Y . Gene Gy is
switched to inactive state Cy by the repressor Px. My is transcribed when the promoter
region is free of this repressor.
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The rate equations are similar to the case of the elementary activator except for the

production rate of My which is now transcribed from the unbound gene molecule Gy.

dGy

dt
= −konPxGy + koff (α−Gy) (5.8)

dMx

dt
= k+

Mx
− k−

Mx
Mx (5.9)

dMy

dt
= k+

My
Gy − k−

My
My (5.10)

dPx

dt
= k+

Mx
Mx − k−

Px
Px − konPxGy + koff (α−Gy) (5.11)

dPy

dt
= k+

Py
My − k−

Py
Py (5.12)

The vector R of the deterministic rates, and the stoichiometry matrix are obtained

through the above set of rate equations, and are:

R =

(
konPxGy, koff (α−Gy), k

+
My

Gy
︸ ︷︷ ︸

, k+
Mx

, k+
Px

Mx, k+
Py

My,

k−
Mx

Mx, k−
My

My, k
−
Px

Px, k−
Py

Py

)T

ν =




−1 +1 0 0 0 0 0 0 0 0

0 0 0 +1 0 0 −1 0 0 0

0 0 +1 0 0 0 0 −1 0 0

−1 +1 0 0 +1 0 0 0 −1 0

0 0 0 0 0 +1 0 0 0 −1




Further, the Jacobian matrix corresponding to the above set of rate equations is:

A =




−(koff + konPx) 0 0 −konGy 0

0 −k−
Mx

0 0 0

k+
My︸︷︷︸

0 −k−
My

0 0

−(koff + konPx) k+
Px

0 −(k−
Px

+ konGy) 0

0 0 k+
Py

0 −k−
Py




.

The negative correlations (Figure 5.19) are due to the change in the rate equation for My

that is reflected as a corresponding change in the Jacobian and the reaction rates. In the

Jacobian A and the vector R we have marked this change in the element by underbracing

it. While the vector of the deterministic rates R is exactly the same as in the case of the

activator, the only change is in the rate k+
My

(α − Gy) which now is k+
My

Gy. Similarly,

the Jacobian matrix A is exactly the same as that of the activator system (5.6) with the

only exception being that element A31 is now k+
My

in place of −k+
My

.
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Figure 5.19: (a) [k+

Px
, k−

Px
] are varied simultaneously so that the mean concentration

level of Px = Mx
k+

Px

k−

Px

remains constant. While there is an increase in Corr∗, τ∗ decreases

from 55 to 45 minutes for step-wise increase in these parameters. (b) Similarly for step-
wise increase in [k+

Py
, k−

Py
], τ∗ once again reduces from 102 to 36 minutes.
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Therefore, though the eigenvalues λ’s remain the same the reason for the negative corre-

lations is that the co-efficients of exponentials in equation (3.14) are now functions of a

new set of eigenvectors whose elements involve k+
My

. This is the reason that, though the

concentrations of the regulated and regulator proteins are not typical of a repressor i.e.,

Py > Px, the correlations faithfully reveal the type of regulatory activity that could not

be guessed otherwise. For the case where Px > Py, the observed fluctuation properties

remain the same except for reduction in the correlation magnitude. As an example, for

〈My〉 = 0.1 nM and 〈Py〉 = 100 nM the Corr∗ = −0.47.

The correlations between the repressor Px and the repressed protein Py exhibits changes

in them for corresponding changes in the parameter values. In Figure 5.19 the protein

correlations for different half-lives of the proteins are shown. Note the close similarity

between these correlations and those in Figures 5.12(b) and 5.13(b) respectively. A

change in the regulatory mechanism, which in this case is repression, has influenced the

dynamic correlations such that they are now negative in value but otherwise behave very

much similar to the case of the elementary activator. The close similarity between the

correlations of the two systems with different regulatory mechanisms is due to the fact

that the reaction structure of the systems are essentially the same, with the only change

being the way My is transcribed. Hence, the sensitivities of the correlations w.r.t the

parameters is very similar to those of the activator case. These sensitivities are given in

Table 5.6.

5.4 Summary

In this chapter we have demonstrated how the stationary as well as the dynamic cor-

relations between molecular species of a regulatory system vary (a) for changes in the

values of the parameters, and (b) for different types of regulatory mechanisms. The

parameters that induce temporal sensitivity in the dynamic correlations are the eigen-

values of the deterministic system, which are in most cases the decay rates of proteins

and mRNAs. The decay rates of proteins are especially important in the case of protein

correlations. Therefore, the dynamic correlations between the proteins, or also between

the mRNAs, illuminate or characterize the type and form of the regulatory mechanism

present between two genes.

——————————————————————————————————————
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Elementary Repressor

Genetic Process Parameter (pα) value ∂ Corr∗

∂pα
≈ Sensitivity ∂τ∗

∂pα
≈ Sensitivity

Constant flux k+
Mx

8.14× 10−3 4.8 yes / non-Linear −8.5 no

Translation
k+

Px
36.3 −1× 10−5 no −0.004 no

k+
Py

143.2 −2× 10−7 no −0.002 no

Transcription k+
My

1.03 −0.04 yes / Linear −0.2 no

Decay process

k−
Mx

4.07× 10−2 0.8 yes / non-Linear −128 yes / non-Linear

k−
My

7.70× 10−2 −0.07 yes / non-Linear −168 yes / non-Linear

k−
Px

1.84× 10−2 1.6 yes / non-Linear −302 yes / non-Linear

k−
Py

1.76× 10−2 −3.2 yes / non-Linear −1410 yes / non-Linear

TF binding/unbinding
kon 1 −3× 10−4 yes / non-Linear −0.08 no
koff 200.0 1× 10−6 yes / non-Linear −4× 10−4 no

Table 5.6: Table giving Corr∗ and τ∗ sensitivities for the case of elementary repressor system. Note the similarity between the values of sensitivities
here and in the case of the elementary activator given in Table 5.3.



Chapter 6

Network Mechanisms

Complex regulatory networks, found in unicellular organisms such as bacteria, have been

observed to be made up of over-represented small networks comprising of 2-3 genes Milo

and et al. (2002). These smaller networks are found to be common not only in microor-

ganisms but also in animals and plants with the difference being in the precise manner

in which they interconnect to form the bigger complex network, which in turn performs

a specific regulatory function. Whilst studying the bigger network formed via intercon-

necting the elementary networks holds the key to unraveling many aspects of regulatory

functions, the pre-requisite to this, however, is to develop a thorough understanding of

these elementary networks. It is towards this objective, that the classification of cer-

tain small networks as elementary ones, is crucial. The recurrence of these networks

over a wide range of organisms is considered to be an indication of their special proper-

ties. These basic networks that are the building blocks of the bigger and more complex

networks, have widely been investigated in theory Shen-Orr et al. (2002), and also ex-

perimentally with the aid of synthetic networks Alon (2007), and have been found to

have well-defined characteristics that are useful for proper functioning of the complex

regulatory network. In this chapter, we follow a similar objective of characterizing these

networks, but on the basis of their dynamic fluctuation properties. This approach is

important since it would adhere to our statements made in the introduction regard-

ing the benefits of single-cell measurements over multi-cell measurements, and would

assist in recognizing the regulatory structures of these networks with the aid of such

measurements.

Here we consider different types of network mechanisms that, by virtue of differences in

their network structures and consequently in their Jacobian matrices, display different

dynamic correlation behaviours. Each of these networks consists of an input gene-node

X, an output node Y and an additional gene-node denoted as Z. For example, in the

case of cascaded activation, the network would be X → Z → Y , where the intermediary

transcription factor Pz is now responsible for the activation of Py. On the other hand,

96
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the combinatorial activation network is X → Y ← Z involving activation of Y by

the combinatorial action of Px and Pz. On combining the above two types of network

mechanisms we arrive at a third type of network mechanism known as the feedforward

loop. The coherent and incoherent feedforward loops are discussed towards the end of

the chapter. As we shall see in this chapter, the effect that the node Z has on the

dynamic fluctuations is of significance in determining the network mechanism of the

GRN.

6.1 Cascading Regulatory Networks

Among such basic networks, of particular interest has been the cascade, comprising

of anywhere around 2 to 7 genes, where each gene regulates the transcription of the

gene dowstream to it. In order to study the role of cascades in the functioning of the

large network, it is important to analyze their behaviour in isolation. Towards this,

Rosenfeld and Alon (2003) sifted through the databases of transcriptional interactions

in organisms such as Escherichia coli and Saccharomyces cerevisiae, and found that

cascades of length 2-3 were most common in sensory transcription networks of such

organisms, where these networks respond to external fluctuating conditions. On the

other hand, larger cascades of length of around 6-7 were common in developmental

transcription networks of multicellular organisms such as sea urchin and Drosophila

Davidson et al. (2002).

The relation between the mean steady state levels of the output and input variables,

known as the transfer function, and its hyperbolic shape is due to the Michaelis-Menten

kinetics of the reactions. For longer cascades, this function results in switching-like

behaviour, inducing a sigmoidal shape that generates a sharp threshold for switching

the output variable to higher concentration levels. This was confirmed experimentally

by Pedraza and van Oudenaarden (2005) who designed a synthetic cascade regulatory

networks and monitored the expression levels of the proteins through fluorescence mi-

croscopy. The fluorescence levels were monitored for changes in the concentration levels

of the inducer molecules that were the variables at the front end of the cascade and

which induced the production of the protein variables that were dowstream in the cas-

cade. Similarly, the synthetic circuit designed by Hooshangi et al. (2005) consisted of

the input variable anhydrotetracycline (aTc) regulating, via a cascade of repressors, the

transcription of the output variable, which was the enhanced yellow fluorescent protein

(eyfp). Both studies concluded that for increased number of steps in the cascade, the

steady state transfer curve became steeper. This enhanced sensitivity of a gene com-

pared to its upstream gene, when the inducer concentration is varied, demonstrated the

utility of cascades for generating steep responses. Apart from the above, the signifi-

cance of regulatory cascades also lies in the fact that the time taken for the downstream
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components to respond to signals upstream, which is important in timing regulatory

decisions, can be varied as a function of reaction rates and also the number of stages of

the cascade. A direct relation to these response times is the time taken for the dynamic

correlations to reach maximum value which is τ∗. In section 3.3 we proved that such

a relation does indeed exist and hence the need for single-cell measurements through

which dynamic correlations could be evaluated. Therefore, the quantities of interest are

the dynamic covariances or correlations between the proteins, more so between the input

and output proteins Px and Py.

6.1.1 Cascading Activation - I

Px

Pz

Mz

Gz

Mx

Z Y

Py

My

Gy

Pz

X

Figure 6.1: Schematic and network representations of a cascade involving activators.

Figure 6.1 shows a schematic representation of a two-stage cascade with the proteins

acting as activators. Px activates the production of Pz, which in turn activates the pro-

duction of Py. The mean concentration levels and the decay rates of the input and output

proteins and mRNAs are of the same value as that of the elementary activator system

of section 5.1. However, the mean concentration levels of the intermediary species Mz

and Pz are assumed to be 2.5 nM and 2000 nM respectively. These concentration levels

are chosen such that they fall in between the corresponding concentration levels of the

upstream node X and the downstream node Y . The half-lives of Mz and Pz are assumed

to be of 8 and 40 minutes respectively. Dilution by cell-division is also a factor in deter-

mining the decay rates of these species. The transcription and translation rates of Mz

are correspondingly evaluated as k+
Mz

= k−
Mz
〈Mz〉/〈Px〉 and k+

Pz
= k−

Pz
〈Pz〉/〈Mz〉. The

reaction set for this regulatory scheme is given in Table 6.1 and where the dissociation

constants KD1
= koff1

/kon1
and KD2

= koff2
/kon2

are assumed to be of same value of

200 nM .
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[
φ

k+

Mx−−−→Mx

] [
Px + Gz

kon1−−−⇀↽−−−
koff1

Cz
] [

Pz + Gy

kon2−−−⇀↽−−−
koff2

Cy
] [

Mz

k+

Pz−−→Mz + Pz

] [
Mx, Mz, My

k−

Mx
,k−

Mz
,k−

My−−−−−−−−−→ φ

]

[
Mx

k+

Px−−→Mx + Px

] [
Cz

k+

Mz−−→ Cz + Mz

] [
Cy

k+

My−−→ Cy + My

] [
My

k+

Py−−→My + Py

] [
Px, Pz, Py

k−

Px
,k−

Pz
,k−

Py−−−−−−−−→ φ

]

Table 6.1: Reaction set of the cascading activation-I regulatory system.

[
dGz

dt = −kon1
GzPx + koff1

(α−Gz)

] [
dGy

dt = −kon2
GyPz + koff2

(β −Gy)

]

[
dMx

dt = k+
Mx
− k−

Mx
Mx

] [
dMz

dt = k+
Mz

(α−Gz)− k−
Mz

Mz

] [
dMy

dt = k+
My

(β −Gy)− k−
My

My

]

[
dPx

dt = k+
Px

Mx − k−
Px

Px − kon1
GzPx + koff1

(α−Gz)

] [
dPz

dt = k+
Pz

Mz − k−
Pz

Pz − kon2
GyPz + koff2

(β −Gy)

] [
dPy

dt = k+
Py

My − k−
Py

Py

]

Table 6.2: A reduced set of differential equations describing the time-evolution of the deterministic variables of the cascading activation-I regulatory
system. Here, the variables Cz and Cy are eliminated by the rule of conservation.

