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The spin-transfer torque between itinerant electrons and the magnetization in a ferromagnet is
of fundamental interest for the applied physics community. To investigate the spin-transfer torque,
powerful simulation tools are mandatory. We propose a micromagnetic standard problem including
the spin-transfer torque that can be used for the validation and falsification of micromagnetic simu-
lation tools. The work is based on the micromagnetic model extended by the spin-transfer torque in
continuously varying magnetizations as proposed by Zhang and Li. The standard problem geometry
is a permalloy cuboid of 100 nm edge length and 10 nm thickness, which contains a Landau pattern
with a vortex in the center of the structure. A spin-polarized dc current density of 1012 A/m2 flows
laterally through the cuboid and moves the vortex core to a new steady-state position. We show
that the new vortex-core position is a sensitive measure for the correctness of micromagnetic simu-
lators that include the spin-transfer torque. The suitability of the proposed problem as a standard
problem is tested by numerical results from four different finite-difference and finite-element-based
simulation tools.

PACS numbers: 75.40.Mg, 75.00.00, 85.75.-d, 72.25.Ba
Keywords: micromagnetic simulation, spin-transfer torque, standard problem, verification of simulation tools,
OOMMF, NMag, M3S

I. INTRODUCTION

Ferromagnets can be found in most devices that re-
quire nonvolatile storage of information. Ferromagnets
have been successfully used in hard disks for more than
50 years1. Recently the field of research has been ex-
tended to the development of nanometer-sized ferromag-
netic nonvolatile storage devices that offer a high storage
density accompanied by a high data rate2. The magnetic
random access memory (MRAM) has been developed as
the first nanostructured ferromagnetic memory module3.
An MRAM cell consists of a multilayer system with of
two ferromagnetic layers separated by a non-magnetic
layer. Information is stored in the orientation of the mag-
netization in the two ferromagnetic layers. Depending
on the properties of the non-magnetic layer, the informa-
tion can be read with the help of the tunnel magneto-
resistance (TMR) effect4 or the giant magnetoresistance
(GMR) effect5. For this, a current is applied to the mul-
tilayer. The resistance depends on the relative alignment
of the magnetizations of the ferromagnetic layers. To
write information in such a memory cell, a current is
applied across two perpendicular wires. At the intersec-
tion of the two wires, the resulting Oersted field is strong
enough to switch the magnetic orientation of the first
magnetic layer, the so-called free layer. The magnetic ori-

entation of the second ferromagnetic layer, the so-called
pinned layer, should not change during this process3,6.
The application of an Oersted field corresponds to the
write process in a hard disk. As explained by Chappert
et al.7, there are different restrictions using an Oersted
field that limit the storage density of the MRAM. To in-
crease the storage density, it is therefore necessary to find
an alternative way to switch the magnetization.
Slonczewski8,9 and Berger10 predicted in 1996 that a
spin-polarized current flowing through a ferromagnetic
conductor can apply a relevant torque to its magne-
tization, owing to the exchange coupling between the
spins of the itinerant electrons and those of the localized
electrons. Since its discovery the so-called spin-transfer
torque (STT) has been considered as a key to increase
the storage density and lead to a new generation of stor-
age devices, such as the spin-transfer torque random ac-
cess memory (STTRAM)11 and the racetrack memory12.
The STTRAM is an MRAM which uses the spin-transfer
torque instead of the Oersted field for the switching pro-
cess. The racetrack memory stores bits along a single
ferromagnetic wire. To write and read information, a
current is applied along the wire that moves the bits to
a writing or reading unit.
Two theoretical descriptions of the spin-transfer torque
exist: The first description has been developed by
Slonczewski8,9 and describes a current traversing an in-
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terface between a ferromagnet and a non-magnetic metal
and its concomitant torque on the magnetization. It can
successfully describe a STTRAM. The second description
has been developed by Berger10 and was later refined by
Zhang and Li13 as well as by Thiaville et al.14. It deals
with the spin-transfer torque in the case of a continuously
varying magnetization. In this case the spin-transfer
torque acts on inhomogeneous magnetization patterns,
such as domain walls or magnetic vortices. Thus, also the
magnetic processes in a racetrack memory12 and gyrat-
ing magnetic vortices driven by spin-transfer torque15,16

