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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

Proper Orthogonal Decomposition & Kriging Strategies for Design

by David J.J. Toal

The proliferation of surrogate modelling techniques have facilitated the application of

expensive, high fidelity simulations within design optimisation. Taking considerably

fewer function evaluations than direct global optimisation techniques, such as genetic

algorithms, surrogate models attempt to construct a surrogate of an objective function

from an initial sampling of the design space. These surrogates can then be explored and

updated in regions of interest.

Kriging is a particularly popular method of constructing a surrogate model due to its

ability to accurately represent complicated responses whilst providing an error estimate

of the predictor. However, it can be prohibitively expensive to construct a kriging model

at high dimensions with a large number of sample points due to the cost associated with

the maximum likelihood optimisation.

The following thesis aims to address this by reducing the total likelihood optimisation

cost through the application of an adjoint of the likelihood function within a hybridised

optimisation algorithm and the development of a novel optimisation strategy employing

a reparameterisation of the original design problem through proper orthogonal decom-

position.
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Chapter 1

Introduction

1.1 Why Optimise?

Throughout the course of history man has pushed forward the boundaries of technology

with the aim of improving the quality of life for his fellow man and, rather less ideal-

istically, generating revenue. This is evident throughout every scientific discipline but

particularly so in the field of engineering.

Advances made by engineers can come in the form of sudden revolutions in design or

more subtle improvements to existing technology. Innovation and refinement are equally

important in the quest for a better solution to a problem. An innovative idea may only

truly offer a substantial improvement over an existing technology after a number of

refinements. Likewise subtle changes to existing technology only provide a finite level of

improvement; without substantial innovation potentially significant performance gains

cannot be achieved.

(a) (b)

Figure 1.1: The Wright Flyer at Kitty Hawk (a) and a Rolls Royce Trent 900 engine

on an Airbus A380 (b)

1
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The history of aircraft propulsion is an excellent example of the balance between refine-

ment and innovation. The propeller, as used by the Wright brothers in their first flight

in 1903, Figure 1.1(a), was deemed the only viable method of aircraft propulsion until

the end of the Second World War. Its dominance led to a series of improvements in

blade section design, structural design, materials and manufacturing techniques. The

invention of the turbo-jet in the 1930’s proved to be the next leap in propulsion technol-

ogy but it wasn’t until after several years of research and development that the turbo-jet

became a practical means of aircraft propulsion. It was longer still before it began to

overtake the propeller as a means of propulsion on civil aircraft.

One could consider this general process of refinement and innovation as an optimisation

process, with an initial concept improved gradually through the mechanism of traditional

research and development or a completely new approach discovered, seemingly, through

a stroke of genius. In the early 20th century such optimisation followed a more practical

approach with only rudimentary calculations possible and scale model testing the order

of the day. However, thanks to modern computational power optimisation techniques

have evolved considerably into an effective and efficient aid to designers.

Optimisation methodologies can come in a variety of different guises from a simple trial

and error approach through to the classic Newton-Raphson method and modern global

optimisers such as genetic algorithms. All optimisation algorithms however, have the

same general goal, to improve upon an initial design, be it through a local Newton like

improvement or through the global exploration offered by a genetic algorithm which can

lead to radically different designs.

Optimisation therefore plays an extremely important role in engineering and only through

the application of optimisation techniques can an engineer achieve a design’s full poten-

tial.

1.2 Global Optimisation for Design

Over the past 10-15 years global optimisation techniques, once the domain of only spe-

cialised research groups, have gradually filtered down to the level of industry to such a

degree that they are actively employed in various engineering disciplines. The prolifera-

tion of these methods has gone hand in hand with an increase in computational power,

allowing simulations which once were thought to be in the realms of fantasy, to become

a matter of routine.

Nowhere is this more evident than in the field of aerodynamic design where once cut-

ting edge potential solvers have been superseded by Reynolds-Averaged Navier-Stokes
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(RANS) simulations. The capabilities of such simulations have sped up the overall de-

sign process, reducing the need for large numbers of expensive and time consuming wind

tunnel simulations and allowing the utilisation of optimisation techniques.

A typical aerodynamic optimisation involves the parameterisation of a geometry, the

controlling variables of which perturb the wetted surfaces. These variables are then

selected in such a manner as to optimise an objective function, for example, to minimise

drag. An optimisation can lead to either a global or local optimum and take a few or

many function evaluations depending on the strategy employed.

Although faster and more flexible than wind tunnel experiments in terms of geometry

generation, simulations of 3D wings, or complete aircraft configurations, are still ex-

pensive relative to other optimisation problems, taking perhaps 8 hours per simulation

even with the assistance of parallel processing. This prohibits the direct use of global

optimisation techniques which can require many function evaluations, such as genetic

algorithms, Muyl et al. [2004], Shahrokhi and Jahangirian [2007].

An alternative approach is for the global optimiser to evaluate a cheaper model of the

true problem. This “surrogate” is constructed from an initial design of experiments

(DOE) based sampling of the problem and attempts to model the response of the objec-

tive function to changes in the magnitude of the variables via an analytical function. The

evaluation of the predicted objective from this model is considerably cheaper than an

evaluation of the true objective through, for example, a CFD simulation. The model is

however an approximation to the true response and as such requires updating in regions

of interest, but on the whole, considerably fewer true objective function evaluations are

required for a complete optimisation.
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Figure 1.2: A simple example of a surrogate model constructed from a 16 point

sampling of the two-dimensional Branin function
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There are a variety of different surrogate modelling techniques, from simple polynomials,

to Shepard weighting, radial basis functions, support vector regression and kriging, each

with their own advantages and disadvantages. However, as the complexity of the model

increases so to does the cost incurred through the selection of an appropriate set of

modelling parameters. Where the coefficients of a polynomial can be calculated via least

squares, the parameters of a kriging model must be selected, or “tuned”, via a complex

multi-modal optimisation. This total modelling cost can become a considerable issue

when considering high dimensional problems with many sample points.
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Figure 1.3: An illustration of the total time spent tuning the modelling parameters

of a krig over the course of an optimisation as problem dimensionality increases

Figure 1.3 helps to illustrate the magnitude of this problem which in a real world engi-

neering environment can lead to significant bottlenecks in the design process. Consider,

as an example, a complex 25 variable optimisation problem within an industrial setting

where there is a limited amount of time available to obtain a solution. 375 simulations1,

each taking eight hours2, take 12.5 days to run if ten simulations are run in parallel.

If approximately 46 hours3 are spent tuning the surrogate model over the course of an

optimisation an “answer” can therefore be obtained within 14.5 days. In this example

the tuning cost is quite significant and reduces the amount of time an engineer has avail-

able to evaluate potential designs. A negligible modelling cost would therefore result in

the utilisation of a further 60 simulations within the optimisation which could in turn

produce a better final design.

The problem is compounded further as the dimensionality of the optimisation problem

increases. Not only is the expense of generating the model increased but the number of

available evaluations is no longer sufficient to optimise the problem effectively. The issue

1Consisting of a 125 point DOE and 25 batches of 10 updates to the model
2Approximate time for a RANS simulation of a wing in Fluent with 2 million cells and eight processors
3Total tuning time on a Intel Core 2 processor running at 2.4Ghz with 1Gb of RAM assuming the

surrogate is tuned after every set of updates
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of optimising high dimensional problems given a limited simulation budget is therefore

an extremely pertinent one.

1.3 Research Objectives

The objectives of the presented research are two-fold, to reduce the construction cost

of kriging based response surface models and to attempt to improve the performance

of such models at higher dimensions. Both goals are coupled somewhat, as a reduction

in construction effort allows a designer to reallocate time to the evaluation of the true

objective function and hence improve performance at higher dimensions.

Over the course of a typical kriging based optimisation, successive updates to the model,

in the form of true objective function evaluations, require the reassessment of the sur-

rogate model’s controlling hyperparameters. This process involves a complex global

optimisation of a multi-modal space and can be very costly. The initial focus of the

presented research is therefore to determine how often and how well to tune these “hy-

perparameters” and what impact this has on an optimisation’s ability to produce good

designs.

The natural conclusion of this area of research is the consideration of the precise opti-

misation strategy employed within the hyperparameter tuning process. Is it sufficient

to have a local search, or must a global search with a terminal local search, which is

traditionally the case, be utilised? Can the hyperparameter tuning effort be reduced

via the implementation of more complex hybridised strategies which employ gradient

information?

A designer may typically apply a variable screening technique to a high dimensional

optimisation problem in an attempt to reduce the number of variables to a more man-

ageable level. This process does however have a number of drawbacks. First a number

of expensive function evaluations are required to determine which variables are the most

important and even then there is no guarantee that the screening procedure has selected

the correct set of variables. An incorrect reduced set of variables and a reduction to

the remaining budget of function evaluations for the actual optimisation reduces the

quality of the final design. Secondly, the act of variable reduction removes a great deal

of flexibility from the design space and may again reduce the quality of a final design.

The second area of research therefore concerns how to better reduce the number of vari-

ables in a problem without wasting valuable function evaluations whilst attempting to

maintain a greater degree of flexibility within the reduced design space.
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1.4 Thesis Overview

The following thesis begins with a review of existing optimisation techniques. Local

quasi-Newton based searches are considered as well as stochastic optimisers such as

genetic algorithms, simulated annealing and dynamic hill climbing. Particular emphasis

however is given to particle swarm optimisation and response surface modelling in the

form of kriging, as these methods form the backbone of the novel techniques described

in subsequent chapters.

The importance of the process of hyperparameter tuning within a kriging based response

surface optimisation is then considered. In particular the effect on an optimisation of

how often and how well the hyperparameters are tuned. An n dimensional aerofoil

inverse design problem is employed within this study and provides an excellent oppor-

tunity to demonstrate the effect of increasing dimensionality on the performance of an

optimisation given a restricted budget of function evaluations.

Having discerned the impact of tuning within the overall optimisation process, the ac-

tual optimisation method employed within this process is then considered. Typically the

tuning process involves a stochastic optimisation followed by a terminal search. How-

ever, this does not take into consideration the smoothness of the likelihood space and the

existence of an analytical gradient of the likelihood, both of which provide ideal circum-

stances for the application of a gradient based search. To improve the efficiency of the

gradient calculation an adjoint of the likelihood is derived via reverse algorithmic differ-

entiation. The efficiency of this method of gradient calculation is then compared to the

traditional analytical gradient calculation, finite differencing and a forward algorithmic

differentiation formulation.

The multi-modal nature of the likelihood space makes it unsuitable for a purely local

optimisation. To this end a sequential quadratic programming (SQP) algorithm utilising

the adjoint formulation of the likelihood is hybridised with a particle swarm. The particle

swarm therefore carries out a global search, with the SQP rapidly exploiting promising

regions. The developed tuning method is once again applied to the aerofoil inverse design

problem in order to directly compare it to the more traditional, and more costly, tuning

processes.

The improvement of kriging at higher dimensions through the reparameterisation of the

design problem is then considered. The traditional kriging process is divided into two

kriging optimisations linked via a reparameterisation of the original design problem.

The first optimisation is performed on the original problem and includes a number

of updates while the second is performed on a reparameterised version of the original

problem where the common geometric features of the best designs have been extracted

through the application of proper orthogonal decomposition. This optimisation strategy,
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termed geometric filtration, results in a considerable reduction in the size of the kriging

correlation matrix and therefore reduces the cost of the tuning optimisation further.

The controlling parameters of this novel optimisation technique are then investigated.

Particular attention is paid to the effort applied in the initial optimisation, the size of

the sampling plans within both optimisations, and the number of designs used in the

reparameterisation process. The observations made regarding the impact of a reduced

correlation matrix size on the cost of the hyperparameter tuning process is also applied

to the traditional kriging process. The impact of this restricted sampling size on the

optimisation process is then compared to the geometric filtration technique.

Finally, the techniques developed throughout the course of the presented research are

combined and implemented in the optimisation of a transonic wing. This final optimisa-

tion demonstrates completely the performance gains achieved by the presented research.



Chapter 2

A Review of Existing

Optimisation Techniques

2.1 Local Optimisation

2.1.1 An Overview of Local Optimisation

The optimisation of any engineering design problem usually begins with an initial design

point. This point could be the result of a previous design process or the culmination

of an engineer’s experience and knowledge of what should constitute a good design.

For example an experienced aerodynamicist wishing to create an optimal aerofoil would

begin with an existing aerofoil which displays characteristics close to those desired.

Even the most inexperienced engineer without any knowledge of optimisation is aware

that subtle changes to an initial design can improve upon that initial design’s perfor-

mance. The addition of a small bump to the upper surface of an aerofoil in the region of

a shockwave, for example, can alleviate the shock and improve the drag characteristics

of the aerofoil for a particular flight condition, Huyse et al. [2002].

This process of altering an initial design point in an attempt to continually improve

an objective function results in a gradual descent towards an optimum. However, this

optimum is usually only local in nature with the objective function smaller than all other

points in the vicinity, but not necessarily the smallest objective function value within

the complete design space, see Figure 2.1.

Local optimisation techniques are therefore unlikely to locate the global optimum unless

the optimisation is started in the region of that optimum, the objective function is

unimodal in nature or multiple restarts of the optimisation are employed. Even with

these obvious drawbacks, local optimisation techniques are a popular tool in engineering

design as they require relatively few objective function calculations, when there are

8
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a modest number of variables, compared to global stochastic methods, and can make

effective use of gradient or curvature information when available.

Optimisation becomes

trapped in a local

optimum

Commenced in the

region of the global

optimum the local

search is a success

Figure 2.1: An example of the pitfalls of local optimisation given the multi-modal

Forrester function, y(x) = 0.5(6x− 2)2 sin(12x− 4)+ 10(x− 0.5)− 5 where x ∈ [0, 1]

There are many different local optimisation techniques throughout the literature, from

the simple, but robust, Nelder-Mead simplex algorithm, Press et al. [1986], to conju-

gate gradient algorithms, pure Newton methods, Nocedal and Wright [1999] and quasi-

Newton methods, Broyden [1970] each of which has been extensively used in both the

optimisation of analytical functions and engineering design problems, Burgreen and

Baysal [1994], Elliot and Peraire [1996], Giles and Pierce [2000].

2.1.2 Quasi-Newton Methods

The quasi-Newton method is one of the most popular local optimisation algorithms for

both analytical functions and design optimisations. Quasi-Newton methods are based

upon the Newton search method, though instead of utilising the Hessian of the objective

function at a point, a model of the inverse of the Hessian is gradually constructed as

the search progresses. This is particularly advantageous when the precise Hessian of

the objective function is unavailable, which is usually the case in a design optimisation.

To begin to comprehend how a quasi-Newton optimisation algorithm searches a design

space it is necessary to first review the Newton method upon which it is based.

An objective function, y(x), can be approximated by a Taylor series expansion of the

form,

y(x) = c+
∑
i

∂y

∂xi
xi +

1

2

∑
ij

∂2y

∂xi∂xj
xixj + . . . , (2.1)
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by neglecting terms of O(x3) and higher, a quadratic approximation to the objective

function is obtained, Press et al. [1986],

y(x) ≈ c+ bx+
1

2
xTHx. (2.2)

Where H is a positive definite square matrix, denoted the Hessian matrix, b is a vector

and c is a constant. Differentiating this expression produces an approximation of the

gradient of the objective function,

∇y(x) = Hx+ b. (2.3)

At an extremum of the function this derivative will equal zero. Newton’s search method

aims to find the zero of the gradient, hence the gradient at a new point, xi+1, is a

function of the current point, the gradient at the current point and the Hessian matrix,

∇y(xi+1) ≈ ∇y(xi) +H(xi+1 − xi). (2.4)

Equating the gradient at the new point to zero produces an equation defining the step

length, ∆x, to the minimum of the quadratic approximation as,

∆x = H−1∇y(xi). (2.5)

It is this step length which is used to calculate the next point in the optimisation,

xi+i = xi + γ∆x, (2.6)

where γ is a fraction of the step length calculated from a line search in the direction of

the step.

As mentioned previously, quasi-Newton methods attempt to slowly build up a model of

the inverse of the Hessian matrix as the number of steps in the optimisation increases,

lim
i→∞

H̃i = H−1, (2.7)

where H̃ is the approximation to the inverse. The quasi-Newton algorithm begins with

an initial guess of the inverse of the Hessian at the starting point. This initial guess

is typically a function of the identity matrix, Nocedal and Wright [1999]. Once the

algorithm has moved to a new point the model of the inverse Hessian, H̃, is updated

using a correction term which typically utilises the position and gradient information of

both the old and new point. The approximation of the inverse of the Hessian at a new

point is therefore of the form,

H̃i+1 = H̃i + correction, (2.8)
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where the formulation for this correction differs between each quasi-Newton method.

The popular Broyden-Fletcher-Goldfarb-Shanno (BFGS), Broyden [1970], formula is,

H̃i+1 = H̃i +
ggT

gTs
− H̃iss

T H̃i

sT H̃is
, (2.9)

where

s = xi+i − xi, (2.10)

and

g = ∇y(xi+1)−∇y(xi). (2.11)

Other simpler updating formulae, such as that of Davidon-Fletcher-Powell, exist but

BFGS is widely considered to be superior, Press et al. [1986]. With an updated Hessian,

the Newton step, Equation 2.5, can be calculated and used to determine the direction

of the next line search, the process is then repeated until convergence or a budget of

function calls is exhausted.

Quasi-Newton methods are very efficient at locating local minima and may even out-

perform the Newton method when the starting point is far from an optima and the

objective function is not quadratic in nature. However, Quasi-Newton methods, like

the Newton method upon which they are based may perform badly when the objective

function is noisy in nature, which is typically the case when an optimisation employs a

computational experiment to calculate the objective function that is either iterative or

employs a discretisation scheme, Keane and Nair [2005].

Although the above formulation utilises gradient information directly, a series of finite

differences can be used to calculate the gradients when an analytical gradient is unavail-

able. For problems with large numbers of variables this can be very expensive, though

considerably less expensive than attempting to calculate the Hessian via finite differenc-

ing. It is the quasi-Newton method’s direct application of gradient information in the

optimisation process which makes it particularly popular when the adjoint formulation

of a computational experiment is available, Giles and Pierce [2000].

The quasi-Newton approach described above is only applicable to unconstrained op-

timisation problems. However the technique can be modified to deal with constraint

boundaries in a number of ways, for example, through the application of a gradient

projection method. The BFGS updating formula can also be used to derive Hessian

approximations in other optimisation algorithms. Sequential quadratic programming,

for example, can utilise a BFGS based approximation to the Hessian of the Lagrangian

thus enabling the local optimisation of problems with non-linear constraints.
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2.2 Stochastic Optimisation Methods

2.2.1 Genetic Algorithms

The genetic algorithm (GA) is one of the most popular stochastic optimisation method-

ologies. Initially developed by Holland [1962], genetic algorithms are inspired by the

Darwinian theory of natural selection, whereby desirable or advantageous traits become

more common as a population reproduces and undesirable or disadvantageous traits die

out. Unlike the local optimisation techniques previously discussed, the GA, as well as

the other stochastic methods discussed here, are global optimisers.

Genetic algorithms, like most other stochastic optimisation techniques, employ a pop-

ulation which gradually evolves over the course of a number of generations. It is the

mechanism of this evolution which is unique to the genetic algorithm. Genetic algorithms

generally employ three processes, “selection”, “crossover” and “mutation” in the search

for a global optimum. These processes attempt to move the members of a population

away from undesirable regions of a design space and towards a global optimum. This is

analogous to the theory of natural selection whereby ailing members of a population of

animals gradually die out leaving only the strongest members to breed and hence benefit

the species.

In terms of the genetic algorithm, the “fitness” of a population is generally derived from

the objective function through the application of a suitable scaling. In a minimisation,

for example, those members of the population which minimise the objective function

most have a high level of fitness associated with them. Members of a population with a

higher fitness are more likely to be selected for reproduction and added to the mating

pool. Hence the higher the fitness value the more likely the characteristics of that

member of the population will be passed onto members of the next generation.

The selection of the members to make up the mating pool is followed by cross-over,

also known as mating. Generally, two individuals, randomly chosen from the mating

pool, are selected for cross-over. In the case of a binary encoded population the process

of cross-over entails the exchanging of bits between two parents which results in two

offspring. These offspring then form the population of the next generation.

The third and final procedure is that of mutation which involves the alteration of a

randomly selected variable by a small amount for a small proportion of the offspring.

The process of mutation implies a random walk through the design space enabling

the optimisation to escape regions of local minima and introducing a level of global

exploration. The performance of genetic algorithms are governed by four important

parameters, the size of the population, the probability of cross-over, the probability of

mutation and the number of generations that the algorithm is run for. The selection of

appropriate values of these parameters greatly affects the convergence of an optimisation.
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Considerable time and effort can be spent manually adjusting these parameters to gain

the best performance of a genetic algorithm over a range of problems, Keane [1995],

Gudla and Ganguli [2005].

Another method for improving the performance of a genetic algorithm is the adoption

of elitism. This entails the transfer of the best member of each population, unaltered,

directly to the next generation. The introduction of an elitist strategy within a genetic

algorithm ensures a monotonic improvement in the best fitness value of a population

from one generation to another, Gudla and Ganguli [2005].

Despite the introduction of elitism and the selection of appropriate values of the pa-

rameters mentioned above, a typical GA can suffer from some drawbacks, namely poor

exploitation capabilities and premature convergence. Premature convergence can occur

due to a lack of population diversity, Goldberg [1989], Chelouah and Siarry [2000], but

can be countered by changing the degree and probability of mutation. Poor exploitation

is mainly due to the nature of the encoding of each member of the population which can

prohibit the more subtle changes to each variable necessary to obtain a precise global

optimum. A GA may therefore locate the general region of the global optima but not

the precise answer.

The accuracy of the optimum found can be increased through the hybridisation of a GA

with a local search strategy. Many such examples of this technique exist throughout the

literature with conjugate gradient, quasi-Newton and Nelder-Mead simplex algorithms

all employed, Chelouah and Siarry [2003], Gudla and Ganguli [2005], Muyl et al. [2004].

Each of these hybrid strategies works on the same basic principle; the GA is used to locate

regions of optimal design and the local search strategy is used to exploit these regions.

The only differences between these various hybrid strategies is the local optimisation

strategy used in the exploitation and when this exploitation occurs during the course

of an optimisation. Some hybrid strategies use a local optimisation strategy to improve

upon the best member of the population at each generation, Muyl et al. [2004], while

others start from the best point of the final generation, Chelouah and Siarry [2003].

Be it in a more traditional form, or in a hybridised form, the genetic algorithm is a

popular optimisation technique and has been used extensively throughout the literature.

Genetic algorithms have been applied to numerous aerodynamic optimisation problems,

Obayashi and Takanashi [1996], Shahrokhi and Jahangirian [2007], and are particularly

popular in the optimisation of problems with large numbers of variables, Chelouah and

Siarry [2000], for example, the tuning of surrogate models, Keane [2006].
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2.2.2 Simulated Annealing

Simulated annealing is derived from the field of statistical mechanics namely the work of

Metropolis et al. [1953] which was adapted by Kirkpatrick et al. [1983] for use in global

optimisation. In metallurgy, annealing involves raising the temperature of a substance

beyond its recrystalisation point and then slowly lowering the temperature again allowing

optimal crystals within the substance to form. If the temperature is lowered too quickly

suboptimal crystals form. Simulated annealing is the optimisation equivalent of this

process whereby the motion of a number of atoms within a substance at a temperature

is simulated.

The simulated annealing process begins with an initial sampling of the design space at

a number of points. Each point is the equivalent of an atom in a heated material. The

objective function is evaluated for each “atom” and recorded. Each atom then undergoes

a small random perturbation and the objective function at its new position is calculated.

This random perturbation is accepted if it results in a reduction in the objective function

compared to the previous position. The selection of positions resulting in a continual

reduction in objective function is analogous to the rapid quenching scenario described

previously, and results in only local optima.

To prevent the optimisation getting trapped in local optima a probabilistic approach to

the selection of atom positions which result in a worse objective function is introduced. If

the random perturbation of an atom results in a worse objective function the probability

of that motion being accepted is given by the Boltzmann probability factor,

P = exp

(
−∆y

kBT

)
, (2.12)

where ∆y is the change in the objective function, kB is the Boltzmann constant and T

is the temperature. In a simulated annealing algorithm a random number in the range

[0,1] is selected and compared to this probability factor, if this number is less than the

probability factor the new position of the atom is retained.