[
dMx

dt = k+
Mx
− k−

Mx
Mx

] [
dMz

dt = k+
Mz

(
αPx

Px+KD1

)
− k−

Mz
Mz

] [
dMy

dt = k+
My

(
αPz

Pz+KD2

)
− k−

My
My

]

[
dPx

dt = k+
Px

Mx − k−
Px

Px

] [
dPz

dt = k+
Pz

Mz − k−
Pz

Pz

] [
dPy

dt = k+
Py

My − k−
Py

Py

]

Table 6.3: A further reduced set of differential equations obtained by eliminating Gz and Gy.
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The deterministic time-evolution of the variables is defined by the set of ODEs given in

Table 6.2 where the DNA-TF complexes are eliminated by the law of conservation:

Cz(t) = Gz(t0)−Gz(t) = α−Gz(t)

Cy(t) = Gy(t0)−Gy(t) = β −Gy(t)

Further, the fast reactions that involve the binding and unbinding of the TF to the

DNA can also be eliminated by solving for the variables Gz and Gy at steady state

and then substituting for them in the other ODEs. As demonstrated in section 5.1.2

such elimination of these fast TF-DNA reactions does not affect the dynamic correlation

between the remaining variables of the system. We shall therefore use the set of ODEs

given in Table 6.3 for evaluating the dynamic correlations. The variables of such a

reduced system are now [Mx, Mz, My, Px, Pz, Py] for which the corresponding Jacobian

matrix is:

A =




−k−
Mx

0 0 0 0 0

0 −k−
Mz

0 A24 0 0

0 0 −k−
My

0 A35 0

k+
Px

0 0 −k−
Px

0 0

0 k+
Pz

0 0 −k−
Pz

0

0 0 k+
Py

0 0 −k−
Py




(6.1)

where the off-diagonal elements A24 and A35 are,

A24 =
∂(dMz/dt)

∂Px
= k+

Mz
α

[
KD1(

Px + KD1

)2

]
(6.2)

A35 =
∂(dMy/dt)

∂Pz
= k+

My
β

[
KD2(

Pz + KD2

)2

]
(6.3)

The vector of deterministic rates and the stoichiometric matrix are:

R =

(
k+

Mx
, k+

Mz

α Px

KD1

(1 + Px

KD1

)
, k+

My

β Pz

KD2

(1 + Pz

KD2

)
, k+

Px
Mx, k+

Pz
Mz, k

+
Py

My,

k−
Mx

Mx, k−
Mz

Mz, k
−
My

My, k
−
Px

Px, k−
Pz

Pz, k
−
Py

Py

)T

ν =




+1 0 0 0 0 0 −1 0 0 0 0 0

0 +1 0 0 0 0 0 −1 0 0 0 0

0 0 +1 0 0 0 0 0 −1 0 0 0

0 0 0 +1 0 0 0 0 0 −1 0 0

0 0 0 0 +1 0 0 0 0 0 −1 0

0 0 0 0 0 +1 0 0 0 0 0 −1



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The quantity of interest is the dynamic correlation between Px and Py, which is evaluated

by making use of the above matrices via equations (3.14) and (3.15). This function is

plotted in Figure 6.2 where the other cross-correlations are also shown. For purposes of

comparison, the correlation between these proteins in the case of the two-gene activator

system (section 5.1) are also shown (in red). The effect of introducing an intermediary

regulatory node Z to the original two-gene activator network is that there is a decrease

in the magnitude of the correlation and there is also a shift in this correlation curve

along the time-axis τ . The time τ∗ at which the correlations achieve maximum value,

which was 49 minutes for the two-gene case, is now doubled to 97 minutes.

Figure 6.2: The dynamic correlations between the proteins of the cascading activation-
I system are shown in blue, whilst the correlation between Px and Py of the two-
gene elementary activation system is shown in red for comparison. τ∗ for the
Corr[Px(t), Pz(t + τ)] function is 39 minutes, for the Corr[Pz(t), Py(t + τ)] function
is 48 minutes, and in the case of Corr[Px(t), Py(t + τ)] is 97 minutes. The mean val-
ues are: 〈Mx〉 = 0.2 nM, 〈Mz〉 = 2.5 nM, 〈My〉 = 4.5 nM, 〈Px〉 = 395 nM, 〈Pz〉 =
2000 nM, 〈Py〉 = 36001 nM . The corresponding parameter values are: k+

Mx
=

0.008 nM min−1, k+

Mz
= 0.35 min−1, k+

My
= 0.38 min−1, k+

Px
= 36 min−1, k+

Pz
=

20 min−1, k+

Py
= 143 min−1, k−

Mx
= 0.0407 min−1, k−

Mz
= 0.0927 min−1, k−

My
=

0.077 min−1, k−
Px

= 0.0184 min−1, k−
Pz

= 0.025 min−1, k−
Py

= 0.0176 min−1. The
TF-DNA dissociation constants are KD1

= KD2
= 200 nM .

The decrease in the level of correlation is due to decrease in covariance levels. For

example, if we take the stationary variance 〈δP 2
y 〉 for the two-gene case, which is

Cov[Px(t), Py(t)], it is of value 2.03×108 whereas for the three-gene cascade network it is

reduced to 5.69× 107. This could seem contrary to the idea that any fluctuations would

increase on addition of a node in a cascade. However, Thattai and van Oudenaarden

(2002) show that the condition for noise in the output variable to be bounded or in fact

to decrease is that the magnitude of the derivative of transfer functions, which they call

the differential amplification factor, should be less than one. Their model is based on
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the Langevin method, where a time-dependent noise term having Gaussian white-noise

properties, is tagged on to the deterministic dynamical ODEs. The parameter values

used in our case adheres to the above condition and therefore the decrease in the variance

of Py. For example, let us consider the rate of production of Pz given by the ODE:

d〈Pz〉
dt

= k+
Pz
〈Mz〉 − k−

Pz
〈Pz〉 = k+

Pz

k+
Mz

k−
Mz

( α〈Px〉
〈Px〉+ KD1

)
− k−

Pz
〈Pz〉 (6.4)

The differential amplification factor is nothing but the partial derivative of the RHS of

the above ODE w.r.t Px, which is,

k+
Pz

k+
Mz

k−
Mz

( αKD1

(〈Px〉+ KD1
)2

)
= 20.0× 0.348

0.0926
×

( 1.0× 200

(395.6 + 200)2

)
= 0.042

Similarly for the variable Py, the factor is 0.03. Since these factors are less than one,

the stationary covariance in the protein Py reduces in value as compared to that of the

two-gene network. Similarly, the stationary covariance between the proteins Px and Py

also reduces from 4.22 × 106 to 2.08 × 105. Therefore the stationary correlation or the

dynamic correlation at time τ = 0 is,

Corr[Px(t), Py(t)] =
2.08× 105

√
2.43× 105

√
5.69× 107

= 0.056

whilst on the other hand for the two-gene case, this is,

Corr[Px(t), Py(t)] =
4.22× 106

√
2.43× 105

√
2.03× 108

= 0.6

Coming back to the increase in τ∗, due to the relation between the time τ∗ and the

response time tresp that we derived in section 3.3, there is an equivalent doubling in the

response time as well. This is in accordance with the results obtained by Rosenfeld and

Alon (2003), who noticed doubling of the response time, which they define as the time

to reach half of the change between the pre-induced steady state and the post-induced

steady state. They noticed that for proteins that decay via dilution, this response time

was approximately equal to one cell-cycle time for each stage of the cascade, and therefore

the time taken for the downstream components of the cascade to respond to signals at

the top of the cascade increases with increase in the length of the cascade. However,

it was observed by Hooshangi et al. (2005) in their experiments that as the cascade

grew in length, there was not only a loss of synchronization in these response times,

but also the variation in the protein levels increased. This was a potential problem in a

population of cells in their ability to respond uniformly to an external signal. Therefore

the limitation of the response measurements are that they are the mean response of a

population of cells to an external pertubation, where the issue of cell synchronization

creeps in. In our proposed scheme this issue could be addressed by monitoring protein
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numbers in single cells over time and then evaluating the dynamic correlation functions

between different protein variables of the cascade. Whilst in the case of the deterministic

responses, the response times increase for increasing cascade length, the τ∗ which is the

time taken for correlations to reach maximum value and is related to the response

time (section 3.3) also increases equivalently for addition of each stage of the cascade.

Consequently, we retain the ability to identify the network structure through their well-

known characteristics, which in this case is of increased τ∗ of the dynamic correlations

between the input variable Px and the output variable Py. As our approach avoids

issues of cell syncronization, the use of single-cell measurements in characterizing these

networks becomes all the more relevant.

6.1.1.1 Sensitivity of protein correlations to decay rates

In the previous chapter we focussed on the correlation between the protein variables

and their sensitivity for changes in the parameter values. This gave us a clear picture

of the fluctuation properties of the two-gene networks. In the present case of three-

genes, let us study the effect of the paramaters on the correlations Corr[Px(t), Py(t +

τ)] between the same protein variables. Firstly, by changing the order of variables to

[Mx, Px, Mz, Pz, My, Py], and consequently re-arranging the Jacobian matrix of (6.1), we

get a lower triangular matrix whose diagonal elements are its eigenvalues.

A =




−k−
Mx

0 0 0 0 0

k+
Px

−k−
Px

0 0 0 0

0 A24 −k−
Mz

0 0 0

0 0 k+
Pz

−k−
Pz

0 0

0 0 0 A35 −k−
My

0

0 0 0 0 k+
Py

−k−
Py




These are the decay rates of all the mRNA and protein variables and therefore have a

significant effect on the defining features of the protein correlation curve. For example,

we notice in Figure 6.3(a) that not only does the stationary correlation at time τ =

0 increase for increase in the mRNA decay rate k−
My

, but also that there is a larger

increase in Corr∗ with not much variation in the value of τ∗. Note that the mean steady

state value of My is held constant at 4.5 nM by inducing equivalent variations in the

transcription rate k+
My

. Overall, variations are induced in the elements A35 and −k−
My

of the above Jacobian matrix, which correspond to the variable My. Therefore, a fast

decaying and fast transcribing mRNA My increases the correlation between the proteins.

By comparing the above analysis with that of the two-gene case, shown in Figure 5.13(a),

we notice that though the correlations at τ = 0 and at τ∗ are similarly sensitive to the

mRNA decay rate, there is a large variation in τ∗. This is due to the proximity of the

gene-node Y to X in the two-gene case as compared to the three-gene case. Hence,
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the fluctuation characteristics as revealed in the dynamic correlations can be used as an

input into a network identification algorithm.

Figure 6.3: (a) The half-life of mRNA My is varied in steps from 2 to 40 minutes,
for which there is a corresponding increase in the value of τ∗ = [86, 92, 97, 107, 121]
minutes, accompanied by a decrease in value of Corr∗. (b) Similarly, for increase in
the half-life of protein Py from 8 to 400 minutes, τ∗ increases as [63, 87, 97, 109, 118]
minutes respectively. There is also an increase in Corr∗ for increased half-life of Py.
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Figure 6.4: (a) The half-life of the intermediary mRNA Mz is varied in steps
from 2 to 40 minutes, for which there is a corresponding increase in the value of
τ∗ [88, 91, 97, 109, 123] minutes respectively. (b) Similarly, k−

Pz
or rather, the half-

life of protein Pz is increased from 8 to 400 minutes for which τ∗ increases as
[71, 84, 97, 118, 133] minutes respectively. There is also a decrease in both Corr∗ and
the stationary correlation (at τ = 0).
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On the other hand, for variations in the decay rate k−
Py

(Figure 6.3(b)), there is a notica-

ble difference in the sensitivity of the stationary correlations as compared to the two-gene

case (Figure 5.13(b)). In the three-gene case, the stationary correlation is almost insen-

sitive to this parameter, whilst features such as Corr∗ and τ∗ are sensitive. Similarly,

from Figures 6.4(a) and 6.4(b), we conclude that decay rates of mRNAs and proteins of

the intermediate node Z have an effect on all the features of protein correlations. In this

regard it is interesting to note that, as half-life of Pz is reduced, τ∗ moves closer to the

value corresponding to the two-gene case whilst the magnitude of correlation remains

low, suggesting ways of controlling different features of the correlations.

6.1.2 Cascading Activation - II

A regulatory cascade can be built using repressors where the regulatory function between

the input and output proteins is of activation. In fact experiments such as those by

Pedraza and van Oudenaarden (2005) and Hooshangi et al. (2005) involve the use of

only repressor elements in the cascade. This is because bacterial systems are easier to

tinker with, and repressors have a simpler mechanism. In the 2-stage cascade shown in

Figure 6.5, the resultant regulatory function between the proteins Px and Py, is that of

activation.

Z YX

Figure 6.5: Network representation of the cascading activation-II regulatory system.

This is reflected in the protein correlations shown in Figure 6.6. The difference in these

correlations and those of the cascading activation-I network is that the correlations

between Px and Py is increased greatly in magnitude. This is because of the reaction

scheme of this network, given in Table 6.4, where there is a presence of basal transcription

rate of high value so that the mean value of mRNA and proteins are same as that of the

cascading activation-I network. The positive correlations are due to the simultaneous

sign changes in both the off-diagonal entries A24 and A35 of the Jacobian matrix,

A24 =
∂(dMz/dt)

∂Px
= − k+

Mz
α

[
KD1(

Px + KD1

)2

]

A35 =
∂(dMy/dt)

∂Pz
= − k+

My
β

[
KD2(

Pz + KD2

)2

]

This results in the eigenvectors changing signs twice, and therefore the covariances which

are sum of exponentials whose co-efficients are in turn functions of these eigenvectors do

not change sign and remain positive. However, the similarity between the two networks

is that the τ∗’s of the correlation curves between the three proteins remain exactly the

same.
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[
φ

k+

Mx−−−→Mx

] [
Px + Gz

kon1−−−⇀↽−−−
koff1

Cz
] [

Pz + Gy

kon2−−−⇀↽−−−
koff2

Cy
] [

Mz

k+

Pz−−→Mz + Pz

] [
Mx, Mz, My

k−

Mx
,k−

Mz
,k−

My−−−−−−−−−→ φ

]

[
Mx

k+

Px−−→Mx + Px

] [
Gz

k+

Mz−−→ Gz + Mz

] [
Gy

k+

My−−→ Gy + My

] [
My

k+

Py−−→My + Py

] [
Px, Pz, Py

k−

Px
,k−

Pz
,k−

Py−−−−−−−−→ φ

]

Table 6.4: Reaction set of the cascading activation-II regulatory system.