can be described.
Other memory devices such as the dynamic random
access memory (DRAM)17 or the static random ac-
cess memory (SRAM)18 have shown that it is nec-
essary to develop analytical descriptions and power-
ful simulation tools like SPICE19 to optimize their
properties2. The theoretical descriptions of the spin-
transfer torque8–10,13,14 are the basis for devices that
exploit the interaction between spin-polarized currents
and magnetization. There exists a variety of simulation
tools, such as the Micromagnetic Modeling and Simula-
tion kit M3S20, Nmag21, the object-oriented micromag-
netic framework OOMMF22, LLG23, and Micromagus24,
that implement the micromagnetic model25 and include
the spin-transfer torque model. To compare different
simulation tools the Micromagnetic Modeling Activity
Group (µMag)26 publishes standard problems for micro-
magnetism. These micromagnetic problems allow the re-
sults of a simulation tool to be verified. So far, there is no
standard problem that includes the spin-transfer torque.
Here we propose a problem that allows the validation of
micromagnetic simulation tools that implement the spin-
transfer torque of Berger10 with the extension by Zhang
and Li13. We further present numerical solutions to the
proposed problem and analytical solutions of the problem
given by Krüger et al.27.

II. PROBLEM SELECTION

In this section, selection criteria for the standard prob-
lem are defined and possible adaptations of each criterion
are given. The focus of our standard problem is the spin-
transfer torque extension. Thus we chose criteria that
ensure the traceability of errors in the implementation of
this extension. A prerequisite is that the simulation tool
derives correct results for the numerical time-integration,
the demagnetization field, the exchange field, and the
Zeeman field.

A. Selection Criteria

To select a standard problem that is appropriate to
trace errors in the spin-transfer torque extension, we
first define four general selection criteria. According to
the strategy of µMag26, these criteria are:

1. The problem has to be specified in such a way that
different simulation tools are able to reproduce the
initial magnetization configuration independent of
their implementation.

2. The problem has to ensure, that the reaction of the
magnetization depends significantly on the current
and leads to an unambiguous time evolution of the
magnetization.

3. The problem has to be solvable in reasonable com-
putation time. This is important to run the stan-
dard problem repeatedly, which is necessary to fix
program errors.

4. The problem has to offer an unambiguous and char-
acteristic measure for the magnetization dynam-
ics and thus enables verification or falsification of
a simulation tool. This measure has to be com-
putable conveniently and independently of the im-
plementation of the tool.

B. Theoretical Background

We use the micromagnetic model including the spin-
transfer torque of Berger10 with the extension by Zhang
and Li13. The equation of motion of the magnetization
is given by

∂ ~M

dt
=− γ ~M × ~Heff +

α

Ms

~M × d ~M

dt

− bj
M2
s

~M ×
(
~M × (~j · ~∇) ~M

)
− ξ bj

Ms

~M × (~j · ~∇) ~M

(1)

with the gyromagnetic ratio γ, the Gilbert damping pa-
rameter α, and the saturation magnetization Ms. The
effective magnetic field ~Heff includes the external as well
as the internal fields. The coupling constant between the
current and the magnetization is bj = (PµB)/(eMs(1 +
ξ2)), where P denotes the spin polarization of the cur-
rent density ~j, µB the Bohr magneton, and ξ = τex/τsf
the degree of non-adiabacity, which is the ratio between
the exchange relaxation time τex and the spin-flip relax-
ation time τsf. Equation (1) can be written in the explicit
form

d ~M

dt
=− γ′ ~M × ~Heff −

αγ′

Ms

~M ×
(
~M × ~Heff

)
−

b′j
M2
s

(1 + αξ) ~M ×
(
~M × (~j · ~∇) ~M

)
−

b′j
Ms

(ξ − α) ~M × (~j · ~∇) ~M

(2)
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with the abbreviations γ′ = γ/(1 + α2) and b′j = bj/(1 +
α2) as written by Krüger et al.28.

C. Adaptation of the Criteria

On the basis of the physical model, we define the
standard problem that complies with the criteria defined
above.

