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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
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Doctor of Philosophy

by Zheng Chen

Scientific and engineering communities (e.g., chemistry, bioinformatics and engineering
manufacturing) have presented unprecedented requirements for knowing the provenance
of their data products, i.e., where they originated from, how they were produced and
what has happened to them since creation. Without such important knowledge, scien-

tists and engineers cannot reproduce, analyse or validate experiments and processes.

Previous work has conceived a computer-based representation of a past process for de-
termining provenance, termed process documentation. However, current provenance sys-
tems do not adequately address the problem of reliably recording process documentation
in large scale environments like Service Oriented Architectures. For example, a service
may not be available and network connection may be broken. In this context, reliably
recording process documentation becomes challenging, given that the documentation
produced in a process can be spread over multiple provenance repositories across the

world.

The presence of failures (specifically, the crash of provenance repositories and commu-
nication failures) may prevent process documentation from being recorded, losing the
evidence that a process occurred. This would have disastrous consequences and hence
is not acceptable in the domains that rely on process documentation to determine the

provenance of their data products.

In this thesis, we systematically analyse all situations that may occur during captur-
ing process documentation in the event of assumed failures. We then present a novel
coordinator-based protocol that is formally proved to record complete process docu-
mentation. In addition, we use graphs to intuitively represent the topology of process
documentation recorded in multiple interlinked provenance repositories, which helps us
to investigate the entire retrievability of distributed process documentation. Finally, we
evaluate a system architecture that employs the protocol and supports practical issues
such as communication, storage and performance. The results show that the system can
record complete and retrievable process documentation while maintaining acceptable

performance.
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Chapter 1

Introduction

1.1 Provenance

The Oxford English Dictionary defines provenance as (i) the fact of coming from some
particular source or quarter; origin, derivation. (ii) the history or pedigree of a work
of art, manuscript, rare book, etc.; concretely, a record of the ultimate derivation and

passage of an item through its various owners.

In the field of fine art, provenance has been well studied as the trusted and documented
history of an art object [60]. For example, after a painting has been drawn, people who
study it many years later would want to know who drew it, where and when it was
produced, what materials and techniques were used to draw it, and who has owned it
since it was created. These questions can be answered through a record that accurately

documents all the information relevant to this painting.

In scientific and engineering communities, provenance explains the history of data prod-
ucts, e.g., where they originated from and what has happened to them since creation.
With such information, people can interpret and judge the quality of data, and con-
sequently derive trust in results produced by applications. In chemistry experiments,
provenance can be used to detail the procedure by which a material is generated, al-
lowing the material to be patented [132]. In healthcare applications, in order to audit
if proper decisions were made for a patient, there is a need to trace back the origins of
these decisions [11]. In engineering manufacturing, engineers choose materials for the
design of critical components, such as for an airplane, based on their statistical analysis
and it is essential to establish the history of this data to prevent system failures and for
audit [146]. In finance business, the provenance of some data item establishes the origin
and authenticity of the data item (e.g., a trade execution) produced by financial transac-
tions, enabling reviewers and auditors to verify if these transactions are compliant with

specific financial regulations [91].
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Traditionally, people typically use a log book to record provenance information of their
work. For example, scientists manually record every step, operation and intermediate
result of their experiment in a log book as the experiment is being executed. Therefore,
they can determine the provenance of experimental results by going back through their
log book. However, if the experiment is entirely in silico', scientists are not able to
track their work since there are no physical records as there would be with a log book

in those lab-based experiments.

To address this problem, much research has been seen to collect provenance information
in computer systems (e.g., [63, 130, 131, 175, 54, 155, 10, 151]). The drawback of these
provenance systems is that they are tightly coupled with specific application domains or
technologies. This means that application developers have to re-implement components
for recording or using provenance in different execution contexts. In addition, it becomes
difficult to integrate provenance derived from different systems and represented using
different models. One direction currently being investigated is the standardisation of

representing provenance [41].

To achieve this goal, Groth et al. [77, 82, 80] designed and implemented a domain
and technology independent infrastructure, PASOA, to provide interoperable means for
recording and using provenance. It supports requirements from very different application
areas [117], such as biology, chemistry, physics and computer science, and has been
evaluated in a number of applications [44, 11, 157, 169, 158, 9, 96, 167, 140, 118].

PASOA defines several terms related to provenance. The provenance of a piece of data
is redefined as the process that led to that piece of data. The term process documen-
tation refers to the documentation of the process that led to the data item. PASOA
distinguishes the two terms in that provenance is determined by performing a query over
process documentation®. Process documentation is recorded in a dedicated repository,
the provenance store. The role of a provenance store is to provide a long-term reliable

and accessible storage of process documentation.

The lifecycle of process documentation consists of four phases: creating, recording,
querying and managing, as shown in Figure 1.1. While executing and producing elec-
tronic data, provenance-aware applications create process documentation and store it
in one or several provenance stores. After being recorded, process documentation is
ready to be retrieved and reasoned over to derive the provenance of some data item.
Also, process documentation stored in provenance stores can be managed, maintained

or curated by administrators.

L An in silico experiment is a procedure that uses computer-based information repositories and com-
putational analysis to test a hypothesis, derive a summary, search for patterns, or demonstrate a known
fact [73] as in a wide range of areas, e.g., computational chemistry [66], bioinformatics [73], and drug
discovery [93]

2To be compatible with current literature, the terms provenance information and process documen-
tation are used interchangeably in this thesis.
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Provenance-
Aware
Application

A ﬁ Provenance

Administer Store Query and
store and its reason over

contents provenance
of data

FIGURE 1.1: The lifecycle of process documentation [126]

1.2 Scalable Recording of Process Documentation

Large scale, open distributed systems are typically designed using a service-oriented ap-
proach [152], usually referred to as service-oriented architectural style [28]. As opposed
to conventional distributed environments, one obvious and common challenge faced by
SOAs is managing and sharing heterogeneous services across dynamic distributed or-
ganisations with different security policies. A representative example is the Grid, where
computing and data resources are geographically dispersed in different administrative
domains, and computing resources are highly heterogeneous, ranging from single PCs

and workstations, clusters of workstations, to supercomputers [55].

The Grid has been used in a variety of domains including drug discovery [93], bioinfor-
matics [73], earthquake engineering [136], weather forecasting [138], astronomy [154] and
high energy physics [74]. Many of these experiments require large-scale resources with
thousands of scientists, tens of thousands of computers, and trillions of petabytes of stor-
age across continents in the world 34°. SF-Express is a distributed interactive simulation
application that harnesses multiple supercomputers across nine organisations to meet
the computational demands of large-scale network-based simulation environments [24].
In the drug discovery research, 1700 computers were simultaneously used in 15 countries
around the world to tackle the scientific challenge. The EGEE project assembles over
250 sites around the world organised in 12 partner regions across 40 countries (Figure
1.2). Several communities in EGEE participated in a project Biomedical Grids to cope
with the flood of bioinformatics and healthcare data [67].

When recording process documentation in such distributed and heterogeneous environ-

ments, it is impractical for a single provenance store to retain all provenance information

SEGEE, http://www.cu-egee.org/
108G, http://www.opensciencegrid.org/
"TeraGrid, http://www.teragrid.org/
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FIGURE 1.2: EGEE Project Participants [67]

of a distributed application. Thus, multiple provenance stores should be used to sup-
port scalable recording of process documentation for several advantages. One advantage
is that the use of multiple repositories eliminates a central point of failure and perfor-
mance bottlenecks. With multiple provenance stores, an organisation can record process

documentation into a nearby store with short recording latencies.

Using multiple provenance repositories results in process documentation recorded in
many locations. Hence there must be some mechanism to connect these stores in order to
retrieve distributed process documentation. PASOA introduces a mechanism to interlink
provenance stores. Links are recorded along with process documentation in stores, which
form a pointer chain connecting all the provenance stores hosting the documentation of
a process (Figure 1.3). Using the pointer chain, distributed documentation can be

retrieved from one store to another. Section 2.3.4 will detail the linking mechanism.

1.3 Recording Process Documentation in the Presence of

Failures

Distributed systems are susceptible to failures [37]. Failures, due to various reasons like
server crash, hardware deficiencies, network partition, broken communication, power
outage, and other sources of failures (e.g., machine rebooted by the owner, network

congestion, excessive CPU load, etc) [90] are a significant cause for concern.

Since large-scale SOA-based applications usually involve heterogenous services provided
and controlled by other organisations, another challenge of SOAs is the face of failures

that would affect the reliability and availability of services.
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Ej Provenance Store <«—> Links

FIGURE 1.3: An Example of Interlinked Provenance Stores

The Grid® community has reported many results regarding failures. The weather forecast
experiments on TeraGrid saw a significant portion of its workflows (60%) encountering
software and/or hardware problems [23]. Grid2003 (now Open Science Grid) observed a
30% job submission failure rate with 90% of the failures caused by problems such as disk
filling errors, site overloading and crashes, and network interruptions [57]. The FlexX
and Autodock data challenges of the WISDOM project”, conducted in 2005, showed
that only 32% and 57% of the jobs completed successfully, respectively [173].

It is not surprising to find that failures are common in the Grid. This is because the
Grid is geographically dispersed, involving a large number of components (e.g., instru-
ments, display, computational and informational resource, and people) across multiple

autonomous administrative domains.

When recording provenance in a distributed environment like the Grid, it is unavoid-
able that the communication with a provenance store (which can be deployed as a Grid
service) or the provenance store itself can fail. Some of the current provenance systems,
although able to reliably record process documentation [130, 47, 142, 62], do not support
multiple provenance stores, whilst others tend to assume a failure-free execution envi-
ronment or do not discuss this issue [175, 10, 150, 58, 35]. Such a limitation, assumption
or omission will hinder the eventual utilisation of provenance. We now take the example
of PASOA since it is a general provenance system and also supports interlinked multiple

provenance stores.

A scientific application, to be described in Chapter 6, used PASOA to record process

documentation in the presence of simulated failures. By analysing the contents of prove-

5Cloud Computing receives more and more attention nowadays. Although having its unique charac-
teristics, it is evolved out of Grid Computing and relies on the Grid as its backbone and infrastructure
support[59]. We will discuss Cloud Computing and its relationship with provenance in Chapter 7.
"WISDOM, http://wisdom.eu-egee.fr/
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nance stores after the application completes, we find that the quality of the recorded
documentation is poor in the presence of failures®, as demonstrated in Figures 1.4 and
1.5. In Figure 1.4, as failure rate increases, a large proportion of process documentation
fails to be recorded. Figure 1.5 reveals the increase in the number of dangling links,
i.e., pointers to other provenance stores that were supposed to record part of process
documentation but did not, and in the number of isolated documentation islands. In
the example of Figure 1.6, distributed process documentation recorded in multiple stores

are disconnected to several islands due to the breakage of the pointer chain.

100 T T T T T T
T Using PASOA —+— 600 |- Dangling Links —— |
\,\ Isolated Documentation Islands ---x---

\\ 500

80
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300 /
40 :

200 / e
20 "

Number of Entities

100

Successfully Recorded Documentation (%)
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FIGURE 1.4: Loss of documentation FiGure 1.5: Dangling links and iso-
records in provenance stores lated islands in provenance stores

Process documentation of poor quality, i.e., incomplete and disconnected, is not accept-
able in those domains that rely on process documentation to determine the provenance
of their data products. For example, U.S. Food and Drug Administration requires drug
companies to keep a complete record of drug manufacture and distribution as long as
the drug is in use’. A number of SOA-based applications have used PASOA to derive
provenance of their data products, including healthcare application [44], organ trans-
plant management [11], aerospace engineering [96], RSS feeds [111], trust calculations
[140], fault tolerance in the Grid and SOAs [157, 169, 158], biodiversity [167], and au-
diting of private data use [9]. Due to poor quality, entire process documentation cannot
be obtained and hence those applications cannot verify the provenance of their data

products.

In addition to recording poor quality process documentation, provenance systems with-
out consideration of failures can also affect the execution of the corresponding provenance-
aware application. For example, outstanding documentation which fails to be trans-
ported to a crashed provenance store may exhaust the application’s memory if no flow
control mechanism is implemented, leading to the crash of the application, or it may
suspend the execution of the application if the application has flow control mechanisms.

Current Grid applications often perform long running tasks that require several or more

8We considered the failures of provenance stores and communication links.
9Section 600.12, Code of Federal Regulations, Food and Drug Administration.
http://www.accessdata.fda.gov /scripts/cdrh/cfdocs/cfcfr /CFRSearch.cfm?fr=600.12
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8 Provenance Store <—> Links

FIGURE 1.6: Broken Pointer Chain

days of computation [114, 55]. Although fault-tolerant mechanisms have been avail-
able for Grid applications to tolerate failures, the interruption due to recording process

documentation would still cause great troubles to those applications.

1.4 Thesis Statement and Contributions

When recording provenance information in SOAs, the large-scale and heterogenous na-
tures of SOAs require the need for multiple provenance stores and the consideration
of failures. Our work aims to address these concerns by designing a generic recording
protocol that deals with failures and still ensures the connectivity of distributed process

documentation recorded in numerous linked stores.
We state the thesis of our research as follows:

In SOA-based applications, the problem of recording process documentation in the pres-
ence of failures (provenance store crashes and communication failures'®) while still en-
suring its entire retrievability is solved via a generic and efficient coordinator-based proto-
col to guarantee successful recording of complete documentation and to preserve accurate

links that connect multiple provenance stores.

To establish this thesis, we firstly present F-PReP, a protocol to record documentation in
the presence of failures. Then we formalise the protocol and prove that it guarantees the
recording of complete documentation and maintains accurate links. In order to establish
the entire retrievability, we analyse the topology of distributed process documentation
after being recorded in provenance stores using F-PReP. Finally, we introduce the im-
plementation of F-PReP and conduct evaluations to show that F-PReP is efficient and

introduces acceptable recording overhead.

Failure assumptions will be further justified in Chapter 3.
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Given that PASOA is a domain and technology independent infrastructure and provides
a mechanism to interlink provenance stores, our work extends PASOA with the following

original contributions.

e We present and formalise a generic coordinator-based recording protocol F-PReP,
which provides remedial actions to cope with failures. The coordinator plays a
crucial role in maintaining accurate links to connect multiple stores. Four require-
ments are identified for the protocol to record complete and retrievable distributed
process documentation in the presence of failures. The protocol’s correctness is

formally proved using mathematical induction.

e We graphically represent the topology of distributed process documentation recorded
in interlinked provenance stores. We perform an exhaustive analysis on the forms
of graphs, considering all possible topologies after documentation was recorded by
using F-PReP in the presence of failures. We also identify a number of graph prop-

erties to help us demonstrate the entire retrievability of process documentation.

e A system architecture F-PReServ is described, which employs F-PReP and sup-
ports practical issues such as communication, storage and performance. Its fea-
tures include a novel way of creating process documentation, a new retrieval func-
tion, and implementation strategies for achieving good recording performance in

the presence of failures.

e An extensive evaluation of F-PReServ is performed, which reveals that it intro-
duces acceptable recording overhead to a provenance-aware application’s execu-
tion. The evaluation is conducted at several levels. First of all, we measure the
throughput of the provenance store and coordinator. We demonstrate that a sin-
gle coordinator does not result in performance bottleneck. Then, we benchmark
the recording performance of F-PReServ and show that remedial actions intro-
duce small overhead (below 10%). In addition, we investigate the performance
impact on the execution time of a scientific application. Lessons are learned and

recommendations are given on achieving good performance in the case of failures.

1.5 Dissertation Structure

This dissertation is organised as follows.

Chapter 2 provides background information on our work. It surveys the state of the
art research for determining provenance in computational systems and reviews fault
tolerance mechanisms for distributed systems. From this survey, we position our work

and discuss various approaches to reliably recording process documentation.
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Chapter 3 states failure assumptions and identifies requirements that F-PReP supports.
Then it analyses the problems that may occur in the presence of failures and outlines
the protocol’s design philosophy. After that, we define protocol messages and detail
F-PReP’s behaviour. Finally, we formalise F-PReP using an Abstract State Machine
approach.

Chapter 4 proves the protocol’s correctness by following a systematic procedure based on
mathematical induction. A number of properties are established showing that the pro-
tocol guarantees successful recording of complete documentation and maintains correct

links when failures occur.

Chapter 5 graphically represents contents of interlinked provenance stores hosting dis-
tributed process documentation. We establish graph properties and present an exhaus-
tive analysis on graph topologies, which facilitates us to demonstrate the entire retriev-

ability of distributed documentation.

Chapter 6 firstly details the design and implementation of F-PReServ. Then it outlines
our evaluation environment and methodology, followed by a series of performance ex-
periments in controlled environments and in a scientific application. Based on lessons
learned from the experimental results, several recommendations are given regarding fur-

ther improvements of the system.

Chapter 7 discusses future work and concludes this dissertation.

1.6 Publications
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Zheng Chen and Luc Moreau. Recording Process Documentation in the Presence of
Failures. Methods, Models and Tools for Fault Tolerance, volume 5454 of Lecture Notes
in Computer Science, pages 196-219. Springer, 2009.



Chapter 2

Related Work

In this chapter, we review research on provenance and provide background information
on failures and fault tolerance mechanisms. We also position our work and discuss

various alternative approaches to addressing our problem.

In the first part of this chapter, we introduce Service-Oriented Architectures and work-
flows, and then review the state of the art research about provenance. The provenance
community has been growing in recent years and many systems have been seen to sup-
port provenance in many research areas. Through a comprehensive comparison of ma-
jor provenance-related systems, PASOA has several advantages over the other systems,

which have been demonstrated in a wide range of applications.

Then we highlight key aspects of PASOA, such as the modelling and recording of process
documentation, and the linking mechanism that is used to connect multiple provenance

stores.

In the second part, we introduce failure models in distributed systems and survey major
fault-tolerant techniques. We also highlight the importance of formal methods to the
design of distributed protocol and review formal approaches to modelling fault-tolerant

applications.

2.1 Background

2.1.1 Service-Oriented Architectures

Large scale, open distributed systems are typically designed using a service-oriented
approach [152], usually referred to as service-oriented architectural style [28]. A Service-
Oriented Architecture (SOA) consists of loosely coupled services communicating via a

common transport. Typically, a service is only available through an interface represented

10
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in some standard format. The main advantage of SOAs is that they hide implementation
behind an interface allowing implementation details to change without affecting the user

of the service.

One of the main ways to implement SOAs is to build cross-platform, interoperable
applications out of Web Services [7, 134]. Using Web service technologies, a service’s
interface can be expressed in the Web Services Definition Language (WSDL) and it can
communicate using the common transport protocol SOAP. Because of these properties,

SOAs are particularly good for building large scale distributed systems, such as the Grid.

The Grid is a complex computing infrastructure designed to support the sharing of
heterogeneous computational and data resource across dynamic and geographically dis-
tributed organisations [55]. In this context, a fundamental problem is how to provide
an interoperable access model to all types of resources. This issue has been addressed
by the Open Grid Services Architecture (OGSA) [55], where a SOA style of resource
access is adopted. Due to the benefits of SOAs and Web Services, Grid middleware,
e.g., Globus Toolkit 4 [56], gLite [67] and UNICORE [116], has moved towards these
technologies. Hence, Grid resources have been modelled as Web Services to facilitate

resource sharing in heterogeneous environments.

The same trend has been seen in scientific and engineering communities. When inte-
grated with the Grid, domain-specific services have also been modelled as Web Services
in a wide range of applications, such as scientific data simulation [87], astronomy [154],

biology [95], and environmental science [50, 138].

In order to tie services together, one technique that is often used is workflow.

2.1.2 Workflows

A workflow specifies the operational aspect of a work procedure: how tasks are struc-
tured, who performs them, what their relative order is, how information flows to support
the tasks and how tasks are being tracked [52].

Workflows can be divided into two types, abstract and concrete. Abstract workflows
are those in which the task dependencies are defined but are not bound directly to a
particular service. In contrast, concrete workflows are those where the tasks are bound
to services. Software such as Pegasus [43] takes abstract workflows and generates con-
crete workflows taking advantage of available resources. Users can also create concrete
workflows directly, either by hand or by workflow editing software such as Taverna [89).
Workflows are typically executed using a workflow enactment engine like Taverna and
Condor [65], which invokes various services on the user’s local machine, or remotely such

as the Grid, taking advantage of heterogeneous resources [53].
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As workflows become more generic and reusable, they are beginning to be exposed as
services themselves [172]. Essentially, in the context of SOAs, workflows that centrally
coordinate services are moving towards multi-level nested workflows, which means ser-

vices of a workflow may invoke other services [40].

Due to increasingly complex sets of computations and data analyses, workflows have
emerged as a paradigm for representing and managing complex in-silico experiments
[98]. In order to enable workflow re-execution and the reproducibility of results in these
experiments, scientific workflow communities have identified that provenance informa-

tion must be generated and captured during the course of workflow execution [72].

One of the challenges that workflow communities face is scalability [72]. Large scale
workflows may involve thousands of steps and perhaps millions of tasks, where each
step may integrate diverse models and data sources defined and developed by different
organisations. The applications and data may be also distributed in the execution
environment and many participants may define the workflow, managing its execution,
and interpreting results. To record provenance information in large scale workflows, the

need to connect multiple provenance repositories is obvious.

2.2 Provenance Research

In this section, we briefly overview provenance research in different domains. Through
this review, we demonstrate that PASOA is a general approach to modelling and record-
ing process documentation. We also notice that none of the current systems, which use
multiple provenance repositories, has adequately addressed the failures that could occur

during the recording of provenance information.

2.2.1 Overview

This section surveys literature on provenance related research. Prior research has used
the term lineage [105] to refer to provenance. We use the two terms interchangeably in
this section. The aim of this section is to show that provenance has attracted attention

in many areas.

There are two important surveys regarding provenance research. One [19] is about
lineage retrieval systems, workflow systems, and collaborative environments. Another

one [149] surveys several systems based on taxonomy of provenance techniques.

Lanter conducted pioneering research in provenance in the early 1990’s. He studied
the lineage problem in geographic information systems (GIS) [19]. Provenance can help
indicate the quality of derived map products in GIS applications. This is useful for GIS

users to determine the fitness of the use of map in their application.
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The database community focuses on data lineage problem since the late 1990’s. This
problem can be summarised as given a data product, determine the source data used to
produce that item. A data product in a relational database can be a view, a table, a

tuple, an attribute. It can also be a pointer to an external data resource such as a file.

There are three approaches to data lineage problems in database community. The first
one uses annotations on attributes in databases [34]. Lineage annotations encode infor-
mation about the data source and the query that created them. Databases can also use
query inversion and function inversion techniques to trace the lineage from a data item
back to its source [27, 166, 164]. These two approaches typically focus on situations in
which all of the interactions with data take place in a single database, whilst the third ap-
proach proposed by P.Buneman recently is to track and manage the provenance of data
that moves among multiple databases [26]. He proposes a copy-paste model describing

user actions in assimilating external data sources into curated database records.

Low-level provenance recording has been studied at the levels of program execution
and operating systems. Provenance-Aware Storage System (PASS) is proposed to au-
tomatically collect provenance at the operating system level [129, 153]. It observes all
processes that run on a PASS-enabled operating system, and generates provenance data
about low-level details like the loaded kernel modules, installed libraries and process
environment. Provenance information is then maintained in a file store for later query
by users. The Earth System Science Server (ES3) project is developing a local infras-
tructure for managing Earth science data products derived from satellite remote sensing
[64]. Similarly to PASS, ES3 extracts provenance information automatically from ar-
bitrary applications by monitoring their interactions (arguments, file I/O, system calls,
etc) with their execution environment. Provenance information is then logged to the
ES3 database.

Provenance is a relatively new research area in SOA-based applications, which are usually
represented in the form of workflows. The provenance of a data result of an experiment
is determined by provenance information (e.g., input and output data to each service)
recorded during the execution of the workflow. Many provenance systems have been
developed, such as myGrid, CMCS, PAC, gLite, Kepler, VisTrail, Karma, VDS and
PASOA. We will detail and compare these systems in Section 2.2.2.

The provenance community has been growing in recent years. Five international work-
shops related to provenance were held: two workshops on Data Provenance and Annota-
tion (DPAW’02, DPAW’03), two International Provenance and Annotation Workshops
(IPAW’06, IPAW’08) [124, 20, 61], and a workshop on the Theory and Practice of Prove-
nance (TaPP’09) [33]. Three provenance challenges', a community effort to understand
and compare systems addressing provenance, have been organised in 2006, 2007 and

2009, attracting more than 20 institutions to participate. The first challenge estab-

"http:/ /twiki.pasoa.ecs.soton.ac.uk/bin/view/Challenge/ WebHome
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lishes an understanding of the similarities, differences and common issues among avail-
able provenance-related systems with the focus on documenting processes and answering
provenance-related queries [127]. It also identifies that interoperability between different
systems as a key issue, which is the focus of the second challenge. The second challenge
deals with integrating provenance information derived from different provenance systems
and represented using different models, which all contribute to the provenance of a data
product. It concludes that a common data model is required to achieve interoperabil-
ity among the existing provenance systems. This has led to a proposed specification
of a provenance data model, the Open Provenance Model (OPM) [125]. After a review

period, a third Provenance Challenge was organised to evaluate this model in June 2009.

2.2.2 Major Provenance Systems

In this section, we review and compare several systems supporting provenance collec-
tion for SOA applications. Nine representative systems are chosen based on five prove-
nance related international workshops (DPAW’02, DPAW’03, IPAW’06, IPAW’08 and
TaPP’09). Such a survey serves two aims: first, the reason why our work is built on
PASOA; second, how these systems deal with failures when recording provenance infor-

mation.

Table 2.1 compares the nine systems against several criteria, which are essential require-
ments that a provenance system should support in a wide range of application domains
[117, 76]. We first introduce each system in Section 2.2.2.1 and then discuss this table
in Section 2.2.2.2.

myGrid | CMCS | PAC | gLite | Kepler VisTrail Karma | VDS | PASOA
Domain No No Yes Yes Yes Yes Yes Yes Yes
Independent?
Technology No No No No No No No No Yes
Independent?
Type of Data Data Job Job Data Data, Data Data Open
Provenance Workflow
Multi-Site No No No No No No Yes Yes Yes
Recording?
Multiple No No No No No No No Yes Yes
P-Stores?
Reliable No Yes Yes Yes No No Yes No No
Recording?

TABLE 2.1: Comparison of Provenance-related Systems
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2.2.2.1 Overview of Candidate Systems

The myGrid project provides web service-based middleware in support of in-silico ex-
periments in bioinformatics [175]. The Taverna workflow enactment engine has been
modified to generate provenance information based on semantic web technologies, such
as Resource Description Framework (RDF) [115], and Life Science Identifiers (LSIDs)
[174]. Provenance information documents the invoked services, their inputs/outputs,
performed functions and any other metadata that might be of interest to scientists.
Provenance information is then gathered by Taverna during workflow execution and
stored in a centralised MySQL database.

The CMCS project provides informatics tools to support multi-scale data management
and provenance tracking across web service-based chemical experiments [130, 131].
CMCS uses a centralised Scientific Annotation Middleware (SAM) [21] repository to
store provenance information, which is URL referenceable files representing all resources
such as data objects, processes and invoked web services of a workflow. Provenance in-
formation is populated by applications in workflows or manually entered by scientists via
a portal interface. Open Source Java Messaging Service, OpenJMS, is used to reliably

deliver messages, including provenance information.

Provenance-Aware Condor (PAC) transparently gathers provenance information while
a job runs on Condor [141, 142]. The provenance information, modelled by PAC schema
includes a job’s execution environment and all files related to the job’s execution. Prove-
nance information can help identify if a job was run on machines with a faulty processor
and to determine if a job is affected by a hardware problem. The components in PAC
are Condor, Quill and FileTrace. Quill gathers job execution runtime information from
Condor daemons whilst FileTrace collects information about files used by Condor jobs.
Provenance information is recorded into a central PostgreSQL database, which is eval-
uated to have little performance impact on Condor. Quill provides fault tolerance for

reliably recording provenance information.

Similarly to PAC, gLite, the Grid middleware of EGEE project, automatically collects
and keeps tracking the provenance of a job [47, 97, 61]. Provenance information includes
two aspects: job input (e.g., job description, a job’s input files and parameters) to enable
job re-running and the job’s runtime environment (e.g., versions of used software and
environment settings). A Logging and Bookkeeping service securely and reliably collects
job provenance as the job is running on gLite. It submits the provenance information
into a Job Provenance (JP) service, which stores provenance data in a backend database.
Since only a few JP services are installed in the whole EGEE gLite middleware, each JP
service is required to be scalable enough in order to deal with provenance data generated
from millions of jobs. Although gLite uses several JP repositories, the provenance of one

job is only maintained in one repository.
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Kepler is a scientific workflow system which supports diverse types of workflows from
those designed for job control and data movement in Grids to those for high-level con-
ceptual scientific experiments [10, 22, 110]. To achieve this, Kepler provides a config-
urable provenance collection framework to track all aspects of provenance in scientific
workflows, including runtime context, input/output data, intermediate data products,
workflow definition, and information about the workflow’s evolution. Provenance data
is collected in XML format by the workflow enactment engine and archived in a prove-
nance repository. Kepler also provides a unique “smart”rerun functionality that extracts
provenance information to rerun partial workflow in the case of a workflow parameter
change [10].

VisTrails is a visualisation and scientific workflow system [62]. VisTrail not only collects
the provenance for data products, but also becomes the first system to capture the
provenance of a workflow, i.e., the evolution of a workflow, by recording all versions of a
workflow and all its instances since the workflow was created by a user. With VisTrail,
users can return to previous versions of workflows and workflow runs to compare their
results. The provenance information is captured by workflow editor or the enactment

engine and recorded in a centralised repository.

Provenance information in the above work is mainly collected by their respective work-
flow enactment engine. This approach however cannot capture sufficient provenance
information in distributed workflow systems where the invoked services use external ser-
vices or call other workflows. Another shortcoming is the difficulty of verification. If only
the enactment engine records documentation about a process, it is impossible for third-
parties to verify if the process took place as documented, because they have no other
record to compare with. Therefore, by allowing multi-site recording, i.e., both services
and enactment engine to record documentation independently, provenance information

can also be used for accountability or verification purposes.

To address this problem, Karma supports provenance collection from both the work-
flow enactment engine and services [150]. Karma is a general provenance framework
for scientific workflows. It uses asynchronous Publish/Notification model to record
provenance-related workflow activities such as service invocations, input/output data
for each invocation. Workflow enactment engine and services publish these activities as
notifications to WS-Messenger [88], a Web service-based messaging middleware specif-
ically for Grid applications. A provenance service then listens for those notifications
and stores them in a relational database. Reliably delivery of provenance information is

ensured by WS-Messenger.

The Virtual Data System (VDS) targets at large scale grid applications (e.g., high-
energy physics and astronomy) with the provision of data virtualisation independent
of data’s location, representation and physical materialisation [58, 176, 35]. VDS uses

Virtual Data Language (VDL) to describe the computational procedures used to derive
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data, the invocations of those procedures as well as the datasets produced by those
invocations. Then VDL statements are compiled to create abstract workflows, which
are further materialised to executable workflows that can be run on the Grid. During
workflow execution, provenance information about both application runtime behaviour
and the runtime environment is collected and recorded in a repository called virtual data
catalog (VDC). Similarly to Karma, VDS also supports provenance collection from multi-
sites. In addition, VDS supports multiple VDCs, connected by virtual data hyperlinks,
to support large-scale grid applications [58]. One limitation of VDS is that it does not
store explicit relationships between input and output data of services within a workflow,
so determining provenance of data relies on the presence of the same workflow definition

as was executed at the time.

The Provenance Aware Service Oriented Architecture (PASOA) project has built a
generic, domain-independent and technology-independent infrastructure to provide in-
teroperable means for recording and using provenance [77, 126]. PASOA uses an SOA-
based approach, which models a process as a set of causally related interactions between
services via message passing [80]. An open provenance recording protocol PReP [82] is
developed, which, to our knowledge, is the first formalised recording protocol to spec-
ify the behaviour of recording actors and provenance stores. Due to the open nature,
users can capture data provenance at any granularity level. All services involved in a
process for generating a result contribute to the process documentation for determining
the provenance of that result. A linking mechanism is developed to connect multiple
provenance stores to facilitate provenance collection in large scale environments [76]. A
concrete implementation of PReP is provided, named Process documentation Recording
for Services (PReServ) [79]. PReServ contains a Provenance Store Web Service, a set
of interfaces for recording and querying provenane store, a set of Java client libraries
for easily accessing those interfaces, and an Axis handler for automatically recording
process documentation for Axis based web services. A Python version of the client side
library is also available [18]. A wide range of applications have used PASOA to record

their process documentation, which we will detail in Section 2.2.3.

2.2.2.2 Discussion

We now discuss these systems according to Table 2.1.

Domain Independent Early provenance-related research was related to specific domains,
such as Biology (myGrid) and Chemistry (CMCS). The shortcoming of being domain
dependant is that it hinders the reusability of provenance components. Application de-
velopers have to re-implement components for recording or using provenance in different
execution contexts. Recent works have focused on the development of general systems

that can collect provenance information from a wide range of applications.
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Technology Independent All the above works except PASOA are technology dependent
since they are tightly coupled to the workflow technologies. myGrid, CMCS, Kepler
and VisTrail all have their own workflow systems with built-in functionalities or third
party software to support provenance collection. PAC and gLite are strictly restricted
to their respective execution engines (Condor and gLite, respectively). Although Karma
is designed to be a general provenance framework independent of any specific workflow
systems, it still relies on the notion of a workflow, because it is designed to capture
workflow activities. VDS is not confined to any particular workflow system either. But
it does not store explicit relationships between input and output data of services within a
workflow, so determining provenance of data relies on the presence of the same workflow

definition as was executed at the time.

There are two drawbacks of being technology dependent. Firstly, distributed workflow
execution involves execution under different workflow engines and heterogeneous prove-
nance collection mechanisms. Therefore, it becomes difficult to integrate provenance
derived from those different workflow systems and represented using different models.
In addition, many applications do not need or wish to commit to a workflow environ-
ment, which we will illustrate in Section 2.2.3. Provenance systems replying on workflow

technologies, however, cannot cope with these applications.

PASOA’s domain and technology independent nature distinguishes it from all the other
provenance-related systems. It is a generic and standalone provenance architecture

independent of the notion of workflow.

Type of Provenance The surveyed systems all focus on different types of provenance.
Data provenance gives the history of deriving a data product; job provenance is con-
cerned with workflow runtime information that enables job rerun; workflow provenance
reveals the evolution of a workflow. PASOA allows users to capture data provenance and
a component’s state information [167], which can be used for job provenance. Although
PASOA has not demonstrated that it can record workflow evolution, it has successfully
tracks the provenance about workflow refinement [118], which is similar to workflow

evolution as both reflect how a workflow is changed before execution.

Multi-Site Recording Provenance information in most reviewed systems is only provided
by a workflow enactment engine. As mentioned before, this approach has disadvantages
such as the incapability of giving sufficient information to determine the provenance of
a piece of object when a workflow is highly decentralised. Karma, VDS and PASOA

support gathering provenance from both workflow enactment engine and services.

Multiple Provenance Stores Given that large-scale SOA applications may involve services
owned by many institutions, it is impractical to expect a single provenance store to be
used to retain all of the process documentation due to issues such as single point of
failures, scalability, security and access control. PASOA and VDS provide similar Web-

like linking mechanisms to connect multiple provenance repositories whilst other systems
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assume a centralised data store to maintain provenance information.

PASOA records links along with process documentation in provenance stores. A link is a
pointer to a remote provenance store. The set of links forms a pointer chain connecting
all the provenance stores hosting the documentation of a process. Using the pointer
chain, distributed documentation can be retrieved from one store to another. VDS [58]
connects multiple provenance repositories using hyperlinks, which form a provenance
chain spanning across a range of servers to enable scalable recording. However, VDS is
technology-dependent and does not have a well-defined API for querying its provenance

repositories.

Reliable Recording PAC and gLite provide fault-tolerant support for provenance col-
lection mainly through persisting messages in local site and retransmitting them in the
event of failures. In PAC, the Quill service writes provenance information to log files and
then periodically reads the logs and inserts the data into a relational database shared
by all machines in a Condor pool. In gLite, the Logging and Bookkeeping service (LB)
provides a notification-based messaging infrastructure to securely and reliably collect
job information (in the form of events) from individual Grid components. In order to
provide reliability of transporting event messages, LB also logs events on a component’s

local disk before delivering them to a LB server.

Both CMCS and Karma employ third party message queue middleware (OpenM@Q and
WS-Messenger, respectively) to reliably record their provenance data. Messages are
placed onto a queue and stored in the queue until the recipient retrieves them. Fault-
tolerant functionalities are provided by the message queueing systems to ensure that
messages do not get lost and can be successfully delivered in the event of a system

failure. We will detail message queue systems in Section 2.6.3.

The other provenance systems do not consider failures; hence they cannot guarantee the

successful recording of provenance information when failures occur.

Summary From the above discussion, we can see that PASOA has a generic nature of
recording provenance information in large scale heterogeneous environments. Its domain
and technology independent model allows users to capture any type of provenance at
any granularity for any application no matter if it is workflow centric. In addition, it
supports provenance collection from multi-sites and provides a mechanism to connect
multiple repositories to enable scalable recording. The main deficiency of PASOA is that
it cannot guarantee the reliable recording of provenance data in the presence of failures
which are common in large scale heterogeneous environments like the Grid. In the next
section, we will describe a wide range of applications that have used PASOA to record
process documentation to further demonstrate the advantages of PASOA as a generic

provenance architecture.
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2.2.3 Applications that Used PASOA

A number of applications have used PASOA to derive provenance of their data products,
including healthcare application [44, 11], fault tolerance in the Grid and SOAs [157, 169,
158], auditing of private data use [9], aerospace engineering [96], biodiversity [167], trust
calculations [140] and workflow refinement [118]. In addition to the Java version, the
client side library developed in PASOA has also been implemented in Python, enabling a
wide range of Python applications, applications with Python interface and Python-glued

workflows to be provenance-aware [18].

We now briefly introduce these applications. The purposes of introducing these appli-
cations are twofold: firstly, they provide a range of evidences demonstrating the advan-
tages of PASOA, such as openness, technology independence, and support of multi-site
recording and multiple provenance repositories; secondly, the lack of reliable recording
of provenance information has profound impact on a wide variety of applications that

have used PASOA and hence deserves further investigation.

Healthcare application An SOA-based healthcare application used PASOA to record his-
tory information of a patient’s treatments in order to facilitate auditors to verify if a
particular process was executed as expected, and to facilitate doctors to adopt proper
subsequent treatments of the patient [44, 11]. In a typical healthcare scenario, health-
care data is often distributed among several heterogeneous and autonomous information
systems (actors) under different healthcare authorities, e.g., general practitioners, hospi-
tal departments. This means each actor operates independently and defines its processes
and data representation without the assumption on a pre-described workflow. The open,
technology-independent nature of PASOA enables provenance information to be gath-
ered and recorded in such a scenario. Multiple provenance repositories are also suitable

to be used by those heterogeneous and autonomous actors in this application.

Fault Tolerance in the Grid and SOAs A provenance-aware fault-tolerance framework,
FT-Grid, is developed to tolerate software faults that occur in service-oriented applica-
tions through multi-version design (MVD) [157, 169, 158]. In order to provide users with
a correct result, FT-Grid invokes multiple functionally equivalent services and performs
voting on their results in order to mask software faults (i.e., incorrect results) from ser-
vices. However, MVD may still give incorrect results due to the possible presence of
common-mode failures, which means multi-version services may share common faulty
services, thus leading to similar errors between versions of an MVD system. In order
to detect common mode failures, FT-Grid employs PASOA to capture provenance in-
formation, which reflects the causal relationship between service interactions and hence
provides topological awareness of service dependency. Therefore, with recorded prove-
nance information, FT-Grid can improve the voting algorithm and return correct results
to users without being affected by common mode failures. Although it is unclear if mul-

tiple provenance stores are used in F'T-Grid, we can foresee that it is necessary to employ
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multiple stores if FT-Grid is used by large-scale distributed applications.

Auditing of Private Data Use A provenance-based auditing architecture based on PA-
SOA has been developed for auditing the processing of private data in organisations’
IT systems as required by many regulatory frameworks such as UK Data Protection
Act (DPA) [9]. DPA provides protection for an individual’s private information placing
restrictions on how organisations can acquire, store, share or dispose personal informa-
tion that they hold. Provenance information tells the regulators the history of data use,
which can be verified if the use of private data within organisations is compliant with
specific regulations. In order to provide complete and sufficient provenance information,
multiple parties are required to record such information into several provenance reposi-
tories due to privacy concerns. Provenance information captured using this architecture

has been evaluated to be able to answer a range of queries from DPA regulators.

Aerospace Engineering An aerospace engineering application uses PASOA to record
documentation of complex simulation processes during the manufacturing of flights.
Process documentation is used for compliance and liability reasons and to facilitate pro-
cess analysis [96]. A workflow regarding the engineering process is specified consisting
of several computational components in the simulations. Due to the distributed simu-
lation environments of the application, several provenance stores are required to record

documentation produced at different simulation sites.

BioDiversity A biodiversity experiment is conducted to demonstrate how provenance
information can help identify execution bottleneck, result accuracy and service through-
put in the process of making predictions of the anticipated effects of climate change
upon biodiversity [167]. An experimental resource is wrapped as a Web service tailored
to that particular resource’s inputs and exposed by a standard set of methods. These
web services are then invoked by a workflow enactment engine. A monitoring daemon is
used to monitor the execution of the workflow, running at the site of enactment engine
and each service. Information about service workload, CPU/disk/memory usage, service
response latency and throughput is also documented as provenance information using
PASOA and recorded in multiple provenance stores. Provenance information is then

queried by scientists in order to evaluate experimental results.

Trust Calculations Provenance information has been used for evaluating trust in the
outcome of workflow execution [140]. A rule-based analysis tool is introduced to perform
subsequent analysis on the process documentation aiming to automatically calculate
trust measures for a workflow’s result. Using this approach, a workflow enactment

engine is able to automatically choose the most trustworthy service.

Workflow Refinement Workflow compiler Pegasus has been integrated with PASOA to
capture provenance information regarding workflow refinements (i.e., transformations)
so that a user can understand how an abstract workflow description defined by the user

is transformed into an executable workflow by the workflow compiler [118]. PASOA
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models the refinement process as interactions between several services, i.e., Pegasus and
five refiners. All these services record documentation about their interactions as well
as the relationships between these interactions (i.e., the relationship between an output
and an input of a service). Hence, a causality graph can be produced reflecting the whole
refinement process leading to an executable workflow to be executed on the Grid. This
example also demonstrates the open and technology independent nature of PASOA since
the refinement process is not workflow itself but local method calls between Pegasus and

several refining functions.

Python Applications In addition to the Java version, the client side library developed by
PASOA has also been implemented using Python, enabling a wide range of Python
applications, applications with Python interface and Python-glued workflows to be
provenance-aware [18]. Python is a general-purpose high-level programming language,
whose greatest strength is a large standard library providing a wide variety of tools to
interact with programs written in lower-level languages such as C and C++. Therefore,
Python is a powerful glue language between different languages and tools [46]. For this
reason, more and more scientific applications in the fields of mathematics, physics, or
engineering are developed in Python and those written in C, C++ or Fortran usually
provide Python interfaces for convenient integration in working environments. In addi-
tion, many computationally intensive parts of application codes are still written in C and
C++ whereas Python is used as a means to configure these codes, to setup the overall
computing workflow, or to manage the involved data [92]. With the Python version of
client side library, all the above applications can benefit from the recording of process

documentation to determine the provenance of their data products.

2.2.4 Summary

This section reviews the state of the art research about provenance. The provenance
community has been growing in recent years and many efforts have been seen to support
provenance in a wide range of applications. Through a comprehensive comparison of ma-
jor provenance-related systems, PASOA has several advantages over the other systems,

which have been demonstrated in a wide variety of applications.

The advantages of PASOA are summerised as follows. Firstly, it is domain and tech-
nology independent. It uses an SOA approach to model provenance information, which
can support different domain applications. It also specifies a generic recording protocol,
which can be implemented in different languages such as Java and Python. Secondly,
it is an open architecture. It allows application developers to customise the granularity
level provenance information is collected at. Thirdly, it supports multi-site recording,
i.e., all participating parties in a process, such as workflow enactment engine and ser-
vices, contribute to the provenance information of the data product of that process. This

is crucial for obtaining sufficient provenance data in highly decentralised applications.
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Fourthly, it introduces a linking mechanism to connect multiple provenance stores, which

have been demonstrated in many applications to be necessary.

The major disadvantage of PASOA is the lack of mechanism for reliably recording prove-
nance information in the presence of failures. Given that PASOA has been widely
adopted in various applications, such a disadvantage would have profound negative im-

pact on those applications and hinder the use of PASOA in future applications.

Based on the analysis in this section, we have decided to extend PASOA with functional-
ities supporting reliable recording of process documentation. In this way, we can remove
the disadvantage whilst preserving the advantages of PASOA. We now detail PASOA’s
key aspects.

2.3 PASOA

In this section, we introduce key aspects of PASOA: the SOA-based approach to repre-
senting provenance [76, 77, 80], the generic recording protocol PReP [82] and the linking

mechanism that connects multiple provenance stores [76].

2.3.1 Process Documentation

In service-oriented architectures, clients typically invoke services, which may themselves
act as clients for other services. The term actor is used to denote either a client or
a service. In SOAs, messages are the only mechanism used to transfer information
between actors. We note that the SOA approach adapted by PASOA is not limited
to Web services. In order to be generic, the following are all considered as “services”
because they all exchange messages (i.e., inputs and outputs) in one way or another: local

functions/methods, Web services, Corba or RMI objects, and command line programs.

An actor that sends an application message is referred to as a sender, whereas an actor
that receives an application message is known as a receiver. One message exchanged
between a sender and a receiver is an interaction. PASOA defines a process as a causally
connected set of interactions between actors involved in that process. By documenting
all the interactions that have taken place between actors involved in the computation
of some data, one can replay an execution, analyse it, verify its validity or compare it
with another execution. Describing such interactions is thus core to producing process

documentation.

An actor documents an interaction by making p-assertions to provide a sender or re-
ceiver’s view of the interaction and how those interactions are related. Process documen-

tation therefore consists of a set of p-assertions. There are three types of p-assertions.
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e An interaction p-assertion documents the content of a message and is created by
the actor that has sent or received that message. Both the sender and receiver
of an interaction make an interaction p-assertion in order to support multi-site

recording.

e A relationship p-assertion is made by an actor to describe how the actor produced
output data (whether the returned result or invocation message to other actors)

from input data that it received by applying some function on the input data.

The output data is the effect and the input data is the cause. An effect can have
multiple causes. We use terms effect interaction and cause interaction to denote
the interactions where the effect and cause are transferred, respectively. Therefore,
a relationship p-assertion captures causal connections between an effect interaction

and cause interaction(s).

e An actor state p-assertion is made by an actor about its internal state in the
context of a specific interaction, which may include the function the actor per-
forms, the workflow that is being executed, the amount of disk and CPU used in

a computation, and application-specific state descriptions, etc.

An interaction key is generated by the sender of an interaction for uniquely identifying
the interaction from all other interactions. The receiver then uses the interaction key to

generate and record p-assertions about the same interaction.

We now illustrate these p-assertions using Figure 2.1, which shows a simple process
consisting of two interactions, represented by interaction keys I1 and I2. Actor Al sends
to actor A2 a message M1 containing data d1. After receiving M1, A2 performs a
function f on d1 and produces a result d2. A2 then returns the result in message M2 to

Al. We assume A2 needs to record the version number of function f.

In this figure, d2 and d1 are the effect and the cause, respectively. Correspondingly,
interactions 12 and I1, where d2 and dl are exchanged to/from other assertors, are
effect interaction and cause interaction, respectively. A relationship p-assertion can be

created to capture the causal connection (f) between 12 and I1.

A2
Al M1 <I1>
d1

d1: Cause

d2: Effect

I1: Cause Interaction

12: Effect Interaction
f: Relationship Func.

A2 e M2<12> |d2

I used version 1.3.2.

FIGURE 2.1: A simple process
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Table 2.2 summarises several p-assertions that are made in this process. In the first
interaction where A1l sends M1 to A2, Al creates an interaction key I1 and then makes
an interaction p-assertion documenting M1. We use S to denote Al’s view kind in
the interaction, i.e., the sender. Interaction key I1 is exchanged to A2 in M1, so A2
can document the same interaction by making an interaction p-assertion about the
receipt of M1, where its view kind is the receiver (denoted by R). After performing
function f(d1) and obtaining result d2, A2 creates interaction key 12 and embeds d2 and
12 in a response message M2. In the second interaction, A2 makes an interaction p-
assertion about the returning of M2 and a relationship p-assertion describing the causal
relationship between d2 and d1: d2 is produced from d1 using f. In addition, A2 makes
an actor state p-assertion documenting the version number of function f. On the other
side, when receiving M2, A1 documents M2 in an interaction p-assertion using the same
interaction key I2. The six p-assertions contribute to the process documentation that

can be used to determine the provenance of d2.

Actor | Interaction Key | View Kind | P-assertion Type | P-assertion Content
Al I1 S interaction M1
A2 11 R interaction M1
A2 12 S interaction M2
A2 12 S relationship d2=f(d1)
A2 12 S actor state version 1.3.2
Al 12 R interaction M2

TABLE 2.2: P-assertions generated in the example process of Figure 2.1

2.3.2 Representing Provenance

The provenance of a particular data item can be represented as an annotated causality
graph, which consists of several elements (Figure 2.2). The edges of the graph repre-
sent causal relationships between data items. These relationships denote functions or
operations applied to data. The nodes of the graph are data items, which are the ef-
fects or causes indicated by a causal relationship. Data items are also annotated by an
interaction key and actor states. The interaction key indicates the interaction where
the corresponding data is exchanged between actors whilst the actor states describe an
actor’s knowledge about the receipt and sending of the data. The nodes and edges are
extracted from relationship p-assertions and the annotation information is obtained from

the interaction p-assertion and actor state p-assertions.