[
dMx

dt = k+
Mx
− k−

Mx
Mx

] [
dMz

dt = k+
Mz

(
αKD1

Px+KD1

)
− k−

Mz
Mz

] [
dMy

dt = k+
My

(
αKD2

Pz+KD2

)
− k−

My
My

]

[
dPx

dt = k+
Px

Mx − k−
Px

Px

] [
dPz

dt = k+
Pz

Mz − k−
Pz

Pz

] [
dPy

dt = k+
Py

My − k−
Py

Py

]

Table 6.5: A reduced set of differential equations describing the time-evolution of the deterministic variables of the cascading activation-II regulatory
system. The variables Cz, Cy and Gz, Gy are eliminated by making use of the conservation rule and by eliminating the fast reactions respectively.
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Figure 6.6: The dynamic correlations between the proteins of the cascading activation-
II system are shown in blue, whilst the correlation between Px and Py of the
two-gene elementary activation system is shown in red for comparison. τ∗ for the
Corr[Px(t), Py(t + τ)] function is 96 minutes.

6.1.3 Cascading Repression - I

Z YX

Figure 6.7: Network representation of the cascading repression-I regulatory system.
The resultant regulatory function between the proteins Px and Py, is that of repression.

Similar to the above two cases of cascaded activation, we could place an activator behind

or front of a repressor element to obtain an overall regulatory function of repression.

Under such a condition, the only changes to the system are the simple sign changes in

the off-diagonal elements of the Jacobian, which are now,

A24 =
∂(dMz/dt)

∂Px
= + k+

Mz
α

[
KD1(

Px + KD1

)2

]

A35 =
∂(dMy/dt)

∂Pz
= − k+

My
β

[
KD2(

Pz + KD2

)2

]

From the correlation plots of Figure 6.8 it is clear that the correlations between the

proteins reflect the regulatory function between them independently without any other

influence.
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Figure 6.8: The dynamic correlations between the proteins of the cascading
repression-I or X → Z ⊣ Y network.

6.1.4 Cascading Repression - II

Z YX

Figure 6.9: Network representation of the cascading repression-II regulatory system.
The resultant regulatory function between the proteins Px and Py, is that of repression.

Repression between the input and output nodes of the cascade can also be brought about

by the above network mechanism, resulting in the dynamic correlations in Figure 6.10.

Once again, the only changes in the Jacobian elements is in the change of their signs,

A24 =
∂(dMz/dt)

∂Px
= − k+

Mz
α

[
KD1(

Px + KD1

)2

]

A35 =
∂(dMy/dt)

∂Pz
= + k+

My
β

[
KD2(

Pz + KD2

)2

]

The similarity between all the above four types of regulatory cascades is that the time-

characteristics of the correlations as reflected by τ∗ are exactly the same in each case,

whilst the difference being in the type of regulation between nodes of the cascade. In

the next section we shall investigate the different types of network mechanisms where

there is competitive binding of TFs on the same regulatory sequence of Y .
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Figure 6.10: The dynamic correlations between the proteins of the cascading
repression-II or X ⊣ Z → Y network.

6.2 Combinatorial Regulation

In the previous cases of regulation, there was just one type of TF acting on the regula-

tory region of the DNA. The formation of protein dimers and their recruitment on to

the regulatory region was studied in section 5.2, where the magnitude of correlations

between the TF proteins and the proteins whose product it regulates, greatly increased.

However, it has been known previously that, with at least two types of TFs acting on

their respective binding sites on the target DNA, different responses are generated in

the regulated protein. This was investigated by Ptashne and Gann (1997) and later by

Buchler et al. (2003) who formulated a quantitative model of combinatorial regulation

based on the regulation observed in bacteria. They consider the interactions between

the TFs and their respective binding-sites on the DNA with certain dissociation con-

stants, and additionally consider interactions of varying strengths between these TFs

and RNA polymerase molecules. The result of various combinations for the strengths

of the molecular interactions, the dissociation constants and concentrations of the TFs

is that a variety of regulatory functions are generated. The significance of their model

was that, generating complex regulatory functions was shown to be possible, without

resorting to additional classes of regulatory networks. Here, we study the most basic

form of combinatorial regulation, where TFs that are labelled beforehand as activators

and repressors regulate transcription of the downstream node Y .
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6.2.1 Dual Activators

Z

Y
X

Py

My

Px

Mx Mz

Pz

Cy 11
Cy 12

Cy 13

Figure 6.11: On the left is a schematic representation of two activators regulating
the transcription of Gy. Whilst the three possible ways of activation are shown for a
better understanding, the actual model involves only one binding site. To the right is
the equivalent network representation.

Here, Gy is activated through the combined action of two types of transcription factors,

both of which are activators. For simplicity we make two assumptions, which do not alter

the characteristics of this regulatory scheme. Firstly, we neglect the presence of RNAP

molecules but instead assume that the gene is self-transcribed once the TF molecule

binds to its cis-regulatory sequence. This would not only include the effect of tran-

scription during activation by TFs but also the basal transcription process. The second

assumption is that there is only one binding site upstream of the target DNA to which

the TFs bind. We shall represent this binding site by the variable Gy itself. Therefore,

activation is through competitive binding of the two TFs Px and Pz on to the regulatory

region of the gene that is being transcribed. The binding and unbinding strengths may

be different for each of the TFs. Transcription in such a case is represented explicitly

by two reactions each with its own rate constant and each representing the activation

by Px and Pz. Further activation occurs when both TFs interact and bind together to

the regulatory region. This is represented by a third set of binding/unbinding reactions

that result in the TF-DNA complex Cy3
. The set of binding/unbinding reactions are:

Px + Gy

kon1−−−⇀↽−−−
koff1

Cy1

Pz + Gy

kon2−−−⇀↽−−−
koff2

Cy2

Pz + Cy1

kon3−−−⇀↽−−−
koff3

Cy3

By our first assumption, the above complexes self-transcribe to form the mRNA tran-

scripts My. To distinguish clearly the influence of each TF on the rate of transcript

production, we use three distinct steps of trancription each with its own rate constant:

Cyi

k+

Myi−−−→ Cyi
+ My (i = 1, 2, 3)
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To obtain the dynamic correlations between the species, we follow the procedure outlined

in previous chapters starting with the description of the deterministic dynamics of the

system. From the binding/unbinding reactions of the TFs and the DNA, we get the

following set of rate equations:

dGy

dt
= koff1

Cy1
− kon1

GyPx + koff2
Cy2
− kon2

GyPz

dCy1

dt
= kon1

GyPx − koff1
Cy1

+ koff3
Cy3
− kon3

Cy1
Pz

dCy2

dt
= kon2

GyPz − koff2
Cy2

dCy3

dt
= kon3

Cy1
Pz − koff3

Cy3

Since the regulatory sequence of Y to which proteins bind is conserved and in fact equal

to one in the present case, from the above set of equations we get,

dGy

dt
= −dCy1

dt
− dCy2

dt
− dCy3

dt
Gy(t) = α− Cy1

(t)− Cy2
(t)− Cy3

(t)

where α = Gy(t0). The variable Gy can now be substituted for in the deterministic

dynamical equations of the other variables, which are,

dCy1

dt
= kon1

Px(α− Cy1
− Cy2

− Cy3
)− koff1

Cy1
+ koff3

Cy3
− kon3

Cy1
Pz

dCy2

dt
= kon2

Pz(α− Cy1
− Cy2

− Cy3
)− koff2

Cy2

dCy3

dt
= kon3

Cy1
Pz − koff3

Cy3

dMx

dt
= k+

Mx
− k−

Mx
Mx

dMz

dt
= k+

Mz
− k−

Mz
Mz

dMy

dt
= k+

My1

Cy1
+ k+

My2

Cy2
+ k+

My3

Cy3
− k−

My
My

dPx

dt
= koff1

Cy1
− kon1

Px(α− Cy1
− Cy2

− Cy3
) + k+

Px
Mx − k−

Px
Px

dPz

dt
= koff2

Cy2
− kon2

Pz(α− Cy1
− Cy2

− Cy3
) + koff3

Cy3
− kon3

Cy1
Pz + k+

Pz
Mz − k−

Pz
Pz

dPy

dt
= k+

Py
My − k−

Py
Py

In the above set of variables, the TF-DNA complexes that are involved in the fast bind-

ing/unbinding events, can be eliminated at steady state without affecting the correlation

properties of the system. This was shown in section 5.1.2 and also in the case of the

cascade network. If KDi
= koffi

/koni
is the TF-DNA dissociation constant, on solving
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for the complexes Cyi
at steady state we get the equalities,

Px(α− Cy1
− Cy2

− Cy3
) = KD1

Cy1
(6.5)

Pz(α− Cy1
− Cy2

− Cy3
) = KD2

Cy2
,

from which the expressions for Cy2
is obtained as,

Cy2
=

Pz

KD2

KD1

Px
Cy1

.

The complex Cy3
at steady-state is,

Cy3
=

Pz

KD3

Cy1

Substituting for the above expressions for Cy2
and Cy3

in Equation (6.5), we get,

Px(α− Cy1
− Pz

KD2

KD1

Px
Cy1
− Pz

KD3

Cy1
) = KD1

Cy1

which on solving gives the expressions for the three complexes at steady-state as,

Cy1
=

α Px

KD1[
1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

]

Cy2
=

α Pz

KD2[
1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

]

Cy3
=

α PxPz

KD1
KD3[

1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

]

On removing the dynamical equations corresponding to these complexes and on substi-

tuting the above expressions in the equations for the mRNAs and proteins, we get a

completely reduced system of equations where all the molecular species operate in the

same range of time-scales, and more importantly, where the correlations between these

species are the same as in the case of the original unreduced system. The new set of
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dynamical equations are therefore,

dMx

dt
= k+

Mx
− k−

Mx
Mx

dMz

dt
= k+

Mz
− k−

Mz
Mz

dMy

dt
= k+

My1

α Px

KD1[
1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

] + k+
My2

α Pz

KD2[
1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

]

+ k+
My3

α PxPz

KD1
KD3[

1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

] − k−
My

My

dPx

dt
= k+

Px
Mx − k−

Px
Px

dPz

dt
= k+

Pz
Mz − k−

Pz
Pz

dPy

dt
= k+

Py
My − k−

Py
Py

From the above rate equations we derive the Jacobian matrix, which on re-arranging

in the order corresponding to [Mx, Px, Mz, Pz, My, Py], is the following lower triangular

matrix with the decay rates on the diagonal and hence are the eigenvalues of the system,

A =




−k−
Mx

0 0 0 0 0

k+
Px

−k−
Mz

0 0 0 0

0 0 −k−
My

0 0 0

0 0 k+
Pz

−k−
Px

0 0

0 A52 0 A54 −k−
Pz

0

0 0 0 0 k+
Py

−k−
Py




(6.6)

where the off-diagonal elements corresponding to My are,

A52 =
∂(dMy/dt)

∂Px
=

(
k+

My1

α
[ 1

KD1

+
Pz

KD1
KD2

]
− k+

My2

α
[ Pz

KD1
KD2

+
P 2

z

KD1
KD2

KD3

]

+ k+
My3

α
[ Pz

KD1
KD3

+
P 2

z

KD1
KD2

KD3

])
/

[
1 +

Px

KD1

+
Pz

KD2

+
PxPz

KD1
KD3

]2

A54 =
∂(dMy/dt)

∂Pz
=

(
− k+

My1

α
[ Px

KD1
KD2

+
P 2

x

K2
D1

KD3

]
+ k+

My2

α
[ 1

KD2

+
Px

KD1
KD2

]

+ k+
My3

α
[ Px

KD1
KD3

+
P 2

x

K2
D1

KD3

])
/

[
1 +

Px

KD1

+
Pz

KD2

+
PxPz

KD1
KD3

]2
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The vector of deterministic rates and the stoichiometry of the reduced system are,

R =

(
k+

Mx
, k+

Mz
, k+

My1

α Px

KD1[
1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

] ,

k+
My2

α Pz

KD2[
1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

] , k+
My3

α PxPz

KD1
KD3[

1 + Px

KD1

+ Pz

KD2

+ PxPz

KD1
KD3

] ,

k+
Px

Mx, k+
Pz

Mz, k
+
Py

My, k
−
Mx

Mx, k−
Mz

Mz, k
−
My

My, k
−
Px

Px, k−
Pz

Pz, k
−
Py

Py

)T

ν =




1 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 1 1 1 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 −1




The above terms are used for calculating the stationary and then the dynamic correla-

tions between the proteins, and are shown in Figure 6.12. The values for the transcription

rates k+
Myi

are 0.3 min−1, 0.1 min−1 and 0.6 min−1 respectively, and are chosen such

that the mean steady state value of My is 4.5 nM . The mean values of Mz and Pz are

assumed to be 0.3 nM and 240 nM respectively, which are in the range of the values

for Mx and Px such that they compete fairly for binding to the regulatory region of

Gy. From the Figure 6.12, we notice that there is a slight decrease in the magnitude

of the correlations between Px and Py whilst its temporal character remains the same

as in the case of the single activator network X → Y . We call this as temporal in-

dependency between the regulatory activity of the two TFs. Therefore, if a synthetic

regulatory network needs to be designed, where control is desired only over the magni-

tude of fluctuations with the time-characteristics remaining unaltered, then the above

network mechanism serves the desired purpose.