Criterion (i) is fulfilled by splitting the problem
into two sub-problems that are computed separately.
Each sub-problem is the computation of a separate
simulation run. The first simulation is performed based
on Eq. (2) in the absence of current ~j. It starts from a
magnetization pattern that has to be given by an equa-
tion. The resulting equilibrium magnetization is used as
the initial magnetization for the second simulation with
an applied current.

Criterion (ii) can be fulfilled by the selection of an
inhomogeneous magnetization pattern, e.g., a domain
wall or a vortex, and the selection of a spatially and
temporally homogeneous current. We decided to take
a permalloy cuboid with a vortex pointing upwards for
the initial equilibrium state of the second sub-problem.
The choice of a vortex and a spatially and temporally
homogeneous current leads to an unambiguously distin-
guishable adiabatic and non-adiabatic reaction of the
magnetization27,29,30. The equation of motion leads to
a new steady state that provides a simple validation
measure independent of the prior time evolution. In
contrast, the choice of a resonant excitation of the
vortex with alternating current is not suitable, because a
small error in the simulated resonance frequency would
drastically change the phase and amplitude of the result,
which would complicate the falsification. A dc current
reduces the complexity of the problem and enables the
correctness of the results by the final steady state of
the vortex core to be checked as a characteristic measure.

Criterion (iii) can be met by a small number of
discretization points and a magnetization pattern that
exhibits significant changes within few time-integration
steps. The number of discretization points is given by
the size of the cuboid and the average distance between
the discretization points. We use a small cuboid that
still can relax to a vortex state. The discretization of the
permalloy cuboid must be chosen such that the vortex
core is resolved. The necessary resolution is achieved if
the distance between the discretization points is signif-
icantly below the exchange length lex =

√
2A/(µ0M2

s )
where A is the constant of the exchange interac-
tion. To decrease the number of time-integration
steps, we choose a large Gilbert damping parameter
α, so that the magnetization rapidly reaches equilibrium.

Criterion (iv) can be fulfilled by the calculation of

the spatially averaged magnetization, which is propor-
tional to the vortex-core position as shown in appendix
A. Thus the motion of the vortex core is an unambigu-
ous and characteristic measure of the magnetization
dynamics27.

III. PROBLEM DEFINITION

The problem is defined with the standard material
parameters of permalloy31, with the exception of the
Gilbert damping parameter α. These parameters are
given by an exchange constant A = 13 · 10−12 J/m,
a saturation magnetization Ms = 8 × 105 A/m, which
corresponds to an exchange length lex = 5.7 nm, and
a gyromagnetic ratio γ = 2.211 × 105 m/C. Accord-
ing to criterion (iii) we select a cuboid geometry with
a sample size of 100 × 100 × 10 nm3 in the x-, y-, and
z- direction, respectively. This allows the problem to
be simulated with a spatial and temporal discretization,
which can be computed in a few hours on an standard
personal computer46. In contrast to a circular film ele-
ment, the cuboid geometry simplifies the comparison of
simulation tools using finite-difference (FDM) and finite-
element methods (FEM), because there are no irregular
edges that are a possible source of errors in the FDM.

A. Computation of the Starting Condition without
Spin-Transfer Torque

In accordance with criterion (i), the first sub-problem
of the standard problem starts with an initial magnetiza-
tion pattern as illustrated in Fig. 1(a). The initial vortex
state relaxes into equilibrium as illustrated in Fig. 1(b).
The initial magnetization pattern is chosen as

~M = Ms ·
~f

|~f |
, ~f =

−(y − y0)
x− x0

R

 , (3)