A causality graph is a Directed Acyclic Graph (DAG) that indicates where and how
the data was used and derived [76]. Such a DAG starts with the data item followed
by the relationships in scope that represent the process that lead to such data item.
Therefore, in order to answer provenance questions, users can traverse the causality
graph to identify how a data item was produced. As the example of Figure 2.1, the

provenance of d2 is represented as a graph shown in Figure 2.3. The graph can be used
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FIGURE 2.2: Concept map representing provenance (revised from [76])

to answer questions such as which algorithm was used to generate d2, what the version

number of the algorithm is, and which input data was used to derive d2.

Q data item

<— relationship ——

I1,12 interaction keys

actor states

d2=f(d1) . produced by fv1.3.2
In 12

FIGURE 2.3: An example causality graph

Figure 2.4 gives another example process, where five institutions are modelled as actors,
participating in four interactions. For simplification, we do not show the messages
exchanged between actors. Data d3 is the output of function f1, which takes two inputs
dl and d2. Therefore, d3 is the effect of two causes d1 and d2. Another function 2
is used by A4 to generate d4 from d3. Figure 2.5 shows this process’s causality graph,
where each institution’s name is recorded as actor state information. This graph reflects
how d4 is derived from d1 and d2.
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FIGURE 2.4: Another example process

Q data item
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I1 interaction key

actor states

Institution 3 Institution 4

d4 = f2(d3) @
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d3 = f1(d1, d2)

Institution 1 ° itution 2
11 12

FIGURE 2.5: Generated causality graph
2.3.3 Recording Process Documentation

Actors record process documentation to a dedicated repository, the provenance store,
which is built to persistently store large amounts of process documentation and to deal

appropriately with problems such as security and access control.

PASOA provides an implementation independent P-assertion Recording Protocol, PReP,
to specify the communication between actors and the expected behaviour of those actors
when recording p-assertions to a provenance store. PReP enforces that p-assertions
are created and organised as appropriate process documentation and maintained in

provenance stores ready to be retrieved.

In order to efficiently locate and extract p-assertions from process documentation, PReP
specifies that all p-assertions created by an actor about the same interaction are sub-
mitted to a provenance store in a single message, which is termed an Interaction Record

(IR). Table 2.3 gives the four interaction records documenting the example process in
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Figure 2.1. For simplification, we use ipa, rpa and apa to denote interaction p-assertion,
relationship p-assertion and actor state p-assertion, respectively. In this table, A1 makes
two interaction records IR1 and IR4, whilst A2 creates IR2 and IR3. We note that IR2
and IR3 document the cause interaction and effect interaction of the relationship p-
assertion, respectively. The relationship p-assertion has been specified by PReP to be
included in the interaction record about the effect interaction since it describes the causal

reason for the occurrence of the effect interaction.

IR | Actor | Interaction Key | View Kind | IR Elements | Element Content
IR1 | A1l 11 S ipa M1
IR2 | A2 11 R ipa M1
IR3 | A2 12 S ipa M2
rpa d2=f(d1)
apa version 1.3.2
IR4 | Al 12 R ipa M2

TABLE 2.3: Four interaction records documenting example process in Figure 2.1

In order to derive a causality graph to determine provenance, both actors in an inter-
action must document their view of the interaction by making an interaction record,
which includes a compulsory interaction p-assertion reflecting the exchange of a data
item, any necessary relationship p-assertions indicating the causal connections between

data items, and optional actor state p-assertions.

A concrete implementation of PReP is provided by PReServ [79], which contains a
Provenance Store Web Service and a client side library for recording p-assertions and
querying a provenance store. By using PReServ, applications can easily record process

documentation to a provenance store.

2.3.4 Linking Multiple Provenance Stores

With the linking mechanism, an actor can record an interaction record into any prove-
nance store. This means that the two actors in an interaction can employ two different
stores to record their respective interaction record. In addition, an actor can record the
interaction records about the effect and cause interactions captured by a relationship

p-assertion into different stores.

There are two types of links, viewlink and causelink. Each actor records a viewlink in its
interaction record, pointing to the provenance store where the opposite actor records its
interaction record about that interaction. Therefore, both views of an interaction can be
retrieved by navigating from one provenance store to the other. A causelink is embedded
in the relationship p-assertion when the actor makes the p-assertion, indicating the
provenance store where the interaction record about the corresponding cause interaction

is stored in.
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We now detail the linking mechanism in Figure 2.6, using the same example as in Figure
2.1. We assume Al and A2 use provenance stores PS1 and PS2, respectively. An actor
can obtain its viewlink via built-in knowledge or from request/response messages. In
this figure, the address of PS1 or PS2 is exchanged to the other actor in messages M1 or
M2. An actor then extracts store address and records it as its viewlink, i.e., VL1, VL2,
VL3 and VL4. Table 2.4 summarises the content of IR1, IR2, IR3 and IR4 with their
respective provenance store to be recorded into. Since A2 uses the same store to record
IR2 and IR3, causelink CL in IR3 refers to PS2. After knowing the viewlink, an actor
can record its interaction records to its respective store. Figure 2.6 shows PS1 and PS2
are interlinked via arc VL1, VL2, VL3, and VL4.

VL2, VL3

VL1,VL4
IR1, IR4| IR2, IR3|
‘ M1(PS1
d1 @b,
d1
M2(PS2 !
@2 | (PS2) a2
Al A2

FIcURE 2.6: Using two provenance stores

PS | IR | Actor | Interaction | View Kind | IR Elements Element Content
Key

PS1 [ IRl | Al Il S ipa M1
VL1 PS2

PS2 | IR2 | A2 I1 R ipa M1
VL2 PS1

PS2 | IR3 | A2 2 S ipa MS2
rpa d2=f(d1), CL = PS2
apa version 1.3.2
VL3 PS1

PS1 | IR4 | Al 12 R ipa M2
VL4 PS2

TABLE 2.4: Interaction records with links appended (using two stores)

In order to retrieve the documentation of the process that led to data d2, a querying
actor starts from PS1 which stores IR4 that describe the receipt of d2. Then by following
the viewlink and causelink embedded in each interaction record, the other distributed
records IR1, IR2, IR3 can be retrieved from PS1 and PS2. Figure 2.7 shows the retrieving
path, where an interaction record is indexed by the tuple of an interaction key and a

viewkind to help locate the interaction record in a store.
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<I1,S>: IR1

<I2,R>: IR4

FIGURE 2.7: Retrieving documentation recorded in Figure 2.6

In the next example (Figure 2.8) where four stores are in use, we assume A2 sends
message M2 to a third actor A3 , and A2 records IR2 and IR3 into two different stores

PS2 and PS3, respectively. Each actor can obtain its viewlink from built-in knowledge

or request /response message. In order to simplify the figure, we only show the exchange
of PS1 and PS3 in messages M1 and M2. Table 2.5 give the contents of interaction

records with links. Since A2 uses two stores to record IR2 and IR3, the causelink in

IR3 now points to PS2. By following links, the documentation of the process that led to

data d2 can be retrieved across the four provenance stores from PS4, as shown in Figure

2.9.
IR R2, lR3 IR4
g MIESY || M2es3)
f
Al A2 A3
F1GURE 2.8: Using four provenance stores
PS | IR | Actor | Interaction | View Kind | IR Elements Element Content
Key
PS1 | IR1 | Al 11 S ipa M1
VL1 PS2
PS2 | IR2 | A2 11 R ipa M1
VL2 PS1
PS3 | IR3 | A2 12 S ipa M2
rpa d2=f(d1), CL = PS2
apa version 1.3.2
VL3 PS4
PS4 | IR4 | A3 12 R ipa M2
VL4 PS3

TABLE 2.5: Interaction records with links appended (using four stores)
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In summary, a viewlink points to a store that contains the other actor’s interaction
record (which provides a different view on a same interaction). A causelink points to
a store containing the interaction record asserted by the same actor (which is making
assertions about a cause interaction). Two actors in a same interaction each record a
viewlink pointing to the other actor’s provenance store. Although only one viewlink
is used when retrieving documentation, the two-way approach is useful in some cases

where both views of an interaction need to be verified and compared.

<I1,S>: IR1 <Il,R>: IR2 <I2,S>: IR3 <I2,R>: IR4

FIGURE 2.9: Retrieving documentation recorded in Figure 2.8

2.3.5 Summary

In this section, we highlighted key aspects of PASOA. PASOA uses an SOA-based ap-
proach to modelling a process as a set of causally related interactions between services
through message passing. It defines several types of assertions to describe an interaction
and introduces a protocol PReP to record process documentation. This approach is

generic, open and independent of domains and technologies.

We also introduced an annotated causality graph, which is extracted from process doc-
umentation to represent the provenance of a data object. The linking mechanism was
then detailed, which can flexibly connect a large number of provenance stores in order

to retrieve distributed process documentation.

PASOA, however, does not consider failures that may happen when an actor is recording
its interaction records into a provenance store. The consequence is the incapability to
retrieve complete process documentation from multiple interlinked provenance stores
either due to the loss of documentation or a broken pointer chain. The rest of this
chapter will review research related to failures, fault-tolerant mechanisms and formal

specifications for fault-tolerant protocols, which help us to develop our solution.

2.4 Failures

Distributed systems are generally modelled as asynchronous and synchronous systems

[113]2. An asynchronous system does not make assumptions about process execution

2The term of partially synchronous is also introduced to refer to various systems between completely
asynchronous and completely synchronous [48].
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speeds, message delivery delays and/or clock drift. On the contrary, a synchronous
system makes timing assumptions, where the relative speeds of processes, any delays
associated with communication channels and clock drift are bounded. Since all systems
can be modelled as asynchronous systems, a protocol designed for use in an asynchronous
system can be used in any distributed system [113]. Therefore, we are more interested

in the failures of asynchronous systems.

Failures can be categorised by abstract models that describe how a system will behave in
the presence of failures. A variety of failure models are commonly found in the literature
of asynchronous distributed systems. All are based on assigning responsibility for faulty
behaviour to the system’s components: processes and communication channels. We

summarise these models as follows.

e Crash. A process fails by halting. Once it halts, the process will not execute any

further steps of its program ever [31].
e Crash-Recovery. A process fails by halting but later recovers [31, 8].

e Send-Omission. A process fails by halting, or intermittently omits to send messages

it was supposed to send, or both [137].

e Receive-Omission. A process fails by halting, or intermittently omits to receive

messages sent to it, or both [137].

e Channel-Omission. A channel fails by losing some messages, but does not create,

duplicate or corrupt messages [137].

e Arbitrary (Byzantine) Failures. A process or a channel fails by exhibiting arbitrary
behaviour [104].

Crash failures in asynchronous systems have been studied extensively. When a process
crashes, it loses the content of its volatile memory. The crash-no recovery model has been
considered unrealistic to a major part of applications [31, 8]. To model real distributed
systems that support user applications, the crash-recovery model is proposed. In crash-
recovery model, processes are provided with stable storage to log critical data in order
to make them able to recover from crash failures. A process may keep on crashing and

recovering indefinitely.

The other three models, send-omission, receive-omission and channel-omission, are all
concerned with message loss. Each models a different cause for the loss and attributes
the loss to a different component. Send-omission and receive-omission model overflows
of local message buffers of a process, or the behaviour of a malicious adversary with

control over the message flow of certain processes, or message loss due to a crashed
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process. Essentially, for every send or receive omission failure, there is a process respon-
sible for it; channel-omission failure puts the blame of a message loss to the unreliable

communication channel.

Finally, arbitrary failures are the most disruptive. In addition to encompassing the
above failures, it also represents random software or hardware faults as well as malicious
attacks by a hacker. For example, a process or channel may send/transmit arbitrary
messages at arbitrary times, commit omissions; a process may stop or take an incorrect
step and produce an incorrect result while continuing to interact with the rest of the

system. A system that can tolerate arbitrary failures can tolerate any failures.

2.5 Fault Tolerance

Fault tolerance allows a distributed system to survive a variety of failures. As the size
of a distributed system increases, the number of its components increases and so does
the probability that some of its components will fail. Thus, fault tolerance must be

considered when designing distributed applications.

Fault tolerance is carried out via detection and system recovery [15]. Failure detection
is the first building block in the design, analysis and implementation of a lot of fault-
tolerant distributed applications. A failure detection service detects that a failure has
occurred so that a recovery procedure can be activated in order to bring the system
back from a failure state to a normal state. Figure 2.10 outlines common techniques
involved in fault tolerance. We firstly brief common techniques regarding detection
(Section 2.5.1) and recovery (Section 2.5.2). Then we introduce concrete fault-tolerant

approaches (Section 2.6). In Section 2.7, we discuss fault-tolerant solutions used in grid

applications.
— Detection: timeout, voting, etc
— retransmission
Fault Tolerance — — Redundancy —— alternative resources
— replication
—— Recovery ——— Rollback: checkpoint and log-based

— Others: reinitialisation, reconfiguration, etc.

FIGURE 2.10: Fault Tolerance Techniques (revised from [15])
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2.5.1 Detection

The timeout-based approach is commonly used to implement failure detection compo-
nents such as failure detectors [31] and grid monitoring services [159, 85] to detect crash
failures. Two types of keep-alive messages are usually used: heartbeat and ping [51, 85].
Heartbeat is a message periodically sent from a monitored process to the monitoring
component (e.g., failure detector) to inform that it is still alive. If the heartbeat does
not arrive before a timeout expires, the monitoring component suspects the process
is down. On the other hand, ping is a message continuously sent from a monitoring
component to a monitored process. The monitoring component expects to receive an
acknowledgment as response before a timeout. However, it is difficult or even impossi-
ble to determine whether a process has actually crashed in asynchronous environments,
where a process may be slow and keep-alive messages may be delayed or even omitted.
Therefore, processes which do not contact a monitoring component or respond to its

question in time are normally considered as suspect.

Failure detector deserves further introduction as it has been widely studied in distributed
system literatures [143, 135]. It helps address problems that are impossible to solve in
asynchronous systems prone to failures. One of the most famous problems is the con-
sensus problem: the impossibility of deterministically reaching agreement among remote
processes subject to crash failures in completely asynchronous systems. By augmenting
the asynchronous system with unreliable failure detector, which may wrongly suspect
that a correct process has crashed, the consensus problem can be solved under certain
conditions with various failure models, such as crash model with reliable communication
channels (i.e., they do not lose messages) [31] and crash-recovery model with channels

that can omit messages [8].

Timeout is also used to facilitate reliable message delivery, as has been seen in many
specifications such as TCP and Java Message Service (JMS). A timer is set by a sender
after sending a message to the receiver, which is expected to provide an acknowledge-
ment. If the acknowledgement is received by the sender before the timeout, then the
sender can confirm that the message has been delivered to the receiver; otherwise, the
sender cannot determine if the receiver has received or processed that message since ei-
ther the original message or the acknowledgement can be lost, or the receiver can crash
before providing the acknowledgement, all leading to a timeout on the sender’s side. In
the presence of a timeout, the sender can take remedial actions such as resending the

original message.

Byzantine failures cannot be detected by seeing whether a process or an application
responds to requests, because it might arbitrarily omit to reply or produce arbitrary
results. A solution to detecting Byzantine failures is via a voting procedure [106], which
invokes multiple functionally equivalent versions of a component and votes on their

outputs or actions. In the event of a disagreement, those versions that do not meet
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certain criteria are considered to be faulty.

2.5.2 Recovery

Redundancy (time redundancy or space redundancy) is one of the efficient ways to
provide fault-tolerance for distributed systems [128]. Time redundancy is achieved by
repeatedly performing key actions, e.g., message retransmission upon a timeout to mask
transient omission failures, whilst space redundancy is achieved by using alternative
components, or replicating software/hardware modules to provide backup capacity in

order to tolerate failures.

Replication can take one of two forms: active replication and passive replication [16].
In active replication, a second machine receives a copy of all inputs to the primary
one and independently generates an identical system state by running its own copy of
all necessary software. In passive replication, a cold spare machine is maintained as a
backup system to the primary. In both cases, should the primary machine crash does
the second one take over control of the primary’s responsibilities. The difference is
that the changeover in the active mode requires a negligible amount of time at the cost
of doubling the number of computing resources whilst that in the passive mode may
incur some interruption of service. We will provide more details regarding replication in
Section 2.6.2.

It should be noted that some redundancy-based techniques, such as duplicated copies of
same software in different machines, assume independent system failures. They cannot
tolerate correlated failures like a software bug in all copies of the software. In this case,
Multi-Version Design (MVD) is favoured, where two or more systems aim at delivering
the same functionalities through separate designs and implementations [107]. MVD is
also used to tolerate Byzantine failures [106]. As introduced in Section 2.5.1, the voting
procedure weights results from multiple functionally equivalent versions of a component,
compares their outputs with the consensus output, and forwards the consensus output
as the final system result. Thus Byzantine faults can be tolerated by discarding those

outputs that do not meet specified criteria.

Another common approach to handling failures is to use checkpointing techniques to
save system state, and rollback techniques to revert back to a state that was saved
before a failure occurred. The challenge is to orchestrate checkpoints and rollbacks,
while maintaining high-performance and scalability. This approach has been studied
in multiple contexts, including Messaging Passing Systems [49], Web Services [45] and

Transactions [75].

In the case of Messaging Passing Systems, rollback recovery techniques model a message-
passing application as a fixed number of processes in a distributed system that commu-

nicate over a network by sending and receiving messages. A process is assumed to have
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access to some kind of stable storage that will survive even in the event that the process
crashes. During the execution of an application, the system periodically records a snap-
shot of processes composing the application to the stable storage. In the event that a
process fails, the application’s computational state can be restored to some failure-free

state by rolling back all processes to the most recent checkpointed state.

In addition to checkpoint-based rollback, there is a log-based rollback technique, which
supplements normal checkpointing with a record of messages sent and received by each
process. If a process fails, the log can be used to replay the progress of the process
after the most recent checkpoint in order to reconstruct its previous state. This has the
advantage that process recovery results in a more recent snapshot of the process state
than checkpointing-based technique can provide. The range of applications that benefit

from these rollback techniques tend to be long-running, scientific applications [49].

Reinitialising or restarting a system is a good way of dealing with some kinds of faults
[159]. However, this may result in significant system down time and may restart correctly
functioning components. To minimise these side effects, system should be divided into
small and independent pieces in a well organised approach. If a fault occurs in one of
these components, those components that are directly affected can be restarted while
the rest of the system remains untouched and continues working. For example, a web
server could be dependent on a database. If the web server experiences a crash, it should

be restarted individually without interfering with the database.

2.6 Major Fault Tolerance Solutions

In this section, we introduce several fault-tolerant approaches: transactions, cluster-
based architectures and messaging middleware. These approaches have been widely used
to build reliable distributed applications and databases, thus being possible candidates

to solve the problem of reliably recording process documentation.

2.6.1 Transactions

Transactions have been used to provide reliable information processing in many ap-
plication domains from classical debit-credit style centralised and distributed database
operations, to more recent workflow management and Web Services. The amount of
published research work on transactions is huge and a number of survey papers and
books have been published [162, 163].

In the database world, a transaction consists of a group of operations executed to perform
some specific functions by accessing and/or updating a database. From a broader range

of application areas such as workflow management, Web services and Grid computing,
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a transaction refers to a reliable and coherent process unit interacting with one or more
systems, independently of other transactions, that provides a certain service or function

for a running application [162].

The checkpoint and log based mechanism is used to support failure recovery in database
transactions. When creating a database checkpoint, the entire state of a database is
made persistent, e.g., all operations stored in volatile memory are written to stable
storage. When a transaction fails, the database can rollback to the state created at
the checkpoint, and/or redo any operations performed thereafter using the informa-
tion stored in persistent transaction logs. Such a mechanism is widely used in current
database systems, such as Oracle Database, IBM DB2, Berkeley DB.

A distributed transaction consists of sub-transactions that may access multiple local
database systems. These transactions typically require all-or-nothing atomicity to main-
tain system consistency [163] via several approaches, e.g., Two-Phase Commit (2PC)
protocol. 2PC is a simple and elegant distributed algorithm that results in either all
parties committing the transaction or aborting, even in the case of network failures or
crash failures. A coordinator manages all participants, coordinates their decisions to
start, commit or roll back, and ensures atomicity at a global level. For example, a dis-
tributed database transaction may contain a sequence of database operations, spawning
several sites to read or update data objects. A global commit decision of updating a
data object is based on the agreement of all the participating sites. Should any of these
sites abort the updating operation, a global decision of abort is made by the coordi-
nating site. Consequently, all sites abort updating the data object, which ensures the

consistency of distributed databases.

However, in some long-running business transactions the all-or-nothing atomicity is not
always possible to be held because parts of a transaction may have been committed or
because parts of a transaction (e.g., communications with external agents) are impossible
to undo. In such cases, compensations, actions taken to recover partial executions of

transactional processes [29], can be used as a way of dealing with faults [25].

2.6.2 Cluster-based Architectures

Many systems are based on clusters where a number of computing resources simulta-
neously share the load and act as a backup to each other. Cluster-based architectures
take advantage of resource redundancy to meet both high availability and scalability re-
quirements. To have redundant resources, data needs to be replicated across all servers
or databases (for availability) and the load is partitioned to use all available resources

(for scalability).

In a typical cluster, as exemplified in Figure 2.11, the network traffic is first offered to the

cluster head(s), where a load balancer is instantiated to route incoming requests to an
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appropriate processing server. Each component of the cluster has redundant components
in order to eliminate single point of failure at the entry or inside the cluster. Stateful
components such as databases are replicated on a number of replicas during failure-free
periods to maintain consistent state. Should the primary component fail, a backup

component takes over control of a failed one’s responsibilities.
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FIGURE 2.11: An example of cluster-based architecture [145]

As introduced in Section 2.5.2, there are two types of replication mechanisms: active
and passive replication. The passive replication also has two main forms: checkpointing
approach and message logging approach [16]. Active replication has short recovery time
at the cost of performing redundant computation in all replicas whilst passive approaches
may have long recovery time and introduce some interruption of service. All replication
mechanisms tend to be sophisticated in order to balance the tradeoff between preserving
consistent state in replicas and reducing replication overhead. The following summary
is based on [16].

The active replication ensures that all redundant machines receive a copy of all inputs to
the primary one and maintain the same consistent system state by running its own copy
of all necessary software. In addition, this approach guarantees that only one machine
is replying to a client at a given time by consolidating outputs from all replicas. In
order to ensure that a group of replicas reliably receive the offered requests sent to the
primary one, different techniques can be used. The first technique is based on protocols
originally considered for setting up group membership, e.g., the atomic broadcast/mul-
ticast protocols. A second solution consists of delivering the traffic exchanged between a
client and the replicas to an intermediate gateway or proxy that would reliably perform
one-to-many message delivery to the replicas on one hand and many-to-one message

delivery to the client on the other hand.

In the checkpointing approach, the primary machine’s state is periodically copied to
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standby machine(s). If the primary node fails, the most recent checkpoint is recovered,
so that the processing can resume using the restored state. Different checkpointing ap-
proaches exist, differing in terms of their frequency and completion time. The most
aggressive checkpointing approach is incremental checkpointing, which aims to max-
imising the consistency of the replicated states by performing checkpoints each time a
state change occurs at the primary node. The major drawback of this approach is its
cost in CPU consumption at the primary node and the added latency to end-to-end

communication.

Message logging approach is to redundantly store or log on a replica all the messages
delivered to the primary server. For reliability purposes, a message would not be pro-
cessed until an acknowledgment is received from the replica confirming that the message
has been successfully stored. During failsafe periods, replicas are idle. Once the primary
server fails, the logged messages are replayed and reprocessed on the elected replica. Dif-
ferent approaches exist for message logging. Pessimistic message logging logs a message
into a stable storage as soon as it is received. Dependency-based message logging pro-
poses to copy each received message into a volatile log space, which will be flushed into
stable storage once it becomes full. Optimistic message logging also copies the incoming
message into a volatile log space, but proposes to flush it on stable storage periodically

or when the number of logged messages reaches a given threshold.

2.6.3 Message Oriented Middleware

The Java Message Service (JMS) API [4] is a Java Message Oriented Middleware (MOM)
API for reliably sending messages between two or more clients. Message senders do not
need to have precise knowledge of message receivers, since communication is performed
via an intermediary component, a messaging queue. Messages are placed onto the queue
and stored there until the recipient retrieves them. Message queueing systems typically
provide resilience functionality to ensure that messages do not get lost in the event

of a system failure. There are many free, open source and proprietary message queue
products, such as OpenMQ, IBM WebSphere MQ and Tibco Enterprise JMS.

Figure 2.12 illustrates a typical architecture of a message queueing system. At the
heart of the system is a broker [4, 42]. The broker reliably delivers messages, and
provides administrative tools to manage, monitor and tune the messaging system. In
order to send or receive messages, a JMS client (a message producer and/or a message
consumer) must first connect to the broker before producing or consuming messages.
Message transmission between producer and consumer can be based on point-to-point
or publish /subscribe pattern. Using point-to-point pattern, a client sends a message to a
queue destination from which only one receiver may get it. With the publish/subscribe
pattern, a client sends a message to a topic destination from which any number of

consuming subscribers can retrieve it.
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FIGURE 2.12: Overview of a Message Queueing System

There are several approaches to reliable message delivery. The broker may persist mes-
sages and its states in a stable storage so that if the broker fails before the message is
consumed, the broker can retrieve the stored copy of the message and state information
to retry an operation upon recovery. Acknowledgements are also used between a mes-
sage producer/consumer and the broker to ensure reliable delivery of messages. In the
case of message production, the broker replies the producer with an acknowledgement
confirming that it has received the message and has stored it persistently. The producer
blocks until it receives this broker’s acknowledgement. In the case of message consump-
tion, the consumer acknowledges that it has received a message and consumed it. Upon
receiving the consumer’s acknowledgement can the broker delete the message from its
persistent storage. JMS specifies different acknowledgement modes that balance the
tradeoff between reliability and performance in different degrees. In addition, brokers
can be interconnected into a cluster: a set of brokers that work collectively to perform
message delivery between message producers and consumers. Clustered brokers further

enhance scalability and availability to a Message Queue service.

The JMS API also supports distributed transactions, which means the production and
consumption of messages can be part of a larger, distributed transaction that includes
operations involving other resources, such as database systems. The JMS message service
tracks the various send and receive operations within the distributed transaction, persists
transactional states, and completes the messaging operations using a two-phase commit
protocol. We note a JMS messaging service supports distributed transactions only when
it is used in a Java Enterprise Edition (Java EE) application server [4], which provides

a Java Transaction Service (JTS) as a distributed transaction manager.
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2.6.4 Discussion

This section discusses how transactions, cluster-based architecture and messaging mid-

dleware can help us to reliably record process documentation.

Provenance store has been designed to maintain process documentation in a database,
therefore local database transactions are useful when dealing with database operations.
We now discuss distributed transactions, which involve a transaction manager, an actor
and a provenance store during the recording of the actor’s interaction record. A dis-
tributed transaction ensures that either the interaction record is successfully recorded
in the store and removed from the actor’s memory, or it remains in the actor’s memory
without being recorded in a store. When the distributed transaction is committed, the
actor knows that its interaction record has been successfully recorded in the store and
been safely removed from its memory. If the provenance store fails, the actor is notified
that the transaction is aborted. Then the actor can resend the interaction record to the

same store or another store until the transaction is committed.

This approach is feasible but comes with performance overhead for reasons including roll-
back segments maintenance, forced logging, connections with transaction manager, and
the cost introduced by commit protocols. Given that a process may involve thousands
or tens of thousands of interactions and each interaction will have two distributed trans-
actions (one in the sender side and one in the receiver side), the performance penalty

can be significant.

Instead of using distributed transactions, we adopt a looser consistency model. An
actor can set a timeout after sending its interaction record to a provenance store, which
provides an acknowledgement after successfully recording the message. Only after the
actor receives an acknowledgement from the store can it remove the message from its
local memory. If it does not receive the acknowledgement before the timeout, it can take
remedial actions such as resending the interaction record to the same or an alternative
store until the message is acknowledged before a timeout. The use of timeout, however,
may result in redundant information recorded in a provenance store in the case where the
store actually received the interaction record but the actor saw a timeout and used an
alternative store. To reduce the probability of having potential redundant information,
an actor can be configured to resend an interaction record to a same store for certain

times before using an alternative store.

Provenance stores can be organised as a cluster sharing a same store address. If the
primary store fails, another one takes over the work of the failed one so as to provide

services to actors.

Messaging middleware can also be used to reliably transport process documentation.
As discussed in Section 2.2.2.2; third party messaging services (OpenMQ and WS-

Messenger) have been used in CMCS and Karma. A messaging service typically requires
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the configuration of a broker, residing between a client application and a provenance
store. In the event of a provenance store crash, process documentation is persistently
maintained in the broker until the store comes back online and consumes the documen-

tation.

Both approaches can support reliable recording of provenance information but with lim-
itations. Firstly, in open distributed environments like SOAs, where there could be
a large number of provenance stores managed by different institutions across different
regions, we should not assume the use of clustered provenance stores or messaging mid-
dleware in all situations. In addition, these approaches do not deal with disconnected
process documentation that could appear in the presence of failures. Therefore, we aim
to design a generic approach to reliably recording process documentation while ensur-
ing its retrievability. These approaches, however, can be complementary to ours when

necessary.

2.7 Fault Tolerance for Grid Applications

Section 1.3 states that the Grid community has reported many results regarding failures.
Therefore, this section overviews fault detection and handling/recovery mechanisms for
Grid applications such as GWE, Triana, Unicore, Pegasus, Condor, DAGMan, etc. Most

of this section is based on survey [139].

2.7.1 Fault Detection

In Grid applications, failures can take place at Hardware, Operating Systems, Mid-
dleware, Workflow Task, Workflow or User level. At the lowest level, Hardware level,
machine crashes and network disconnection can happen. At the level of Operating Sys-
tems, tasks may run out of memory or disk space, or exceed CPU time limits or disk
quota. At the Middleware level, non-responding services can be found, probably caused
by too many concurrent requests. Authentication, file staging or job submission failures
can also happen, and submitted jobs could hang in local queues, or even be lost before
being executed. At the Task level, job-related faults can happen, like deadlock, memory
leak, uncaught exceptions, missing shared libraries or job crashes, even incorrect output
results could be produced. At Workflow level, failures can occur in data movement or
infinite loops in dynamic workflows. Incorrect or not available input data could also
produce faults. Finally, at the highest level, the User level, user-definable exceptions

and assertions can lead to failures.

Many Grid monitoring services have been developed to monitor Grid applications and
detect various failures. The pinging-and-timeout mechanism is used to detect task fail-

ures. A task is considered to have failed if the monitoring service does not receive a
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response from the task within a certain amount of time. Hwang et al. [90] presented
a failure detection service (FDS) on the Grid, aiming to detect both task crashes and
user-defined exceptions. A notification mechanism is developed based on the interpreta-
tion of notification messages being delivered from different entities (i.e., the task itself,

the Grid server and the heartbeat monitor) residing on each Grid node.

2.7.2 Fault Recovery and Fault Handling

Fault recovery and handling techniques for Grid application mainly fall into two levels:
Task level and Workflow level.

Task-level techniques refer to recovery techniques that are to be applied in the task level
to mask the effect of task crash failures. These techniques include retrying, checkpoint-
ing, etc. Upon detecting a failure, a failed task is rescheduled to either the same or an
alternative resource to reattempt. Resubmission can cause significant overheads if the
following tasks have to wait for the completion of the failed task and if a failed task has
to be restarted over from the beginning. A good solution to this is to save checkpoints

and resume task execution from the last checkpoint later.

Workflow-level techniques refer to recovery techniques that enable the specification of
failure recovery procedures as part of application structure. These techniques include
using alternative tasks, data and workflow redundancy, checkpointing and transactions.
Redundancy means one task is executed concurrently on several resources, assuming
that one of the tasks will survive any independent failure. It can cause overhead by
occupying more resources than necessary, but guarantees failure-free execution as long
as at least one task does not fail. Checkpointing technique can also be used to save an
intermediate state of a whole workflow for a restart later. Distributed transactions can

also be used for handling failures in workflow level, which has been used in Condor.

There are several other approaches to supporting reliable Grid services. A web service-
based messaging middleware, WS-Messenger, is developed to deliver messages for SOA-
based Grid applications [88]. By wrapping up the underlying message queuing systems,
WS-Messenger creates interoperable Web services-based publish/subscribe systems to
decouple event producers and consumers, and achieve scalable, reliable and efficient
message delivery. In addition, as has been introduced in Section 2.2.3, a fault tolerance
framework, FT-Grid [169], is developed to tolerate software faults that occur in SOA-
based Grid applications through multi-version design (MVD) and the use of provenance

information.
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2.8 Formal Methods for Fault Tolerance

Fault-tolerant protocols are designed to be resistant to failures. Proving the resistance
of protocols to failures is very challenging, since we have to stay in control of not only
the normal system behaviour when there is no failure but also of the complex situations
which can occur when failures happen. Formal methods can help us to rigorously develop

and reason about fault-tolerant protocols.

Formal methods are mathematically-based techniques for the specification, development
and verification of software and hardware systems [165]. The application of formal meth-
ods makes it possible to achieve provable correctness and reliability in the various steps
of system design and implementation. A formal specification precisely and unambigu-
ously describes what a system should do. The use of formal specification reduces the
complexity of a system by hiding irrelevant details so that users can understand the
system without understanding all the details of its construction. Once a formal spec-
ification has been produced, the specification can be used as a guide to develop the
concrete system. For example, the observed behaviour of the concrete system can be
compared with the behaviour of the specification. Given a formal specification, it is
possible to use formal verification techniques to demonstrate that a candidate system
design is correct with respect to the specification. This has the advantage that incorrect
candidate system designs can be revised before a major investment has been made in

actually implementing the design.

2.8.1 Fault Tolerance Specification

Based on papers by Gartner [70, 69], this section generally introduces formal specification

for fault tolerance.

When specifying interactive systems it is necessary to distinguish between the system
and its environment. A system is usually defined as a “thing” that interacts with its
environment in a discrete fashion across a well-defined boundary (called an interface).

The environment consists of all “things” that have access to the interface of the system.

A system may be constructed using many subsystems, each of which having its own
interface and its own specification. For example, in a distributed system consisting of n
processes pi, ..., pn that communicate via a communication subsystem, each process as
well as the communication channel form a larger system (Figure 2.13). Each subsystem
is part of the environment of the other. The specification for a larger distributed system

defines what tasks should be solved by coordinated actions of its subcomponents.

A specification of a system S asserts that S will guarantee a property M under the
assumption that the environment guarantees some property E (formally, E = M). In

the example of a specification for process p;, F will define what p; can expect from the
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communication subsystem (i.e., the type and order of messages received) and M will

describe how p; reacts (i.e., what messages it will send).

We now use a state-based approach to illustrate a property. A state is some assignment
of values to the “variables” of an interface. The set of all possible combinations of value
assignments to variables is called the state space. An execution of a system is a sequence
of states and a property is a set of executions. A system by itself defines a property,
which is the set of all executions starting from an initial state. A property P holds for a
system S if the set of executions defined by S is contained in P. A state change is called

an action. State changes are either initiated by the system or by the environment.

The correctness of a distributed protocol typically has two kinds of requirements: safety
and liveness [113, 101]. The safety requirement informally states that some bad thing
will never happen. It imposes that a certain property must hold for each execution of
the system in every configuration reached in that configuration. On the other hand,
the liveness requirement informally states that some good thing will eventually happen.
It imposes that a certain property must hold for each execution of the system in some

configuration reached in that execution. Termination is an example of liveness property.

Given F = M, a fault tolerance specification is usually obtained by weakening either
E or M (or both). Weakening E resembles the anticipation of abnormal behaviour of
the environment, whereas weakening M indicates that the system itself will sometimes

deviate from its original failure-free specification.

As introduced in previous sections, a failure model describes the manner in which sys-
tem or subcomponents of a system may fail. Volzer [160] observed that failure models
formally consist of two distinct parts: (1) the impact model, a specification of the ad-
ditional faulty behaviour of the system, and (2) the rely specification, a specification of
assumptions that restrict the set of possible system executions. The impact model is
responsible for weakening the ideal (failure-free) specification of some system (i.e., M):
more executions become possible through the added behaviour. On the other hand,
the rely specification is usually a global assumption (i.e., E) on a composed system,

bounding the additional behaviour from becoming too bad.



Chapter 2 Related Work 46

For example, a system crash can be modeled by adding a boolean variable up to the
state of the system and by inhibiting all affected transitions if —up holds. The state
transition from up to —up can be viewed as a crash failure. In addition, a global failure

assumption is usually made to be “at most ¢ < n processes may crash”.

The idea to represent failures as additional program actions goes back to a paper by
Cristian [39]. It was further developed in a series of papers by Arora et al. [12, 14, 13],
who stress that every form of failure can be modeled by this method. Gartner [69] gives
formal specifications of several failure models such as Crash, Send Omission, Receive-

Omission, General-Omission and Byzantine.

2.8.2 A Brief Survey

Gartner [71] surveys methods to specify and verify fault-tolerant systems based on a
notion of transformation. A transformation is a general concept and almost anything
where there is a notion of “change” can be formulated as a transformation. So it has
been interesting to formulate fault tolerance methodologies which do not directly refer to
the notion of a transformation, e.g., multitolerance [13] and the state machine approach
[148).

Transformations offer the potential of being automated and thus can help aid the me-
chanical verification of fault-tolerant systems. For example, a failure model is a trans-
formation, i.e., a function that maps a program A to a program A’. Program A is the
original program, which by itself runs in an ideal fault-free environment; A’ is program
A that may be subject to failures. We note that A’ will never be explicitly implemented;
the transformation process is just a means to be able to reason about transformed pro-

grams to evaluate fault tolerance properties.

The state machine approach was first described in Lamport [102] for environments in
which failures could not occur. It was generalised to handle fail-stop failures in Schneider
[147], a class of failures between fail-stop and Byzantine failures in Lamport [102], and

full Byzantine failures in Lamport [103].

The input/output (I/O) automaton model [112], developed by Lynch and Tuttle, is a
labelled transition system model for components in asynchronous distributed systems.
The I/O automaton is a simple type of state machine in which transitions are associated
with named actions, classified as either input, output or internal. The inputs and outputs
are used for communication with the automaton’s environment, while the internal actions
are visible only to the automaton itself. This model has been used to describe faulty
communication channels and process crash failures [113]. The proof method supported
in the automaton model for reasoning about the system involves invariant assertions.
An invariant assertion is defined as a property of the state of a system that is true in

all executions. A series of invariants relating state variables and reachable states are
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proved using the method of induction. The work done using I/O Automaton has been
carried out by hand [68, 113].

B [5] is a tool-supported formal method based on Abstract Machine Notation. The
B Method adopts the top-down approach to system development, which starts from
creating a formal system specification and continues with refinement of the specification.
In B, a specification is represented by a collection of modules, called Abstract Machines.
An abstract machine encapsulates a local state (local variables) of the machine and

provides operations on the state.

Recently, another formal method called Event-B [5] has been developed, which is con-
sidered an evolution of B. Event-B is particularly suitable for developing distributed,
parallel and reactive systems. It is a simpler notation and comes with tool support in
the form of the Rodin Platform [6]. The operations in Event-B are called events, which
are atomic meaning that, once an event is chosen, its execution will run until completion
without interference. The guard of an event represents the necessary conditions on the
state of the system for the event to be triggered. When the guard is true, event actions

are executed, possibly changing the state and allowing another event to be triggered.

Applying formal methods to the design and reasoning of fault-tolerant protocols has been
practiced in many applications, e.g., mobile agent systems [100, 121], control systems
[99, 168] and replicated distributed database systems [170].

Moreau [121] presented a fault-tolerant directory service for mobile agents, which can
be used to route messages reliably to them, even in the presence of crash failures of
intermediary nodes between senders and receivers. This algorithm relies on redundancy
information stored in different locations, hence able to tolerate a maximum of N — 1
failures of intermediary nodes. The distributed directory service is formalised as an
Abstract State Machine (ASM). The formalisation adopts the impact model and the
rely specification, introduced in Section 2.8.1, to model crash failure and communication
omission failures by adding a boolean variable and several transitions regarding failures
to the system. Liveness and safety properties are stated and proved by hand based on
mathematical induction. A fully mechanical proof of the algorithm’s correctness is also

derived using the proof assistant Coq [36].

Xu et al. [168] used coordinated atomic (CA) actions to design and validate a sophis-
ticated and embedded control system that has high reliability and safety requirements.
Their work was based on an extended production cell model, which represents a man-
ufacturing process involving redundant mechanical devices to maintain specified safety
and liveness properties even in the presence of device and sensor failures. They for-
malised CA action-based designs as a state transition system, which is characterised by

its (global) state space, a set of initial states, and a next-state relation.

Yadav and Butler [171] used Event-B to design fault-tolerant transactions for replicated
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distributed database systems. They analysed the problem of formation of deadlocks
among conflicting transactions and outlined an approach to preventing deadlocks and
transaction failures. They also demonstrated how to formally verify by refinement that

the design of a replicated database confirms to the one copy database abstraction.

Laibinis et al. [100] presented a formal approach for the development of fault-tolerant
mobile agent systems based on Event-B framework. They started from an abstract
system specification modelling agents together with their communication environment
and gradually introduced implementation details in a number of correctness-preserving
transformations. In the refinement steps, loss of connections and agent failures are con-
sidered and modelled by additional events in the system. To tolerate loss of connections,
a timeout mechanism is adopted, modelled by a variable timers in the formalisation. In
addition, several variants, such as disconn_limit, recover_limit are introduced to avoid
deadlock by limiting the number of successive disconnections and the amount of error
recovery attempts, respectively. They are initialised with an intial value and their values
decrease by 1 whenever a related event occurs. As soon as for some agent recovery_limit
becomes zero, the agent’s error recovery terminates and the error is treated as irrecov-

erable.

2.9 Summary

This chapter provided relevant background information on provenance, failures, fault-
tolerant mechanisms and formal method for fault tolerance. We also positioned our work

and discussed various solutions to addressing our problem.

We firstly reviewed provenance research. Provenance has attracted attention in many
fields, especially in fast growing workflow communities, which support SOA-based in
silico scientific applications. We then compared several major provenance systems for
SOA applications. Through this comparison, we demonstrated that PASOA is a generic,
domain and technology independent approach to modelling and recording process docu-
mentation. This conclusion was further supported by a wide range of applications that

used PASOA to record their provenance information.

Then we highlighted key aspects of PASOA. PASOA models a process as a set of causally
related interactions between services through message passing. It defines several types
of assertions to describe interactions and introduces a protocol PReP to record process
documentation. Based on this part of the survey, we have decided to extend PASOA in

our work in order to inherit the following advantages.

PASOA has a number of advantages over other provenance systems. Firstly, it is do-
main and technology independent. It uses an SOA approach to modelling provenance

information, supporting different domain applications. It also specifies a generic record-
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ing protocol PReP, which can be implemented in different languages, such as Java and
Python. Secondly, it is an open architecture. It allows application developers to cus-
tomise the granularity level provenance information is collected at. Thirdly, it supports
multi-site recording, i.e., all participating parties in a process, such as workflow enact-
ment engine and services, contribute to the provenance information of the data product
of that process. This is crucial for obtaining sufficient provenance data in highly decen-
tralised applications. Fourthly, it introduces a linking mechanism to connect multiple
provenance repositories, which have been demonstrated in many applications to be nec-

essary.

PASOA, however, does not consider failures that may happen when an actor is record-
ing its interaction records into a provenance store. The consequence is the incapability
to retrieve complete process documentation from multiple interlinked provenance stores
either due to the loss of documentation or a broken pointer chain. Therefore, we intro-
duced several failure models and surveyed major fault-tolerant techniques. We aim to
design a generic approach to reliably recording process documentation for SOA-based

applications without the assumption on specific implementation strategies.

Formal methods can assist us in rigorously designing a fault-tolerant distributed protocol
and verifying its correctness. Therefore, we will use them to formalise our solution and

establish properties to prove its correctness.

With these conclusions, we now present our approach in the next chapter.
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Protocol

At the beginning of this dissertation, we outlined the need for recording process docu-
mentation in the presence of failures while ensuring its entire retrievability for SOA-based
applications. Furthermore, we surveyed a number of provenance systems and concluded
that we adopt PASOA’s approach to modelling process documentation and extend PReP

to inherit a number of advantages.

This chapter now presents our solution F-PReP, a coordinator-based protocol to record
process documentation in large, open distributed environments where numerous prove-

nance stores could be present and failures may occur.

The main idea of our protocol is to analyse all the possible behaviours that a system
can exhibit in the presence of failures and to provide remedial actions when failures
occur. Basic fault-tolerant mechanisms such as timeouts, retransmission of messages and
alternative provenance stores are used to guarantee the recording of complete process
documentation. To preserve the retrievability of distributed documentation, an Update
Coordinator is introduced to update incorrect links in provenance stores so that multiple

provenance stores are still properly connected.
The contributions of this chapter are twofold:

Firstly, we describe a generic protocol, F-PReP, for recording process documentation in
the presence of failures (specifically, provenance store crash and communication failures).
It is a distributed protocol specifying the behaviour of three components: recording
actor, provenance store and the update coordinator. We define protocol messages and

their exchanges between components.

Secondly, we formalise F-PReP using an Abstract State Machine (ASM) approach. We
begin with a formalisation without consideration of failures. Then we model failures by
extending system state space and adding extra transitions. Our ASM-based formalism

provides a precise and implementation independent means of specifying the protocol.
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It sketches the essence of the protocol and accurately defines protocol’s behaviour. In
addition, it promotes a rigorous design of the protocol and helps us better understand

the complex system behaviour in the presence of failures.

This chapter is organised as follows. Section 3.1 recalls several terms defined by PA-
SOA. Sections 3.2 and 3.3 state assumptions on the kinds of failures that we consider and
present the requirements that F-PReP supports. In Section 3.4, we outline F-PReP’s
design philosophy based on the analysis of PReP’s problems in the presence of failures.
After that, we define protocol messages and detail F-PReP in Section 3.5. Section 3.6
formalises the protocol and specifies the internal behaviour of recording actors, prove-
nance stores and the coordinator. Finally, we discuss the protocol and conclude this

chapter.

3.1 Terminology

We expect readers to be familiar with Section 2.3, which provides an introduction to
PASOA. This section recalls several terms that are important to the understanding of

our work.

In service-oriented architectures, clients typically invoke services, which may themselves
act as clients for other services. The term actor is used to denote either a client or a
service. An actor that sends an application message is referred to as a sender, whereas
an actor that receives an application message is known as a receiver. One application
message exchanged between a sender and a receiver is an interaction. A process is
modelled as a causally connected set of interactions between actors involved in that

process.

We use the term assertor to refer to an actor that creates and records p-assertions. Using
p-assertions, an assertor documents an interaction to provide a sender or receiver’s view
of the interaction and how those interactions are related. In order to efficiently locate and
extract p-assertions from process documentation, PReP specifies that all p-assertions
created by an assertor about the same interaction are submitted to a provenance store
in a single message, which is termed an interaction record. Process documentation
therefore consists of a set of interaction records. PReP specifies that both assertors
in an interaction must make their interaction record documenting the interaction for

accountability or verification purposes.

One kind of p-assertion is interaction p-assertion, which documents the content of an

application message and is created by the assertor that has sent or received that message.

Another kind of p-assertion is relationship p-assertion. It is made by an assertor to
describe how the assertor produced output data from input data that it received by

applying some function on the input data. The output data is the effect and the input



Chapter 3 Protocol 52

data is the cause. An effect can have multiple causes. We use terms effect interaction and
cause interaction to denote the interactions where the effect and cause are transferred,
respectively. Hence, a relationship p-assertion captures causal connections between an
effect interaction and cause interaction(s). A relationship p-assertion has been specified
by PReP to be included in the interaction record about the effect interaction since it

describes the causal reason for the occurrence of the effect interaction.

In the example of Figure 3.1, we assume that output data d2 is produced by assertor
a, which applies a function f on the input data d1. Hence, d2 and d1 are the effect
and the cause, respectively. Correspondingly, interactions I2 and I1, where d2 and
dl are exchanged to/from other assertors, are effect interaction and cause interaction,
respectively. A relationship p-assertion can be created to capture the causal connection
(f) between I2 and I1, and it is sent to a store as part of IR2.

o

—
PS1 PS2 cl: Causelink

PS: Provenance Store
IR: Interaction Record
dl: Cause

IR1 IR2 (cl: PS1) d2: Effect

I1: Cause Interaction
12: Effect Interaction
f+ Relationship Func.

1 d1 a1
/

v

v

Assertor a

FI1GURE 3.1: An example of a simple process and causelink

For scalability, an assertor can use various stores to record interaction records about
different interactions. A notion of link, i.e., a pointer to a provenance store, has been
introduced to connect multiple provenance stores. PASOA defines two types of links,
causelink and viewlink. By following links, distributed process documentation can be

retrieved from across multiple stores.

A causelink is embedded in the relationship p-assertion, indicating the provenance store
that records the interaction record about the corresponding cause interaction. The asser-
tor has the knowledge about causelinks at deployment time. For example, a causelink can
be determined from a configuration file or be hard coded into an application’s program.
In Figure 3.1, the assertor creates two interaction records IR1 and IR2 documenting
the cause interaction I1 and effect interaction 12, respectively. It also makes a rela-
tionship p-assertion, capturing the causal relationship between I1 and I2. The assertor
uses provenance stores PS1 and PS2 to record I R1 and I R2, respectively. Therefore,
it embeds a causelink to PS1 in the relationship p-assertion, which is included in I R2

and recorded to PS2. Then there is a causelink in PS2, pointing to PS1 where the
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interaction record about the cause interaction is recorded.

Another type of link is wviewlink. Each assertor includes a viewlink in its interaction
record, pointing to the provenance store where the opposite assertor records its interac-
tion record about the same interaction. Therefore, both views of an interaction can be
retrieved by navigating from one provenance store to the other. Fach assertor must have
a viewlink before it submits its interaction record to a provenance store. The viewlink
can be built into an assertor at deployment time or obtained from application messages
from another assertor. In Figure 3.2, the sender sends an application data to the re-
ceiver in an interaction I. Both sides document their view of the interaction by creating
interaction records I R1 and I R2. After recording its interaction record with a viewlink
into a provenance store, we know that I R2 is recorded in PS2 by checking the viewlink

in IR1 from store PS1, and vice versa.