The effect that the decay rates of My and Py have on Corr[Px(t), Py(t+τ)] is the same as

in the X → Y network. However, the decay rates of Mz and Pz do affect this correlation

function. While the magnitude of the stationary and dynamic covariances is insensitive

to variations in these parameters, the correlations do vary in magnitude. This is due to

the sensitivity of the normalizing auto-covariance functions. On the other hand, though

these decay rates k−
Mz

and k−
Pz

are the eigenvalues of the system, they do not influence

the temporal feature τ∗ of the correlations. This is verified by evaluating ∂τ∗

∂k−

Mz

which

turns out to be insignificant (= 1.83). Similar is the case for ∂τ∗

∂k−

Pz

= 6.67. This is due

to the reduced values of the terms ∂̥

∂k−

Mz

and ∂̥

∂k−

Pz

that are derived in section 4.2 of the
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chapter on sensitivities. Therefore, the above scheme of activation de-sensitizes τ∗ and

brings about variation only in the correlation magnitudes.

Figure 6.12: The dynamic correlations between the proteins of the combinato-
rial (dual activator) network are shown in blue. The network scheme is X →
Y ← Z. For sake of comparison, protein correlations in the case of X → Y are
shown in red. The mean values are: 〈Mx〉 = 0.2 nM, 〈Mz〉 = 0.3 nM, 〈My〉 =
4.5 nM, 〈Px〉 = 395 nM, 〈Pz〉 = 240 nM, 〈Py〉 = 36001 nM . The corresponding
parameter values are: k+

Mx
= 0.008 nM min−1, k+

Mz
= 0.028 nM min−1, k+

My1

=

0.3 min−1, k+

My2

= 0.1 min−1, k+

My3

= 0.656 min−1, k+

Px
= 36 min−1, k+

Pz
=

20 min−1, k+

Py
= 143 min−1, k−

Mx
= 0.0407 min−1, k−

Mz
= 0.0927 min−1, k−

My
=

0.077 min−1, k−
Px

= 0.0184 min−1, k−
Pz

= 0.025 min−1, k−
Py

= 0.0176 min−1. The
TF-DNA dissociation constants are KD1

= KD2
= KD3

= 200 nM .

6.2.1.1 Activators turn into Repressors

Though it seems quite logical and straightforward, from the reaction scheme of the

X → Y ← Z regulatory network, that the proteins Px and Pz behave as activators

in the transcription of My, we show that there is a very interesting behaviour of this

network contrary to the above logic. In Figure 6.13, we observe that as the value of the

transcription rate k+
My2

increases, the stationary as well as dynamic correlations between

Px and Py change sign, which means that Px starts behaving like a repressor and down-

regulates the production of Py for higher values of the transcription rate corresponding

to the other TF Pz. Such a behaviour is perplexing, but from the expressions of A52,

which is the Jacobian element in equation (6.6), we notice that there is a change of

sign in its value as k+
My2

crosses a threshold value. Since A52 is an off-diagonal element

of a triangular matrix, the eigenvectors of this matrix change sign once k+
My2

crosses a

threshold value of 0.9 min−1.
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Figure 6.13: Correlations between Px and Py for changes in the transcription rate

k+

My2

.

Since the dynamic covariance function is a sum of exponentials whose co-efficients are

functions of these eigenvectors, the covariances and consequently the correlations change

signs for sign-changes in the eigenvectors. This is a mathematical explanation for the

strange behaviour of this type of regulation. The physical reasoning for this is as follows.

At a high value of k+
My2

, Py is predominatly being produced due to the action of Pz

and not much by the action of Px. Under such a condition, when there is a positive

perturbation induced in the mean steady-state value of Px, the mean concentration levels

of the complexes Cy1
and Cy3

increases, whereas the concentration of Cy2
decreases due to

the conservation of the DNA molecules. Now, as the transcription rate of the complexes

Cy1
and Cy3

remain unaltered while that of Cy2
is high, the amount of My and hence of

Py decreases for sudden increase in the mean steady-state value of Px.

Figure 6.14: Variations in the stationary and dynamic correlations between Px and

Py, for increase in the transcription rate k+

My2

.
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In Figure 6.13 is shown the role reversal of Px from an activator to a that of a repressor

for increase in the transcription rate k+
My2

. The variation in the stationary correlations

(at τ = 0) and the correlations at τ∗, for increased values of the transcription rates is

shown in Figure 6.14.

Figure 6.15: On the left is shown the correlation between the proteins Px and Py

for two different values of k+

My2

. On the right is the deterministic response in Py for

perturbation in Px from its mean steady-state value of 395 nM to 495 nM .

6.2.2 Activator and Repressor

There exist mechanisms of gene regulation which involve the simultaneous action of

activators and repressors on the regulatory region of the regulated DNA. Here, we once

again assume the presence of only one regulatory region upstream of Gy, for which there

is competitive binding of the activator and repressor molecules. The network topology

of such a mechanism is X → Y ⊢ Z, where X is the activator, Y being the repressor

and Z is the regulated gene-node.

Z

Y
X

Figure 6.16: Network representation of combinatorial (activator and repressor) regu-
lation, where the activator Px and the repressor Pz both bind to the same cis-regulatory
sequence of Gy.
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The reaction scheme for this regulatory network consists of the following binding/un-

binding events:

Px + Gy

kon1−−−⇀↽−−−
koff1

Cy1

Pz + Gy

kon2−−−⇀↽−−−
koff2

Cy2

Cy1

k+

My−−→ Cy1
+ My

For such a mechanism it is interesting to note that the nature of regulatory link between

the proteins Px and Py which is that of activation (→) and between Pz and Py which is

that of repression (⊢), are faithfully revealed by their respective correlation functions,

as shown in Figure 6.17. This is in spite of their competitive binding on to the same

operator region. Further, we analyze the sensitivity of the features of the correlations for

variations in some of the decay rates. For variations in the decay rates of the mRNA or

the protein of the repressor gene-node, the τ∗ of the correlations between the activator

and the regulated node, which is Corr[Px(t), Py(t+τ)], remains unaltered at 49 minutes.

However the stationary correlation and Corr∗ show variations as in the case of the dual

activator network. Similar is the case for the correlation between the repressor Pz and

Py, for variations in the decay rates of the mRNA and protein of X. We therefore

conclude that the overall positive nature of the correlations between an activator and

its regulated protein is unaffected by the competitive binding of a repressor on to the

same operator region, and vice versa.

Figure 6.17: The dynamic correlations between the proteins of the combinatorial
(activator and repressor) network are shown in blue. The network scheme is X → Y ⊢
Z. Protein correlations in the case of the X → Y network are shown in red.
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An interesting observation in this regulatory mechanism, as well as in the case of the dual

activator network, is that for increase in the value of dissociation constant of one TF,

say KD2
= koff2

/kon2
, the magnitude of the correlation between Px and Py increases.

Further, this magnitude whether at τ = 0 or τ∗ becomes increasingly insensitive to

changes in the decay rates of Mz and Pz, as KD2
increases. This is because the relation

between Px and Py now stands strengthened due to the reduction in the repressor-DNA

complex Cy2
as a result of increase in KD2

.

6.3 FeedForward Loops

Another class of well-defined regulatory networks are the feedforward loops consisting

of three genes where the downstream gene is regulated by two different TFs, out of

which one TF acts as the regulator of the other TF. Thus a loop is formed. The

type of regulation can either be that of activation or repression. If for example, both

the TFs act as activators of the downstream protein, such a network is called as the

coherent feedforward loop. On the other hand, if one is a repressor while the other an

activator, the incoherent FFL is formed. It has been reported that the feedforward loop

is a recurring network in organisms such as both Escherichia coli and the yeast Shen-

Orr et al. (2002); Kalir et al. (2005); Mangan et al. (2006). The biological advantages of

such loops over the previously described forms of regulation may be difficult to estimate,

but however, on modelling these set of networks deterministically or stochastically the

possible use of these networks in the functioning of real networks could be elucidated.

6.3.1 Coherent FFL

Z YX

Figure 6.18: Network structure of the Coherent Feedforward Loop.

As shown in Figure 6.18, the coherent FFL, where the regulatory function of both the

paths from the gene-node X to Y are that of activation, is formed by combining two

of our previously studied networks, the cascading activator and the combinatorial dual

activator networks. The exact set of transcriptional reactions between the two TFs and

Y determines whether the system functions with an AND-logic or an OR-logic. Since the

combinatorial network that we investigated was regulated by either of the two activators,

in the coherent FFL, we shall follow the same OR-logic. The only changes that need to

be done to the Jacobian matrix of the combinatorial network, given in Equation (6.6), is
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the addition of an extra element relating to the activation of Z by X. This the element,

A32 =
∂(dMz/dt)

∂Px
=

k+
Mz

β
KD4[

1 + Px

KD4

]2

where KD4
is the dissociation constant of Px binding/unbinding to Gz and its value

is assumed to be the same as that of other binding/unbinding processes (200 nM).

Similarly, the additional deterministic reaction rate is k+
Mz

β Px

KD4

/

[
1+ Px

KD4

]
. We observe

that there are some differences in the features of the dynamic correlations of this network

and of the combinatorial dual activator network (Figure 6.12). Firstly, the magnitudes of

all the three proteins correlations increase in value with the obvious change being in the

Corr[Px(t), Py(t+τ)] function that is now non-zero and positive. Secondly, the time-delay

τ∗ of peak value of the Corr[Px(t), Py(t+τ)] function increases from 49 to 55 minutes. On

the other hand, τ∗ of the Corr[Pz(t), Py(t+τ)] function decreases from 43 to 34 minutes.

Further, due to the network connectivity, there is an advantage over the combinatorial

network in the sense that there is now a control over the production of Pz by Px, which

means that variations in the decay rate of Pz or the transcription rate of Mz have an

influence on the correlations between Px and Py. Additionally from the viewpoint of the

cascading activator network, where τ∗ for the Corr[Px(t), Py(t+τ)] function was around

97 minutes, it now reduces significantly to 55 minutes, nearly equivalent to that of the

elementary activator network. Therefore the correlations between the input and output

elements of the coherent FFL display a combination of behaviours that are peculiar to

the sub-networks, out of which it is made.

Figure 6.19: The dynamic correlations between the proteins of the coherent feedfor-
ward loop.
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The more interesting behaviour of the coherent FFL is in the way the Corr[Px(t), Py(t+

τ)] function behaves for changes in k+
My2

, which is the transcription rate of My from

Pz. However, the threshold value of this parameter, at which the correlation function

changes sign, is now 1.4 min−1 instead of that in the combinatorial dual activator case

where it was 0.9 min−1. The correlation function at this threshold value has a unique

property of further changing signs after a time-delay of 95 minutes. This property is one

way of characterizing this network. The biological implication of such a behaviour is that

the coherent FFL can be used to induce a delayed response in the downstream element

for a perturbation in the top most element of the network. Further, in Figure 6.20 we

show that for a ten-fold increase in the transcription rate of Mz, this threshold value

reduces to 0.75 min−1 and is less steep than in the case where k+
Mz

was lower. Therefore,

dynamic correlations between these proteins reveal a lot about the network structure of

such regulatory systems and their potential uses in designing complex networks.

Figure 6.20: The dynamic correlations between the proteins of the coherent feedfor-
ward loop for changes in the transcription rates.

6.3.2 InCoherent FFL

Z YX

Figure 6.21: Network structure of the InCoherent Feedforward Loop.

As shown in the above Figure 6.21, the incoherent FFL is formed by combining the cas-

cading repressor and the combinatorial (activator and regulator) networks. Whilst one

path of regulation between the gene-nodes X and Y is that of activation, the other path
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is that of repression, hence the incoherency. However, this network displays an inter-

esting behaviour in its protein correlations. The time instant τ∗, at which the dynamic

correlations between the proteins of X and Y nodes attains maximum value, is shifted

back to 32 minutes from that of the either sub-networks. Therefore such a combination

of the smaller sub-networks gives rise to behaviours in the internal fluctuations, by which

the larger network can be characterized.

Figure 6.22: The dynamic correlations between the proteins of the incoherent feed-
forward loop.

6.4 Summary

In this chapter, we showed the effectiveness of the dynamic correlations between proteins,

in characterizing different network mechanisms based on their internal fluctuations. In

the cascade network, the feature that stood out was τ∗ that was twice the value than

that of a simple two-gene network. Further, the magnitudes of correlations also varied

for changes in the regulatory function of the cascade. We then discussed in detail the

network where two transcription factors regulated the production of a downstream pro-

tein. An interesting behaviour was observed in the case of dual activators simultaneously

activating a downstream gene. Under varying transcription rates of one activator, the

other activator began functioning as a repressor. Finally, we showed that on combining

the above network mechanisms, the resulting network such as feedforward loops dis-

played a variety of behaviours in their internal fluctuations as captured by the dynamic

correlations.

In conclusion, we saw how the dynamic correlation functions vary for changes in the es-

sential factors of the gene regulatory networks such as the values of the rate constants,

the form and type of the regulatory mechanim and the connectivity between the genes
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of the network. As a conclusion to the above results of chapters 5 and 6, in Figures 6.23

and 6.24 we provide simple demonstrations of the effectiveness of the dynamic correla-

tions in characterizing small gene regulatory networks. The two most significant features

of the dynamic correlation functions or plots, which are τ∗ and Corr∗ are plotted in the

case of different networks. Clearly, the features enable in identifying the structure of

the network. Each cluster of points corresponds to a particualr network. The points

within each cluster are obtained by varying the decay rate of Py. For example, in Figure

6.23 the clusters corresponding to the cascading activator networks have a larger value

of τ∗, whilst differing amongst each other in respect of the magnitude of peak corre-

lations Corr∗. Similarly, the incoherent and the coherent feedforward loops are clearly

identifiable. Finally, the effect of dimerization is clearly noticed with increased Corr∗

values. Figure 6.24 is a contrasting picture where the correlation features vary in a

differing manner, in the case of these networks, for changes in the value of transcription

rate. Continuing on similar lines, clusters can be generated in a high dimensional space

by varying all the reaction parameters, thereby demonstarting that the dynamic cor-

relations of molecular fluctuations are effective in characterizing small gene regulatory

networks. Due to changes in the shape of these correlation plots, the use of the integral

over time τ is also a matter that needs to be probed further.