where ~r = (x, y, z) is the position of the cell and
~r0 = (x0, y0, z0) = (50 nm, 50 nm, 5 nm) is the center of
the cuboid. R is related to the radius of the vortex and is
set to R = 10 nm as this value leads to a short relaxation
time. A Gilbert damping constant of α = 1 is chosen to
obtain a fast relaxation and thus save computation time,
but the relaxed equilibrium state is independent of α.
The effective field is given by the exchange and the de-
magnetization field. The simulation stops when the mag-
netization has reached an equilibrium state. The stop-
ping criterion is max~r∈V |1/Ms · d ~M/dt| ≤ 0.01 rad/ns,
where V is the volume of the cuboid. As shown in
Fig. 1(b), the equilibrium state is a vortex as required by
criterion (ii). The vortex core points in the z-direction
(positive polarization) and the in-plane magnetization
curls counterclockwise (positive chirality).
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FIG. 1: (a) Initial state of the magnetization for the first sub-
problem as given by Eq. (3). The magnetization is averaged
along the z-direction. The color scale shows the z-component
of the magnetization. (b) Relaxed vortex state as initial state
for the second part of the computation including the spin-
transfer torque. Simulations are computed with M3S.

B. Computation including Spin-Transfer Torque

The second sub-problem, which includes the spin-
transfer torque, starts with the equilibrium state of the
first sub-problem. The effective field is the same as in
the first sub-problem. As required in criterion (ii) and
illustrated in Fig. 2(a), a spatially homogeneous spin-
polarized dc current of 1012 A/m2 is instantaneously
applied in the x-direction (~j = (j, 0, 0)), i.e., the elec-
trons flow from right to left. The damping constant
α = 0.1 of this sub-problem is chosen to obtain a rea-
sonable fast relaxation on the one hand and enough os-
cillations to assist the comparison of results from differ-
ent simulation packages on the other hand. The value
also allows the detection of errors of the spin-transfer
torque term that depend on the damping parameter
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FIG. 2: (a) Two-dimensional representation of the position of
the vortex core as a function of time. The dot indicates the
vortex-core position at the time t = 0.73 ns. (b) Snapshot
of the magnetization of the permalloy cuboid at t = 0.73 ns
when the vortex-core position crosses the line ∆x = 0 for the
first time. The magnetization is excited by a homogeneous
spin-polarized current density of 1012 A/m2 in the x-direction,
i.e., the electrons flow from right to left. The magnetization
is averaged along the z-direction. The color scale is the same
as in Fig. 1. Simulations are computed with M3S.

α. The degree of non-adiabaticity ξ = 0.05 is chosen
to get a significant contribution of the non-adiabatic
spin-transfer torque term to the final vortex-core posi-
tion and to achieve a non-zero contribution of the fourth
term in Eq. (2). The simulation stops when the stop-
ping criterion max~r∈V |1/Ms · d ~M/dt| ≤ 0.01 rad/ns has
been reached. To compare different simulation packages,
one has to calculate the spatially averaged magnetiza-
tion over time. The resulting trajectory of the simula-
tion shows a damped rotation of the vortex core around
a new steady-state position of ∆x = x− x0 = −1.2 nm
and ∆y = y − y0 = −14.7 nm, as illustrated in Fig. 2.
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The vortex-core position ∆x, ∆y is related to the center
of the cuboid. It is determined by averaging the magne-
tization along the z-direction and interpolating the out-
of-plane magnetization in the x- and y-direction with a
polynomial of second order. The position of the vortex
core is then given by the maximum of this polynomial.

C. Falsification Properties

Suitable falsification properties as demanded in crite-
rion (iv) are important for the development of a simu-
lation tool. The influence of errors in the spin-transfer
torque extension or an improper, i.e., too coarse, spa-
tial discretization has been investigated for the proposed
standard problem and is outlined in the following.