L
PS1 |« 1 PS2
Y vi: Viewlink
PS: Provenance Store
IR: Interaction Record
IR1(vI: PS2) IR2 (vI: PS1) I: An Interaction
sender a ! p receiver b
(vl: PS2) (vl: PS1)

F1GURE 3.2: An example of viewlink

3.2 Assumptions

Failures are non-deterministic in nature and typically very hard to predict. Restricting

our scope to particular failures is hence necessary. We state the following assumptions.

Assumption 1. We assume a crash-recovery model on a provenance store, i.e., a store

fails by halting and later restarts from its latest consistent state.

A provenance store has been implemented as a stateless web service with a database
storage system. We denote as a crash all kinds of failures that bring down the provenance
store server and cause all data in volatile memory to be lost, but leave all data on stable

secondary storage intact.

Assumption 1 states that a provenance store has the ability to restart from its most
recent and consistent state, which refers to the initial state of the web service as well
as the latest consistent state of the database system. Such a consistent state can be

preserved via a recovery procedure following a crash, e.g., restarting the web service
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and/or performing fault-tolerant operations (e.g., checkpoint/rollback/rollforward) on
the database.

The crash that we assume in Assumption 1 is sometimes referred to as soft crash case,
since it leaves all data on secondary storage intact, unlike a hard crash that corrupts
secondary storage media. A hard crash model is concerned with media failures [133],
such as disk head crash and magnetic decay. The consequence of media failures is the
loss of partial or complete process documentation, which cannot be retrieved even after
being successfully recorded in provenance stores. Since disk storage technology is already
highly reliable and recovery from media failures is not likely to happen more often than
once or twice a year [84], it is reasonable to ignore the hard crash case and state the

following assumption.

Assumption 2. Process documentation is persistent once being successfully recorded in

provenance stores.

In real world, applications with different requirements on process documentation can
decide if media failures should be considered. For those with less requirement on the
durability of process documentation, this type of failures can be ignored given the low
probability of occurrence. For industrial-strength applications, where process documen-
tation is critical, recovery from media failures is mainly through two approaches. The
traditional one is the combination of periodically creating database backups during nor-
mal operations and maintaining archive logs. The logs can be applied to the backup
data to redo committed transactions in order to restore the data up to the point of the
media failures. Another approach is mirroring disk storage based on techniques such
as RAID (“Redundant Array of Independent Disks”). Mission-critical applications usu-
ally combine both approaches: backups with archive logging as well as RAID storage
technology.

Assumption 3. Messages to/from provenance stores can be omitted, reordered but not

duplicated in communication channels.

Assumptions 1 and 3 give the failure model with regard to recording process docu-
mentation whilst Assumption 2 lays the foundation for our analysis on the retrieval of
process documentation in later chapters as it assumes no documentation is lost once

being recorded to provenance stores.
Assumption 4. We do not consider application failures.
Applications' should provide fault tolerance mechanisms to ensure assertors’ availability

and the completion of an application. Section 2.7 has reviewed some fault-tolerant

approaches for grid applications.

'In the rest of the dissertation, we use the term application to denote a provenance-aware application
that can create and record process documentation.
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Assumption 5. An assertor has a choice of several provenance stores to use.

In SOAs, it is convenient to deploy a number of provenance store services for an assertor

to use.

Assumption 6. The update coordinator does not fail.

As will be detailed later, a coordinator is used to facilitate viewlink update in order
to enable documentation retrievability. We can use a coordinator cluster to ensure its
availability for two reasons. First, a coordinator only maintains a minimum amount
of information, therefore the cost for preserving consistent states in all replicas can be
small. Second, a coordinator is not involved in every interaction of a process?, which

means a single coordinator can support all applications in the system.

However, we do not assume the use of a provenance store cluster. First, it does not
deal with message loss and hence cannot prevent disconnected process documentation.
Second, replication is sophisticated and comes with a significant cost due to maintain
consistent states among replicas. Given that the documentation produced in a process
can be in large quantity, e.g., on the order of terabytes, replication may become very
expensive in terms of computing resource utilisation and performance impact. Therefore,
a provenance store cluster may not be appropriate in all situations. Third, we are dealing
with SOA-like systems where there may be any number of provenance stores managed
by different institutions across different regions, so it is unrealistic to assume each is

facilitated with replicated backups.

3.3 Requirements

F-PReP is defined based on an interaction. It specifies the behaviour of the sender and
receiver in terms of creating and recording their respective interaction record about an
interaction. It also defines the actions of a provenance store and the coordinator in
terms of dealing with messages (e.g., an assertor’s interaction record) with regard to the

interaction.

In order to establish our thesis statement, we identify several requirements for F-PReP
to support. Given that a process consists of a set of interactions, if the protocol can
ensure that the following requirements are supported on interaction level, then the doc-
umentation of the whole process is shown to meet these requirements. Chapter 4 will
formalise these requirements as properties and prove that F-PReP preserves these prop-
erties. Chapter 5 will use these properties as building blocks to establish the properties

of whole process documentation.

2A coordinator is only used when an assertor wants to update a link in a provenance store after
failures occurred.
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The most important requirement is to ensure the successful recording of an interaction

record in the presence of failures.

Requirement 1 (GUARANTEED RECORDING). An assertor’s interaction record must

be eventually recorded in a provenance store.

Multiple provenance stores are connected by a chain of pointers (i.e., links) to enable the

retrieval of distributed documentation. Thus, we have the following two requirements.

Requirement 2 (CAUSELINK ACCURACY). Accurate causelink(s) regarding an effect
interaction must eventually exist in a provenance store. Each must point to the store
where an interaction record about the corresponding cause interaction was successfully

recorded.

Requirement 3 (VIEWLINK ACCURACY). Accurate viewlinks regarding an interaction
must eventually exist in a provenance store. FEach must point to the store where the
other assertor in the interaction successfully recorded its interaction record documenting

that interaction.

Creating and recording interaction records have already introduced overhead into the
application [78]. Remedial actions coping with failures may however take up computing
resources and interfere with the application. Therefore, we identify a nonfunctional

requirement:

Requirement 4 (EFFICIENT RECORDING). The recording of interaction records should

be efficient and introduce acceptable recording overhead on the application’s performance.

3.4 Design Philosophy

In this section, we analyse several problems that may occur when recording interaction
records to a provenance store in the event of failures and outline how F-PReP addresses

these problems to satisfies the four requirements.

There are several challenges in designing a distributed protocol that can cope with fail-
ures. Firstly, we need to state an appropriate failure model and systematically identify
system behaviour in the case of failures. Secondly, the protocol may involve the co-
operation of several parties such as provenance-aware applications, provenance stores
and the coordinator. Designing such a distributed protocol is notoriously difficult, since
we have to stay in control of not only the normal system behaviour when there is no

failure but also of the complex situations which can occur when failures happen.

PReP does not specify well-defined behaviour when recording documentation in the
presence of failures. Firstly, PReP allows a provenance store to return an acknowledge-

ment before persisting an interaction record. This has the risk that the acknowledged
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interaction record can be lost in the event of a store crash whilst the assertor is unaware
of it. In addition, PReP assumes an assertor always obtains an acknowledgement from a
provenance store and hence does not consider the situation where the acknowledgement

is lost or the provenance store crashes.

To address the first problem, F-PReP enforces that a provenance store returns an ac-
knowledgement to an assertor only after successfully recording the interaction record

that is being acknowledged.

Regarding the second problem, we systematically analyse several failure scenarios where
an assertor sends an interaction record (I R) to a provenance store (PS) and PS replies
the assertor with an acknowledgement (Ack) after recording IR. Since messages can
get lost (Assumption 3) and a store can crash (Assumption 1), we present the following
cases based on the failure assumptions. We discuss the loss of IR and Ack and the

situations where a PS can fail.

1. The message IR is lost;
2. PS crashes before completely receiving I R;

3. PS crashes after completely receiving IR, and before successfully recording IR

and replying Ack;
4. PS crashes after successfully recording I R and before sending out Ack;
5. PS crashes after sending out Ack;

6. The message Ack is lost.

If a provenance store crashes after providing Ack (Scenario 5) this means it has suc-
cessfully recorded IR. From an assertor’s perspective, all the other scenarios result in

failure to receive an acknowledgement from a provenance store.

Without the acknowledgement, an assertor does not know if its I R has been successfully
recorded in a provenance store. To avoid waiting for the acknowledgement indefinitely,
F-PReP explicitly sets a timeout for an assertor after it sends IR to a store. If the
assertor does not receive a response before the timeout, it knows failures may have
occurred but cannot ascertain if the provenance store has recorded its IR due to the
incapability of distinguishing the loss of IR or Ack from store crash. In addition, a low

speed network or a provenance store experiencing slowdown can also cause a timeout.

In order to guarantee the successful recording of documentation, an assertor interprets
a timeout as “failure has occurred” and takes remedial actions. Several fault-tolerant
mechanisms are adopted by F-PReP in the presence of a “failure” (i.e., timeout): re-

transmitting messages and using alternative provenance stores. An assertor can resend



Chapter 3 Protocol 58

an IR to a same provenance store or an alternative one until the IR is acknowledged
before the timeout. A provenance store has been designed to handle duplicate retrans-
mitted IRs and always return the same Ack for a specific IR. The use of alternative
provenance stores is a general approach to tolerating provenance store crashes with-
out assuming any provenance store cluster, although the latter can be complementary.
GUARANTEED RECORDING is met when IR is acknowledged before a timeout.

It may be the case where there is an infinite series of crashes and/or channel omissions,
resulting in the impossibility of receiving any acknowledgement. However, we do not
consider this case since such a case indicates a fundamental problem with the entire
system rather with the recording of process documentation. Since a provenance store
is able to recover from failures (Assumption 1), we make another assumption stating
that an acknowledgement is “eventually” received by an assertor given the presence of

an appropriate timeout value as well as the use of message retransmissions.

Assumption 7. Within the set of provenance stores that an assertor decides to use, at

least one acknowledgement is received by the assertor before a timeout.

Since provenance stores hosting distributed process documentation have been interlinked
using a pointer chain, one challenge F-PReP has to face is the potential breakage of the
pointer chain due to the use of alternative provenance stores. This means a link to
the original store becomes invalid if a specific interaction record is not recorded in the
original store. We now discuss causelinks and viewlinks using the examples in Section
3.1.

In Figure 3.3, if the assertor fails to record IR1 to PS1, it uses an alternative store
PS1’, which successfully records IR1. Since the recording of interaction records is
asynchronous to the execution of the application, the use of alternative stores is not
known by the assertor when the causelink to PS1 is embedded in the relationship p-
assertion. Therefore, the causelink becomes inaccurate as it points to a location where
IR1 cannot be found.

In the case of viewlinks, since one or two assertors may use alternative stores, we discuss
two situations. In Figure 3.4, the sender uses another store PS1 to record IR1, hence
making the receiver’s viewlink in PS2 inaccurate, which still points to the sender’s
original store PS1. Figure 3.5 shows the situation where both assertors use alternative

stores to record their interaction record.

The presence of inaccurate links results in distributed process documentation unable to
be retrieved from multiple provenance stores. Therefore, F-PReP must provide actions

to fix inaccurate causelinks and viewlinks, making them point to the correct location.

To satisfy CAUSELINK ACCURACY, F-PReP specifies the following actions. Firstly, all

IRs created by the same assertor are placed into a local queue before being recorded to
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FIGURE 3.3: An example of inaccurate causelink

vl
e
IR1(vl: PS2) IR1(vI: PS2) IR2(vl: PS1)
sender a I receiver b

v

(vl: PS2) (vl: PS1)

FI1GURE 3.4: An example of inaccurate viewlink

a provenance store. Only after the IR at the head of the queue has been successfully
recorded can it be removed from the queue. Secondly, given a relationship p-assertion,
the IR about any cause interaction is always enqueued before the IR about the effect
interaction. Thirdly, an assertor maintains history information in a log table about the

use of alternative stores when recording an IR.

The use of a queue has two purposes. Firstly, it allows the recording of IRs to be asyn-
chronous to application execution, which improves recording performance. Secondly,
it serialises the recording of IRs about the effect interaction and cause interaction(s).
Therefore, when the assertor is ready to submit the IR about the effect interaction,
which is the head of the queue, it knows if an alternative store was used when recording
the IR about the cause interaction by checking the log table. Then the assertor can

update any incorrect causelink according to the history information in the log table.

In the example of Figure 3.6, an alternative store PS1" was used to record IR1, which is
about the cause interaction I1. The log table now reflects that in interaction /1 where
the assertor was a receiver (R), an alternative store PS1’ was used to record IR1. When

I R2 is to be submitted, the assertor checks all relationship p-assertions in 1 R2 according
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FIGURE 3.5: An another example of inaccurate viewlink

to the log table. If there is an entry regarding a cause interaction in the table, then
the assertor uses the alternative store’s identifier to update the corresponding causelink.
In the figure, the causelink is redirected to PS1’, which is the store that successfully
recorded I R1.
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FIGURE 3.6: Causelink updated

To achieve VIEWLINK ACCURACY, an update coordinator is employed to facilitate
viewlink update. F-PReP specifies that any assertor that successfully recorded its IR
to an alternative store takes the initiative to update the other’s viewlink by sending a

request to the coordinator.

In the case of Figure 3.4, after recording IR1 in PS1’, the sender knows that the re-
ceiver’s viewlink must have been out-dated. Hence it requests the coordinator to update
PS2, which the sender assumes the receiver is still using. Then the coordinator sends
an update request to P52, making the receiver’s viewlink point to PS1’. Therefore, the

viewlink in PS2 becomes accurate.

If the receiver also used an alternative store, as illustrated in Figure 3.5, the coordinator’s
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update is not successful as PS2 did not record IR23. However, since the receiver also
sends a request to the coordinator for updating the sender’s viewlink, the coordinator
now possesses global knowledge from both sides. Then it makes another decision on
how to update two assertors’ viewlink: it updates the viewlink in PS1’ by redirecting
it to PS2" and updates the viewlink in PS2" by redirecting it to PS1’. Therefore, both
viewlinks become accurate (Figure 3.7). We will detail the coordinator’s behaviour in
Section 3.5.2.

vl
e T T
4_:‘ )
IR1(vl: PS2) IR1(vI: PS2) IR2(vI: PS1)
sender a ! p| receiver b
(vl: PS2) (vl: PS1)

FIGURE 3.7: Viewlink updated

To meet EFFICIENT RECORDING, F-PReP is designed with a number of considerations.
Firstly, it is an asynchronous protocol, allowing assertors to send I Rs at any time with-
out delaying their execution. In addition, remedial actions, e.g., selecting alternative
stores, are taken by the protocol irrespective of the application. We will introduce more

implementation considerations to achieve good recording performance in Chapter 6.

After a brief description of F-PReP, next section will detail the protocol and provide

more justifications about design decisions.

3.5 Protocol Description

3.5.1 Definitions

To facilitate the description of our protocol, we define three new terms:

Definition 8 (OWNLINK). It refers to the provenance store that an assertor is currently

using to record an interaction record.

Definition 9 (DEFAULT LINK). [t refers to the provenance store that an assertor ini-
tially used when recording an interaction record but may not have been successful in doing

$0.

31t may be the case that P.S2 happens to record I R2, and the receiver experiences a timeout and uses
an alternative store. In this case, PS2 records duplicate information, which we will discuss in Section
3.7.
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Definition 10 (DEFAULT STORE). If a provenance store is referred by an assertor’s

default link, then it is the assertor’s default store.
We note that an actor is free to use a different provenance store when recording another
interaction record. So the default link may not be the same in each interaction.

In the example of Figure 3.8, we assume assertor a initially used PS1 to record its
documentation IR but failed. Then it used another store PS2 to record IR. In this
case, a’s default link refers to PS1, which is its default store. Its own link is changed
from PS1 to PS2 since PS2 is currently being used.

PS2

IR

Assertor a
(dl: PS1, ol: PS2)

F1cURrE 3.8: An Example of ownlink and default link

3.5.2 Messages

F-PReP specifies the behaviour and communications of assertors, provenance stores and
the update coordinator. There are six messages in the protocol: Application Message
(app), Interaction Record Message (record), Record Ack Message (ack), Repair Message
(repair), Update Message (update), and Update Ack Message (uack). We now define

each message with Figure 3.9, which provides an example of message exchanges.

3.5.2.1 Application Message

The application message app is exchanged by all assertors in the application. It contains
application specific data needing to be transferred between actors. In the context of a
provenance system, the application message is adapted to include interaction contextual

information: an interaction key and the sender’s ownlink.

An interaction key is generated by the sender in an interaction for uniquely identifying
the interaction from all other interactions. The receiver can then use the interaction key

to generate and record p-assertions about the same interaction.

In Figure 3.9, we assume that the key for the interaction in which the sender a sends
an application message to the receiver b is . We also assume the default provenance

stores that a and b use are PS1 and PS2, respectively. In Step 1, a sends an app to b
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Coordinator

d: Application Data
i: Interaction Key

S, R: View Kind

a, b: Assertor Identity
PS1: Store Identity

pas: P-Assertions /
5. repair(i, S, PS2, PS1’)

2. record(i, S, a, PS2, pas_a)

| (i, S) :<PS2, PS1™> |

6. update(i, S, PS1’)

7. uack(i, S)
—

< 8. record(i, R, b, PS1, pas_b) 9. ack(i, R)
3. record(i, S, a, PS2, pas_a)

sender a L.app(d, i, PS1) receiver b
(vl: PS2) (vl: PS1)

F1GURE 3.9: Protocol message exchanges

containing application data d, interaction key ¢ and a’s ownlink to PS1. Upon receiving
app, b becomes aware of its viewlink to PS1. We assume that a’s viewlink to PS2 has
been made available to a by means not explained in the figure; the viewlink can be built
into a at deployment time, transferred to a in a response message, or in an extra message

from b.

3.5.2.2 Interaction Record Message

For each interaction, both assertors document the interaction by asserting p-assertions
and sending them in an interaction record message, record, to their respective provenance
stores. The message record contains: (1) an interaction key, identifying the interaction
being documented; (2) a view kind, indicating the role of the assertor in the interaction,
i.e., a sender or a receiver; (3) the identity of the assertor that documents the interaction,
which is essential for recording attributable process documentation; (4) a viewlink of the
assertor for that interaction; (5) a set of p-assertions made by the assertor to describe

the interaction.

In Figure 3.9, a and b create a set of p-assertions, pas_a and pas_b, respectively, about
the interaction 7. They send pas_a and pas_b in record messages with their respective
viewlink to PS2 and PS1 (Steps 3, 8). We note that the two record messages can be sent

in any order, not restricted by the step numbers in the figure.

The set of p-assertions must contain an interaction p-assertion to document the exchange
of app message. If app is the consequence of receiving other messages, then the sender

of app must make a relationship p-assertion to capture the causal connections between
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these messages.

Due to the asynchronous nature of the protocol, an assertor accumulates record messages
in a local queue and submits them to their respective provenance store at its most
convenient time. When a record message becomes the head of the queue, the assertor
checks all the relationship p-assertions in the message and updates inaccurate causelinks

before submitting it to its provenance store. These actions are detailed in Section 3.6.3.

3.5.2.3 Record Ack Message

A provenance store acknowledges a record message by means of an acknowledgement
message ack, only after it has successfully recorded the content of record in its persistent
storage. An ack message includes an interaction key and a view kind, indicating from

which view of an interaction, a record is being acknowledged.

An assertor sets a timeout when waiting for an ack immediately after it sends a record
to a provenance store. This helps the assertor take remedial actions without waiting too
long. If an ack is not received before the timeout, then the assertor resends the same
record to the assertor’s default store or an alternative store. Only after receiving an ack
acknowledging a record can the assertor eliminate the record from its local queue. An
ack means that the acknowledged record message has been processed and recorded in a

provenance store persistently.

An assertor keeps history information of using alternative stores in a log table in order
to facilitate causelink update. It always places the record about a cause interaction into
the queue before placing the record about the effect interaction. The FIFO nature of the
queue ensures that when the record about the effect interaction is ready to be submitted
from the queue, the assertor knows if any alternative store was used for submitting the
record about the cause interaction. Therefore, by checking the log table, the assertor

can update any incorrect causelink in the record about the effect interaction.

In Figure 3.9, we assume a sends a record to its default store PS1 (Step 2) but does not
receive an ack before a timeout. Then it selects another store PS1’ to use (Step 3) and
finally receives an ack (Step 4). In Section 3.5.3, we will discuss the case where both

assertors use an alternative store.

3.5.2.4 Repair Message

After an assertor records a record to an alternative store, the other assertor’s viewlink
points to an incorrect store. F-PReP specifies that any assertor that successfully recorded
its IR to an alternative store takes the initiative to update the other’s viewlink by sending

a repair request to the coordinator.
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In Figure 3.9, the sender sends its record to the alternative store PS1’ (Step 3) and
receives an ack (Step 4). As a consequence, the receiver’s viewlink to PS1 becomes
incorrect, hence requiring an update. In order not to interfere with the application, the
protocol does not allow the sender to directly inform the receiver with its new ownlink,
which is now pointing to PS1’. Instead, the sender requests an update coordinator (Step
5) to help update the receiver’s viewlink recorded in P.S2, which the sender thinks the

receiver is still using.

A repair message consists of four elements: (1) an interaction key, indicating in which
interaction the opposite assertor’s viewlink is to be updated; (2) the requesting assertor’s
view kind in the interaction; (3) a pointer (DestPS) to the provenance store where the
requesting assertor thinks the opposite assertor’s viewlink is recorded; (4) the requesting
assertor’s ownlink, which points to the provenance store from which the requesting asser-
tor received an ack for that interaction, indicating the store has recorded the assertor’s

interaction record.

A coordinator is necessary since both sender and receiver may issue a repair request in
an interaction (Figure 3.5). This cannot be achieved by a direct update of the other
assertor’s provenance store, because at that moment, an assertor does not know which
store the opposite assertor is actually using. In Figure 3.5, the receiver uses an alternative
store to record its record; hence the sender’s viewlink to PS2 becomes incorrect as well.
In that case, the receiver needs to issue another repair request to the coordinator. We

will detail this case in Section 3.5.3.

In order to deal with the case where both assertors in an interaction each issue a repair
request, which could be in any order, the coordinator maintains request information:
the identity of the destination store, specified by the DestPS field in the repair message,
and the requesting assertor’s ownlink. This request information is indexed by the pair
of interaction key and view kind. In Figure 3.9, after receiving a repair request from the
sender, the coordinator records a tuple (PS2, PS1’) indexed by the pair (i, S), indicating

the sender in interaction 7 sent a repair message.

Since an update coordinator is not involved in every interaction, we recommend that
all assertors participating in a process employ one coordinator. If using more than one,
then any two assertors exchanging an application message must share the same one in
order to ensure VIEWLINK ACCURACY. The identifier of a coordinator can be built in
assertors or exchanged to other assertors in the application message app. Figure 3.9

employs the former approach.

By Assumption 3, we do not consider the loss of repair messages in the channel between
an assertor and the coordinator®. Hence, Assumption 6 implies that a repair request is

always processed by the coordinator.

“This can be relaxed by using an extra acknowledgement and message retransmissions.
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3.5.2.5 Update Message

After receiving a repair message, the coordinator sends a message update to a provenance
store in order to update a viewlink in that store. The message contains: (1) an inter-
action key, indicating for which interaction, an assertor’s viewlink in the store needs to
be updated; (2) the view kind of the requesting assertor that issued a repair request for
that interaction; (3) the ownlink of the requesting assertor. The DestPS field in the

repair message tells the coordinator where to send the update message.

In Figure 3.9, the coordinator sends to PS2 an update message containing the sender’s
ownlink to PS1’ (Step 6). Therefore, the receiver’s viewlink in PS2 is replaced with

PS1’ and hence becomes accurate.

If the coordinator receives two repair messages each from one assertor in an interaction,
then it sends out two update messages after performing operations using the maintained
request information to ensure that both update messages are delivered to correct desti-

nation stores. We will detail this case in Section 3.5.3.

A provenance store may receive an update and a record message in any order (Steps 6,
8). The protocol specifies that the viewlink obtained from update is NOT overwritten

by the one from record in order to achieve requirement Viewlink Accuracy.

3.5.2.6 Update Ack Message

After updating a viewlink in a provenance store, the store returns an acknowledgement
message uack, containing an interaction key and a view kind, to the coordinator ac-
knowledging the respective update message. Since messages update or uack may be lost
in channel and a destination store may crash, the coordinator sets a timeout when wait-
ing for a uack. A timeout event leads the coordinator to resending the update message
to the same provenance store. Given that a store eventually recovers (Assumptions 1),

retransmission of update eventually results in the destination store being updated.

3.5.3 Dealing with Two Repair Messages

The coordinator needs to deal with the case where two repair messages are received
regarding the same interaction. We now use Figure 3.10 to illustrate this. To simplify
our presentation, we only show message parameters of repair and update as the two

messages are relevant to the coordinator. We also omit messages uack in the figure.

In Figure 3.10, both assertors used alternative stores PS1’ and PS2' to record their
respective interaction record (Steps 3 and 8). Hence, each sent one repair message to the

coordinator (Steps 5 and 10). When receiving one repair, the coordinator firstly checks
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if it has a record from the other assertor of the given interaction. If not, it keeps a
record of the destination store and an assertor’s ownlink, and sends an update (Step 6)
to the destination store provided the destination is available. However, in this figure,
the coordinator’s update is not successful as PS2 did not record the receiver’s viewlink

due to failure.

Later, when the coordinator receives another repair from the other assertor (Step 10),
it now possesses global knowledge from both sides. It replaces one view’s destination
store with another view’s ownlink, making each view’s destination store correct (Step
11). After the replacement, the destination store of each tuple becomes PS2’' or PS1/,
which is the ownlink in the other tuple (Figure 3.10). Then the coordinator dispatches
two update messages to their new destination (Steps 12 and 13): it updates the viewlink
in PS1’ by redirecting it to PS2’ and updates the viewlink in PS2’ by redirecting it to
PS1'. Therefore, both viewlinks in PS1" and PS2’ become accurate (as has been shown

in Figure 3.7).

Coordinator

| (i, ) :<PS2’, PS1*> |

| (i, R) :<PS1’, PS2’> |

12. update(i, R, PS2’) 13. update(i, S, PS1”)

11. Modify Dest. PS

| (i, ) :<PS2, PSI’> |

| (i, R) :<PS1, PS2> |

SN

5. repair
@i, S, PS2, PS1’)

6. update(i, S, PS1’)

PS1

10. repair
4. ack 2. record (i, R, PS1, PS2")
3. record 7. record
sender a L.app receiver b
(vl: PS2) (vl: PS1)

FI1GURE 3.10: The coordinator receiving two repair requests

3.5.4 Discussion

Two factors affect the accuracy of a causelink or viewlink:

Firstly, the asynchronous nature of the protocol allows an assertor to record documen-
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tation in parallel with the application’s execution. When an assertor is creating a rela-
tionship p-assertion embedding causelinks or is sending an application message with its
ownlink (Step 1 in Figure 3.9), it uses the default link of the corresponding interaction.
However, the default link may not point to the store which will successfully record the

assertor’s interaction record later.

Secondly, an assertor can use an alternative store to record its interaction record in the
presence of failures (i.e., timeout events). Similarly to the coordinator retransmitting
message update to a store, an assertor can keep resending record messages to a same
provenance store without using alternative stores. But an assertor is not expected to
do so since it may affect application performance if a crashed provenance store recovers
after a long period of time. Hence, using an alternative store is one of our efforts to meet
requirement Efficient Recording. The coordinator, on the other hand, does not affect
the application when updating a viewlink in a provenance store. So it is acceptable that

the update is delivered to a store after a while.

3.6 Protocol Formalisation

F-PReP has been formalised through the use of an abstract state machine (ASM). The
ASM notation we adopt has been used previously to describe a distributed reference

counting algorithm [122], a fault-tolerant directory service for mobile agents [120] and
PReP [76].

The ASM characterises the behaviour of a distributed system consisting of assertors,
provenance stores and the coordinator with respect to the messages the subcomponents
send and receive. This behaviour is specified by the permissible transitions that the
ASM is allowed to perform. Such a formalisation provides a precise, implementation-
independent means of describing the system. It is also systematic and can easily be
encoded in a mechanical prover (as illustrated by other proofs [119, 123, 121] successfully
encoded in Coq [36]).

Our approach to formalising F-PReP follows two steps. Firstly, we model F-PReP’s
behaviour in a failure-free environment (without considering Assumptions 1 and 3) in
Sections 3.6.1 to 3.6.5. Secondly, we discuss failures by refining the failure-free specifi-

cation in Section 3.6.6.

In Section 3.6.1, we begin by describing the state space of the ASM, and then proceed
to discuss its transitions. Sections 3.6.2, 3.6.3, 3.6.4 and 3.6.5 detail the behaviour of
each kind of actors. In Section 3.6.6, we consider failures by extending the system state
space and adding transitions to the ASM. Chapter 6 will introduce how we implement

the protocol based on the formalisation.
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3.6.1 System State Space

Figure 3.11 shows the system state space in a failure-free environment. We identify
specific subsets of actors in the system, namely, the assertors (senders and receivers),
provenance stores, and update coordinators. In the rest of this dissertation, we assume
a single coordinator is used in the system (|COID| = 1) and it is known by all assertors.

We will evaluate if one coordinator leads to a performance bottleneck in Chapter 6.

The set of each protocol message is defined formally as an inductive type. For example,
the set of application messages is defined by an inductive type whose constructor is
app and whose parameters are from sets DATA, IK and OL. The notation DATA
refers to the set of application related data. The set of all protocol messages (M) is
defined as the union of these message sets. The power set notation (P) denotes that
there can be more than one of a given element. Messages are exchanged over a set
of communication channels, L. Since no assumption is made about message order in
communication channels and the fact that message retransmissions can lead to duplicate
messages in communication channels, IC is represented as bags® of messages between

pairs of actors.

To ensure the uniqueness of an interaction key, we use the sender and receiver’s identifiers
and a natural number to model the interaction key IK. Since the interaction key is
created by the sender of an interaction, the sender needs to ensure that the natural
number is locally unique on the sender side of each interaction. In terms of VK, we use

S and R to denote the sender and receiver’s viewkind, respectively.

We define the set of relationship p-assertions as an inductive type whose constructor is
rel-pa. The name of a relationship is given in the set REL. Since a relationship p-assertion
captures causal connections between an effect interaction and cause interaction(s), we
use set EID and CID to index the respective effect and cause interactions, each containing
an interaction key (IK) and the viewkind (VK) of an assertor in that interaction. With
EID or CID, the p-assertions about an interaction can be found in a local provenance
store or a remote store (indicated by the causelink in set CL). The set of interaction
p-assertions is constructed by i-pa whose parameter is from IK and DATA. The set
of all kinds of p-assertions (PA) is defined as the union of these p-assertion sets. Since
actor state p-assertions are application specific and not used in our protocol, we do not

model them in the state space.

The internal functionality of each kind of actors is modelled as follows.

°In mathematics, a bag is a generalisation of a set. A member of a bag can have more than one
membership, whilst each member of a set has only one membership.
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AID
SID
RID
PID
COID
|COID)|

REL
EID
CID

CL

ASSERTOR
STR

DL

LOG
CHANGED
APS
QUEUE

LC

PSLIST

TIMER
STATUS
TIMEOUT
RC

PS
VLST
VLS

COORD
UPDATE
STATE

C

(Rialianinliatianl

{a1,...,an}
A

AID

AID

A

A

1

app : DATA x IK x OL — M
| record : TK x VK x AID x VL x P(PA) — M
| ack:IK x VK — M
| repair: IK x VK x DESTPS x OL — M
| update : IK x VK x OL — M
| vack:IK x VK — M
A x A — Bag(M)

{m € M | m = record(k, v, a, vl, pas)}
SID x RID x N

(S, R}

PID

PID

PID

rel-pa : REL x EID x P(CID) — PA
| i-pa:IK x DATA — PA

{ri,...,mn}

IK x VK

CL x IK x VK

PID

AID — IK x VK — STR, x DL, x OL; x VL; x P(PA)

{INIT, READY, SEND, SENT, ACKED, OK}
PID

AID — IK x VK — CHANGED ; x APS
Bool

PID

AID — Queue(IR)

SID — N

AID — P (PID)

A — IK x VK x PID — STATUS | x TIMEOUT
{ENABLED, DISABLED}

N

A —TK x VK — N

PID — IK x VK — AID | x VL x P(PA)
PID — IK x VK — VLS |
{DEFAULT, UPDATED}

COID — IK x VK — DESTPS | x OL
COID — IK x VK x PID — STATE |
{UPDATE, WAIT, UPDATED}

ASSERTOR x LOG x QUEUE x LC x TIMER x
RCxPS x VLST x COORD x UPDATE x K

Characteristic Variables:
a € AID, as € SID, ar € RID, aps € PID, ac € COID, m € M, k € K, d € DATA, k € IK, v € VK,
ol € OL, vl € VL, agps € DESTPS, pa € PA, pas € P(PA), r € REL, cids € P(CID), ¢ € CL,
assertorI' € ASSERTOR, str € STR, dl € DL, log.T € LOG, changed € CHANGED, aps € APS,
queue T € QUEUE, lc € LC, psList € PSLIST, timer T € TIMER, status € STATUS, to € TIMEOUT,
rc € RC, storeT" € PS, vistateT' € VLST, coordT' € COORD, update T’ € UPDATE, c € C

Initial State of Configuration:
¢; = (assertor_T;,log-T;, queue Ty, lc;, timer_T;, re;, store Ty, vlstate Ty, coord Ty, update T;, k;)

where:

assertor T; = darkv - (L, L, L 1 0),

le; = Aa -0,

store T; = dapskv - (L, L, 0),
update T; = Nackvaps - L,

log-T; = Xakv - (L, 1),
timer_T; = Aarvaps - (L,0),
vistate T; = Aapskv - L,

ki = Xaa -0

FIGURE 3.11: System state space
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queue T; = Xa -0,
rc; = Aakv - N,
coord_T; = Aackv - (L, L),
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3.6.1.1 Sender and Receiver State Space

An assertor (a € AID) uses various tables (assertor T' € ASSERTOR, log-T € LOG,
queue T € QUEUE, lc € LC, timer T € TIMER and rc € RC) to record record

messages into a provenance store.

A table maps a key to a tuple. Since an assertor may be involved in different interactions
where it can be a sender or a receiver, table assertor_T maps an interaction key (k € IK)
and the assertor’s view kind (v € VK) to a tuple of five elements: the state (str € STR)
of an interaction record message, the assertor’s defaultlink (dl € DL), ownlink (ol € OL),
viewlink (vl € VL) in that interaction, and the p-assertions created about the interaction
(pas € P(PA)). We use STR to denote that the initial state of STR is L. We note
that table assertor_T is only used for maintaining the assertor’s state to facilitate our

reasoning and proof; it is not implemented.

We use DL to denote the set of default links. In the example of Figure 3.9, the default
link of assertor a and b refers to PS1 and P52, respectively. Hence, PS1 and P52 are

the assertors’ default stores in that interaction.

A Log table (logT' € LOG) maintains information about an assertor’s use of alternative
stores to facilitate causelink update. A flag (changed € CHANGED) is set to TRUE
if an alternative store was used. The identifier of the used alternative store is kept in a
field (aps € APS).

After creating interaction records, an assertor accumulates them in a local queue (queue T
€ QUEUE) before shipping them to their respective provenance store. The FIFO prop-
erty of the queue guarantees successful causelink update. The notation LC defines a
function mapping a sender’s identifier to a natural number, used to distinguish inter-
actions which may occur between the same sender and receiver. The sender needs to
ensure that the natural number is locally unique. The list of alternative provenance
stores are modelled by table psList € PSLIST, mapping an assertor’s identity to a set

of store identities.

The timer table (timer T" € TIMER) models the timer, which is set by an assertor
and the coordinator when waiting for an acknowledgement from a provenance store
regarding a specific interaction. The key used by a timer table includes a store’s identity
(aps € PID) as well as an interaction key (x € IK) and a view kind (v € VK). The
timer’s state (status € STATUS) indicates if the timer is enabled or disabled. A
timeout (to € TIMEOUT) is a natural number, which keeps decreasing after the timer

is enabled.

In order to prevent infinitely resending messages, an application usually limits the num-
ber of retry attempts. We formalise this with a retry counter (rc € RC), which has an

initial value indicating the max number of resubmissions. The counter decreases by one
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after the assertor attempts a retry.

3.6.1.2 PS and Coordinator State Space

The set PS models provenance stores, each containing a table (store T' € PS) indexed by
a provenance store’s identity. The table maps an interaction key and the view kind of the
assertor that created and recorded p-assertions in the interaction to a tuple: the identity

of the assertor, a viewlink and the set of p-assertions documenting the interaction.

Since the viewlink in a provenance store may be updated, we use a table (vistate T €
VLST) to keep the status of a viewlink. If the state is DEFAULT the viewlink is provided
by an assertor without being updated by the coordinator. If it is UPDATED the viewlink
has been updated by the coordinator. We note that this table is also solely for the

purpose of reasoning and proof of the protocol’s properties; it is not implemented.

A coordinator maintains repair request information in a table (coord T € COORD)
and the states of updating a viewlink in another table (update_.T' € UPDATE). The
key used by table update_T includes a store’s identity (a,s € PID), which refers to the

destination store to be updated by the coordinator.

We will further detail these tables when describing the rules of provenance store and

update coordinator.

3.6.1.3 State Machine Rules

Given the state space, the ASM is described by an initial state and a set of transitions.
A transition is the application of a rule to one configuration in order to achieve another
configuration. Figure 3.11 contains the initial state (¢; € C), which can be summarised as
empty channels, empty tables and any counters being initialised to zero in all actors. The
ASM proceeds from this initial state through its execution by going through transitions

that lead to new states.

The state machine rules are represented using the following notation.

rule_name(vy, v, ...) :
conditiony(vy, va,...)A conditiona(vi, v, ...) A ...
—{

pseudo_statementy;

pseudo_statementy;

}
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Rules are identified by their name and a number of parameters that the rule operates
over. Any number of conditions must be met for a rule to fire. Once a rule’s conditions
are met, the rule fires. The execution of a rule is atomic, so that no other rule may
interrupt or interleave with an executing rule. This maintains the consistency of the
ASM. A new state is achieved after applying all the rule’s pseudo-statements to the

state that met the conditions of the rule.

For convenience, we use notation a < b to bind a local variable a to a value b. We then
define an assignment operator := for table update pseudo-statements. The table update
operation puts a message into a table or changes the content of the table. It can assign
a value to a field of a table, or assign a tuple to a table. We use notation table T to

refer to any table in the system state space, formally:

e If table T is a component of state (..., table T, ...), then the expression
table T(...).y := V denotes the state (..., table.T’,...), where table T'(...).x =
table T(...).x if x # y, and table T'(...).y :=V.

o If table T'(...) has one field =, then the expression table T(...) := V denotes
table T(...).x :=V.

o If table T(...) has fields zi1,...,z, and V = (v1,...,v,), then the expression

table T(...) :=V denotes for m =1,...,n, table T(...).Tm := Uy, if Uy 7# *.

In the following example, the fourth field of assertor T (a, k,v) (i.e., viewlink vl) is not

affected when x* is present.

assertor_T(a, x,v).str := OK
tor T(a, #,v).dl := PS
assertor_T(a, k,v) := (OK, PS1, PSy, *,pas) = assertor T (a, ,v) !
assertor_T(a, k,v).0l == PSs
assertor_T(a, k,v).pas := pas

To manipulate an assertor’s queue, which is used for accumulating interaction records,
we define the following operations: head(queue_T(a)), enqueue(m, queue T (a)),

dequeue(queue_T'(a)) and replace Head(queue T (a), m).

e The expression head(queue_T'(a)) returns the head element of queue queue T'(a).

e The expression enqueue(m, queue T'(a)) denotes queue-T'(a) := queue T(a)|m,

which means m is added at the tail of queue queue_T'(a).

e The expression dequeue(queue T(a)) denotes queue T(a) := tail(queue T(a)),

which means the head of queue queue_T'(a) is removed.
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e The expression replace Head(queue T'(a),m) denotes queue T'(a) :=
m |[tail(queue_T(a)), which means the head of queue queue_T'(a) is replaced by

m.

We use send and receive pseudo-statements. Informally, send(m, a1, az) inserts a mes-
sage m into the communication channel from actor a; to actor as, and receive(m, aq, az)
removes m from the channel. Formally, send, receive pseudo-statements act as state

transformers and are defined as follows.

e If k is the set of message channels of a state (..., k), then the expression
send(m, a1, az) denotes the state (..., k'), where® k’(ay,az2) = k(ai,az) ® {m} and
K'(ai,a;) = k(ai, aj), V(a;, aj) # (a1, az).

e If k is the set of message channels of a state (..., k), then the expression
receive(m, ay, az) denotes the state (..., k'), where k'(a1,a2) = k(a1,a2) & {m},
and £'(a;, a;) = k(ai, aj),¥(ai, a;) # (a1, az).

Having defined the system state space and ASM rules, we now introduce the rules for
assertors (the senders and receivers), provenance stores and the coordinator. These rules

precisely define these actors’ internal behaviour.

3.6.2 Assertor Rules in Exchanging phase

An assertor’s behaviour can be summarised in two phases Exchanging and Recording,

which are described in this section and Section 3.6.3, respectively.

The sender and receiver in an interaction have different rules in the Exchanging phase
(Figure 3.12 and Figure 3.13). The sender sends to the receiver an application message

app including application data (d), an interaction key () and the sender’s ownlink (ays).

Both actors document the exchange of app by producing a record, which is accumulated
in the queue (queue_T'). This buffering of interaction records is designed to meet Efficient
Recording. It reduces the performance penalty upon the application by allowing an actor

to send interaction records when convenient.

We note that in order to fire transition prepare_record, the sender’s viewlink must be
equal to the receiver’s defaultlink. This has been assumed when we explained Figure
3.9. The viewlink can be built into the sender at deployment time, or transferred to the

sender in a response message from the receiver.

In this phase, an assertor also initialises several tables. For example, when an assertor’s
default link is initialised in transitions send_app and receive_app, it is equal to the

assertor’s ownlink.
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send_app(as, ar, aps,d,r) :
//triggered when d, produced by a function
//described by r, is to be sent by as to ar
—{
K «— newldentifier(as, ar);
send(app(d, k, aps), as, ar);
pas « createPA(as, k,d, r);
assertor T'(as, k, S) := (INIT, aps, aps, L, pas);
log-T(as, k,S) := (FALSE, L) ;
}

prepare_record(as,ar, k) :
assertor T (as, k, S).str = INITA
assertor T (as, k, S).vl = assertor_T(ar,, k, R).dl
—{
l « assertorT(as, k, S).vl;
pas « assertor T (as, k, S).pas;
enqueue(record(k, S, as,l, pas), queue_T(as));
assertor_T'(as, k, S).str := READY;

}

FIGURE 3.12: The Sender’s rules in exchanging phase

receive_app(as, ar, aps,d, k,vl) :
app(d, k,vl) € k(as,ar) A assertor T (ar, k, R).str = L

—{

receive(app(d, K, vl), as, ar);

pas < createPA(ar, k,d, L);

enqueue(record(rk, R, ar, vl, pas), queue_T(ar));

assertor T(ar, Kk, R) := (READY, aps, aps, vl, pas) ;

log-T(ar,k, R) := (FALSE, L) ;

// business logic

FI1GURE 3.13: The Receiver’s rules in exchanging phase

Function newldentifier(as, a,) creates a globally unique interaction key. This function
takes the identities of the sender and the receiver as inputs and returns a new interaction
key represented by a tuple, consisting of assertor identities and a locally unique counter.
Since it is the sender that creates a new interaction key, the local counter is maintained

by the sender of an interaction.

Definition
newldenti fier : SID x RID — IK
newldentifier(as,a,) :

le(as) :=lc(as) + 1;

return (as, ar,lc(ag)) ;

Function createPA(a, k,d,r) specifies how p-assertions are produced. It takes an as-
sertor identity (a), an interaction key (k), application data (d), and a business logic
description (r) as input and returns a set of p-assertions documenting the interaction

(k) in which d is transferred.

5We use the operators @ and © to denote union and difference on bags.
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Definition
createPA : A x IK x DATA x REL — P (PA)
createPA(a, k,d,r) :
pas — if r=_1
{ipa(s, d)};
{i-pa(k, d), rel-pa(r, (k, S), cids)} ,
where cids = {{cl,x', R) | k' € cause(a,r,r) and cl = assertor_T(a, k', R).ol};

return pas;

In createPA(a, k,d,r), the created p-assertions include an interaction p-assertion doc-
umenting the exchange of an application message that contains x and d. If d is the
consequence of receiving other messages (i.e., r # 1), then according to transition
send_app, the sender must make a relationship p-assertion to capture the causal connec-
tions between these messages. A function cause(a, k,r) is used to find the interaction
keys of cause interactions when creating a relationship p-assertion. An assertor may

create other application dependent p-assertions, which are not shown in the definition.

Definition

cause : A x IK x REL — P (IK)

cause(a, K,T) :
causel K C IK;
//This function is application specific.
//Let k represent the effect interaction and causel K represent the set of cause
//interactions, which are all related to a same relationship described by r at
//assertor a.

return causel K;

3.6.3 Assertor Rules in Recording phase

In Recording phase, an assertor sends queued record messages to a provenance store and
takes remedial actions in response to timeouts. To facilitate presentation, we assume
each assertor employs a Recording Manager (RM), which monitors the assertor’s queue
and submits record messages to a provenance store. The behaviour of RM is specified

in Figure 3.14.

o Updating causelinks. Transition pre_check checks the record message at the head
of queue (queue_T'(a)) and updates causelinks in all relationship p-assertions in-
cluded in that message. A log table (log-T)) maintains a history of the use of
alternative provenance stores for each interaction. If the log table shows that an

alternative store was used to record a record message about a cause interaction
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pre_check(a, k,v,vl, pas) :
queue_T'(a) # 0 A record(k, v, a,vl, pas) = head(queue_T(a)) A assertor_T(a, k,v).str = READY

!

for each pa € pas, such that pa = rel-pa(r’, (k,v) , cids’)
do for each cid € cids’
do {cl', k', v") « cid;
if (log-T(a,r',v").changed), then

cid' «— ({logT(a,r’,v").aps, k', v");

cids’ = cids’ & {cid} & {cid'};
replace Head(queue-T'(a), record(k, v, a, vl, pas));
assertor T (a, k,v) := (SEND, %, *, *, pas);

}

0~ Utk WN -

send_record(a, k,v,vl, pas,t) :
queue T(a) # 0 A record(k, v, a, vl, pas) = head(queue_T'(a)) A assertor_T(a, k,v).str = SEND
N
{
aps — assertor_T(a, k,v).ol;
send(record(k, v, a, vl, pas), a, aps);
timer_ T (a, k,v,aps) := (ENABLED,t);
assertor T (a, k,v).str := SENT,;

}

timer_click(a, k, v, aps) :
timer_ T (a, K, v, aps).status = ENABLED A timer_T(a, k, v, aps).to > 0

—{
timer_ T (a, k,v, aps).to := timer_T(a, k,v, aps).to — 1;

}

timeout_ack(a, Kk, v, aps) :
timer_T'(a, K, v, aps).status = ENABLED A timer_T(a, k, v, aps).to = 0 A rc(a, k,v) >0
—{
timer_ T (a, k,v, aps) := (DISABLED, 0) ;
re(a, k,v) := re(a, k,v) — 1;
ay,s « random(psList(a));
logT(a,r,v) := (TRUE, aj,);

assertor_T(a, k,v) := (SEND, x, a;m, *, %);
}

receive_ack(a, aps, K, v) :
ack(k,v) € k(aps,a)
—{
receive(ack(k, v), aps, a);
if (timer T (a, Kk,v, aps).status = ENABLED A timer_T(a, Kk, v, aps).to > 0), then
dequeue(queue_T'(a));
timer_T(a, K, v, aps) := (DISABLED, 0) ;
assertor T (a, k,v).str := ACKED;

}

post_check(a, ac, k,v) :
assertor T'(a, k,v).str = ACKED
N
if (log-T(a,k,v).changed = TRUE), then
aps < assertor_T(a, k,v).ol;
agps < assertor T (a, k,v).vl;
send(repair(k, v, Ggps, Aps ), @, Gc);
assertor T (a, k,v).str := OK;

}

FIGURE 3.14: Assertor’s rules in recording phase
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(i.e., log-T(a, k' ,v").changed is true), then the corresponding causelink is updated
(Line 6). Since the set of p-assertions in the record message may be altered with
causelink updated, we need to update the current set of p-assertions maintained

in assertor_T(a, k,v) (Line 8) as well as the head of the queue (Line 7).

e Submitting a record message. RM sends a record message to a provenance store

and sets timeout when waiting for an ack message (transition send_record).

o Resubmitting a record message. If RM does not receive an ack when the time-
out expires (transition timeout_ack), then it infers that failures may have oc-
curred. In this case, it uses an alternative store to resend the message. Function
random(psList(a)) returns an alternative store’s identity, selected from a list of
candidates. There can be various ways of selecting a store from a list of stores.
Here we randomly select one to use. A retry counter rc has been introduced to
limit the number of reattempts. We will detail the use of the counter when we

model failures in Section 3.6.6.

e Updating log table. If an alternative store was used to record a record message,
RM sets log T(a, k,v).changed to TRUE and log T (a, k,v).aps to the identity of
the alternative store (transition timeout_ack). This information is to be used for

updating causelinks as described above.

e Receiving acknowledgement. If the timeout has not expired upon the receipt of ack
message, then RM eliminates the acknowledged record from the queue (transition

receive_ack).

e Requesting to update viewlinks. If an alternative store was used, RM needs to
request the coordinator to update the opposite assertor’s viewlink by sending a

repair message (transition post_check).