Figure 6.23: In the above figure we show how the features of the dynamic correlation
functions form clusters specific to different regulatory networks. The points in each
cluster are obtained by varying the half-life of the protein Py as [20, 50, 70, 90, 150]
minutes respectively. The decay rate of Py is related to the half-life as shown in equation
(5.7).
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Figure 6.24: In the above figure we show how the features of the dynamic correlation
functions form clusters specific to different regulatory networks. The points in each
cluster are obtained by multiplyting the base value of the transcription rate of My

with 0.2, 0.5, 1, 2, 5] respectively. In the case where the regulatory mechanism is that of
repression, this transcription rate is the basal rate.

——————————————————————————————————————



Chapter 7

Conclusions

In order to understand the functioning of a complex gene regulatory network, it is vital

to investigate the properties of its building blocks, which are smaller networks having

well-defined characteristics. The idea is to develop a better understanding of the parts

before proceeding to the system level Sprinzak and Elowitz (2005); Guido et al. (2006).

Such an understanding would improve our ability to recognize the form of the regulatory

activity and the network structure in these GRNs by analyzing the protein and mRNA

levels. Though GRNs have previously been analyzed in the deterministic or macroscopic

realm, here, we follow a stochastic approach where the microscopic behaviour of these

networks is revealed. This is due to the effectiveness of such an approach in characteriz-

ing the GRNs and also due to the issues concerning the effectiveness of data obtained on

averaging from a population of cells. The latter issue was discussed in Chapter 1. Due

to the significance of small molecular numbers in generating fluctuations in the levels of

the species, stochastic methods are better off at explaining the behaviour of GRNs. The

issues regarding stochastic modelling were elaborated in Chapter 2.

The stationary and dynamic covariances between the molecular species are used as in-

dicators for characterizing GRNs. Towards this, our aim in this thesis has been to

investigate whether these indicators do indeed reveal different characteristics for GRNs

that differ in their regulatory and network mechanisms. In Chapter 3, we derived the

dynamic covariances in terms of the eigenvalues and eigenvectors of the system Jaco-

bian, thereby showing that the properties of the fluctuations can be derived by simply

knowing the deterministic dynamical behaviour of the system. This formed the basis

of the fluctuation-dissipation relationship. Using the analytical framework of Chapter

3 we showed that variations are induced in the internal fluctuations of GRNs, for dif-

ferent values of the reaction rate constants and different forms of gene regulation. Such

a framework serves the dual purpose of characterizing different GRNs based on their

fluctuation properties, as well as retrieving information about the type and form of

regulation between two genes of a network, once such characterization is complete.

126
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In Chapter 5 we demonstrated how the defining features such as the stationary corre-

lations Corr(τ = 0), the peak correlations Corr∗ and the time τ∗ at which this peak

occurs, depend on the type of regulatory mechanism and on the reaction rate constants.

We also showed the ineffectiveness of co-operative activation in altering the dynamic

feature of the correlations, whilst increasing the magnitude of correlations between the

regulator and regulated proteins. In Chapter 6 we showed that if one had information

about the lifetimes of proteins and mRNAs of the two gene-nodes X and Y , the dy-

namic correlations would infer the presence or absence of an intermediary gene. In the

case of combinatorial regulation by two TFs on the same regulatory region of a down-

stream gene, we showed that an activating TF switches its role to that of a repressor

under certain varying conditions. This behaviour is faithfully revealed in the dynamic

correlations between the proteins. Such analyses proves the use of dynamic correlation

functions in analyzing the internal fluctuation properties of GRNs for changes in their

regulatory mechanisms and network structures.

Due to the high sensitivity of the correlations to certain reaction rate constants, we

could also hope to extract more information about the underlying reactions or pro-

cesses. In this regard, we demonstrated the effect that various reaction rate constants of

the elementary activator have on the features of the dynamic correlations between the

regulator and regulated proteins Px and Py. Therefore by adopting a suitable learning

methodology, the framework of sensitivity analysis derived in Chapter 4 could be used to

estimate the parameters of a regulatory system given the dynamic correlations between

its species.

In conclusion, the analytical framework developed in this thesis is demonstrated to be

useful in characterizing various small gene regulatory networks and thereby illuminating

their fluctuation properties. As a continuation of the above work, regulatory networks

formed by combining the networks discussed in this thesis can be studied. For example

in section 6.3 on the FeedForward loops, we showed that the coherent FFL which is a

combination of the cascading activator network and the dual activator network, reduces

the peak correlation time τ∗ from that of the cascade network. Similary, the incoherent

FFL showed different characteristics than those of its parts. Continuing this way, one

could scale up the network size to incorporate a variety of smaller GRNs. Also, the

performance of these smaller networks could alter when they are embedded into a large

network. In this respect, it should be noted that the networks considered here are

modelled in isolation, the only enternal influence being the spontaneous production and

decays of the molecules. Overall, our belief is that knowing the parts is crucial to

understand the system as a whole. Further, networks involving positive and negative

feedbacks that are bistable have to be analyzed under each of the stable states, since

this is the pre-condition for the applicability of LNA Ziv et al. (2007).
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Apart from gaining insights into the functioning of a regulatory network, the frame-

work developed here would be of great help in retrieving the regulatory mechanism and

the network structure, given experimental data required for such purposes. Fluores-

cent reporters have increased our focus towards tracking individual cells, which is a

major shift from the microarray realm where bulk averages were the measured quanti-

ties. Technologies such as flow cytometry measure the relative fluorescence intensities

of individual cells as they flow in a fluid stream thus enabling one to plot histograms of

protein fluorescence distributions. Ozbudak et al. (2002); Elowitz et al. (2002); Raser

and O’Shea (2004) observed such variations in protein levels for changes to parame-

ters values such as the transcription and translation rates. Their experiments matched

neatly with the theoretical analyses. Such analyses however concerned with the station-

ary noise in proteins and could tell little about the dynamics of the reactions causing

the noise, and therefore such measurements that leave out the temporal aspect are of

little use in tracking the dynamics of gene regulation.

On the other hand, technologies such as time-lapse microscopy where fluorescently

tagged proteins could be tracked over time in individual cells, facilitate our understand-

ing of the relation between the regulatory mechanism between genes and its correlative

effect observed in species such as proteins and mRNAs. Variation in protein levels in

human cells was observed by Sigal et al. (2006b), who tracked the fluorescently tagged

proteins and concluded that the fluctuations varied in time. It was also observed that

genes of the same pathway showed correlations between them. Therefore such time-lapse

measurements in single cells resulting in time-series of individual molecular species could

be of great use in estimating any presence of regulatory activity between the correspond-

ing genes. The analytical framework presented in this thesis would then be an ideal tool

in predicting the type of regulatory activity or even the reaction structure between two

genes. Due to rapid technological advancements in tracking individual molecules over

time in single cells Muzzey and van Oudenaarden (2009), the idea of tracking the causal

dynamics between molecular species as revealed by the dynamic correlations, is fast

becoming a reality. The work of Yu et al. (2006), where they track single molecules of

yellow fluorescent protein (YFP) in living cells by fluorescence microscope, and other

single molecule techniques such as Cai et al. (2006) also bring hope for the analytical

techniques presented here to come to life.

——————————————————————————————————————



Appendix A

Stochastic Simulation Algorithm

Let us consider a system with N reacting species {s1, ....., sN} that react according to

M reactions {r1, ....., rM} within a small volume v at a constant temperature. The

dynamical state of this system can be specified as X(t) ≡ (X1(t), ....., XN (t)), where

Xi(t) ≡ the number of si molecules in the system at time t. The algorithm now, has to

describe the time evolution of X(t) from a given initial state X0. The algorithm centers

around the concept of a probability function known as the propensity function for each

reaction rµ,

aµ(X)dt ≡ the probability, given X(t) = X, that one rµ

reaction will occur in v in the next time interval dt (A.1)

This propensity function is the product of the reaction parameter kµ and number of

reactant combinations hµ for each µ reaction, where,

kµdt ≡ average probability, to first order in dt, that a particular combination of

rµ reactant molecules will react accordingly in the next time interval dt.

hµ ≡ number of distinct molecules reactant combinations for reaction

rµ found to be present in v at time t.

Hence, the propensity function is now given by,

aµ(X)dt ≡ hµkµdt (A.2)

The state-change vector νµ is defined by,

νµi ≡ the change in the number of si molecules produced

by one rµ reaction (µ = 1, ....., M ; i = 1, ....., N) (A.3)
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Now, the propensity function and the state-change vector together completely define

each reaction rµ. Equations (A.2) & (A.3) together imply that this dynamic process is

a jump Markov process on an N -dimensional non-negative integer lattice. Now, since

the master equation of this system describes how the probability P (X, t | X0, t0) for the

state of the system evolves in time, is becomes obvious that the CME is the differential

form of the Chapman-Kolmogorov equation of the Markov process. Hence, the Chemical

Master Equation is given by,

∂

∂t
P (X, t | X0, t0) =

M∑

µ=1

[aµ(X− νµ)P (X− νµ, t | X0, t0)

− aµ(X)P (X, t | X0, t0)] (A.4)

With the aid of the equations (A.2) & (A.3) we can derive a term known as the next-

reaction probability density function, given by,

P (τ, µ | X, t)dτ ≡ probability at time t that the next reaction in v will occur

in the differential time interval [t + τ, t + τ + dτ),

and will be an rµ reaction.

= P0(τ) . hµkµdt (A.5)

where P0(τ) is the probability that no reaction occurs in the time interval [t, t + τ). It

can then be derived that P0(τ) = exp
[
−∑M

υ=1 hυkυτ
]

Gillespie (1976), which gives rise

to,

P (τ, µ | X, t) = exp
[
−

M∑

υ=1

hυkυτ
]

. aµ(X) (A.6)

The Stochastic Simulation Algorithm Gillespie (1976), is then described by the following

steps:

Step 0 (initialization). Set the time t = 0. Specify initial values for the N vari-

ables {X1, .....XN}. Specify and store the M quantities kµ and hµ. Specify the sampling

times t1 < t2....., and a stopping time tstop.

Step 1. Generate one random pair (τ, µ) according to the joint probability density

function P (τ, µ | X, t) using Monte Carlo techniques.

Step 2. Using the (τ, µ) obtained above, advance t by τ and change the system state

X by νµ. Then recalculte the propensity functions of the occuring reactions as necessary.

Step 3. If t has just advanced through one of the sampling times ti, output the current

molecular numbers of the reacting species, which is the state vector X. If t > tstop or if
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all reactants are consumed end the algorithm; or else return to Step 1.

Generating random pairs (τ, µ):

To generate a random pair accoring to the probability density function (A.6), one can

adopt a simple Monte Carlo technique, commonly known as the Direct Method. It is

based on the fact that any two-variable probability density function can be written as

the product of two one-variable probability density functions. Hence,

P (τ, µ | X, t) = P1(τ | X, t) . P2(µ | τ,X, t) (A.7)

The first term on the r.h.s is the probability that the next reaction will occur in [t+τ, t+

τ, dτ), irrespective of which reaction it might be, and the second term is the probability

that the next reaction will be an rµ reaction, given that the next reaction occurs at time

t + τ . We then obtain P1 by summing P (τ, µ | X, t)dτ over all µ values as,

P1(τ | X, t) =
M∑

µ=1

P (τ, µ | X, t) =
M∑

υ=1

aυ . exp
[
−

M∑

υ=1

aυτ
]

(A.8)

Substituting (A.8) into (A.7),

P2(µ | τ,X, t) = P (τ, µ | X, t) /
M∑

υ=1

P (τ, υ | X, t) =
aµ(X)

∑M
υ=1 aυ

(A.9)

The random values τ and µ are then generated according to the density functions in

(A.8) and (A.9) respectively. The random τ and µ may be generated according to (A.8)

by simply drawing two random numbers γ1, γ2 from the uniform distribution in the unit

interval and by taking

τ =
1

∑M
υ=1 aυ

ln
( 1

γ1

)
(A.10)

and by taking µ to be that integer for which

µ−1∑

υ=1

aυ < γ2

M∑

υ=1

aυ ≤
µ∑

υ=1

aυ

In the next section we give a simplified version of the code that was written to generate

Monte Carlo simulation runs for a reacting system, and to evaluate the dynamic corre-

lations from the simulation results.

NOTE: The τ used in describing the above algorithm is labelled as ‘tau random’ in

the code given below. However, the term ‘tau’ appearing in the code, is the time period

over which the dynamic correlations are evaluated (Equation (3.14)).
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A.1 A simplified code of the Monte-Carlo simulations and

the calculation of dynamic correlations

# define TIME_SIZE 40

void main()

{

int N, M // Number of molecular species , Number of reactions

t_stop , rp // Simulation stopping time , Number of result points

ens , // Ensemble size

t_ss , // Steady state time -point for calculating covariances

tau , // Required for calculating dynamic correlations

mRNA_1 , mRNA_2 , Prot_1 , Prot_2 // M_x , M_y , P_x , P_y

hist_t; // Steady -state time at which histogram is collected

double t = 0.0, norm_cnst = 0.0;

double ** X_full; // Matrix where each row is vector X at time -instant ‘rp ’.