1. Sensitivity to Errors in the Spin-Transfer Torque
Extension

First we analyze the influence of errors in the spin-
transfer torque extension. To show the sensitivity of the
problem to those errors, we investigate changes of the
spin-transfer torque given by a constant factor. This is
emulated by a variation of the degree of non-adiabaticity
ξ and the current density j. The analytical model ex-
plained in appendix B predicts that a change of ξ will
linearly affect the y-component of the spatially averaged
magnetization 〈My〉, whereas a change of j will affect the
x- and y-component of the spatially averaged magnetiza-
tion 〈Mx〉 and 〈My〉 equally. Figure 3 shows three sets
of parameters for ξ and j that illustrate the clearly dis-
tinguishable reactions of the magnetization to a change
in the adiabatic, the non-adiabatic, and the entire spin-
transfer torque. As a first set we chose an increased
spin-transfer torque realized by an increased current den-
sity. It leads to a proportionally increased x- and y-
component 〈Mx〉 and 〈My〉 of the spatially averaged mag-
netization during its time evolution. The second set is an
increased non-adiabatic spin-transfer torque created by
an increased degree of non-adiabaticity ξ. This config-
uration leads to a proportionally increased y-component
〈My〉 of the averaged magnetization during the time evo-
lution of the magnetization. The third set describes an
decreased influence of the adiabatic spin-transfer torque
term obtained by simultaneously decreasing j and in-
creasing ξ. This configuration induces a proportionally
decreased x-component 〈Mx〉 of the spatially averaged
magnetization during the time evolution of the magneti-
zation. The results illustrate that a variation of ξ and j
results in a clear change of the magnetization which, ac-
cording to appendix B, should be linear with the change
in ξ and j. As illustrated in Fig. 3, a variation of the adi-
abatic spin-transfer torque by a constant factor linearly
affects the x-component of the spatially averaged magne-
tization 〈Mx〉, whereas a variation of the non-adiabatic
spin-transfer torque by a constant factor linearly affects
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FIG. 3: (a) Spatially averaged magnetization 〈Mx〉 and (b)
〈My〉 for different values of ξ and j. The crosses show the time
evolution of the spatially averaged magnetization for the ref-
erence parameters ξ = 0.05 and j = 1012 A/m2. The triangles
show the result for the first set of parameters, when the spin-
transfer torque parameter j is increased by 5 %. The squares
show the result of the second set, when the non-adiabatic
spin-transfer torque parameter ξ is increased by 5 %. The
circles show the results of the third set, when the adiabatic
spin-transfer torque is changed by a simultaneous decrease
of the current density and increase of ξ by 5 % each. The
maximum difference of the spatially averaged magnetization
amounts to 14.40 kA/m (5.11 %)a and 8.40 kA/m (5.34 %)a

for 〈Mx〉 and 〈My〉, respectively. Simulations are computed
with M3S.
aPercentage values are related to the maximum values of |〈Mx〉| =

281.61 kA/m and |〈My〉| = 157.43 kA/m

the y-component of the spatially averaged magnetization
〈My〉. This enables one to distinguish between errors in
the adiabatic and the non-adiabatic term. These linear
changes are also in agreement with Eq. (B1).
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FIG. 4: (a) Spatially averaged magnetization component
〈My〉 for different cell sizes b3 computed with M3S. (b) The
y-component of the spatially averaged magnetization compo-
nent 〈My〉 at time t1 = 0.32 ns versus b.

2. Improper Spatial Discretization

To investigate the influence of the spatial discretiza-
tion, we vary the number of discretization points of the
FDM and FEM meshes. A FDM mesh is a grid that
consists of equally sized cuboids (so-called discretization
cells). FEM meshes, in contrast, cannot be described
that simply, because here the size of each finite element
can vary. To investigate the influence of the spatial dis-
cretization, we simulated the problem for five different
cell sizes using the FDM-based tool M3S. The cell sizes
used were b× b× b, for b = 1, 2, 2.5, 5, and 10 nm. Fig-
ure 4(a) shows the time evolution of the y-component of
the spatially averaged magnetization for the different cell
sizes. Results for cell sizes b = 1, 2, 2.5, and 5 nm show
a slight decrease of the spatially averaged magnetization
with increasing cell size. For a cell size of b = 10 nm, no
vortex is formed, i.e., criterion (iii) is not fulfilled. Fig-

ure 4(b) shows the y-component of the spatially averaged
magnetization at time t = 0.32 ns versus cell size b fitted
by a quadratic function. The extrapolation to b = 0 sug-
gests that it is sufficient to take a FDM mesh with a cell
size of 2× 2× 2 nm3.
We have also simulated the problem for four FEM meshes
using the FEM-based tool Nmag. Readers interested
in FEM meshing can find a detailed description of the
meshes used in the FEM simulations in appendix C. In
the following, we use the maximum rod length and the
number of tetrahedra as characteristic measures for the
fineness of a mesh. The simulations with Nmag are per-
formed with maximum rod lengths of 1.77, 2.36, 4.40,
and 6.40 nm, corresponding to 355488, 150282, 25560,
and 8874 tetrahedra, respectively. Figure 5(a) shows the
time evolution of the y-component of the spatially aver-
aged magnetization for the different meshes. The results
reveal a slight decrease of the precession frequency with
increased rod length. Figure 5(b) shows the duration of
the first gyration cycle for the rod length extrapolated to
0 nm by a quadratic function. The extrapolation suggests
that it suffices to take a FEM mesh with a rod length of
2.36 nm.