As the optimisation proceeds the temperature is gradually reduced until the system

freezes and the atoms no longer move about freely. The starting temperature and rate

at which the temperature reduces therefore has a massive impact on the performance of

the optimisation.

This impact can be ascertained when one considers the equation for the probability

factor. For a given temperature, perturbations in an atom which produce slight increases

in the objective function are more likely to be accepted than those which result in large

increases in the objective function. As the temperature reduces the likelihood of these

perturbations being accepted is reduced forcing the optimisation to move into local

minima. Too high a starting temperature results in a global exploration of the design
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space with little exploitation occurring. The rate of cooling therefore determines the rate

at which an optimisation moves from a global exploration to a more local exploitation.

Hence, a careful consideration of both of these parameters is necessary for an efficient

optimisation.

Like the genetic algorithm, simulated annealing has been used in a variety of optimi-

sation problems involving large numbers of variables, for example the optimisation of

Latin hypercubes, Morris and Mitchell [1995], and has found numerous applications in

aerodynamic design, Sherif et al. [1996], Wang and Damodaran [2002].

2.2.3 Dynamic Hill Climbing

Dynamic hill climbing, developed by Yuret and Maza [1993], adopted both dynamic co-

ordinate changing and the exploitation of local minima as methods to counter the inher-

ently poor performance of traditional hill climbing techniques on multi-modal functions.

At its core dynamic hill climbing consists of a rather simple, but effective hill climber.

An individual is selected at random in the design space, from which a population of

points is then constructed through a series of mutations to this individual. In a process

similar to that of the mutations within a genetic algorithm, a scalar is added to and

subtracted from each of the coordinates of the initial point. The population therefore

consists of a total of 2d + 1 individuals, where d is the number of dimensions in the

problem.

Each of the members of the population is evaluated using the objective function and

the fittest member is selected. This member then undergoes another set of mutations to

produce a new population and so forth. The magnitude of the mutation applied to the

best individual of each population is halved every iteration until it is considered small

enough to exclude the possibility of any points nearby having a better fitness. When

this stopping criterion is reached, the hill climber has reached a local optimum.

Such a simple hill climbing technique suffers from two major flaws. The optimisation

can stall because the direction of ascent is not within the permitted directions of travel

and the optimisation can become trapped in local optima.

Yuret et al. introduced a dynamic coordinate frame to enable the hill climber to freely

choose a more appropriate direction of travel. A Gramm-Schmidt orthogonalisation,

using information from a number of previous iterations of the hill-climber, is employed

to derive a new set of basis vectors, along which, future mutations can be applied. These

orthogonal basis vectors allow the optimisation to proceed in directions which would

normally be impossible with a rigid coordinate frame. The optimisation is therefore free

to find better optima.
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The optimisation algorithm is prevented from being trapped in local optima through

the exploitation of the locations of these optima. When the hill climbing algorithm

completes, the location of the optimal point found by the algorithm is recorded. The

algorithm can then be restarted, but instead of selecting a new starting point at random,

a starting point is selected which maximises the diversity from any previous local optima

recorded. The hill climbing algorithm is repeated from this starting point until another

local minima is found. The complete optimisation process then continues until a specified

stopping criterion, such as the number of function evaluations, is reached.

Although not quite as popular as, for example, a genetic algorithm, dynamic hill climbing

has been used in the optimisation of kriging hyperparameters, Keane [2006] and has

compared favourably to a traditional genetic algorithm in the optimisation of analytical

test functions, Yuret and Maza [1993].

2.2.4 Particle Swarms

The particle swarm is one of the most recent stochastic optimisation methods, and also

one of the simplest. It was originally developed by Eberhart and Kennedy [1995] after

they adopted simulations of simple social behaviour for use in optimisation.

Like the genetic algorithm the particle swarm is inspired by nature, though instead

of modelling evolutionary processes, the particle swarm endeavours to model the social

behaviour of a population of animals. Initial simulations of social behaviour by Eberhart

et al. drew on the previous work of Heppner and Grenander [1990], where a flock of

birds flew around searching for a cornfield before landing. In these simulations every

member of the population could remember its previous best position, in this case how

far it was from the cornfield, and each member could “see” the global best position that

another member of the population had found. By permitting each bird to remember

a previous best position, birds that overflew a good position were pulled back to that

position. Allowing the birds to see the current global best position, in social terms,

provides the group with a standard which the other group members attempt to attain.

The extension of this social behaviour model to the field of optimisation resulted in a

very simple equation which updates the velocity of each swarm member. Given an initial

velocity, Vi, and information on the current global best position, xGbest and the best

position that an individual has found, xPbest, the velocity of the particle at the next

iteration can be found by,

Vi+1 = wVi + c1r1(xPbest − xi) + c2r2(xGbest − xi). (2.13)

Where r1 and r2 are vectors of random numbers in the range [0,1] and w, c1, and c2

are the inertial weight, the cognitive parameter and social parameter respectively, Blasi
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and Del Core [2007]. With the new velocity of a particle calculated, the position of a

particle at the next iteration can be easily found,

xi+1 = xi + Vi+1. (2.14)

The updated velocity given by Equation 2.13 has three main components. The first

component is the velocity that the particle is currently travelling at; this is termed the

inertial component. The second component of the velocity calculation tends to return

the particle to a previous best point, this is sometimes referred to as “simple nostalgia”,

Kennedy and Eberhart [1995]. The final component of the velocity calculation tends to

move the particle towards the location of the best point found so far in the optimisation.

The two learning parameters, c1 and c2, in Equation 2.13 balance the local exploitation

and global exploration of the algorithm. A large c1 relative to c2 forces each particle to

return to the best positions that they, themselves, have found, largely ignoring the global

best point. A large c2 relative to c1 results in each particle moving rapidly towards the

global best position with little exploitation of any local minima found. A balance is

therefore required between these two factors to ensure the algorithm moves to a global

optimum, but in doing so exploits any locally optimal regions it encounters. For this

reason in Eberhart and Kennedy’s original algorithm, both c1 and c2, equal 2.

The inertial weight was an addition to the original formulation by Shi and Eberhart

[1998] which improved the performance of the algorithm. Typically this inertial weight

decreases linearly with each iteration of the algorithm. Eberhart and Shi [2000] found

however that modifying Equation 2.13 to use a constriction factor, K and restricting

the velocity of each particle to Vmax negates the need for a gradual reduction in inertial

weight, and results in a performance increase. Equation 2.13 therefore becomes,

Vi+1 = K[Vi + c1r1(xPbest − xi) + c2r2(xGbest − xi)] (2.15)

where

K =
2

|2− γ −
√
γ2 − 4γ|

γ = c1 + c2 and γ > 4. (2.16)

The constriction factor is in effect a special implementation of the traditional particle

swarm equation, only instead of the inertial weight reducing with each iteration it re-

mains constant and is a function of the learning factors. The starting magnitude of the

inertial weight and the rate at which it decays no longer need to be specified a priori.

The restriction in the velocity applied to each particle prevents them from leaving the

design space and also simulates an incremental learning process. The selection of this pa-

rameter has an impact on the performance of the optimisation. Reducing this parameter

prevents the particles from overshooting interesting regions but reduces the convergence

rate of the algorithm. Setting this parameter too small however prevents the particle
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escaping from local minima. Typically Vmax is defined as a fraction of the difference

between the upper and lower bounds of the design space, Liu et al. [2006].

A typical particle swarm algorithm begins with the sampling of the design space at a

number of points to construct the initial population. Each member of the swarm has

its corresponding objective function calculated and is given a random initial velocity

within the limits of Vmax. The global best point is recorded and the previous best point

for each particle is initialised to the current position. The velocity is then updated

using either Equations 2.13 or 2.15 and from this velocity the particle’s new position is

calculated. The objective function is then calculated at this new position and the global

and previous best points are updated as necessary. The process then continues until a

specified stopping criterion is reached.

Particle swarms have grown in popularity since their inception by Eberhart and Kennedy.

They have been applied in the conceptual design of aircraft, Blasi and Del Core [2007],

and compared favourably to genetic algorithms and simulated annealing in the opti-

misation of aerofoils, Ray and Tsai [2004], and analytical functions, Angeline [1998],

Brandstatter and Baumgartner [2002], Venter and Sobieszcaznski-Sobieski [2003].

Particle swarms do however suffer from the same exploitative deficiencies as genetic

algorithms, that is, they are capable of finding the region of an optimal design but not

the precise answer. As with genetic algorithms some effort has gone into improving

the performance of particle swarms in this area, with the introduction of both hybrid

particle swarms which employ a local search, Shu-Kai et al. [2004], or which make specific

use of gradient information in the velocity update equation, Noewl and Jannett [2004],

Ninomiya and Zhang [2008].

2.2.5 Particle Swarm Neighbourhood Topology

The basic particle swarm of Eberhart and Kennedy bases the velocity update equation

on the particle’s previous best location and on the location of the global best point.

However, using a global best point has been demonstrated to result in the premature

convergence of the swarm to a suboptimal solution on some test problems, Kennedy

and Mendes [2002], Mohais et al. [2005]. When a global best point is used the particles

tend to move towards the best point found in the early iterations of the optimiser.

This reduces the extent that each particle explores and can result in the premature

convergence of the search.

In an attempt to remove this unwanted behaviour different neighbourhood topologies

were introduced to the basic particle swarm. These topologies define the connections

between individual particles and therefore control the flow of information around the

swarm. Rather than use the best location found by the entire population the velocity

update equation would now employ the best location found by a particle’s neighbours.
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There are typically three criteria for defining the connections between particles, Akat and

Gazi [2008]. Particles can be connected to their closest neighbours in either variable or

function space or they can be connected randomly to each other. The topology itself can

also remain fixed throughout an optimisation or can behave dynamically with connec-

tions forming and breaking as the particles explore the space. Dynamic topologies can

result in the creation of sub-populations in some problems which may be advantageous,

for example, when searching along a constraint boundary.

Each particle
is linked to
every other
particle in the
population

(a)

Each particle
is linked to
two other
particles

Flow of
information
through the
population

(b)

Figure 2.2: Graphical interpretations of the “star” and “ring” topologies.

The global best or “star” topology is the most simple and therefore the most commonly

used. In this topology every particle is connected to every other particle. The previous

best position of a neighbouring particle is therefore the best found by any particle so

far in the search. This however leads to the premature convergence problems mentioned

previously.

The “ring” topology connects each particle to only two others. The velocity update

equation therefore uses the previous best position of these other two particles. Only the

direct neighbours of the global best particle will therefore be influenced by it with the

remaining particles exploring local regions of attraction. As the number of generations

increases the influence of the global best point will begin to spread around the swarm

with the global best particles neighbours finding better solutions and influencing their

neighbours and so forth, Kennedy [1999].

The “ring” topology does not therefore suffer the premature convergence of the “star”

topology, but due to the much slower spread of information throughout the swarm, once

the true optimum is located it is much slower to be exploited. The “ring” topology

could therefore be considered as slower to converge to an optimum but more likely to
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find the true optimum of a multi-modal function. This has been demonstrated in the

literature to occur with a number of analytical test functions, Kennedy [1999], Kennedy

and Mendes [2002].

A 7 x 7 grid of
particle connections

The grid is wrapped around
so that the ends of each

row are connected

The ends of each column
are then connected forming

a torus

Figure 2.3: A graphical representation of the Von Neumann topology for a population

of 49 particles.

An efficient neighbourhood topology must therefore offer a reasonable rate of convergence

but without the tendency for premature convergence to a local optimum. Throughout

the literature a number of different topologies have been considered each with varying

degrees of connectivity between particles. Kennedy and Mendes [2002] and Mohais et al.

[2005], for example describe and compare the performance of a number of such topologies

with respect to a series of analytical test functions.

Within these comparisons the Von Neumann topology, (so called because of its use in

cellular automata by John Von Neumann), is generally considered to be one of the best

offering a faster rate of convergence than the “ring” topology but reducing the tendency

for premature convergence associated with the “star” topology, Kennedy and Mendes

[2002, 2006]. Each particle within the swarm is connected to four others, with the

topology resembling a grid wrapped around to form a torus, see Figure 2.3 above. The

increased number of neighbourhood connections results in a faster spread of information

through the swarm than the “ring” topology which improves the speed of convergence,

while the restricted neighbourhood increases the degree of local exploration. The su-

perior performance of the Von Neumann topology relative to the “star” and “ring”

topologies was demonstrated further by Huang and Mohan [2005], who compared each

topology with respect to the real world problem of microwave image reconstruction.

2.2.6 A Fully Informed Particle Swarm

The fully informed particle swarm, (FIPS), is a further development of the application

of neighbourhood topologies to the basic particle swarm. Mendes et al. [2004] considered

that important information may be neglected through the overemphasis of a single best

neighbour. The FIPS strategy was therefore developed with the intention of having all of

a particle’s neighbours contribute to the velocity update equation by taking a weighted

mean of each of the neighbours previous best positions.
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The velocity update equation for FIPS is similar to that of Equation 2.15 except that

xGbest and xPbest have been replaced by the weighted average of the previous best

positions of a particle and all of its neighbours. The velocity update equation therefore

becomes,

Vi+1 = K

Vi + r

Ni

Ni∑
j=1

(xjbest − xi)

 , (2.17)

where r is a vector of random numbers in the range [0, γ], Ni defines the number of

particles within a neighbourhood and xjbest is the previous best position of the jth

particle in the neighbourhood. The coefficients K and γ refer to the constriction factor

given by Equation 2.16.

Although a constant weighting is used above, the equation can be expanded further to

include a weighting scheme based on a metric such as the particle’s fitness or the distance

to the current particle. Mendes et al. [2004] investigated a number of different weight-

ing schemes but demonstrated that there was little difference in overall performance

compared to a uniform weighting.

The investigations into the performance and convergence behaviour of FIPS by Mendes

et al. [2004] and Montes De Oca and Stutzle [2008] highlighted the sensitivity of the

strategy to neighbourhood topology. Where the traditional swarm performs consistently

no matter the topology employed, the performance of FIPS can degrade significantly if

an appropriate topology is not selected. Montes De Oca and Stutzle [2008] demonstrated

that as neighbourhood connectivity increases the performance of FIPS decreases due to

spatial convergence. With a fully connected “star” topology the particle’s exploration

tends to be biased towards a region close to the centroid of the swarm. Particles can

therefore become trapped if this region is close to a local optimum. The FIPS strategy is

therefore typically implemented in conjunction with the Von Neumann topology, where

the smaller neighbourhood sizes allow the particles to search around the centroid of each

neighbourhood rather than of the whole population.

Even though FIPS is a recent adaptation of the traditional swarm and has not been

applied to a large number of real world optimisation problems it has been hybridised with

a BFGS local improvement step for the purposes of neural network training, Ninomiya

and Zhang [2008] and even extended to multi-objective problems by Jia et al. [2007].
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2.3 The Surrogate Modelling Approach to Optimisation

2.3.1 The Basic Surrogate Modelling Optimisation Strategy

Although stochastic methods can be relied upon to reach a global optimum they typically

require a very large number of evaluations of the objective function to do so. This is not

an issue when simple analytical functions or fast low fidelity computational simulations

are considered. However, when the objective function is evaluated using an expensive

high fidelity simulation, the time required to optimise using a stochastic method can be

quite significant. Even with the parallelisation of the objective function calculation it

may be infeasible to use a stochastic method of optimisation for some problems.

Surrogate modelling, also known as response surface modelling or metamodelling, aims

to facilitate optimisation but with a reduced number of objective function evaluations.

In general the stochastic optimisation methods described previously, sample an objective

function at a number of points and then define a new set of points based on mutations or

translations to the previous set. Surrogate modelling however, aims to use the objective

function calculated at a number of points in the design space to construct a model of

the entire space. This model then acts as a surrogate for the original computational

simulation. It is then this inexpensive model which is evaluated using a stochastic

process instead of the original simulation.
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Figure 2.4: Flowchart of the traditional surrogate modelling approach to optimisation.

As with any modelling procedure there will exist inaccuracies, the optimum returned by

the stochastic method is therefore unlikely to correspond to the true optimum solution.

An updating strategy is then used to increase the accuracy of the model in those regions

indicated as optimal. The updated model can then be searched again to provide more

points which can be evaluated again using the high fidelity simulation. The process then

repeats until a stopping criterion is reached. A number of different updating schemes can

be adopted in this process. Updates can, for example, be based on a models prediction

of the objective function, the probability of improvement or the expected improvement

over the current best sample point, Forrester and Keane [2009].

A typical surrogate modelling optimisation strategy, Figure 2.4, therefore involves an

initial sampling of the design space using some sort of sampling plan such as an optimal

Latin Hypercube, Morris and Mitchell [1995]. A surrogate model of the response of
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the objective function to changes in the magnitude of the variables is then constructed

from this initial sampling. The surrogate model is then searched for optimal regions

using a global optimisation method, such as a genetic algorithm. The searching process

can either evaluate the surrogate model’s prediction of the objective function, in other

words the stochastic method is minimising the objective function, or a statistical quantity

related to the surrogate model, such as the maximum likelihood of improvement, Jones

[2001]. The update points returned by the global search are then evaluated using the

true computational simulation. The true objective function at these points can then

be used to update the surrogate model. Continual evaluations of, and updates to, the

surrogate model are made until a stopping criterion is reached.
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Figure 2.5: Four different surrogate models fit to eight sampling points of the modified

Forrester function, (a) 4th order polynomial, (b) Shepard Weighting, (c) cubic spline

radial basis function and (d) kriging.

One of the most important factors in any surrogate model based optimisation is the

mathematical nature of the model used. There exist a number of different models

throughout the literature ranging in complexity from simple polynomials and Shepard

weighting, to radial basis functions, support vector regression and krigs, see Figure 2.5.
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Each model has a number of associated advantages and disadvantages which affect the

accuracy of the model produced and hence the search for a global optimum. For example,

modelling a response using a least squares fit quadratic polynomial is a relatively simple

process, but a quadratic polynomial will inevitably find it very difficult to model a

multimodal shape with any degree of accuracy. A kriging based response surface will

more accurately model such multi-modal responses but at an increased modelling cost

associated with the selection of hyperparameters.

2.3.2 Kriging

Kriging was first used by geologists to estimate mineral concentrations within a particu-

lar region, Krige [1951], and has since been adapted for use in the creation of surrogate

models of deterministic computational experiments; a process popularised by Sacks et al.

[1989]. Of the numerous types of response surface models, kriging is perhaps one of the

most effective due to its ability to model complicated responses through interpolation

or regression whilst also providing an error estimate of the predictor. Since its initial

application to surrogate modelling, kriging has been applied to a variety of engineering

problems including, aerodynamic, Hoyle et al. [2006], Forrester et al. [2006a], structural,

Sakata et al. [2003], and multi-objective design problems, D’Angelo and Minisci [2005],

Keane [2006].

Given a pair of objective function values, y(xi) and y(xj) which are a function of the

vectors of design variables xi and xj , of length d, the objective function values will

be similar if xi and xj are close together within a design space. This can be modelled

statistically by assuming that the correlation between two sets of random variables Y (xi)

and Y (xj) is given by,

Corr [Y (xi), Y (xj)] = exp

(
−

d∑
l=1

10θl∥xil − xjl∥
pl

)
(2.18)

Here the hyperparameters θl and pl determine the rate at which the correlation decreases

and the degree of smoothness in the lth coordinate direction, respectively. Consider now

a vector y consisting of n objective function values,

y =


y(x1)

...

y(xn)

 , (2.19)

where the mean is 1µ̂, and 1 is an n by 1 vector of ones. The covariance of y may then

be written as

Cov(y) = σ2R, (2.20)
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where σ2 is the variance and the elements of the matrix R, the correlation matrix, are

given by Equation 2.18. Values of θl and pl (the hyperparameters), are then chosen to

maximize the likelihood on the observed data set y. This maximum likelihood function

is defined as:
1

(2n)
n
2 (σ2)

n
2 |R|

1
2

exp

[
−(y − 1µ̂)TR−1(y − 1µ̂)

2σ2

]
, (2.21)

or after taking natural logarithms of the function,

− n

2
ln(σ2)− 1

2
ln(|R|)− (y − 1µ̂)TR−1(y − 1µ̂)

2σ2
. (2.22)

Expressions for the optimal values of the mean

µ̂ =
1TR−1y

1TR−11
(2.23)

and variance

σ̂2 =
1

n
(y − 1µ̂)TR−1(y − 1µ̂) (2.24)

can be found by taking partial derivatives of the log likelihood and equating them to zero.

A concentrated likelihood function can then be derived by substituting the expressions

for the optimal mean and variance into the log likelihood function,

− n

2
ln(σ̂2)− 1

2
ln(|R|)− n

2
. (2.25)

It should be noted that often the constant −n
2 is neglected in the calculation of the

likelihood. The concentrated likelihood function is dependant only on the correlation

matrix and hence on the hyperparameters which are tuned in an attempt to maximise

the function.

The selection, or tuning, of these hyperparameters is therefore an optimisation problem

in its own right; an optimisation process that can be considerably expensive and complex

with the overall cost dependent on both the dimensionality of the optimisation problem

and the number of sample points which defines the size of the correlation matrix, R.

Park and Baek [2001], for example, note that the Cholesky factorisation, the upper tri-

angular matrix resulting from which is used in the calculation of both the mean and the

variance, is the most expensive single operation in the calculation of the concentrated

likelihood. The cost of the Cholesky factorisation is of the order O(n3) and therefore

increases dramatically with the number of sampling points used to construct the corre-

lation matrix. Other operations such as the back substitution of the upper triangular

matrix and construction of the correlation matrix are of order O(n2).

Typically the number of points used in a sampling of the objective function is related to

the number of dimensions in the problem, for example, Jones et al. [1998] recommend

10d sample points in the design of experiments. Observing such rules of thumb can result
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in relatively expensive calculations of the concentrated likelihood, a process which may

have to be repeated many times if a stochastic method is used for hyperparameter

optimisation, Keane [2006].

2.3.3 Prediction Using a Kriging Model

Assuming that an appropriate set of hyperparameters have been found it is necessary

to “search” the resulting surrogate model for a set of update points. As previously de-

scribed a global search method is typically employed in such a search. Such optimisation

algorithms require a function which is to be minimised in order to define a set of points

at which to update the surrogate model. In the case of a surrogate model constructed

using a krig, the global optimisation can utilise either the model’s prediction of the

magnitude of the objective function, the probability of improvement or the expected

improvement in the objective function or a combination of such terms.

To make a prediction of the objective function value y(x∗) at a point x∗ which is not

included in the original sampling, the point x∗ is added to the existing data as the (n+

1)th” observation. An augmented likelihood, Jones [2001], can then be calculated using

the hyperparameters defined previously through the optimisation of the concentrated

likelihood, Equation 2.25. The surrogate models prediction of y(x∗) is therefore the

value which maximises this augmented likelihood.

A vector ỹ, is first constructed from the observed set of objective function values and

the prediction of the objective function y(x∗),

ỹ = [y(x1), . . . , y(xn), y(x
∗)]T . (2.26)

The vector r, consists of the correlations of y(x∗) with the points y(xi) which are

calculated using Equation 2.18, using the optimal set of hyperparameters. This vector

is then used to construct the augmented correlation matrix,

R̃ =

[
R r

rT 1

]
. (2.27)

By substituting this augmented correlation matrix into the previous equation for the log-

likelihood, Equation 2.22, the augmented likelihood, which is a function of only y(x∗)

is derived,
(ỹ − 1µ̂)R̃−1(ỹ − 1µ̂)

2σ̂2
, (2.28)

where µ̂ and σ̂2 are known already from Equations 2.23 and 2.24.
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The partitioned inverse formula states that given a square matrix A which can be

partitioned into two square matrices B and E and two matrices C and D,

A =

[
B C

D E

]
, (2.29)

the inverse of A is given by

A−1 =

[
B̃ C̃

D̃ Ẽ

]
, (2.30)

where
B̃ = B−1 + (B−1 ·C) · (E −D ·B−1 ·C)−1 · (D ·B−1)

C̃ = −(B−1 ·C) · (E −D ·B−1 ·C)−1

D̃ = −(E −D ·B−1 ·C)−1 · (D ·B−1)

Ẽ = (E −D ·B−1 ·C)−1.

(2.31)

By substituting a partitioned inverse formulation of R̃−1 into Equation 2.28 and taking

derivatives with respect to y(x∗) we obtain,[
−1

σ̂2(1− rTR−1r)

]
(y(x∗)− µ̂) +

[
rTR−1(y − 1µ̂)

σ̂2(1− rTR−1r)

]
. (2.32)

When this expression is equated to zero, the basic krig prediction formula is obtained,

y(x∗) = µ̂+ rTR−1(y − 1µ̂). (2.33)

A global optimisation algorithm, such as a genetic algorithm, can therefore search the

response surface for optimal points using this equation.