We note that the FIFO property of the queue guarantees successful update of causelinks
because transitions send_app and receive_app enforce that an assertor always makes
p-assertions about a cause interaction, in which it receives a message, before an effect
interaction, in which it sends another message as consequence of the received messages.
This implies that the interaction record about a cause interaction is always placed into
the queue before that about the effect interaction. Therefore, by checking log table log_T
before sending record messages, causelinks can be updated successfully. Although current
model implies that there is only one queue per assertor, it can be relaxed by adding a
process identifier to queue_T'(a). Then, each process that an assertor participates in
utilises a queue to permit parallel recording, though sequential recording still remains

for each process.
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3.6.4 Provenance Store Rules

Figure 3.15 gives provenance store’s rules. A provenance store replies an ack message
only after it has processed a record message (transition receive_record). A store checks
if it has recorded p-assertions about a given interaction before processing the record

message. This prevents processing duplicate record messages.

The notation v in transition receive_update stands for the opposite view in an inter-
action. For example, if v is the view of the sender, then T represents the view of the

receiver.

We note that table vistate_T'(ays, k,v), indicating the state of a viewlink: DEFAULT or
UPDATED, is only used to facilitate our proof in the next chapter.
receive_record(a, aps, k, v, vl, pas) :
record(k, v, a, vl, pas) € k(a, aps)
—{
recetve(record(k, v, a, vl, pas), a, aps);
if (store T (aps,k,v).pas =0), then
store T (aps, k,v) = (a, *, pas);
if (storeT(aps,k,v).vl = 1), then
store T (aps, k,v).vl := vl;
vlstate T (aps, k,v) := DEFAULT;
send(ack(k,v), aps, a);

receive_update(aps, ac, K, v, T, 0l) :
update(x, T, ol) € k(ac, aps)
—{
receive(update(k, T, 0l), ac, aps);
store-T(aps, k,v).vl := ol;
vlstate_ T (aps, k,v) :== UPDATED;
send(uack(k, D), aps, ac);

FIGURE 3.15: Provenance store’s rules

Since a provenance store may receive an update and a record message regarding a same
interaction in any sequence, to achieve requirement Viewlink Accuracy, the viewlink
obtained from record must NOT overwrite any existing one which may come from an

update.

3.6.5 Coordinator Rules

Coordinator’s rules are shown in Figure 3.16. Transition receive_repair is triggered
when the coordinator receives a repair request. If there exists request information from
the opposite view with regard to the same interaction, this means the coordinator has
received another repair message (detailed in Section 3.5.3). In this case, the coordinator
replaces one assertor’s destination store with the other’s ownlink (Lines 6 and 7 in tran-

sition receive_repair), thus making each assertor’s destination store correct. Then the
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coordinator is ready to dispatch two update messages to their respective new destination
stores by setting update status to UPDATE.

receive_repair(a, Adps, tc, K, v, , ol) :
repair(k, v, agps, ol) € k(a,ac)
{
recetve(repair(k, v, agps, 0l), a, ac);
if (coord T (ac,k,v) = (L,L1)), then
coord T (ac, k,v) 1= (adps,0l);
if (coordT(ac,r,v) # (L, 1)), then
a&ps — coordT(ac, K,v).0l;
coord T (ac, k,v) = <a’dps,*>;
coord T (ac, k,v) := (ol, *);
update T (ac, k, U, ol) := UPDATE;
aps < coord T (ac, k,v).Adps;
0 update T (ac, Kk, v, aps) := UPDATE;

l

= © 00~ O ULk W

send_update(ac, K, v, Gps, t) :
update T (ac, Kk, v, aps) = UPDATE
—{
ol « coord_T(ac, k,v).ol;
send(update(k, v, ol), ac, aps);
update T (ac, K, v, aps) := WAIT;
timer_T (ac, Kk, v, aps) := (ENABLED, ¢);
}

timer_click(ac, k,v, aps) :
timer_ T (ac, Kk, v, aps).status = ENABLED A timer_ T (ac, &, v, aps).to > 0

—{
timer_ T (ac, Kk, v, aps).to := timer_T(ac, k, v, aps).to — 1;

}

timeout_uack(ac, K, v, aps) :
timer_ T (ac, k, v, aps).status = ENABLED A timer_T (ac, k, v, aps).to = 0 A rc(ac, k,v) > 0
—{
update T (ac, K, v, aps) := UPDATE;
timer_T(ac, k, v, aps) := (DISABLED, 0) ;
re(ac, k,v) = re(ae, K, v) — 1;

receive_uack(aps, ac, K, v) :
uack(k, v) € k(aps, ac)

—{
receive(uack(k,v), aps, ac);
if (timer_T(ac, k, v, aps).status = ENABLED A timer_ T (ac, k, v, aps).to > 0), then
timer_T (ac, k, v, aps) := (DISABLED, 0) ;
update T (ac, K, v, aps) :== UPDATED;
}

FIGURE 3.16: Coordinator’s rules

The coordinator sends an update message to a destination store and sets timeout when
waiting for the acknowledgement uack (transition send_update). The coordinator also
uses rc¢ to count the number of retries to avoid infinite message retransmissions (transi-

tion timeout_uack). We will detail the use of the counter in Section 3.6.6.

In the current design, we do not remove request information maintained in the coordi-
nator. Request information with regard to an interaction can only be eliminated after
the coordinator has successfully updated the provenance store in each view of the in-
teraction. If there exists request information about only one view, then the coordinator

cannot delete it since it may receive another repair request from the other assertor later.
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Given that an assertor sends a repair message within finite time (due to the use of time-
outs), the coordinator can remove any request information with corresponding update

status being UPDATED after a reasonably long period of time.

3.6.6 Modelling Failures

After formalising the protocol in a failure-free environment, this section considers As-
sumptions 1 and 3. We extend the system state space (Figure 3.17) and revise or add
transitions to the ASM (Figures 3.18 to 3.20.). Section 2.8.1 has introduced the common
approach to modelling failures, which inspires us. Our approach is also similar to [121],

where an ASM is used to model crash failures and communication omissions.

We note that the protocol formalised in the previous sections can be used for implemen-
tation whilst the extended system state space and transitions introduced in this section
will never be explicitly implemented; they are just a means to be able to evaluate pro-

tocol properties [70, 69], which will be done in the following chapters.

CRASH = PID — Bool (Set of PS Crash Tables)
LOST = A xPID — Bag(M) (Set of Message Loss Tables)
FC = IK—=N (Set of Global Failure Counters)

¢’ = CxCRASH x LOST x FC (Set of Configurations)

Characteristic Variables:
crash_T € CRASH, lost € LOST, fce€ FC, ¢/ € '

Initial State of Configuration:
¢} = (¢, crash Ty, lost;, feq)
where:
crash T; = Xaps - FALSE,  lost; = Xaaps -0, fc; =Ax-0

FIGURE 3.17: Extended system state space

In Figure 3.17, we use PS Crash Table (crash.T € CRASH) to model the state of
a provenance store: crashing (TRUE) or normal (FALSE). The table is initialised as
FALSE.

A lost table (lost € LOST) maintains messages that are omitted by communication
channels. Since message retransmissions can lead to duplicate messages, which can also
be omitted by channels, we represent the lost table as a bag of messages between a pair
of actors. In order to simplify rules, lost(ai, a2) is defined to be bidirectional, containing

messages that are lost in either k(ai,as) or k(ag,ar).

We use a Global Failure Counter (fc € FC) to limit the number of failures (store crashes
and channel omissions) that may occur regarding an interaction. Intuitively, it is realistic
to experience a finite number of store crashes and message losses when an assertor is
recording an interaction record and when the coordinator is updating a store. This
counter is initialised with a natural number by the sender of an interaction (Figure 3.18).

It is decreased by 1 when there is a failure event (transitions crash, msg_loss_pstore
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and msg_loss_channel in Figures 3.19 and 3.20). This counter is crucial to the proof of

the protocol’s termination property in the next chapter.

send_app(as, ar, aps,d, v, n) :
//triggered when d, produced by a function
//described by r, is to be sent by as to ar
—{
K «— newldentifier(as,ar);
send(app(d, K, aps), as, ar);
pas « createPA(as, k,d, r);
assertor_T'(as, k, S) := (INIT, aps, aps, L, pas);
log-T(as, k,S) := (FALSE, 1) ;
fe(k)=n

FIGURE 3.18: Extended sender’s rules

receive_record(a, aps, K, v, vl, pas) :
record(k, v, a, vl, pas) € k(a,aps) A —crash_-T(aps)
—{
receive(record(k, v, a, vl, pas), a, aps);
if (store_T(aps, k,v).pas = 0), then
store T (aps, k,v) := {(a, *, pas);
if (storeT(aps,k,v).vl = 1), then
store T (aps, k,v).vl := vl;
vlstate T (aps, k,v) :== DEFAULT;
send(ack(k,v), aps, a);

receive_update(aps, ac, Kk, v,,0l) :
update(k, T, ol) € k(ac, aps) A ~crash T (aps)
—{
receive(update(k, T, 0l), ac, aps);
store T (aps, k, v).vl := ol;
vistate T (aps, <, v) := UPDATED;
send(uack(k, D), aps, ac);

crash(k, aps) :
fe(k) > 0 A —crash T(aps)

—{
crash T(aps) := TRUE;
, fe(r) i= fe(r) = 1;

restart(aps) :
crash T (aps) = TRUE

=1
crash T (aps) := FALSE;
¥

FiGUrE 3.19: Extended provenance store’s rules

With the extended system state space, we revise provenance store rules, as shown in
Figure 3.19. A new guard, —crash_T(aps), is added to transitions receive_record and
receive_update to ensure that they are only fired when the store is not crashing. Tran-

sitions crash and restart simulate store crash and restart events, respectively.

We have introduced a retry counter rc, whose value is decreased by 1 after each retry
attempt in transitions timeout_ack (Figure 3.14) and timeout_uack (Figure 3.16). Since

current formalisation does not consider the case where the counter reaches 0, we state
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msg-loss_pstore(aps, a, K, m) :
fe(k) > 0 A crashT(aps) Am € k(a,aps)
—{
k(a, aps) = k(a, aps) © {m};
lost(a, aps) = lost(a, aps) @ {m};
} fe(r) = fe(r) = 1;

msg-loss_channel(aps,a, kK, m) :
fe(r) > 0N (m € k(a,aps) Vm € k(aps,a))
{ if (m € k(a,aps)), then
k(a,aps) := k(a, aps) © {m};
lost(a, aps) := lost(a, aps) & {m};
else
k(aps,a) = k(aps,a) © {m};
lost(a, aps) := lost(a, aps) ® {m};
, fe(r) i= fe(r) =15

FIGURE 3.20: Communication channel’s rules

Assumption 11 in order to preserve the protocol’s correctness. Under Assumption 11,
transitions timeout_ack or timeout_uack is always executed whenever there is a timeout

event.

Assumption 11. For any a, a., £ and v, rc(a, k,v) and rc(ae, k,v) are always greater
than 0.

Figure 3.20 specifies rules for communication channels. As far as distributed system
modelling is concerned, it is unrealistic to consider that messages in transit on a com-
munication link remain present if the destination of the communication link exhibits a
failure. Transition msg_loss_pstore models that any message sent to a crashing store is
omitted in channel. Transition msg_loss_channel specifies that messages are lost in the
channel to/from a provenance store. These transitions remove a message from channel,

place it in the lost table and then decrease Global Failure Counter by 1.

3.7 Discussion

This section discusses several issues regarding the design and formalisation of F-PReP.

Since no system wide clock exists in distributed systems, F-PReP does not assume any
global time; all ordering is based on local time, as perceived by a given component
(an assertor, a provenance store or the coordinator) in the system. Each can cope
with messages received from other sites in any order. In addition, there is an ordering
requirement to enable causelink update: an assertor must enqueue the interaction record
about a cause interaction before the interaction record about the effect interaction, as

explained in Section 3.4.
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F-PReP uses timeout to detect potential failures. An assertor selects an alternative store
to record its interaction record if an acknowledgement is not received from the original
store before a timeout. The presence of a timeout however cannot tell an assertor if
the original store has processed a message. This implies that the original store may
still receive and record the assertor’s interaction record, leading to duplicate viewlinks
or causelinks recorded in that store (as exemplified in Figures 3.21, 3.22). This would

affect documentation retrievability, which we will discuss in Chapter 5.

vl
dy_z?{i_c:a.ée..v.i::::jjjj;
e
IR1(vI: PS2) IR1(vI: PS2) IR2(vl: PS1)
sender a 1 .| receiver b
(vI: PS2) 4 (vI: PS1)

Fi1GURE 3.21: Duplicate viewlink in PS1

The formalisation of a timeout is designed to be an abstract way of detecting a potential
failure in order to trigger the remedial actions. In practice, the triggering condition is
not necessarily limited to the event of a timeout. For example, it can be a failure to
connect to a provenance store and can also be the receipt of a response message with
a fault code indicating any exception thrown in the provenance store. The occurrences
of these events do not guarantee successful recording of documentation in a provenance

store, therefore remedial actions should also be taken.

AduBllcaf@V’>
PSU | i P2

IR1(vi: PS2)

IR1(vl: PS2) IR2(vI: PS1§

sender a receiver b
(vi: PS2) (vl: PS1)

v

FIGURE 3.22: Duplicate viewlink in PS1 and P.S2

Although an alternative store is always chosen in the presence of a timeout event in the
formalisation, the retransmission policy can be configured in practice. For example, an
interaction record can be resent to the same provenance store for certain times before

using an alternative store.
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In the formalisation, we assumed that a retry counter (rc(a,k,v) and rc(ac, £,v)) is
always greater than 0 so that transitions timeout_ack and timeout_uack are always
triggered whenever there is a timeout. We now discuss the case where the counter
reaches 0. The solution is to employ a local store at the assertor and coordinator’s site,
which we will detail in Chapter 6. If rc(a, k,v) reaches 0 before the interaction record
is successfully recorded in a provenance store, the assertor can checkpoint its recording
state by storing all outstanding interaction records to its local store and then resubmit
them at a later stage. If rc(ac, K, v) reaches 0, the coordinator stops resending message
update and persistently keeps the request information, i.e., the identity of the destination
store and the requesting assertor’s ownlink in the coordinator’s local store. It can resend

the update message later.

F-PReP is based on PASOA’s approach to modelling process documentation and it
extends PReP by adding fault-tolerant functionalities. The advantages of this add-
on approach include separation of concerns and Agile style development, which enable
us to separately develop and quickly test the core and fault-tolerant functionalities of
a recording protocol. However, we have to be fully compatible with previous design
of PReP. Instead, we can design our recording protocol that copes with failures from
scratch. This requires an in-depth understanding of both process documentation and
complex system behaviour that may appear in the presence of failures, which adds

difficulty to our research given strict time constraints.

Our ASM-based formalisation provides a precise and implementation independent means
of specifying the protocol. Firstly, it sketches the essence of the protocol and accurately
defines required actor’s behaviour with unnecessary message fields or messages removed.
Secondly, it promotes a rigorous design of the protocol and helps us better understand
the complex behaviour of actors (assertors, provenance stores and the coordinator) in
the presence of failures. With such a formal description, we have successfully identified
several deficiencies in the early design of the protocol. For example, a deficiency in
previous design was that the viewlink provided by an update message can be overwritten
by the viewlink from a record message (i.e., we did not check if store_T'(aps, k,v).vl is L
in rule receive_record). Thirdly, the code-like specification is independent of any given
programming language or implementation. This enables our protocol to be implemented

using different languages and technologies.

3.8 Summary

We now summarise the contributions of this chapter:

Firstly, we described a generic protocol, F-PReP, for recording documentation (i.e.,
interaction records) in the presence of failures (provenance store crashes and commu-

nication omission failures). F-PReP also specifies remedial actions when a failure (i.e.,
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a timeout event observed by an assertor) occurs. Remedial actions include basic fault-
tolerant mechanisms such as message retransmission and the use of alternative prove-
nance stores. F-PReP uses a local queue and log table to enable causelink update. To
facilitate viewlink update, a coordinator is introduced to update incorrect viewlinks so

that multiple provenance stores are still properly connected.

Secondly, we formalised F-PReP using an ASM approach. We began with a formalisa-
tion without consideration of failures. Then we modelled failures by extending system
state space and adding extra transitions. With such a formal description, we have suc-
cessfully identified several deficiencies in the early design of the protocol. Since code-like
specification is independent of any given programming language or implementation, our

protocol can be implemented using different languages and technologies.

Next chapter will formalise requirements GUARANTEED RECORDING, CAUSELINK AC-
CURACY and VIEWLINK ACCURACY as correctness properties and prove that F-PReP
preserves these properties. Chapter 6 will introduce the implementation of F-PReP and
evaluate its performance demonstrating that it meets requirement EFFICIENT RECORD-

ING.

3.9 Appendix: ASM Rules Summary

We have presented ASM rules in Sections 3.6.2, 3.6.3, 3.6.4, and 3.6.5. We also extended
the ASM with additional rules in Section 3.6.6. We now summarise the complete ASM
rules in Figures 3.23, 3.24, 3.26, 3.27 and 3.28, which will be referred to when we prove
the correctness of the protocol in the next chapter. Numbers are annotated in rules,

which will be used when we prove the protocol’s termination property in Section 4.1.
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send_app(as, ar, aps,d, T, 1) :
//triggered when d, produced by a function
//described by r, is to be sent by as to ar
—{
K — newldentifier(as,ar);
send(app(d, k, aps), as, ar);
pas — createPA(as, k,d,T);
assertor T(as, k,S) := (INIT, aps, aps, L, pas);
log-T(as, k,S) := (FALSE, L) ;
fe(k)=n

} annotation not applicable

prepare_record(as, ar,K) :
assertor T (as, K, S).str = INITA
assertor T (as, k, S).vl = assertor T (ar,, k, R).dl
—{
l «— assertor_T(as, k, S).vl;
pas « assertor T (as, k, S).pas;
enqueue(record(k, S, as, [, pas), queue T (as));
assertor T (as, k, S).str := READY; -4
} overall: -4

FIGURE 3.23: The Sender’s rules in exchanging phase

receive_app(as, ar, aps,d, k,vl) :
app(d, k,vl) € k(as,ar) A assertor_T(ar, k, R).str = L
—{
receive(app(d, &, vl), as, ar);
pas « createPA(ar, k,d, L);
enqueue(record(rk, R, ar, vl, pas), queue T (ar));
assertor T(ar, Kk, R) == (READY, aps, aps, vl, pas) ;
log-T(ar,k, R) := (FALSE, L) ;
// business logic
} annotation not applicable

FIGURE 3.24: The Receiver’s rules in exchanging phase
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pre_check(a, k,v,vl, pas) :
queue_T(a) # 0 A record(k, v, a,vl, pas) = head(queue_T(a)) A assertor_T(a, K, v).str = READY
—{
for each pa € pas, such that pa = rel-pa(r’, (k,v) , cids’)
do for each cid € cids’
do {cl', k', v") « cid;
if (log-T(a,r',v").changed), then
cid' «— (logT(a,r’,v").aps, k', v");
cids’ = cids’ © {cid} & {cid'};
replace Head(queue_T'(a), record(k, v, a, vl, pas));
assertor_T'(a, k,v) := (SEND, %, *, *, pas); -4
} overall: -4
send_record(a, k,v,vl, pas,t) :
queue T'(a) # 0 A record(k, v, a, vl, pas) = head(queue_-T'(a)) A assertor_T(a, k,v).str = SEND
—{
aps — assertor T (a, k,v).ol;
send(record(k, v, a, vl, pas), a, aps); +4
timer_ T (a, k,v,aps) := (ENABLED,t); +1
assertor T (a, k,v).str := SENT,; -8
} overall: -3
timer_click(a, k,v,aps) :
timer_ T (a, K, v, aps).status = ENABLED A timer_T(a, k, v, aps).to > 0
—{
timer_ T (a, k,v, aps).to := timer_T(a, k,v, aps).to — 1; -1/t

}

timeout_ack(a, Kk, v, aps) :

timer_T(a, K, v, aps).status = ENABLED A timer_T'(a, Kk, v, aps).to

—{
timer_ T (a, k,v, aps) := (DISABLED, 0) ;
re(a, k,v) := re(a, k,v) — 1;
ay,s «— random(psList(a));
logT(a,r,v) := (TRUE, aj,);

assertor_T(a, rk,v) := (SEND, *,al ., *,*); //assert: was SENT

s Ty Ypso

}

receive_ack(a, aps, K, v) :
ack(k,v) € k(aps,a)
—{

receive(ack(k, v), aps, a);

if (timer T (a,Kk,v, aps).status = ENABLED A timer_T(a, Kk, v, aps).to > 0), then

dequeue(queue_T'(a));
timer_T(a, k, v, aps) := (DISABLED, 0) ;
assertor T'(a, k,v).str := ACKED; //assert: was SENT

}

post_check(a, ac, k,v) :
assertor T'(a, k,v).str = ACKED
—{
if (log-T(a,k,v).changed = TRUE), then
aps < assertor_T(a, k,v).ol;
agps < assertor T (a, k,v).vl;
send(repair(k, v, Ggps, Aps ), @, Gc);
assertor T (a, k,v).str := OK;

}

FIGURE 3.25: Assertor’s rules in

re(a, k,v) >0

recording phase

overall: -1/t

-10

+8
overall: -2

-n
-2
overall: -4-n or -2

+18
-22
overall: -22 or -4
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receive_record(a, aps, K, v, vl, pas) :
record(k, v, a, vl, pas) € k(a,aps) A —crash_-T(aps)
—{
receive(record(k, v, a, vl, pas), a, aps); -4
if (storeT(aps,k,v).pas = 0), then
store T (aps, k,v) := {(a, *, pas);
if (storeT(aps,k,v).vl = 1), then
store T (aps, k,v).vl 1= vl;
vlstate T (aps, k,v) :== DEFAULT;
send(ack(k,v), aps,a); +2
overall: -2
receive_update(aps, ac, K, v, T, 0l) :
update(k, T, ol) € k(ac, aps) A —crash T (aps)
—{
receive(update(k, U, 0l), ac, aps); -4
store T (aps, k, v).vl := ol;
vlstate T (aps, k,v) := UPDATED;
send(uack(k, D), aps, ac); +2
overall: -2
crash(k, aps) :
fe(k) > 0N —crash T(aps)
—{
crash T(aps) := TRUE; +1
Fels) = felm) — 1; 2
} overall: -1
restart(aps) :
crash_T(aps) = TRUE
—{
crash_T(aps) := FALSE; -1
} overall: -1

msg-loss_pstore(aps, a, kK, m) :

FIGURE 3.26:

fe(k) > 0 A crash-T(aps) A m € k(a, aps)

=1

k(a, aps) = k(a, aps) © {m};
lost(a, aps) := lost(a, aps) & {m};

fer) i= fe(r) - 1;
}

msg_loss_channel(aps,a, k,m) :
P s Fvy

fe(k) > 0N (m € k(a,aps) Vm € k(aps,a))

- {

if (m € k(a,aps)), then

k(a, aps) == k(a, aps) © {m};
lost(a, aps) = lost(a, aps) B {m};

else

k(apsva) = k(aP87 a)© {m}7
lost(a, aps) = lost(a, aps) & {m};

fe(k) i= fe(r) = 1;
}

FIGURE 3.27: Communication channel’s

Provenance store’s rules

rules

msg-measure(m)
+2

-2

overall: - msg_measure(m)

- msg_measure(m)
+2

msg_measure(m)
+2
2
overall: - msg_measure(m)
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receive_repair(a, Gdps, tc, K, v, 0, ol) :
repair(k, v, agps, ol) € k(a,ac)
—{
receive(repair(k, v, agps, ol), a, ac); -18
if (coord T (ac,k,v) = (L,1)), then
coord T (ac, Kk,v) 1= (adps,ol);
if (coordT(ac,r,v) # (L, 1)), then
a:ips — coordT(ac, K, v).ol;
coord T (ac, k,v) = <a’dps,*>;
coord T (ac, k,v) := (ol, *);

update T (ac, k, U, ol) := UPDATE;/ /assert: was UPDATE, WAIT or UPDATED +0, +6 or +8
aps +— coord T (ac, k,v).Adps;
update T (ac, K, v, aps) := UPDATE; +8

overall: -18, -10, -4 or -2

send_update(ac, K, v, Gps, t) :
update T (ac, Kk, v, aps) = UPDATE

—{
ol « coord_T(ac, k,v).ol;
send(update(k, v, ol), ac, aps); +4
update T (ac, Kk, v, aps) := WAIT; -6
timer_T (ac, Kk, v, aps) := (ENABLED, t); +1
} overall: -1

timer_click(ac, k,v, aps) :
timer_ T (ac, Kk, v, aps).status = ENABLED A timer_ T (ac, &, v, aps).to > 0

—{
timer_T (ac, Kk, v, aps).to := timer_T(ac, k, v, aps).to — 1; -1/t
} overall: -1/t

timeout_uack(ac, K, v, aps) :
timer_ T (ac, Kk, v, aps).status = ENABLED A timer_T(ac, k,v, aps).to = 0 A rc(ac, k,v) > 0

—{

update T(ac, k,v, aps) := UPDATE; //assert: was WAIT +6

timer T (ac, k, v, aps) := (DISABLED, 0) ;

re(ac, k,v) = re(ae, K, v) — 1; -10
overall: -4

receive_uack(aps, ac, K,v) :
uack(k, v) € k(aps, ac)

—{
receive(uack(k, v), aps, ac); -2
if (timer T (ac, K, v, aps).status = ENABLED A timer_T'(ac, K, v, aps).to > 0), then
timer_ T (ac, Kk, v, aps) := (DISABLED, 0) ; -n
update T (ac, K, v, aps) := UPDATED; //assert: was WAIT -2

overall: -4-n or -2

FIGURE 3.28: Coordinator’s rules



Chapter 4
Protocol Analysis

In the previous chapter, we presented F-PReP and formalised it using an Abstract
State Machine (ASM). The documentation recorded using F-PReP is expected to meet
a number of requirements: GUARANTEED RECORDING, CAUSELINK ACCURACY and
VIEWLINK ACCURACY.

The contribution of this chapter is therefore the formal proof of the protocol’s correct-
ness demonstrating that F-PReP meets these requirements. Specifically, we show that
the sender and receiver’s interaction records are guaranteed to be recorded in provenance
stores and the links in their interaction records are accurate. We also prove the termina-
tion of the protocol, which means the ASM executes a finite number of transitions. The
properties established in this chapter will be used as building blocks when we investigate

the entire retrievability of process documentation in the next chapter.

Recall that we have used tables to maintain link information, e.g., store_T'(aps, &, v).vl,
assertor_T'(a,k,v).ol and log T(a,k,v).aps. To demonstrate CAUSELINK ACCURACY
and VIEWLINK ACCURACY, we derive a number of equations between these tables.

In the proof, we establish various lemmas and invariants to facilitate the proof of a
property. Given an arbitrary valid configuration of the ASM, the proofs typically proceed
by induction on the length of the transitions that lead to the configuration, and by a
case analysis on the kind of transitions. This kind of proof has the advantages of being

systematic and not prone to error.

The rest of the chapter is organised as follows. We show the ASM terminates in Section
4.1. We formalise requirements GUARANTEED RECORDING, CAUSELINK ACCURACY
and VIEWLINK ACCURACY as properties and provide proof for them in Sections 4.2, 4.3

and 4.4. Finally, Section 4.5 summarises the proof and concludes this chapter.

We note that all properties established in this chapter are preserved under Assump-

tion 11 (the retry counter of the assertor and coordinator is always greater than 0).

91
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This assumption ensures that transitions timeout_ack and timeout_uack are always fired

whenever there is a timeout event.

4.1 Termination

According to the definition of interaction, an interaction involves the exchange of an
application message. After firing send_app and receive_app rules (Figures 3.23, 3.24), the
ASM generates a number of transitions to record documentation about the interaction.
We demonstrate that the ASM terminates with regard to one interaction. We define the

termination property as follows.

Definition 12 (TERMINATION). Termination is defined as the execution of a finite
number of ASM transitions (excluding send_app and receive_app) until there is no longer

any enabled transition.O

A configuration c is said to be reachable if there is a sequence of transitions t1, to, ..., t,

tn

from the initial configuration: ¢; — ¢ =2 co... =1 c.

In order to prove the termination property, we introduce a system measure that gives an
indication of how far the ASM is from completing its transitions. The system measure

is defined as follows.

Definition 13 (SYSTEM MEASURE). For any reachable configuration, c, the system
measure of a configuration c is the sum of the table measures and message measures in

the system:

system_measure(c)
= table_measure(assertor_T')

+ table_measure(update T')

(
(
(
+ table_measure(timer_T')
+ table_measure(crashT)
+ table_measure(lost)

+ table_measure(rc)

+ table_measure(fc)

+ ZaieA Zaj €A Zmek(ai,aj) msg*measure(m)

with

table_measure(assertor T) = Y x> . cix D vevkmeasure(assertor T'(a, k,v).str)
such that

measure(INIT) = 40, measure(READY) = 36, measure(SEND) = 32,
measure(SENT) = 24, measure(ACKED) = 22, measure(OK) = 0

and

table_measure(update T) = 3, o1 D pevkD_a,,cprpmeasure(update T (ac, K, v, aps))
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such that
measure(UPDATE) = 8, measure(WAIT) = 2, measure(UPDATED) =0

and

table_measure(timer_T) =

ZaEA ZHGIK ZvGVK ZapseplDtimer,T(a, K, U, apg).to/timer_ T (a, Kk, v, aps).toil

and

table_measure(crash-T) = 3_, cprpmeasure(crash-T (aps))
such that

measure( TRUE) = 1, measure(FALSE) =0

and

table measure(lost) =3, cx ZajeAﬂost(ai, aj)| *2

and

table_measure(rc) =3 o D petk DveviTe(a, k,v) x 10

and
table_measure(fc) =3, i fe(k) * 2

and
msg-measure(record) = 4, msg-measure(ack) = 2,

msg-measure(repair) = 18, msg-measure(update) = 4, msg-measure(uack) = 2

a

Intuitively, the processing of a message can update a table, which in turn may trigger the
creation of new messages. The system measure of a configuration accounts for messages
and the contents of tables. The values for the component measures are chosen such
that the system measure of a configuration is always greater than that of any successor
configuration via transitions excluding send_app and receive_app. Pseudo statements in
rules are annotated with the change in system measure they cause in Figures 3.23, 3.24,
3.26, 3.27 and 3.28.

Lemma 14. For any reachable configurations c, ¢’ and for any transition t, such that t

leads from c to ¢ and t is not send_app or receive_app, the following inequality holds:

0 < system_measure(c') < system_measure(c).

PRroOF. First, we note that the system measure of a configuration is always positive or

null (Definition 13). Second, the proof proceeds by an analysis of the different possible

Yttimer_T (a, &, v, aps).to; is the initial value of timer_T(a, &, v, aps).to.
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cases for transition t. We consider here the transition receive_update. We compute the
system measure of the configuration after transition:

(1) An update message is consumed, hence the measure is decreased by 4;

(2) A uack message is inserted into channel, hence the measure is increased by 2.

As a result, after transition, the measure is decreased by 2, which proves the lemma.

Similar reasoning shows that the other transitions except send_app or receive_app also
cause the system measure to decrease strictly. The decrease has been clearly denoted
by the change in measures in Figures 3.23, 3.24, 3.26, 3.27 and 3.28.

a

Theorem 15 (TERMINATION). For any reachable configuration, all transition paths

excluding send_app and receive_app terminate. O

PROOF. We proceed with the following reasoning. Let us define a successor relation on
the set of configurations; co is a successor of ¢ if ¢o is obtained from c; by a transition
that differs from send_app and receive_app. With Lemma 14, the system measure of ¢;
is always larger than that of its successor configuration cy, which has a lower bound 0.
Therefore, we can conclude that there exists a successor configuration ¢ that does not
have a successor by executing a transition other than send_app or receive_app; c is a
fixed point of the successor relation. Given the fixed point and the fact that every tran-
sition excluding send_app and receive_app decreases the system measure (Lemma 14),
we know the ASM can execute a finite number of transitions apart from send_app and
receive_app in all transition paths until it has not any enabled transition. Therefore, by

Definition 12, all transition paths that do not use send_app and receive_app terminate.

|

In the following sections, we will demonstrate that the protocol preserves properties
GUARANTEED RECORDING, CAUSELINK ACCURACY and VIEWLINK ACCURACY.

In our proof, we rely on case analysis either on its own or in the context of a proof by
induction to establish properties. Essentially, the rules of the ASM are analysed to show
that after any number of transitions the particular property still holds for the resulting
configuration of the state machine. The base case of the induction also requires us to
derive a lemma in the initial configuration. For simplification, we omit the parameters
of transitions except timer_click(a, k,v,aps) and timer_click(ac, K, v, aps), which have

the same transition name and thus require the parameters to distinguish them.
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4.2 Guaranteed Recording

We now establish that the protocol meets requirement GUARANTEED RECORDING, for-
mally expressed the following property:

Property 16 (GUARANTEED RECORDING). For any a, £ and v, the following implica-
tion holds when the ASM terminates at final configuration:
If assertor T'(a, k,v).str # L, then

store T (aps, k,v) = (a,vl,assertor T (a, k,v).pas),

where aps = assertor T (a, k,v).ol and vl # 1.
O

Property 16 shows that an assertor’s documentation about an interaction, i.e., assertor’s
identity (a), viewlink (vl) and p-assertions (assertor_T(a, k,v).pas) will eventually be
recorded in a provenance store, i.e., store T (aps, k,v) = (a,vl,assertor_T(a, k,v).pas).
The precondition assertor_T'(a, k,v).str # 1 means that the assertor a has created an
interaction record about interaction k, where it is in the view of v. Thus, when F-PReP
finishes recording the interaction record, the documentation ends up in a provenance

store.

To prove Property 16, we need to establish several relationships between the state of
an assertor (assertor_T'(a, k,v).str) and other system components (from Lemma 17 to
Lemma 21). For example, we show that when the protocol terminates, assertor T(a, k,v).str
is always in the state OK. We also show that if assertor T(a, k,v).str is ACKED or OK,

then store_T'(aps, K, v) has a record (a,vl, assertor_T(a, k,v).pas).

We begin with the relationship between assertor_T'(a, k,v).str and the state of protocol

messages.

Lemma 17. For any reachable configuration and for any a, x and v, the following

implication holds:

If
record(k, v, a,vl, pas) € k(a, aps)
\/ record(k, v, a,vl,pas) € lost(a, aps)
ack(a, k,v) € k(aps,a)
ack(a, k,v) € lost(a, aps)
then

assertor_T'(a, k,v).str = SENT,

where vl = assertor T'(a, Kk, v).vl, pas = assertor_T(a, k,v).pas and aps =

assertor_T(a, k,v).ol.
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a

PrOOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

send_app:
The statement is preserved by this transition. After this transition, assertor T (a, k,v).str
is set to INIT from L. Therefore, the statement was preserved before the transition and

remains valid after the transition.

prepare_record:

The statement is preserved by this transition. After this transition, assertor T (a, k,v).str
is set to READY from INIT. Therefore, the statement was preserved before the transition
and remains valid after the transition. In addition, record(k, v, a, vl, pas) is inserted into

queue_T'(a), where vl = assertor_T'(a, k,v).vl and pas = assertor_T(a, k,v).pas.

receive_app:

The statement is preserved by this transition. After this transition, assertor_T'(a, k,v).str
is set to READY from L. Therefore, the statement was preserved before the transition
and remains valid after the transition. In addition, record(k, v, a, vl, pas) is inserted into

queue_T'(a), where vl = assertor T (a, k,v).vl and pas = assertor_T(a, k,v).pas.

pre_check:
The statement is preserved by this transition. After this transition, assertor T (a, k,v).str
is set to SEND from READY. Therefore, the statement was preserved before the transi-

tion and remains valid after the transition.

send_record:
The statement is preserved by this transition. After this transition, record(k, v, a, vl, pas)
is inserted into k(a, aps), where aps = assertor T'(a, k,v).ol. In addition,

assertor_T(a, k,v).str is set to SENT.

timeout_ack:

The statement is preserved by this transition. After this transition, an alternative store

!/ : /
aps 1s selected, where aj,

changed, which makes the antecedent become false.

= assertor_T(a, k,v).ol. Therefore, assertor_T(a,k,v).ol is

receive_ack:
The statement is preserved by this transition. After this transition, ack(a,k,v) is re-

moved from k(aps, a), which preserves the statement.

post_check:

The statement is preserved by this transition. After this transition, assertor_T'(a, k,v).str
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is set from ACKED to OK. Therefore, the statement was preserved before the transition

and remains valid after the transition.

receive_record:
The statement is preserved by this transition. After this transition, record(k, v, a, vl, pas)

is removed from k(a, aps) and ack(a, k,v) is inserted to k(aps,a).

message_loss_pstore:

message_loss_channel:

The statement is preserved by these transitions. After these transitions,

record(k, v, a, vl, pas) or ack(a, k,v) is removed from k(a,aps) or k(aps,a) and placed in

lost(a, aps).
O

After establishing the relationship between assertor_T'(a, k,v).str and protocol mes-
sages, we now investigate the relationship between assertor_T'(a, k,v).str and the state

of an assertor’s timer.

Lemma 18. For any reachable configuration and for any a, x and v, the following

implication holds:

/\ { timer_T(a, Kk, v, aps).status = ENABLED

timer-T(a, Kk, v, aps).to > 0
iff
assertor_T'(a, k,v).str = SENT,

where aps = assertor T'(a, k,v).ol. O

PRrROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

send_app:

prepare_record:

receive_app:

pre_check:

The statement is preserved by these transitions. After these transitions,

timer T (a, K, v, aps) is not affected and assertor_T'(a, K, v).str is switched among states
L, INIT, READY and SEND. Therefore, the statement was preserved before these tran-

sitions and remains valid after them.
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send_record:
The statement is preserved by this transition. After this transition,
timer T (a, K, v, aps).status is set to ENABLED, timer_T'(a, k, v, aps).to is initialised, where

aps = assertor T'(a, k,v).ol. In addition, assertor_T'(a, k,v).str is set to SENT.

timer _click(a, k, v, aps):
The statement is preserved by this transition. After this transition, timer_T'(a, K, v, aps).to

is greater or equal to 0 and assertor_T(a, k,v).str is not affected.

timeout_ack:

receive_ack:

The statement is preserved by these transitions. After these transitions,

timer T (a, K, v, aps).status is set to DISABLED and timer_T'(a, k,v, aps).to becomes 0.
Meanwhile, assertor_T'(a, k,v).str is set to SEND or ACKED.

post_check:
The statement is preserved by this transition. After this transition, assertor_T'(a, k,v).str
is set to OK from ACKED. Therefore, the statement was preserved before this transition

and remains valid after the transition.

a

Now we reveal the relationship between assertor_T'(a, k,v).str and the assertor’s local

queue.

Lemma 19. For any reachable configuration and for any a, x and v, the following

implication holds:

assertor_T'(a, k,v).str = READY, SEND or SENT, iff
record(k, v, a,vl, pas) € queue_T(a),
where vl = assertor_T'(a, k,v).vl and pas = assertor T (a, k,v).pas. O

PROOF.

We proceed by induction on the length of transitions that lead to the configuration,
and by case analysis on the kind of transitions. The statement holds in the initial
configuration since table assertor_T'(a, k,v) and queue_ T(a) are both empty. We now

consider only those transitions that may have an effect on terms in the implication.

send_app:
The statement is preserved by this transition. After this transition, assertor_T'(a, k,v).str

is set to INIT and no message is enqueued.

prepare_record:

The statement is preserved by this transition. After this transition, assertor T (a, k,v).str
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is set to READY from INIT, and record(k, v, a, vl, pas) is inserted into queue_T'(a), where

vl = assertor T'(a, k,v).vl and pas = assertor T (a, k,v).pas.

receive_app:
The statement is preserved by this transition. After this transition, assertor_T'(a, k,v).str
is set to READY from L, and record(k, v, a,vl,pas) is inserted into queue_T'(a), where

vl = assertor T(a, k,v).vl and pas = assertor_T(a, k,v).pas.

pre_check:

After this transition, assertor_T'(a, k,v).str is set to SEND from READY, and
record(k, v, a, vl, pas) still remains in queue_T'(a). If pas is modified to update causelinks,
same changes apply to assertor_T(a, k,v).pas. Therefore, pas is still equal to

assertor_T(a, k,v).pas.

send_record:
The statement is preserved by these transitions. After these transitions, the first part
of the statement remains true and record(k, v, a,vl, pas) is not affected. Therefore, the

statement is still preserved.

timeout_ack:
The statement is preserved by this transition. After this transition, assertor T (a, k,v).str
is set to SEND from SENT (Lemma 18) and record(k, v, a, vl, pas) is not affected. There-

fore, the statement is still preserved.

receive_ack:
The statement is preserved by this transition. After this transition, assertor T (a, k,v).str
is set to ACKED from SENT (Lemma 17) and record(k, v, a, vl, pas) is dequeued. There-

fore, the statement is still preserved.

post_check:
The statement is preserved by this transition. After this transition, assertor_T'(a, k,v).str
is set to OK from ACKED. Therefore, the statement was preserved before this transition

and remains valid after the transition.

a

Lemma 20 states the final state of an assertor after finishing recording its interaction

record.

Lemma 20. For any a, k and v, the following implication holds when the ASM termi-

nates at final configuration:

If assertor T'(a, k,v).str # L, then

assertor_T'(a, K,v).str = OK.
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PROOF.

When the ASM terminates, no more transition can be fired. This implies that:

e assertor_T(a, k,v).str cannot be INIT. Otherwise, transition prepare_record can

be fired.

e queue_T'(a) is empty. Otherwise, assuming record(k, v, a, vl, pas) = head(queue_T(a)),
by Lemma 19, assertor_T(a,k,v).str can be READY, SEND or SENT. If it is
READY or SEND, transitions pre_check or send_record will be fired. If it is SENT,

by Lemma 18, transitions timer_click(a, k,v, aps) or timeout_ack will be fired.

e assertor_T'(a,r,v).str cannot be ACKED. Otherwise, transition post_check will
be fired.

Therefore, we can conclude that when the ASM terminates, assertor T (a,k,v).str is

OK.

a

We now establish the relationship between assertor_T'(a, k,v).str and the content of a
provenance store. Lemma 21 shows that the receipt of an acknowledgement message is

crucial to GUARANTEED RECORDING property.

Lemma 21. For any reachable configuration and for any a, k and v, then the following

holds:

If ack(k,v) € k(aps,a) V assertor_T(a, k,v).str = ACKED or OK, then
store T (aps, k,v) = (a,vl,assertor T (a, k,v).pas),

where a,s = assertor T'(a, k,v).ol and vl # L.

a

PRrROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty and no message is in channel. We now consider

only those transitions that may have an effect on terms in the implication.

send_app:
prepare_record:
receive_app:
pre_check:
send_record:

timeout_ack:
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The statement is preserved by these transitions. After these transitions, the antecedent

is false.

receive_ack:
The statement is preserved by this transition. After this transition, an ack(k,v) is

removed from k(aps, a) and assertor_T'(a, k,v).str may become ACKED.

post_check:
The statement is preserved by this transition. After this transition, assertor_T'(a, k,v).str
is set to OK from ACKED. Therefore, the antecedent remains true, which still preserves

the statement.

receive_record:

The statement is preserved by this transition. After this transition, a record(x, v, a, vl, pas)
is received and removed from channel k(a, aps). By Lemma 17, vl = assertor T'(a, k,v).vl,
pas = assertor_T'(a,k,v).pas and aps = assertor_T'(a, k,v).ol. Therefore, after this
transition, store_T'(aps, k,v) becomes (a,vl, assertor_T(a, k,v).pas), where aps =
assertor_T(a,k,v).ol and vl # 1. In addition, an ack(k,v) is inserted into channel

k(aps,a). Hence, the implication holds.

receive_update:
The statement is preserved by this transition. After this transition, the antecedent

remains unchanged and store_ T (aps, K, v).vl is not empty.

msg_loss_pstore:
msg_loss_channel:
After these transitions, ack(k,v) is removed from k(aps,a). Therefore, the antecedent

may remain unchanged or become false. In either case, the statement is sill valid.
O

Theorem 22 (GUARANTEED RECORDING). F-PReP preserves Guaranteed Recording
property (Property 16). O

PROOF. By Lemma 20, we know that when the ASM terminates, assertor_T'(a, k,v).str
is OK. Therefore, by Lemma 21, store T'(aps,k,v) = (a,vl,assertor T (a, k,v).pas),
where aps = assertor_T'(a, k,v).ol. Hence, when the ASM terminates, the implication

is preserved.

|

Theorem 22 shows that once documentation about an interaction is created, it will end

up in the assertor’s provenance store.
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4.3 Causelink Accuracy

Recall the description of relationship p-assertion: a relationship p-assertion made by an
assertor (i.e., the sender of an effect interaction) defines the causal relationship between
the effect interaction and several cause interactions (where the same assertor is the
receiver of a cause interaction). Only in the effect interaction (in which the relationship
p-assertion is produced) does the assertor need to update causelinks of the relationship

p-assertion to preserve CAUSELINK ACCURACY.

Property 23 (CAUSELINK ACCURACY). For any a, k and vl, let S and R be the sender
and receiver’s viewkind, respectively, then the following implication holds when the ASM

terminates at final configuration:

If assertor T(a, Kk, S).str # L, then

for any pa € store_T(aps, k, S).pas, such that pa = rel-pa(rel, (k, S) , cids),
for any ¢ € cids, let (c',k',R) = ¢,
cl' = assertor_T(a, k', R).ol A
store_T(cl k', R) = (a,vl,assertor_T(a, k', R).pas)

where a,s = assertor_T'(a, k, S).ol.
O

According to system state space (Section 3.6.1), this property specifies that when the
ASM terminates, any relationship p-assertion (rel-pa(rel, (k,S) ,cids)) recorded in the
sender’s provenance store has a set of records (cids) about cause interactions and each
record has an accurate causelink (cl’ = assertor_T'(a, ', R).ol), pointing to the store
(store T(cl’, k', R)) which successfully recorded documentation about the corresponding

cause interaction.

According to transition pre_check in Figure 3.25, causelink update takes place when the
assertor is ready to record an interaction record to a provenance store. Therefore, we
begin our proof by establishing that causelinks are already accurate in an interaction

record when being recorded to a provenance store (Lemmas 24 to 26).

Firstly, we show that whenever an assertor uses an alternative store, log T'(a, k,v).aps

keeps the alternative store’s address, i.e., the current value of assertor_T'(a, K, v).ol.

Lemma 24. For any reachable configuration and for any a, x and v, the following

implication holds:

If log T(a, k,v).changed = TRUE, then

log-T(a, k,v).aps = assertor_T(a, k,v).ol.
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PrOOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since log T (a, k,v) is empty. We now consider only those transitions that

may have an effect on terms in the implication.

send_app:
receive_app:
After these transitions, log-T'(a, k,v).changed is set to FALSE. Therefore, the implica-

tion is preserved.

timeout_ack:
The statement is preserved by this transition. After this transition, log_T'(a, k, v).changed
is set to TRUE and log T(a,k,v).aps records the selected alternative store’s address,

which is referred by assertor_T(a, k,v).ol.

a

Next, we reveal the relationship between assertor_T(a, k, S).str and assertor_T(a, k', R).str,
where x and k' represent the respective effect and cause interaction that relate to one

relationship.

Lemma 25. For any reachable configuration and for any a and k, let S, R be the sender

and receiver’s viewkind, respectively, the following implication holds:

If assertor T(a, K, S).str # L, INIT or READY, then

for any pa € assertor T (a,k,S).pas, such that pa = rel-pa(rel,(k,S) , cids),
for any c € cids, let {(cl',k',R) = ¢,
assertor_T(a, ', R).str = ACKED or OK.

PrOOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since assertor_T(a, s, S).str is L. We now consider only those transitions

that may have an effect on terms in the implication.

send_app:
After these transitions, assertor_T(a,k,S).str is set to INIT from L. Therefore, the

implication is preserved.

prepare_record:
receive_app:
After these transitions, assertor_T'(a, k,S).str is set to READY from L or INIT. There-

fore, the implication is preserved.
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pre_check:

After this transition, assertor T'(a, k, S).str is set to SEND from READY and

record(k, S, a, vl, pas) is the head of queue_T'(a). According to FIFO nature of a queue,
we can imply that record(x’, R, a,vl’, pas’) has been dequeued, where vl’ and pas’ are
the viewlink and p-assertions with regard to the cause interaction. By Lemma 19,
assertor_T(a, ', R).str # READY,SEND and SENT. Therefore, we can conclude that
assertor_T'(a, k', R).str = ACKED or OK.

send_record:

timeout_ack:

receive_ack:

post_check:

After these transitions, assertor T(a, k,S).str is switched among states SEND, SENT,

ACKED and OK. Therefore, the antecedent remains true, which preserves the statement.

a

One important property (Lemma 26) to be established is that if assertor T'(a, K, S).str #
1, INIT or READY, then any interaction record about a cause interaction has been suc-

cessfully recorded in a store (i.e., store_T(cl’, k', R) = (a, vl,assertor T (a,r’, R).pas)).

Lemma 26. For any reachable configuration and for any a, k and vl, let S, R be the

sender and receiver’s viewkind, respectively, the following implication holds:

If assertor T(a, kK, S).str # L, INIT or READY, then

for any pa € assertor T(a,k,S).pas, such that pa = rel-pa(rel, (k,S) ,cids),
for any c € cids, let {cl',k',R) = ¢,
cl' = assertor_T(a, k', R).ol N

store_T(cl, k', R) = (a,vl, assertor T(a, ', R).pas)

PROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since assertor_T(a, k, S).str is L. We now consider only those transitions

that may have an effect on terms in the implication.

send_app:
After these transitions, assertor T(a,k,S).str is set to INIT from L. Therefore, the

implication is preserved.

prepare_record:

recetve_app:
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After these transitions, assertor_ T'(a, k,S).str is set to READY from L or INIT. There-

fore, the implication is preserved.

pre_check:

After this transition, assertor_T(a, k,S).str is set to SEND from READY and ¢!’ may
be set to log-T(a,x’, R).aps depending on log-T'(a, ', R).changed. We now analyse
log T (a, k', R).changed.

e log T(a,r', R).changed = TRUE:
By Lemma 24, log-T'(a, ', R).aps is equal to assertor_T(a, ', R).ol.

e log.T(a,r', R).changed = FALSE:
According to function createPA (defined in Section 3.6.2), when relationship p-

assertion rel-pa(rel, (k, S) , cids) is created, cl’ is set to assertor_T(a, k', R).ol.