In accordance with the simulations of standard prob-
lem numbers 1-426 these results illustrate, that to obtain
reliable numerical results the distance between two dis-
cretization points should be significantly below the ex-
change length lex .

IV. COMPARISON OF EXISTING TOOLS

We compare the simulation results of OOMMF ex-
tended by Krüger et al.27, of OOMMF extended by Van-
haverbeke et al.32,33, of M3S20, and of Nmag21. The re-
sults of both OOMMF-extensions and of M3S have been
computed using a cell size of 2× 2× 2 nm3, whereas the
results of Nmag are computed using a mesh of type (i)
as described in appendix C with a maximum rod length
of 1.77 nm. The corresponding regular mesh has 68211
mesh nodes, of which 17566 are surface nodes. The time
evolution of the magnetization is performed by explicit
or implicit numerical integration algorithms. Both tools,
the spin-transfer torque extended OOMMF version of
Krüger et al.27 and M3S20, use an implementation of
a fifth-order Cash-Karp Runge-Kutta algorithm34 with
an absolute error tolerance of 10−3 A/m and a relative
error tolerance of 10−4. The spin-transfer torque ex-
tended OOMMF version of Vanhaverbeke et al.32,33 uses
a fifth-order Dormand-Prince Runge-Kutta algorithm35

with the same error tolerances. Nmag uses the Sundi-
als libraries36 with an absolute error tolerance of 8 · 10−2

A/m and a relative error tolerance of 10−7. Figure 6
shows the time evolution of the magnetization for all
tools, whereas in table I the spatially averaged magneti-
zation components for the relaxed state are listed. For
comparison we also plot the analytically calculated values
according to Krüger et al.27, which is explained in more
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FIG. 5: Results for different FEM meshes computed with
Nmag21. As maximum rod lengths 1.77, 2.36, 4.40 and 6.40
nm are chosen which corresponds to 355488, 150282, 25560,
and 8874 tetrahedra, respectively. (a) Spatially averaged
magnetization 〈My〉, (b) Duration of the first gyration cycle
versus rod length.

detail in appendix B. The maximum difference of the
spatially averaged magnetization between the simulation
tools amounts to 5.41 kA/m (1.9 %)47 (3.0 %)47 for 〈Mx〉
and 〈My〉, respectively. In comparison to the analytical
model, these differences are 16.14 kA/m (5.7 %)47 and
11.27 kA/m (7.2 %)47 for 〈Mx〉 and 〈My〉, respectively.
We believe that the differences between the results in
Fig. 6 are due to the implementation of the demagne-
tization field. A comparison of the simulation results
of OOMMF and M3S for standard problem number 426

shows that they only differ in the calculation of the de-
magnetization field37. The spatially averaged magnetiza-
tion of both OOMMF extensions are virtually identical
but differ more significantly from M3S. Both M3S and the
OOMMF extensions use a demagnetization field imple-
mentation based on Newel et al.38. Unlike M3S, OOMMF

Tools 〈Mx〉 〈My〉
(105A/m) (104A/m)

OOMMF+STT - Krüger −1.71 1.51
OOMMF+STT - Vanhaverbeke −1.71 1.50
M3S - Najafi −1.71 1.50
NMag - Fangohr −1.72 1.52
Analytical model - Krüger −1.78 1.12

TABLE I: Spatially averaged magnetizations 〈Mx〉 and 〈My〉
for the simulation tools and the analytical model at t = 14
ns when the vortex has reached the new equilibrium position.
All values in the table are rounded to two decimal places.

in addition uses an interpolation method to speed up the
calculation of the demagnetization tensor. The FEM-
based spatial discretization computes the demagnetiza-
tion field with the hybrid finite element / boundary ele-
ment method described by Fredkin and Koehler39. The
difference between the numerical and the analytical re-
sults are a direct consequence of the approximations
of the underlying analytical model, as explained in ap-
pendix B.
These results verify the suitability of the proposed stan-
dard problem, as the problem discriminates errors larger
than about 3 %47 and, in contrast to standard problem
number 4, no point of discontinuity is identified.