2.3.4 Expected Improvement

Unlike using the response surface’s prediction of the objective function to locate up-

date points, the expected improvement provides a measure of the improvement in the

objective function that may be obtained by sampling at a point.

It has been shown in the literature, Jones [2001], that the estimate of potential error in

the kriging predictor is inversely proportional to the curvature, or second derivative, of

the augmented likelihood function,

s2(x∗) = σ̂2(1− rTR−1r), (2.34)

where s2(x∗) is the error of the predictor at an unknown point x∗. If the current

best objective function value of the sampled points is denoted as ymin(x), then the
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improvement, I, over this value at an unknown point x∗ is given by,

I = ymin(x)− Y (x∗). (2.35)

The likelihood of actually achieving this improvement can be calculated using the normal

density function, Jones [2001],

1√
2πs2(x∗)

exp

[
−(ymin(x)− I − ŷ(x∗))2

2s2(x∗)

]
. (2.36)

The expected value of the improvement, E(I), is then calculated by integrating over the

normal density function between the bounds of I = 0 and I = ∞,

E(I) =

∫ I=∞

I=0
I

{
1√

2πs2(x∗)
exp

[
−(ymin(x)− I − ŷ(x∗))2

2s2(x∗)

]}
dI. (2.37)

The variable, ŷ(x∗) denotes the most likely value of the objective function at x∗, and is

calculated via Equation 2.33. Equation 2.37 can be integrated by parts to give,

E(I) = s(x∗) [uΦ(u) + ϕ(u)] , (2.38)

where

u =
ymin − ŷ(x∗)

s(x∗)
(2.39)

and Φ and ϕ represent the normal cumulative distribution function and density function

respectively, Jones [2001]. Equation 2.38 can then be calculated using the error function

as,

E(I) = (ymin − ŷ(x∗))

[
1

2
+

1

2
erf

(
ymin − ŷ(x∗)

s(x∗)
√
2

)]
+
s(x∗)√

2π
exp

[
−(ymin − ŷ(x∗))2

2s2(x∗)

]
. (2.40)

Using this formulation of the expected improvement, in conjunction with a stochastic

optimisation method, produces a series of update points which are most likely to result

in an improvement upon the current best objective function. This technique has been

successfully used throughout the literature in the optimisation of aerodynamic shapes,

from aerofoils, Keane [2006] to engine intakes, Hoyle et al. [2006].

2.3.5 Regression of Kriging Models

Given the potentially “noisy” nature of many computational simulations which depend

on discretisation and iterative solutions, it is often extremely important to employ re-

gression in the construction of a surrogate model, Forrester et al. [2006b]. Whilst kriging
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is often set up as an interpolating model, a regressing model can be constructed such

that the sampled points no longer have an exact correlation with the resulting model. A

regression constant, λ, is added to the diagonal of the correlation matrix R producing

R+λI. The magnitude of this constant is another hyperparameter varied in the tuning

process where the optimal mean becomes

µ̂r =
1T (R+ λI)−1y

1T (R+ λI)−11
, (2.41)

and the variance,

σ̂2r =
1

n
(y − 1µ̂r)

T (R+ λI)−1(y − 1µ̂r), (2.42)

with the concentrated likelihood function given by,

− n

2
ln(σ̂2r )−

1

2
ln(|R+ λI|). (2.43)

Upon completion of the tuning process, the resulting surrogate model can be searched in

the normal fashion to locate regions of optimal design using either the model’s prediction

of the objective function or the expected improvement.

The kriging predictor of Equation 2.33 can be easily modified to include the regression

term resulting in,

y(x∗) = µ̂r + rT (R+ λI)−1(y − 1µ̂r). (2.44)

When regression is used in the construction of a surrogate model, the model no longer

interpolates the sampled points. The expected improvement is therefore no longer zero

at these sample points. When a series of deterministic computational experiments are

used to construct the surrogate model this non-zero expected improvement is incorrect

as resampling a previous point will result in an identical objective function value.

The expected improvement must therefore be adjusted to assume a zero value at sampled

points. To achieve this, a “reinterpolation” procedure was introduced by Forrester et al.

[2006b], resulting in a new expression for the estimate of the variance,

σ̂2ri =
1

n
(y − 1µ̂)T (R+ λI)−1R(R+ λI)−1(y − 1µ̂). (2.45)

This variance can then be used to calculate the error in the predictor, s2(x∗), at an

unknown point using Equation 2.34. The expected improvement can therefore be calcu-

lated as normal and used to provide update points for the optimisation. This technique

was successfully employed by Forrester et al. [2006b] in the optimisation of a transonic

aerofoil.
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2.4 The Curse of Dimensionality

A global optimisation strategy should eventually attain the solution to a problem if af-

forded enough time. Unfortunately the real world applications of optimisation strategies

are within a more restrictive environment. Deadlines and targets must be met due to

the integration of the optimisation within a much larger design process. This imposed

time limit may have a serious impact on the performance of any resulting design as a

time limit generally translates into a restricted number of function evaluations. Without

careful consideration of the optimisation strategy employed, and the parameterisation

chosen, an optimisation may therefore fall foul of the “curse of dimensionality”.

The so called “curse of dimensionality” is essentially a law of diminishing returns. As the

dimensionality of a design space increases so too does the complexity of the optimisation.

With increasing dimensionality a larger effort must be spent to effectively explore and

then exploit regions within the design space. Given a restricted optimisation budget this

becomes increasingly difficult with the increased flexibility introduced via an increase in

dimensionality effectively hampering the optimisation process.

Consider Figure 2.6, here one can observe that as the dimensionality of the problem is

increased so too does the quality of the final design. In an aerodynamic optimisation,

for example, this could be the result of an increased flexibility of the shape parame-

terisation which expands the design space to include better designs. Given a restricted

simulation budget a designer may only be able to effectively optimise a small number

of variables. As problem dimensionality increases the optimisation procedure becomes

more unreliable producing an increasingly varying range of “optimum” designs. Eventu-

ally dimensionality becomes such an issue that an optimisation strategy may, on average,

produce poorer designs than at lower dimensions even though the increased flexibility

can theoretically produce a better design. Increasing the available budget of function

evaluations naturally has the effect of allowing the same optimisation strategy to explore

larger design spaces more effectively, pushing this threshold in performance to the right.



Chapter 2 A Review of Existing Optimisation Techniques 31

Variance in final

designs

Increasing

optimisation

effort

Improved

optimisation

strategy

Figure 2.6: A graphical representation of how an increase in optimisation effort or a

better optimisation strategy can stave of the impact of increasing dimensionality.

Altering the optimisation strategy may have a similar effect. The optimisation of a

relatively low dimensional problem using a stochastic method, for example, could be

completed in a reasonable number of evaluations. However, applying the same evaluation

budget to a higher dimensional problem may result in the stochastic method performing

poorly. Alter the optimisation method to one more suited to coping with a restricted

budget, such as a response surface based technique, and the resulting designs at higher

dimensions may improve.

It’s therefore of no surprise that dimensionality is at the cornerstone of optimisation

algorithm development. All algorithms are developed in an attempt to push this per-

formance envelope and produce better results for lower cost. To this end numerous

technologies have been developed over the years, from the local, stochastic and response

surface based methods mentioned previously to multi-fidelity optimisation in the form of

co-kriging and the plethora of variable screening techniques. Each attempts to produce

a better solution to an optimisation problem for a reduced cost.

Given a restriction on the total time for an optimisation a designer must therefore care-

fully select an appropriate optimisation method and an appropriate parameterisation,

a task which can require a great deal of experience and knowledge of the problem at

hand and of each optimisation technique’s advantages and disadvantages. The following

chapters of this thesis attempt to address some of these issues with regard to the use

of kriging in aerodynamic design. The overall aim is to minimise the expense of krig-

ing hyperparameter selection and improve the performance of the algorithm at higher

dimensions. Remove the bottle neck of hyperparameter tuning from an optimisation

and the optimisation can be completed faster or indeed more time can be afforded to
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actual function evaluations. Improve the performance at higher dimensions and there is

no longer such a severe restriction to the selection of the design variables.



Chapter 3

Hyperparameter Tuning Within a

Surrogate Modelling Strategy

3.1 Introduction

Although the performance of kriging has been extensively compared to that of other

surrogate models, Jin et al. [2001], Jones [2001], Simpson et al. [2001], Won and Ray

[2004] and a number of different tuning techniques have been compared, Hollingsworth

and Mavris [2003], there is little information in the literature on the effect the degree of

hyperparameter tuning has on an optimisation process.

Throughout the literature it is consistently observed that the time spent tuning the

hyperparameters of a kriging model can be quite significant and, for high dimensional

problems with many data points, comparable to the cost of the high-fidelity simulations

used to obtain the objective function values. Hyperparameter tuning can be especially

costly if an updating process is used to improve the surrogate model, as in Keane [2006].

Tuning of the hyperparameters effectively becomes a bottleneck in the optimisation

process, introducing a significant delay before new updates can be evaluated.

In an attempt to illuminate the issue of hyperparameter tuning, the performance of

five different tuning strategies are assessed using the inverse design of the supercritical

RAE-2822 aerofoil, Cook et al. [1979], as a test problem. The geometry parameterisation

employed in this design problem allows a systematic increase in the number of variables

used in the optimisation process whilst maintaining continuity between the geometries

as the number of variables is changed.

Each of the five hyperparameter tuning strategies is assessed within a benchmarking

framework. This framework remains consistent throughout, ensuring that each optimi-

sation begins with an identical design of experiments, and sufficient optimisations are

completed for the purposes of averaging.

33
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3.2 Optimisation Benchmark Framework

The benchmarking procedure employs the Options design exploration system, Keane

[2003], and at its core consists of the basic response surface construction and updating

process discussed previously, Section 2.3.1. The benchmarking procedure changes the

number of variables and repeats each optimisation a specified number of times to best

judge the performance of a particular response surface based optimisation strategy (in

this case the performance of five different hyperparameter tuning strategies).

Figure 3.1 illustrates the main processes involved in the benchmarking procedure. The

initial setup of the procedure requires a few key pieces of information: the design of

experiment (DOE) size, the number of update cycles and the maximum number of

points in each cycle. Further information specific to the optimisation strategy is also

required, such as the method used to construct or tune the response surface as well as

the method of searching the response surface.

The complete algorithm consists of three nested loops. The inner loop (denoted loop

number one in Figure 3.1) represents the typical activity of a designer employing a sur-

rogate based optimisation. Results from an initial design of experiments are used to

generate a response surface which is then searched to provide the specified number of

update points. The variables from these update points are then used to carry out more

computational experiments, in this case computational fluid dynamics (CFD) simula-

tions. The results from these numerical simulations are used to construct a new response

surface which is searched again to obtain a further set of update points if required. This

process is continued until a specified number of update cycles has been completed.

After storing the best design obtained, the entire optimisation process, (loop number 1),

is repeated using a DOE generated from a different random number seed, (loop number

two in Figure 3.1). This prevents the “getting lucky” scenario whereby a point in the

initial DOE falls on or near the global optimum. By carrying out a number of optimisa-

tions for the same problem, (in terms of the number of variables), a statistical analysis of

the results can be obtained which indicates the performance of the optimisation method-

ology. The number of optimisations carried out depends on the available time for the

benchmark. However, increasing the number of optimisations increases the confidence

of the statistical analysis. The final outermost loop, (loop number three in Figure 3.1),

repeats the entire process but changes the number of variables that the optimisation

uses, thus assessing the ability of an optimisation methodology to cope with problems

of varying complexity.
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Figure 3.1: Overview of the benchmark procedure.

The structure of this benchmark procedure allows it to be used to investigate many

aspects of an optimisation methodology, or indeed different optimisation methodologies

and not just the performance of the tuning strategies studied within this thesis. Although
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an aerodynamic optimisation problem is considered here, the benchmark procedure could

be just as easily applied to any other appropriate optimisation problem.

3.3 Hyperparameter Tuning Strategies

A total of five different tuning strategies, (summarized in Table 3.1), are investigated

using a low fidelity inverse design problem. The five strategies each employ a simplex

search, followed by a genetic algorithm (GA) and finally a dynamic hill climb (DHC) to

minimise the negative of the concentrated likelihood function, Equation 2.25.

The simplex search, using the Amoeba algorithm, Press et al. [1986], commences from

a random set of hyperparameters and continues until one of two stopping criterion is

reached; a predefined tolerance in the concentrated likelihood or until 50d iterations

have been completed. Hyperparameters defining the optimum point are then perturbed

by up to 10% using a random number and the simplex search repeated.

The result of the simplex search is then included in the initial population of the GA

with the best design of the GA then used as the starting point of the DHC. Although a

GA is a popular method of global optimisation (and has been shown by Hollingsworth

and Mavris [2003] to be an effective and reliable method of tuning hyperparameters) the

optimal point predicted can be inaccurate due to the GA’s poor performance in final

convergence. A hill climbing algorithm (in this case the DHC) is therefore often used to

refine the optima predicted by the GA.

Strategy Description of Tuning Strategy

1 Heavy Tune 5,000 iteration genetic algorithm & 5,000 iteration dynamic
hill climb after the DOE and each update

2 Light Tune 1,000 iteration genetic algorithm & 1,000 iteration dynamic
hill climb after the DOE and each update

3 Single Tune 5,000 iteration genetic algorithm & 5,000 iteration dynamic
hill climb after the DOE only

4 Alternate Tune 5,000 iteration genetic algorithm & 5,000 iteration dynamic
hill climb after the DOE and alternate updates

5 θ Tune 5,000 iteration genetic algorithm & 5,000 iteration dynamic
hill climb after the DOE and each update, optimizing for single
common value of θ, (p = 2 and λ = 10−6)

Table 3.1: Summary of Tuning Strategies all of which commence from the result of a
two stage simplex search.

Each of the five strategies differs in the degree of tuning used after each update. In

both the “heavy” and “light” tuning strategies, the hyper-parameters are tuned after

the initial DOE and after every single set of updates to the model. The only difference is

in the degree of tuning effort in each case. The heavy tune consists of 5,000 evaluations

of the concentrated likelihood function using a GA, (100 generations with a population
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size of 50), followed by a further 5,000 evaluations using a DHC. The light tune uses

only 1,000 evaluations of each. The third strategy consists of a single heavy tune after

the initial DOE followed by no further tuning after subsequent updates. The fourth

strategy consists of a heavy tune after the initial DOE and after each alternate batch of

updates. The fifth and final strategy involves the tuning of a single value of θ which is

assumed to be the same for every variable with the remaining hyperparameters assumed

to be constant, (p = 2 and λ = 10−6).

Two different computational budgets are used in the investigation, consisting of a total

of 75 and 150 CFD evaluations. In accordance with the work of Sóbester et al. [2005],

each of these budgets has one third of the evaluations reserved for the initial design of

experiments with the remainder used in the update process. A maximum of 10 CFD

evaluations are permitted for each update cycle. The small budget strategy therefore

consists of a DOE of 25 evaluations followed by five update cycles of up to 10 evaluations

each. It must be noted that the budget of 10 CFD evaluations per update cycle may

not be completely used in each cycle. The number of update points returned by the

GA’s search of the krigs prediction of the objective function depends on the modality

of the response surface generated; a highly modal surface may return the maximum 10

update points while a surface with fewer undulations may return fewer update points.

Therefore, the available budgets of 75 and 150 CFD evaluations may not be completely

used in each optimisation.

The combination of different computational budgets and tuning strategies results in a

total of 10 optimisation strategies. Each strategy is applied to a series of different opti-

misation problems of varying complexity, achieved by altering the number of variables

within the design problem. Each optimisation is carried out a number of times with

differing random number seeds used to construct the Latin hypercube of the DOE. As

the random number seeding is consistent for all of the tuning strategies, the CFD eval-

uations for each design of experiment only have to be calculated once. Each tuning

strategy uses the same initial set of data to tune the initial surrogate model, and thus

reduces some of the computational expense of the investigation whilst providing a more

meaningful comparison between the results of the different strategies.
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3.4 Aerofoil Inverse Design Problem

The inverse design problem investigated here involves the modification of a baseline

aerofoil, the NACA 0012, through the addition of multiple Hicks-Henne bump functions,

Hicks and Henne [1978], to the upper and lower aerofoil surfaces in an attempt to recreate

the surface pressure distribution of the RAE-2822 aerofoil. A series of Hicks-Henne bump

functions, described by

y = A

[
sin

(
πx

ln 0.5
ln xp

)]t
x ∈ [0, 1], (3.1)

where the parameters A, xp and t denote the amplitude, position of the maximum

and sharpness of the bump respectively, are applied to each surface through addition

of the z-coordinates. These Hicks-Henne control parameters form the variables in the

optimisation process, and are allowed to vary according to the limits in Table 3.2. An

example of a perturbation of the baseline geometry through addition of multiple Hicks-

Henne functions is presented in Figure 3.2.

Parameter Lower Limit Upper Limit

A (x/c) -0.02 0.02
xp (x/c) 0.01 0.95

t 1 6

Table 3.2: Inverse design Hicks-Henne function parameter limits.
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Figure 3.2: An example of the NACA 0012 aerofoil perturbed through the addition

of four Hicks-Henne functions.

Through manipulation of these parameters and through addition of multiple bump func-

tions to the aerofoil, the geometry parameterisation can employ any number of variables.

Increasing the number of variables increases the range of geometries which the parame-

terisation can represent while simultaneously increasing the complexity of the optimisa-

tion. When increasing the number of variables, additional bump functions are applied to
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the upper and lower surfaces of the baseline NACA-0012 aerofoil in an alternate manner,

with the upper surface bump applied first.

The parameters describing each Hicks-Henne function are designated as variables in

a specific order. First the amplitude of the function is defined as a variable, then

the location of the maximum, followed by the sharpness. If only a proportion of the

parameters are required to be designated as variables the remaining parameters are

kept constant with xp = 0.47 and t = 3.5, corresponding to halfway between the limits

of Table 3.2. A two variable problem, for example, consists of a single bump function

applied to the upper surface with the parameters A and xp permitted to vary and t

equal to 3.5.

Identical aerofoil geometries can be produced with a different set of variables resulting

in a design space containing multiple minima. As the parameter limits are identical

for each of the applied functions, it is possible to swap the parameters and obtain the

same geometry. Consider the example aerofoil in Figure 3.2 where two bumps have

been applied to the upper surface, the first subtracts a portion of the base aerofoil from

the leading edge, while the second thickens the aerofoil at the mid-camber point. The

variables defining the first bump could be swapped with those of the second resulting

in an identical aerofoil. The presence of multiple minima deliberately increases the

difficulty of the optimisation problem in a similar manner to other test functions such

as the Rastrigin function or the Keane bump function, Keane and Nair [2005].

The parameter limits of each function permit a design produced using one parameterisa-

tion to be recreated using a more complex parameterisation. For example, any geometry

resulting from the one variable parameterisation can be reproduced using the two vari-

able parameterisation as the default position of the maximum of the bump function can

be replicated. The one variable design space is therefore a line through the two variable

design space of constant maximum location, (xp = 0.47). The two variable parameteri-

sation is itself a plane through the three variable parameterisation of constant sharpness,

(t = 3.5) and so forth. The continuity between the geometry parameterisations provides

for a useful comparison between the results of the benchmark optimisations.

The application of the Hicks-Henne functions in the above manner provides an interesting

and rather difficult multi-modal problem, one which could be simplified by the careful

consideration of the parameterisation so as to reduce the multi-modality which has

been artificially introduced here. Nevertheless the multi-modality and multiple global

minima at higher dimensions present an excellent test of the overall kriging strategy and

the associated tuning techniques investigated in this chapter

The surface pressure distribution over each aerofoil is calculated using the full potential

code VGK, developed by the Engineering Sciences Data Unit, ESDU [1996b], at an

angle of attack of 2°, Mach 0.725 and a Reynolds number of 6.5 × 106. This pressure

distribution is then compared to that of the RAE-2822, (also computed using VGK),



Chapter 3 Hyperparameter Tuning Within a Surrogate Modelling Strategy 40

and the root mean squared error between the two distributions is calculated. The error

between the pressure distributions then forms the objective function in the optimisation

process. The surrogate model therefore models the response of the error in pressure

distribution to changes in the magnitude of the Hicks-Henne function parameters for

each bump function applied to the baseline aerofoil. Although Figure 3.1 implies the

use of parallel CFD, in this case the objective function is evaluated in serial. Due to

the speed of VGK, approximately 1 second per evaluation, there is little time penalty

due to a serial implementation. However, a parallel implementation would be advised

for more computationally expensive simulations.

3.5 Comparison of Optimisation Results

3.5.1 Overview of the Results

The inverse aerofoil design problem has been investigated using both of the computa-

tional budgets previously outlined, for each of the five tuning strategies on a total of 14

increasingly complex geometry parameterisations. The parameterisations ranged from a

simple one variable problem to a difficult 30 variable problem, where the initial aerofoil

geometry was altered using a total of 10 Hicks-Henne functions. Each of the 14 optimi-

sation problems were carried out a total of 50 times, varying the Latin hypercube used

to select the points in the DOE each time.

The mean objective function values obtained for each tuning strategy, along with the

standard deviation of the objective functions, are presented in the graphs of Appendix A

for the 75 evaluation budget and for the 150 evaluation budget but the mean results of

each optimisation are presented below in Figure 3.3.
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Figure 3.3: Average objective function values obtained for each of the five tuning

strategies for problems of varying complexity using (a) a budget of 75 simulations and

(b) a budget of 150 simulations.
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The overall accuracy of the surrogate model used to find the final set of update points has

been assessed through the calculation of the r2 correlation. The r2 correlation compares

the true objective function values at 250 design points to those predicted by the surrogate

model. The average r2 correlations for three different geometry parameterisations are

presented in Table 3.3 with a value close to one indicating a high correlation between

the true objective function and that predicted by the surrogate model.

75 Simulation Budget 150 Simulation Budget

Strategy 3 Variables 6 Variables 9 Variables 3 Variables 6 Variables 9 Variables

Heavy 0.731 0.536 0.125 0.854 0.715 0.257
Light 0.760 0.563 0.145 0.852 0.708 0.228
Single 0.568 0.140 0.013 0.826 0.335 0.024
Alternate 0.755 0.556 0.118 0.854 0.716 0.250
θ 0.609 0.214 0.077 0.730 0.327 0.108

Table 3.3: Average r2 correlation of the final surrogate model for three geometry
parameterisations.

3.5.2 The Implications of Dimensionality

As described in Section 2.4, each of the five tuning strategies displays the adverse affect

of increasing the dimensionality of the design problem. Given a fixed simulation budget,

as the dimensionality of the problem increases, the optimisation processes are capable

of finding increasingly better designs until the dimensionality reaches a certain point.

Beyond this threshold, (indicated by the dotted lines in the graphs of Appendix A), the

problem becomes too complex for the given optimisation strategy to adequately search.

Therefore, as the complexity of the design problem increases further, the optimisation

strategy generally produces “good” designs with objective functions worse than designs

obtained with less complex parameterisations despite the fact that such parameterisa-

tions are guaranteed to be capable of producing results at least as good as the simpler

parameterisation.

Consider the heavy tuning strategy with the small simulation budget Figure 3.3(a), as

the complexity of the geometry parameterisation increases from one to six variables the

strategy is able to improve the mean objective function value. The additional flexibility

introduced by the increased number of variables allows the target pressure distribution of

the RAE-2822 aerofoil to be more closely attained. When the parameterisation consists

of more than six variables the given budget is no longer sufficient to search the design

space resulting in increasingly suboptimal designs.

Due to the continuity between the geometry parameterisations, even if the increase in

complexity of the parameterisation produces a design offering no improvement over a

simpler parameterisation, an optimisation should at the very least produce an identical
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design. The inability of the optimisation strategy to regularly obtain this design is

therefore a direct result of the increase in the dimensionality of the problem.

Increasing the size of the computational budget, as seen in Figure 3.3(b), has the effect

of delaying this degradation in performance. The heavy tuning strategy with the 150

simulation budget generally continues to improve the mean objective function up to a

12 variable design problem, after which the performance of this strategy is also degraded

by increasing dimensionality.
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Figure 3.4: Best aerofoil design obtained with the three variable optimisation using

the (a) 75 simulation budget and (b) 150 simulation budget.

The effect of the simulation budget on the search for an optimum design is further

emphasised in Figures 3.4 and 3.5, which show the best overall design obtained using

both of the simulation budgets for the three and nine variable problems, respectively.