Based on the above analysis, we have cl’ = assertor_T(a,r’, R).ol. By Lemma 25,
assertor_T(a, ', R).str = ACKED or OK. Hence with Lemma 21, store T(cl',x', R) =

{a,vl,assertor_T(a, k', R).pas). Therefore, the statement is preserved.

send_record:

timeout _ack:

receive_ack:

post_check:

After these transitions, assertor T(a, k,S).str is switched among states SEND, SENT,

ACKED and OK. Therefore, the antecedent remains true, which preserves the statement.
O
We are now ready to prove CAUSELINK ACCURACY property.

Theorem 27 (CAUSELINK ACCURACY). F-PReP preserves Causelink Accuracy prop-
erty (Property 23).
O

PROOF. Lemma 20 shows that when the ASM terminates, assertor_T'(a, k,S).str is OK.
By Lemma 26, all causelinks in assertor_T'(a, k, S).pas are accurate when being recorded
in a provenance store. By Property 16, p-assertions in assertor_T'(a, k, S).pas are even-
tually recorded in store_T'(ayps, k, S).paswhere a,s = assertor_T'(a, k,S).ol. Therefore,

this implication is preserved. O

After establishing properties GUARANTEED RECORDING and CAUSELINK ACCURACY,
we show that F-PReP preserves property VIEWLINK ACCURACY in the next section.
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4.4 Viewlink Accuracy

Property 16 specifies that when the protocol terminates, an assertor’s documentation
about an interaction is guaranteed to be recorded in its provenance store. Property 28
requires that a viewlink recorded in the store must be accurate, pointing to the store
where the other assertor in the same interaction recorded documentation about that

interaction.

Recall that notation v stands for the opposite view in an interaction. For example, if v

is the view of the sender, then v represents the view of the receiver.

Property 28 (VIEWLINK ACCURACY). For any a, k and v, and for some a' and vl’,

the following implication must hold when the ASM terminates at final configuration:

If assertor T(a, k,v).str # L, then

/\ { store_T(aps, K, v).vl = assertor T(d', k,7).o0l

store_T(ays, k,0) = (a',vl'; assertor T(d', k,7).pas)

where aps = assertor T(a, k,v).0l and a,s = assertor T'(a', k,).ol.
O

Assertors a and o’ are involved in the same interaction but in different views. Therefore,

for any a in an interaction, there is some a’ in that interaction.

When the ASM terminates, any viewlink in an assertor’s provenance store
(store_T'(aps, k,v), such that aps = assertor_T'(a, k,v).ol) points to a correct location
(store T(ay,s, k, ), such that a,, = assertor T(a', x,7).0l), where the other assertor in

the same interaction recorded p-assertions.

Our proof is divided into two parts. First, we establish that when the ASM terminates,
any viewlink in an assertor’s provenance store points to the same location as referred
by the opposite assertor’s ownlink (i.e., store_T(aps, k,v).vl = assertor T (d’, k,v).0l).
Then we use Property 16 to show that store T'(aj, x,7) =

a’,vl',assertor T'(d, k,v).pas), such that a,, = assertor_T(d’, k,v).ol.
ps

Now we outline the proof of the first part. According to F-PReP, an assertor may send a
repair request to the coordinator to update the other assertor’s viewlink. The coordinator
records the request information in table coord_ T and maintains the update state in table
update T, indicating if the update has been successful. Since each interaction involves
two views and the assertor in each view may send one request to the coordinator, there

are three cases that we need to consider.

1. coord_T(ac, k,v) = (L, L) A coord_T(ac,k,v) = (L, L):

This is the case where the coordinator did not receive any repair message with
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regard to an interaction when the ASM terminates. We will establish the first

part of Property 28 for this case in Lemma 42.

2. coord T (ac, k,v) # (L, L) A coord T(ac, k,v) # (L, L):
This is the case where the coordinator received one repair message from the assertor
of each view. We will establish the first part of Property 28 for this case in Lemma
46.

3. coord T(ac, k,v) # (L, L) A coord T (ac, r,v) = (L, L)%
This is the case where the coordinator received only one repair message. We will

establish the first part of Property 28 for this case in Lemma 48.

In order to prove Property 28 in the first case, we firstly establish several lemmas. Lemma
29 show that if the sender did not use any alternative store when recording its inter-
action record, the receiver’s viewlink remains accurate (i.e., assertor_T(a,, k, R).vl =

assertor_T'(as, k, S).ol).

Lemma 29. For any reachable configuration and for any as, k and for some a,, let
S, R be the sender and receiver’s viewkind, respectively, then the following implication
holds:

If assertor T(as, K, S).str # L ANlog T (as, K, S).changed = FALSE, then

\/{ app(d, K, aps) € k(as, ar)

assertor_T(ar, Kk, R).vl = assertor T (as, K, S).ol

where aps = assertor T (as, K, S).ol.

a

PRrROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since assertor T (a, k,v).str is L. We now consider only those transitions

that may have an effect on terms in the implication.

send_app:
After this transition, assertor_T'(as, k,S).str is set to INIT and log-T'(as, &, S).changed
is set to FALSE. Meanwhile, app(d, K, aps) is inserted in k(as, a,), where aps is equal to

assertor_T(as, k, S).ol. Therefore, the implication is preserved.

prepare_record:
After this transition, assertor_T'(as, K, S).str is set to READY from INIT. Therefore, the

precondition of the statement remains true, which preserves the implication.

“Due to the symmetric nature, this case is equal to coord T(ac, k,v) = (L, L) A coord_T(ae, x,T) #
(L, 1).



Chapter 4 Protocol Analysis 108

receive_app:
After this transition, app(d, K, aps) is removed from k(as, a,) and assertor_T'(a,, K, R).vl
is set to aps. Since ayp, is equal to assertor_T'(as, k,S).ol (according to send_app), the

implication holds.

pre_check:
After this transition, assertor_T(as, K, S).str is set to READY from SEND. Therefore,

the precondition of the statement remains true, which preserves the implication.

send_record:
After this transition, assertor_T'(as, k,S).str is set to SENT from SEND. Therefore, the

precondition of the statement remains true, which preserves the implication.

timeout _ack:
After this transition, log_T'(as, k, S).changed is set to TRUE. Hence, the precondition

of the statement becomes false. Therefore, the implication is still preserved.

receive_ack:
After this transition, assertor T(as, K, S).str is set to ACKED from SENT (Lemma 17).
Therefore, the precondition of the statement remains true, which preserves the implica-

tion.

post_check:
After this transition, assertor_T(as, k, S).str is set to OK from ACKED. Therefore, the

precondition of the statement remains true, which preserves the implication.

a

Recall the definitions in Section 3.5.1, a default link refers to the provenance store that

an assertor initially used when recording an interaction record.

Lemma 30 shows that log T (a, k,v).changed indicates if an assertor has used an alter-

native store. If not, the assertor’s ownlink remains equal to its default link.

Lemma 30. For any reachable configuration and for any a, £ and v, the following
implication holds:
logT(a, k,v).changed = FALSE

if

assertor_T'(a, k,v).ol = assertor_T(a, k,v).dl.

PROOF. We proceed by induction on the length of transitions that lead to the configura-

tion, and by case analysis on the kind of transitions. The statement holds in the initial
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configuration since tables are empty. We consider only those transitions that may have

an effect on terms in the implication.

send_app:
receive_app:
After this transition, log_T'(a, K, v).changed is set to FALSE and assertor_-T'(a, k,v).ol

equals to assertor_T'(a, k,v).dl. Therefore, the statement is preserved.

timeout_ack:
After this transition, log_-T'(a, k,v).changed is set to TRUE and assertor_T(a, k,v).ol

refers to an alternative store. Therefore, the statement is still preserved.

|

Lemma 29 has shown that if the sender of an interaction did not use alternative stores
when recording its interaction record, the receiver’s viewlink remains correct. In Lemma
31, we show that if the receiver did not use any alternative store, then the sender’s

viewlink is also correct.

Lemma 31. For any reachable configuration, for any as and , and for some a,, let S,

R be the sender and receiver’s viewkind, respectively, the following implication holds:

If (assertor T (as, K, S).str # (L V INIT)) ANlog-T(ar, k, R).changed = FALSE, then

assertor T (as, k, S).vl = assertor_T(a,, K, R).ol

PRrROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration, since assertor_T'(a, k,v).str is L. We now consider only those transitions

that may have an effect on terms in the implication.

send_app:
After this transition, assertor_T'(as, k, S).str is set to INIT. Therefore, the precondition

is false, which preserves the implication.

prepare_record:

After this transition, assertor_T'(as, k, S).str is set to READY and assertor_T(as, k, S).vl
is equal to assertor_T'(a,, k, R).dl. If log_-T'(a,, k, R).changed is FALSE,

assertor_T(a,, k, R).dl is equal to assertor T (a,, k, R).ol (Lemma 30). Therefore,

assertor_T(as, k, S).vl is equal to assertor_T'(a,, k, R).ol, which preserves the statement.

receive_app:
After this transition, log T (a,, k, R).changed is set to FALSE. Since the guard to fire

this transition is app(d, k,vl) in transit. By rule send_app, assertor_T(as,k,S).str is
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set to INIT when sending app(d, k,vl). Therefore, the precondition of the statement is

false, which preserves the implication.

pre_check:
After this transition, assertor T (as, k,S).str is set to SEND from READY. Therefore,

the precondition of the statement remains true, which preserves the implication.

send_record:
After this transition, assertor_T(as, k,S).str is set to SENT from SEND. Therefore, the

precondition of the statement remains true, which preserves the implication.

timeout _ack:
After this transition, assertor_T'(as, k,S).str is set to SEND from SENT. Therefore, the

precondition of the statement remains true, which preserves the implication.

receive_ack:
After this transition, assertor T'(as, K, S).str is set to ACKED from SENT. Therefore,

the precondition of the statement remains true, which preserves the implication.

post_check:
After this transition, assertor_T'(as, k, S).str is set to OK from ACKED. Therefore, the

precondition of the statement remains true, which preserves the implication.

|

Lemma 32. For any a, k, v and for some d’, then the following implication holds when

the ASM terminates at final configuration:

Iflog-T(a, k,v).changed = FALSE, then
assertor T(d', k,v).vl = assertor_T(a, k,v).ol

a

PROOF. When the ASM terminates, assertor T (a, k,v).str is OK (Lemma 20) and no
app message is in transit. Therefore, by Lemma 29 and Lemma 31, the implication is

preserved for both views.

|

Lemma 33 connects the state of an assertor and the state of the coordinator. It shows
that if an assertor has finished recording and used an alternative store during recording,
then it has sent a repair request to a coordinator. On the other hand, if the coordinator
has received a repair request, then we can imply that the requesting assertor has recorded

its interaction record in an alternative store.

We note that since there is only one coordinator in the system, the coordinator’s identity

a. is known.
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Lemma 33. For any reachable configuration and for any a, x and v, the following

equality holds:

assertor_T'(a, k,v).str = OK A log_T(a, k,v).changed

B \/ repair(k, v, Gy, aps) € k(a,ac)
B coord-T(ac, k,v) # (L, 1)

/

where a,

= assertor_T(a, k,v).vl and aps = assertor_T(a, k,v).ol. O

PROOF. We proceed by induction on the length of transitions that lead to the config-
uration, and by case analysis on the kind of transitions. The statement holds in the
initial configuration since table coord_T'(a., k,v) is empty and no message is in transit.

We now consider only those transitions that may have an effect on terms in the equality.

send_app:

prepare_record:

receive_app:

pre_check:

send_record:

receive_ack:

timeout _ack:

After these transitions, assertor T (a, k,v).str is switched among states L, INIT, READY,
SEND, SENT and ACKED. Therefore, the first part of the statement remains false. In
addition, these transitions do not affect the right part of the statement. Therefore, the

statement is preserved.

post_check:

After this transition, assertor_T(a, k,v).str is set to OK from ACKED. If

log T'(a,k,v).changed is TRUE, then repair(s,v, a,s, aps) is inserted in k(a,a.), where
aps = assertor T(a, k,v).vl and aps = assertor T'(a, k,v).0l. Therefore, the statement
is preserved.

msg_loss_pstore:

msg_loss_channel:

The two transitions do not remove repair(x, v, @y, aps) from k(a, a.), since we have as-
sumed that only messages to/from a provenance store can get lost (Assumption 3),

repair(k, v, agys, aps) is not lost. Therefore, the statement is preserved.

receilve_repair:

After this transition, repair(r, v, ay, aps) is removed from k(a, a.) and coord T(ac, #,v)

becomes not empty.

send_update:
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timeout_uack:
recetve_uack:
The statement is preserved by these transitions. After these transitions, coord T (a, K, v)

remains unaffected.

a

Lemma 34 and Lemma 35 show how the coordinator updates a destination provenance

store by sending an update message.

Lemma 34. For any reachable configuration and for any k, v and aps, the following

implication holds:

If update(k, v, 0l) € k(ac, aps), then

ol = coord T (ac, k,v).ol.

PRrROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

receilve_repair:
The statement is preserved by this transition. This transition does not alter

coord_T(ac, k,v).ol if coord_T(a., k,v).ol # L before the transition.

send_update:
The statement is preserved by this transition. After this transition, update(k,v,ol) €

k(ac, aps) is inserted to k(ac, aps), such that ol = coord T'(a., k,v).ol.

receive_update:
The statement is preserved by this transition. After this transition, update(k,v,ol) is
removed from k(ac,aps). Therefore, the antecedent becomes false, which preserves the

statement.

a

Lemma 35. For any reachable configuration and for any k, v and aps, the following

implication holds:

If vack(k,v) € k(aps,ac), then

store T (aps, K, U).vl = coord_T(ac, k,v).ol.
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PrOOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

receive_update:

After this transition, update(k,v,ol) is removed from k(ac,aps) and uack(k,v) is in-
serted to k(aps,ac). In addition, store_T'(aps, k,7).vl is set to ol, which is provided by
update(k, v, ol). By Lemma 34, ol is equal to coord-T(ac, k,v).ol. Therefore, we have

store T (aps, K, U).vl = coord_T(ac, k,v).ol.

receive_uack:
The statement is preserved by this transition. After this transition, uack(k, v) is removed

from k(aps, ac). Therefore, the antecedent becomes false, which preserves the statement.
O

Lemma 36 shows the three possible states of a provenance store regarding an interaction:

initial state, possessing a viewlink and possessing an interaction record.

Lemma 36 (INVARIANT). For any reachable configuration, for any aps, £ and v,

and for some a, the following statement holds:

store_T(aps, k,v) = (L, L,0)
\/ store_T(aps, k,v) = (L, vl, D)

store_T(aps, k,v) = (a,vl, assertor T (a, Kk, v).pas)

where vl # 1. O

PRrROOF. We proceed by induction on the length of transitions that lead to the config-
uration, and by case analysis on the kind of transitions. The statement holds in the
initial configuration since table store_T'(aps, s, v) is (L, L,0). We now consider only

those transitions that may have an effect on terms in the equality.

receive_record:
After this transition, store_T'(aps,k,v) becomes (a,vl,assertor T'(a, k,v).pas), where
vl # L.

receive_update:

After this transition, store T (aps,k,v).vl is not L. If store T (aps,k,v) was (L, L,0)
before the transition, then it becomes (L, vl,0), such that vl # L. If store T (aps, k,v)
was (a,vl,assertor T (a, k,v).pas), it remains as (a, v, assertor_T(a, k,v).pas) with

store T (aps, K, v).vl updated.

send_app:

receive_app:
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The statement is preserved by these transitions. After these transitions, a new interac-

tion key x is created. Therefore, store_T'(aps, k,v) is in the initial state.

a

Lemma 37 gives the relationship among the coordinator’s timer, protocol messages and

the destination provenance store to be updated.

Lemma 37. For any reachable configuration and for any k, v and aps, the following

implication holds:
If

/\ { timer_T(ac, k,v, aps).status = ENABLED

timer-T(ac, k,v, aps).to > 0
then

update(k,v,ol) € k(ac, aps)
update(k, v, ol) € lost(ac, aps)
\/ store_T(aps, K, V).vl = coord-T(ac, k,v).ol

uack(k,v) € k(aps, ac)

uack(k,v) € lost(ac, aps)

PROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

receilve_repair:
The statement is preserved by this transition. After this transition, timer_T(ac, K, v, aps)

remains in the initial state and no message is inserted to channels.

send_update:
The statement is preserved by this transition. After this transition, update(k,v,ol) is
inserted to k(ac,aps). In addition, timer_T'(ac, K, v, aps).status is set to ENABLED and

timer_T(ac, K, v, aps).to is initialised.

timer _click(ac, k,v, aps):
After this transition, timer_T'(ac, k, v, aps).to remains greater than or equal to 0. There-

fore, the statement is preserved by this transition.

timeout _uack:
After this transition, timer_T(ac, Kk, v, aps).status is set to DISABLED and
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timer T (ac, Kk, v, aps).to is set to 0. Therefore, the antecedent is false, which preserves

the implication.

recetve_uack:
The statement is preserved by this transition. After this transition, uack(k,v) is removed
from k(aps,ac). By Lemma 35, store T (aps, k,0).vl = coord T (ac, k,v).ol. Therefore,

the implication still holds after the transition.

msg_loss_pstore:

msg_loss_channel:

The statement is preserved by these transitions. After these transitions, update(x, v, ol)
or uack(k, v) is removed from k(ac, aps) or k(aps, ac) and placed in lost(ac, aps). There-

fore, the implication still holds after the transition.

receive_update:

The statement is preserved by this transition. After this transition, update(k,v,ol) is
removed from k(ac, aps). In addition, store_T'(ays, k,7).vl is set to ol, which is provided
by update(x, v, 0l). By Lemma 34, ol is equal to coord T (ac, k,v).ol. Therefore, we have

store T (aps, £, 0).vl = coord_T (ac, k,v).ol, which preserves the statement.

|

Lemma 38 connects the state of the coordinator and the state of a provenance store. It
shows how the ASM evolves after the coordinator has received a repair request. Table
(vistate T € VLST) keeps the status of a viewlink. If the state is DEFAULT the viewlink
is provided by an assertor without being updated by the coordinator. If it is UPDATED

the viewlink has been updated by the coordinator.

Lemma 38. For any reachable configuration and for any k and v, then the following
equality holds:
coord T (ac, k,v) # (L, L)

update(k,v,ol) € k(ac, aps)

update(k, v, ol) € lost(ac, aps)
vistate_T'(aps, k,v) = UPDATED

B store_T(aps, K, U).vl = coord_T(ac, k,v).ol
B \/ uack(k,v) € k(aps,ac)

uack(k,v) € lost(ac, aps)

update_T(ac, k,v, aps) = UPDATE
update_T(ac, K, v, aps) = UPDATED

\
where ol = coord T (ac, k,v).0l, aps = coord T (ac, K, v).agps-

|
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PrOOF. We proceed by induction on the length of transitions that lead to the config-
uration, and by case analysis on the kind of transitions. The statement holds in the
initial configuration since table coord_T'(a., k,v) is empty and no message is in transit.

We now consider only those transitions that may have an effect on terms in the equality.

receilve_repair:
The statement is preserved by this transition. After this transition, coord T (ac, k,v)
becomes not empty and update T (ac, k, v, aps) is set to UPDATE, where a,s =

coordT(ac, k,v).aqps- Therefore, the statement is preserved.

send_update:

The statement is preserved by this transition. In order to fire this transition,
update_T(ac, K, v, aps) is UPDATE. After this transition, update(x,v,ol) is inserted in
k(ac, aps), where ol = coord_T (ac, k,v).ol. Therefore, the statement was preserved before

this transition and remains valid after it.

timeout _uack:

This transition does not affect coord_T(ac, k,v). In order to fire this transition, we have
timer_T(ac, K, v, aps).status = ENABLED and timer_T'(ac, k,v, aps).to > 0. By Lemma
37, the statement is preserved. After this transition, update T (ac, K, v,aps) is set to
UPDATE. Therefore, the statement was preserved before this transition and remains

valid after it.

receive_uack:
The statement is preserved by this transition. After this transition, uack(k, v) is removed
from channel. By Lemma 35, store_T(ays, k,70).vl = coord_T'(ac, k,v).ol. Therefore, the

statement is still preserved.

msg_loss_pstore:

msg_loss_channel:

The statement is preserved by these transitions. After these transitions, update(k, v, ol)
or uack(k,v) is removed from k(ac, aps) or k(aps, a.) and placed in lost(ac, aps). There-

fore, the implication still holds after the transition.

receive_update:

The statement is preserved by this transition. After this transition, update(k, v, ol) is re-
moved from k(a., aps) and uack(k, v) is inserted in k(aps, a.). Besides, vistate T (ayps, k,7)
is set to UPDATED and store_T'(ays, k,7).vl is set to ol, which is from update(x, v, ol).
Since ol is equal to coord T'(ac,k,v).ol (Lemma 34), storeT(aps,r,v).vl is equal to

coord T (ac, k,v).ol.

|

Lemma 39, Lemma 40 and Lemma 41 establish that if the coordinator did not update

a provenance store, then any viewlink recorded in the provenance store is provided by
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an assertor.

Lemma 39. For any reachable configuration, for any aps, K, v, and for some a, then

the following implication holds:

If vistate T (aps, k,v) = DEFAULT, then

store T (aps, k,v).vl = assertor T'(a, K, v).vl.

PROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

receive_record:
After this transition, if vistate_T'(aps, k,v) is set to DEFAULT, then store_T'(aps, &, v).vl
is set to vl, which comes from record(k,v,a,vl,pas) produced by an assertor a. By

Lemma 17, vl is equal to assertor T (a, k,v).vl. Therefore, the implication is preserved.

receive_update:
After this transition, vistate T (aps, K, v) is set to UPDATED. Therefore, the antecedent

is false, which preserves the implication.

a

Lemma 40. For any reachable configuration and for any aps, & and v, then the following

implication holds:

If store T (aps, k,v).vl # L, then

vistate T (aps, k,v) = DEFAULT or UPDATED.

PRrROOF. We proceed by induction on the length of transitions that lead to the config-
uration, and by case analysis on the kind of transitions. The statement holds in the
initial configuration since table store_T'(aps, &, v) is empty. We now consider only those

transitions that may have an effect on terms in the implication.

receive_record:
After this transition, if vlstate T (aps, k,v) is set to DEFAULT, then store_T'(aps, k,v).vl
is set to vl, which comes from record(k, v, a, vl, pas). Therefore, the implication is pre-

served.
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receive_update:
After this transition, if vistate_T'(aps, K, v) is set to UPDATED, then store_T'(aps, k,v).vl

is set to ol, which comes from update(k, v, ol). Therefore, the implication is preserved.

a

Lemma 41. For any reachable configuration and for any a, k and v, then the following

implication holds:

If assertor T(a, k,v).str = OK A coord T (ac,k,v) = (L, L), then
store T (aps, k,v).vl = assertor T'(a, K, v).vl,

where aps = assertor T (a, k,v).ol O

PROOF.

We proceed with the following reasoning. If coord_T(ac, k,v) is (L, L), then by Lemma
38, wistate T(aps,k,v) is not UPDATED. If assertor T'(a,k,v).str is OK, then by
Lemma 21, storeT(aps,k,v).vl is not L, where aps = assertor T(a,k,v).ol. With
the fact that vistate T'(aps,,v) is not UPDATED and by Lemma 40, we can imply
that vilstate T (aps, k,v) is DEFAULT. Therefore, with Lemma 39, the implication is

preserved.

a

We are now ready to prove Property 28’s first part for the first case: assertors’ viewlink
recorded in their respective provenance store is accurate if the update coordinator did

not receive any repair message when the protocol terminates.

Lemma 42. For any x and v, and for some a and o', then the following implication

holds when the ASM terminates at final configuration:

If coord_T(ac, k,v) = (L, L) A coord_T(ac, k,v) = (L, L), then
store_T(aps, k,v).vl = assertor T(d, k,v).ol

where aps = assertor T'(a, Kk, v).ol.

|

PrROOF. We proceed with the following reasoning. The statement holds in the ini-
tial configuration. When the protocol terminates, assertor T (a,k,v).str = OK and
assertor T(d', k,v).str = OK (Lemma 20). Since coord_T (a., k,v) is (L, L), by Lemma
33, log T(d, k,v).changed is FALSE. Therefore, by Lemma 32,
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assertor T (a, k,v).vl = assertor T(d’, k,v).ol (4.1)

and Lemma 41
store T (aps, K, v).vl = assertor_T'(a, Kk, v).vl. (4.2)
From (4.1) and (4.2),
store_T(aps, k,v).vl = assertor T(d, k,v).ol,

such that

aps = assertor T'(a, k,v).ol.
Therefore, the implication is preserved.

|

We now consider the cases where the coordinator received one or two repair requests
from assertors. Lemma 43 shows that after receiving a repair request, the coordinator
knows the requesting assertor’s ownlink, which the coordinator can later use to update

another assertor’s viewlink.

Lemma 43. For any reachable configuration, for any k and v, and for some a, then the

following implication holds:

If coord_T(ac, k,v) # (L, L), then

coord T (ac, k,v).ol = assertor T(a, k,v).ol.

PROOF. We proceed by induction on the length of transitions that lead to the config-
uration, and by case analysis on the kind of transitions. The statement holds in the
initial configuration since table coord_T'(a., k,v) is empty. We now consider only those

transitions that may have an effect on terms in the implication.

recelve_repair:
After this transition, coord_T'(a., k, v) becomes not empty. Meanwhile, coord T (a., k,v).ol
is set to aps, which is provided by repair(/i,v,a;s,aps). By Lemma 33, a,s is equal to

assertor_T(a, k,v).ol. Therefore, the statement is preserved.

send_app:
recetve_app:
timeout _ack:

The statement is preserved by these transitions. After them, assertor T'(a,k,v).ol
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is assigned to a value and assertor T(a,k,v).str is set to READY. By Lemma 33,
coord T(ac, k,v) = (L, L). Therefore, the antecedent is false, which preserves the state-

ment.

a

Lemma 44 shows that after receiving two repair requests, the coordinator ensures that
the destination store to be updated is correct so as to successfully update viewlink in
that store.

Lemma 44. For any reachable configuration and for any x and v, then the following

implication holds:

If coord_T(ac, k,v) # (L, L) A coord_T(ac,k,v) # (L, L), then

coord T (ac, k,v).aqps = coord_T(ac, k,v).ol.

PrOOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since table coord_T'(ac, k,v) is empty and no message is in transit. We

now consider only those transitions that may have an effect on terms in the implication.

Teceilve_repair:
After this transition, coord_T(ac,k,v) is not (L, L). If coord T(a., k,7) is also not
(L, L), then coord_T (ac, k,v).aqps is set to coord_T(ac, k,7).ol. Therefore, the statement

is preserved.

a

Lemma 45 shows the end states of the coordinator and the provenance store that has
been updated when the ASM terminates.

Lemma 45. For any k and v, then the following implication must hold when the ASM

terminates at final configuration:
If coord T(ac,k,v) # (L, L), then

vistate_T(aps, k,v) = UPDATED
/\ store_T(aps, K, U).vl = coord_T(ac, k,v).ol
update_T(ac, k,v, aps) = UPDATED

where aps = coord T (ac, k,v).0dps.

|
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ProOOF. We proceed with the reasoning on Lemma 38. When the ASM terminates,
no message is in transit. In addition, update_T(ac,k,v,aps) # UPDATE. Otherwise,
send_update transition will be fired. Therefore, by Lemma 38, when the ASM termi-

nates, the implication is preserved.
O

We are now ready to prove Property 28’s first part for the second case, i,e., assertors’
viewlink recorded in their respective provenance store is accurate if the update coordi-

nator received a repair message from each assertor before the protocol terminates.

Lemma 46. For any k and v, and for some a and a’, then the following implication

holds when the ASM terminates at final configuration:

If coord_T(ac, k,v) # (L, L) A coord_T(ac,k,v) # (L, L), then
store T (aps, k,v).vl = assertor_T(d', k,v).ol

where aps = assertor T'(a, k,v).ol. O

PrROOF. We proceed with the following reasoning. By Lemma 45, when the ASM
terminates,

store T (aps, Kk, v).vl = coord_T(ac, k,v).ol (4.3)

such that
aps = coord T (ac, k,V).Gqps- (4.4)

With Lemma 44 and (4.4),
aps = coord T (ac, k,v).ol. (4.5)

Since coord_T(ac, k,v) # (L, L) and coord_T(ac, k,v) # (L, 1),
by Lemma 43,

coord T (ac, k,v).ol = assertor_T'(a, K, v).ol (4.6)

and

coord T(ac, k,v).0l = assertor T(d', k,v).ol. (4.7)

Hence, with (4.5) and (4.6)
aps = assertor T'(a, k,v).ol. (4.8)
Therefore, from (4.3), (4.7) and (4.8), when the protocol terminates,

store_T(aps, k,v).vl = assertor T(d, k,v).ol,
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such that

aps = assertor T'(a, k,v).ol.
Therefore, the implication is preserved in the case.

a

After proving that Property 28’s first part holds in the first two cases, we proceed to
the third case where assertors’ viewlink recorded in their respective provenance store is
accurate if the update coordinator received only one repair message before the protocol
terminates. We first need a lemma showing that if the coordinator receives one repair
message, then the destination store to be updated is indicated by the viewlink of the

requesting assertor.

Lemma 47. For any reachable configuration, for any k and v, and for some a, then the

following implication holds:

If coord T(ac, k,v) # (L, L) A coord T (ac, k,v) = (L, L), then

coord_T (ac, k,v).adps = assertor_T(a, k,v).vl.

PRrOOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

receilve_repair:

After this transition, coord_T(ac, k,v) is not empty. If coord T'(a.,r,v) is still empty,
then coord_T(ac, k,v).a4ps becomes equal to agps, which is provided by repair(, v, agps, ol).
By rule post_check (Figure 3.25), agps = assertor_T'(a, k,v).vl. Therefore, the statement

is preserved.

prepare_record:

receive_app:

The statement is preserved by these transitions. After them, assertor_T'(a,k,v).vl are
initialised and assertor T'(a, k,v).str is set to READY. By Lemma 33, coord T (ac, k,v) =

(L, 1). Therefore, the antecedent is false, which preserves the statement.
O
We now prove Property 28’s first part for the third case.

Lemma 48. For any k and v, and for some a and a’, then the following implication

holds when the ASM terminates at final configuration:
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If coord_T(ac, k,v) # (L, L) A coord_T(ac,r,v) = (L, L), then
store T (aps, k,v).vl = assertor_T(d', k,v).ol

where a,s = assertor T (a, k,v).ol.

a

PrROOF. We proceed with the following reasoning. Since coord T(ac, k,v) # (L, L), by
Lemma 45, when the ASM terminates,

store_T(ays, k,0).vl = coord T (ac, K, v).ol, (4.9)
such that
s = c00rd_T(ac, K, V).Adps. (4.10)
By Lemma 47,
coord T (ac, k,v).aqps = assertor_T(a, Kk, v).vl. (4.11)

Since coord T (ac, k,0) is (L, 1), log T(d, k,v).changed is FALSE (Lemma 33). There-
fore, by Lemma 32,

assertor_T(a, k,v).vl = assertor T(d’, k,v).ol. (4.12)

Therefore, with (4.10), (4.11) and (4.12),

a,s = assertor T(d, k,7).ol. (4.13)

By Lemma 43, coord_T(a., k,v).ol = assertor_T(a,r,v).ol. Therefore, with (4.9) and

(4.13), when the protocol terminates,
store T (a,,, k,).vl = assertor_T(a, k,v).ol (4.14)

such that

!/ / —
ays = assertor T'(a', k,).0l.

Since coord T(ac, k,v) = (L, L) and assertor_T(a,k,v) = OK, when the ASM termi-

nates, by Lemma 41,
store T (aps, k,v).vl = assertor_T'(a, k,v).vl. (4.15)

such that

aps = assertor T'(a, k,v).ol. (4.16)
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Therefore, with (4.12), (4.15) and (4.16)
store T (aps, K, v).vl = assertor T (d', r,v).ol, (4.17)

such that

aps = assertor T (a, k,v).ol.

Therefore, from (4.14) and (4.17), Vv € VK, the implication is preserved.

a

Based on the above analysis, we are ready to prove Property 28, i,e., assertors’ viewlink
recorded in their respective provenance store is accurate when the protocol terminates,
pointing to the store where the other assertor in the interaction recorded documentation

about the same interaction.

Theorem 49 (VIEWLINK ACCURACY). F-PReP preserves Viewlink Accuracy property
(Property 28). O

ProOOF. We proceed with the following reasoning. The statement holds in the initial

configuration. We perform case analysis on coord_T(ac, k,v) and coord_T(ac, Kk, D).

(1) coord-T(ac,k,v) = (L, L) AcoordT(ac,r,v) = (L, L):
This is the case where the update coordinator did not receive any repair message with
regard to one interaction. By Lemma 42, the first part of the implication is preserved

in this case.

(2) coord-T(ac,k,v) # (L, L) A coordT(ac,k,v) # (L, L):
This is the case where the update coordinator received two repair messages from both

assertors. By Lemma 46, the first part of the implication is preserved in this case.

(3) coord_T(ac,k,v) # (L, L) Acoord T(ac, k,v) = (L, L):
This is the case where the update coordinator received only one repair message. By

Lemma 48, the first part of the implication is preserved in this case.

By Property 16, store T'(ay, x,v) = (a’,vl’,assertor T (a', k,v).pas), such that ap,, =

assertor_T(a', k,v).ol. Hence, the second part of the implication is also preserved.
Therefore, the implication in Property 28 is preserved.

a

We note that all properties established in the rest of this chapter are preserved under
Assumption 11 (the retry counter of the assertor and coordinator is always greater than
0, i.e., re(a,k,v) > 0 and rc(ae, k,v) > 0). This assumption ensures that transitions

timeout_ack and timeout_uack are always fired whenever there is a timeout event.
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Hence, under this assumption, theorems 22, 27, 49 have established that for one inter-

action:

e Once documentation about the interaction is created, it will end up in a provenance

store;

e The viewlinks and causelinks associated with the interaction are accurate in the

provenance store.

4.5 Summary

In this chapter, we have shown that F-PReP preserves properties TERMINATION, GUAR-
ANTEED RECORDING, CAUSELINK ACCURACY and VIEWLINK ACCURACY. These prop-
erties state that after F-PReP eventually finishes recording interaction records and tak-
ing remedial actions (TERMINATION), these interaction records are guaranteed to be
recorded in provenance stores (GUARANTEED RECORDING) and the links in these inter-
action records are accurate (CAUSELINK ACCURACY and VIEWLINK ACCURACY).

Our proof follows a systematic procedure based on mathematical induction. While
done by hand, we believe it is sufficient to provide confidence that the protocol does
conform to these properties. Previous experience has shown that the ASM formalism is
suitable for mechanical proof derivations, and several algorithms [119, 123, 121], which

are formalised using ASM, have been carried out using Coq [36].

Next chapter will make use of the properties established in this chapter to investigate
the properties of process documentation, especially the retrievability of distributed doc-

umentation.



Chapter 5
Graph-based Analysis

This dissertation aims to address the problem of recording process documentation in the
presence of failures while still ensuring its entire retrievability. We have designed and
formalised a recording protocol F-PReP, and have proved that F-PReP has properties
GUARANTEED RECORDING, CAUSELINK ACCURACY and VIEWLINK ACCURACY. This
chapter investigates the properties of process documentation that is recorded by using
F-PReP. Specifically, we show that the recorded process documentation is complete and

still retrievable in its entirety.

Provenance stores used by an assertor can be classified as two types: the default store
(i.e., the one that an assertor initially used when recording an interaction record) and
alternative stores. When the protocol terminates, there is a final store that an assertor
knows to have successfully recorded its interaction records. The final store can be the
default store or an alternative store. All properties established in Chapter 4 are only

concerned with the final store.

Recall that an assertor sets a timeout when submitting an interaction record to a store.
Due to the impossibility to distinguish store crash from message loss in the event of a
timeout, it may be the case that a provenance store has recorded an interaction record
whilst the assertor sees a timeout event and has to choose an alternative store. Therefore,
the default store and any of the attempted alternative stores may possess duplicate inter-
action records, which means there would be redundant viewlinks or causelinks recorded
in multiple locations (as exemplified in Figures 3.21, 3.22). This however would affect

documentation retrievability.

To investigate this issue, this chapter develops another set of properties regarding the
topological relationship between an assertor’s default store and alternative stores. By
translating these properties to a notion of graph, we provide a global view of how dis-
tributed documentation is connected after the whole process completes its execution
in the presence of failures. Such a graphical representation offers a more intuitive de-

scription of the content of provenance stores than the ASM-based formalism since the

126
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graphical notation helps us to hide details of a provenance store and does not involve the
coordinator. In addition, the graph-based analysis investigates properties regarding the
retrieval of process documentation and facilitates the design of a new traversal function

whist the ASM-based formalism does not deal with these concerns.
This chapter has two contributions:

Firstly, we define graph notions to represent the topology of distributed documentation.
We also introduce a mapping function to convert an ASM configuration to a graph
and perform an exhaustive analysis on the forms of graph. This analysis builds up
our confidence in understanding what is actually recorded in provenance stores in the
presence of failures and more importantly, it facilitates us to demonstrate the properties

of process documentation in provenance stores.

Secondly, we introduce a new query function to retrieve process documentation. The
new function, derived from the exhaustive analysis of graphs, searches any candidate
provenance store and guarantees that any retrieved process documentation is in its

entirety.

This chapter is organised as follows. Section 5.1 defines a notion of graph and a mapping
function to convert an ASM configuration to a graph. Section 5.2 establishes several
graph properties. In Section 5.3, we exhaustively study various forms of graphs regarding
one interaction that may appear. Then we investigate properties for the whole process
documentation in Section 5.4. Finally, Section 5.5 discusses several issues and Section
5.6 concludes this chapter. In the appendix (Section 5.7), we provide proofs for the

properties used for the exhaustive analysis in Section 5.3.

5.1 Definitions

In this section, we introduce a notion of graph to represent the topology of distributed
process documentation spanning across multiple provenance stores. We define and for-
malise graph elements and then introduce a mapping function to produce a graph from

an ASM configuration.

5.1.1 Graph Definitions

To facilitate our discussion, we define a term Interaction context.

Definition 50 (INTERACTION CONTEXT). An interaction context specifies the view of

an interaction, consisting of an interaction key k, and a viewkind v.
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There are two interaction contexts regarding one interaction: the Sender’s and the
Receiver’s. An assertor records an interaction record to a provenance store about its

interaction context.

The state of a provenance store is reflected by a node on the graph and the links recorded
in provenance stores are captured by edges connecting nodes. Since a provenance store
records an interaction record with regard to a specific interaction context, we associate
each node with the interaction context. Therefore, given a node, we can locate an

interaction record in a provenance store.

Definition 51 (NODE). A node contains a pointer to a provenance store that was used
to record an interaction record, and also contains the associated interaction context. We

use notation (aps, k,v) to denote a node.

By Lemma 36, a store has three states regarding an interaction context: (L,vl,(),
(a,vl,assertor_T(a,k,v).pas) and (L, 1, 0). We define the term Node Kind to reflect

the state of a store.

Definition 52 (NoDE KIND). A node kind indicates the state of a node: LINK, FULL,
FINAL and NULL.

We now define the four kinds. In the rest of this chapter, given notations a, a’, vl, vl’
and pas, we mean that a # 1, ' # 1, vl # L, vl'’ # L and pas # 0. Otherwise,

notations L and ) are explicitly specified.

Definition 53 (LINK NODE). A LINK node indicates a provenance store which recorded

a viewlink about an interaction context, i.e., for some vl,
node = (aps, K,v), such that store T(aps, k,v) = (L, vl,0).

Definition 54 (FuLL NODE). A FULL node indicates a provenance store which recorded

an interaction record about an interaction context, i.e., for some a and vl,
node = (aps, K, v), such that storeT(aps,k,v) = (a,vl,assertor T (a, K, v).pas).

Definition 55 (FINAL NODE). A FINAL node is a FULL node and the corresponding
assertor knows that the related provenance store recorded its interaction record.

Formally, for some a and vl,

node = (aps, Kk, v), such that

store_T(aps, k,v) = (a,vl, assertor T (a, Kk, v).pas)
/\ assertor_T(a, k,v).ol = aps
assertor-T(a, k,v).str = ACKED or OK
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According to the protocol, when assertor_T'(a, k,v).str becomes ACKED or OK, the
assertor has received an acknowledgement from its provenance store. Hence it knows

that the store has successfully recorded its interaction record.

Definition 56 (NULL NODE). A NULL node indicates a provenance store which did not

record any information about an interaction context, i.e.,
node = (aps, k,v), such that store_T(aps, k,v) = (L, L,0).

Definition 57 (EDGE). An edge is unidirectional. It starts from a source node and ends

at a destination node. There are two kinds of edges: viewlink edge and causelink edge.

Viewlink and causelink edges reflect underlying viewlinks and causelinks recorded in

provenance stores.

Definition 58 (VIEWLINK EDGE). A viewlink edge starts from node (aps, &, v) and ends

!/

at node {(ays,

K, v"), such that aj, = store T (aps, k,v).vl.
We will identify properties regarding the relationship between the two nodes connected

via a viewlink edge in Section 5.2.

In order to define Causelink Edge, we firstly define a function getC'IDS. This function
retrieves all relationship p-assertions recorded in a provenance store about an interaction
context and then returns a set of triples, each containing a cause interaction context
((+',v)) and an associated causelink (aj,), obtained from those relationship p-assertions.
We note that getCIDS(aps, k, R) returns empty since the receiver (R) of an interaction

never records any relationship p-assertion.

Definition
getCIDS : PID x IK x VK — P (PID x IK x VK)
getCIDS (aps, k,v) =

{{aps, &',0") | {aps, &', 0") € cids, ¥ rel-pa(r, (k,v), cids) € store T (aps, k,v).pas}

Definition 59 (CAUSELINK EDGE). A causelink edge starts from node (aps, k,v) and
ends at node (apg, &', v"), such that {a,s, ',v") € getCIDS(aps, ,v).
We will identify properties regarding the relationship between the nodes connected via

a causelink edge in Section 5.2.

Definition 60 (GRAPH). A graph, G, represents the topology of distributed process
documentation spanning across interlinked provenance stores. It contains Nodes, Node
Kinds, Viewlink Edges and Causelink Edges.
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A node locates an interaction record in a provenance store and the nodekind annotates
what the provenance store actually recorded with regard to an interaction context. An

edge tells us where to find another interaction record via a viewlink or causelink.

Figure 5.1 formalises the above terms.

NODE = PID x IK x VK (Nodes)
PID :  primitive set (PS Identities)

IK :  primitive set (Interaction Keys)

VK = {S,R} (View Kinds)

NK = NODE — KIND (Node Kinds)
KIND = {LINK,FULL, FINAL, NULL} (Kinds)
VE = NODE x NODE (ViewLink Edges)

CE = NODE x NODE (CauseLink Edges)
GRAPH = P(NODE) x NK x P(VE) x P(CE) (Graphs)

Characteristic Variables:
n € NODE, aps € PID, k € IK, v € VK, n € P(NODE), ve € P(VE), ce € P(CE), nk € NK, g € GRAPH

Initial State of Configuration:
gi = (ni,nki,ve;, ce;)
where:
ni =0, nk;=MXapskv-L, wve;=0, ce =10,

F1GURE 5.1: Graph state space

5.1.2 Mapping Function

We define a graph mapping function 7" that translates an ASM configuration to a graph.
Since this chapter is interested in the final graph reflecting the status of provenance
stores after the protocol finishes recording the documentation of a process, this function

is designed to convert a final ASM configuration to a final graph.

Definition
T:C— GRAPH
T(c) :
imitialize g;
for each a,s, k, v, such that store T (aps, k,v) # (L, L,0)
do
nodey < (Qps, K, V);
g.n = g.n U {node };
if store T (aps, k,v) = (L,vl,0) Avl # L
g.nk(nodey) := LINK;
elif assertor T(a, k,v).ol = aps A assertor T (a, k,v).str = ACKED or OK
g.nk(nodey) := FINAL;
else
g.nk(nodey) := FULL;
/

Qs — store T (aps, k,v).vl;
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nodey < (a,g, K, 0);

if store T(ay,, k,7) = (L, L,0)
g.n := gnU{nodey};
g.nk(nodez) := NULL;

g.ve := g.ve U {(nodey,nodes)};

for each (ay, w',v") € getCIDS (ays, K, v)
do

nodesg «— {(al!

ps
g.ce :== g.ce U {(nodey, nodes) };

/ /\.
K 71) >7
return g;

The projecting function T takes a final system configuration, ¢, and produces a graph,
g. The function begins with an empty graph and then looks up each entry of all prove-
nance stores (i.e., for any a,s,v and k, it checks store_T'(aps, k,v)). If the entry is not
empty, then a node is produced and the node’s kind is set. We note that according to
the protocol, if store_T'(aps, k,v) is not empty, it can either be (L, vl,0) or (a,vl, pas)
(Lemma 36). Therefore, the corresponding node kind cannot be NULL and can only be

assigned once according to the definitions of node kind.

The function also adds viewlink and causelink edges to the current graph. If the destina-
tion node (nodez) of a viewlink edge does not exist (i.e., store T'(ay,, x,v) = (L, L,0)),
then the node is added and its kind is set to NULL. Otherwise, nodes will be added to
the graph and assigned a nodekind when the function checks the corresponding entry.
We also note that the destination node of a causelink edge is always FINAL in the final
graph, to be demonstrated in Lemma 69 in Section 5.2. Therefore, nodes does not need

to be added to graph and its kind is not set in this iteration.

5.1.3 Graph Notations

The graph defined in Section 5.1.1 has captured sufficient detail that we need in order
to systematically analyse the topology of interlinked documentation. However, to make
our graph representation more intuitive and neat, we further classify nodes into three

categories: Default Nodes, Intermediary Nodes and Alternative Final Nodes.

Provenance stores used by an assertor can be classified into two types: the default store
(i.e., the one that an assertor initially used when recording an interaction record) and
alternative stores. When the protocol terminates, there is a final store that an assertor
knows to have successfully recorded its interaction records (i.e., the store referred by an
assertor’s ownlink when the protocol terminates.). The final store can be the default
store or an alternative store. When using graph notations, we use a default node to refer

to a default store, an intermediary node to refer to an alternative store which is not the
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final store, and an alternative final node to indicate an alternative store that is the final

store.

In the example of Figure 5.2, the assertor’s default store is PS1, which failed to record
the assertor’s interaction record IR. Then the assertor used three alternative stores
(PS2, PS3 and PS4) and finally recorded IR in PS4. Therefore, PS4 is the final store.
In terms of nodes, PS1 is indicated by a default node, PS2 and PS3 are indicated by

intermediary nodes, and PS4 is indicated by an alternative final node.
%’ =]
IR 7# IR

Assertor a
(dl: PS1, ol: PS4)

FIGURE 5.2: An example of links

Definition 61 (DEFAULT NODES). D_Nodes(k,v) =

{ (aps, k,v) | 3a, aps = assertor T(a, k,v).dl }

By Figure 3.11, assertor T (a, k,v).dl refers to the default link used by assertor a in the

interaction context (k,v).

To facilitate our discussion, we define a new set PSSet(a, k,v) to capture alternative
provenance stores that are not the final store. The set psList(a), defined in Figure 3.11,
is the collection of all alternative stores to be used by assertor a'. When the ASM

terminates, assertor_T'(a, k,v).str = OK (Lemma 20).

Definition 62. PSSet(a,k,v) =

{ aps | aps € psList(a) A aps # assertor_T(a, k,v).ol A assertor T (a, k,v).str = OK }
With PSSet, we define Intermediary Nodes.

Definition 63 (INTERMEDIARY NODES). I_Nodes(k,v) =
{ (aps, k,v) | 3a, aps € PSSet(a,k,v) }

Definition 64 (ALTERNATIVE FINAL NODES). A_Nodes(k,v) =

{ (aps, k,v) | 3a,aps € psList(a) A aps = assertor_T(a, k,v).ol A\ assertor_T(a, k,v).str = OK }

'"We can imply that given aps = assertor T (a, k,v).dl, aps ¢ psList(a).
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We note that for any « and v, there is one element in D_Nodes(k,v) and A_Nodes(k,v),

and an alternative final node is always FINAL.

We now introduce a set of graph notations in Figure 5.3.

Node A € D Nodes(i,v)  ~~~°°7°° Null ——— Link
Node | iv | & I Nodes(i,v) Full Final
Node @ € A Nodes(i, v) ~~ > VLEdge -~~~ ~~> CLEdge

FIGURE 5.3: Graph notations

We use three shapes (triangle, square, circle) to represent nodes (Default Nodes, Inter-
mediary Nodes and Alternative Final Nodes) and use three borders to denote three node
kinds (NULL, LINK, FULL). In addition, we use grey colour to fill a FINAL node. Figure
5.4 gives several examples of nodes represented by the graph notations. A node’s shape

and kind are determined by case analysis in the following sections.

We now give an example demonstrating the graph of a process. We assume there is a
process consisting of four interactions, as shown in Figure 5.5. The interaction i3 is the

effect of interactions i1 and 72, while 4 is the effect of ¢3.

//\\ /
, .
S K /. \'4 . - :
SLYVON LV iV [ARY LV
AR A A

FIGURE 5.4: Examples of nodes

If there was no failure when the five assertors recorded their respective interaction record,
a graph (Figure 5.6) is produced after F-PReP finishes recording. Since each assertor
used its default store to record an interaction record, all the default nodes are FINAL
in the graph, connected by viewlink and causelink edges. If failures happened, then the
graph may vary. One possible graph is given in Figure 5.7. We do not explain why
nodes are connected in this way. We will provide further explanation after establishing

graph properties in the rest of this chapter.