V. EXPERIMENTAL FEASIBILITY

Although not required for the proof of the micromag-
netic simulations, it is nevertheless important to choose
a problem that can be proved by experiments. Permalloy
cuboids that exhibit the simulated magnetization config-
uration shown in Fig. 1 and 2 including wires contacting
their left and right edges can be fabricated by electron-
beam lithography and lift-off processing15. Experimen-
tally it is a challenge to apply current densities in the
1012A/m2 regime permanently because of the concomit-
tant large Joule heating. However, recently this problem
has been solved by the preparation of permalloy nanos-
tructures on diamond substrates40: The diamond serves
as a highly efficient heat sink, and it has been demon-
strated that current densities in excess of 1012A/m2 can
be applied continuously to samples like the one required
for the proposed standard problem. The detection of the
vortex core at the shifted position could, for example, be
performed by scanning-electron microscopy with polar-
ization analysis (SEMPA)41,42. As SEMPA detects the
final steady-state position of the vortex core, the value of
the damping constant α = 0.1 used in the simulation is
not relevant. The degree of non-adiabaticity ξ = 0.05 is a
realistic experimental value43. As so far no experimental
results of the proposed sample geometry are available,
we validate the results of the micromagnetic simulations
with the analytical model explained in detail in appendix
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FIG. 6: Solution of the proposed standard problem for a 100 × 100 × 10 nm3 permalloy cuboid calculated with four different
simulation tools and the analytical model. A spatially and temporally homogeneous current density of 1012 A/m2 is applied
instantaneously in x-direction. (a) The x-component of spatially averaged magnetization 〈Mx〉 (b) 〈My〉. (c) Close-up of the
x-component 〈Mx〉 for the time interval 5 ns ≤ t ≤ 7 ns.
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B. This model can serve as a reference because it has
been already verified by experimental results on similar
device geometries15.

VI. CONCLUSION

In this work we present a standard problem for mi-
cromagnetic simulation packages extended by the spin-
transfer torque. For this standard problem, we defined
the criteria necessary to ensure that the problem is suit-
able for the validation and falsification of micromagnetic
simulation tools. These criteria have been applied to
the underlying extended micromagnetic model. We have
demonstrated that the standard problem has the required
properties. To prove the good validation and falsification
properties, we investigated the influence of typical errors,
such as erroneous variations of the spin-transfer torque
extension by a constant factor or an improper spatial dis-
cretization. The final comparison of the results for differ-
ent tools substantiates these properties and shows that
the problem discriminates errors larger than 5.41 kA/m
(1.9 %)47 and 4.80 kA/m (3.0 %)47 for 〈Mx〉 and 〈My〉,
respectively.
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APPENDIX A: RELATION BETWEEN
SPATIALLY AVERAGED MAGNETIZATION

AND VORTEX-CORE POSITION

To show the correspondence of the vortex-core posi-
tion and the spatially averaged magnetization, we use the
model introduced by Krüger et al.27, where the vortex is
described by four triangles t1 to t4 shown in Fig. 7. The
magnetization in each triangle is assumed to be homoge-
neous. If the vortex core is in the center of the cuboid,
all four triangles have the same volume. As t1 and t3 as
well as t2 and t4 have an antiparallel magnetization, the
spatially averaged magnetization is zero. A deflection of
the vortex core from the center of the cuboid changes the
size of the triangles as illustrated in Fig. 7(b). The de-
pendence of the spatially averaged magnetization on the
volume differences and the deflection of the vortex core

(a)

(b)