Both simulation budgets produce similar designs for the three variable problem, although

the design resulting from the larger budget is marginally better giving a root mean

square (RMS) error of 0.1608 compared to 0.1622 for the smaller budget. Observe that

the upper surface pressure distribution upstream of the shockwave obtained using the

larger simulation is very slightly closer to the target pressure.
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Figure 3.5: Best aerofoil design obtained with the nine variable optimisation using

the (a) 75 simulation budget and (b) 150 simulation budget.

When the complexity of the optimisation problem is increased to nine variables, consist-

ing of two Hicks-Henne functions on the upper surface and one on the lower, the effect

of the computational budget is much more apparent. There is a significantly greater

difference in the best designs, with the larger budget producing a RMS error of 0.076

and the smaller budget producing an error of 0.1138. This difference is demonstrated

graphically in Figure 3.5. The best design obtained with the large budget produces

a pressure distribution over the upper surface which matches the target pressure much

more closely; only the region around the shockwave and the suction peak over the leading

edge fail to be accurately reproduced.

The lower surface pressures differ significantly from the target, with the exception of a

region close to the trailing edge for the larger budget optimised geometry. This inaccu-

racy is mainly due to the inadequacies of the lower surface geometry parameterisation;

the application of a single bump function to the lower surface of the baseline aerofoil

allows the lower surface geometry to be adjusted locally in only one region. To ob-

tain a more accurate reproduction of the RAE-2822 aerofoil requires the modification

of the baseline aerofoil close to the leading and trailing edges simultaneously, with little

modification in between. Introducing a second bump to the lower surface reduces the

objective function further, as one can observe in Figure 3.3(b). However, the increased

complexity of the design problem has reduced the ability of the optimisation to search

effectively resulting in only a slight improvement over the nine variable problem.

The average r2 correlations, presented in Table 3.3, reinforce both the negative effect

of increasing problem dimensionality given a fixed simulation budget and the positive

impact of increasing the size of the simulation budget on the overall accuracy of the sur-

rogate model. As the dimensionality of the optimisation problem increases the available

budget becomes increasingly incapable of accurately representing the global response of

the objective function (demonstrated by the decrease in the average r2 correlation).
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3.5.3 Heavy & Light Tuning Strategies

The results presented in Figure 3.3 demonstrate only a marginal difference between the

heavy and light tuning strategies for those optimisations where the simulation budget

could be considered adequate to search the design space i.e. up to the six variable

problem for the small budget and the twelve variable problem for the large budget. The

mean objective functions and even the standard deviations are approximately equal and

the r2 correlation results, (Table 3.3), indicate little difference in the global accuracy

of the surrogate models produced using both tuning strategies. This indicates that the

hyperparameters obtained after tuning are similar, and, as a result, the optimisation

process searches similar response surfaces. A similar response surface means that the

results of each optimisation, and hence the resulting statistics closely correspond. The

presented results therefore indicate that the light tuning strategy could be considered

sufficient to tune the hyperparameters of the response surfaces constructed for these

optimisations.

3.5.4 Tuning Hyperparameters Only Once

The results for very low dimensional problems differ only marginally from the results

of the heavy and light tuning strategies when the hyperparameters are tuned only once

after the initial design of experiments. However, this difference grows substantially as

the complexity of the optimisation problem increases. The mean objective function

obtained for the 12 variable problem using the single tuning strategy and large budget

is approximately 25% worse than that obtained with the heavy tuning strategy. The

performance of the single tuning strategy, as with each of the other tuning strategies,

is improved to some degree with the increase of the simulation budget, as shown in

Figure 3.3(b).

The ability of the single tuning strategy to produce results comparable to that of the

heavy and light tuning strategy for simple problems is due to the ability of the design

of experiments to adequately seed the design space. The number of points in the initial

DOE is such that the hyperparameters resulting from the initial tuning process accu-

rately capture the correlation between points and the trends of the true response. This

is confirmed when one considers the r2 correlation results for the three variable prob-

lem, which are reasonably close to that of the heavy and light tuning strategy. With

an initial accurate set of hyperparameters the global exploration of the response surface

can therefore find basins of optimal design easily.

When the complexity of the design problem is increased the number of points in the

design of experiments cannot produce such an accurate representation of the true re-

sponse surface (again confirmed by the r2 correlations of Table 3.3). Subsequent update

points are essentially wasted because without further tuning of the hyperparameters the
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correlation, smoothness and even the degree of regression used in the construction of the

response surface cannot be updated and corrected. Consequently, the genetic algorithm

finds basins of optima on an inaccurate response surface and the updates are unable

to improve upon the current best design. The best designs of such an optimisation are

therefore worse than those where the hyperparameters are continually reassessed.

The improvement of the single tune strategy as the simulation budget is increased is

therefore a result of the greater number of points making up the initial design of ex-

periments. Table 3.3 indicates that the inclusion of a larger number of points results

in a more accurate set of hyperparameters from the initial tune producing a better

representation of the true surface.

Given the increased performance of the optimisation strategy with an increase in the size

of the design of experiments, it stands to reason that by altering the ratio of the total

simulation budget used in the initial DOE the performance of this tuning strategy can be

improved. In addition to the results presented above, three of the design problems were

chosen and optimised using four additional DOE sizes. Table 3.4 presents the results

of this additional investigation including the original results using the DOE simulation

budget of 50. The presented results have once again been averaged over 50 optimisations.

DOE Size
Total Eval. Budget

30
150

50
150

80
150

100
150

130
150

6 Variables
Mean Obj. 0.1656 0.1542 0.1501 0.1530 0.1559
Std. Obj. 0.0153 0.0119 0.0137 0.0106 0.0124

9 Variables
Mean Obj. 0.1689 0.1616 0.1550 0.1509 0.1517
Std. Obj. 0.0171 0.0183 0.0179 0.0162 0.0153

12 Variables
Mean Obj. 0.1773 0.1632 0.1639 0.1597 0.1624
Std. Obj. 0.0192 0.0200 0.0189 0.0188 0.0135

Table 3.4: Comparison of the effect of different DOE budgets on the mean and stan-
dard deviation of the objective function.

The results presented in Table 3.4 demonstrate that a reduction in the size of the DOE

results in a degradation in performance while increasing the number of DOE points

increases the performance of the tuning strategy for each of the problems up to a point.

The larger design of experiments produces a more accurate response surface allowing

the update points to be chosen more effectively resulting in a better design.

There is however a tradeoff between exploration and exploitation; as the size of the design

of experiments is increased a smaller proportion of the budget is available to exploit any

potential regions of optimal design. For example, the six variable optimisation sees

a deterioration in performance when more than 80 points are used in the DOE. Even

though the hyperparameters resulting from the tuning process produce a response surface

model which more accurately predicts the true response, there is an insufficient budget

of simulations available to exploit it.
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The effect of DOE size is shown graphically by the optimisation histories presented in

Figure 3.6. The smallest, 30 point, design of experiment results in a set of hyperparam-

eters and corresponding response surface which generate update points that improve

very little upon the best design obtained in the DOE in the majority of cases. This

can be quantified if one considers the mean improvement of 0.0206, where the mean

improvement is the difference between the objective function of the best design found in

the DOE and the best design found after all of the updates, averaged over 50 optimisa-

tions. Increasing the size of the design of experiments produces a more effective response

surface and the updates can improve more upon the best design, (Figure 3.6(b) with

a mean improvement of 0.0291). As the size of the design of experiments is increased

further still, the remaining simulation budget available for updates is insufficient to fully

exploit the response surface and improve designs (Figures 3.6(c) & 3.6(d)). The mean

improvement upon the best design of the DOE mirrors this, decreasing from 0.0234 to

0.0153, as the ability of the optimisation to exploit the response surface diminishes.
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Figure 3.6: Optimisation histories for the 6 variable problem using the single tune

strategy and (a) 30, (b) 80, (c) 100 and (d) 130 points in the initial DOE.

In addition to the effect of the DOE size relative to the total available budget, the com-

plexity of the problem has an impact on the optimum number of points in the design of
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experiments. The designs obtained using the twelve variable geometry parameterisation

continue to improve with 100 points in the DOE, (compared to the 80 point DOE in the

six and 100 point DOE in the nine variable problems).
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Figure 3.7: Optimisation search histories of the 9 variable design problem using the

150 simulation budget and (a) the heavy tuning strategy and (b) single tune strategy.

The optimisation histories of Figure 3.7 illustrate another interesting advantage of the

heavy tuning strategy; the reduction in the total number of simulations. As per the

previous description of the update strategy, depending on the modality of the response

surface the maximum budget of 10 update points may not be used in every update cycle.

Hence, the continual tuning of the hyperparameters resulting in smoother response sur-

faces, enables the available updates to be used more effectively, reducing the simulation

cost of the optimisation process. These unused updates could be employed in further

exploitation of the metamodel of the heavy tuning strategy possibly resulting in better

designs.

The gain in performance associated with increasing the size of the design of experiments,

(shown in Table 3.4), is insignificant when one considers that the average objective func-

tion obtained using the heavy tuning strategy is 0.136, 0.130 and 0.129 for the six, nine

and twelve variable problems respectively. One can surmise that an optimisation util-

ising the single tune strategy requires a larger simulation budget to perform as well as

continuous hyperparameter tuning with a smaller budget . Considering the small cost

of the aerofoil simulations used in the current optimisations, increasing the budget in

such a manner would have little effect compared to the cost of the hyperparameter tun-

ing. However, when an optimisation involves high fidelity 3D computational simulations

requiring many hours of run time, it may be infeasible to significantly increase the com-

putational budget. Nonetheless, if the cost of tuning the hyperparameters is comparable

to that of the individual simulations, a balance may have to be struck between the total

number of simulations and the level of tuning.
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3.5.5 Alternate Tuning of Hyperparameters

Tuning the hyperparameters after alternate updates offers a compromise between the

single tune strategy and the heavy tuning strategy. The total amount of tuning car-

ried out is significantly reduced which offers a reduction in the total tuning time per

optimisation. As the hyperparameters are reassessed throughout the updating process,

although not as often as with the heavy tuning strategy, the response surface is better

able to adjust to the potential lack of accuracy in the hyperparameters obtained after

tuning the response surface based on the initial design of experiments. This reassess-

ment of hyperparameters enables the optimisation strategy to more effectively exploit

regions of optimal design, and, as such, produces better designs compared to the single

tune strategy.

The increase in performance over the single tune strategy is clearly demonstrated by

the results shown in Figure 3.3. Other than the light tuning strategy, the alternate

tuning consistently produces results close to that of the heavy tuning strategy for those

optimisations where the simulation budget can be deemed sufficient. Degradation in

performance of the strategy with respect to the heavy tuning strategy occurs when the

dimensionality of the design problem becomes an issue. Using the small simulation

budget the alternate tuning strategy produces designs with objective functions close to

those obtained using the heavy tuning strategy for the first four design problems. After

this point, although there is a continual reduction in the mean objective function of the

designs for the five and six variable problems, the reduction is not as significant as that

obtained with the heavy tuning strategy. The results of the optimisations using the

larger simulation budget remain close to those of the heavy tuning strategy up to the

nine variable problem. The performance of the alternate strategy degrades after this

point whereas the heavy tuning strategy produces a slight improvement in the objective

function.

The alternate reassessment of the hyperparameters results in a surrogate model with

an overall accuracy similar to that of the heavy and light tuning strategies. This is

confirmed when one considers the average r2 correlation of the surrogate models which

are consistently close to that of the heavy and light tuning strategies. Alternate tuning of

hyperparameters could therefore be considered to perform as well as the heavy and light

tuning strategies when the dimensionality of the problem with regard to the simulation

budget is not an overriding issue.

The alternate tuning strategy could be improved further when one considers the previous

comparison of the heavy and light tuning strategies. The results of this comparison indi-

cate that the 5,000 concentrated likelihood function evaluations of the genetic algorithm

and dynamic hill climb used in the alternate tuning could be reduced with minimal loss

of performance. Reducing the number of function evaluations in the alternate tuning

strategy would produce an optimisation strategy competitive to that of the single tune
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strategy or θ tuning strategy in terms of total tuning time, but with the potential to

produce better designs.

3.5.6 Tuning a Single Common Hyperparameter

Tuning a single, common hyperparameter produces, as would be expected, results very

similar to those obtained using the heavy tune when a single variable parameterisation

is optimised. As the number of variables used in the geometry parameterisation is

increased, the results of each optimisation consistently fall short of that of the heavy,

light and alternate tuning strategies, when the simulation budget is sufficient. That

is, up to the six and nine variable design problems for the small and large simulation

budgets, respectively. The results, however, are never as poor as those obtained through

the single tune strategy.
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Figure 3.8: Optimisation search history of the nine variable design problem using the

single θ tuning strategy using the 150 simulation budget.

When one compares the optimisation history of the nine variable design problem, pre-

sented in Figure 3.8, to that of the single tune strategy, (Figure 3.7(b)), one can see a

continual improvement of the majority of the optimisations after the initial design of

experiments. Where the single tune strategy offered little improvement over the best

design obtained in the design of experiments, the single θ tuning strategy’s continual

reassessment of the hyperparameters after each update allows subsequent updates to

continue to reduce the RMS error in the pressure distributions. This improvement in

objective function occurs even though the global accuracy of the surrogate model may

be considerably less than that obtained using the single tune strategy (Table 3.3).

Tuning a single hyperparameter has a smoothing effect on the response surface, remov-

ing the significance of each individual design variable to the objective function. This

smoothing is apparent when one compares the optimisation history of Figure 3.8 to that

of the heavy tuning strategy presented in Figure 3.7(a). The heavy tuning strategy

uses a much larger proportion of the available simulation budget, (i.e. closer to the full
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allocation of 10 evaluations per update cycle), than the single θ tuning strategy. The

process of searching the design space for potential regions of interest is, therefore, pro-

ducing far more update points indicating that the response surface produced with the

heavy tuning strategy has more regions of minima to exploit than the surface obtained

using the single θ strategy. Given the same initial design of experiments, this reduction

in the number of returned update points is likely to result from the smoothing effect of

using a single set of hyperparameters.

Increasing the dimensionality of the design problem beyond the apparent limit of the

simulation budget, (indicated by the dotted line in graphs of Appendix A), does not

produce the same drop in performance that is observed with the other tuning strategies.

Considering the most difficult optimisation, that of the 30 variable design problem using

the 75 simulation budget, there is a large difference in the objective functions obtained

using the heavy tuning strategy and the single θ tuning strategy. Tuning each of the 61

possible hyperparameters individually is an extremely challenging optimisation problem;

one for which even the heavy tuning strategy may be insufficient.

The optimisation histories for the 30 variable design problem, presented in Figure 3.9,

reinforce the failings of the heavy tuning strategy in this regard. The update points

chosen using the metamodel resulting from a heavy tune improve very little upon the

best design obtained using the design of experiments for the majority of optimisations.

The single θ strategy, on the other hand, can improve on each of the designs. This

is confirmed when one compares the average improvement in the objective function of

the best design of the DOE to the final best design. The heavy tuning strategy has an

average improvement of 0.015, while the θ tuning strategy has a much greater average

improvement of 0.037. These results demonstrate the importance of an appropriate

set of hyperparameters in an optimisation strategy, i.e. that a small set of well tuned

hyperparameters may outperform a larger more complex set which is inaccurately tuned.

Of course, for the problem considered here, all of the variables have broadly similar

importance and so, using a single value of θ is plausible. In cases where the design

variables differ significantly in nature and importance this might well not be the case.
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Figure 3.9: Optimisation search histories of the 30 variable design problem using the

75 simulation budget and the heavy tuning strategy (a) and single θ tuning strategy

using (b).

Finally it should be noted that, in a similar manner to the alternate tuning strategy, the

tuning effort used in the single θ strategy could be reduced by decreasing the number of

iterations of the genetic algorithm and dynamic hill climb, with little loss in performance.

3.6 Conclusions

In this chapter the inverse design of an aerofoil has been used to compare the perfor-

mance of five kriging hyperparameter tuning strategies employed in constructing and

updating a surrogate model of an aerodynamic response to geometric variation. Two of

the strategies involved different degrees of tuning after the design of experiments and

every update cycle, designated as the heavy and light tuning strategies. Tuning after

only the design of experiments was considered, as was tuning after alternate updates

and tuning a single pair of hyperparameters after every update. The inverse design

problem utilised multiple Hicks-Henne functions to produce geometry parameterisations

of varying complexity whilst maintaining a level of continuity between the different pa-

rameterisations.

All of the tuning strategies demonstrated the negative impact of increasing dimension-

ality on an optimisation given a fixed simulation budget, in particular the increasing

inability of an optimisation to produce “good” designs.

The results of the heavy and light tuning strategies displayed little difference for those

optimisations with an adequate simulation budget for the problem i.e. for problems

with fewer than six variables for the small simulation budget and with fewer than twelve

variables for the large simulation budget. The use of the light tuning strategy could

therefore be recommended over the heavy tuning strategy for such problems.
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Tuning the hyperparameters of the metamodel only once after the design of experiments

has been demonstrated to perform extremely poorly compared to the other tuning strate-

gies considered. Only with some form of continual reassessment of the hyperparameters

throughout the updating process is the available computational budget used effectively.

To produce results on a par with that of the other strategies it was demonstrated that

a larger computational budget, in terms of both the initial design of experiments and

updates, is required.

Tuning the hyperparameters after alternate updates produces results comparable to

those of the heavy and light tuning strategies when problem dimensionality, in terms of

the available simulation budget, is not an issue. This particular tuning strategy offers a

significant saving over the computational effort required in tuning the hyperparameters

after every update while having little impact on the optimisations ability to find “good”

designs.

Tuning a single, common hyperparameter, (i.e. the same θ for every variable), has been

demonstrated to perform poorly compared to the other strategies when the available

simulation budget is sufficient for the problem. However, when problems of high dimen-

sionality with limited simulation budget are considered, the tuning of a reduced set of

hyperparameters produces a surprising improvement on the results obtained using the

more expensive heavy tuning strategy. This indicates that given a high dimensional

problem where extensive tuning of the complete set of hyperparameters is prohibitively

expensive, extensively tuning a reduced set of hyperparameters may outperform an inac-

curately tuned but complete set of hyperparameters. This final conclusion will depend,

however, on the degree of variation in the problem variables.



Chapter 4

An Adjoint for Likelihood

Optimisation

4.1 Introduction

The previous chapter of this thesis demonstrated the importance of the hyperparameter

tuning process on the outcome of a kriging based optimisation. In these investigations

the actual optimisation strategy employed in the tuning process remained consistent,

with a two stage simplex search followed by a genetic algorithm and a terminal hill

climb. However, this optimisation made no use of the gradient of the likelihood function

which can be easily derived, and effectively utilised due to the function’s smoothness.

Such gradient information could be used to accelerate convergence of the tuning process

when implemented within a terminal search or when hybridised within a global opti-

misation. A gradient enhanced tuning strategy could result in a reduction in the total

number of expensive, O(n3), likelihood evaluations made throughout an optimisation.

This would therefore further reduce the bottleneck in any kriging based optimisation

caused by hyperparameter tuning.

The following chapter describes the formulation of an adjoint of the likelihood via re-

verse algorithmic differentiation with the view to implementing this adjoint within a

hybrid global optimisation. The efficiency of this formulation is compared to that of

a traditional analytical gradient calculation, a forward mode algorithmic differentiation

and finite differencing.

53
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4.2 The Importance of Efficient Hyperparameter Tuning

It was observed in Section 2.3.2 that the calculation of the concentrated likelihood

requires the factorisation of the correlation matrix,R. If using the Cholesky factorisation

this can be of order O(n3) and, therefore, extremely expensive if the correlation matrix

is large. One of the reasons kriging is not typically adopted for design problems with

more than 20 variables is the cost of the global optimisation necessary to maximise the

likelihood. When the number of variables in the problem is large, a large number of

sample points are needed to produce an adequate response surface. Jones et al. [1998],

for example, advocate the use of 10d initial sample points.

At high dimensions the number of initial design points can therefore be large causing

each evaluation of the likelihood to be relatively expensive. Moreover, as the number of

dimensions increases so too does the number of hyperparameters requiring optimisation

and therefore the length of the optimisation. As a typical kriging based optimisation

progresses this cost will only increase further as update points are added and the cor-

relation matrix increases in size. Coupling the increasing expense of a single likelihood

evaluation with the application of a global optimiser, such as a genetic algorithm, which

requires a large number of such evaluations, the total hyperparameter optimisation cost

can quickly spiral out of control and may even approach that of the high fidelity simu-

lations used in the underlying design problem.

It should be noted that the increasing cost of evaluating the likelihood as updates are

added to the model can be mitigated to some degree through the application of a fixed

number of sample points when optimising the hyperparameters. A selection of the best

points, for example, could be used for hyperparameter optimisation thereby optimising

the hyperparameters correctly in the regions of interest. The prediction can therefore

employ all of the known points as only a single, common inversion of the correlation

matrix is required. This process is considered briefly in Chapter 7.

Figure 4.1 helps to demonstrate the cost which can be incurred in optimising the like-

lihood by demonstrating the increase in time taken to make a single evaluation as the

number of sample points increases for an arbitrary 50 variable problem, the Keane Bump

Function taken from Keane and Nair [2005].
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Figure 4.1: Demonstration of the real time cost of a single evaluation of the concen-

trated likelihood as the number of sample points increases for an arbitrary 50 variable

design problem

Assume for example that 300 sample points are included in the initial sampling of the

problem, based on this plot a single evaluation of the likelihood will take approximately

1 second on a desktop computer. An optimization of the likelihood which carries out

a total of 10,000 evaluations, (such as the “heavy” tuning strategy used previously),

will therefore take approximately 2.8 hours. This represents a significant bottle-neck

in the optimisation process as a series of these likelihood maximisations are required

throughout the course of a typical optimisation.

4.3 Traditional Analytical Derivative Calculation

The derivation of the analytical gradients of the likelihood with respect to the hyperpa-

rameters θl or pl begins by first considering the derivative of the concentrated likelihood,

(Equation 2.25),
∂ϕ

∂ψ
= − n

2σ̂2
∂σ̂2

∂ψ
− 1

2|R|
∂|R|
∂ψ

, (4.1)

where ψ represents any of the hyperparameters or indeed the regression constant λ. The

derivative of the determinant of a matrix can be expressed in terms of the derivative of

the matrix, Kubota [1994],

∂|R|
∂ψ

= |R|Tr
[
R−1∂R

∂ψ

]
. (4.2)

The derivative of the variance with respect to any hyperparameter can be expressed as,

∂σ̂2

∂ψ
=

1

n

[
(y − 1µ̂)T

∂R−1

∂ψ
(y − 1µ̂)−

−
(
1
∂µ̂

∂ψ

)T
R−1 (y − 1µ̂)− (y − 1µ̂)T R−1

(
1
∂µ̂

∂ψ

)]
. (4.3)
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However the terms involving ∂µ̂
∂ψ are typically 15-16 orders of magnitude smaller than

the ∂R−1

∂ψ term, and can therefore be ignored. Hence Equation 4.3 can be simplified

considerably, Park and Baek [2001],

∂σ̂2

∂ψ
=

1

n
(y − 1µ̂)T

∂R−1

∂ψ
(y − 1µ̂) . (4.4)

The derivative of the inverse of the correlation matrix can be expressed in terms of the

derivative of the correlation matrix, Petersen and Pederson [2007],

∂R−1

∂ψ
= −R−1∂R

∂ψ
R−1. (4.5)

Substituting Equation 4.5 into Equation 4.4 and then into Equation 4.1 along with

Equation 4.2 produces the following expression for the derivative of the concentrated

likelihood function with respect to any hyperparameter, Park and Baek [2001],

∂ϕ

∂ψ
=

1

2σ̂2

[
(y − 1µ̂)T R−1∂R

∂ψ
R−1 (y − 1µ̂)

]
− 1

2
Tr

[
R−1∂R

∂ψ

]
. (4.6)

The derivative of the correlation matrix, R with respect to any hyperparameter is there-

fore the only remaining unknown. This can be expressed in terms of the derivative of

every value within the matrix. Given that the i, jth value of the correlation matrix is

given by Equation 2.18, the partial derivative with respect to the lth, θ hyperparameter

is,
∂Ri,j

∂θl
= −10θl ln 10 ||xil − xjl ||

plRi,j , (4.7)

and the partial derivative with respect to the lth, p hyperparameter is,

∂Ri,j

∂pl
= −10θl ln ||xil − xjl || ||xil − xjl ||

plRi,j . (4.8)

The derivatives of the concentrated likelihood function can therefore be calculated using

Equation 4.6 once the matrices of derivatives of the correlation matrix with respect to

each hyperparameter have been defined.