// This is the full output that we desire. Size = (rp * N)

int * X, * X_initial // # Number of molecules of species at time t, Initial #

// Size = (N)

** R_C_input , // Input reaction structure , 1 indicates that the species is a reactant

// Size = (N * M)

** R_C_output , // Output reaction structure , 1 indicates that the species is a product

// Size = (N * M)

* h_nu; // vector of molecular reactant combinations of all reactions

// Size = (M)

double * c_nu , // vector containing rate constants for all reactions

// Size = (M)

* a_nu , // Vector of propensity functions of each reaction. Size = (M)

* a_nu_sorted; // Sorting elements of a_nu in ascending order. Size = (M)

int * index , * index_sorted; // used in the above sorting process

double * Result_Points , time_stamps;

double ** processed_data ,

// data related to two molecular species across the

// steady state region and across the ensemble

// (matrix of size {[rp*ens] * [2]}) ,

// used for calculating the time - covariance plot.

* cov_avg;

double r1 , r2 , // random numbers drawn from a uniform distribution .

double tau_random; int nu_random;

static char time_buffer[TIME_SIZE ];

const struct tm *tm; size_t len; time_t now;

// INPUTS:

// -------------------------------------------------------------------------

infile >> N >> M >> t_stop >> rp >> ens >> t_ss >> tau >> hist_t;

for(i=0;i<N;i++)

for(j=0;j<M;j++)

{ infile >> R_C_input[i][j]; infile >> R_C_output[i][j]; }

for(i=0;i<M;i++)

infile >> c_nu[i];

for(i=0;i<N;i++)

infile >> X_initial[i];

// -------------------------------------------------------------------------



Appendix A Stochastic Simulation Algorithm 133

for(i=0;i<rp;i++)

{Result_Points [i] = ((( static_cast < double >(i))+1.0)*( static_cast < double >(t_stop )))

/( static_cast < double >(rp));

time_stamps[i] = 0.0;

}

time_t seconds; // Declare variable to hold seconds on clock

time(& seconds ); // Get value from system clock and place in seconds variable

srand (( unsigned int) seconds ); // Convert seconds to a unsigned integer

now = time (NULL);

tm = localtime (&now);

len = strftime (time_buffer , TIME_SIZE , "%d %B %Y %I:%M:%S %p", tm);

outfile << time_buffer;

for(ens_count =0; ens_count <ens;ens_count ++) // ENSEMBLE OF SIMULATIONS

{

for(i=0;i<N;i++)

X[i] = X_initial[i];

t = 0.0;

spc_count = 0.0;

counter = 0;

for(rp_count =0; rp_count <rp;rp_count ++) // PERFORMING EACH RUN OF THE SIMULATION

{if ((t>(t_ss -1+ spc_count ))&&( spc_count <t_stop -t_ss +1))

// DATA OF TWO SPECIES BETWEEN WHICH CORRELATIONS ARE EVALUATED

{processed_data[spc_count ][0+( ens_count *2)]= static_cast < double > (X[Prot_1 -1]);

processed_data[spc_count ][1+( ens_count *2)]= static_cast < double > (X[Prot_2 -1]);

spc_count = spc_count + 1;

}

time_stamps[rp_count] = t;

if ((t>hist_t )&&( counter ==0))

counter = 1;

if (counter ==1) // DRAWING THE HISTOGRAM OR STEADY -STATE DISTRIBUTION

{output << X[mRNA_1 -1], X[mRNA_2 -1], X[Prot_1 -1], X[Prot_2 -1];

counter = 2;

}

for(i=0;i<N;i++)

X_full[count ][i] = X_full[count ][i] + (static_cast < double > (X[i]));

do

{for(i=0;i<M;i++)

h_nu[i] = 1;

h_nu = Calc_h_nu(h_nu , X, R_C_input , N, M);

a_nu = Calc_a_nu(h_nu , c_nu , a_nu , M);

for(i=0;i<M;i++)

index[i] = i+1;

index_sorted = Sort_Index(a_nu , a_nu_sorted , index , M);

a_nu_sorted = Sort(a_nu , a_nu_sorted , M);

r1 = Random_Uniform ();

if(r1 ==0.0)

r1 = 0.5;

r2 = Random_Uniform ();

tau_random = Get_Random_tau(a_nu , M, r1);

nu_random = Get_Random_nu (a_nu_sorted , index_sorted , M, r2);
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X = Calc_X(X, R_C_input , R_C_output , nu_random , N);

t = t + tau_random;

}while(t < Result_Points [count ]);

}

}

outfile << cpu_time ();

count = 0; tau_random = 0.0;

for(i=0;i<rp;i++)

{outfile << Result_Points [i] << "\t";

outfile << time_stamps[i] << "\t";

for(j=0;j<N;j++)

outfile << X_full[i][j]/ens << "\t"; // MEAN NUMBERS OF MOLECULES OF ALL SPECIES

}

cov_avg = new double[tau];

cov_avg = Process_Data_and_Calc_Cov (processed_data , cov_avg , t_ss , rp , tau , ens);

norm_cnst = Normalize_Cov (processed_data , t_ss , t_stop , ens);

for(i=0;i<tau;i++)

outfile << (cov_avg[i]/ norm_cnst ); // CORRELATIONS BETWEEN THE TWO PROTEINS

outfile << cpu_time ();

}

The following Functions are called by the main program:

double Random_Uniform(void)

{r = (( double)rand() / (( double )( RAND_MAX )+( double )(1))); return(r);

// r is a random floating point value in the range [0 ,1)

}

int * Calc_h_nu(int * h_nu , int * X, int ** R_C_input , int N, int M)

{temp = 0;

for(i=0;i<M;i++)

h_nu[i] = 1;

for(i=0;i<M;i++)

for(j=0;j<N;j++)

if(R_C_input[j][i]!=0)

h_nu[i] = h_nu[i] * Cmbn(X[j],R_C_input[j][i]);

for(i=0;i<M;i++)

{for(j=0;j<N;j++)

temp = temp + R_C_input[j][i];

// This is to take into account those reactions ,

// where the product is created spontaneously.

if(temp ==0)

h_nu[i] = 1;

temp = 0;

} return(h_nu);

}
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double * Calc_a_nu(int * h_nu , double * c_nu , double * a_nu , int M)

{for(i=0;i<M;i++)

a_nu[i] = (static_cast < double > (h_nu[i])) * c_nu[i];

return(a_nu);

}

double Get_Random_tau(double * a_nu , int M, double r1)

{tau = 0.0, a = 0.0;

for(i=0;i<M;i++)

a = a + a_nu[i];

if(a==0.0) return (0.0);

else { tau = (1/a) * log (1/r1); return(tau); }

}

int Get_Random_nu (double * a_nu_sorted , int * index_sorted , int M, double r2)

{a=0.0, b=0.0;

for(i=0;i<M;i++)

a = a + a_nu_sorted[i];

i = 0;

while(b < (r2 * a))

{ b = b + a_nu_sorted[i]; i++; }

nu = index_sorted[i-1];

if (i==0) return (0);

else return(nu);

}

int * Calc_X(int * X, int ** R_C_input , int ** R_C_output , int nu_random , int N)

{j = nu_random;

if(nu_random !=0)

for(i=0;i<N;i++)

X[i] = X[i] - R_C_input[i][j-1] + R_C_output[i][j-1];

return(X);

}

int * Sort_Index(double * a_nu , double * a_nu_sorted , int * ind , int M)

{temp_index = 0; temp = 0.0;

for(i=0;i<M;i++)

a_nu_sorted[i] = a_nu[i];

for(i=0;i<(M-1);i++)

for(j=(i+1);j<M;j++)

if(a_nu_sorted[i]>a_nu_sorted[j])

{temp = a_nu_sorted[j];

a_nu_sorted[j] = a_nu_sorted[i];

a_nu_sorted[i] = temp;

temp_index = ind[j];

ind[j] = ind[i];

ind[i] = temp_index;

} return(ind);

}

double * Sort(double * a_nu , double * a_nu_sorted , int M)

{temp = 0.0;

for(i=0;i<M;i++)

a_nu_sorted[i] = a_nu[i];
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for(i=0;i<(M-1);i++)

for(j=(i+1);j<M;j++)

if(a_nu_sorted[i]>a_nu_sorted[j])

{temp = a_nu_sorted[j];

a_nu_sorted[j] = a_nu_sorted[i];

a_nu_sorted[i] = temp;

} return(a_nu_sorted );

}

double cpu_time (void) // cpu_time returns the current reading on the CPU clock.

{value = (double) clock () / (double) CLOCKS_PER_SEC; return (value );

}

double * Process_Data_and_Calc_Cov (double ** processed_data , double * cov_avg ,

int t_ss , int rp , int tau , int ens)

{p = rp -(t_ss -1)-tau;

count_ens = 0;

for(j=0;j<p;j++)

{for(i=0;i<ens;i++)

new_data[i][0] = processed_data[j][2*i];

for(k=0;k<tau;k++)

{for(i=0;i<ens;i++)

new_data[i][1] = processed_data[j+k][(2*i)+1];

full_cov[k][j] = Calc_Raw_Covariance (new_data ,ens);

}

}

for(i=0;i<tau;i++)

{cov_avg[i] = 0.0;

for(j=0;j<p;j++)

cov_avg[i] = cov_avg[i] + full_cov[i][j];

cov_avg[i] = cov_avg[i]/p;

} return(cov_avg );

}

double Normalize_Cov (double ** processed_data , int t_ss , int t_stop , int ens)

// CALCULATING THE NORMALIZATION CONSTANT

{cov1 = 0.0, cov2 = 0.0, norm_cnst = 0.0;

for(j=0;j<t_stop -t_ss +1;j++)

{for(i=0;i<ens;i++)

{ new_data[i][0] = processed_data[j][2*i];

new_data[i][1] = processed_data[j][2*i];

}

full_cov [0][j] = Calc_Raw_Covariance (new_data ,ens);

for(i=0;i<ens;i++)

{ new_data[i][0] = processed_data[j][(2*i)+1];

new_data[i][1] = processed_data[j][(2*i)+1];

}

full_cov [1][j] = Calc_Raw_Covariance (new_data ,ens);

}

for(j=0;j<t_stop -t_ss +1;j++)

{ cov1 = cov1 + full_cov [0][j]; cov2 = cov2 + full_cov [1][j]; }

cov1 = cov1/(t_stop -t_ss +1); cov2 = cov2/(t_stop -t_ss +1);

norm_cnst = sqrt(cov1*cov2); return(norm_cnst );

}

double Calc_Raw_Covariance (double ** data , int s)

{cov = 0.0;
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for(j=0;j<2;j++)

{mean[j] = 0.0;

for(i=0;i<s;i++)

mean[j] = mean[j] + data[i][j];

mean[j] = mean[j]/( static_cast < double > (s));

}

for(i=0;i<s;i++)

for(j=0;j<2;j++)

dataminusmean [i][j] = data[i][j] - mean[j];

j = 0;

for(i=0;i<s;i++)

cov = cov + (dataminusmean [i][j] * dataminusmean [i][j+1]);

cov = cov/( static_cast < double > (s)); return(cov);

}

int Cmbn(int n, int r) // Calculating nCr

{a = 1, b = 1, c = 0, nn = n, rr = r;

if((n==0)||(n<r)) return (0);

else if(r==0) return (1);

else if(r==1) return(n);

else

{for(i=0;i<rr;i++) { a = a * nn; nn --; }

for(i=0;i<rr;i++) { b = b * r; r--; }

c = a/b; return(c);

}

}

int Factorial(int n)

{m=n, x=1;

if((n==0)||(n<0)) return (1);

else { for(i=0;i<m-1;i++) { x = x * n; n--; } return(x); }

}

A.2 Sample case:

The objective here is to compare the dynamic correlations obtained through the LNA

formulation with those obtained by Monte Carlo simulations. Here, we shall com-

pare the results of the elementary activator system X → Y , where correlations are

drawn between the proteins of the regulator node X and the regulated node Y , which is

Corr[Px(t), Py(t + τ)] evaluated at steady-state conditions using Equation (3.14). Since

LNA is applicable only at steady-state, in the simulations, we shall evaluate the corre-

lation function during such a time period (> ‘t ss’). The time-evolution of mRNAs and

proteins of the GRN are shown in Figures A.1 and A.2 respectively. The time-series

corresponding to a single run of the algorithm is the stochastic time-evolution of these

variables, whilst the average of 1000 runs of the algorithm is equivalent to deterministic

time-evolution, which is described by a set of ODEs given in section 5.1.
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Figure A.1: Deterministic and stochastic time evolution of the mRNA species of the
X → Y regulatory network. Average of 1000 runs of the simulation is considered to be
equivalent to the deterministic time evolution obtained through the ODEs.

Figure A.2: Deterministic and stochastic time evolution of the protein species of the
X → Y regulatory network.
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Since the computational time required to simulate large values of molecular numbers, is

very high, due to large values for the propensity functions (A.1) and consequently very

low values for the time steps (A.10), we assume lower values of molecular numbers. The

mean levels of mRNA and protein concentrations are assumed to be: 〈Mx〉 = 1.0 nM ,

〈My〉 = 2.0 nM , 〈Px〉 = 20.0 nM and 〈Py〉 = 100.0 nM . The reaction set for this sys-

tem is given in Table 5.1, where the rate constants, which are the kµ’s in the simulation

algorithm, for the above concentration levels are as follows:

k+
Mx

= 0.0407 nM min−1, k+
Px

= 0.367 min−1

k+
My

= 0.308 min−1, k+
Py

= 0.88 min−1

kon = 1.0 nM−1min−1, koff = 20.0 min−1

k−
Mx

= 0.0407 min−1, k−
My

= 0.0770 min−1

k−
Px

= 0.0184 min−1, k−
Py

= 0.0176 min−1

For the above set of values, the computational time for simulating 1000 runs of the

regulatory system on a single PC is about 4 minutes. Also, the terms concentration and

number of molecules are used interchangeably since the volume is assumed to be of 1 unit.