FIG. 7: Model for the vortex motion as introduced by Krüger
et al.27. The magnetization pattern is described by four tri-
angles t1 to t4. The vortex core is at the center of the four
triangles. (a) Magnetization pattern with the vortex core at
the center of the sample. (b) Magnetization configuration
with a vortex core displaced from the center by ∆x and ∆y.

is given by〈Mx〉
〈My〉
〈Mz〉

 =

 cMsk · V1−V3

Vcuboid

cMsk · V2−V4

Vcuboid

p·const

 =

 cMsk · ld∆y
l2d

cMsk · ld(−∆x)
l2d

p·const


=

 cMsk · ∆y
l

− cMsk · ∆x
l

p·const

 . (A1)

Here Vi is the volume of triangle ti, l the edge length
of the cuboid, d its thickness, c the chirality of the
magnetization pattern, p the polarization of the vortex,
∆x = (h4 − h2)/2 the deflection of the vortex core in x-
direction, ∆y = (h1−h3)/2 the deflection in y-direction,
and hi the height of triangle ti. The dimensionless fit
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parameter k is needed to convert the vortex-core posi-
tion into the spatially averaged magnetization, and takes
into account that the domain walls between the trian-
gles in Fig. 7 have a finite size and are not abrupt as
treated in Eq. (A1). The value of k changes with the
system size and is 1.4517 for the proposed geometry. Be-
cause of the cuboid geometry, the x-component of the
spatially averaged magnetization 〈Mx〉 is proportional to
the deflection ∆y of the vortex core in the y-direction
and the y-component of the spatially averaged magneti-
zation 〈My〉 is proportional to the deflection ∆x in the
x-direction.

APPENDIX B: ANALYTICAL MODEL

The vortex-core position can be calculated by the ana-
lytical model described in27. This model is in accordance
with experimental results on the spin-transfer torque15.
For a square, the model predicts that the final deflec-
tion of the vortex core in the x-direction depends only
on the non-adiabatic spin-transfer torque term and that
the final deflection in y-direction depends only on the
adiabatic spin-transfer torque term:(

∆xend

∆yend

)
= −

(
bjjΓξ

α(ω2+Γ2)
bjjω
ω2+Γ2

)
. (B1)

Here ω is the free frequency of the gyration of the vortex
core, Γ is the damping constant of the vortex, α is the
Gilbert damping constant, and (∆xend, ∆yend) is the final
position of the vortex core related to the center of the
cuboid. The time evolution of the core’s position(

∆x(t)
∆y(t)

)
=(

Aie(−Γ+iω)t −Bie(−Γ−iω)t + ∆xend

Ae(−Γ+iω)t +Be(−Γ−iω)t + ∆yend

)
, (B2)

depends on the coefficients A = (−∆yend +i∆xend)/2 and
B = (−∆yend − i∆xend)/2. Owing to approximations

within the analytical model concerning the detailed
magnetization pattern a perfect agreement with the
micromagnetic simulations cannot be expected.

APPENDIX C: USED FINITE ELEMENT
MESHES

We have used two different types of finite-element
meshes in the calculations with Nmag21:

1. meshes created by decomposing the cuboidal body
into cubes,

2. meshes generated with the advancing front method
using NETGEN44.

For method (i), each cube is subdivided into six tetrahe-
dra consistently with the neighboring cubes. The cubes
are then skewed to obtain nearly equilateral triangles on
the surface of the mesh. We keep only those tetrahedra
that lie within the ferromagnetic region and adjust those
that intersect the meshing region surface (the points out-
side the meshing region are projected back onto its sur-
face). The advantages of using this “regular mesh” are
that all edge lengths are exactly known and that the mesh
generation is very fast for the cuboidal geometry. For the
unstructured tetrahedral mesh (ii), we use the mesh gen-
erator NETGEN44, which is based on the advancing front
method. The results of Nmag in Section IV have been
computed using a mesh of type (i) with a maximum edge
length of 1.77 nm that has 68211 mesh nodes, of which
17566 are surface nodes. This has been compared with
an unstructured mesh generated with Netgen with 25887
points and rod lengths varying from 1 nm to 3.8 nm, with
an average rod length of 1.95 nm. The simulation results
are virtually independent of the mesh types used.
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