In summary, the partial derivatives of the likelihood can be calculated by first calculating

the correlation matrix along with the 2d matrices of first derivatives of the correlation

matrix, ∂R∂ψ . The mean, variance and inverse of the correlation matrix can be calculated

as normal and then combined to calculate the likelihood as per Equation 2.25 and the 2d

partial derivatives as per Equation 4.6. The calculation of all of the partial derivatives

using this method therefore requires the storage of the 2d matrices of first derivatives

as well as a number of additional matrix multiplications.

The inclusion of a regression constant λ in the correlation matrix results in a kriging

surface which no longer interpolates through the sample points. Adding the regression

constant 10λ to the diagonal of the correlation matrix results in the sample points no
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longer being correlated with themselves. Like the other hyperparameters, θ and p, the

regression constant is optimised via maximising the likelihood. Therefore it is important

to also consider the calculation of the derivative of the likelihood with respect to this

constant.

As with both θ and p the derivative first requires the calculation of the derivative of the

correlation matrix with respect to the hyperparameter of interest. As only the diagonal

of the correlation matrix is dependent on the regression constant, the partial derivative

of the correlation matrix with respect to the regression constant is itself diagonal in

nature,
∂Rii

∂λ
= 10λ ln 10. (4.9)

Using this derivative in conjunction with Equation 4.6 will therefore result in the partial

derivative of the concentrated likelihood with respect to the regression constant.

4.4 An Introduction to Algorithmic Differentiation

Algorithmic differentiation approaches the calculation of derivatives in a slightly differ-

ent manner to that of traditional analytical differentiation. Here the computer algorithm

used in the calculation of a function is differentiated line by line through the applica-

tion of the chain rule. There are a number of programs which perform this operation

automatically given a program’s source code, this is termed automatic differentiation.

However, in some circumstances this can lead to an inefficient program as the automatic

differentiation process may fail to take account of the structure of the original prob-

lem. Mader et al. [2008], for example, found that the efficiency of their automatically

differentiated computational fluid dynamics solver could be drastically improved after

careful consideration of the structure of the underlying problem. Automatically differ-

entiating the entire residual routine resulted in a series of unnecessary computations as

the differentiation tool took no account of the sparsity of the flux Jacobian.

There are two modes of algorithmic differentiation, forward and reverse. Forward mode

is akin to traditional differentiation with the differentiated program run once for every

input. This produces a partial derivative of every output with respect to a single input

each time the program is run. Reverse mode however runs the differentiated program

once for every output and therefore obtains all of the partial derivatives of a single

output with respect to all inputs for a single run of the differentiated program. The

choice of method therefore depends on the nature of the problem. Simplistically, if there

are more outputs than inputs it is more efficient to use the forward mode, but if there

are more inputs than outputs then it is more efficient to use the reverse mode.

The assumption of a pass through the forward differentiated code for every input and a

reverse pass for every output is a rather simplistic one. Some automatic differentiation
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tools can facilitate a vector forward mode which can evaluate multiple partial derivatives

in a single pass. Likewise some automatic differentiation tools can facilitate a vector

reverse mode whereby the derivatives of multiple outputs can be calculated in a single

pass. Both methods save on computation time but incur a memory overhead.

To demonstrate the process of algorithmic differentiation we consider the simple analyt-

ical function y which is dependent on the variables x1 and x2,

y = sin(x1x2) +

(
x1
x2

)2

. (4.10)

Although the partial derivatives of this function can be easily calculated,

∂y

∂x1
= x2 cos(x1x2) +

2x1
x22

(4.11)

and
∂y

∂x2
= x1 cos(x1x2)−

2x21
x32

, (4.12)

the simplicity of this function allows the basics of algorithmic differentiation to be demon-

strated.

The process commences with the definition of the algorithm to calculate the function y.

Each line of this algorithm, shown in Table 4.1 using the notation of Griewank [2000],

carries out a single operation, i.e. an addition, multiplication, division or trigonomet-

ric operation, and terminates in the calculation of y. In this case we begin with the

initialisation of the input variables x1 and x2 to v0 and v1 respectively, where vi refers

to the ith intermediate variable calculated as the algorithm progresses. The third line

multiplies v0 and v1 to give v2 which is equivalent to x1x2 in Equation 4.10, the forth

line calculates x1
x2
, the fifth, sin(x1x2) and so forth until the function is calculated.

The forward mode of algorithmic differentiation, differentiates each line of this original

algorithm in order, resulting in a tangent of the ith intermediate variable vi, denoted

here by v̇i. For example, the third line of the original algorithm calculated v2 = v0v1

the tangent of this line is therefore the derivative of v2 with respect to v0 plus the

derivative with respect to v1, which results in the corresponding line in the forward

mode algorithm, v̇2 = v̇0v1 + v0v̇1. Repeating the process through the entire algorithm

results in an expression for ẏ which is equivalent to the derivative of the original function

with respect to an input, providing appropriate seedings of ẋ1 and ẋ2 are defined.

These seedings equate to the derivative of each input variable with respect to the required

derivative of the overall algorithm. If, for example, the overall derivative of y with respect

to x1 is required then ẋ1 = ∂x1
∂x1

= 1 and ẋ2 = ∂x2
∂x1

= 0. One can observe from Table 4.1

that given these seedings, ẏ will indeed correspond to Equation 4.11. Likewise, if ẋ1 = 0

and ẋ2 = 1 then ẏ will correspond to Equation 4.12. The forward differentiation of the

original algorithm must therefore be run twice, once for each of the input variables.
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Original Algorithm Forward Differentiation Reverse Differentiation

v0 = x1 v̇0 = ẋ1 ȳ = 1
v1 = x2 v̇1 = ẋ2 v̄6 = ȳ
v2 = v0v1 v̇2 = v̇0v1 + v0v̇1 v̄5 = v̄6
v3 = v0

v1
v̇3 = v̇0

v1
− v̇1

v3

v1
v̄4 = v̄6

v4 = sin(v2) v̇4 = v̇2 cos(v2) v̄3 = 2v̄5v3
v5 = v23 v̇5 = 2v3v̇3 v̄2 = v̄4 cos(v2)
v6 = v4 + v5 v̇6 = v̇4 + v̇5 v̄1 = v̄2v0 − v̄3

v3
v1

y = v6 ẏ = v̇6 v̄0 = v̄2v1 +
v̄3

v1

Table 4.1: A simple example of forward & reverse algorithmic differentiation.

Rather than selecting an input and calculating the sensitivity of every intermediate

variable with respect to that input, the reverse, or adjoint mode, proceeds backwards

through the original algorithm selecting an output and calculating the sensitivity of

that output with respect to every intermediate variable. Where the forward mode is

essentially v̇i =
∂vi
∂x the reverse mode becomes v̄i =

∂y
∂vi

with v̄i denoting the adjoint

of the ith intermediate variable, Griewank [2000]. The adjoint of the ith intermediate

variable is equivalent to the sum of the partial derivatives of those intermediate variables

which are dependent on vi, multiplied by the corresponding adjoint of the dependent

intermediate variables. The intermediate variable v6, for example, affects only y hence

the adjoint of v6 is,

v̄6 = ȳ
∂y

∂v6
= ȳ. (4.13)

Likewise, v5 affects only v6 hence v̄5 = v̄6. Things are complicated somewhat when

an intermediate variable in the original algorithm affects a number of the following

intermediate variables. Consider, for example, the adjoint of v1; as v1 affects both v2

and v3 the adjoint of v1 is the sum of the partial derivatives of v2 and v3 with respect

to v1 multiplied by their respective adjoints,

v̄1 = v̄2
∂v2
∂v1

+ v̄3
∂v3
∂v1

(4.14)

which is equivalent to,

v̄1 = v̄2v0 − v̄3
v3
v1
. (4.15)

When this reverse differentiation process is completed and the algorithm run, the re-

sulting values of the adjoints, v̄0 and v̄1, are equivalent to the partial derivatives, ∂y
∂x1

and ∂y
∂x2

. Unlike the forward mode the reverse mode, presented in Table 4.1, requires

only a single run to calculate all of the partial derivatives of y given the initial seeding

of ȳ, which, as there is only one output, equals one. If the original algorithm contained

a number of outputs then the reverse mode would be run once for each output with the

seeding adjusted in a manner similar to that for the forward mode.
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Even though the above example is very simple, it demonstrates the performance im-

provements offered when partial derivatives of a single output, as is the case in likelihood

maximisation, are required. Exactly the same techniques can be applied to any com-

puter algorithm though we now apply them to the calculation of the partial derivatives

of the likelihood.

4.5 Reverse Algorithmic Differentiation of the Likelihood

The calculation of the concentrated likelihood, Equation 2.25, consists of a single output

which is dependent on d pairs of hyperparameters and a single regression constant, λ,

if included. Reverse algorithmic differentiation is therefore the most efficient method to

apply to this particular problem and it is the application of this technique which we now

consider.

The algorithm to calculate the partial derivatives of the concentrated likelihood via

reverse algorithmic differentiation begins with the calculation of the likelihood as normal.

This is then followed by a reverse differentiation of the original algorithm which, using

information stored during the calculation of the likelihood, calculates all of the partial

derivatives.

The calculation of the likelihood begins with the construction of the correlation matrix

R. This symmetrical matrix is then decomposed using the Cholesky factorisation into

a lower triangular matrix L where,

LLT = R. (4.16)

This matrix can then be used to calculate the mean, µ̂ and variance, σ̂2 using Equations

2.23 and 2.24 respectively in conjunction with forward and backward substitution. The

variance, for example, is calculated through the forward substitution,

T1 = L−1 (y − 1µ̂) , (4.17)

which is followed by the back substitution,

T2 = (LT )−1T1, (4.18)

and finally the vector multiplication,

σ̂2 =
1

n
(y − 1µ̂)T T2. (4.19)

The vectors T1 and T2 represent two temporary vectors which are necessary for the

subsequent calculation of the derivatives. The Cholesky factorisation is also used to
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calculate the natural log of the determinant via,

1

2
ln(|R|) =

∑
i

lnLii. (4.20)

With the variance and the log of the determinant known, the concentrated likelihood

can be easily calculated using Equation 2.25.

The reverse mode works backwards beginning from an initial seeding of the adjoint of

the likelihood, ϕ̄ = 1. From this starting point the seeding for the adjoint T̄2 can be

calculated to be,

T̄2 = −(y − 1µ̂)

2σ̂2
. (4.21)

This seeding can then be used to calculate T̄1 and L̄1 using the reversely differentiated

back substitution algorithm, where L̄1 is the adjoint of the upper triangular matrix LT

used in the back substitution, Equation 4.18. The adjoint, L̄2, of the lower triangular ma-

trix L used in the forward substitution of Equation 4.17 is then calculated using T̄1 and

the reversely differentiated forward substitution algorithm. Smith [1995] demonstrated

that the adjoint of the log of the determinant of a matrix is equal to the reciprocal of

the diagonal of the lower triangular matrix L resulting from the Cholesky factorisation,

but in this case as Equation 2.25 involves the negative of log of the determinant,

L̄3ii = − 1

Lii
(4.22)

Hence, the total adjoint seeding for use in Smith’s reversely differentiated Cholesky

factorisation is,

L̄ = L̄T1 + L̄2 + L̄3. (4.23)

When this total adjoint seeding is then used in conjunction with the original matrix

L, the lower triangular matrix R̄ is calculated which can then be used along with

information stored during the original calculation of the correlation matrix to calculate

all of the partial derivatives. The derivative of the likelihood with respect to the lth, θ

hyperparameter is therefore,

∂ϕ

∂θl
= ln 10

∑
ij

−10θl ||xil − xjl ||
plRijR̄ij (4.24)

and the derivative with respect to the lth, p hyperparameter is

∂ϕ

∂pl
=
∑
ij

−10θl ||xil − xjl ||
pl ln ||xil − xjl ||RijR̄ij . (4.25)

The derivative of the likelihood with respect to a regression constant λ can be easily

calculated from R̄,
∂ϕ

∂λ
= 10λ ln 10

∑
i

R̄ii, (4.26)
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assuming that 10λ has been added to the diagonal of the correlation matrix.

The algorithms for the Cholesky factorisation, forward and backward substitution and

their respective reversely differentiated algorithms are presented in Appendix B for the

interested reader.

4.6 Computational Efficiency of the Derivative Calcula-

tions

Having described in detail the procedure for calculating the partial derivatives of the like-

lihood via both the analytical and the reverse algorithmic differentiation methods, one

must now consider each method’s computational efficiency. The analytical method re-

quires the calculation of Equation 4.6 for each hyperparameter while the reverse method

requires only a single reverse pass of the forward substitution, the backward substitution

and the Cholesky factorisation to obtain the matrix R̄ which can be used to calculate the

partial derivatives via equations Equation 4.24, 4.25 and 4.26. The question is therefore,

by how much does this reduction in the number of calculations improve the performance

of the derivative calculation?
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Figure 4.2: A comparison of the relative costs of calculating all of the partial deriva-

tives of the likelihood via reverse algorithmic differentiation and the analytical formu-

lation

We now consider the relative cost of calculating the likelihood and all derivatives to the

cost of calculating only the likelihood. Figure 4.2 shows the change in this relative cost

as the number of dimensions of the underlying problem, to which a kriging surface is fit,

increases. It must be noted that here the number of sample points remains a constant
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as the number of dimensions increases, 50 points in this case, and that the relative

cost includes the calculation of all of the derivatives with respect to θ and p for every

dimension as well as the cost of calculating the likelihood itself. The cost obtained for 20

variables therefore equates to the calculation of 40 partial derivatives and the likelihood.

By retaining a constant n, Figure 4.2 shows the effect of purely an increase in problem

dimensionality. All of the presented methods were coded and analysed in Matlab.

A total of 100 different Latin hypercube sampling plans of the Keane Bump Function,

(Keane and Nair [2005]), were calculated and stored. Each evaluation of the likelihood

and corresponding partial derivatives in Figure 4.2 were therefore made from a common

data set. The likelihood and derivatives of a single set of hyperparameters were evaluated

for each of these sample plans. The time for each of these calculations was then recorded

and compared to the time taken to calculate only the likelihood, the resulting relative

times were then averaged.

It should be noted that a level of commonality has been preserved between all of the

relevant Matlab code. Identical forward and backward substitution algorithms are em-

ployed, for example, in the evaluation of σ̂2 and µ̂ in the initial likelihood evaluation of

both the analytical and reverse mode algorithms. The only differences are in the cal-

culation and storage of any intermediate variables required in the analytical or reverse

mode calculations of the derivatives. This means that the timings of Figure 4.2 compare

like with like as much as possible and therefore offer a more meaningful representation

of the differences in the cost of the two methods.

The differences in cost presented in Figure 4.2 can be explained by analysing the way in

which the derivatives are calculated. Consider first the analytical method. In this case

the final calculation of a derivative, Equation 4.6, requires one additional matrix-matrix

multiplication in the calculation of the derivative of the determinant, and three addi-

tional matrix-vector multiplications and a vector-vector multiplication in the calculation

of the derivative of the variance. Calculating the partial derivative of the likelihood with

respect to all of the hyperparameters when fitting a krig to a d dimensional problem

therefore requires 2d additional matrix-matrix multiplications, 6d additional matrix-

vector multiplications and 2d additional vector-vector multiplications. Including the

regression constant increases the expense of calculating all of the derivatives slightly but

the cost of calculating this derivative is smaller than for the other hyperparameters due

to the sparse nature of the ∂R
∂λ matrix which simplifies the calculations in Equation 4.6.

The reverse mode however, requires a single reverse pass of the back substitution which

is followed by a reverse pass of the forward substitution and then a reverse pass of the

Cholesky factorisation. Each of these calculations must be performed only once and is

therefore independent of the number of dimensions in the underlying problem. Only the

final step in the derivative calculation, Equations 4.24 and 4.25, are dependent on the

number of dimensions in the underlying problem, with d calculations of each required.
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These final calculations are simplified somewhat by the fact that R̄ is lower triangular

and that the elemental multiplication of the correlation matrix R with R̄ is common to

all calculations and can therefore be carried out only once. These final two calculations

do however require d lower triangular matrices of −10θl ||xil − xjl ||pl and d matrices of

||xil − xjl || to be stored during the initial likelihood calculation. The calculation of a

derivative with respect to p is slightly more expensive than calculating a derivative with

respect to θ as the natural log of ||xil − xjl || is required.
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Figure 4.3: A comparison of effect of sampling density on the relative costs of calculat-

ing all of the partial derivatives of the likelihood via reverse algorithmic differentiation

and the analytical formulation

Figure 4.3 demonstrates how the relative cost of calculating the likelihood and all of

the partial derivatives changes as the sampling density of the underlying problem alters.

Once again the Keane Bump function is sampled but this time the number of sample

points is adjusted according to the number of dimensions in the underlying problem.

Sampling densities of 2d, 5d and 10d are all employed. An underlying problem with 25

dimensions will therefore have either 50, 125 or 250 sample points.

The results of Figure 4.3 demonstrate the adjoint method’s relative resistance to an

increase in sampling density. The relative cost of the analytical method for example

increases by 24.7% when the sample density of the 50 variable problem increases from

2d to 10d whereas the relative cost of the adjoint only increases by 9.3%. These results

can be explained by once again analysing the way in which the derivatives are calculated.

The number of sample points directly influences the size of the kriging correlation matrix

and hence the size of any matrices or vectors used in the subsequent calculations. More

importantly this directly affects the cost of the additional matrix-matrix, matrix-vector

and vector-vector multiplications required to calculate the likelihood derivatives. As the
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number of sample points increases so too does the cost of these additional calculations.

The problem is compounded at higher dimensions where not only are there more of these

calculations, but their cost increases as more sample points are required to produce an

accurate response surface. This can be observed in Figure 4.3 where an increase in the

number of sample points has a growing impact on the relative cost as dimensionality

increases.

The calculations carried out by the adjoint method are also affected by the number of

sample points and hence size of the correlation matrix. The cost of the reverse forward

and backward substitutions and the reverse Cholesky are all dependent on the number

of sample points, however unlike the analytical method, these are only carried out once

no matter the number of dimensions. Likewise the cost of elemental multiplication of

the correlation matrix R with the lower triangular matrix, R̄, is dependent on the

number of sample points but this is again only carried out once. The calculation of

equations 4.24 and 4.25 are dependent on both the number of sample points and the

number of dimensions. However, due to the lower triangular nature of the previous

elemental multiplication the impact of the number of sample points is reduced somewhat.

Combining all of these features produces a method of calculating the partial derivatives

of the likelihood which is both more efficient than the analytical method and less prone

to large increases in relative cost as sampling density increases.

The analytical derivative of the likelihood, Equation 4.6, assumes a simplified formula-

tion of the derivative of the variance, where the terms due to ∂µ̂
∂ψ are neglected due to

massive difference in their magnitude relative to the ∂R−1

∂ψ term. The adjoint formula-

tion presented above also employs this assumption, hence the adjoint of the mean, µ̂,

and its subsequent effect on the initial seeding of the adjoint of the reversely differen-

tiated Cholesky factorisation, L̄, is not calculated. An automatic differentiation of the

likelihood however, may not take into account the relative insignificance of this term

and calculate the adjoint of the mean. These additional calculations may result in a less

efficient algorithm than the one presented above.

No. of
Reverse Differentiation Finite Differencing

Variables

2 4.41× 10−13 2.17× 10−3

5 3.80× 10−13 4.95× 10−5

10 6.71× 10−13 2.00× 10−5

15 2.16× 10−13 3.42× 10−5

25 1.14× 10−13 3.94× 10−6

Table 4.2: A comparison of the RMS error in the gradients calculated via reverse
differentiation and finite differencing to that of the traditional analytical method

Table 4.2 provides an indication of the numerical accuracy of the gradients obtained via

the adjoint method relative to those obtained via the analytical gradient of Equation 4.6.

Using the aerofoil inverse design problem of Section 3.4 a series of DOEs of increasing
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complexity were created for the purposes of likelihood calculation. The partial deriva-

tives of the likelihood with respect to each of the hyperparameters were then calculated

for 50 sets of kriging hyperparameters for each method and compared to those resulting

from the analytical method. Table 4.2 demonstrates such a negligible difference in the

magnitude of the results that one could consider the gradients calculated to be almost

identical.
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Figure 4.4: Algorithmic differentiation and the analytical methods compared to finite

differencing and forward algorithmic differentiation

The relative cost of calculating the partial derivatives via the additional methods of finite

differencing and a forward algorithmic differentiation are presented in Figure 4.4. The

forward mode results were obtained via a manual forward differentiation of the likelihood

calculation. The forward differentiation of the Cholesky factorisation presented in Smith

[1995] was employed along with a manually derived forward differentiation of the forward

and backward substitutions employed in the calculation of the variance. As with the

reverse and analytical formulations, the forward mode takes advantage of the reduction

in cost associated with the redundancy of the calculation of µ̇. Although the pseudo code

of the forward mode is not considered within this paper, this figure serves to highlight

the importance of selecting the appropriate method of algorithmic differentiation for a

particular problem.

As one can observe, compared to both the analytical and reverse methods, the forward

method is more sensitive to an increase in problem dimensionality. Considering that the

forward mode requires a pass through the differentiated algorithm for every hyperpa-

rameter it is therefore unsurprising that the cost of the derivative calculation becomes

an issue. In this case, finite differencing is the most expensive method of calculating

the derivatives, requiring two additional full likelihood calculations for every additional
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variable in the predictive surrogate. Unlike the other methods considered, finite differ-

encing will not produce an exact derivative but rather an approximation to it which is

dependent on the step length used, as shown in Table 4.2.

The above comparison therefore indicates that the reverse algorithmic differentiation of

the likelihood is the most efficient method of calculating exact partial derivatives. This

performance improvement allows for a faster gradient descent search of the likelihood

but will also reduce the effort per generation employed in the calculation of gradients if

a local search were to be hybridised with a global search.

4.7 Conclusions

An efficient calculation of the derivatives of the likelihood via an adjoint derived us-

ing reverse algorithmic differentiation has been presented. This formulation has been

demonstrated to be more efficient than calculating gradients via the traditional ana-

lytical method, calculating the likelihood and all of its derivatives for approximately

twice the cost of a single likelihood evaluation even on a 50 variable problem. The cost

of this process has also been demonstrated to be less sensitive to an increase in the

dimensionality of the problem.

The calculation of the adjoint of the likelihood can be approached from another direction.

The collection of linear algebra results presented by Giles [2008] can be used to facilitate

the calculation of R̄ without the need for the reverse differentiation of the Cholesky

factorisation or the forward or back substitution algorithms. This method results in an

expression for R̄ involving one additional vector-matrix multiplication, one additional

vector-vector multiplication and one additional matrix-matrix multiplication. However

this is at the cost of the calculation and storage of R−1. The precise performance gains

offered over the presented method employing reverse algorithmic differentiation remains

an unanswered question but the linear algebra method can make much more effective

use of efficient optimised matrix multiplication subroutines such as those included in

BLAS.

Although the reverse algorithmic differentiation process has been applied to a traditional

kriging Gaussian kernel, it could be easily extended to other kernels of an alternate

formulation or indeed to any other process where a likelihood maximisation is required.

A similar process could even be applied to the hyperparameter optimisation of gradient

or Hessian enhanced surrogate models or indeed co-kriging models.



Chapter 5

Hyperparameter Optimisation

Utilising the Likelihood Adjoint

5.1 Introduction

The previous chapter of this thesis described the formulation of an adjoint of the kriging

likelihood function derived via the application of reverse algorithmic differentiation.

Demonstrated to be considerably more efficient than the traditional analytical gradient

calculation, this adjoint allows for a more efficient local optimisation of the kriging

hyperparameters.

Hollingsworth and Mavris [2003] demonstrated that the selection of an optimum set

of hyperparameters through maximum likelihood optimisation is a highly multi-modal

problem, requiring the use of a global optimisation algorithm to provide reliable results.

A purely local optimisation process would, although reasonably fast, prove detrimental

when utilised within a kriging optimisation due to the use of inappropriate or suboptimal

hyperparameters in the construction of the model.

As discussed in Chapter 2, global optimisation techniques are capable of locating the

region of a global optimum but find it difficult to converge to a precise solution. The

opposite is true with local optimisers, which converge quickly to a final solution but

cannot escape local minima. This chapter aims to implement the adjoint of the likelihood

within a hybrid optimisation such that gradient information is utilised by a local search

embedded within an overall global optimisation. The adjoint can therefore be effectively

used to accelerate convergence to an optimum set of hyperparameters without becoming

trapped at a suboptimal solution.