From the reaction set of this GRN, it is clear that the production of Mx is spontaneous

or in other words is transcribed from a gene that is constantly in the active/ON state.

As discussed in 2.3, the steady-state distribution of such a species is Poissonian due to

its spontaneous births and deaths. The distribution around the mean value of Mx is

shown in Figure A.3. On the other hand, the mRNA of the downtream node My is

modelled as being transcribed by a switching gene Gy which transits between the active

and inactive states due to the binding and unbinding of the transcription factor Px on

to its regulatory region. Therefore, its distribution is a heavy-talied gamma as shown in

Figure A.4. The issues on mRNA distribution were dealt with in section 2.2 with the

aid of the model described in Figure 2.2.

Further in section 2.4, we discussed in brief on the shapes of the probability distribu-

tions of the proteins at steady-state conditions, for such models. Our simulation of

the elementary activator system produces steady-state protein distributions, that are

in line with these discussions. The distributions around the mean values of Px and Py

are shown in Figures A.5 and A.6 respectively. While both are gamma distributed, the

mean level of Px being lower, has a long-tailed distribution as compared to that of Py.
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Figure A.3: Probability distribution or histogram of Mx at steady-state condition,
for 1000 runs of the X → Y system, or equivalent number of cells incorporating the
X → Y system.

Figure A.4: Probability distribution or histogram of My at steady-state condition.
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Figure A.5: Probability distribution or histogram of Px at steady-state condition,
for 1000 runs of the X → Y system, or equivalent number of cells incorporating the
X → Y system.

Figure A.6: Probability distribution or histogram of Py at steady-state condition.
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For such a regulatory system, we shall compare the dynamic correlations evaluated from

the analytical formulation of chapter 3 with those obtained by simulations. Figure A.7

shows that the correlations obtained from simulations match closely with that of the

analytical one, as the ensemble size increases. The evaluation of correlations as shown

in the programming code, rests on the equivalence between the ensemble-averaging and

time-averaging of such stochastic variables.

Figure A.7: Dynamic correlations between the proteins of the X → Y regulatory
network, obtained through analytics and simulations.
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Expression for τ∗ and tresp in the

case of an Elementary Activator

Here we derive expressions for the times τ∗ and tresp in the case of an activator link where

the connectivity between the molecular species can be represented as Mx → Px →My →
Py. The expressions that we derive here, correspond to those shown in Figure 5.4 of

section 5.1.3. In section 3.3, on the single-gene, we derive the expressions for τ∗ and

tresp. The derivations shown here follow exactly the same procedure adopted there. In

the time-covariance functions , which are sum of exponentials raised to the power of the

eigenevalues of the deterministic system, the exponential corresponding to the TF-DNA

binding/unbinding rates e−(kon+koff )τ is neglected since (kon + koff ) is usually much

larger than the decay rates. Further, in the reduced expression for the covariances, we

do the approximations (kon + koff ≫ k−
(M,P ), koff > kon) and arrive at the following

expressions for the covariance between Mx and its adjacent species in the connectivity

network, Px.

Cov [Mx(t), Px(t + τ)] =
k+

Px
k+

Mx

k−
Mx

[
− e−k−

Mx
τ

(k−
Mx
− k−

Px
)

+
2k−

Mx
e−k−

Px
τ

(k−2

Mx
− k−2

Px
)

]

The expression for τ∗ is obtained by partially differentiating the above expression w.r.t

τ and equating it to zero.

∂

∂τ
Cov [Mx(t), Px(t + τ)] = 0

⇒ − 2k−
Px

k−
Mx

e−k−

Px
τ∗

+ k−
Mx

(k−
Mx

+ k−
Px

)e−k−

Px
τ∗

= 0

e(k−

Mx
−k−

Px
)τ∗

=
k−

Mx
+ k−

Px

2k−
Px

τ∗ =
ln

[
k−

Mx
+k−

Px

2k−

Px

]

(k−
Mx
− k−

Px
)

(B.1)

143
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Denoting the mean steady-state level of Mx as Mx(tss), where tss is the steady state time-

period, an instantaneous perturbation at time t = 0 in this mean value by an amount

∆Mx induces a deterministic response in Px(t). This response follows the deterministic

rate equation but now, with the initial concentration of Mx being equal to Mx(tss) +

∆Mx. On solving for the rate equation of the protein Px, we get,

Px(t) = Px(tss) +
k+

Px

[
(∆Mx + Mx(tss))k

−
Mx
− k+

Mx

]

k−
Mx

(k−
Mx
− k−

Px
)

[
− e−k−

Mx
t + e−k−

Px
t
]

Px(t) = Px(tss) +
k+

Px

[
∆Mx

]

(k−
Mx
− k−

Px
)

[
− e−k−

Mx
t + e−k−

Px
t
]

because Mx(tss) = 〈Mx〉 = k+
Mx

/k−
Mx

, differentiating the above expression w.r.t the time

variable t,

∂Px(t)

∂t
=

k+
Px

[
∆Mx

]

(k−
Mx
− k−

Px
)

[
k−

Mx
e−k−

Mx
t − k−

Px
e−k−

Px
t
]

On equating this derivative to zero,

k−
Mx

e−k−

Mx
tresp = k−

Px
e−k−

Px
tresp

tresp =
ln

[
k−

Mx

k−

Px

]

(k−
Mx
− k−

Px
)

(B.2)

The difference between the two times is the same as in the case of the single gene system,

and is:

tresp − τ∗ =
ln

[
2k−

Mx

k−

Mx
+k−

Px

]

(k−
Mx
− k−

Px
)

(B.3)

———————————————————————–

Continuing on similar lines, the expressions for the two times, are derived in the case

where the output element is now My in place of Px. Note that the input element is still

Mx. The covariance between these two molecular species is:

Cov [Mx(t), My(t + τ)] =
k+

My
k+

Px
k+

Mx

k−
Mx

[
e−k−

Mx
τ

(k−
Mx
− k−

My
)(k−

Mx
− k−

Px
)

+
2k−

Mx
e−k−

Px
τ

(k−
My
− k−

Px
)(k−2

Mx
− k−2

Px
)

−
2k−

Mx
e
−k−

My
τ

(k−2

Mx
− k−2

My
)(k−

My
− k−

Px
)

]
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If k−
My

is largest of the decay rates, its exponential and the related terms could be

neglected.

Cov [Mx(t), My(t + τ)] ≈
k+

My
k+

Px
k+

Mx

k−
Mx

[
e−k−

Mx
τ

(k−
Mx
− k−

My
)(k−

Mx
− k−

Px
)

+
2k−

Mx
e−k−

Px
τ

(k−
My
− k−

Px
)(k−2

Mx
− k−2

Px
)

]

Differentiating w.r.t τ and equating to zero,

∂

∂τ
Cov [Mx(t), My(t + τ)] = 0

⇒
k−

Mx
e−k−

Mx
τ∗

(k−
Mx
− k−

My
)(k−

Mx
− k−

Px
)
≈

−2k−
Mx

k−
Px

e−k−

Px
τ∗

(k−
My
− k−

Px
)(k−2

Mx
− k−2

Px
)

e−k−

Mx
τ∗

(k−
My
− k−

Px
)(k−

Mx
+ k−

Px
) ≈ 2k−

Px
e−k−

Px
τ∗

(k−
My
− k−

Mx
)

e(k−

Mx
−k−

Px
)τ∗ ≈

(k−
My
− k−

Px
)(k−

Mx
+ k−

Px
)

2k−
Px

(k−
My
− k−

Mx
)

τ∗ ≈
ln

[
(k−

My
−k−

Px
)(k−

Mx
+k−

Px
)

2k−

Px
(k−

My
−k−

Mx
)

]

(k−
Mx
− k−

Px
)

(B.4)

Now, for a perturbation of ∆Mx in the mean steady-state value of Mx, the response in

My is:

My(t) = My(tss) +
k+

My
k+

Px

[
(∆Mx + Mx(tss))k

−
Mx
− k+

Mx

]

k−
Mx

×
[

e−k−

Mx
t

(k−
Mx
− k−

My
)(k−

Mx
− k−

Px
)

+
e−k−

Px
t

(k−
Mx
− k−

Px
)(k−

My
− k−

Px
)

− e
−k−

My
t

(k−
Mx
− k−

My
)(k−

My
− k−

Px
)

]

≈ My(tss) +
k+

My
k+

Px

[
(∆Mx + Mx(tss))k

−
Mx
− k+

Mx

]

k−
Mx

×
[

e−k−

Mx
t

(k−
Mx
− k−

My
)(k−

Mx
− k−

Px
)

+
e−k−

Px
t

(k−
Mx
− k−

Px
)(k−

My
− k−

Px
)

]

Taking the derivative
∂My(t)

∂t and equating it to zero, we get the following equation for

tresp:
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tresp − τ∗ =
ln

[
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− k−
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)

(B.6)

On the other hand, if the half-life of mRNA Mx is the smallest of all the molecular

species, k−
Mx

would consequently be the largest of the decay rates and therefore its

exponential and the related terms could be neglected. The covariance term is now:

Cov [Mx(t), My(t + τ)] =
k+

My
k+

Px
k+
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[
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τ

(k−2

Mx
− k−2

My
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)

]

Differentiating this expression for the covariance w.r.t τ and equating the resulting

partial derivative to zero,
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Similarly, the expression for tresp in the case, where k−
Mx

is larger than the other decay

rates, is obtained as follows:

My(t) ≈ My(tss) +
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]

Once again taking the derivative of this expression w.r.t t and equating it to 0, we get
∂My(t)

∂t = 0 which gives:
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———————————————————————–

We now look at the case where the output element is Py, whilst Mx is still the input

element. The dynamic covariance between them are:

Cov [Mx(t), Py(t + τ)] =
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Neglecting terms related to e
−k−

My and e−k−

Mx since the decay rates k−
My

and k−
Mx

are

large compared to the decay rates of the proteins. The covariance in now approximated

as:
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My

k+
Px

k+
Py
〈Mx〉

[ −2k−
Mx

e−k−

Px
τ

(k−
My
− k−

Px
)(k−2

Mx
− k−2

Px
)(k−

Px
− k−

Py
)

+
2k−

Mx
e
−k−

Py
τ

(k−
My
− k−

Py
)(k−

Px
− k−

Py
)(k−2

Mx
− k−2

Py
)

]

Differentiating this expression for the covariance w.r.t τ and equating the partial deriva-

tive to zero,
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The expression for the response in the mean value of Py is,

Py(t) = Py(tss) +
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Taking the derivative
∂Py(t)

∂t and equating it to zero, we get the following equation for

tresp:
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tresp − τ∗ ≈
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http://www.sciencedirect.com/science/article/B6VCT-4JT3S34-2/2/84c1d3828bd2844697421bdbd4b59063
http://dx.doi.org/10.1038/nature04473


BIBLIOGRAPHY 153

M. De Hoon, S. Imoto, and S. Miyano. Inferring gene regulatory networks from time-

ordered gene expression data using differential equations. Lecture Notes in Computer

Science, 2534:267274, 2002.

Sara Hooshangi, Stephan Thiberge, and Ron Weiss. Ultrasensitivity and noise propa-

gation in a synthetic transcriptional cascade. Proceedings of the National Academy of

Sciences of the United States of America, 102(10):3581–3586, 2005.

Piers J. Ingram, Michael P. H. Stumpf, and Jaroslav Stark. Nonidentifiability of the

source of intrinsic noise in gene expression from single-burst data. PLoS Computational

Biology, 4(10):e1000192, 2008.

Franois Jacob and Jacques Monod. Genetic regulatory mechanisms in the synthesis of

proteins. Journal of Molecular Biology, 3:318–356, 1961.

Shiraz Kalir, Shmoolik Mangan, and Uri Alon. A coherent feed-forward loop with a

sum input function prolongs flagella expression in Escherichia coli. Molecular Systems

Biology, pages 1–5, March 2005.

Joel Keizer. Statistical Thermodynamics of Nonequilibrium Processes. Springer-Verlag,

1987.

T B Kepler and T C Elston. Stochasticity in transcriptional regulation: origins, con-

sequences, and mathematical representations. Biophysical Journal, 81(6):31163136,

December 2001.

Sun Yong Kim, Seiya Imoto, and Satoru Miyano. Inferring gene networks from time

series microarray data using dynamic bayesian networks. Briefings in Bioinformatics,

4(3):228–235, September 2003.

O. Kobayashi, H. Suda, T. Ohtani, and H. Sone. Molecular cloning and analysis of the

dominant flocculation gene flo8 from Saccharomyces cerevisiae. Molecular Genetics

and Genomics, 251(6):707–715, July 1996.

O. Kobayashi, H. Yoshimoto, and H. Sone. Analysis of the genes activated by the flo8

gene in Saccharomyces cerevisiae. Current Genetics, 36(5):256–261, 1999.

Jean-Christophe Leloup and Albert Goldbeter. A model for circadian rhythms in

drosophila incorporating the formation of a complex between the per and tim proteins.

Journal of Biological Rhythms, 13(1):70–87, 1998.

Robert J. Lipshutz, Stephen P.A. Fodor, Thomas R. Gingeras, and David J. Lockhart.

High density synthetic oligonucleotide arrays. Nature, 21:20–24, January 1999.