Assertor: il il, ..., i4: interaction keys

Causal relationship:

Interaction: —

al

il

(from effect to cause) *

a2

a4

i4

as

FIGURE 5.5: An example of process

Chapter 4 has proved properties to demonstrate that F-PReP meets requirements CAUSELINK
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ACCURACY and VIEWLINK ACCURACY. These properties are only concerned with the
final store. In order to provide the global topology of distributed documentation, we
investigate a number of properties and graphical representations regarding the topologi-
cal relationship between an assertor’s default store and alternative stores in Sections 5.2
and 5.3.

FIGURE 5.6: Graph produced after F-PReP recorded process documentation in a
failure-free environment

5.2 Graph Properties

One purpose of this chapter is to investigate the topology of a final graph gy, which
is exhibited after F-PReP finishes recording process documentation in the presence of
failures. Since a process consists of a set of interactions, this section analyses graph
topology as a result of two assertors in one interaction finishing recording their interac-
tion records. These properties will be used as building blocks when we investigate the

graph properties of a whole process in Section 5.4.
Lemma 65 states the number of FINAL nodes in an interaction context.

Lemma 65. At final graph gy, given any interaction context (k,v), there is only one

FINAL node (aps, k,v), where a,s = assertor_ T (a, k,v).ol.

a

PROOF

Given an interaction context (k,v), by Guaranteed Recording (Theorem 22),

store T (aps, £, v) = (a,vl, assertor T (a, k,v).pas), such that a,s = assertor_T(a, K, v).ol.
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AN
ZiLS N
N
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FIGURE 5.7: One possible graph produced after F-PReP finished recording in the
presence of failures

By Lemma 20, when the ASM terminates, assertor_T'(a, k,v).str = OK.

Therefore, with function 7', there is one final node associated with each interaction

context (x,v) on g .

Given that assertor_T(a, k,v).ol refers to only one store, there is only one final node in

each interaction context.

a

Lemma 66 states the relationship between the two nodes connected via a viewlink edge:

these nodes are concerned with the two interaction contexts of the same interaction.

Lemma 66. At final graph gs, for any nodes n, n' € gr.n, such that n = (aps, K, v) and

n' = (aps, k', 0"), the following statement holds:

If (n,n') € gy.ve, then

k=K ANV =T

PrOOF. We proceed with the following reasoning. According to function T, when a
viewlink edge is added into the graph, the two nodes connected by the viewlink edge



Chapter 5 Graph-based Analysis 136

share the same interaction key and have opposite viewkinds. Therefore, the statement
holds.

a

Lemma 67 specifies that the FINAL nodes related to one interaction are connected by

two viewlink edges.

Lemma 67. At final graph g¢, for any nodes n, 0’ € gs.n, such that n = (ays, k,v) and

n' = (a,

ps) K,T), the following statement holds:

If gr.nk(n) = FINAL A gy.nk(n') = FINAL, then

(n,n') € grve A (n',n) € gs.ve

PROOF. Given g¢.nk(n) = FINAL and g;.nk(n") = FINAL, by definition of FINAL node,
there exist store T (aps, &, v) and store T (ay,g, k, ), such that a,s = assertor T'(a, x,v).ol,

! !/ -
and ay,, = assertor T'(a', k,v).ol.

In Section 4.4, we have established VIEWLINK ACCURACY property (Theorem 49). This
means that when the ASM terminates, store_T'(ays, k,v).vl =

assertor T(a', k,7).0l and store T(ayg, &,v).vl = assertor T (a, k,v).ol. Therefore,

!/

store T (aps, k, v).vl = aj,

and store T'(ays, k,0).vl = aps.

By function T', when checking store_T'(ays, k,v), a viewlink edge (n,n’) is added into
gy-ve, such that n = (aps, &, v) and n’ = (a,, £, 7). Similarly, when checking
store T (ays, k,7), a viewlink edge (n’,n) is added into gs.ve, such that n’ = (a

;S, K,T)

and n = (aps, K, ).
From the above reasoning, the statement holds.

a

By Lemmas 65, 66 and 67, gy always contains two FINAL nodes connected via two
viewlink edges for a given interaction 4, as shown in the example of Figure 5.8. We
note that Lemmas 65, 66 and 67 do not state the classification of a node. A node’s
classification is determined on a case by case basis, which we will discuss in the next

section. In Figure 5.8, we assume both nodes are alternative final nodes.

Lemmas 68 and 69 specify properties related to causelink edges. Lemma 68 states the

relationship between the nodes connected by a causelink edge.

Lemma 68. At final graph gf, for any nodes n, n' € gr.n, such that n = (aps, K, v) and

!/

pss K5 0), the following statements hold:

n' = (a
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FIGURE 5.8: Interlinked FINAL nodes

If (n,n') € gy.ce, then
k#ZK ANv=SAV =R

PROOF. We proceed with the following reasoning.

Recall function getCIDS(aps, K, v), k" and v’ indicate the interaction context in a cause
interaction of a relationship p-assertion. Since each interaction key is globally unique,
k' is not equal to k. A relationship p-assertion is created in function createP A, which

we recall here:

Definition
createPA : A x IK x DATA x REL — P (PA)
createPA(a, k,d,r) :
pas «— if r=_1
{i-pa(s, )} ;
{i-pa(k, d), rel-pa(r, (k, S), cids)} ,
where cids = {(cl,k', R) | k' € cause(a,d,r) and cl = assertor_T(a, k', R).ol};

return pas;

According to the definition of createPA, the viewkind in the effect interaction of a
relationship p-assertion is the sender (S) while the viewkind in a cause interaction is the

receiver (R). Therefore, v = S and v = R.
O
Lemma 69 states that any causelink edge in the final graph ends at a FINAL node.

Lemma 69. At final graph gy and for any nodes n, n' € gs.n, the following statement
holds:

If (n,n) € gy.ce, then
gr-nk(n') = FINAL.
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PrROOF. We proceed with the following reasoning. From Lemma 68, we know that if

(n,n') € g¢.ce, then n and n’ are in contexts (k,S) and (x/, R), respectively.

By CAUSELINK ACCURACY property (Theorem 49), any causelink is accurate when the
ASM terminates, pointing to a provenance store that recorded the interaction record
about cause interaction (store T'(ayg, &', R) = (a,vl,assertor T(a, x', R).pas), such that
aps = assertor T(a,x’, R).ol). Since assertor T(a,r', R).str = OK when the ASM
terminates, n’ is a FINAL node.

a

Lemma 70 gives the number of causelink edges that may appear in a graph.

Lemma 70. At final graph g¢ and for any node n € g¢.n, |getCIDS(n)| = |{(n,n’)|

(n,n') € gy.ce, for some n'}|. O

PROOF. We proceed with the following reasoning. By mapping function 7', whenever a
node n is added to g¢.n, |getCIDS(n)| causelink edges starting from n are added into
gg-ce. Therefore, the statement holds. O

With Lemmas 68 and 69, any causelink edge starts from a node in the sender’s interaction
context and ends at the FINAL node in the receiver’s context of another interaction. We
now give an example of graph describing causelink edges in Figure 5.9. In Figure 5.9,
there is one effect interaction ¢ and three cause interactions j, £ and [. Assume n is
the node in the context (i,.5), such that |getCIDS(n)| = 3. Therefore, there are three
causelink edges in the graph, each pointing to a FINAL node in the corresponding cause

interaction.

We note that Lemmas 68, 69 and 70 do not state the classification of a node nor the
nodekind of the starting node n. This information is determined on a case by case basis,

which we will discuss in the next section.

FI1cURE 5.9: Nodes connected via causelink edges

Lemma 71 states that the destination node of a viewlink edge or causelink edge is always

in the same graph as those edges.
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Lemma 71. At final graph g¢, for any nodes n and n', the following statement holds:

If (n,n') € grveV (n,n') € gs.ce, then

n' € gr.mn.

PRrROOF. We proceed with the following reasoning.

With function T', we consider a new viewlink edge (n,n') added to gs.ve, such that
n' = {ays, &', 0"). If store T(ayg, &', ") is (L, L,0), then n’ is added to gf.n. Otherwise,
n' is added to gy.n when function T' checks store T'(ayg, x',v"). Therefore, the lemma is

preserved.

We now discuss a new causelink edge (n,n’) added to gy.ce, such that n’ = (a,, &', v').

By CAUSELINK ACCURACY property (Theorem 49), any causelink is accurate when the
ASM terminates, pointing to a provenance store that recorded the interaction record
about a cause interaction (store T'(a,,,x’,v") = (a,vl,assertor T'(a,x’,v").pas), such
that aj,, = assertor T(a,~’,v").0l). Therefore, node n’ is added to gy.n when function

T checks store T (ay,s, k', v").
Based on the above analysis, the lemma is preserved.

a

After identifying basic graph properties, we now perform systematic analysis on graph
topologies, which is exhibited after F-PReP terminates for recording interaction records
of the two assertors in one interaction. We will investigate graph properties for the

whole process documentation in Section 5.4.

5.3 Exhaustive Analysis

In this section, we exhaustively analyse cases that affect the shape of a graph. Since
a viewlink edge and a causelink edge connect two nodes concerned with the same and
different interactions (Lemmas 66 and 68), respectively, we discuss graphs containing
viewlink edges in Section 5.3.1 and then those related to causelink edges in Section 5.3.2
to separate concerns. The proof for several properties used in this section is provided as

an appendix (Section 5.7) at the end of this chapter.
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5.3.1 Viewlink Edges

To facilitate our discussion regarding the use of alternative stores, we begin our discussion
with the case where only an assertor’s default store records a duplicate interaction record
(i.e., Definition 62, PSSet(a, k,v) = (). The results are summarised in Figure 5.10 and
will be explained in Section 5.3.1.1.

Next, we take PSSet(a,k,v) # () into consideration. We consider that any number
of intermediary provenance stores may also duplicately record an assertor’s interaction
record. The results for this case are summarised in Figures 5.12 and 5.13 and will be

explained in Section 5.3.1.2.

5.3.1.1 PSSet(a,r,v) =10

We will have an exhaustive analysis on the topology of graphs generated after the two
assertors in one interaction finish recording their respective interaction record in the

event of failures. In terms of one assertor, there are only the following three cases.

We discuss two situations where an alternative store was/was not used during recording
an interaction record (determined by log T (a, k,v).changed). If an alternative store was
used, we further discuss if the default store recorded any duplicate interaction record,
which would result in redundant information and affect graph topology (determined by

store T (aps, K, v)).

(1) An assertor successfully recorded its interaction record to its default store. Re-
call that log T'(a, k,v).changed indicates if an assertor has used any alternative store

to record its interaction record (Lemma 30). We can formally express this case as follows:
When the ASM terminates at final configuration,
logT(a, k,v).changed = FALSE

(2) An assertor used an alternative store to record its interaction record in the case of

failures and the default store did not record the interaction record.

Formally, when the ASM terminates at final configuration,

/\ { log_T(a, k,v).changed = TRUE

store_T (aps, k,v) # (a,vl, assertor_T'(a, k,v).pas)

such that a,s = assertor T'(a, k,v).dl.
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(3) An assertor used an alternative store to record its interaction record in the case of

failures but the default store also duplicately recorded the interaction record.

Formally, when the ASM terminates at final configuration,

/\ { log_T'(a, k,v).changed = TRUE

store_T (aps, k,v) = (a,vl, assertor_T(a, k,v).pas)
such that a,s = assertor_T'(a, K, v).dl.

Given that there are two assertors (the sender and receiver) in one interaction and there
are totally three cases with regard to each assertor, we have nine cases to consider. Since
the role of the sender and receiver is interchangeable in the nine cases, we reduce the

symmetric ones to the following six cases:

(a) Both the sender and receiver successfully recorded their interaction record to their

respective default store.

Formally, for any a, x and v, and for some a’, when the ASM terminates at final config-

uration:

/\ log_T(a, k,v).changed = FALSE
log_T(a', k,v).changed = FALSE

(b) One assertor successfully recorded its interaction record to its default store; the other
assertor used an alternative store to record its interaction record in the case of failures

and its default store did not record its interaction record.

Formally, for any a, x and v, and for some d’, aps and a;,s, such that a,s = assertor T'(a, r,v).dl

and a{os = assertor_T(a’, k,v).dl, when the ASM terminates at final configuration:

log_T(a, k,v).changed = FALSE
/\ log T(a’, k,v).changed = TRUE

store_T(a,,, k,0) # (a’,vl’, assertor T(d', k,).pas)

(c) One assertor successfully recorded its interaction record to its default store; the other
assertor used an alternative store to record its interaction record in the case of failures

and its default store also duplicately recorded its interaction record.

/
PS>

and a,,; = assertor T(a', x,7).dl, when the ASM terminates at final configuration:

Formally, for any a, x and v, and for some @', a,s and a,;, such that a,s = assertor_T'(a, k,v).dl
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log_T(a, k,v).changed = FALSE
A{ logT(a/,,7).changed = TRUE

store_T(ay,,, #,7) = (a’,vl’, assertor T(d', k,v).pas)

(d) Both assertors used an alternative store to record their interaction record in the case

of failures and their default stores did not record their interaction records.

Formally, for any a, x and v, and for some d’, aps and ag,s, such that a,s = assertor T'(a, k,v).dl

and a,,; = assertor T(a', ,7).dl, when the ASM terminates at final configuration:

log_T(a, k,v).changed = TRUE
/\ store_T (aps, k,v) # (a,vl, assertor_T(a, Kk, v).pas)
log T(a, k,v).changed = TRUE

store_T(ay,q, #,7) # (a’,vl’, assertor T(d', k,).pas)

(e) Both assertors used an alternative store to record their interaction record in the case
of failures; one’s default store did not record its interaction record but the other one’s

default store did.

Formally, for any a, x and v, and for some @/, a,s and a/ ., such that a,s = assertor T'(a, k,v).dl

s
and a,, = assertor T'(a’, k,).dl, when the ASM terminates at final configuration:

log-T(a, k,v).changed = TRUE
/\ store_T'(aps, k,v) = (a,vl, assertor_T(a, k,v).pas)
log_-T(a/, k,7).changed = TRUE

store_T(ay,,, K, V) # (a’,vl’,assertor T(d', K, v).pas)

(f) Both assertors used an alternative store to record their interaction record in the case

of failures and their default stores also duplicately recorded their interaction records.

Formally, for any a, x and v, and for some d’, aps and a;S, such that a,s = assertor_T'(a, k,v).dl

and a,,; = assertor T(a', ,).dl, when the ASM terminates at final configuration:

log-T'(a, k,v).changed = TRUE
/\ store_T (aps, k,v) = (a,vl, assertor_T(a, K, v).pas)
log_-T(a/, k,v).changed = TRUE

store_T(ay,,, #,7) = (a’,vl’, assertor T(d', k,v).pas)

After identifying all possible cases, we show the corresponding graphs produced by each
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case. The results are summarised in Figure 5.10. Since all our discussion in this section
is concerned with one interaction, we omit a node’s interaction key in our graphs for
simplification. Due to the symmetric nature of these cases, we assume viewkinds v and

v are roles of the receiver and sender of an interaction in our graphs.

(eD) (€2) (

FIGURE 5.10: Graph summary (PSSet(a, k,v) = 0)

Given PSSet(a,k,v) = (), only an assertor’s default store may record duplicate inter-
action records. This means there is no intermediary node on graphs. We now discuss
each of the six cases regarding the topology between default nodes and alternative final

nodes.

Case (a):

For any a, x and v, and for some a’, when the ASM terminates at final configuration:

/\ log_T(a, k,v).changed = FALSE
log T(a, k,v).changed = FALSE

Figure 5.10(a) shows the corresponding graph. By Lemma 30, assertor T (a, k,v).ol =
assertor_T(a, k,v).dl and assertor T(d',k,v).0ol = assertor T(a,k,v).dl. Therefore,
there is a default node and no alternative final node in either interaction context. By

Lemmas 65 and 67, the two nodes are FINAL, connected via two viewlink edges.

Case (b):

For any a, £ and v, and for some a’, aps and a/

s’
and a,,; = assertor T(a', x,7).dl, when the ASM terminates at final configuration:

such that a,s = assertor T'(a, k,v).dl
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log_T(a, k,v).changed = FALSE
A{ logT(a/,,7).changed = TRUE

store_T(ay,,, #,7) # (a’,vl’, assertor T(d', K, ).pas)

Figure 5.10(b) shows the corresponding graph. By Lemma 30, assertor_T'(a, x,v).ol =
assertor_T(a, k,v).dl and assertor T(d',k,v).0l # assertor T(a,k,v).dl. Therefore,
there is one default node and no alternative final node in interaction context (k,v) and
there is one alternative final node in the other interaction context (x,v). We now analyse

if there is a default node in interaction context (k,7) on the graph.

By Lemma 82 (proved in Section 5.7),

/\ { store_T(aps, k, v).vl = assertor T(d’, k,v).ol

store_T(ay,g, #,7).vl = L
such that a,s = assertor_T'(a, k,v).dl and a;S = assertor_T(d', k,v).dl.

Since store T'(ays, k,0) # (a’,vl',assertor T(a', k,v).pas), by Lemma 36, the fact that

store T (ays, k,0).vl = L implies that store T(ay,k,7) = (L, L,0). This means map-

/
ps?

store T (ays, k,7). In addition, since store T (aps,k,v).vl = assertor T(da’,x,v).ol and

ping function 7' (Section 5.1.2) does not add node (a, x,7) when checking
assertor T(da', k,v).0l # assertor T(d', k,v).dl, function T also does not add a default
node for interaction context (x,7) when checking store_T'(aps, k,v). Therefore, there is

no default node in interaction context (x,v).

With Lemmas 65 and 67, the default node in context (k,v) and alternative final node

in context (k,7) are FINAL, connected via two viewlink edges.

Case (c):

For any a, £ and v, and for some a’, aps and a/

ps’
and a,, = assertor T'(a’, k,).dl, when the ASM terminates at final configuration:

such that a,s = assertor_T'(a, k,v).dl

log-T'(a, k,v).changed = FALSE
/\ log T(a, k,v).changed = TRUE

store_T(ay,q, #,7) = (a’,vl’, assertor T(d', k,).pas)

Figure 5.10(c) shows the corresponding graph. By Lemma 30, assertor T(a, k,v).ol =
assertor T(a, k,v).dl and assertor T(d',k,v).0l # assertor T(d',k,v).dl. Therefore,
there is one default node and no alternative final node in interaction context (k,v)

and there is one alternative final node in the other interaction context (x,v). Given

/

»s = assertor T(a', k,v).dl,

store T (ayg, k,0) = {(a’,vl’,assertor T(a', k,v).pas), where a
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there is a default node (which is FULL) in interaction context (x,7).

By Lemma 80 (proved in Section 5.7), store_T (ay,, #,0).vl = assertor T(a, x,v).ol, such
that a,,, = assertor T'(a’,k,v).dl. This means the default node in interaction context

(k,7) is connected with the default node in context (k,v) via a viewlink edge.
With Lemmas 65 and 67, we can express the corresponding graph in Figure 5.10(c).

Case (d):

For any a, £ and v, and for some a’, aps and a/

ps’
and a,,; = assertor T(d', x,7).dl, when the ASM terminates at final configuration:

such that a,s = assertor_T'(a, k,v).dl

log_T(a, k,v).changed = TRUE
/\ store_T'(aps, k,v) # (a,vl, assertor_T(a, k,v).pas)
log T(a/, k,7v).changed = TRUE

store_T(ay,,, k,0) # (a’,vl’,assertor T(d', k,).pas)

Figure 5.10(d) shows the corresponding graph. By Lemma 30, assertor T (a, k,v).ol #
assertor_T(a,k,v).dl and assertor T(d',k,v).0l # assertor T(a,k,v).dl. Therefore,
there is an alternative final node in either interaction context. We now analyse if there

is a default node in either interaction context on the graph.

By Lemma 87 (proved in Section 5.7),

/\ { store_T(aps, k, v).vl = assertor T(d, K, 7).ol

store T (&, /i, 0).vl = L
such that a,s = assertor T'(a, x,v).dl and ay,, = assertor T(a', x,v).dl.

Since store_T'(aps, k,v) # (a,vl,assertor_T(a, k,v).pas), by Lemma 36, the fact
store T (aps, k,v).vl = assertor T(a,,, x,0).ol infers that store T'(aps, x,v) = (L,vl,0),
such that vl = assertor T (ajs, k,7).ol. This means that there is a default node (which

is LINK) in interaction context (k,v) on the graph.

Since store_ T (ays, k,0) # (a’,vl', assertor T (da', k,7).pas), by Lemma 36 and the fact

store T'(ay, k,0).vl = 1, we can infer that store T'(a,,, %,7) = (L, L,0). This means
that function 7" does not add node (a,, #,7) when checking store T'(ayg, #,7). In ad-
dition, since store_T(aps, k,v).vl = assertor_T(d’, k,v).ol and assertor_T(d', k,v).ol #
assertor T'(d', k,v).dl, mapping function T does not add a default node for interaction
context (xk,v) when checking store_T'(aps, k,v). Therefore, there is no default node in

interaction context (k,7) on the graph.
With Lemmas 65 and 67, we can express the corresponding graph in Figure 5.10(d).

Case (e):
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/
ps’

and a,,; = assertor T(a', x,7).dl, when the ASM terminates at final configuration:

For any a, x and v, and for some o', aps and al,, such that aps = assertor_ T'(a, k,v).dl

log_T(a, k,v).changed = TRUE
/\ store_T(aps, k,v) = (a,vl, assertor_T(a, k,v).pas)
log T(a’, k,v).changed = TRUE

store T (a5, K, V) # (a’,vl’', assertor T'(da’, k,).pas)

Figure 5.10(el) shows the corresponding graph. By Lemma 30, assertor_T'(a, k,v).ol #
assertor T(a, k,v).dl and assertor T(da',k,v).0l # assertor T(d',k,v).dl. Therefore,
there is an alternative final node in either interaction context. We now analyse if there

is a default node in either interaction context on the graph.

By Lemma 88 (proved in Section 5.7), there are two subcases.
Case (e.1):

/\ { store_T(ays, k, v).vl = assertor_T(d’, k,7).0l

store_T(ay,g, K, 0).vl = L

Given store T (aps, k,v) = (a,vl, assertor_T(a, k,v).pas), such that aps =
assertor_T'(a, k,v).dl, there is a default node (which is FULL) in interaction context

(K, v).

Since store T'(ays, k,v) # (a’,vl’,assertor T(a', k,v).pas), by Lemma 36 and the fact
that store T'(ays, #,7).vl = L, we can infer that store T'(ay,,#,v) = (L, L,0). This

/
ps?

dition, since store_T(aps, k,v).vl = assertor_T(d', k,v).ol and assertor_T(d', k,v).ol #

means function 7" does not add node (aj,g, k,7) when checking store T (a,s, #,v). In ad-

assertor_T(d', k,7).dl, function T does not add a default node for interaction context
(k,7) when checking store_T'(aps, k,v). Therefore, there is no default node in interaction

context (k, ) on the graph.
With Lemmas 65 and 67, we can express the corresponding graph in Figure 5.10(el).

Case (e.2):

/\ { store_T(aps, k,v).vl = assertor T (d', k,v).dl

store_T(ay,g, %, 7).vl = assertor T'(a, k,v).ol

Figure 5.10(e2) shows the corresponding graph. Given store T'(aps, k,v) =
(a,vl,assertor_T(a, k,v).pas), such that a,s = assertor_T'(a, k,v).dl, there is a default

node (which is FULL) in interaction context (k,v).

Since store T (ays, k,0) # (a’,vl'; assertor T(a', k,7).pas), by Lemma 36 and the fact
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store T'(ay,, k,0).vl = assertor T'(a, k,v).o0l, we can infer store T'(a,,, x,v) = (L,vl,0),
such that vl = assertor_T(a, k,v).ol. This means there is a default node (which is LINK)

in interaction context (k,v).
With Lemmas 65 and 67, we can express the corresponding graph in Figure 5.10(e2).

Case (f):

For any a,  and v, and for some d/, aps and a/

ps
and a;)s = assertor T(a’, k,v).dl, when the ASM terminates at final configuration:

such that a,s = assertor_T'(a, k,v).dl

log_T(a, k,v).changed = TRUE
/\ store_T (aps, k,v) = (a,vl, assertor_T(a, K, v).pas)
log_-T(a/, k,7).changed = TRUE

store_T(ay,s, #,7) = (a’,vl’, assertor T(d', K, v).pas)

Figure 5.10(f) shows the corresponding graph. By Lemma 30, assertor T(a, k,v).ol #
assertor_T(a, k,v).dl and assertor T(d',k,v).0l # assertor T(a’,k,v).dl. Therefore,
there is an alternative final node in either interaction context. We now analyse if there

is a default node in either interaction context on the graph.

Given store T (aps, k,v) = (a,vl, assertor_T(a, k,v).pas), such that
aps = assertor T (a, k,v).dl, there is a default node (which is FULL) in interaction context
(K, v).

Given store T'(ayg, #,v) = (a’,vl’, assertor T(a', x,7).pas), such that

aps = assertor T(a',r,v).dl, there is a default node (which is FULL) in interaction

context (k,T).
By Lemma 89 (proved in Section 5.7),

/\ { store_T (aps, k,v).vl = assertor_T(d', k,7).ol

store_T(ay,g, %, 0).vl = assertor T (a, k,v).dl
There are two viewlink edges each starting from a default node in the graph.

With Lemmas 65 and 67, we can express the corresponding graph in Figure 5.10(f).

5.3.1.2 PSSet(a,k,v) #0

After discussing the case where only an assertor’s default store may record a dupli-
cate interaction record (i.e., PSSet(a,r,v) = 0), we now take PSSet(a,k,v) # 0 into
consideration, where any number of intermediary provenance stores may also record a

duplicate interaction record.
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According to the definition of PSSet(a, k,v) (Definition 62), for any a,s € PSSet(a, k,v),
aps is not the default store nor the final store used by assertor a in interaction context
(k,v). Therefore, when assertor a finishes recording its interaction record, the presence
of PSSet(a,r,v) # () does not alter the existing topology of a graph as summarised in
Figure 5.10.

If a provenance store referred by the element in PSSet(a, k,v) recorded any duplicate
interaction record, an intermediary node and an associated viewlink edge would be
added into the graphs in Figure 5.10. By Lemma 36 and Lemma 91 (proved in Section
5.7), we can infer that given a,s € PSSet(a, r,v) and store_T(aps, k,v) # (L, L,0), an
intermediary node, (aps, k,v), is a FULL node. Lemma 91 also specifies that a viewlink
edge starting from (a,s, K, v) always ends at the default node of the opposite view in the

same interaction.

Since there may be several intermediary nodes regarding the same interaction context,
to facilitate our presentation, we use a star * to indicate any number of intermediary
nodes (num > 0). In the example of Figure 5.11, there are several intermediary nodes
in the sender’s interaction context, each connected to the same node in the receiver’s
interaction context via a viewlink edge. This can be simplified by using a star * on the

graph.

We augment Figure 5.10 with any number of intermediary nodes and associated viewlink
edges to have a generic representation, as shown in Figure 5.12. We note that Graph
(A) remains the same because no failure occurred and hence no alternative store was
used by each assertor. Since notation  represents any number of nodes (num > 0),

Figure 5.12 includes the cases in Figure 5.10.

FIGURE 5.11: Grouping multiple intermediary nodes

We also note that if the destination node of a newly added viewlink edge does not exist,
a NULL node is added to the graph according to the mapping function 7. Graph (D)
and Graph (E) in Figure 5.12 show the presence of NULL nodes.

By considering the symmetric cases of Figure 5.12, we have given in Figures 5.12 and
5.13 all possible graphs that can be produced after two assertors in an interaction finish
recording their interaction record in the presence of failures. This summary will be used

when we explore the properties of process documentation in the next section.
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() (©)
FIGURE 5.12: Graph summary (PSSet(a, k,v) # 0)

*

%
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FIGURE 5.13: Graph summary (symmetric cases of Figure 5.12)
5.3.2 Causelink Edges

In this section, we analyse graphs containing causelink edges.

Figures 5.12 and 5.13 have summarised all possible graph topologies with regard to one
interaction. By Lemmas 68 and 69, a causelink edge starts from a node in the sender’s

context and ends at the FINAL node in the receiver’s context of another interaction.
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We amend Figures 5.12 and 5.13 by adding causelink edges to all nodes (except LINK
nodes?), which are in the sender’s context®. By Lemma 92 (proved in Section 5.7), all
causelink edges associated with the same cause interaction context (x, R) share the same

destination node.

We now illustrate the amending of Graph (D’) of Figure 5.13. We assume Graph (D’)
is concerned with interaction j. For simplification, we also assume there is only one
relationship p-assertion, which has only one cause interaction 7 and hence one causelink.
Therefore, all the provenance stores duplicately recording the relationship p-assertion
share a same causelink. The produced graph is shown in Figure 5.14, where there is
only one causelink edge starting from any node (except the LINK node) in the sender’s
interaction context (j,S) and ending at a same destination node, which is a FINAL node

in interaction context (i, R).

We have demonstrated the case where there is only one relationship p-assertion with
only one cause interaction in an interaction record. We can easily extend the discussion
to the case where there are multiple relationship p-assertions in an interaction record,

each having multiple cause interactions.

FIGURE 5.14: Graph (D’) in Figure 5.13 with causelink edges appended

Lemma 65 has stated that there is one FINAL node in each interaction context and
Figures 5.12 and 5.13 have all graph topologies. Therefore, we can come to a general
conclusion: a causelink edge connects any two graphs in Figures 5.12 and 5.13, provided
that the source node is either FULL or FINAL and the connection is compliant with

Lemmas 68, 69 and 70. Figure 5.15 gives an example.

2A LINK node reflects a provenance store which does not record any causelink.
30nly the sender of an interaction creates and records relationship p-assertions containing causelinks.
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FIGURE 5.15: Graphs (B’) and (D’) in Figure 5.13 connected via causelink edges

5.4 Process Documentation Properties

In the previous sections, we discussed possible graph topologies after the two assertors
in one interaction finish recording their interaction record in the presence of failures.

This section investigates the properties of the whole process documentation.

Given that a process consists of a set of interactions, we use the induction on the
interactions of a process to show the documentation of a whole process is guaranteed to
be recorded in provenance stores and any links are accurate. In the inductive step, i.e.,

for each interaction of a process, we reuse the properties established for F-PReP.

5.4.1 Modeling Process

First of all, we extend the ASM to consider the execution of a process [76].

A process is a causally connected set of interactions between actors involved in that

process.

To describe this execution formally, we also define the following state space [76] for the

execution of the set of actors.

Since an actor behaves upon the receipt of an application message, we model the state of
actor (AS) as data within received application messages, where messages are identified

by interaction keys (IK). We also define a table APPS mapping actor identities (AID) to
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AS = P(DATA x IK) (Actor States)
AppS = AID — AS (Application States)
APC = ApPPSxC (Provenance-aware Application States)

Characteristic Variables:
(d,k) € AS,

as € APPS,

apc € APC,

ce C,

(as,c) = apc

F1GURE 5.16: Extended ASM state space

actor states. The configuration of a provenance-aware application?, modelled by APC,
is defined by the combination of the state of all actors in the system combined with
the configuration (C) of F-PReP’. The execution of actors following Figure 5.17 can
be modeled by rules that express the transition of states when sending and receiving

application messages®.

produce_app(as, ar, aps, d) :
//triggered when d is to be sent by as to a,.
—{

k «— newldentifier(as, a,);

send(app(d, K, aps); Gs, a'T);

}

consume_app(as, ar, aps, K, d) :
app(d, k, aps) € k(as, ar)
—{
receive(app(d, k, aps), as, a,);
as(ay,) = as(a,) ® {{d,k)};
// business logic

}

FI1GURE 5.17: Application transitions

For simplification, we use p_app and c_app to denote transitions produce_app and
consume_app, and use s_app and r_app to denote F-PReP’s transitions send_app and

receive_app (Figures 3.23 and 3.24).

With these definitions, the execution of an interaction can be denoted as

asi —p_app aso —c_app ass.

4We term a provenance-aware application as an application that creates and records process docu-
mentation.

This configuration is defined in the extended system state space in Figure 3.17.

5The application message contains an ownlink (a,s), application data (d) and interaction key (k) in
order to be compatible with the definition in F-PReP.



Chapter 5 Graph-based Analysis 153

For simplification, we express the above notation as
asi (p-app; c_app) @53

7

Given that a process consists of a set of interactions, the execution of a process’ can be

represented as
*
50 (p-app; c-app) V51>

where asg and asy are the initial state and final state of the assertors in the process,

respectively.

We note that the sender in the first interaction of a process does not produce any

relationship p-assertion since the first interaction is not caused by other interactions.

In a provenance-aware application, application transitions and F-PReP transitions are

coupled together following Definition 72.

Definition 72. Let ¢ be any application or F-PReP transition or a merged transition of

both, for any configurations, (asi,c1) and (ase, c2), the following transition is allowed:

(asi,c1) — (asz, c2)

if one of the following conditions hold:

1. if asy —p_app 52, then c¢1 — 5 qpp C2.
2. if as1 —c_app a2, then c1 — gy Co.

3. if ¢ —¢ co, such that ¢t # s_app and r_app, then as; = ass.

When the p_app or c_app transition is fired in the application, the corresponding s_app
or r_app transition is fired as well, which means the application and F-PReP transitions
are merged together. We note that the pseudo-statements shared by the transitions only

execute once.

Therefore, the execution of the application is coupled with the execution of F-PReP
via corresponding rules for sending and receiving messages. Using this definition, Sec-
tions 5.4.2 and 5.4.3 analyse the properties of process documentation recorded after the

provenance-aware application is complete.

"We assume that a process always starts from a transition p_app.
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5.4.2 Guaranteed Recording, Viewlink Accuracy, Causelink Accuracy

In this section, we demonstrate that process documentation recorded using F-PReP is
guaranteed to be recorded in provenance stores and we use graphical representation to

show that all viewlinks and causelinks in the process documentation are accurate.

as,c,g denote an actor state, a system configuration and a graph, respectively
s_app, r_app denote transition send app and receive_app, repectively
p_app, ¢_app denote transition produce _app and consume_app, repectively
others denotes F-PReP transitions other than send app and receive _app

——»* denotes multiple transitions
denotes a pair of coupling states <as, ¢>, pointing from as to ¢

\%
l denotes a mapping from c to a graph g, using function 7, such that g = 7(c)

FIGURE 5.18: Transition notations

Our proof is based on the induction on the interactions of a process. To better illustrate
the proof, we use three state transition diagrams shown in Figures 5.19, 5.21, and 5.22.

These figures follow the notations defined in Figure 5.18.

Lemma 73. As depicted in Figure 5.19, for any application state, as;, reachable from

*
(p-app; c-app
— 7 apc; with apcy = (asg, co) and apc; = (asj, c;); the following statements hold when

wniatial state asg, where asy — ) s for all apc; reachable from apcy: apco

using F-PReP to record process documentation in the presence of failures:

1. [Process Recording Termination] there exists a final configuration apcy = (as;, cs),

such that apc; —{ apcy without application transitions;

*

2. |Guaranteed Recording| the documentation of the process, asg — (p_app; c.app)

as;, is recorded in provenance stores at cy;

3. if graph g5, produced by T (cy), is not empty, then gy has the following properties:

(3.a) [Viewlink Accuracy] for any node n € gs.n, such that n = (aps, k,v) and
gs.nk(n) = FINAL, then there is only one viewlink edge (n,n') € gr.ve, where
!/

n' = (ays, K, 0) and gy.nk(n') = FINAL, for some a,.

(3.b) [Causelink Accuracy] for any node n € gg.n, such that n = (aps, K, S) and
gf.nk(n) = FINAL, then |getCIDS(n)| = |{(n,n)|(n,n) € gs.ce}|, where n' =
(als, K, R) and gy.nk(n') = FINAL and k" # &, for some a]

ps) ps*
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i
.Y .
(s_app; r_app) others
' l ' l
8o 8y

FIGURE 5.19: State transition diagram depicting Lemma 73

In Figure 5.19, the application proceeds from an initial state asy to some final state as;
after a serial of interactions. Because of system coupling, the provenance-aware applica-
tion also proceeds from an initial state (asg,co) to some state (as;, c;). However, there
may be interaction records remaining to be recorded, thus the provenance-aware appli-
cation finishes recording them without using application transitions (denoted by others
in the figure). Finally, the provenance-aware application reaches final state (as;, cf). By

T(cy), we can obtain graph gy, which exhibits Properties (3.a) and (3.b).

Properties (3.a) and (3.b) state the topology of all FINAL nodes in gs. Essentially,
Properties (3.a) and (3.b) define the backbone of gy, following a pattern as illustrated
in Figure 5.20. In Figure 5.20, we assume each node is an alternative final node, which
can be other type of node. We also use N to denote |getCIDS(n)| and only show one
destination node for N causelink edges to simplify the graph. In general, each causelink

edge can have a different destination node.

i, J, k: interaction keys
N: the number of causelink edges, each pointing to another FINAL node.

For simplification, we omit the store’s identity of a node and assume N causelink
edges share a same destination node.

F1cURE 5.20: A pattern of FINAL nodes

PROOF. Our proof proceeds by induction on the length of the transition sequence from

aso as;.

_) *
(p-app; c-app)

In the base case, asg equals as;, hence no interaction has taken place, and no application
transition occurred, and process documentation is empty, and g; is empty. Therefore,

the lemma holds trivially.

In the inductive case, as shown in Figure 5.21, if asg —>>(kp,app' capp) O50> then by Defini-

* ¢i- As inductive hypothesis, we assume that (1) there

(s-app; r-app)
exists a final configuration (as;, c¢;.), such that (as;, ¢;) —7 (as;, ¢;) without application

tion 72, we have ¢cg —
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transitions; (2) process documentation about asg — (papp: c.app) @i Was recorded in a
_app; c.

set of provenance stores at ¢;; (3) graph g;, produced by T'(c;), preserves the following

properties:

* *
(s_app; r_app) others
T T
8o 8i

FIGURE 5.21: State transition diagram depicting the inductive hypothesis for proof of
Lemma 73

e for any node n € g;.n, such that n = (aps, &, v) and g;.nk(n) = FINAL, then there is

only one viewlink edge (n,n’) € g;.ve, where n’ = (a,, &, ) and g;.nk(n’) = FINAL;

e for any node n € g;.n, such that n = (aps, k,S) and g;.nk(n) = FINAL, there
are |getCIDS(n)| causelink edges (n,n') € g;.ce, where n’ = (a,,, +’, R) and
gi-nk(n’) = FINAL and &’ # k.

We now consider the step as; — (_app; c.app) @55- By Definition 72, o — (s_app; r_app) -
This inductive step is depicted in Figure 5.22. We note that this application transition
can occur at any time after configuration (as;, ¢;). It does not have to wait for the record-
ing of p-assertions to finish. We firstly establish that there exists a final configuration

(asj,cy), where process documentation is recorded. Then we establish g;’s properties.

as, > as, > as;

' (p_app;c_app) (p_app; c¢_app) :

1 1 b o e e e

! booeonenen s 1 H :

1
c > C. > ¢ »C. » C
(s_app; r_app) ! others X (s_app, r_app) 7 others 4
T T T

&o 8i gr

FIGURE 5.22: State transition diagram depicting the inductive step for proof of Lemma
73

(1) We establish the presence of a final configuration for the process. By inductive
hypothesis, we know (as;, c;) is the final configuration for all prior interactions. Since
aS; — (p_app; c-app) @Sj 18 about one interaction, by the ASM’s TERMINATION property

(Theorem 15), there exists a final configuration for the interaction, where documentation
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about this interaction is guaranteed to be recorded in provenance stores. This means
that there are a finite number of transitions from ¢; to a final system configuration
cy without using application transitions. Therefore, there exists a final configuration,

(asj,cy) for the process asyg — as;.

*
(p-app; c-app)

(2) By Theorem 22, the sender and receiver’s interaction records about interaction

as; as; are guaranteed to be recorded at cy. With inductive hypoth-

(p-app; c-app)

esis, we know that documentation about prior interactions, asg —>’(*p app: capp
_app; c_
been recorded at c,. Therefore, process documentation about asg —>ka, app; c.app)

) asi, has
as; is

recorded at cy.

(3) In the following properties, we establish the topology of distributed process docu-
mentation. Since (as;,cz) —pqq (asj,cr) is about one interaction and the interaction
key 7 is unique in the process, the subgraph ¢’ with regard to this interaction is produced

independently of the rest of the graph.

(3.a) By Lemma 65, ¢g' contains two FINAL nodes, n = (aps, j, v) and n’ = (a, j, ), for
some aps and a,,. By Lemma 67, (n,n') € g’.ve and (n’,n) € g’.ve. Therefore, with

inductive hypothesis, gy preserves Property (3.a).

(3.b) By Lemma 65, one FINAL node n, (aps,j,S), is produced in the receiver’s inter-
action context in ¢’. Since ¢’ C gy, we have n € gr.n. By Lemma 70, |getCIDS(n)|
causelink edges (n,n’) are added in gy.ce, i.e., |getCIDS(n)| = |{(n,n")|(n,n’) € gs.ce}|.
By Lemmas 68 and 69, for each of the newly added causelink edges, we have n/ =
(aps, 1, R) and gg.nk(n') = FINAL, such that i # j. Therefore, with inductive hypothe-
sis, gy preserves Property (3.b).

a

Essentially, (3.a) states that any two FINAL nodes in the opposite views with regard to
a same interaction are interlinked via viewlink edges; (3.b) states that any FINAL node
in the sender’s context in an interaction connects to the FINAL node in the receiver’s
context of another interaction. By applying the two conclusions to all FINAL nodes in a

graph, the pattern in Figure 5.20 appears.

This pattern has been exemplified by the graph in Figure 5.6 in Section 5.1.3, which
is produced after F-PReP finishes recording process documentation in a failure-free
environment. Recall that Section 5.3.2 has drawn a conclusion: a causelink edge connects
any two graphs in Figures 5.12 and 5.13, provided that the source node is either FULL
or FINAL, and the connection is compliant with Lemmas 68, 69 and 70. With this
conclusion, we give an example of a graph (Figure 5.23) produced after F-PReP recorded

process documentation in the presence of failures.

We note that there are many redundant nodes (FULL and LINK nodes) on the graph

(Figure 5.23), indicating garbage information (i.e., duplicate or useless documentation)
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recorded in provenance stores. As will be shown in the next section, redundant nodes are
not on the path of retrieving process documentation. Therefore, the garbage information

can be safely removed from stores, which we will discuss in Section 5.5.2.

i3,R

il,R il,R

k
\
RN . LU ;
ZilS™ iL.§ @ Si2Sh | 128 @
7 s S

FIGURE 5.23: One possible graph produced after F-PReP finished recording in the
presence of failures

After establishing that process documentation recorded using F-PReP is guaranteed
to be recorded in provenance stores and all viewlinks and causelinks in the process
documentation are accurate, we now demonstrate the entire retrievability of distributed

documentation.

5.4.3 Documentation Retrievability

In this section, we refer to Figures 5.19, 5.21 and 5.22 when illustrating the proof.

5.4.3.1 Original Query Algorithm

A query algorithm has been developed [117] to retrieve process documentation which was

recorded in a failure-free environment. We revise this algorithm in function get ProDoc.

Function get ProDoc takes a node n and a final graph g as input and returns the process
documentation of a data item. We assume the data item is d;, produced in process

asg ) as; (Figure 5.19). We assume that this function starts searching

% *
(p-app; c-app
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from the node in the receiver’s interaction context (j, R) 8. Therefore, a starting node n,
(aps,j, R), is assumed as the initial input of the function, where ap, is the default store

used in interaction context (j, R).

Definition
getProDoc: NODE x GRAPH — P(RECORD)
getProDoc(n, g) :
initialize doc;
doc := doc U {store_T(n)};
if ((n,n') € g.ve)
doc := doc U {store_T(n')};
for each (n/,n") € g.ce
doc := doc U getProDoc(n”, g);

return doc;

Although the original query algorithm [117] does not involve g, we include it in order to
simplify the presentation of get ProDoc. For example, when dealing with causelinks, we
do not need to express low level details such as the content of a relationship p-assertion,

which has been captured by the definition of Causelink Edge.

Function getProDoc recursively retrieves interaction records from both views of each
interaction of the process that led to d;. The destination node of a viewlink edge or
causelink edge indicates the next location to retrieve an interaction record. According
to the definition of a node, notation store_T'(n) is equivalent to store_T'(aps, j, R), which

simplifies our presentation.
To facilitate our further discussion, we define a term Directed Causal Path.

Definition 74 (DIRECTED CAUSAL PATH). A directed causal path consists of a sequence
of vertices (i.e., nodes), ni, na, ..., Ny, such that fori =1, 2, ..., m—1 and for some

aps and K, the following conditions are satisfied:

\/{ (ni,niy1) € g.ce

(ni,niy1) € g.ve Ang = (aps, K, R)

On a directed causal path, any two adjacent nodes are connected via a causelink edge
or viewlink edge, representing links recorded in provenance stores. A causelink edge
connects two nodes that can tell us where to find interaction records documenting an
application’s output data produced from an input data. A viewlink edge (n;,n;+1) €

g.ve, where n; is associated with a receiver’s interaction context, connects two nodes that

8Similar discussion can be easily extended to the case of the sender, which we omit.
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can help us to locate the interaction record documenting where a received input data
was from, which was the output data produced by the sender in another interaction.
Therefore, by following the directed causal paths, we can retrieve distributed process

documentation describing how a data product was derived.

We note that by Figure 5.20, a viewlink edge (n;;+1,n;) € g.ve, where n; = (aps, &, R),
may exist but is not on the directed causal path. The presence of such a direction sup-
ports functionalities such as verifying two views’ knowledge about the same interaction
[76].

Essentially, getProDoc traverses by following any directed causal paths starting from
a root node, say (aps,j, R). The retrieved process documentation has a form of tree
structure with the root being the interaction record about interaction context (j, R),
which is the first interaction record to be retrieved. In the example of Figure 5.5, let n
be (aps, 14, R), where ayp, is the default store used by assertor as and gy is the graph on
Figure 5.6. Function getProDoc(n, gf) returns the entire process documentation and its
retrieving path is shown on Figure 5.24. Since all default provenance stores successfully
record interaction records in a failure-free environment, the nodes that get ProDoc(n, g¢)

visits are the default nodes of each interaction, which are all FINAL.

FIGURE 5.24: Retrieving path based on Figure 5.6

5.4.3.2 Retrieval Function Properties

The termination and completion properties of the original query algorithm [117] has not
been formally established. We now establish them based on function get ProDoc, which
is crucial to establishing the retrievability of process documentation. We firstly identify

Lemma 75 showing that the graph is acyclic.
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Lemma 75 (DIRECTED AcCYCLIC GRAPH). Process graph has no directed causal path

that starts and ends on the same node. O

PROOF. Our proof proceeds by induction on the length of the transition sequence from

aso as;, depicted in Figure 5.19. In the base case, asg equals as;, hence

*
" (p-app; c-app)
no interaction has taken place, and gy is empty. Therefore, the lemma holds trivially.

In the inductive case, as shown in Figure 5.21, if asg —)Ekp,app' c.app) 950> then the
inductive hypothesis states that graph g¢; has no directed causal path that starts and

ends on the same node.

We now consider interaction as; — (,_app; c.app) @5; (Figure 5.22). Let n; be any of the

two nodes produced regarding interaction j. Since an interaction key is globally unique,

*

i was not used in process asyg —
J p 0 (p-app; c-app

) asi and hence n; ¢ gi.
We discuss the two nodes added into g; to form gy.

1. nj = (aps, J,9):
The only permitted directed causal paths starts by following causelink edges from this

node, which lead to nodes in g;.

2. nj = (aps, J, R):
The only permitted directed causal path starts by following a viewlink edge (n;, n;> €

gg-ve, where n’; = (a,, j, S).

Finally, given n; ¢ g¢;, there is no edge starting from a node in g; and ending at n;

Lemma 71). Therefore, for any node n; regarding interaction as; — (, wop: c.app) @Si,
J (p-app; c-app) @]

there is no directed causal path that starts and ends on the same n;.

With inductive case, we have shown that g; has no directed causal path that starts and

ends on the same node, which preserves the statement.
O

Lemma 76 (RETRIEVAL TERMINATION). Function getProDoc terminates. O

PrROOF. We proceed by the following reasoning. By definition, getProDoc retrieves
interaction records by following directed causal paths from a starting node. With Lemma
75, getProDoc does not infinitely retrieves a same node. Since the first interaction in
the process is not caused by other interactions, the recursion terminates when there is

no further cause interaction. Therefore, function get ProDoc terminates.
O

Next, we establish that function get ProDoc returns entire process documentation.
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Definition 77 (ENTIRE PROCESS DOCUMENTATION). The entire documentation of a
process consists of a set of interaction records about all interaction contexts of the process,

and each interaction record is about a unique interaction context.

Recall that an interaction context describes a view (sender or receiver) of an interaction
and an interaction record is created by the sender or receiver describing its view of the
interaction. Therefore, interaction records about all interaction contexts of a process are
made by both the sender and receiver of each interaction of the whole process. If each
interaction record is about a unique interaction context, then any two interaction records
are not about the same interaction context, which means process documentation has no
redundant interaction record and only contains the necessary information in order to

determine the provenance of a data item.

In the example of Graph (E) in Figure 5.12, all the nodes in the receiver’s context
indicate an interaction record documenting the same interaction. So entire process
documentation contains only one interaction record from the receiver’s context of that
interaction but the interaction record may be obtained from any node of the receiver’s

context.

Lemma 78 (COMPLETE RETRIEVAL). After F-PReP finishes recording process doc-
umentation in a failure-free environment, function getProDoc retrieves entire process

documentation. O

PROOF. We proceed with the following reasoning. Since getProDoc retrieves process
documentation recorded in a failure-free environment, the starting node it begins with
is a default node, which is FINAL. By Lemma 65, there is only one FINAL node in each

interaction context and by Lemma 76, the function terminates.