68
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5.2 Current Gradient Enhanced Likelihood Optimisation

Methodologies

The literature includes a number of examples of the application of gradient information

in likelihood optimisation. Park and Baek [2001] derived an analytical gradient of the

likelihood for use in a local quasi-Newton optimisation. Zhang and Leithead [2005] took

this a step further and derived an analytical Hessian of the likelihood and employed this

in conjunction with a trust region search. One of the most recent techniques for the

reduction of tuning cost is that of Leithead and Zhang [2007] which reduces the cost of

approximate likelihoods and derivatives to anO(n2) operation through an approximation

to the inverse of the covariance matrix via the BFGS updating formula, Equation 2.9.

Each of these methods is a local optimisation of the likelihood and as such will only locate

the global optimum if initialised in the region of that optimum or if an appropriate restart

procedure is adopted. It should be noted however, that there are cases when such a local

optimiser can be effective in finding the optimal hyperparameters. Zhang and Leithead

[2005] note that given a sufficiently large dataset upon which to build the surrogate

model the modality of the likelihood space is greatly reduced. Such densely populated

design spaces are however very rare in engineering design optimisations, especially when

each objective function evaluation involves a costly high fidelity simulation, but may be

commonplace in the field of Gaussian process regression.

Whereas the methods of Park et al. and Zhang et al. exploit an exact analytical

gradient or Hessian, the approximation method of Leithead et al. still requires an initial

exact inverse of the correlation matrix and may require additional exact inversions as

the optimisation progresses due to corruption of the approximation. When used in

conjunction with an engineering optimisation problem, where there are few sample points

and the likelihood is multi-modal in nature, the computational effort spent in carrying

out the initial starting inversion and subsequent restart inversions, may be better spent

in performing a global exploration of the likelihood.

5.3 Metrics for the Comparison of Likelihood Optimisers

While the development of an efficient hybrid hyperparameter tuning strategy is the ulti-

mate goal of this chapter it is necessary to first define metrics by which the performance

of such a tuning strategy can be evaluated. Two metrics are used in the subsequent

comparisons, the mean improvement in likelihood and the overall effect of the tuning

strategy on a complete optimisation. Both of these metrics employ the d dimensional

aerofoil inverse design problem described previously in Section 3.4, as well as the bench-

marking procedure outlined in Section 3.2.
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The mean improvement in likelihood is based on the difference in likelihood attained

by a strategy to that attained by the Options Matlab genetic algorithm. For a given

dimensionality the inverse design problem is sampled using a total of 50 different Latin

hypercubes. Each sampling of the objective function is then used to construct a kriging

model via an optimisation of the likelihood. The likelihood achieved by the new strat-

egy is subtracted by that achieved by the baseline genetic algorithm, (given the same

sampling plan), and the mean taken,

1

50

50∑
i=1

ϕi − ϕGAi . (5.1)

As a likelihood optimisation typically involves the minimisation of the negative of the

concentrated likelihood function, a negative value from the above equation therefore

indicates a better performing tuning strategy.

While the above metric provides an indication of the improvement offered by an optimi-

sation strategy in terms of the final likelihood obtained, it provides little indication of the

effect that implementing such a strategy has on an overall kriging based optimisation.

The inverse design optimisation will therefore be adopted again with the optimisation

completed using a predefined budget of function evaluations.

Unlike the similar comparisons of Section 3.5, where a fixed budget was applied to a

series of problems of increasing dimensionality, each optimisation will employ a total of

15× d evaluations. An inverse design problem of 15 variables will therefore have a total

budget of 225 evaluations. This removes the problems associated with a fixed simulation

budget and an increasing dimensionality observed in Section 3.5 and provides a clearer

indication of the effect of the tuning strategy. Of the total evaluation budget, one third

will be used in the initial design of experiments. This initial sampling of the problem

with 5× d points therefore forms the basis of the calculation of the mean improvement

in likelihood.

5.4 Comparison of Optimisation Methodologies

The intention to develop a hybrid optimisation strategy for the purposes of hyperpa-

rameter tuning introduces something of a dilemma. Which global optimisation strategy

should such a hybrid algorithm be based upon? Chapter 2 described a number of po-

tential global optimisation strategies; genetic algorithms, simulated annealing, dynamic

hill climbing and particle swarms. Using the previously defined metrics the performance

of these algorithms can be compared to that of the genetic algorithm and an appro-

priate algorithm can be selected for hybridisation. To this end a total of six different

hyperparameter optimisers are evaluated, details of which are presented in Table 5.1.
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Description

Heavy A 5000 evaluation genetic algorithm followed by a 5000 evaluation
dynamic hill climb

GA-DHC A 2500 evaluation genetic algorithm followed by a 2500 evaluation
dynamic hill climb

SA A 5000 evaluation simulated annealing
DHC A 5000 evaluation dynamic hill climb
PSO A 5000 evaluation particle swarm optimisation
SQP A single sequential quadratic programming optimisation commencing

from a random starting point and running to convergence

Table 5.1: Description of the six hyperparameter optimisers compared.

Three basic global optimisers, the particle swarm, the dynamic hill climber and simu-

lated annealing are selected for comparison. One of these three, or the baseline genetic

algorithm will form the basis of the hybrid strategy. Also included for comparison is

the “Heavy” tuning strategy, (neglecting the two stage simplex search), employed so

successfully in Chapter 3 and in the literature by Hoyle et al. [2006] and Keane [2006].

The genetic algorithm, swarm and simulated annealing algorithms all employ a popula-

tion of 50 members for 100 generations. As the baseline genetic algorithm is restricted

to a total of 5,000 likelihood evaluations so too are the particle swarm, dynamic hill

climber and simulated annealing. The Heavy strategy however uses a total of 10,000

function evaluations, split evenly between the genetic algorithm and hill climber, and as

such enjoys somewhat of an advantage over the other algorithms being tested. Hence, a

second version of this strategy, denoted as “GA-DHC” in Table 5.1, employing a total

of 5,000 likelihood evaluations is also evaluated.

The final tuning strategy considered involves a simple local search using a sequential

quadratic programming (SQP) algorithm commenced from a random starting point.

This strategy is included as a contrast to the global optimisers with the intention of

demonstrating the importance of the global optimisation of hyperparameters.

No. of
Heavy GA-DHC SA DHC PSO SQP

Variables

2 -0.785 -0.509 -0.056 -0.929 -0.037 1.452
5 -1.734 -1.442 -0.347 -1.804 -0.789 5.319
10 -3.685 -2.549 -0.860 -2.963 -0.656 5.448
15 -3.169 -2.515 -0.090 -3.716 -1.558 4.925
25 -5.452 -2.885 2.731 -2.639 -0.465 9.941

Table 5.2: Comparison of the mean improvement in likelihood function for six different
hyperparameter optimisers over a range of problem sizes.

The mean improvement in likelihood is presented in Table 5.2 for each of the six al-

gorithms. The traditional Heavy strategy performs consistently better than the other

strategies, especially on higher dimensional problems. This is perhaps rather unsurpris-

ing given that it uses double the number of likelihood evaluations of any other strategy.
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A reduction in the total number of likelihood evaluations to 5,000 sees the GA-DHC

strategy performing well at lower dimensions compared to the much more expensive

Heavy strategy. However, the relative performance of the GA-DHC strategy reduces as

problem dimensionality increases. The 25 variable problem, for example, sees a large

improvement in the magnitude of the final likelihood when the optimisation is afforded

a larger budget.

The dynamic hill climber of Yuret and Maza [1993] performs surprisingly well, outper-

forming even the Heavy strategy on a number of occasions but the performance reduces

significantly on the 25 variable problem. This is rather unsurprising when one considers

that the hill climber will perturb a point twice in each dimension during an iteration.

As the dimensionality of the problem increases so to does the number of perturbations

in each iteration therefore reducing the explorative capabilities of the algorithm. While

proving competitive at lower dimensions the dynamic hill climber will struggle at higher

dimensions and will therefore not be considered as the basis of the hybrid strategy.

Simulated annealing and the particle swarm both seem capable of locating better like-

lihood values than the baseline genetic algorithm. Of the two algorithms the particle

swarm outperforms simulated annealing in three out of the five tests and comprehen-

sively outperforms it on the 25 variable problem. This is extremely encouraging as the

simple swarm proposed by Eberhart and Shi [2000] was employed in these tests. As de-

scribed in Sections 2.2.5 and 2.2.6 and comprehensively by Bratton and Kennedy [2007],

this implementation of the particle swarm is extremely simplistic and takes no advan-

tage of the more recent developments in neighbourhood topologies or fully informed

particles which may improve performance. The particle swarm therefore offers the best

performance of the basic global optimisers and the most scope for improvement and will

therefore form the basis of the subsequent hybridisation.

The simple SQP hyperparameter optimisation performs consistently badly on all cases

with the performance reducing rapidly as problem dimensionality increases. This pro-

vides a clear demonstration of the advantages of a global strategy when attempting to

optimise the likelihood.

Although Table 5.2 compares the actual minimum likelihood found by each algorithm

it is the relationship of the corresponding hyperparameters to the quality of an overall

optimisation process which is of most interest. In other words, does a better likelihood

equate to a better final design? Figure 5.1 displays the average RMS error in pressure

obtained by the final aerofoil of the inverse design problem. As in Section 3.4 each

optimisation is carried out a total of 50 times and the average taken. These results are

presented in tabular form in Appendix C.
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Figure 5.1: Graphical comparison of the effect of each of the hyperparameter opti-

misers on the overall kriging based optimisation.

Figure 5.1 demonstrates the improvement offered by a more extensive tuning of the

hyperparameters. The Heavy strategy outperforms both the particle swarm and the SQP

optimisation in the majority of cases. The cheaper particle swarm performs relatively

well, but overall the optimisations clearly benefit from the better hyperparameters found

by the Heavy strategy.

The results for the SQP strategy indicate that a poorly optimised set of hyperparam-

eters translates to a drop in overall optimisation performance. Commencing a local

search from a random point in the likelihood space can lead to the optimisation being

trapped in plateaus or converging to unrealistic hyperparameters. Often the “optimum”

hyperparameters returned by the SQP search contain a vector of P values equal to one,

a vector of θ values equal to 3 or a regression constant of 3. Such values lead to com-

pletely unrealistic response surfaces and the poor optimisation performance observed in

Figure 5.1.

The convergence of the SQP strategy to unrealistic regions of the hyperparameter space

can be countered by providing the search with a good initial solution. This may be

possible if the importance of each of the variables is roughly known a priori, if, for

example, a similar problem has been encountered before. However, this is rarely the

case. In an attempt to counter this a fourth tuning strategy was investigated via the

inverse design problem. This strategy, presented as “GA-DHC-SQP” in Figure 5.1,

involves an initial optimisation of the hyperparameters via the Heavy strategy with

subsequent optimisations using an SQP search. The initial global optimisation aims to

provide a good initial set of hyperparameters which can be locally improved upon by

the SQP search in subsequent likelihood optimisations. Essentially this is a variation of

the “Single Tune” strategy presented in Section 3.3.
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The results of Figure 5.1 indicate that this strategy performs consistently worse than

any other, with the exception of the simple three variable optimisation. As the dimen-

sionality of the problem increases the designs obtained by the GA-DHC-SQP strategy

become increasingly poor compared to those of the other three, with even the simple

SQP strategy performing better. These results indicate that not only is the global opti-

misation of the likelihood necessary for an effective optimisation but so too is a repeated

global optimisation as update points are added to the kriging model.

The initial optimisation of the likelihood is based on a sample plan that may not com-

pletely represent the true response surface, hence the resulting hyperparameters, al-

though suitable for the initial sampling may change drastically as updates are evalu-

ated. Restricting the hyperparameter optimisation to a local region around the initial

set therefore prevents the drastic alterations to the hyperparameters which may be re-

quired as the optimisation progresses. As with the single tuning strategy of Section 3.5.4

the performance of this strategy may improve if afforded a larger initial sampling.

The presented results conclusively demonstrate that a repeated global optimisation of

kriging hyperparameters is necessary if a kriging based optimisation is to perform to

its utmost. However, the timings of Appendix C reinforce the expense of such optimi-

sations. For example, over 14 hours are spent optimising the hyperparameters of a 18

variable design problem using the Heavy strategy. This would cause a significant bottle

neck in any optimisation even if high fidelity CFD simulations were used instead of the

VGK simulations employed here. Reducing this through the application of a hybrid

optimisation strategy employing an adjoint of the likelihood function is therefore an

important goal.

5.5 A Review of Existing Hybridised Particle Swarms

The utilisation of a local search within a particle swarm aims to improve the overall

convergence of the swarm to a global optimum. Without this addition to the algorithm

the particles tend to oscillate around the region of an optimum but make relatively little

headway towards finding an exact solution. Local search algorithms typically involve

some form of gradient descent and proceed quickly from an initial starting point to a

precise minimum. However, they cannot escape from a local minimum unless a restart

procedure is employed. Combining the global exploration abilities of the particle swarm

with the exploitation abilities of a local search therefore, makes perfect sense.

There exists within the literature a number of different methods of implementing a

local search within a particle swarm, each with their own advantages and disadvantages.

Victoire and Jayakumar [2004], for example, employed a local search of the problem

using sequential quadratic programming, (SQP), commencing from the xGbest point of

a generation. This local search was carried out until convergence, with the xGbest point
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then replaced by the result of the SQP optimisation. The velocity of each particle was

then updated and another SQP optimisation commenced if the xGbest found by the

swarm was better than that found by the previous SQP optimisation. Guo et al. [2006]

employed a similar method to that of Victoire et al. but using a gradient descent method

and a constriction factor in the velocity update equation.

Such strategies however, may hamper the global exploration ability of the swarm and re-

sult in a premature convergence of the overall optimisation as particles move towards the

xGbest point which may not change for a number of generations. This can be countered

by the introduction of a diversity metric and particle repulsion, Riget and Vesterstrø

[2002], or through the generation of random particles to increase diversity.

Liu et al. [2005] describe a hybrid particle swarm which utilises a chaotic local search

to improve the convergence characteristics of the basic swarm. As with the swarms of

Victoire and Guo, the local search was commenced from the best particle in a generation

but measures were taken to preserve the diversity of the population. After the evaluation

of each particle’s objective function a subset of the best particles were retained for the

next generation with the remaining population members randomly generated. This is

similar in some respects to an elitist genetic algorithm, where the best point is carried

through unaltered to subsequent generations.

Whereas this random generation of particles maintains population diversity the method

proposed by Liu et al. has no control over where these points are generated and as

such new points may be generated in regions of the design space previously visited

and subsequently discarded. The chaotic local search also makes no use of sensitivity

information which is cheaply available in this case due to the adjoint.

Izui et al. [2007] took the approach of splitting the total population into two subsets, one

utilising a pure particle swarm approach while the other has each point iterated until

convergence using sequential linear programming (SLP). Both groups are then mixed

upon convergence of the SLP optimisation and a new global best member of the swarm

subset determined. Whilst effectively using sensitivity information through SLP one

could argue that given a fixed evaluation budget for each generation the convergence of

a large number of such local searches may reduce the number of available evaluations

for any global exploration.

Rather than use a local search strategy, Noewl and Jannett [2004] attempted to adjust

the particle swarm update equation to make use of any available gradient information.

This resulted in a velocity calculation which adopted a gradient descent term instead of

the nostalgia term. The components of the updated velocity were therefore due to the

inertia of each particle, the location of the global best point and a step in the steepest

descent direction.
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While this approach appears attractive by simultaneously exploiting a particle’s local

gradient and the global best point, its effectiveness is dependant on the cost of the

gradient. Consider, for example, the optimisation of the likelihood using this method:

a traditional particle swarm with a population of 50 requires 50 likelihood evaluations

per generation. But if the cost per optimisation is to be maintained when using the

method of Noewl et al. then the population size or number of generations must be

reduced accordingly. This reduces either the exploration ability of the algorithm or

the convergence. Assuming, for example, that the adjoint is twice as expensive as a

simple likelihood calculation immediately reduces the swarm population, or the number

of generations by two in order for the total cost to remain consistent. The algorithm

therefore requires extremely cheap gradient information to be competitive. One could

also argue that just taking a step in the direction of steepest descent is not as efficient

as a quasi-Newton based optimisation when it comes to an effective terminal search.

Ninomiya and Zhang [2008] took a similar approach in the development of their hybrid

particle swarm. However, rather than using raw gradient information in the velocity

update, a step was taken in the direction of a BFGS local search. This step then

influenced the velocity of a particles six neighbours through a modified FIPS equation.

Ninomiya and Zhang realised that calculating the gradient and subsequent BFGS step for

each particle at every iteration would be prohibitively expensive and therefore restricted

the local step to only the global best point. Employing a FIPS based swarm with

a reduced neighbourhood maintains population diversity to a better extent than the

simpler “star” strategy. The hybrid swarm of Ninomiya and Zhang does not therefore

suffer the same premature convergence problems as those of Victoire and Jayakumar

[2004] or Guo et al. [2006].

The hybrid swarm of Ninomiya and Zhang was based on a random neighbourhood

topology, the influence of the local step taken by the global best point on its neighbours,

which may in fact be in completely different areas of the design space, could perhaps

be considered questionable. The strategy does not include a terminal local search to

completely converge the global best point to an optimum.

Another interesting hybrid particle swarm was developed by Wang et al. [2006] which

incorporated the features of a number of the other swarms. Like Victoire and Guo a

gradient descent was utilised but a reinitialisation of the swarm population was also

used to maintain diversity. This method therefore utilised the gradient information

very effectively in a single local optimisation but could carry out an effective global

exploration without premature convergence problems.
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5.6 The Proposed Hybrid Particle Swarm

Reviewing the advantages and disadvantages of a number of hybrid swarms from the

literature provides a solid basis upon which to develop an algorithm for the purposes of

hyperparameter optimisation. From the above review a number of important features of

a final strategy are apparent. A local search must be incorporated into the swarm which

uses gradient information in an efficient and effective manner. Precautions must also

be taken to prevent premature convergence by maintaining diversity in the population

when the results of any local optimisation are fed back into the swarm.

Step

1 Initialise the population members using a random Latin Hypercube
2 Initialise the particle velocities
3 Evaluate the objective function (concentrated likelihood)
4 Select a population member for refinement via a local search
5 Initialise xPbest and xGbest

6 Update each particle’s velocity and position
7 Reinitialise a proportion of the population to unexplored regions if required
8 Evaluate the objective function
9 Select a population member for refinement via a local search
10 Update xPbest and xGbest

11 Return to step 6 unless the required number of generations has been reached
12 Terminal local search commencing from xGbest

Table 5.3: Pseudo code of the proposed hybrid particle swarm optimisation algorithm.

To this end a hybrid particle swarm has been developed which uses features from the

literature and introduces new features similar to those used in the creation of sampling

plans for computational experiments. The proposed algorithm, the pseudo code of which

is presented in Table 5.3, begins with the initialisation of every particle’s position and

velocity. Unlike the majority of particle swarms the initial position of each particle

is defined by sampling the space using a random latin hypercube. This distributes the

particles more evenly throughout the space when compared to a more traditional random

initialisation of points. Each particle is then given a random velocity within the limits

of Vmax.

The objective function of each particle is then evaluated as normal but based on this

objective function a member of the population is selected for improvement via a local

optimisation. Unlike other hybrid swarms the xGbest is not automatically selected for

local improvement, instead the previously calculated objective function is used in a

rank selection scheme, similar to that used by a genetic algorithm for the purposes of

generating a mating pool.

The use of such a scheme results in a chance that some measure of local improvement

is applied to any member of the swarm and not just the global best point. This adds

an additional measure of local exploration to the population without the expense of a
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large number of local searches in each generation. This local optimisation is also not

carried out to convergence. Instead a small proportion of the total budget of function

evaluations available for each generation is reserved for local improvement. Depending

on the magnitude of this proportion the local improvement may be anything from a

single to multiple steps towards a local optimum. A similar scheme was employed by

Fan et al. [2004] where a Nelder-Mead simplex update was used to replace a single swarm

member.

The combination of the rank based selection and partial convergence of any local optimi-

sation also helps to preserve a level of diversity within the population as the optimisation

progresses. As previously mentioned complete convergence of the global best point after

the initial generation is counter-productive, as subsequent swarm generations tend to

move towards that point rather than exploring the space effectively. Here, the view

is taken that the effort of a completely converged local optimisation should be spread

throughout each swarm generation to boost the local exploitation of the whole popula-

tion and not just the best point.

Once local improvement steps have been taken, the xPbest for each particle and overall

xGbest can be calculated and used to update the velocity of each swarm member. Here,

the constriction factor method of Eberhart and Shi [2000] is utilised with the resulting

velocity restricted to Vmax. The position of each particle can then be updated as normal

using Equation 2.14.

Provision is made to prevent particles moving beyond the permitted variable bounds. If

the updated position of the particle falls outside the bounds of a variable then the posi-

tion of that particle is adjusted so the particle lies on the boundary. The corresponding

velocity of the particle is then reversed so the inertial component of the velocity update

in the next iteration tends to move the particle back from the boundary. A similar

approach was used by Huang and Mohan [2005].

A reinitialisation of a proportion of the swarm is carried out before the calculation of the

objective function of each particle. This reinitialisation attempts to increase the diversity

of the swarm population but unlike the reinitialisation procedure of Wang et al. [2006]

the position of any new particle is not random but selected in order to explore regions of

the space not previously visited by the swarm or embedded local search. This is achieved

through a maximisation of the minimum distance of a proposed restart point to those

points previously evaluated, a similar process to that used by Morris and Mitchell [1995]

to calculate space filling Latin hypercubes.

The alternative option to a particle reinitialisation procedure is a particle repulsion

scheme such as that used by Riget and Vesterstrø [2002]. In such a strategy when the

diversity of the population reaches a predefined minimum the velocity update equation

is altered and particles move away from each other in subsequent iterations until diver-

sity has been improved. However, such a repulsion technique offers no guarantees that
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previously unexplored regions will be searched by the swarm, rather the swarm may

expand and contract again within a region of the space which may have been explored

during the initial contraction. The repulsion process itself can take a number of gener-

ations and may therefore waste objective function evaluations. The strategy proposed

here forces the exploration of unexplored regions of the space immediately.

After reinitialisation the objective function of each particle is evaluated and a particle

is selected for local improvement as before. The global and personal best locations can

then be updated to calculate a particles velocity in the next generation. This process

is repeated until the total number of generations is reached after which the global best

point is used as the starting point for a terminal local search. The final local optimisation

is carried out with the aim of exploiting fully the best point found throughout all of the

previous generations of the swarm.

5.7 Optimisation of the Swarm Parameters

Having defined the basic hybrid hyperparameter optimisation strategy, a number of is-

sues still remain concerning the appropriate settings for the hybrid swarm in order to

achieve optimal performance. The total number of generations, the size of the pop-

ulation, the point at which the local search should start to improve members of the

population, the increase in the degree of local improvement with subsequent genera-

tions, the number of evaluations reserved for a terminal local search and the number of

points reinitialised, all require investigation.

One way of addressing all of these issues is to cast them in the form of an optimisation

problem. To this end the basic hybrid particle swarm strategy described previously

has been parameterised using ten variables which adjust the overall structure of the

optimiser. These variables can then be adjusted over the course of an optimisation with

the objective of improving the hyperparameter tuning performance of the algorithm. A

similar procedure was carried out by Keane [1995] when the optimisation of the control

parameters of a genetic algorithm were considered in order to improve performance on

multi-modal problems.

Each of the ten swarm control parameters considered, (shown in Table 5.4) varies greatly

in their effect on the particle swarm, some control the complete nature of the optimiser

while others control more subtle features.

