The University of Southampton
University of Southampton Institutional Repository

The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study

Simone, A., Coleman, G.N. and Cambon, C. (1997) The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study Journal of Fluid Mechanics, 330, pp. 307-338. (doi:10.1017/S0022112096003837).

Record type: Article

Abstract

The influence of compressibility upon the structure of homogeneous sheared turbulence is investigated. For the case in which the rate of shear is much larger than the rate of nonlinear interactions of the turbulence, the modification caused by compressibility to the amplification of turbulent kinetic energy by the mean shear is found to be primarily reflected in pressure-strain correlations and related to the anisotropy of the Reynolds stress tensor, rather than in explicit dilatational terms such as the pressure- dilatation correlation or the dilatational dissipation. The central role of a `distortion Mach number' Md = S?=a, where S is the mean strain or shear rate, ? a lengthscale of energetic structures, and a the sonic speed, is demonstrated. This parameter has appeared in previous rapid-distortion-theory (RDT) and direct-numerical-simulation (DNS) studies; in order to generalize the previous analyses, the quasi-isentropic compressible RDT equations are numerically solved for homogeneous turbulence subjected to spherical (isotropic) compression, one-dimensional (axial) compression and pure shear. For pure-shear flow at finite Mach number, the RDT results display qualitatively different behaviour at large and small non-dimensional times St: when St < 4 the kinetic energy growth rate increases as the distortion Mach number increases; for St > 4 the inverse occurs, which is consistent with the frequently observed tendency for compressibility to stabilize a turbulent shear flow. This `crossover' behaviour, which is not present when the mean distortion is irrotational, is due to the kinematic distortion and the mean-shear-induced linear coupling of the dilatational and solenoidal fields. The relevance of the RDT is illustrated by comparison to the recent DNS results of Sarkar (1995), as well as new DNS data, both of which were obtained by solving the fully nonlinear compressible Navier-Stokes equations. The linear quasi-isentropic RDT and nonlinear non-isentropic DNS solutions are in good general agreement over a wide range of parameters; this agreement gives new insight into the stabilizing and destabilizing effects of compressibility, and reveals the extent to which linear processes are responsible for modifying the structure of compressible turbulence.

PDF the_effect_of_compressibility_on_turbulent_shear_flow_a_rapid_distortion_theory_and_direct_numerical_simulation_study.pdf - Version of Record
Download (764kB)

More information

Published date: 1997

Identifiers

Local EPrints ID: 71969
URI: http://eprints.soton.ac.uk/id/eprint/71969
ISSN: 0022-1120
PURE UUID: 057ff201-846f-42ed-840c-15c2f6426305

Catalogue record

Date deposited: 13 Jan 2010
Last modified: 18 Jul 2017 23:57

Export record

Altmetrics

Contributors

Author: A. Simone
Author: G.N. Coleman
Author: C. Cambon

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×