The following proof is based on the induction on the length of the transition sequence

*

from asy — )
(p-app; c-app)

as; in Figure 5.19.

In the base case, asg equals asj, hence no interaction has taken place and process doc-
umentation is empty. Therefore, the lemma holds trivially. In the inductive case, the

inductive hypothesis assumes that after F-PReP finishes recording process documenta-

*
(p-app; c-app)

getProcDoc(n;, g;) returns entire process documentation about this process.

tion about process asqg — as; (Figure 5.21) in a failure-free environment,

We now consider interaction as; — (,_app; c_app) @5j (Figure 5.22). Let n; be the FINAL

node in interaction context (j, R). After F-PReP finishes recording documentation for

*
(p-app; c-app)

in context (j, R) is first retrieved. Given (n,n’) € gy.ve and Lemma 73 (3.a), n’ is the

the process asyg — asj, we study getProDoc(n;, g¢). The interaction record

FINAL node in context (j,S). Hence, the function retrieves one interaction record from

each interaction context of interaction as; — (,_app; c_app) @5j-
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By Lemma 73 (3.b), there are |getCIDS(n')| causelink edges, each pointing to a desti-
nation node n” that indicates the location where the interaction record of the receiver
in the corresponding cause interaction is recorded. Assuming that the interaction key
of a cause interaction is i, by Lemma 73 (3.b), we know that n” is the FINAL node in
interaction context (i, R) and n” € g;.n. Therefore, according to the inductive case,
getProcDoc(n”, g;) gives entire process documentation for previous interactions other

than as; —( Since we have retrieved one interaction record from each in-

p_app; c-app) 45;-

teraction context of interaction as; asj, getProcDoc(nj, gs) gives entire

(p-app; c_app)
process documentation.

Based on the above proof, the implication is preserved.

a

5.4.3.3 New Query Function

The original query function get ProDoc is used to retrieve process documentation recorded
when no failure occurred. Hence it begins by searching an assertor’s default store.
However, it would retrieve incomplete process documentation if the documentation was

recorded in the presence of failures, as illustrated in Figure 5.25.

Figure 5.25 shows get ProDoc’s retrieving path based on the graph in Figure 5.23, where
alternative stores were used to record the interaction records. It starts searching from
the default node in interaction context (i4, R), which is LINK, referring to a provenance
store which does not have an interaction record but only contains a viewlink for that
context. Therefore, retrieving interaction records from the default store in this case

cannot give entire process documentation.

To address this problem, we introduce a new query function get ProDoc_N ew to retrieve

process documentation recorded in the presence of failures.

Definition
getProDoc_New : P(PID) x IK x GRAPH — P(RECORD)
getProDoc_New(pslist, j, gf) :
for each aps € pslist
do n « (aps, J, R);
if ((n,n) € gy.ve A store T'(n).pas # 0 A store_T(n').pas # 0)
return getProDoc(n, gf);

return (;

Function getProDoc_New takes as input a list of provenance store identities (e.g., an

assertor’s alternative stores), an interaction key representing the interaction in which a
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FICGURE 5.25: Retrieving path based on Figure 5.23, using get ProDoc

data item was exchanged, and a final graph. It then returns the process documentation of
the data item. Since an interaction record may be recorded in an alternative store when
failures occurred, function get ProDoc_New searches all the candidate stores to look for

the first interaction record of the process documentation and call function getProDoc.

In order to call getProDoc, a starting node (aps, J, R)? is required, which must sat-
isfy two conditions. Firstly, there exists another node n’ such that (n,n') € gy.ve.
Secondly, store T'(n).pas # () and store T'(n').pas # 0, which implies that n and n’
must be FULL or FINAL. By Lemma 36, if store T(n).pas # 0, then store T(n) =

(a,vl,assertor_T(a, k,v).pas) and hence the corresponding node is FULL or FINAL.

As opposed to getProDoc, get ProDoc_N ew starts searching from any candidate prove-
nance store and returns entire process documentation. In the case of Figure 5.23, it
searches all the alternative stores as well as the default store of assertor as. Its traversing
path is given in Figure 5.26, where the first node leading to entire process documentation

is an intermediary node in context (i4, R).

Now, we are ready to establish property DOCUMENTATION RETRIEVABILITY.

9Like getProDoc, this function is also assumed to retrieve the interaction record about a receiver’s
interaction context at the beginning of the search. Similar discussion can be easily extended to the case
of the sender, which we omit.
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4 i4, R

FIGURE 5.26: Retrieving path based on Figure 5.23, using get ProDoc_N ew
5.4.3.4 Documentation Retrievability

Property DOCUMENTATION RETRIEVABILITY specifies that process documentation’s en-

tire retrievability can be ensured after being recorded in provenance stores.

Lemma 79 (DOCUMENTATION RETRIEVABILITY). Process documentation recorded by

using F-PReP is retrievable in its entirety. O

PRrOOF. To facilitate our description, we refer to Figure 5.22 in our proof, where inter-

action as; — c.app) @Sj 1s represented by interaction key j. By Lemma 78, this

p-app;
lemma is preserved for documentation recorded when no failure occurred. To demon-
strate that process documentation is retrievable after being recorded in the presence of
failures, we discuss two cases. In Case (1), we assume that the FINAL node n; of inter-
action context (j, R) can be determined in advance. Since the knowledge about a FINAL
node is global and may not always be available!®, we relax this assumption in Case (2),
where we use the new query function get ProDoc_New to facilitate the proof. Function
getProDoc_New does not assume the global knowledge in the sense that it only checks

the content of a provenance store (store T'(n).pas # O N store_T'(n').pas # 0).

Case (1):

If a starting FINAL node n; can be determined, this case is the same as retrieving

1%7dentifying a FINAL node requires assertor’s state information as well as provenance store’s state
information, according to the definition of FINAL node.
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process documentation recorded in a failure-free environment. The proof for Lemma 78
has shown that function getProDoc(nj,gs) returns the entire process documentation.

Therefore, the statement is preserved in this case.

Case (2):

This case uses getProDoc_New to obtain process documentation recorded in the pres-
ence of failures. We study get ProDoc_New(pslist, j, gf), where pslist contains an as-
serter’s default store and all alternative stores used for recording interaction record about
context (j, R). Since each store is reflected by a node on the graph, function
getProDoc_New(pslist, j, gf) checks an assertor’s default node, intermediary nodes and
alternative final node, and finds the first node that satisfies the above two conditions
(Section 5.4.3.3) in order to call getProDoc.

The rest of the proof is based on a case analysis of all possible graphs (A to G') in
Figures 5.12 and 5.13. We show that the starting node satisfying the two conditions
leads to the retrieval of entire process documentation. Since any alternative final node
in context (j, R) is always FINAL, as shown in Figures 5.12 and 5.13, it satisfies the
two conditions and leads to entire process documentation, demonstrated in Case (1).

Therefore, we only discuss the default node and intermediary nodes on each graph.

Graph (A), Graph (B) and Graph (C):
The only node in context (j, R) is the default node, which is FINAL. It satisfies the
two above conditions and is passed to getProDoc. With the conclusion from Case (1),

searching from this node leads to entire process documentation.

Graph (D):
The default node in context (j, R) is LINK, which refers to a provenance store only
maintaining a viewlink for context (j, R). Hence the two conditions are not met and

getProDoc_New(pslist, j,gs) will check the next node.

All the intermediary nodes in context (j, R) each have a viewlink edge leading to a NULL
node, therefore, the two conditions are not met and getProDoc_New(pslist, j,g¢) will

check the next node.

In this case, searching from the alternative final node gives entire process documentation,

which is returned by calling get ProDoc_New(pslist, j, gy).

Graph (E):

The default node in context (j, R) is FULL. It has a viewlink edge leading to a FINAL
node. When searching from this node, get ProDoc(n, gf) retrieves one interaction record
from each interaction context of interaction j in the first iteration. Since the default
node indicates a duplicate interaction record maintained in the corresponding default
store, getProDoc(n, gy) retrieves the same interaction record as from the FINAL node
in context (j, R). By property (3.b) in Lemma 73, each causelink edge starting from the
FINAL node in context (j,S) ends at another FINAL node. Therefore, from the second
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iteration, all the input nodes for get ProDoc are FINAL. Then the conclusion from Case
(1) applies. Based on the above analysis, searching from the default node, which is not

FINAL though, still leads to entire process documentation.

Each intermediary node in context (j, R) connects to a NULL node via a viewlink edge,
therefore, the two conditions are not met and getProDoc_New(pslist, j, gr) will check

the next node.

Graph (F):
The default node and intermediary nodes in context (j, R) are FULL. Each has a
viewlink edge leading to a LINK node. Therefore, the two conditions are not met and

getProDoc_New(pslist, j,gy) will check the next node.

Graph (G):
Similar to the discussion for Graph (E), searching from the default node in context (j, R)

gives entire process documentation.

Each intermediary node in context (j, R) is FULL and connects to another FULL node
via a viewlink edge. When searching from an intermediary node, getProDoc(n,gys)
retrieves one interaction record about each view of interaction j in the first iteration.
Since a FULL node indicates duplicate interaction record maintained in the corresponding
store, getProDoc(n, gy) retrieves the same interaction records as from the FINAL nodes
regarding context (j, R) and (j,5). In addition, the recording of duplicate interaction
record also implies that causelink edges from a FULL node are the same as from the
FINAL nodes in context (j,.5). By property (3.b) in Lemma 73, each causelink edge
starting from the FULL node in context (j, S) ends at another FINAL node. Therefore,
all the input nodes for get ProDoc are FINAL from the second iteration and the conclusion
in Case (1) applies. Based on the above analysis, searching from any intermediary node,

which is not FINAL though, still gives us entire process documentation.

Graphs (B') to (G'):

The analysis is similar to the above, which we omit.

After discussing all the possible graphs regarding interaction as; — (,_app; c_app) @5j> We
have shown that getProDoc_New returns entire process documentation by searching
from any node n which satisfies two conditions: (1) there exists another node n’ such
that (n,n’) € gr.ve; (2) store_T'(n).pas # () and store_T'(n').pas # (), which implies that
n and n’ must be FULL or FINAL.

With the conclusion of Case (1) and Case (2), the implication is preserved.
O

Lemma 79 has established that the entire retrievability of process documentation recorded

by using F-PReP can be ensured.



Chapter 5 Graph-based Analysis 168

5.5 Discussion

In this section, we first discuss retrieving process documentation without knowing the
termination of the protocol. We then discuss how to remove or reduce garbage informa-
tion reflected by LINK and FULL nodes.

5.5.1 Early Retrieval

Due to the asynchronous nature of the protocol, process documentation cannot be re-
trieved in its entirety until the F-PReP terminates for each interaction of the process.
For example, if the coordinator still has outstanding update requests, entire process doc-
umentation cannot be retrieved. Although this is not a problem specific about failures'!,

we provide initial thoughts about it.

As the termination of the protocol may not be known to a querying actor, the actor has to
wait a reasonable period of time after the data result is produced. Then it can repeatedly
query candidate provenance stores until it obtains the entire process documentation of
the result. To validate the entirety of retrieved process documentation, the actor can
either use application specific knowledge or rely on mechanisms provided by a provenance
store to verify the completeness. These mechanisms are however beyond the scope of
this thesis.

5.5.2 Dealing with Garbage Information

)

The traversal function get ProDoc_New can be used to identify the “primary” records;
the ones that are not traversed are regarded as garbage. In Figure 5.23, LINK and FULL
nodes reflect garbage information (a single viewlink and a duplicate interaction record,
respectively) recorded in a respective provenance store. The presence of a LINK node is
due to the coordinator’s incomplete knowledge when updating viewlink in a provenance

store, whilst a FULL node appears because of the use of alternative stores.

Garbage information reflected by LINK nodes can be safely removed after a querying
actor obtains entire process documentation. In practice, a user can remove all the single
viewlinks recorded in provenance stores. Formally, for any aps, ~ and v and when the
ASM terminates, if store T'(aps,k,v) = (L,vl,0), then the viewlink vl is ready to be

removed.

In terms of FULL nodes, the protocol can be configured to resend messages to a same
provenance store for a certain number of times before using an alternative store. There-

fore, the probability of recording redundant information can be reduced. After a query-

1YWe also cannot obtain entire process documentation in the absence of failures until the application
(i.e., process) terminates and process documentation ends up in provenance stores.
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ing actor obtains entire process documentation by following nodes on the retrieving path,
it can remove redundant information recorded in provenance stores indicated by nodes
not on the retrieving path. However, this requires a robust garbage collection protocol
to ensure the safe removal of redundant information, which is out of the scope of this

thesis.

5.6 Conclusion

This chapter investigated the properties of process documentation recorded using F-
PReP in the presence of failures. We showed that the documentation of a whole process
is guaranteed to be recorded in provenance stores and any links are accurate. More
importantly, process documentation recorded in multiple interlinked provenance stores

can be retrieved in its entirety.

At the beginning of this chapter, we introduced a graph-based formalism (Section 5.1.1)
and then investigated the topological properties. Since a process consists of a set of in-
teractions, we exhaustively identified several graph properties regarding one interaction
(Sections 5.2 and 5.3). When analysing the properties of process documentation, we per-
formed induction on the interactions of a process to show the documentation of a whole
process is guaranteed to be recorded in provenance stores and any links are accurate.
In the inductive step, i.e., for each interaction of a process, we reused the properties
established in Sections 5.2 and 5.3. In addition, we developed a new query function
for retrieving process documentation recorded in the presence of failures. We estab-
lished that process documentation can be represented as a directed acyclic graph and
the query function eventually terminates for retrieving process documentation. Finally,
we showed that the new query function ensures the retrieved process documentation is

in its entirety.

The appendix in Section 5.7 provides proofs for several properties regarding the topo-
logical relationship between an assertor’s default store and alternative stores. These

properties have been used in Section 5.3.

Next chapter will evaluate F-PReP’s performance and illustrate how the implementation
of the protocol addresses non-functional requirement EFFICIENT RECORDING identified
in Chapter 3.

5.7 Appendix: Proof of Topology Properties

Provenance stores used by an assertor have been classified as two types: the default store
(i.e., the one that an assertor initially used when recording an interaction record) and

alternative stores. When the protocol terminates, there is a final store that an assertor
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knows to have successfully recorded its interaction records. The final store can be the

default store or an alternative store.

Chapter 4 has established properties to demonstrate that F-PReP meets requirements
CAUSELINK ACCURACY and VIEWLINK ACCURACY. These properties are only con-

cerned with the final store.

Recall that an assertor sets a timeout when submitting an interaction record to a store.
Since it is impossible to distinguish store crash from message loss in the event of a
timeout, it may be the case that a provenance store has recorded an interaction record
while the assertor has a timeout event and has to choose an alternative store. Therefore,
the default store and any of the attempted alternative stores may possess duplicate
interaction records, which means there would be viewlinks or causelinks recorded in

stores.

This appendix provides proofs for several properties regarding the topological relation-
ship between an assertor’s default store and alternative stores. These properties have

been used in Section 5.3.

We divide our discussion into two parts. We firstly discuss provenance stores interlinked
via viewlinks (from Lemma 80 to Lemma 91) and then discuss those linked via causelinks
(Lemma 92). Given notations a, vl and pas, we assume that a # L, vl # L and pas # ()

for simplification.

Lemma 80 establishes that if each assertor’s default store records the assertor’s interac-
tion record, then the assertor’s viewlink recorded in the default store points to the same
store as referred by the other assertor’s ownlink given that the other assertor did not

use an alternative store.

Lemma 80. For any a, k and v, and for some o’ and aps, such that aps
= assertor_T(a, k,v).dl, then the following implication holds when the ASM terminates

at final configuration:
If

/\ store_T(ays, k,v) = (a,vl, assertor T (a, Kk, v).pas)
log_T(d,k,v) = FALSE

then

store(aps, £, v).vl = assertor T'(da', k,v).ol.

PROOF. We proceed by the following reasoning.
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Given that log T (d/, k,v) is FALSE, by Lemma 32,

assertor_T(a, k,v).vl = assertor T(d', k,v).ol. (5.1)

Also by Lemma 33, coord-T'(ac, k,7) = (L, L). Then by Lemma 38, vilstate_T(aps, &, v)
is not UPDATED.

Given that store_T'(aps, k,v) records an entry, vlstate T (aps, k,v) is either DEFAULT or
UPDATED (Lemma 40). Therefore, vistate T'(aps, k,v) can only be DEFAULT. Then
with Lemma 39,

store T (aps, k,v).vl = assertor_T'(a, k,v).vl. (5.2)
Therefore, with (5.1), (5.2), the statement is preserved.
g

Lemma 81 links the state of tables store_T'(ayps, k,v) and vistate T (aps, k,v).

Lemma 81. For any reachable configuration, for any ays, k, v and vl, and for some a,

the following implication holds:

If store_T(aps, k,v) # (a,vl,assertor T(a, k,v).pas), then

vilstate T (aps, k,v) # DEFAULT.

PrOOF. We proceed with the following reasoning. The statement holds in the initial
configuration since tables are all empty. We now consider only those transitions that

may have an effect on terms in the equality.

receive_record:
After this transition, store_T(ays, <, v) becomes (a,vl, assertor_T'(a, k,v).pas). There-

fore, the antecedent is false, which preserves the implication.

receive_update:
By Lemma 36, store_T(aps, k,v) has three states before the transition: (L, .L,0)) and
(L,vl,0) and (a,vl, assertor_T(a, k,v).pas).

In the case of (L, L,0):
After this transition, store_T'(aps,k,v) becomes (L,vl,0) and vlstate T (aps,k,v) is
changed to UPDATED. Therefore, the statement is preserved.

In the case of (L, vl,0):

After this transition, store_T'(aps, k,v).vl is updated and store_T'(ays, k,v) remains as
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(L,vl,0). In addition, vlstate_T'(aps, k,v) becomes UPDATED. Therefore, the statement

is preserved.

a

Lemma 82 states a possible topology of interlinked provenance stores in the case where
one assertor did not use any alternative store while the other assertor did and the other
assertor’s default store did not record any duplicate interaction record. The property is
used by Case (b), Section 5.3.1.1.

/
ps’

assertor T (a, k,v).dl and a,s = assertor T(a',x,v).dl, the following implication holds

Lemma 82. For any a, £ and v, and for some d', a,s and a such that aps =

when the ASM terminates at final configuration:

If
log-T(a, k,v) = FALSE
/\ log_T(d,k,v) = TRUE
store_T(ay, k,0) # (a’,vl’,assertor T(d', k,v).pas)
then

/\ store_T(aps, K, v).vl = assertor T(d’, k,v).o0l
store_T(ays, k,0).vl = L

PROOF. We proceed by the following reasoning. Given log-T'(a,k,v) = FALSE and
aps = assertor_T'(a,k,v).dl, by Lemma 30, a,s = assertor_T'(a,k,v).ol. Therefore,
by Theorem 22, store_T(ays, k,v) = (a, vl, assertor_T'(a, k,v).pas) and by Theorem 49,

store T (aps, K, v).vl = assertor T(d', k,v).ol.

Given log_T(a,k,v) = FALSE, by Lemma 33, coord_T(a, k,v) = (L, L1). Hence by
Lemma 38, vistate T'(ay,,, x,7) 7# UPDATED.

Given store T'(ays, k,0) # (a’,vl’, assertor T(d’, k,v).pas), by Lemma 81,
vistate T(ay,, k,7) 7 DEFAULT.

Therefore, by Lemma 40, store T (ay, #,7).vl = L.
O

Lemma 83 says that an assertor’s viewlink points to the store referred by the other

assertor’s default link, which means each assertor knows the other’s default store.

Lemma 83. For any reachable configuration, for any a, k and v, and for some a’, the

following implication holds:
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If assertor T (a, k,v).str # (L V INIT), then

assertor_T(a, k,v).vl = assertor T(d’, k,v).dl.

PRrROOF. We proceed by induction on the length of transitions that lead to the config-
uration, and by case analysis on the kind of transitions. The statement holds in the
initial configuration since table is empty. We now consider only those transitions that

may have an effect on terms in the equality.

send_app:
After this transition, assertor T(a, k,v).str is set to INIT. Therefore, the precondition

is false, which preserves the implication.

prepare_record:
After this transition, assertor_T'(a, k,v).str becomes READY. In addition,
assertor_T(a, k,v).vl equal to the other assertor’s default link in the guard to fire this

transition. Therefore, the statement is preserved after the transition.

receive_app:
After this transition, assertor T (a, k,v).str becomes READY and assertor T (a, k,v).vl
is set to the link provided by app(d, k,vl), i.e., the sender’s default link (by transition

send_app). Therefore, the statement is preserved.

timeout _ack:
By Lemma 18, assertor_T'(a,k,v).str was SENT before this transition and is set to

ACKED after it. Therefore, the statement remains valid after this transition.

receive_ack:
By Lemma 17, assertor_-T'(a, k,v).str was SENT before this transition and may be set

to ACKED after it. Therefore, the statement remains valid after this transition.

All the other transitions:
After the other transitions, the precondition remains true and assertor_T'(a, k,v).vl =

assertor T'(d', k,v).dl keeps unchanged. Therefore, the statement holds.

a

Similar to Lemma 38, Lemma 84 connects the state of table update_T in the coordinator
and the state of a provenance store. It shows how the ASM evolves after the coordinator

starts updating a destination provenance store.

Lemma 84. For any reachable configuration and for any k, v and aps, the following
equality holds:
update T (ac, K, v, aps) # L
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update(k,v,ol) € k(ac, aps)

update(k, v, ol) € lost(ac, aps)
vistate_T'(aps, k,7) = UPDATED

B store_T(aps, Kk, U).vl = coord_T(ac, k,v).ol
B \/ uack(k,v) € k(aps,ac)

vack(k,v) € lost(ac, aps)

update_T(ac, k,v, aps) = UPDATE
update_T(ac, Kk, v, aps) = UPDATED

\

where ol = coordT(a., k,v).ol.

a

PROOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty and no message is in transit. We now consider only

those transitions that may have an effect on terms in the equality.

receilve_repair:
After this transition, update_T'(ac, Kk, v, aps) is set to UPDATE. Therefore, the statement

is preserved.

send_update:
After this transition, update_T'(ac, k, v, aps) is set to WAIT and update(k, v, ol) is inserted

into k(ac, aps), where ol = coord_T(ac, k,v).ol. Therefore, the statement is preserved.

timeout_uack:
By Lemma 37, the right part of the statement was true before this transition. After this
transition, update_T'(ac, k,v,aps) is set to UPDATE. Therefore, the statement is still

preserved.

receive_uack:

The statement is preserved by this transition. After this transition, uack(k, v) is removed
from channel. By Lemma 35, store_T(ays, k,70).vl = coord_T'(ac, k,v).ol. Therefore, the
right part of the statement was true before the transition and remains true after it,

which preserves the statement.

receive_update:

The statement is preserved by this transition. After this transition, update(k, v, ol, aps)
is removed from k(ac,aps) and an uvack(k,v) is inserted in k(aps,ac). In addition,
vistate T (aps, k,0) is set to UPDATED and store T'(aps,k,v).vl is set to ol, which
is provided by update(k,v,0l). Since ol is equal to coord T (ac,k,v).ol (Lemma 34),

store T (aps, £, 0).vl is equal to coord T (ac, k,v).ol.

msg_loss_pstore:
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msg_loss_channel:
The two transitions remove update(k, v, 0l) or uack(k,v) from channels and then place
them in lost(ac, aps). Therefore, the the statement still holds.

O
Lemma 85 demonstrate the state of the coordinator’s timer and update table update_T'.

Lemma 85. For any reachable configuration and for any k, v and aps, the following

implication holds:

/\ { timer_T(ac, k,v, aps).status = ENABLED

timer_T'(ac, k,v, aps).to > 0
uf

update T(ac, k,v, aps) = WAIT.

PROOF.

We proceed by induction on the length of transitions that lead to the configuration,
and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

receilve_repair:
The statement is preserved by these transitions. After this transition, timer T (ac, &, v, aps)
remains in the initial state and update T (ac, K, v, aps) is set to UPDATE. Therefore, the

statement is preserved.

send_update:
The statement is preserved by this transition. After this transition,
timer T (ac, K, v, aps).status is set to ENABLED and timer_T'(ac, k, v, aps).to is initialised,

and update_T(ac, K, v, aps) is set to WAIT. Therefore, the statement is preserved.

timer_click(ac, K, v, aps):
The statement is preserved by this transition. After this transition, timer_T'(a, k, v, aps).to

remains greater or equal to 0 and update_T'(ac, K, v, aps) is not affected.

timeout_uack:

receive_uack:

The statement is preserved by these transitions. After these transitions,

timer_T(ac, K, v, aps).status is set to DISABLED and timer_T'(ac, k, v, aps).to becomes 0.
Meanwhile, update_T'(a., k,v, aps) is set to UPDATE or UPDATED.
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a

Lemma 86 states that if both assertors use alternative stores and request the coordinator
to update the other’s viewlink, the coordinator updates only one’s default store (e.g.,
receiver b’s default store PS2 in Figure 3.10). Then the coordinator keeps sending
update messages to the destination store P.S2 until it is updated. However, this update
is only successful if the assertor b is still using its default store. If b also uses alternative
stores, i.e., the coordinator receives a second repair request in the same interaction (Step
10 in Figure 3.10), the protocol takes actions (Step 11 in Figure 3.10) to ensure the
destination store to be updated is correct for both views. Therefore, only one assertor’s
default store is updated (i.e., PS2 in Figure 3.10) due to the coordinator’s incomplete

knowledge when receiving the first of the two repair requests.

Lemma 86. For any reachable configuration, for any x and v, and for some a and a,

the following implication holds:

If coord_T'(ac, k,v) # (L, L) A coord_T(ac, k,v) # (L, L), then

/\ { update_T(ac, K, v, aps) # L

update_T(ac, K, 7, a,,) = L

where ays = assertor T(a’, k,v).dl and ay,s = assertor T(a, k,v).dl. O

PrROOF. We proceed by the following reasoning. The statement holds in the initial
configuration since tables are all empty. We now consider only those transitions that

may have an effect on terms in the equality.

receilve_repair:
To make the precondition become true, the coordinator receives two repair requests.
Due to the symmetric nature of the implication, we assume that the coordinator firstly

. ) o, ,
receives repair(k, v, agps, ol) and then repalr(m,v,adps,ol ).

After processing repair(k, v, agps, ol), coord-T(ac, k,v) becomes not empty while
coord_T(ac, k,7) remains (L, L). In addition, update T (ac, K, v, aps) is set to UPDATE
with ap,s equal to coord T (ac, Kk, v).aqps. We note that coord T (ac, K, v).aqps is provided
by repair(k, v, agps, ol). By Lemma 33, agps in repair(x, v, agps, ol) equals to

assertor T'(a, k,v).vl. Therefore, a,s = assertor_T'(a,r,v).vl. Then with Lemma 83,

aps = assertor T'(da', k,v).dl.

After processing another request repair(k, v, a&ps, ol"), coord_T(ac, k, D) becomes not empty.
According to transition receive_repair, coordT(ac, k,v).a4ps is changed to
coord T (ac, k,v).ol, different from the one, a&ps, as provided by repair(k, T, a&ps,ol’).
By Lemma 33, aj, in repair(k, 7, ag,,, ol) equals to assertor T'(a’, x,v).vl. Hence with

Lemma 83, aélps equals to assertor T'(a,k,v).dl. Therefore, transition receive_repair
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does not affect update T(ac, k,, afips), which remains in the initial state L, such that

ag,s = assertor T(a, k,v).dl.

Thus, after two transitions receive_repair, we have update_T'(ac, k,v, aps) 7 L and
update T(ac, K,, a,,) = L, such that a,s = assertor T(a’, k,v).dl and a;,, =
assertor_T(a, k,v).dl.

send_update:
The statement is preserved by this transition. After this transition, update_T (ac, K, v, aps)
is set to WAIT from UPDATE. Therefore, the statement was preserved before the tran-

sition and remains valid after it.

timeout _uack:
The statement is preserved by this transition. After this transition, update T (ac, K, v, aps)
is set to UPDATE from WAIT (Lemma 85). Therefore, the statement was preserved be-

fore the transition and remains valid after it.

receive_uack:

The statement is preserved by this transition. In order to fire this transition, uack is in
transit. Therefore, update_T(a., K, v, aps) was not L before this transition (Lemma 84).
After this transition, update T'(ac, k, v, aps) is either not changed or set to UPDATED.

Hence, the statement was preserved before the transition and remains valid after it.

a

Lemma 87 states a possible topology of interlinked provenance stores in the case where
both assertors in an interaction used alternative stores and their respective default store
did not record any duplicate interaction record. The property is used by Case (d),
Section 5.3.1.1.

/!
ps?

assertor T(a, k,v).dl and a,s = assertor T(a’,x,v).dl, the following implication holds

Lemma 87. For any a, k and v, and for some da', aps and a,, such that ap,s =

when the ASM terminates at final configuration:

If
log_T(a, k,v) = TRUE
/\ store_T(ays, k,v) # (a,vl, assertor T (a, k,v).pas)
log_T(d,k,v) = TRUE
store_T(ay, k,) # (a’,vl', assertor T(d', k,v).pas)
then

/\ { store_T(aps, K, v).vl = assertor_T(d', k,7).ol

store_T(ays, k,0).0l = L
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PROOF. We proceed by the following reasoning. Since assertor T (a,k,v).str and
assertor T'(d', k,v).str are both OK when the ASM terminates (Lemma 20), by Lemma
33, coord T(ac, k,v) # (L, L) and coord_T(a.,k,v) # (L, L). Therefore, by Lemma 86,

we have

update T(ac, K, v, a,s) = L

/\ { update_T(ac, k, 7, aps) # L

such that a,s = assertor T(a, x,v).dl and ay,; = assertor T(d', x,7).dl.

Given update T (ac, k,7, aps) # L, by Lemma 84, when the ASM terminates,

store T (aps, Kk, v).vl = coord_T (ac, k,D).ol. (5.3)

Since coord_T(ac, k,v) # (L, L), by Lemma 43,

coord T(ac, k,v).0l = assertor T(d', k,v).ol. (5.4)

With (5.3) and (5.4),

store_T(aps, r,v).vl = assertor T(d, k,v).ol. (5.5)

Given update T(ac, K,v,a,,) = L, by Lemma 84, vistate T(ay,, x,v) # UPDATED.
Since store T (ays, #,0) # (a’,vl’,assertor T(a', k,v).pas), by Lemma 81,

vistate T'(ayg, k,0) # DEFAULT. Therefore, store T'(ayg, &,v).vl = L (Lemma 40).
Based on the above proof, the statement is preserved.

|

Lemma 88 states a possible topology of interlinked provenance stores in the case where
both assertors in an interaction used alternative stores but one’s default store recorded a
duplicate interaction record and the other’s default store did not. The property is used
by Case (e), Section 5.3.1.1.

/
ps’

assertor T(a, k,v).dl and a,s = assertor T(a',x,v).dl, the following implication holds

Lemma 88. For any a, £ and v, and for some da', a,s and al,, such that aps =

when the ASM terminates at final configuration:
If

log-T(a, k,v) = TRUE
/\ store_T(ays, k,v) = (a,vl, assertor_T'(a, Kk, v).pas)
log-T(d,k,v) = TRUE

store_T(a,s, k,0) # (', vl',assertor T(a’, k,v).pas)
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then
A store_T(aps, k,v).vl = assertor T'(a', k,7).ol
\/ store_T(ayg, k,0).vl = L
A store_T(aps, k,v).vl = assertor_T(d', k,v).dl
store_T(a), k,0).vl = assertor T'(a, k,v).ol

PROOF. We proceed by the following reasoning. Since assertor T (a,k,v).str and
assertor_T'(d', k,v).str are both OK when the ASM terminates (Lemma 20), by Lemma
33, coord T(ac, k,v) # (L, L) and coord_T(a.,k,v) # (L, L). Therefore, by Lemma 86,

we discuss two cases:

Case (1):

/\ { update_T(ac, k, T, aps) # L

update T(ac, K, v, a5¢) = L

such that a,s = assertor T(a, k,v).dl and ay,s = assertor T'(a’, k,7).dl. In this case, we

can use the same proof as in Lemma 87 to demonstrate that:

/\ { store_T(ays, k, v).vl = assertor_T(d’, k,7).0l

store_T(a/ ,, k,V).vl =

Aps:

Therefore, the statement is preserved.

Case(2):

/\ update_T(ac, k, 7, aps) = L
update T(ac, K, v, aps) 7# L

such that a,s = assertor_T'(a, k,v).dl and aé,s = assertor_T(d, k,v).dl.

Given update T'(ac, k, v, ays) # L, by Lemma 84,

store T(al, k,v).vl = coord T (ac, k,v).ol. (5.6)

Qpsy K

Since coord_T'(ac, k,v) # (L, L), by Lemma 43,

coord T (ac, k,v).ol = assertor_T(a, k,v).ol. (5.7)

With (5.6) and (5.7),

store_T(al,, k,v).vl = assertor_T(a, k,v).ol. (5.8)

Ups>
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Given update T(ac,K,V,aps) = L, by Lemma 84, vistate T (aps,r,v) # UPDATED.
Since store_T(aps, k,v) = (a,vl,assertor_T(a, k,v).pas), such that vl # L, by Lemma
40, vistate T (aps, k,v) = DEFAULT. Therefore, by Lemma 39 and Lemma 83,

store T (aps, k,v).vl = assertor T'(d/, k,v).dl. Now we have

/\ { store_T(aps, k, v).vl = assertor T (d’, k,7).dl

store_T(ay,g, %, 7).vl = assertor T (a, k,v).ol
Therefore, the statement is preserved.

|

Lemma 89 states a possible topology of interlinked provenance stores in the case where
both assertors in an interaction used alternative stores and their respective default store

recorded a duplicate interaction record. The property is used by Case (f), Section 5.3.1.1.

/
ps’

assertor T'(a, k,v).dl and a,s = assertor T(da',k,v).dl, the following implication holds

Lemma 89. For any a, k and v, and for some da', aps and a),, such that aps =

when the ASM terminates at final configuration:

If
log_T(a, k,v) = TRUE
/\ store_T(aps, k,v) = (a, vl, assertor_T'(a, Kk, v).pas)
log_T(d,k,v) = TRUE
store_T(ays, k,0) = (a,vl',assertor T(d’, k,v).pas)
then

/\ { store_T(aps, K, v).vl = assertor T(d’, k,v).o0l

store_T(a,s, k,0).vl = assertor T(a, k,v).dl

PROOF. We proceed by the following reasoning. Since assertor T (a,k,v).str and
assertor T'(d', k,v).str are both OK when the ASM terminates (Lemma 20), by Lemma
33, coord_T(ac, k,v) # (L, 1) and coord T (a., k,v) # (L, L). Therefore, by Lemma 86,

we have:

update T(ac, k, v, a,5) = L

/\ { update_T(ac, k, U, aps) # L
such that a,s = assertor T(a, k,v).dl and a,, = assertor T(a', x,v).dl. Following the
similar proof for Case (2) of Lemma 88, we can derive that

/\ { store_T(ays, k, v).vl = assertor_T(d’, k,7).0l

store T (s, #,0).vl = assertor T (a, k,v).dl



Chapter 5 Graph-based Analysis 181

Therefore, the statement is preserved.

a

The above analysis discusses the topology of two assertors’ default stores and final stores
in terms of how they are interlinked via viewlinks when the ASM terminates. Since
any alternative store used by an assertor may also record duplicate interaction records
with viewlinks pointing to another store, we now investigate the topology regarding

alternative stores.

Lemma 90 states that only the provenance store (a,s) referred by an asserter’s default

link or ownlink in the interaction context (x,v) may lead to update T (ac, k,v, aps) # L.

Lemma 90. For any x and v, and for some a, the following statement holds when the

ASM terminates at final configuration:

If update_T(ac, k,v,aps) # L, then

aps = assertor_T'(a, k,v).dl or assertor_T(a, k,v).ol.

PrOOF. We proceed by induction on the length of transitions that lead to the configura-
tion, and by case analysis on the kind of transitions. The statement holds in the initial
configuration since tables are empty. We now consider only those transitions that may

have an effect on terms in the implication.

receilve_repair:
After this transition, coord_-T'(ac, x,v) is no longer (L, L) and update_T(ac, K, v, aps) is

set to UPDATE. We discuss two cases in order to determine ays.

Case (1) coord T (ac,k,v) # (L, L) A coord T (ac, k,v) = (L, L):
In this case, aps is set to coord-T(ac,k,v).aqps, Which is provided by the agps from

message repair(K, v, dgps, ol). By Lemma 33, agps = assertor_T'(a, k,7).vl. Therefore,

aps = assertor T (a, k,v).vl.

Case (2) coord T (ac, k,v) # (L, L) A coord T(ac, k,v) # (L, L):
In this case, ays is set to coord_T (ac, k,v).aqps, which is provided by coord_T(ac, k,v).ol
(Lemma 44). By Lemma 43,

coord T (ac, k,0).ol = assertor_T(a, k,7).ol.

Therefore, we have

aps = assertor T'(a, k,v).ol.
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Based on the above analysis, the statement is preserved.

send_update:
After this transition, the antecedent remains true. Therefore, the statement is still

preserved.

timeout _uack:
The statement is preserved by this transition. After this transition, update T (ac, K, v, aps)
is set to UPDATE from WAIT (Lemma 85). Therefore, the statement was preserved be-

fore the transition and remains valid after it.

receive_uack:

The statement is preserved by this transition. Before this transition, update_T'(a., Kk, v, aps)
was not L (Lemma 84). After this transition, update T (ac, K, v, aps) is either not changed
or set to UPDATED. Therefore, the statement was preserved before the transition and

remains valid after it.

a

Lemma 91 states that if a provenance store referred by the element in PSSet(a, k,v)
(defined in Section 5.1.3) has recorded a viewlink, then the store possesses the whole
interaction record with a viewlink pointing to the other assertor’s default store. This

property is used in Section 5.3.1.2.

Lemma 91. For any reachable configuration, for any a,s € PSSet(a, k,v), any k and

v, and for some a, a', the following implication holds:

If store_T(aps, k,v).vl # L, then
store T (aps, k,v) = (a,vl, assertor T'(a, Kk, v).pas)

where vl = assertor T (d', k,v).dl. O

PRrROOF. We proceed with the following reasoning. Given ap, € PSSet(a, r,v), we have
aps # assertor T'(a, k,v).dl and aps # assertor_T'(a, k,v).ol. Then by Lemma 90,
update T (ac, K, T, aps) = L. Therefore, we can infer that vistate_T'(ays, k,v) # UPDATED
(Lemma 84). Given store T (aps, k,v).vl # L and vistate T (aps, k,v) # UPDATED, by
Lemma 40, vistate_T'(aps, k,v) = DEFAULT. Therefore, by Lemma 81,

store T (aps, k,v) = (a,vl, assertor T'(a, k,v).pas).

By Lemma 39,

store T (aps, K, v).vl = assertor T (a, k,v).vl (5.9)

When the ASM terminates, assertor_T(a, k,v).str is OK (Lemma 20). Therefore, with
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(5.9) and Lemma 83,

store T (aps, k,v).vl = assertor T(d', k,v).dl.

Based on the above proof, the statement is preserved.
O

We have discussed provenance stores interlinked via viewlinks (from Lemma 80 to

Lemma 91). Now we discuss those linked via causelinks.

CAUSELINK ACCURACY property (Property 23) has stated that any
causelinks recorded in the provenance store that is referred by an assertor’s ownlink are
accurate, i.e., pointing to the provenance store referred by the other assertor’s ownlink.

We now extend this conclusion to a general case.

Lemma 92 shows that an assertor’s causelinks duplicately stored in any provenance store
are always accurate, pointing to the store referred by the other assertor’s ownlink. This
implies a topology of provenance stores interlinked by causelinks. This property is used
in Section 5.3.2.

Lemma 92. For any aps, < and vl, and for some a, the following implication holds

when the ASM terminates at final configuration:

If rel-pa(rel, (k, S) , cids) € store T (aps, k, S).pas, then

for any c € cids, let {cl', k', R) = ¢,
cl' = assertor_T(a, k', R).ol N
store_T(cl k', R) = {(a,vl, assertor_T(a, ', R).pas)

PROOF. We proceed by the following reasoning. Lemma 20 shows that when the ASM
terminates, assertor_T'(a, k,S).str is OK. Therefore, all causelinks in

assertor_T'(a, K, S).pas are accurate before being recorded in a provenance store (Lemma
26).

Given rel-pa(rel, (k, S), cids) € store T (aps, K, S).pas, i.e., storeT(aps,k,S).pas # 0,
by Lemma 36, store T (aps,k,S).pas = assertor T (a,r,S).pas. This shows that all
causelinks recorded in store_T'(aps, k, S).pas are also accurate. Therefore, this implica-

tion is preserved.

a



Chapter 6
Implementation and Evaluation

F-PReP is a generic protocol that does not specify implementation details. In order
to put the protocol into practice, this chapter describes a system architecture that
implements F-PReP while considering practical issues such as communication, storage

and performance impact on a provenance-aware application’s execution.

Our performance evaluation is conducted at several levels. Firstly, we measure the
throughput of the provenance store and the coordinator. We investigate how the con-
tention for the coordinator affects an actor’s recording performance when the number
of recording actors increases. We demonstrate that a single coordinator does not result
in a performance bottleneck. Secondly, we benchmark the recording performance of F-
PReP. The results show that its remedial actions introduce small overhead (below 10%).
Thirdly, we investigate the performance impact on the execution time of a scientific ap-
plication. We find that PReP and F-PReP have similar impact on application execution
when there is no failure. In tests with failures, the recording overhead of F-PReP varies

depending on configurations.
The contributions of this chapter are twofold:

We describe F-PReServ, an implementation of F-PReP with architectural support for
practical issues such as communication, storage and performance. The implementation
of F-PReServ supports requirement EFFICIENT RECORDING identified in Chapter 1.
Its features include a novel way of creating process documentation, basic flow control
management for recording documentation, and a local store for temporarily maintaining
documentation to avoid severe performance degradation in the presence of failures. We

also discuss various approaches that are complementary to our implementation.

Another contribution is the extensive evaluation of F-PReServ’s performance. The ex-
perimental results show that F-PReServ introduces reasonable overhead when compared
to PReServ and has some performance impact on an application’s execution. We believe

these results are still acceptable given that the process documentation is guaranteed to

184
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be recorded in the presence of failures and still retrievable in its entirety from multiple
provenance stores. Lessons are learned and recommendations are given on achieving

good performance in the case of failures.

The rest of this chapter is organised as follows. Section 6.1 presents the design and
implementation of F-PReServ in terms of its three components: Client Side Library,
Provenance Store Service and Coordinator Service. Section 6.2 describes our evalua-
tion environment and methodology, followed by a series of performance experiments in
controlled environments and in a real scientific application. Based on lessons learned
from the experimental results, Section 6.3 provides several recommendations on the de-
velopment of next version F-PReServ and discusses relevant technologies that can be
integrated with F-PReServ. Section 6.4 briefly reviews related work. Finally, Section

6.5 summarises and concludes this chapter.

6.1 Implementation

In this section, we first outline the technologies used by F-PReServ and then introduce
F-PReServ’s components: an assertor side library (F-PSL), a Provenance Store Service

and a Coordinator Service (Figure 6.1).

Business SOAP(record) PS
. F-PSL [¢ )
Logic SOAP(ack) o
SOAP(update)
SOAP(repair) SOAP(uack)
Coordinator
Service

FIGURE 6.1: F-PReServ components

One of the main ways to enable SOAs is to build interoperable applications out of Web
Services, where Simple Object Access Protocol (SOAP) specifies a platform-independent
standard of exchanging messages between heterogeneous services in SOAs. SOAP mes-
sages are typically transmitted over Hypertext Transport Protocol (HTTP) to facilitate
easy communication through network proxies and firewalls. PReServ [76, 79], an im-
plementation of PReP, adopts these technologies. In PReServ, provenance stores are
described as Web Services and implemented as a Java Servlet deployed in the Apache
Tomcat web container [1] with protocol messages exchanged in the form of SOAP over
HTTP. To be compatible with PReServ, F-PReServ also adopts these technologies. In
addition to extending PReServ’s provenance store service, F-PReServ introduces a co-

ordinator service, implemented as a Java Servlet. The extension of the provenance store
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service and implementation of coordinator service also feature Ease of Installation [76],
so that developers can easily deploy multiple provenance stores and coordinators to test

their applications and to enable scalable recording of process documentation in SOAs.

F-PSL extends a Provenance Support Library (PSL), which is developed using Java
by the University of Southampton. PSL provides users with a set of Application Pro-
gramming Interfaces (API) for creating and recording interaction records as well as for
querying a Provenance Store. The selection of Java allows for the software to run on
any platform that has a Java Virtual Machine without recompilation. The reason to
extend PSL rather than the counterpart client side library in PReServ (termed PReSeruv-
Client) is that PSL encodes SOAP messages using Apache Axis, which is a popular Web
service engine used by many applications such as Globus Toolkit 4 (GT4)!. Therefore,
F-PSL can be integrated in a wide range of Grid applications to reliably record process

documentation.

We now detail F-PReServ’s components in Sections 6.1.1, 6.1.2 and 6.1.3.

6.1.1 F-PSL

F-PSL encompasses five modules (Figure 6.2): Client API, Thread and Queue Man-
agement (TQM), Recording Management (RM), Local Persistence Management (LPM)

and a Configuration file.

F-PSL
: TQM E
i (1) Request Queus E SOAP(record) PS
ic | RM ! SOAP(ack ervice
Logic | API , Recording i (ack)
: ( )V Queue '
3)
SOAP(update)
SOAP(uack)
Configuration File Local SOAP(repair)
Persistence
TQM: Thread and Queue Management Coordinator

RM: Recording Management
(Assertors' ASM Rules Applied)
LPM: Local Persistence Management

Service

FIGURE 6.2: F-PSL overview

Client API

Making an application provenance-aware inevitably affects the application’s execution

LGT4, an open source software toolkit employing Web Services to construct Grid systems.
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as it takes time to create and record interaction records (IRs). One novelty of the Client
API in F-PSL is the change in the way that IRs are generated, so that the impact on
application’s performance can be minimised. This improvement supports requirement

EFFICIENT RECORDING.

We illustrate this change in Figure 6.3, where we compare three approaches: PSL,
PReServ-Client and F-PSL. The difference between these approaches is when to cre-
ate and record IRs. In PSL2, the creation and recording are all synchronous to an
application’s execution, resulting in performance penalty. In PReServ-Client, although
application execution and IR creation are still synchronous, the recording of IR is made
asynchronous, leading to performance enhancement. In the case of F-PSL, the Client
API enables developers to only generate requests containing minimum information in
order to create an IR. IRs are then asynchronously created and recorded by separate

threads managed by TQM, further increasing recording performance.

We note that Figure 6.3 does not intend to give specific timing measurements regarding
each approach. But we did observe a significant increase in performance (20-30%) when

comparing F-PSL to PSL in our tests?.

application execution ~F—— | F——4 | F—
creating IR | = | = | |
recording IR | - P
> time
(1) PSL
application execution | P P '
creating IR = = I
recording IR | P = =
> time
(2) PReServ-Client
application execution ' ' ' ' ' '
IR creation request (Client API) l l
creating IR (TQM) i ' |
recording IR (RM) I:’::'; : I___'; .
> lime

(3) F-PSL

FIGURE 6.3: Comparing approaches to the creating and recording of IR

We now outline in Figure 6.4 how an application’s source code is modified in order

2PSL v1.3 was used in the comparison.
3In the tests, we modified PSL so it can also record IRs asynchronously, as PReServ-Client does.
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to use the Client API. In the figure, we assume the example has a request-response
communication model, which means that there are two interactions and an assertor is
the sender or receiver in a respective interaction. Each asserter uses a same provenance
store to record two IRs about the two interactions and the store’s address is sent to the
other assertor in the request or response message along with the interaction key created
by the sender of the message (Steps 1, 4). After knowing the viewlink, an assertor
generates requests to create IRs, which are placed in the Request Queue (Figure 6.2). We
note that the assertor’s ASM rules in Figures 3.12 and 3.13 are high-level specification,
which do not model the approach adopted by F-PSL in terms of generating requests to

create IRs.

Assertor: A Assertor: B
(Default Store: PST) (Default Store: PS2)

1. 4 creates an interaction key /K/;
2. A sends app(IK1, PS1) to B;

3. B receives app(IK1, PS1);

4. B creates an interaction key /K2;

5. B responds to A with app’(IK2, PS2);

6. A receives app’(IK2, PS2);
7. A requests to create an IR with
IK1 and viewlink PS2;

9. B requests to create an IR with
IK 1 and viewlink PS/;

8. 4 requests to create an IR with
IK?2 and viewlink PS2;

(A continues execution.)

10. B requests to create an IR with
IK2 and viewlink PS/;

(B continues execution.)

time Note: Steps 1 — 6 are in sequential;
Steps 7, 8 occur after Step 6;
Steps 9, 10 occur after Step 5.

FIGURE 6.4: A Request-response example

In addition to the creation of IRs, Client API also implements the extended retrieval

function introduced in Section 5.4.3.4.

Thread and Queue Management (TQM)

F-PSL enables the concurrent creation and recording of IRs through multithreading, as
illustrated in Figure 6.3. An application’s requests for creating IRs (Step (1) in Figure
6.2) are queued to be processed by a thread, which creates IRs later. To save on the
cost of network connection, multiple IRs can be wrapped in a single batch, which is
also queued (Step (2) in Figure 6.2) before being handled to RM by a recording thread
(Step (3) in Figure 6.2). The use of multiple-threading and batches of messages supports
requirement EFFICIENT RECORDING.

Another enhancement over PSL and PReServ-Client is that F-PSL provides basic flow

control mechanism to prevent exhausting a client’s memory due to large amount of



Chapter 6 Implementation and Evaluation 189

messages enqueued. This may however affect an application’s performance, since the
application is postponed occasionally to reduce the speed of producing requests to create
IRs when queues become full frequently. We will demonstrate in Section 6.2.5 the impact

of flow control mechanism on an application’s execution.