Shi V. Liu. Debating cell-synchronization methodologies: further points and alternative

answers. Trends in Biotechnology, 23(1):9 – 10, 2005. ISSN 0167-7799.

http://www.pnas.org/content/102/10/3581.abstract
http://bib.oxfordjournals.org/cgi/content/abstract/4/3/228
http://jbr.sagepub.com/cgi/content/abstract/13/1/70
http://www.nature.com/ng/journal/v21/n1s/abs/ng0199supp_20.html
http://www.sciencedirect.com/science/article/B6TCW-4DW8XN6-2/2/307060ecad4874383c6bdaff38c456b6


BIBLIOGRAPHY 154

Shi V. Liu. Method and apparatus for producing age-synchronized cells, US patent

US6767734B, July 2004.

Hedia Maamar, Arjun Raj, and David Dubnau. Noise in gene expression determines cell

fate in Bacillus subtilis. Science, 317:526–529, July 2007.

S. Mangan, S. Itzkovitz, A. Zaslaver, and U. Alon. The incoherent feed-forward loop

accelerates the response-time of the gal system of escherichia coli. Journal of Molecular

Biology, 356(5):1073 – 1081, 2006. ISSN 0022-2836.

Umberto M. Marconi, Andrea Puglisi, Lamberto Rondoni, and Angelo Vulpiani.

Fluctuation-dissipation: Response theory in statistical physics. Physics Reports, 461

(4-6):111–195, June 2008.

Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene expression. PNAS,

Biochemistry, 94:814–819, February 1997.

R. Milo and S. Shen-Orr et al. Network motifs: Simple building blocks of complex

networks. Science, 298:824–827, 2002.

Pedro T. Monteiro and Nuno D. Mendes et al. Yeastract-discoverer: new tools to improve

the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae.

Nucl. Acids Res., 36:D132–136, 2008.

Dale Muzzey and Alexander van Oudenaarden. Quantitative time-lapse flourescence

microscopy in single cells. Annual Review of Cell and Developmental Biology, 25(1):

13.1–13.27, 2009.

Iftach Nachman, Aviv Regev, and Sharad Ramanathan. Dissecting timing variability in

yeast meiosis. Cell, 131(3):544–556, November 2007.

Mariana Nacht, Anne T. Ferguson, Wen Zhang, Joseph M. Petroziello, Brian P. Cook,

Yu Hong Gao, Sharon Maguire, Deborah Riley, George Coppola, Gregory M. Landes,

Stephen L. Madden, and Saraswati Sukumar. Combining Serial Analysis of Gene Ex-

pression and Array Technologies to Identify Genes Differentially Expressed in Breast

Cancer. Cancer Res, 59(21):5464–5470, 1999.

R.B. Nelson. Simplified calculation of eigenvector derivatives. AIAA Journal, 14(9):

1201–1205, Sep 1976.

John R S Newman, Sina Ghaemmaghami, Jan Ihmels, David K Breslow, Matthew

Noble, Joseph L DeRisi, and Jonathan S Weissman. Single-cell proteomic analysis of

s. cerevisiae reveals the architecture of biological noise. Nature, 441:840–846, 2006.

Aaron Novick and Milton Weiner. Enzyme induction as an all-or-none phenomenon.

Proceedings of the National Academy of Sciences of the United States of America, 43

(7):553–566, 1957.

http://www.freepatentsonline.com/6767734.html
http://www.sciencedirect.com/science/article/B6WK7-4HV73HW-3/2/a3afe2d35916090d798818f30a54a2b8
http://dx.doi.org/10.1016/j.physrep.2008.02.002
http://nar.oxfordjournals.org/cgi/content/abstract/36/suppl_1/D132
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.cellbio.042308.113408
http://www.sciencedirect.com/science/article/B6WSN-4R1NGP6-M/2/0dd55f29f49a1f255e2a9b499c403ec7
http://cancerres.aacrjournals.org/cgi/content/abstract/59/21/5464
http://www.pnas.org/content/43/7/553.short


BIBLIOGRAPHY 155

Lars Onsager. Reciprocal relations in irreversible processes. i. Phys. Rev., 37(4):405–426,

Feb 1931.

E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. van Oudenaarden.

Regulation of noise in the expression of a single gene. Nature Genetics, 31:69–73, May

2002.

Willmar D. Patino, Omar Y. Mian, and Paul M. Hwang. Serial Analysis of Gene Ex-

pression: Technical Considerations and Applications to Cardiovascular Biology. Circ

Res, 91(7):565–569, 2002.

Johan Paulsson. Summing up the noise in gene networks. Nature, 427(415-18), 2004.

Johan Paulsson. Models of stochastic gene expression. Physics of Life Reviews, 2:

157–175, 2005.

Juan M. Pedraza and A. van Oudenaarden. Noise propagation in gene networks. Science,

307:1965–1969, 2005.

Bruno-Edouard Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d’Alche

Buc. Gene networks inference using dynamic bayesian networks. Bioinformatics,

19(Suppl.2):ii138–ii148, 2003.

Mark Ptashne and Alexander Gann. Transcriptional activation by recruitment. Nature,

386:569 – 577, april 1997.

A. Raj, P. van den Bogaard, S. A. Rifkin, A. van Oudenaarden, , and S. Tyagi. Imaging

individual mrna molecules using multiple singly labeled probes. Nature Methods, 9:

877–879, 2008.

Arjun Raj, Charles S. Peskin, Daniel Tranchina, Diana Y. Vargas, and Sanjay Tyagi.

Stochastic mrna synthesis in mammalian cells. PLoS Biology, 4:e309(10):1707–1719,

September 2006.

Jonathan M. Raser and Eric K. O’Shea. Control of stochasticity in eukaryotic gene

expression. Science, 304(5678):1811–1814, 2004.

L.C. Rogers. Derivatives of eigenvalues and eigenvectors. AIAA Journal, 8(5):943–944,

May 1970.

Nitzan Rosenfeld and Uri Alon. Response delays and the structure of transcription

networks. Journal of Molecular Biology, 329(4):645 – 654, 2003. ISSN 0022-2836.

Nitzan Rosenfeld, Jonathan W. Young, Uri Alon, Peter S. Swain, and Michael B.

Elowitz. Gene regulation at the single-cell level. Science, 307(5717):1962–1965, 2005.

E. Sakamoto and H. Iba. Inferring a system of differential equations for a gene regulatory

network by using genetic programming. Proceedings of the Congress on Evolutionary

Computation, page 720726, 2001.

http://circres.ahajournals.org/cgi/content/abstract/91/7/565
http://www.nature.com/doifinder/10.1038/386569a0
http://www.sciencemag.org/cgi/content/abstract/304/5678/1811
http://www.sciencedirect.com/science/article/B6WK7-48PDMV4-5/2/ded5769fcaff2841c5d5b651babf2390


BIBLIOGRAPHY 156

Katsuhiko Sato, Yoichiro Ito, Tetsuya Yomo, and Kunihiko Kaneko. On the relation

between fluctuation and response in biological systems. Proceedings of the National

Academy of Sciences of the United States of America, 100(24):14086–14090, 2003.

Mark Schena, Dari Shalon, Ronald W. Davis, and Patrick O. Brown. Quantitative mon-

itoring of gene expression patterns with a complementary dna microarray. Science,

270(5235):467–470, 1995.

Eran Segal, Michael Shapira, Aviv Regev, Dana Pe’er, David Botstein, Daphne Koller,

and Nir Friedman. Module networks: identifying regulatory modules and their

condition-specific regulators from gene expression data. Nature Genetics, 34:166–176,

May 2003.

Kerby Shedden and Stephen Cooper. Analysis of cell-cycle gene expression in Saccha-

romyces cerevisiae using microarrays and multiple synchronization methods. Nucl.

Acids Res., 30(13):2920–2929, 2002.

Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network motifs in the

transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64–68,

May 2002.

Alex Sigal, Ron Milo, Ariel Cohen, Naama Geva-Zatorsky, Yael Klein, Inbal Alaluf,

Naamah Swerdlin, Natalie Perzov, Tamar Danon, Yuvalal Liron, Tal Raveh, Anne E

Carpenter, Galit Lahav, and Uri Alon. Dynamic proteomics in individual human cells

uncovers widespread cell-cycle dependence of nuclear proteins. Nature Methods, 3:

525–531, June 2006a.

Alex Sigal, Ron Milo, Ariel Cohen, Naama Geva-Zatorsky, Yael Klein, Yuvalal Liron,

Nitzan Rosenfeld, Tamar Danon, Natalie Perzov, and Uri Alon. Variability and mem-

ory of protein levels in human cells. Nature, 444:643–646, November 2006b.

Alexander Soukas, Paul Cohen, Nicholas D. Socci, and Jeffrey M. Friedman.

Leptin-specific patterns of gene expression in white adipose tissue. Genes & De-

velopment, 14(8):963–980, 2000.

T. Speck and U. Seifert. Restoring a fluctuation-dissipation theorem in a nonequilibrium

steady state. Europhys. Lett., 74(3):391–396, 2006.

Paul T. Spellman and Gavin Sherlock. Final words: cell age and cell cycle are unlinked.

Trends in Biotechnology, 22(6):277 – 278, 2004a. ISSN 0167-7799.

Paul T. Spellman and Gavin Sherlock. Reply: whole-culture synchronization - effective

tools for cell cycle studies. Trends in Biotechnology, 22(6):270 – 273, 2004b. ISSN

0167-7799.

http://www.pnas.org/content/100/24/14086.abstract
http://www.sciencemag.org/cgi/content/abstract/270/5235/467
http://nar.oxfordjournals.org/cgi/content/abstract/30/13/2920
http://genesdev.cshlp.org/content/14/8/963.abstract
http://www.sciencedirect.com/science/article/B6TCW-4CBVMV5-1/2/e907ed11c7442ed4da6ff1333130740f
http://www.sciencedirect.com/science/article/B6TCW-4CBVMV5-2/2/e81c152eab69aa1dd969497600985a57


BIBLIOGRAPHY 157

Paul T. Spellman, Gavin Sherlock, Michael Q. Zhang, Vishwanath R, Kirk Anders,

Michael B. Eisen, Patrick O. Brown, David Botstein, and Bruce Futcher. Comprehen-

sive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae

by microarray hybridization. Molecular Biology of the Cell, 9:3273–3297, december

1998.

David Sprinzak and Michael B. Elowitz. Reconstruction of genetic circuits. Nature

Reviews, 438:443–448, November 2005.

Peter S. Swain, Michael B. Elowitz, and Eric D. Siggia. Intrinsic and extrinsic con-

tributions to stochasticity in gene expression. PNAS, 99(20):1279512800, October

2002.

Yi Tao, Xiudeng Zheng, and Yuehua Sun. Effect of feedback regulation on stochastic

gene expression. Journal of Theoretical Biology, 247:827–836, 2007.

Miguel C. Teixeira and P. Monteiro et al. The yeastract database: a tool for the analysis

of transcription regulatory associations in Saccharomyces cerevisiae. Nucl. Acids Res.,

34:D446–451, 2006.

Mukund Thattai and Alexander van Oudenaarden. Intrinsic noise in gene regulatory

networks. PNAS, 98(15):8614–8619, July 2001.

Mukund Thattai and Alexander van Oudenaarden. Attenuation of noise in ultrasensitive

signaling cascades. Biophysical Journal, 82(6):2943–2950, June 2002.

Ryota Tomioka, Hidenori Kimura, Tetsuya J. Kobayashi, and Kazuyuki Aihara. Multi-

variate analysis of noise in genetic regulatory networks. Journal of Theoretical Biology,

229:501–521, 2004.

Roger Y. Tsien. The green fluorescent protein. Annual Review of Biochemistry, 67(1):

509–544, 1998.

N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, North-

Holland Personal Library, third edition, 2007.

Diana Y. Vargas, Arjun Raj, Salvatore A. E. Marras, Fred Russell Kramer, and Sanjay

Tyagi. Mechanism of mrna transport in the nucleus. Proceedings of the National

Academy of Sciences of the United States of America, 102(47):17008–17013, 2005.

Victor E. Velculescu, Lin Zhang, B. Vogelstein, and K. W. Kinzler. Serial analysis of

gene expression. Science, 270(5235):484–487, October 1995.

Jos M. G. Vilar, Calin C. Guet, and Stanislas Leibler. Modeling network dynamics: the

lac operon, a case study. J. Cell Biol., 161(3):471–476, 2003.

http://nar.oxfordjournals.org/cgi/content/abstract/34/suppl_1/D446
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.biochem.67.1.509
http://www.pnas.org/content/102/47/17008.abstract
http://jcb.rupress.org/cgi/content/abstract/161/3/471


BIBLIOGRAPHY 158

Yulei Wang, Chih Long Liu, John D. Storey, Robert J. Tibshirani, Daniel Herschlag,

and Patrick O. Brown. Precision and functional specificity in mrna decay. PNAS, 99

(9):5860–5865, 2002.

Mathias F. Wernet, Esteban O. Mazzoni, Arzu elik, Dianne M. Duncan, Ian Duncan,

and Claude Desplan. Stochastic spineless expression creates the retinal mosaic for

colour vision. Nature, 440:174–180, March 2006.

Gad Yagil and Ezra Yagil. On the relation between effector concentration and the rate

of induced enzyme synthesis. Biophysical Journal, 11(1):11–27, January 1971.

Ji Yu, Jie Xiao, Xiaojia Ren, Kaiqin Lao, and Sunney X. Xie. Probing gene expression

in live cells, one protein molecule at a time. Science, 311(5767):1600–1603, 2006.

Etay Ziv, Ilya Nemenman, and Chris H. Wiggins. Optimal signal processing in small

stochastic biochemical networks. PLoS ONE, 2(10):e1077, 10 2007.

http://www.sciencemag.org/cgi/content/abstract/311/5767/1600