The first five control parameters described in Table 5.4 control the complete nature of

the optimisation. Given a predefined budget of likelihood evaluations, the first control

parameter governs the fraction of this budget reserved for the terminal search. The

second control parameter defines the size of the swarm population and therefore the

total number of generations. The third control parameter governs the generation at
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No. Parameter description Lower limit Upper limit

1 Fraction of total evaluation budget for terminal local
optimisation

0 1

2 No. of evaluations per generation 10 100
3 Generation swarm becomes hybridised 1st Final
4 Initial no. of local search evaluations (fraction of total

evaluations)
0 0.5

5 Final swarm size (fraction of evaluations reserved for
swarm)

0.1 1

6 Magnitude of Vmax 0 1
7 Initial probability of particle reinitialisation 0 1
8 Final probability of particle reinitialisation 0 1
9 Initial fraction of population reinitialised 0 1
10 Final fraction of population reinitialised 0 1

Table 5.4: Hybrid particle swarm control parameters to be optimised.

which the swarm is hybridised, in essence, the generation a local search is first employed

to improve a member of the population. The fourth and fifth parameters define how

the number of evaluations per generation used in this local improvement changes as the

optimisation progresses.
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Figure 5.2: A graphical representation of the allocation of resources between the

particle swarm and local search within the proposed hybrid optimisation strategy

The effect of these five parameters can be visualised using Figure 5.2. One can observe

that adjusting the generation at which local improvement is utilised within the swarm

converts the optimiser from the “pure” swarm of Eberhart and Shi [2000] to a hybridised

swarm. Likewise, adjusting the proportion of the total evaluation budget used in the

terminal local search changes the optimiser from a purely global search to a purely local

search from the best point of an initial design of experiments.

The fraction of a population’s evaluation budget utilised in a local improvement alters

linearly as the optimisation progresses according to parameters four and five. The hy-

brid optimisation can therefore move from one employing a small local improvement at
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each generation to one employing an increasing degree of local improvement as the op-

timisation progresses. This therefore moves the optimisation from a global exploration

to a more localised exploitation.

The remaining five parameters control the particle swarm itself. The magnitude of Vmax

controls the incremental nature of the swarm and a particle’s ability to escape from local

optima. A large Vmax causes all of the particles to move quickly around the space but

perhaps overshooting regions of interest. A small Vmax helps each particle to exploit

regions of interest but may prevent them escaping local minima.

Parameters seven and eight control the probability that a particle reinitialisation will

occur as the optimisation progresses. A random number is generated in each generation

and compared to this probability, if this number is less than the probability then a reini-

tialisation occurs. A large initial probability relative to final probability will therefore

result in an intense exploration of the space, moving towards a more focused exploita-

tion. A small initial probability on the other hand will result in the swarm progressing

towards a more intense exploration in the final generations.

The remaining swarm control parameters control the fraction of the swarm population

reinitialised as the optimisation progresses. An optimisation can therefore have no points

reinitialised or indeed the whole population. Such an optimisation strategy is an inter-

esting prospect, as when coupled with a terminal local search, this essentially amounts

to a space filling sampling of the space and a local optimisation commenced from the

best point found.

5.8 Results of the Swarm Parameter Optimisation

Each of the previously described swarm parameters were optimised using the classic

response surface method. A kriging model was constructed from an initial 100 point

DOE of the 10 swarm control parameters. Twenty batches of up to 20 updates were

then evaluated and added to the model. Throughout the course of the optimisation the

Heavy tuning strategy was employed in tuning the hyperparameters with the updates

based on a search of the kriging models prediction of the performance of the swarm using

a genetic algorithm. Each particle swarm was assessed using the mean improvement in

likelihood over the baseline genetic algorithm, described in Section 5.3.

A series of optimisations were carried out for different likelihood evaluation budgets and

for underlying optimisation problems of different complexities. A total of five different

levels of complexity of the inverse design problem were considered from two to 25 variable

problems. Naturally the number of hyperparameters that each potential swarm evaluates

is double this. For each problem a number of different likelihood evaluation budgets

were considered from 100 up to 2000 evaluations. These optimisations produce a Pareto
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front, Figure 5.3, demonstrating the performance of the hybrid strategy as more effort

is applied to the optimisations. Analysing the results of each optimisation therefore

provides an interesting indication as to how the nature of the optimisation should change

as one moves from an extremely quick to a slower more methodical optimisation.

Sampling of likelihood
space and a short SQP
search from the best
point

Intensive exploration
of the likelihood and
multiple short SQP
searches culminating
in a terminal SQP
search

Figure 5.3: A pareto front showing the change in performance and the nature of the

optimisation as the magnitude of the likelihood evaluation budget increases for the 25

variable optimisation

We consider first the results obtained by the swarm control parameter optimisation

when the likelihood evaluation budget is small. Table 5.5 presents the swarm control

parameters for the best performing swarms on the five optimisation problems considered.

On all problems the optimisation favours only a single generation of the swarm followed

by a single SQP search, all of the remaining swarm parameters are irrelevant in such a

case and are therefore not presented in Table 5.5.

No. of Population No. of Objective
Variables. Size Generations Function

2 90 1 0.048
5 98 1 0.126
10 89 1 0.402
15 98 1 0.491
25 89 1 3.968

Table 5.5: Parameters for the best performing hybrid swarm given a range of problem
dimensionalities and a fixed budget of 100 evaluations.

The results of Table 5.5 indicate that the optimisation favours an initial sampling of the

likelihood space using quite a large proportion of the available evaluation budget. This

leaves a relatively small number of evaluations for a terminal SQP search commencing

from the best point found in this initial sampling. The performance results presented

in Table 5.5 do not compare favourably to those of the baseline genetic algorithm but
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fare much better than the SQP strategy, Table 5.2. This indicates that, in terms of

likelihood optimisation, the starting point of the local search is much more important

than the effort applied to that local search; a result which corresponds well with the

observations regarding the performance of the GA-DHC-SQP optimisation, Figure 5.1.

Table 5.6 defines the best parameters when a total of 2000 likelihood evaluations are

employed in the hyperparameter optimisation, the 10 best of each case are presented in

Appendix D. Figure 5.3 demonstrates that after 1500 evaluations there is only a slight

improvement in the magnitude of the likelihood compared to when 2000 evaluations are

employed, we therefore assume that there is no advantage to employing more than 2000

evaluations. The results of the these optimisations will therefore form the basis of a

more general hybrid strategy.

No. Local Min. Min. Prob of No. of Points
of Pop. No. Search Local Swarm Reinitialisation Reinitialised Obj.
Vars. Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final) Func.

2 32 50 0.810 39 3 17 0.05 0.50 0.80 0.52 -0.090
5 61 29 0.092 29 6 7 0.58 0.59 0.10 0.36 -1.115
10 63 25 0.045 15 1 50 0.44 0.63 0.84 0.005 -3.149
15 20 87 0.073 56 6 3 0.52 0.19 0.86 0.56 -4.038
25 15 87 0.064 22 6 3 0.82 0.27 0.43 0.11 -8.075

Table 5.6: Parameters for the best performing hybrid swarm given a range of problem
dimensionalities and a fixed budget of 2000 evaluations.

Increasing the budget of available likelihood evaluations results in a significantly different

optimisation involving considerably more global exploration of the likelihood space. Ta-

ble 5.6 demonstrates a much more effective use of the particle swarm with a considerable

number of generations employed throughout the optimisation.

Observe that the SQP search is not employed within the first generation but rather at

some point in the middle of the optimisation. This suggests that an initial search of

the likelihood space via a particle swarm before hybridisation is much more effective

than employing a hybridised search from the start. The local search is therefore wasted

if applied too soon before the swarm has found a promising region. This corresponds

with the results of the SQP search of Section 5.4 where the search frequently stalled

on plateaus in the likelihood space. As a particle is selected for local improvement

in the hybrid strategy via a rank based scheme, a poor particle may be selected and

the same stalling may be observed at the beginning of the optimisation. Commencing

local searches part way through the optimisation therefore reduces the chances of the

optimisation stalling and wasting valuable likelihood evaluations.

The results of the parameter optimisations indicate that an initial local search of ap-

proximately six likelihood evaluations is favourable. This makes perfect sense when one

considers the cost of calculating the likelihood and its gradients is approximately twice

that of a single likelihood evaluation. A minimum budget of six evaluations for the SQP

search should therefore result in at least one step towards a local optimum.
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The presented results also indicate a gradual increase in the level of effort expended in

the local improvement of particles as the optimisation progresses. Each optimisation

also concludes with a significant terminal search from the best point found so far by the

optimisation.

Reinitialisation of points takes place throughout the course of all of the best perform-

ing optimisations. The results of Table 5.6 indicate that reinitialisation tends to occur

towards the start of the optimisation with more points and the probability of reinitiali-

sation generally higher. This corresponds with the commencement of the local searches

midway through the optimisation. Once again the optimiser is attempting to rapidly ex-

plore the likelihood space before applying a local search. One must also note that 100%

of the population is never reinitialised, this leaves some of the particles to gravitate

towards the best current design point in the manner of a traditional particle swarm.

The performance results of Table 5.6 and Appendix D indicate that the hybrid strategy

can out-perform the baseline genetic algorithm substantially and has the capability of

significantly outperforming the 5,000 iteration GA, 5,000 iteration DHC and Heavy

strategy when the underlying problem has more than 15 variables.

5.9 Definition of the Proposed Hybrid Strategy

The results of Table 5.6, while indicating the general form that the final hybrid strategy

should take, are quite different depending on the dimensionality of the underlying prob-

lem. The optimum hybrid swarm for the two variable problem is quite different to that

for the 25 variable problem. A set of controlling swarm parameters which is optimal over

all cases is therefore difficult to achieve. Instead emphasis is given to the more difficult

cases, namely the 15 and 25 variable problems.

Based on the top ten performing strategies for both of these cases, shown in Appendix D,

the hybrid strategy defined in Table 5.7 was selected.

Local Min. Min. Prob of No. of Points
Pop. No. Search Local Swarm Reinitialisation Reinitialised
Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final)

20 80 0.075 30 6 3 0.7 0.2 0.75 0.1

Table 5.7: Controlling parameters of the proposed hybrid particle swarm.

The presented swarm control parameters result in an initial particle swarm which is

skewed towards an initial extensive exploration of the likelihood space with a high prob-

ability of reinitialisation and high fraction of the population reinitialised to regions not

previously explored. The local optimisation commences once this exploration has re-

duced, after 30 generations, and begins with an initial effort equivalent to six likelihood
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function evaluations. As per the results presented in Table 5.6, a substantial fraction of

the overall number of evaluations, 20%, is reserved for a terminal local search.

Essentially this results in a strategy similar to the dynamic hill climber described in

Section 2.2.3. A local search is used to exploit regions of interest with exploration si-

multaneously occuring of previously unexplored regions via the reinitialisation procedure

and the particle swarm update process.

5.10 Hybrid Strategy Performance

The performance of the proposed hybrid optimisation strategy with respect to the tuning

of the hyperparameters of the inverse design problem is presented in Table 5.8. The

results demonstrate an obvious reduction in performance relative to the strategies of

Table 5.6 which is unavoidable given the more general nature of the final set of control

parameters.

No. of
Mean Std.

Variables

2 -0.0404 0.087
5 -0.787 1.933
10 -2.675 3.366
15 -3.667 4.031
25 -6.911 4.497

Table 5.8: Mean improvement in likelihood function over a range of problem sizes for
the proposed hybrid optimisation strategy.

The proposed strategy does still however, comprehensively outperform the baseline ge-

netic algorithm on all problems, the particle swarm and the GA-DHC strategy on the

10, 15 and 25 variable problems and simulated annealing on the 5, 10, 15 and 25 variable

problems. The strategy even outperforms the expensive Heavy strategy on the 15 and

25 variable problems. This improved performance comes at a 60% reduction in cost over

the PSO, GA-DHC and SA strategies and at an 80% reduction over the Heavy strategy.

We now consider the performance of this strategy with regard to the inverse design

problem. The results are presented graphically in Figure 5.4 and in Appendix C. Natu-

rally due to the global nature of the optimisation, the hybrid strategy outperforms the

SQP strategy of Section 5.4 on every problem. The strategy outperforms PSO tuning

on three out of five cases and exceeds the performance of the Heavy strategy on the

three and nine variable problems while approaching its performance on the 6, 12 and 18

variable problems.

A modified version of the GA-DHC optimisation, which uses a total of 2000 likelihood

evaluations is included in Figure 5.4 to provide a direct comparison, in terms of overall
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cost, to the proposed hybrid strategy. Once again the hybrid strategy performs better on

three out of five cases. Most importantly the hybrid approach outperforms the reduced

cost GA-DHC strategy on the 18 variable problem, the most complex considered in this

comparison.
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Figure 5.4: Graphical comparison of the effect of the hybrid hyperparameter optimi-

sation relative to the Heavy and reduced cost GA-DHC optimisation strategies.

We now consider the application of the proposed hybrid tuning strategy to an optimisa-

tion completely unrelated to the inverse design problem considered so far throughout this

chapter. The RAE-2822 aerofoil is optimised for minimum drag at a fixed lift coefficient

of 0.3 at Mach 0.65 and a Reynolds number of 6×106. The aerofoil is parameterised via

two NURBS curves, one representing the upper and one the lower surface, as shown in

Figure 5.5. Fourteen control points are permitted to vary in both the x and y directions

while the control points on the leading edge are fixed in the x direction resulting in a

total of 30 variables.

 

 

Original RAE−2822 Aerofoil
NURBS Parameterisation
NURBS Control Polygon

Figure 5.5: Thirty variable NURBS parameterisation of the RAE-2822 aerofoil.
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The optimisation is permitted a total of 450 objective function evaluations, of which

150 form the initial DOE. A typical function evaluation requires between three and

four VGK simulations at different angles of attack to achieve the required lift, usually

to within ±0.005. A total of 30 batches of 10 updates are added to the model as the

optimisation progresses with the hyperparameters tuned after every update using either

the hybrid particle swarm or the reduced cost GA-DHC strategy. An identical DOE is

used in each case thereby providing a meaningful comparison between the final results.

A total of 50 optimisations are carried out for each case with the DOE varying each

time, the optimisation histories for each are presented in Figure 5.6 with the average

drag of the final best designs presented in Table 5.9.
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Figure 5.6: Optimisation search histories resulting from a minimisation of drag for

fixed lift using the Hybrid (a) and the reduced cost GA-DHC (b) tuning strategies.

Tuning Average Standard % Improvement
Strategy CD Deviation CD Over RAE-2822

Hybrid 7.53× 10−3 2.88× 10−5 8.29%
GA-DHC 7.54× 10−3 2.04× 10−5 8.13%

Table 5.9: Comparison of the quality of the designs resulting from the optimisation
of the RAE-2822 using two different tuning strategies.

The results of Table 5.9 indicate that there is little between the two strategies in terms

of the quality of the final aerofoil designs. Both the GA-DHC and the hybrid strategy

achieve designs with an average drag coefficient of just over 7.5 × 10−3. The results

indicate that the hybrid strategy does perform slightly better but this could be due to

the effect of the two outlying designs observed in Figure 5.6(a) on the overall averages.

Likewise the standard deviation associated with this strategy is elevated due to these

designs. Both outlying designs exhibit a rapid and non-physical pressure oscillation

close to the leading edge on the upper surface. This suggests that the simulation may

be inaccurate and that the resulting drag coefficient cannot be relied upon. These

optimisations have therefore exploited a weakness in the computational simulation and
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in doing so have achieved a false optimum. This represents a significant danger when

any complex computer code is blindly relied upon during an optimisation.

Removing these outlying designs from both sets of results leads to the hybrid strategy

achieving designs with an average CD of 7.535×10−4 and a standard deviation of 7.71×
10−6. The reduced cost GA-DHC obtains a slightly higher average drag of 7.545× 10−4

and standard deviation of 1.22×10−5. The hybrid strategy could therefore be considered

to result in slightly better and more consistent designs than the reduced cost GA-DHC

strategy.

This can be explained somewhat upon comparison of the optimisation histories of Fig-

ure 5.6 and the average convergence histories of Figure 5.7. Here one can observe a

much more rapid reduction in the magnitude of the objective function proceeding the

DOE when the hyperparameters are tuned via the hybrid strategy. The optimisation

therefore converges much more quickly to the approximate region of an optimal design.

Subsequent updates to the model are therefore spent fine tuning the optimal solution

resulting in the reduction in the variance between final designs. For this particular

optimisation problem the hybrid strategy achieves the average drag coefficient of the

GA-DHC strategy after approximately 350 objective function evaluations. Although

this optimisation utilised VGK simulations in the evaluation of the objective function,

a reduction of approximately 100 simulations is quite significant.
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Figure 5.7: Average convergence of the kriging based optimisations based on the

hybrid and reduced cost GA-DHC tuning strategies.
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5.11 Conclusions

An efficient hybrid optimisation algorithm has been developed which effectively utilises

the adjoint formulation of the concentrated likelihood function presented in Chapter 4.

The final algorithm combines a basic particle swarm with an SQP search and a particle

reinitialisation procedure based on techniques for developing space filling sampling plans.

The final structure of the hybrid swarm was defined through a series of optimisations

of the swarm’s control parameters with the aim of maximising the algorithms perfor-

mance with respect to likelihood optimisation. The swarm parameters were optimised

for problems of differing complexity and for different budgets of likelihood evaluations.

The results of these optimisations demonstrate, not only how the performance of the al-

gorithm changes as more effort is applied, but also how the very nature of the algorithm

alters in order to make effective use of the available budget.

These optimisations lead to an algorithm which intensely explores the likelihood space

at the beginning of the optimisation and then commences short local exploitations of

promising regions after a number of generations. This local exploitation increases with

each generation and concludes with a terminal search. In essence the algorithm is

similar in its operation to dynamic hill climbing but makes effective use of the available

gradient information. The whole optimisation employs the equivalent of 2000 likelihood

evaluations, a 80% reduction over the Heavy strategy employed in Chapter 3 but achieves

comparable results.

The hybrid strategy outperforms the baseline GA on all problems, SA on four out of

five problems and the GA-DHC and PSO on three out of five problems with respect

to optimising the likelihood. The strategy also outperforms the Heavy strategy on

the two most complex problems. With respect to its performance within a complete

optimisation, the hybrid strategy outperforms the PSO on three out of five cases and

the Heavy strategy on two out of five and approaches the performance of the Heavy

strategy on the remaining problems.

A final 30 variable optimisation, unrelated to the inverse design problem used in the

development of the strategy, demonstrated both an improvement in the quality and

consistency of the final designs obtained over a GA-DHC strategy of equivalent cost.

The hybrid strategy also demonstrated a considerable acceleration in the convergence of

the optimisation, achieving the final design of the reduced cost GA-DHC strategy with

100 function evaluations to spare.

The investigations of other tuning strategies comprehensively demonstrated the necessity

of a global optimisation of the kriging hyperparameters throughout the course of a

kriging based optimisation. Continual local optimisation via SQP or local improvement

to an initial set of globally optimised hyperparameters proved detrimental to the kriging
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optimisations performance. The results of the hybrid swarm parameter optimisation

go some way to confirm these findings by demonstrating that for a small budget of

likelihood evaluations it is more important, in terms of the likelihood achieved, to select

an appropriate starting point for a partial local search rather than to completely converge

a terminal search from a poorer initial point.

In conclusion the developed hybrid hyperparameter tuning strategy offers performance

close to or exceeding that of the traditional Heavy strategy but for an 80% reduction in

tuning cost.



Chapter 6

Geometric Filtration Via Proper

Orthogonal Decomposition

6.1 Introduction

The optimisation of complex geometries is prevalent throughout the field of aerody-

namic design, from the optimisation of two dimensional aerofoils, to the optimisation

of complete wings and aircraft. Designers are, however, restricted somewhat in the pa-

rameterisation of such shapes. A typical aerofoil parameterisation, for example, may

have anything from a few to more than 30 variables, Hicks and Henne [1978], Sobieczky

[1998], Lépine et al. [2001], Song and Keane [2004], Painchaud-Ouellet et al. [2006], Kul-

fan [2008]. Parameterise an aircraft wing using a series of such aerofoils and the number

of variables can quickly be in the order of hundreds. Such large numbers of variables

naturally restrict the ability of an optimisation algorithm to achieve a globally optimal

design given a limited budget of simulations.

To enable the efficient optimisation of such geometries it is typical for a designer to

employ some method of screening to identify those variables which influence the objec-

tive function most. With these variables identified the optimisation can proceed using

the reduced variable set. Painchaud-Ouellet et al. [2006], for example, reduced a 34

variable NURBS parameterisation of an aerofoil to a total of 11 variables, while Song

and Keane [2007], reduced a 33 variable parameterisation of an engine nacelle to seven

important variables. Such large reductions in the complexity of an optimisation are espe-

cially beneficial when the objective function is evaluated using an expensive high fidelity

computational simulation. The expense of such simulations, even with the growth of

parallel computations, prohibits the exhaustive search of design spaces with large num-

bers of variables. In such problems the reduction of the design space offered by variable

screening is invaluable, allowing the designer to use a specified simulation budget more

effectively.

91
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Variable screening does however suffer from a number of significant problems. The cost of

screening a complex optimisation problem which requires evaluations using high fidelity

simulations may rival or exceed that of the optimisation of the reduced variable set.

Given that the screening procedure may not in fact return a definite set of variables which

contribute most significantly to the change in objective function, the screening budget

might be better used in the optimisation of the original complete variable set. Variable

screening also results in a reduction in the flexibility of the geometry parameterisation,

reducing the ability of the optimisation to achieve certain high performance designs

which may only be found with the original, complete, variable set.

Optimisation of complex geometries with large numbers of variables and a limited sim-

ulation budget therefore equates to a simple trade-off. The designer can attempt to op-

timise the original parameterisation and potentially achieve a high performance design,

though with a limited budget this optimal design will be difficult to locate. Alternatively

designers can spend a proportion of their simulation budget to screen out unimportant

or insignificant variables and optimise the reduced design space using the remainder of

the budget. The optimal design within the reduced space may be easier to locate, but

the actual design may be significantly worse than that which could be obtained using

the complete variable set. In the worst case scenario the variable screening procedure

may indicate no significant difference in the importance of each variable. A sub-optimal

reduced set of variables may therefore be chosen, significantly hampering the optimiser’s

ability to achieve a good design.

In light of the above it is desirable to have an optimisation strategy which combines the

advantages of design space reduction associated with variable screening, whilst retain-

ing the majority of the flexibility of the original optimisation. To this end the current

chapter describes a strategy which combines surrogate modeling techniques and proper

orthogonal decomposition (POD) in an attempt to optimise aerodynamic problems con-

sisting of large numbers of variables but given only a limited simulation budget. Within

the framework of this optimisation strategy, proper orthogonal decomposition is used to

reparameterise the problem in an attempt to filter out badly performing geometries.

The proposed strategy, termed geometric filtration, operates, not on the variables of

the original optimisation problem but on the geometry of the resulting designs. This,

therefore, is the key difference between this strategy and traditional variable screening

approaches such as that of Morris [1991], Welch et al. [1992] and Trocine and Malone

[2000]. Whereas these approaches are restricted to the original variables, by operating

at a geometric level the proposed strategy can combine similar features resulting from

different variables and therefore reduce the overall variable count. By considering only

the best performing designs the method captures the features which produce those de-

signs thereby removing, to some degree, the features which produce poor designs. This

focuses the optimisation and once again reduces the number of variables.



Chapter 6 Geometric Filtration Via Proper Orthogonal Decomposition 93

6.2 Natural Geometric Filtration

Aerodynamicists already employ a form of geometric filtration, perhaps without even

realising it, for some aerodynamic optimisation problems. Consider, for instance, the

design of an aerofoil for optimal performance at transonic speeds. Here a designer utilises

their knowledge of existing aerofoil shapes and bases the optimisation on an existing

supercritical aerofoil, such as the RAE-2822. An optimisation for a particular transonic

flight condition therefore results in a series of perturbations to this baseline geometry,

be it through the manipulation of NURBS control points or through the addition of

analytical functions. The choice of this baseline aerofoil has immediately filtered out

badly performing designs and in doing so has reduced the design space before even

commencing the parameterisation.

Robinson and Keane [2001] used this concept to construct an aerofoil parameterisation

based on a series of orthogonal bases derived from an ensemble of supercritical aero-

foils. This parameterisation technique was based upon the principle that aerofoils which

perform well at a particular flight condition, the transonic regime in this case, have

a number of common geometric features which can be extracted through the orthog-

onalisation process and used for optimisation. This is perfectly feasible in the case of

2D aerofoil design, where large databases of the performance of different aerofoils exist,

Abbott and Von Doenhoff [1960] being a popular example. Problems arise when an

optimisation problem is encountered for which there is no such literature. There is, for

example, no similar database of the performance of different wing body fairings, the best

designs of which could be used to construct a similar set of orthogonal bases. While the

generation of such basis functions is undoubtedly a useful approach, this method cannot

be applied to every aerodynamic design problem.