Recording Management (RM)
RM records IRs into a provenance store and takes remedial actions in the presence of
failures. Its behaviour is specified by the ASM rules in Figure 3.14. We now briefly

introduce the implementation of these rules.

pre_check:

This rule specifies how to check and update causelinks before recording an IR. The
rule involves three tables. Table queue_-T'(a) models the Recording Queue in TQM.
Table assertor_T(a, k,v) reflects an assertor’s knowledge during the recording of an IR,
which is solely for the purpose of proof and hence does not need to be implemented.
Table log T (a, k,v) maintains history information regarding the use of alternative stores,
which is crucial to fixing inaccurate causelinks. Therefore, RM needs to maintain the log
information when an alternative store is used and check the information before recording

any relationship p-assertion.

send_record:
timer_click:
timeout _ack:
These rules specify the communication with a provenance store. Should an acknowl-
edgement fail to be received before a timeout, the same IR is resent to an alternative
store. Although an alternative store is always used in the formalisation, the retransmis-
sion policy can be configured in the configuration file provided by F-PSL. For example,
an IR can be resent to the same provenance store for certain times before using an

alternative store.

We note that the formalisation of a timeout is designed to be an abstract way of detecting
a potential failure in order to trigger the remedial actions. In practice, the triggering
condition is not necessarily limited to the expiry of a timeout. For example, it can be
a failure to connect to a provenance store and can also be the receipt of a response
message with a fault code indicating any exception thrown in the provenance store
service, e.g., storage exception. The occurrence of these events does not guarantee
successful recording of IRs in a provenance store, therefore remedial actions need to be
taken. In the current implementation of F-PSL, remedial actions are taken in response
to an exception thrown on the client side regarding the submission of a batch of IRs to
a provenance store, which may be due to a connection failure or the expiry of a timeout.
In future work, we will revise the definition of an acknowledgement message to include

fault information reflecting the exceptions that occurred on the provenance store’s side.

receive_ack:
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Once an acknowledgement is received from a provenance store, RM removes the ac-

knowledged IR from the recording queue.

post_check:
RM communicates with the coordinator service if an alternative store was used in an
interaction context. To reduce network connection overhead, multiple repair requests

are accumulated before being sent to the coordinator in a single batch.

Local Persistence Management (LPM)

Another novelty of F-PSL over PSL and ReServ-Client is that it introduces a local store
for temporarily maintaining IRs. Recall that F-PSL provides flow control mechanism,
setting a limit on the capacity of the request and recording queues to prevent running
out of a client’s memory. If the threshold is reached, then the application’s execution
has to be suspended until there is space in queues to accommodate additional requests
or IR messages. In order not to degrade the application’s performance significantly,
outstanding IR messages in the recording queue can be maintained in the local store
and resubmitted later (Step (4) in Figure 6.2).

We employ Oracles Berkeley DB Java Edition database (BDB) as the local file store for
the following reasons. Firstly, BDB is an embedded database without the complexity
of installation as a separate service or application. The only requirement is that BDB
must be provided with a directory where it can write its files to. Secondly, BDB is an
append-only database and thus is optimised for write performance. When employing the
local file store, another thread is provided to resubmit IRs from BDB to a provenance

store.

Configuration File
The configuration file allows developers to customise F-PSL’s behaviour. The following

properties are specific to the new functionalities introduced by F-PSL.

ALT_STORE_LIST | A list of alternative provenance store addresses

TIMEOUT The deadline for receiving an acknowledgement from a store

RETRY_COUNTS The max number of message retransmissions to stores

USE_ALT_STORE Boolean value indicating redelivering a message to an alt.
store or a same store

COORD_URL The address of the coordinator service

REQ_-QUEUE_SIZE | The capacity of the request queue

REC_QUEUE_SIZE | The capacity of the recording queue

REC_BATCH_SIZE | The number of interaction records that are batched together
for delivery to a provenance store

REP_BATCH SIZE | The number of repair requests that are batched together for
delivery to the coordinator

LOCAL_STORE_DIR, | The path to the directory of the local store

TABLE 6.1: Configuration properties
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6.1.2 Provenance Store Service

Figure 6.5 gives the architecture of provenance store service (PS). F-PReServ extends

PReServ’s implementation of PS (termed PReServ-PS) in terms of the following aspects:

TM: Thread Management (PS’s ASM Rules Applied)
SM: Storage Management

PS Service

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SOAP(record)

. R ) 3
BUSIH.GSS F-PSL, C
Logic SOAP(ack) 3 Record

@ Plug-In - -
Backend
Database
4)

Update Plug-In

SOAP( repair)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SOAP(update)
SOAP(uack)

Coordinator
Service

FIGURE 6.5: Overview of provenance store service

(1) Disk Cache. PS persistently writes received IRs to BDB (Step (1) in Figure 6.5)
before providing an acknowledgement (Step (2) in Figure 6.5). Therefore, the data is
guaranteed to be available when the PS comes back up after a crash. By contrast,
PReServ-PS, though caching IR messages into BDB before replying an acknowledge-
ment, does not write through the messages to disk on flush, thus having a risk of losing

IRs in the event of system crash. We will demonstrate this in Section 6.2.4.

In order to reduce the cost of writing through data to disk, F-PReServ does not record
IRs directly in its backend storage but processes the cached items at a later stage after
providing an acknowledgement (Step (3) in Figure 6.5). This asynchronous strategy sup-
ports requirement EFFICIENT RECORDING because it delays actual message processing

and hence reduces response time to the corresponding assertor.

(2) Update Plug-In. PS has been designed to facilitate convenient integration of new fea-
tures through the use of plug-ins [76]. A new plug-in, Update Plug-In, is implemented as
a Java Servlet to receive update requests from the coordinator and update the requested
view links. In order to balance the tradeoff between reliability and performance, PS
also caches incoming update messages into disk (Step (4) in Figure 6.5) before returning
an acknowledgement to the coordinator (Step (5) in Figure 6.5) and at a later stage

processes those messages.
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Regarding the implementation of the two ASM rules in Figure 3.15, we note that table
vilstate_T'(aps, k,v) reflects the store’s state and is solely for the proof in Chapter 4,
hence it does not need to be implemented. The backend database was designed and
implemented in PReServ-PS. It uses an interaction context (an interaction key and a
viewkind) to index an interaction record, containing the assertor’s identity, a viewlink

and a set of p-assertions documenting the interaction which are created by the assertor.

6.1.3 Coordinator Service

Figure 6.6 shows the architecture of the Coordinator Service.
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FIGURE 6.6: Overview of coordinator service

The coordinator persistently stores received requests in a local file store (Step (1) in
Figure 6.6). At a later stage, it then processes the cached requests by storing them in
a backend store (Step (2) in Figure 6.6) and performing update operations (Step (3)
in Figure 6.6). An assertor continues its execution after receiving a response indicating
its repair request has been cached in the coordinator. BDB is also employed as the file

store.

Since the coordinator service is required to be highly available, multiple coordinator
services can be clustered in a business critical environment, which we will discuss in
Section 6.3.3.

We also provide basic administrative functionality to the coordinator service. An ad-

min plug-in has been implemented to monitor the update status of the coordinator by
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querying the backend data store.

In SOAs, the process of executing a large-scale application may span different organi-
sations. Multiple coordinators can be utilised in the whole process. When using more
than one, any two assertors exchanging an application message must share the same one
in order to ensure requirement VIEWLINK ACCURACY. The identifier of a coordinator

can be built in assertors or exchanged to other assertors in the application message.

The behaviour of UM has been detailed in Figure 3.6.5 and we outline its implementa-

tion.

receilve_repair:

Contents in tables coord_T and updateT are maintained in the backend database. Only
minimum information is maintained in the backend database for each repair request: the
identity of the destination store that needs to be updated, the identity of the store that
successfully recorded the requesting assertor’s interaction record for a given interaction
and the update state (UPDATE and UPDATED). We use the associated interaction
context (an interaction key and a viewkind) to index the above information in database.
The Update Management (UM) component then performs update operations based on

the information in the backend database.

send_update:

timer_click:

timeout _uack:

These rules specify the sending of an update message to a provenance store. In the cur-
rent implementation, a message is resent to the same provenance store upon a commu-
nication exception thrown on the coordinator’s side, which may be due to a connection

failure to a provenance store or the expiry of a timeout for receiving an uack message.

recetve_uack:

Once an acknowledgement is received, UM changes the updating status of the corre-
sponding interaction context to UPDATED in the backend database (Step (3) in Figure
6.6). However, it may not be able to delete the information regarding the interaction

context from the database for the following reason.

The request information maintained in the database is essential to ensuring successful
update of viewlinks given the case where two assertors may each issue a repair request
about the same interaction. If the coordinator does not record the first assertor’s request
or it deletes the first assertor’s request information before receiving the other assertor’s
request, then it would not send update messages to the correct destination stores. There-
fore, UM does not remove request information from backend database until receiving
two requests each from an assertor of an interaction. If only one assertor of an interac-

tion sends a repair message, this information is kept in the database for a long period of
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time* before it can be removed.

6.2 Performance Evaluation

After presenting the design and implementation of F-PReServ, this section evaluates the

performance of F-PReServ and its impact on an application’s execution time.

Our experiments were run on the Iridis Computing Cluster at the University of Southamp-
ton. Iridis contains several sets of nodes (i.e. computers). Nodes used in the experiments
each have two Single Core AMD Opteron processors running at 2.2 GHz and 2 GB of
RAM. The Provenance Store Service and Coordinator Service were run on nodes each
with 4 Dual Core AMD Opteron processors running at 2.4 Ghz and 2 GB of RAM.
In the experiments with failures, one coordinator service was employed. All nodes are
connected by Gigabit Ethernet. All applications used in the evaluation were written in

Java and were run using the Java 1.5.0 05 64-bit Server Virtual Machine.

Our evaluation was conducted at three levels. First of all, we measured the throughput
of the provenance store service and coordinator service. We also investigated how the
contention for the coordinator service affects an actor’s recording performance when the
number of recording actors increases. Then, we benchmarked the recording performance
of F-PSL without considering contention. Finally, we investigated F-PReServ’s impact
on the execution time of a scientific application. In each level, we performed two ex-
periments: failure-free experiment and experiment with failures. A comparison with

PReServ was made in all the failure-free experiments.

There are numerous factors that can affect the system performance [144, 83], such as
disk speed, processor speed, system memory, networks, Java Virtual Machine’s heap
size, Tomcat web container’s thread pool size as well as the capacity of queues in F-PSL.
Given the available hardware and software resources for the experiments, we modified
those configurations that may potentially affect our results, tuned the system until we

achieved the near-best results, which are presented here.

6.2.1 Injecting Failures

Before advancing to the experiments, this section introduces the methodology we adopted

to inject failures.

Given the failure assumptions in Section 3.2, provenance store crashes and communica-
tion channel omission failures need to be considered in order to measure a provenance-

aware application’s performance in the presence of failures. However, these failures are

“longer than an application’s lifetime
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non-deterministic in nature and typically very hard to predict, therefore it is infeasible
to perform experiments with real failures. Hardware and software based fault-injection
tools for Web-Service applications have been developed [86, 108, 109]. In addition to
the administrative complexity, these tools inevitably introduce operating overhead such
as decoding SOAP messages in order to inject faults, which may not be negligible in a

high performance cluster environment and hence may affect our results.

Instead, we decided to develop a generator on a client side to inject random failure
events when submitting or resubmitting a message (i.e., a batch of interaction records)
to a provenance store. A failure event results in an exception caught by F-PSL and
consequently the remedial actions taken by F-PSL. The generator generates a failure
event based on a failure rate, i.e., the number of failure events that occur out of a
total number of messages sent to a provenance store. The generator can emit a failure
event immediately to simulate an instant connection failure or can postpone generating
a failure event for a pre-specified timing interval to mimics the latency of detecting a
potential failure. For example, the failure to receive an acknowledgement is not known

until a timeout is expired.
The advantages of adopting such a generator are as follows:

Firstly, the client-side generator is easy to implement. Provenance store crashes and
omission failures only matter when an assertor is sending messages to a store. These
failures, if not masked by HT'TP transporting SOAP messages, lead to exceptions thrown
on the client side, and to the remedial actions taken by F-PSL, which may further affect
an application’s execution. Our aim is to measure the impact of F-PReServ on the
application’s performance, therefore it is reasonable to generate exceptions on the client
side without concerning real failures or using fault-injection tools to simulate service

crashes or message omissions.

Secondly, the generator enables us to fully control the number of failure events that occur
in the system. This helps us understand the correlation between system performance

and failure rate.

Thirdly, since the length of a delay to produce a failure event is configurable, we can
investigate different cases by increasing the delay interval’s value from zero. The ex-
periment in the best case, i.e., failure events are produced immediately without latency,
implies the most messages sent to a provenance store and the coordinator in a given
time frame. This leads to the heaviest load on the coordinator service and provenance
store service for a given failure rate, which is useful in the throughput experiments in
Section 6.2.3. In addition, by increasing the interval, we can also observe a general
pattern in terms of how the latency of detecting a failure event may affect application
performance and accordingly, we can provide recommendations to developers regarding
how to improve the performance of their provenance-aware application, as illustrated in
Section 6.2.5.
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We note that there is no generator on the coordinator’s side in our experiments. Ac-
cording to Figure 6.6, the application continues execution after the coordinator caches
repair requests. At a later stage, the coordinator processes the requests to update prove-
nance stores. Hence, the failures that may occur during the communication between the
coordinator and provenance stores do not affect the application’s performance, which is

the reason why we did not generate failure events on the coordinator’s side.

6.2.2 Throughput Experiments

In the throughput experiments, we simulate a large number of concurrent clients commu-
nicating with the provenance store service and coordinator service to determine the sat-

uration point of the service, i.e., at what point the service capabilities are fully stressed.

Our approach to simulating concurrent clients is as follows. On each node of the cluster,
we created up to 16 threads (i.e., clients) sending messages to a service at the same time.
An MPI based test harness was used in the experiments to guarantee that all clients
were run in parallel. Given that an experiment is allowed to use up to 32 nodes in the
Iridis environment, we can have 512 active clients sending messages to a provenance
store service or coordinator service. More specifically, active clients send a request, wait
for the response, and immediately create a new request upon response reception and

resend the new request.

Throughput of Provenance Store Service In Section 6.1.2, a disk cache mechanism
was introduced as the default setup of a provenance store in F-PReServ. This means the
store forces every received interaction record (record) message into disk before providing
an acknowledgement in order to maintain the durability of these messages. However,
this mechanism may sacrifice a provenance store’s throughput (i.e. the number of record

messages accepted in a period of time).

We performed two failure-free tests with and without disk cache enabled, respectively.
All record messages, each in a single batch, were directly created and submitted to a

provenance store without using threading.

Figure 6.7 shows the results. In both setups, the provenance store’s throughput levels
off, where about 212,200 and 176,000 10k record messages are accepted in a 10 minute
period in the setup without disk cache and with disk cache, respectively. This means a

store’s throughput decreases by 20% due to enabling disk cache.

Throughput of Coordinator Service We also measured the coordinator’s throughput
(i.e. the number of repair requests accepted in a period of time) with up to 512 clients
simultaneously sending repair messages to an update coordinator. To save on the cost

of network connection, 100 repair requests were sent to a coordinator in a single batch.
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Figure 6.8 shows that a coordinator can accept up to around 30,000%100 repair requests
in a 10 minute period. This means there were at least 30,000¥100 failure events in 10

minutes, which is unlikely to appear in applications.
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6.2.3 Throughput Experiments with Failures

The experiments in this section consider the following two issues.

Firstly, given that one coordinator may become a performance bottleneck, we need to

investigate the impact of contention for a coordinator on a client’s recording perfor-

mance5 .

®The impact of contention for a provenance store has been studied in [76].
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In addition, as introduced in Section 6.1.1, F-PSL provides a configuration file enabling
users to specify how to retransmit record messages, i.e., resending to a same store or an
alternative store, where there exists a tradeoff. Retransmitting messages to the same
provenance store can tolerate transient failures, such as message losses. However, if a
provenance store has crashed and is to be recovered after a long period of time, resending
messages to the same store is not a good solution. On the other hand, the use of an
alternative store ends up with an assertor’s causelinks or another assertor’s viewlink
incorrect. This introduces additional cost for updating links. Therefore, it is worth

comparing the tradeoff between using the same and alternative store for redelivery.

We conducted two experiments where a single client and 128 clients kept recording 10k
record messages into one provenance store in a 10 minute period. Various failure rates
(5%, 10%, 16%, 20%, 25%, 33% and 50%) were considered®. A second provenance
store was employed as the alternative store’. One coordinator service was deployed
in the experiments and 100 repair requests were sent in a single batch. Since the more
failure events the more repair requests, failure events were immediately generated without
considering latency to maximise the number of repair requests that could be sent to the

coordinator within 10 minutes.

Figure 6.9 shows the result in the experiment with a single client. The result was

averaged from five runs of the experiment. We have two observations.

(1) When using the alternative store in each retransmission, up to around 20,000 repair
requests are produced (because around 40,000 record messages are recorded when failure
rate is 50%). This means the coordinator, in the worst case, receives 200 batches, each
containing 100 repair requests, from a single client within 10 minutes. According to
coordinator’s throughput experiment in Section 6.2.2 and the fact that the 200 repair
batches are received by the coordinator from a single client all across 10 minutes, we
imply that with about 100 clients, each having its own provenance store and alternative
stores, the impact of contention for a coordinator on a client’s recording performance

would be very small.

(2) Resending messages to the same provenance store can record more record messages
than to an alternative store, assuming that only transient failures are present. This
implies a bottleneck on the client side since the use of an alternative store requires extra
actions on the client side to update links, limiting the number of record messages that

can be sent within 10 minutes.

Figure 6.10 shows the result when 128 clients record record messages into one prove-

nance store in the presence of failures. This experiment considers the contention for

SWe did not consider failure rates beyond 50% because that implies severe communication problems
and an application’s performance would be significantly degraded, to be demonstrated in Section 6.2.5.3.
In that case, the local file store can be used to temporarily maintain interaction records.

"When two provenance stores are used, the measured throughput in this section is actually the total
number of messages sent from all clients to all provenance stores within 10 minutes.
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FIGURE 6.10: Throughput experiment (128 clients)

a provenance store as well as potential contention for a coordinator. We also have
two observations. Firstly, communicating with the coordinator does not affect total
throughput. This implies that the contention for a coordinator is negligible (It can be
calculated that up to about 750 repair batches are sent to the coordinator from 128
clients in 10 minutes.). Secondly, using an alternative store, in general, results in more
record messages recorded than using a same store to do so. This implies a bottleneck on
the provenance store since a heavily loaded provenance store affects client’s performance
while the use of an alternative store helps to balance the load (especially when failure

rate is 25%), though introducing additional cost of updating links.

From these experiments, we have two conclusions. Firstly, the coordinator is scalable

and the impact of its contention on a client’s recording performance is very small or
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negligible. Since our implementation supports the use of multiple coordinators, we
believe the coordinator service does not affect an application’s recording performance.
Secondly, to achieve a better recording performance, an alternative store can be employed

after a message fails to be resent to a same store for certain times.

6.2.4 Benchmark Experiments

We now investigate the recording performance of a single client without considering
contentions. All the benchmark experiments were run with one client recording record
messages into one provenance store. All record messages were directly created and

submitted to a provenance store without using multithreading.

Failure-free Experiment The experiment compares F-PReServ to PReServ in a failure-
free environment. We measured the time to record 10,000 10k record messages. To
minimise the impact of network connection overhead, 100 record messages were shipped
in a single batch. Measurements were taken after recording each batch. Figure 6.11
summarises the record time. The graph displays an average from ten trials. From the

figure, we have two observations:

(1) The provenance store without using disk cache, i.e., in the setup using PReServ,
periodically flushes 900 record messages into disk. This means if the provenance store

crashes, up to 900 10k record messages may be lost.

(2) The average time to record 100 10k record messages is 198.8ms and 174.4ms us-
ing F-PReServ and PReServ, respectively. Therefore, F-PReServ has an overhead of
13.8% compared to PReServ due to the use of disk cache mechanism. We note that
in an application, the impact of F-PReServ on the application’s performance is similar
to that of PReServ in a failure-free environment, as illustrated later in the application
experiment (Section 6.2.5.1). This similarity benefits from the use of multithreading to

asynchronously create and record messages.

Experiment with Failures In Section 6.2.3, we measured a client’s recording perfor-
mance in the presence of failures in terms of throughput. However, we did not consider
the overhead of updating causelinks. Updating causelinks matters only when a relation-
ship p-assertion is to be recorded. In this experiment, we approximated the maximum
overhead of taking remedial actions by measuring the record time of relationship p-

assertions.

In F-PSL, the more causes a relationship p-assertion has, the longer it takes to check and
update causelinks. Therefore, we increased the number of causes from 10 to 100. Given
a number of causes, several tests were conducted with various failure rates (5%, 25% and

50%). For each failure rate, the p-assertions about cause interactions of a relationship
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p-assertion were recorded prior to measuring the recording time for the relationship p-
assertion itself. In order to measure the actual cost of remedial actions by means of
record time, failure events were immediately generated without considering latency. We
deployed another store as an alternative store, which was used in the retransmission of
a relationship p-assertion. Repair requests were sent to a coordinator in batch sizes of
100.

Figure 6.12 summarises the results in terms of overhead. The measurements were taken
after recording 100 relationship p-assertions. We can observe a maximum overhead of
10% for taking remedial actions, when compared to the record time when no failure
occurred. Broadly speaking, the overhead increases linearly with the increase in failure

rate. We note that since it takes much longer time to record a relationship p-assertion
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with larger number of causes, the overhead of taking remedial actions becomes relatively
small in the settings with more causes. Therefore, we observe the smallest overhead
in the setting with 100 causes. The result also shows a bounded overhead of taking
remedial actions. This means that given a failure rate, the overhead does not increase

as the number of causes of a relationship p-assertion increases.

6.2.5 Application Experiment

This experiment aims to investigate F-PReServ’s recording performance in a scientific
application, the Amino Acid Compressibility Experiment (ACE) [81]. ACE attempts
to find possible new relationships between amino acids by investigating the information

theoretic properties (e.g., information efficiency) of their computational representations.

ACE is chosen because of its general properties representing a range of provenance-
aware applications in SOAs. First, it can be used to answer a range of provenance
queries, as summarised in [81]. Second, it is high performance and fine-grained. There
is no network connection in the original application before being made provenance-
aware; a large volume of interaction records needs to be recorded within a short time
(process documentation of 20 Gigabytes recorded within 30 minutes). These all imply
that recording process documentation may be difficult. Therefore, the evaluation results
obtained from this difficult application are representative to a large set of applications

with less demanding requirements.

6.2.5.1 The ACE Application

The Amino Acid Compressibility Experiment (ACE), designed by Dr. Klaus-Peter Za-
uner and Dr.Stefan Artmann, attempts to find possible new relationships between amino
acids, the basic building blocks of life, by investigating the information theoretic prop-
erties of their computational representations. ACE starts from a basic assumption that
proteins are information efficient, i.e. they use the least number of amino acids possible
to obtain their function. Hence, evolution results in the best and most efficient use of
information. Based on this assumption, ACE tests whether particular substitutions of
one amino acid for another would result in higher information efficiency. The intuition

is that high information efficiency values is key to creating functioning proteins.

ACE was implemented in Tool Command Language (TCL) by Dr. Klaus-Peter Zauner
and Dr.Stefan Artmann, and has been rewritten in Java [76]. In our experiment, we
modified the Jave edition of the application by generating Cluster-compatible job de-
scriptions to execute ACE on Iridis, and using F-PSL to produce and record process

documentation, as illustrated in Section 6.1.1.



Chapter 6 Implementation and Evaluation 203

Figure 6.13 shows the deployment workflow of the ACE application. Selected sequences
are collated locally (i.e. on the bioinformaticians computer) into several sample se-
quences. The samples must be of sufficient size so that the statistical methods used by
the compression algorithms in the later portion of the workflow can work appropriately.
The Jobs Creator then generates a series of jobs to be submitted to the Iridis cluster
and executed. The executables used by the jobs are pre-staged on Iridis (i.e. they are
already available on Iridis). Each job analyses several collated samples according to a
set of group codings. In order to produce information efficiency values, each sample is
firstly encoded with a given group coding (Encode by Groups). The recoded sequence is
then compressed with compression algorithms, e.g., gzip, bzip2 or ppmz, to obtain the
length of the compressed sequence (Compress). Meanwhile, the Shannon Entropy of the
encoded sample is computed (Compute Entropy), which provides a standard of compar-
ison for the encoded sample. The Shannon Entropy removes the influence of two factors
from the compression: the particular data encoding used to represent the sample, and
the non-uniform frequency of groups. With the compressed sample size and Shannon

Entropy, the information efficiency is able to be calculated (Calculate Efficiency).

Information efficiency values can be compared since their calculation takes into account
the size of the sequence used, and the compression method and group coding employed.
Once the information efficiency values for different groups are calculated, they can be
plotted to find those codings that maximise efficiency and thus are good candidates for

further substitution investigation.

6.2.5.2 Experimental Setup

The collate sample portion of the ACE workflow is typically run once and a number of
jobs are generated to process these samples with different groups. In our experimental
setup, one run of ACE consisted of 20 jobs, which are run on the cluster at the same
time. Each job analysed 900 unique groups on 5 different 100K collated samples, thus,
a job generates 4500 information efficiency values, involving 54,000 interactions in total
between seven assertors®. Given that one interaction is documented by two interaction
records (record), one job hence produces 108,000 record messages, each containing 10Kb

p-assertions on average.

To minimise network connection overhead, record and repair messages were sent in
batches of 100. Multi-threading for creating and recording record messages was used
in all tests and all the assertors share one request queue and one recording queue. Vari-
ous failure rates (5%, 10%, 16%, 20%, 25%, 33% and 50%) were considered. The impact

8Local methods are instrumented using F-PSL as recording assertors. Assertors exchange application
messages by means of method calls without network connections. They record interaction records
documenting the messages they receive and send to contribute to the process documentation of an
information efficiency value.
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of the latency to detect a failure event on an application’s performance was also inves-
tigated. We studied three latency intervals, Os, 1s and 2s to obtain a general pattern of
the impact. The interval Os provides an extreme case, where a failure event occurs im-
mediately. Reason for not choosing higher values is that if we can conclude the pattern

with these values, then we do not need to discuss higher ones.

Due to the limited resources a user is eligible to use on Iridis, we employed five provenance
stores to record process documentation. These provenance stores were the default and
alternative stores known by each assertor. When taking remedial actions, an alternative

store was randomly selected.

6.2.5.3 Results

Since the time to collate samples is constant and small as opposed to the job runtime,
the application runtime is approximated as the average runtime of all jobs [76]. We
average application runtime from three runs of ACE. The runtime of an application
without recording process documentation is 22:24 (in the format mm:ss). When no fail-
ure occurs, the application runtime using PReServ and F-PReServ are 24:58 and 25:07,

respectively. Therefore, the recording overheads of PReServ and F-PReServ are similar
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(about 12%). This similarity benefits from the use of multithreading to asynchronously

record documentation.

The asynchronous approach allows an application’s record messages to be queued before
being shipped to a provenance store. F-PReServ has provided a flow control mechanism
in the request and recording queues to avoid exhausting memory. For example, record
messages cannot be queued until there is space in the recording queue. This may however
affect the application’s performance, since the application is postponed occasionally in
order to reduce the speed of issuing requests to create record messages when queues

become full frequently.

Our results in Figures 6.14 and 6.15 demonstrate the correlations among application
performance, failure rate, latency of producing failure events and queue utilisation. In
Figure 6.14, the recording overhead slightly increases as the failure rate is below 25% in
all latency setups. However, it is sharply increased when failure rate is beyond certain
points, such as 25% and 33%. Figure 6.15 shows how often a recording queue is in a full
capacity when a new batch of record messages is to be enqueued. It clearly reveals that
the sharp increase in the recording overhead in Figure 6.14 results from the flow control

mechanism.
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FIGURE 6.14: Recording overhead of F-PReServ

From this application experiment, we can draw several general conclusions:

(1) Both PReServ and F-PReServ have similar recording overhead when there is no
failure (around 12% in ACE);

(2) If the application is not slowed down due to limit on queue capacity, F-PReServ in-
troduces acceptable recording overhead in the presence of failures (around 18% in ACE);
(3) The latency of generating a failure event (i.e., the delay in detecting a failure) can
affect an application’s performance. If the latency is caused by the timeout for waiting

for an acknowledgement from a provenance store, then there is a trade-off: a smaller
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FIGURE 6.15: The frequency of a recording queue in full capacity

timeout would enable F-PReServ to take remedial actions more quickly in the presence
of failures, which can avoid slowing down the application’s execution but may result in
redundant information recorded in the original store which erroneously was considered
to have failed;

(4) By monitoring the utilisation of queues, we can detect if an application’s perfor-
mance has been severely degraded and then take actions to improve the performance.
For example, the local file store introduced in F-PSL can be automatically employed
for temporarily maintaining interaction records’, when the frequency of the queue in

maximum capacity reaches a certain threshold, say, 40%.

An ACE job does not involve network connection apart from communicating with prove-
nance stores, the coordinator. This implies that recording process documentation is
difficult and hence the above results are representative to a wide range of applications

in SOAs which are normally Internet-based with less performance requirement.

Query After each run of ACE, we queried the provenance stores to further verify the
quality of documentation recorded by F-PReServ. In order to compare results, we also
reran ACE using PReServ to record process documentation in the presence of failures.
The query results show that:

(1) F-PReServ records an equal number of interaction records in provenance stores and
produced in ACE, whilst PReServ fails to record complete process documentation (Fig-
ure 6.16);

(2) F-PReServ does not produce isolated documentation islands and dangling links in
the documentation retrieval path, whilst PReServ produces disconnected process docu-

mentation and dangling links (Figure 6.17);

9We note that the use of local file store also has performance penalty as it involves disk I/O and
thread management, which causes 42% overhead in ACE experiment.
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(3) Distributed documentation of the process that led to a data product (i.e., an infor-
mation efficiency value) can always be retrieved in its entirety after being recorded using
F-PReServ, whilst PReServ cannot as process documentation is disconnected;

(4) The retrieved process documentation can answer all the use case questions sum-
marised in [76];
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FIGURE 6.16: Number of interaction records in PS
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FIGURE 6.17: Isolated islands and dangling links resulted from using PReServ

6.3 Discussion

Having learned lessons from the experimental results, this section provides several rec-
ommendations on the next version of F-PReServ on achieving good performance in the

case of failures. In addition, we discuss relevant technologies that can be integrated with
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F-PReServ.

6.3.1 F-PSL
6.3.1.1 Including Fault Codes in Acknowledgement

The experimental results in Section 6.2.5.3 show that the latency of detecting a potential
failure may affect an application’s performance. In the current implementation, the
receipt of an acknowledgement marks the successful recording of interaction records
(IRs) in a provenance store. If exceptions are thrown in the provenance stores during
the processing of received IRs, then no acknowledgement is provided. The occurrence
of some exceptions on provenance stores does not guarantee the successful recording
of IRs, therefore the related assertor still needs to take remedial actions. Due to lack
of acknowledgement, the assertor has to wait until a timeout is expired, which implies
a latency before remedial actions are taken. Consequently, the application’s execution

may be affected when queues reach full capacity, as illustrated in Figure 6.14.

In next version F-PReServ, we will modify the acknowledgement message by defining
fault codes. Therefore, the provenance store can inform the assertor with a response
message in the event of exceptions, and the corresponding assertor can interpret the

fault codes in the response message and takes remedial actions as soon as possible.

6.3.1.2 Developing Intelligent Policies

In addition to F-PSL’s configuration file, intelligent policies can be developed to help

maintain good recording performance in future work.

(1) A timeout should be appropriately set in order to balance the tradeoff between
the speed and accuracy of detecting failures to receive an acknowledgement from a
provenance store. An adaptive algorithm can be developed to predict a timeout based

on the size of messages to be delivered and previous failure events.

(2) As shown in the experiments, using the original and alternative store when resend-
ing messages can achieve a better performance by balancing the tradeoff between the
cost of taking remedial actions, the workload of provenance stores, and the impact on
application’s execution. A policy can be introduced to select an alternative store after
messages fail to be resent to a same provenance store for a number of times and to adjust

the appropriate interval between retransmissions.

(3) In the current implementation, an alternative store is randomly chosen. However, a
heartbeat service can be introduced to periodically test the candidate alternative stores
during the execution of an application and choose the most suitable one in terms of

service availability and speed of response.
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(4) If an application’s performance has been severely degraded due to recording process
documentation in the presence of failures, process documentation can be temporarily
maintained in the local file store. Hence, another policy can be considered to automati-

cally employ the local store at appropriate time.

6.3.1.3 Integrating Enterprise Messaging Services

In enterprise applications, messaging services such as IBM WebSphere MQ, Tibco Enter-
prise JMS, or SonicMQ are often used to guarantee message delivery. When integrated
with F-PReServ, enterprise messaging services can reliably transport SOAP messages
provided by F-PSL.

As introduced in Section 2.6.3, a messaging service typically requires the configuration
of a broker [4, 42], residing in the middle of a client application and a provenance store
service. In the event of provenance store crashes, process documentation is temporarily
maintained in the broker until the store comes back online. Policies can be set up for
the broker to choose alternative stores. Since F-PReP provides a general and flexible
approach to recording process documentation in the presence of failures, we can cus-
tomise a broker’s behaviour by providing actions such as sending repair requests to the

coordinator service based on rules in Figure 3.14.

6.3.2 Provenance Store Service
6.3.2.1 Clustering Provenance Store Services

Provenance store services can be organised as a cluster sharing a same provenance store
URL and one persistent data store. If one provenance store fails, another one takes over
the pending work of the failed store so as to provide uninterrupted service to the failed

store’s clients as if no failure occurs.

Since our provenance store service has been implemented as a web service deployed in a
web container, it is natural to adopt this approach as many application servers'® provide

high-available services through clustered web servers and databases.

Though can be complementary to our approach, clustering provenance services has the
following problems. Firstly, the potentially significant cost of replicating information
could limit its application, given the documentation produced in a process can be in
large quantity, e.g., on the order of terabytes. Secondly, it does not deal with discon-

nected process documentation that could happen in the presence of failures unless each

0For example, Apache Tomcat, IBM WebSphere Application Server Network Deployment v6.1, Web-
Sphere MQ Cluster, DB2 Enterprise Server Edition and Sun Cluster on Solaris.
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provenance store in the system has its own clustered services. However, in open dis-
tributed environments like SOAs, where a large number of provenance stores could be

present, it is unrealistic to assume each is facilitated with replicated backups.

6.3.2.2 Availability of Process Documentation

According to Figure 6.5, the provenance store caches received messages and at a later
stage stores them in a backend database. This means that it may take a while before
process documentation is ready to be retrieved. To accelerate this process, we can utilise
multithreading in Step (3), Figure 6.5 to increase the processing rate. Therefore, process

documentation will be available for retrieval more quickly.

6.3.3 Coordinator Service
6.3.3.1 Clustering Coordinator Services

In Section 3.2, we assume the Update Coordinator does not fail. To implement this
assumption, the coordinator service can be clustered for the following reasons. Firstly,
failures, though occasionally occur during recording process documentation, are still not
common. Messages can be retransmitted to the same provenance store for several times
before using an alternative one. Therefore, the coordinator is not involved in every
interaction and the number of connections to a coordinator can be small. Secondly, only
a minimum amount of information maintained by the coordinator, thus reducing the

overhead for replication.

In practice, a few public coordinator services can be deployed in application servers
with clustering functionality and maintained by several organisations to support all

provenance-aware applications in the world.

6.3.3.2 Security Issues

Security issues pertaining to PReServ have been investigated in [77, 156]. In this section,
we briefly discuss those related to the Update Coordinator. Authentication, Authorisa-

tion and Encryption are three fundamental aspects that need to considered.

e Authentication and Authorisation ensure that only verified users can communicate
with a service to perform allowed operations. Firstly, only verified assertors or
administrators can establish a connection with a coordinator service to send repair
requests or to monitor the coordinator’s status. Secondly, only verified coordinator
services can update links in a provenance store. These notions are conceptually

similar to the general case of accessing a database with multiple users.
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e Encryption protects repair, update and uack messages from being tampered with
during delivery over a connection. Transmission of messages can be secured using
the Transport Layer Security (TLS) or its predecessor, Secure Sockets Layer (SSL)
with HTTP.

6.4 Related Work

There is not much work on performance study related to provenance. Performance
evaluations of PReServ are presented in [78, 76]. A detailed comparison on recording
performance between Karma and PReServ is seen in [151], which shows that the per-
formance of PReServ was similar to, or outperformed, Karma. Extensive performance
evaluations have been made on techniques to reduce the amount of storage required
for process documentation [32]. There has been a performance study on PASS [129],
an automatic provenance collection and maintenance storage system at the operating

system level. None of these evaluations considers failures.

6.5 Conclusion

In this chapter, we have introduced F-PReServ, an implementation of F-PReP with ar-
chitectural support for practical issues such as communication, storage and performance.
The implementation of F-PReServ supports requirement EFFICIENT RECORDING identi-
fied in Chapter 1. We detailed the design philosophy of F-PReServ’s three components:
F-PSL, Provenance Store Service and Coordinator Service. Its features include a novel
way of creating process documentation, basic flow control management for recording
documentation, and a local store for temporarily maintaining documentation to avoid
severe performance degradation in the presence of failures. We also discuss various

approaches that are complementary to our implementation.

Another contribution of this chapter is the extensive evaluation of F-PReServ’s perfor-
mance. The experimental results showed that F-PReServ introduces reasonable over-
head when compared to PReServ and has some performance impact on an application’s
execution. We believe these results are still acceptable given that the process documen-
tation is guaranteed to be recorded in the presence of failures (Figure 6.16) and still

retrievable in its entirety from multiple provenance stores.

Here we summarise our evaluation results:
(1) The use of disk cache in F-PReServ limits a provenance store’s throughput by 20%
compared with PReServ (Figure 6.7). However, PReServ may lose interaction records
in the event of store crashes (Figure 6.11).

(2) The coordinator is scalable (Figure 6.8) and the impact of its contention on a client’s
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recording performance is very small or negligible (Figures 6.9 and 6.10).

(3) Remedial actions taken by F-PSL introduce small overhead (below 10%, Figure 6.12).
In addition, given a failure rate, the overhead does not increase as the number of causes
of a relationship p-assertion increases (Figure 6.12).

(4) F-PReServ has an overhead of 13.8% compared to PReServ when recording messages
directly to a provenance store (Figure 6.11). However, the impact of F-PReServ on an
application’s performance is similar to that of PReServ in a failure-free environment,
benefiting from the use of multithreading to asynchronously create and record messages
(both having around 12% overhead compared to ACE’s performance without recording
process documentation, Figure 6.14).

(5) If the application is not slowed down due to the limit on a queue’s capacity, F-
PReServ introduces acceptable recording overhead in the presence of failures (around
18% in ACE, Figure 6.14).

(6) The latency of generating a failure event (i.e., the delay in detecting a failure) can
affect an application’s performance (Figure 6.14).

(7) By monitoring the utilisation of queues (Figure 6.15), we can detect if an appli-
cation’s performance has been severely degraded and then take actions to improve the
performance. For example, the local file store introduced in F-PSL can be automatically

employed for temporarily maintaining interaction records.

The scientific application ACE used in our evaluation is high performance and fine-
grained, which implies that recording process documentation is difficult. Hence the
above results (4), (5), (6) and (7) are representative to a wide range of applications in

SOAs which are normally Internet-based with less performance requirement.

Finally, based on the above experimental results, we projected the next version of F-
PReServ by recommending the improvements on its implementation to achieve better

performance (Section 6.3).



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Scientific and engineering communities have presented unprecedented requirements for
knowing the provenance of their data products, i.e., where they originated from, how
they were produced and what has happened to them since creation. Without such
important knowledge, scientists and engineers cannot reproduce, analyse or validate

experiments and processes.

A number of provenance systems have been developed to record provenance information
(i.e., process documentation) for SOA-based scientific and engineering applications. In
order to support scalable recording, multiple provenance stores are employed to maintain

distributed process documentation.

According to our survey, PASOA has a number of advantages over the other provenance
systems: first, it models process documentation in a domain and technology indepen-
dent approach; second, it specifies a generic recording protocol PReP, which can be
implemented in different languages; third, it supports multi-site recording to obtain
sufficient provenance data in highly decentralised applications; fourth, it introduces a
linking mechanism to form a chain of pointers, connecting any number of provenance
stores to record process documentation. These advantages have been demonstrated in a
variety of applications. Therefore, this dissertation has adopted PASOA’s approach to

modelling process documentation and extended PReP to inherit these advantages.

None of the current provenance systems, however, adequately addresses the problem of
reliably recording process documentation in SOA-like large scale environments such as
the Grid, where failures (specifically, communication failures and the crash of provenance
stores) often occur. The presence of these failures leads to poor quality (incomplete and

disconnected) process documentation recorded in provenance stores. Consequently, it

213
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is not acceptable in the domains that rely on process documentation to determine the

provenance of their data products.
This dissertation has addressed the following thesis statement:

In SOA-based applications, the problem of recording process documentation in the pres-
ence of failures (provenance store crashes and communication failures) while still ensur-
ing its entire retrievability is solved via a generic and efficient coordinator-based protocol
to guarantee successful recording of complete documentation and to preserve accurate

links that connect multiple provenance stores.

To establish this thesis, we firstly presented F-PReP (Chapter 3), a coordinator-based
protocol to record interaction records (which are the elements of process documenta-
tion) in the presence of failures. Then we formalised the protocol and proved that it
has properties GUARANTEED RECORDING, CAUSELINK ACCURACY, VIEWLINK ACCU-
RACY (Chapter 4). After that, we investigated the properties of process documentation
(Chapter 5) recorded in provenance stores by using F-PReP. We defined graph notations
to intuitively demonstrate that the documentation of a whole process is guaranteed to
be recorded and all viewlinks and causelinks are accurate, and more importantly, pro-
cess documentation recorded in multiple interlinked provenance stores is still retrievable
in its entirety. Finally, we introduced the implementation of F-PReP and conducted
evaluations to show that F-PReP is efficient and has acceptable recording overhead on

an application’s execution (Chapter 6).

We now revisit the core contributions of this dissertation.

e We presented and formalised a generic coordinator-based recording protocol F-
PReP that provides basic fault-tolerant mechanisms such as timeouts, retrans-
mission of messages and alternative provenance stores to cope with failures. The
coordinator plays a crucial role in updating viewlinks to enable documentation
retrievability. Three functional requirements were identified for the protocol to
record complete and retrievable distributed documentation in the presence of fail-
ures. The protocol’s correctness was formally proved against each requirement

using mathematical inductions.

e We graphically represented the topology of distributed process documentation
spanning across interlinked provenance stores. We performed an exhaustive analy-
sis on the forms of graphs, considering all possible topologies after documentation
was recorded in the presence of failures. This exhaustive analysis helped us to

demonstrate the entire retrievability of distributed process documentation.

e A system architecture F-PReServ was described, which employs F-PReP and sup-
ports practical issues such as communication, storage and performance. Its fea-
tures include a novel way of creating process documentation, a new retrieval func-

tion, and implementation strategies (e.g., basic flow control management and a
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local store for temporarily maintaining documentation) for achieving good per-
formance while ensuring the reliability of recording process documentation in the

presence of failures.

e An extensive evaluation of F-PReServ was performed, which reveals that it intro-
duces acceptable recording overhead to a provenance-aware application’s execu-
tion. The evaluation was conducted at several levels. First of all, we measured
the throughput of the provenance store and coordinator. We demonstrated that a
single coordinator does not result in a performance bottleneck. Then, we bench-
marked the recording performance of F-PReServ and showed that remedial actions
introduce small overhead. In addition, we investigated the performance impact on

the execution time of a scientific application.

7.2 Future Work

Sections 5.5 and 6.3 have identified a number of issues for future developments and

extensions. In addition to them, this section discusses several issues on future work.

7.2.1 Garbage Collection of Redundant Process Documentation

Chapter 5 has defined the notion of reachable process documentation, by following refer-
ences to primary nodes. Any process documentation that is not reachable is regarded as
garbage. Reclaiming garbage could be beneficial in terms of storage efficiency. Chapter

5 definition could be the basis for an algorithm for automatically reclaiming garbage.

While chapter 5 defines reachability, the automatic garbage collector needs to identify
all possible roots. The investigation will have to identify these, and provide tractable

means to determine them at runtime.

A simple approach is a stop-and-copy algorithm [94], but it typically requires partitioning
disk space in two (from-space/to-space) which may not always be realistic. A stopping
collector may not be realistic for applications that run 24/7, and an incremental approach
may be desirable. A stopping algorithm however may be practical in systems, where
operations terminate at the end of the day. A consolidation/compacting phase that
copies provenance in a long-term archiving repository could rely on our reachability

analysis.

7.2.2 Application Failures

An important research direction is to investigate the impact of application failures on

the recorded process documentation. When designing F-PReP in Chapter 3, we assumed
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failure-free application executions. However, assertors may crash before submitting all

of their interaction records to provenance stores, thus losing part of them.

When considering application failures, the application should rely on its own fault-

tolerant mechanisms!

. For example, a process can be simply replayed in the case of
application failures and our protocol ensures that process documentation is eventually
recorded following the successful completion of the process. A user is more interested in
the provenance information documenting the successfully completed process irrespective
of how many times the process is replayed. However, there may be redundant documen-
tation recorded in a provenance store due to repeating partial or whole process. Such
redundant information can be garbage collected similarly to our discussion in Section

6.3.

7.2.3 Recording Failure Information in Process Documentation

Process documentation can capture faults or failures that occurred during the execution

of a process. Such information can be used for failure diagnosis and analysis.

A few provenance systems have considered faults or failure information. For example,
PASOA was used in a workflow application [167] to record instances of service invocations
at run time including information such as start time/end time of invocations, memory
usage and events indicating invocation failure/success etc. Recorded information is then
used by scientists to evaluate experimental results. Kepler workflow system records
process provenance, i.e., data related to the execution of the workflow, or intermediate
data products that were processed when an error occurred [38]. By mining and analysing
process provenance, users may figure out exactly what was happening at the time of an

error.

Further investigation can be conducted to decide what failure information should be
included as part of process documentation. Do we need to document execution excep-
tions? Do we need to record retried service invocations? Do we need to treat retried
invocations as separate interactions? Do we need to capture the relationship between

retried invocations? How do we make use of recorded fault information?

7.2.4 A Generic Link Update Mechanism

As mentioned in Section 2.2.1, three provenance challenges®, a community effort to
understand and compare systems addressing provenance, have been organised in 2006,
2007 and 2009, attracting more than 20 institutions to participate. These challenges have

identified interoperability between different provenance systems as a key issue. Efforts

LA number of fault-tolerant mechanisms have been surveyed in Section 2.5.
*http://twiki.pasoa.ecs.soton.ac.uk/bin/view/Challenge/ WebHome
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have been made to integrate provenance information derived from different provenance
systems and represented using different models. A common data model, Open Prove-
nance Model (OPM) [125], has been proposed and revised to promote interoperability

among the existing provenance systems.

These research activities clearly signal that process documentation will be generated
from different systems and integrated together under a uniform model. In this sense,
the ability to retrieve distributed process documentation from provenance repositories
owned by different provenance systems will become essential too. We expect the linking
mechanism in PASOA to be extended as a general approach to connecting provenance
repositories of different systems. In addition, a coordinator-based link update algorithm
can be separated from F-PReP to ensure a correct pointer chain connecting provenance
repositories when a different repository is used by a participating provenance system in

the presence of failures.

7.2.5 Cloud Computing

Cloud Computing is an emerging technology that attracts more and more attention
nowadays. Cloud computing implies a service-oriented architecture, reduced information
technology overhead for the end-user, great flexibility, reduced total cost of ownership,
on-demand services and many other advantages [161]. It has been supported by a number

of industry leaders such as Amazon, Google, Yahoo, Microsoft and IBM.

Cloud Computing evolves from Grid Computing with on-demand resource provisioning
[59]. It relies on the Grids as its backbone and infrastructure support whilst delivering
services (infrastructure, platform and software) on demand. With Cloud Computing,
services are sold to users, which only pay the services they use like they pay for a public
utility (e.g., electricity and gas). Therefore, users can scale up their applications to
massive capacities in an instant without having to invest in new infrastructure, train

new personnel, or license new software.

Clouds are providing new challenges for provenance [59]. As surveyed in Chapter 2,
a number of provenance systems have been developed for Grid applications. However,
provenance is still an unexplored area in Cloud environments, where we need to deal
with even more challenging issues such as tracking data production across different
clouds (with different platform visibility and access policies) and secure access of process
documentation when provenance services (software or storage support) are sold to users

which may not have control on their provenance information.

In terms of reliably recording process documentation, Cloud users would appreciate
our solution. Firstly, a growing frequency of faults would be seen as Cloud computing
delivers heterogenous Internet-based services. Consequently, Cloud services must be

designed under assumption that they will experience frequent and often unpredictable
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failures [17]. On the other hand, the Cloud is designed to be highly available as resources
are created or allocated on demand. This means a large number of alternative provenance
store services could be present, which supports one of our assumptions for F-PReP.

Therefore, our solution will still apply.

The issues discussed in Sections 7.2.2, 7.2.3 and 7.2.4 are also interesting topics for future

research in a Cloud Context.

7.2.6 Concluding Remarks

This dissertation has shown that the problem of recording retrievable process documen-
tation in the presence of failures can be solved via a generic and efficient coordinator-
based protocol to guarantee successful recording of complete process documentation
and to preserve accurate links that connect multiple provenance stores for SOA-based

applications.

Although we have emphasised SOA-based applications, we believe that same approach
can be applied to any system whether business, engineering or scientific. By providing
the reliability and retrievability of process documentation, the provenance of all the
things that we deal with in our daily lives can be made available. Therefore, we will

have greater confidence and knowledge about the world.
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