6.3 Overview of the Proposed Methodology

The proposed optimisation strategy, shown in Figure 6.1, begins with an initial surrogate

based optimisation, in this case employing a kriging model. This initial optimisation

utilises the designer’s initial geometry parameterisation and a proportion of the total

simulation budget. This is followed by a reparameterisation procedure using proper

orthogonal decomposition which attempts to both reduce the number of design variables

and filter out badly performing designs. A secondary surrogate model optimisation is

then performed utilising this new geometry parameterisation and the remainder of the

total simulation budget.
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Figure 6.1: An overview of the geometric filtration optimisation methodology

In the context of the proposed optimisation strategy, the initial surrogate model op-

timisation followed by the POD, performs a job similar to that of traditional variable

screening, except that the screening is performed at the geometric instead of the variable

level. This prevents the reduction in variables being restricted to the those of the original

parameterisation. It is intended that the initial optimisation provides a number of good

designs which are then decomposed using POD into a series of orthogonal bases which

capture the common features of these good designs. A similar process has been used by

Kamali et al. [2007] to reduce a design space but using points from a Latin hypercube

sampling of the design space and not a subset of points from an initial optimisation.

As shown throughout the literature, LeGresley and Alonso [2003], Bui-Thanh and Will-

cox [2004], POD cannot accurately represent data outside of the initial snapshot en-

semble. Here, this particular feature of POD, combined with an initial search offers an

advantage. By considering only the current best geometries in the construction of the

orthogonal bases, the bad geometries cannot be recreated through a combination of POD

bases and have therefore been filtered out. The second surrogate model optimisation

therefore has the benefit of a reduced number of variables with a minimal reduction in

geometric flexibility which focuses on designs that perform well.

6.4 Introduction to Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD), otherwise known as Principal Component

Analysis, or Karhunen-Loève expansion, has been extensively used throughout engi-

neering with regard to computational fluid dynamics (CFD). It has been used in the

derivation of reduced order models for the purposes of control, Hung and Hien [2001],
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Lewin and Haj-Hariri [2005], Siegal et al. [2006], Gross and Fasel [2007], optimisation,

LeGresley and Alonso [2000], Li et al. [2007], My-Ha et al. [2007] and has also been used

as a flow analysis tool, Kim et al. [2005]. POD decomposes a series, or ensemble, of snap-

shots of data into a set of optimal orthogonal basis functions of decreasing importance.

The basis functions are optimal in the sense that no other set of basis functions will

capture as much information in as few dimensions, Lucia and Beran [2004]. Applying

POD, therefore, to an ensemble of aerofoils results in a series of orthogonal bases similar

to those of Robinson and Keane [2001].

The decomposition process, as per Sirovich’s method of snapshots, Sirovich [1987], begins

with the definition of an ensemble of snapshot vectors, S. In the case of the geometric

optimisations considered here, the snapshot ensemble is constructed from a series of M

vectors consisting of the x and y coordinates of a number of designs selected from the

initial optimisation i.e. the strategy is working at the geometry level and not the design

variable level,

S = [s1, s2, . . . , sM ]. (6.1)

The matrix of snapshots is then decomposed into a mean, s̄ and a matrix of the fluctu-

ations of each snapshot from this mean,

S = s̄+D (6.2)

where s̄ =
1

M

M∑
i=1

si. (6.3)

The orthogonal basis functions are calculated by considering the solution to the eigen-

value problem,

CE = EΛ, (6.4)

where Λ is a vector of eigenvalues and the square symmetric correlation matrix C is

given by,

C = DTD. (6.5)

The matrix of eigenvectors, E, can then be used to calculate the matrix of eigenfunctions,

Ω = DE, (6.6)

where Ω is a matrix of M eigenfunctions. These eigenfunctions, along with the corre-

sponding vector of modal coefficients, α, allow the fluctuations and hence the original

snapshots to be reconstructed,

si = s̄+Ωαi (6.7)

The advantage of POD is that not all of the M bases (eigenfunctions) are necessary to

recreate the original snapshot ensemble to a required degree of accuracy. The cumu-

lative percentage variation, Jolliffe [2002], can be used to define a reduced number of
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basis functions with which the original ensemble can be approximately recreated. The

importance of each POD basis function is related to the relative magnitude of the corre-

sponding eigenvalue, a large eigenvalue therefore indicates an important basis function.

The cumulative percentage variation,∑N
i=1 λi∑M
i=1 λi

× 100, (6.8)

is therefore a measure of the combined importance of the first N bases. Using this

simple calculation a reduced number of bases can be selected in order to meet a minimum

required percentage variation. Using this reduced number of bases, the original snapshot

vectors can be approximated by,

si ≈ s̄+

N∑
n=1

αinωn, (6.9)

where ωn and αin are the N most important basis vectors and corresponding modal coef-

ficients for the ith snapshot of the original ensemble. The modal coefficients correspond-

ing to each of the original snapshot vectors can be calculated using the orthonormality

property of the basis vectors.

The geometric filtration optimisation methodology therefore moves from a surrogate

modelling optimisation based on the magnitude of the original design variables to one

which considers the magnitude of the POD modal coefficients. The bounds of the sec-

ondary optimisation are defined by the minimum and maximum modal coefficients of

the original snapshot ensemble. The optimisation problem therefore moves from the

formulation,

Minimise y(x)

subject to

li ≤ xi ≤ ui,

(6.10)

in d dimensions to one in N dimensions,

Minimise y(α)

subject to

αmini ≤ αi ≤ αmaxi ,

(6.11)

where αmini and αmaxi denote the minimum and maximum modal coefficient of the

original snapshot ensemble corresponding to the ith basis vector. Provided that N is

less than d, this reduces the complexity of the resulting optimisation problem.
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6.5 Optimisation of a Transonic Aerofoil

6.5.1 Description of the Problem

To demonstrate the effectiveness of the proposed strategy the optimisation of a 2D

aerofoil is used as a test case. The RAE-2822 aerofoil is parameterized using two NURBS

curves, one each for the upper and lower surface with the positions and weights of the

controls points defining both NURBS curves optimised via a local BFGS optimisation

as per Lépine et al. [2001]. The resulting parameterisation of the RAE-2822, shown in

Figure 6.2, consists of a total of 20 variables. The control points at the leading and

trailing edges are fixed, the two control points on the line, x = 0, are only permitted to

move vertically to maintain curvature continuity at the leading edge, while the remaining

control points can move in both axes. Bounds are placed on the movement of each of

the control points to help prevent unrealistic designs. Although the weight of each

control point remains fixed for the purposes of the following optimisations they could

be permitted to vary, increasing the dimensionality of the problem to 31 variables.

 

 

Original RAE−2822 Airfoil
NURBS Representation
NURBS Control Polygon

Figure 6.2: Twenty variable NURBS parameterisation of the RAE-2822 aerofoil

The aerofoil is optimised to minimise the drag to lift ratio at Mach 0.725, Reynolds

number of 6× 106 and a fixed angle of attack of 2°, using the full potential solver VGK,

ESDU [1996b]. At these flow conditions the RAE-2822 has a drag to lift ratio of 0.0148

equating to a lift to drag ratio of 67.8, and exhibits a noticeable upper surface shockwave

just before the mid-chord point, Figure 6.3(a).

The speed of the VGK solver, approximately one second per simulation, allows extensive

averaging to be carried out thus giving a more accurate picture of the performance of

both the traditional kriging and geometric filtration approaches to design optimisation.
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Figure 6.3: Pressure distribution and geometry of the original RAE-2822 aerofoil

with CD

CL
= 1.48 × 10−2 or CL

CD
= 67.8 (a), and for an example aerofoil resulting from

an optimisation utilising a genetic algorithm followed by dynamic hill climber with
CD

CL
= 1.08× 10−2 or CL

CD
= 93.0 (b)

6.5.2 Direct Optimisation Using a Genetic Algorithm

The speed of the objective function evaluations also allows a number of direct searches

of the design space using a genetic algorithm, (GA). Stochastic methods, such as the

genetic algorithm, provide a reliable way of locating the region of the global optimum

within a design space, however, as they typically require a large number of function

evaluations, it is not generally feasible to use such methods when expensive high fidelity

simulations are required. Applying a genetic algorithm to the above aerofoil optimisation

problem provides a useful indication as to the true optimum which both the geometric

filtration strategy and the traditional kriging strategy are attempting to attain.

The aerofoil design problem was optimised using a GA followed by a dynamic hill climber

(DHC), both implemented using the OptionsMatlab design exploration system, Keane

[2003]. A budget of 10,000 function evaluations was used in the optimisation, with the

budget split evenly between the GA and DHC. The 5,000 available function evaluations

for the genetic algorithm equated to 100 generations of 50 points each. Although genetic

algorithms are typically very good at locating the general region of the global optimum,

they can be very slow to converge to a precise answer. The DHC is therefore used to

converge the optimisation towards a more accurate solution.

This extensive optimisation was carried out a total of 10 times, producing an average
CD
CL

of 1.06 × 10−2 with a standard deviation of 4.59 × 10−4 which equates to a CL
CD

of

94.7, an improvement of some 28.4% over the original RAE-2822. Figure 6.3(b) provides

an indication of the designs this extensive optimisation produced. Upon comparison to

the original aerofoil, Figure 6.3(a), one can clearly see a complete removal of the upper
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surface shockwave, a reduction in the upper surface pressure and an increase in the

lower surface pressure, which results in an overall decrease in the drag to lift ratio. The

optimisation process has resulted in a reduction to the leading edge curvature and an

overall reduction in thickness. The trailing edge camber of the aerofoil has also been

increased and the thickest region of the aerofoil has moved forward compared to that of

the original RAE-2822 aerofoil.

6.5.3 Standard Kriging Optimisation

The geometric filtration methodology considered here comprises of two kriging based

optimisations linked by a reparameterisation of the design problem. It is, therefore,

necessary to determine the performance of a standard kriging optimisation with respect

to the current aerofoil design problem in order to provide a meaningful measure of the

performance gains offered by the geometric filtration strategy.

Consider now a basic kriging optimisation consisting of a total budget of 300 objective

function evaluations, a value much more indicative of what would be available in a typical

design optimisation than the 10,000 evaluations used in the previous direct search. Of

this total simulation budget, one third are used in the initial design of experiments

(DOE), in accordance with the work of Sóbester et al. [2005], with the remaining budget

reserved for updates to the surrogate model which are evaluated in batches of ten. All

updates to the kriging models used in each of the following investigations are based

on the model’s prediction of the objective function. A genetic algorithm is used to

minimise the objective function predicted by the model with the cluster centroids of the

final population selected as the update points.

The kriging model has its hyperparameters tuned after every other set of updates. This

strategy was demonstrated to offer a significant reduction in tuning cost. Each of the

hyperparameters, (θl and pl), are permitted to vary and regression is included in the

kriging model. The 41 hyperparameters controlling the kriging model are optimised

using a genetic algorithm followed by a dynamic hill climber, the “Alternate” tuning

strategy of Section 3.3.
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Figure 6.4: Optimisation histories for each of the 50 traditional kriging optimisa-

tions (a), pressure distribution and geometry for an example aerofoil resulting from a

traditional kriging optimisation process with CD

CL
= 1.16× 10−2 or CL

CD
= 86.2 (b)

This traditional kriging based optimisation strategy is applied to the aerofoil design

problem a total of 50 times, with the random number seed used to generate the DOE

changing each time. The optimisation histories for each of these 50 optimisations are

presented in Figure 6.4(a), with a typical aerofoil resulting from one such optimisation

presented in Figure 6.4(b).

The 50 optimisations result in an average CD
CL

of 1.16×10−2 with a standard deviation of

2.17×10−4 which equates to a CL
CD

of 86.4 and an improvement in the objective function

of 21.7%. The improvement over the initial aerofoil design is therefore not as significant

as that obtained using the direct GA. However, one must note that the direct search

used over 33 times the number of function evaluations. The kriging strategy should

therefore be commended for attaining 76.3% of the improvement obtained by the exten-

sive optimisation with 3% of the simulation budget. Given enough time and updates

one would expect the traditional kriging strategy to approach the results obtained by

the GA, denoted by the dashed line in Figure 6.4(a).

Similar to the aerofoils resulting from the direct search, (Figure 6.3(b)), the kriging

based optimisation results in a reduction in the upper surface pressure and an increase

in lower surface pressure over the whole aerofoil. The shockwave appears to have been

removed but there are a number of noticeable oscillations in the upper surface pressure

distribution compared to that resulting from the direct genetic algorithm. This results

in an overall decrease in drag to lift ratio, but one which is not quite as significant as

that obtained using the genetic algorithm.

When one considers the average time taken for the traditional kriging optimisation, ap-

proximately 22.0 hours, one can once again observe the issue of hyperparameter tuning.

Given the low cost of each simulation in this particular optimisation the cost of the
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complete simulation budget is therefore a small fraction of the total optimisation time

(approximately 0.38%). The majority of the time is due to the hyperparameter tuning

process, and more specifically the O(n3) decomposition of the correlation matrix neces-

sary in each evaluation of the likelihood. The size of this correlation matrix and hence

the cost of every evaluation of the likelihood increases as more update points are added

to the surrogate model.

The number of such likelihood evaluations is directly linked to the dimensionality of the

underlying problem. A large number of variables equates to a large number of kriging

hyperparameters, of which there are typically 2d+1 if all θ and p values are considered

and regression is included. Such large tuning optimisations may therefore require more

likelihood evaluations to optimise the likelihood effectively. The cost of constructing

the kriging correlation matrix is also directly related to the number of variables in the

problem. A reduction in the number of variables can therefore improve hyperparameter

tuning costs on a number of fronts.

6.5.4 Geometric Filtration

The optimisation of the RAE-2822 aerofoil, utilising the geometric filtration strategy

described in Section 6.3, is considered next. In this initial investigation a total budget of

300 simulations, (identical to that used in the traditional kriging strategy), is employed,

with half of this budget used in the initial optimisation and the remainder used in the

secondary optimisation.

In the initial kriging based optimisation the available budget is split approximately

evenly between the initial DOE and the updates to the kriging model. A DOE consisting

of one third of the available budget for this initial optimisation was deemed inadequate

due to the relatively high dimensionality of this optimisation. The secondary optimisa-

tion however uses one third of the available simulations in its DOE. A smaller ratio of

DOE to updates is more reasonable for this optimisation as there is a smaller number of

variables after the reparameterisation, hence fewer points are required to construct an

adequate response surface.

In this particular implementation of the geometric filtration strategy a total of 30 aero-

foil geometries are selected from those generated during the initial kriging based opti-

misation. The aerofoils are selected using a KMEANS clustering algorithm, Anderberg

[1975], in an attempt to maintain a measure of diversity between the selected aerofoils.

Upon decomposing the snapshot ensemble into the POD bases, the first N bases which

captured a cumulative total percentage variation of greater than 99.99% are selected as

the POD modes for the secondary optimisation. Such a large cumulative percentage

variation ensures that the original aerofoils contained within the snapshot ensemble can

be recreated to a high degree of accuracy. This high accuracy means that the original
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30 aerofoils exist within the design space resulting from the reparameterisation. As the

objective function values are already known for these aerofoils, they allow, what is es-

sentially, 30 additional “free” design points to be added to the design of experiments of

the secondary optimisation.

In summary the optimisation commences with a DOE of 80 points, followed by 70

updates to the kriging model in batches of 10. From this initial, 20 variable (d) optimi-

sation, 30 geometries are selected and reparameterised using POD resulting in typically

14 bases (N). The secondary optimisation then optimises the coefficients of these bases,

beginning with a DOE of 50 points, (plus the 30 aerofoils from the snapshot ensemble),

and followed by 100 updates to the model, again in batches of ten. As with the tra-

ditional kriging optimisation discussed previously, the hyperparameters are tuned after

alternate updates.

Strategy
No. of

Mean CD

CL
Std CD

CL
Mean CL

CD
Std CL

CD

Time
Evaluations (hrs)

Genetic
10,000 1.06× 10−2 4.59× 10−4 94.7 4.60 2.78

Algorithm
Traditional

300 1.16× 10−2 2.17× 10−4 86.4 1.62 22.0
Krig
Geometric

300 1.13× 10−2 3.76× 10−4 89.0 2.98 4.15
Filtration

Table 6.1: Comparison of the three optimisation strategies with respect to the opti-
misation of the RAE-2822 for minimum drag to lift ratio.
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Figure 6.5: Optimisation histories for each of the 50 optimisations utilising the ge-

ometric filtration strategy with an equal simulation budget for both the initial and

secondary optimisations (a), pressure distribution and geometry for an example aero-

foil resulting from the geometric filtration optimisation process with CD

CL
= 1.12× 10−2

or CL

CD
= 89.59 (b)

Once again a total of 50 different optimisations are carried out, with the random number

seed used in the Latin Hypercube changing each time. The histories for each of these
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optimisations are presented in Figure 6.5(a). The 50 optimisations result in an average

drag to lift ratio of 1.13 × 10−2 with a standard deviation of 3.76 × 10−4 equating

to an average lift to drag ratio of 89.0. This equates to a 23.6% improvement in the

objective function over that of the baseline aerofoil. Applying the geometric filtration

optimisation strategy to this design problem has therefore resulted in an average of

84.1% of the improvement obtained with the genetic algorithm. From Figure 6.5(a) it

is also observed that a number of the final designs actually achieve a drag to lift ratio

similar to that of the direct GA. The average results of these optimisations along with

those of the traditional krig and the GA are presented together in Table 6.1.

Figure 6.5(b) shows a typical aerofoil resulting from an optimisation using this im-

plementation of the geometric filtration strategy. Upon comparison to the aerofoil in

Figure 6.4(b), resulting from the traditional kriging optimisation, one can observe the

removal of the shockwave but with a reduction to the oscillations in upper surface pres-

sure. The reduction in the upper surface pressure and increase in the lower surface

pressure has been maintained. The optimisation has also resulted in an aerofoil with a

more significant reduction to the leading edge curvature, something which is observed

with the direct GA, but which is not as pronounced in Figure 6.4(b).

Upon comparison of the optimisation histories of Figures 6.4(a) and 6.5(a) a disadvan-

tage of the current implementation of the geometric filtration strategy can be observed.

The application of geometric filtration appears to have resulted in an increase in the

variance of the final designs. The standard deviation of the drag to lift ratio for the

traditional kriging strategy was 2.17 × 10−4 while geometric filtration resulted in an

increased standard deviation of 3.76 × 10−4. Therefore, although geometric filtration

results in a better design on average, there is slightly less consistency in the quality of

the final designs.

Consideration of the total optimisation time leads to the observation of another advan-

tage of geometric filtration over the traditional kriging based optimisation. Instead of

an average optimisation time of 22.0 hours, the utilisation of geometric filtration has re-

sulted in an average optimisation time of 4.15 hours. As the krig tuning process is again

responsible for the majority of the optimisation time, geometric filtration has resulted

in a substantial reduction in tuning cost. This reduction in cost can be explained when

one considers the actual tuning process in each optimisation, particularly the size of the

correlation matrix, R, used to calculate the likelihood, Equation 2.25.

In traditional kriging, the correlation matrix begins 100× 100 in size and steadily grows

as more update points are evaluated until, when the hyperparameters are to be tuned for

the final time, the matrix is 280×280 in size. The above implementation of the geometric

filtration strategy however begins with a correlation matrix of 80 × 80 which grows to

140× 140 by the final tune of the initial optimisation. Following the reparameterisation

process, 110 of these design points are filtered out and 50 new points added from the
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design of experiments of the secondary optimisation. The correlation matrix therefore

grows steadily from 80×80 to 160×160 when the hyperparameters of the secondary krig

are tuned for the final time. As the correlation matrix remains consistently smaller, the

O(n3) cost of the factorisation in each likelihood evaluation is reduced hence reducing

the overall cost of the hyperparameter tuning considerably.

The reduction in the total number of variables from 20 to approximately 14 in the

secondary optimisation problem, also has an impact on the overall tuning cost. The

reduction in dimensionality reduces the cost of constructing the correlation matrix in

each likelihood evaluation. This reduces further the overall tuning cost but to a lesser

extent than the reduction in correlation matrix size. Although the number of likelihood

evaluations made in the optimisation of the hyperparameters throughout both of the

above cases are consistent; a 5,000 evaluation GA is followed by a 5,000 evaluation DHC.

The reduction in the number of variables also reduces the number of hyperparameters

requiring optimisation. In theory one could therefore reduce the effort afforded to the

hyperparameter tuning in the secondary optimisation of the geometric filtration process

compared to the initial optimisation.

One should also note that the tuning cost associated with the traditional kriging process

can be reduced through the utilisation of a restricted number of points in the correlation

matrix. As described in Section 4.2, this restricts the size of the correlation matrix

and prevents the tuning cost growing as update points are evaluated and added to the

dataset. However, in this instance the number of hyperparameters remains constant

throughout. In the case of geometric filtration the hyperparameter optimisation reduces

in complexity due to the reduced number of variables. This both reduces slightly the

cost of correlation matrix construction and the overall complexity of the hyperparameter

optimisation problem.
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6.6 Conclusions

An optimisation strategy involving two kriging based response surface optimisations and

a POD based reparameterisation has been introduced and applied to the optimisation

of an aerofoil for minimum drag to lift ratio. This strategy, termed geometric filtration,

was demonstrated to outperform a traditional kriging based optimisation, producing

better designs for a considerable reduction in overall optimisation cost.

The geometric filtration strategy applies an initial kriging response surface model op-

timisation to the original problem. From the results of this optimisation a number of

good design points are selected to form a snapshot ensemble for the purposes of proper

orthogonal decomposition (POD). The POD basis functions then act as a reparameter-

isation of the original problem, filtering out badly performing designs and reducing the

number of variables. A secondary kriging response surface based optimisation is then

carried out in which the modal coefficients of the POD bases are optimised.

The optimisation of a transonic aerofoil for minimum drag to lift ratio was used as a test

case to compare the geometric filtration strategy to a traditional kriging based optimi-

sation and an extensive direct optimisation using a genetic algorithm. The traditional

kriging strategy achieved 76.3% of the improvement obtained by the genetic algorithm

but with only 300 objective function evaluations. However, applying geometric filtration

to the same problem, again using 300 objective function evaluations, produced designs

achieving 84.1% of the improvement obtained with the genetic algorithm, a substantial

improvement over the traditional kriging strategy.

Due to a reduction in the total number of variables and the size of the correlation

matrix used in the calculation of the concentrated likelihood post reparameterisation,

the application of the geometric filtration strategy realises a drastic reduction in the

cost of surrogate model construction reducing from a total of 22.0 hours when using the

traditional kriging strategy to a much more respectable 4.2 hours.



Chapter 7

Further Analysis of Geometric

Filtration

7.1 Introduction

The previous chapter introduced the basic concept of geometric filtration and demon-

strated the capabilities of the technique with respect to the optimisation of a two dimen-

sional transonic aerofoil. Although the strategy improved upon the traditional kriging

approach in terms of both an increase in mean lift to drag ratio and a reduction in overall

tuning time, there was no attempt to refine the parameters controlling the strategy.

The following chapter therefore attempts to illuminate the impact of these controlling

parameters on the performance of the geometric filtration strategy. First the influence

of the proportion of the total simulation budget used prior to the reparameterisation

is considered. This is followed by an investigation into the influence that the size of

the snapshot ensemble has on performance. The influence that the number of POD

bases selected has on both the recreation of the ensemble geometry and aerodynamic

coefficients within the reparameterised design space is also considered along with the

effect on the optimiser’s performance.

The reduction in hyperparameter optimisation time associated with the geometric fil-

tration strategy was mainly due to the reduction in the size of the kriging correlation

matrix after the POD based reparameterisation. In an attempt to reduce the tuning

time, this chapter also considers the effect of a restricted correlation matrix size on the

performance of the traditional kriging strategy.

With the aim of maximising the performance of geometric filtration, this chapter con-

cludes by applying the results of each of these investigations into a single optimisation,

the final results of which, aim to demonstrate the full performance gains offered by the

technique.

106
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7.2 The Influence of the Initial & Secondary Optimisation

Budgets

Of the many parameters influencing the geometric filtration strategy, the ratio of the

total optimisation budget used in the initial and secondary optimisations could be con-

sidered one of the most significant. The designs evaluated during the course of the initial

optimisation are used in the reparameterisation process, hence one would expect that

the more effort expended in this initial optimisation the better the snapshot aerofoils

and the more important the features captured by the POD bases.

As always, optimisation is somewhat of a battle between exploration and exploitation. In

this case, increasing the effort applied to exploration in the initial optimisation reduces

the budget available to the secondary optimisation to exploit the reduced set of variables

resulting from the reparameterisation. To investigate this fully two further optimisations

are considered using the geometric filtration strategy employing different simulation

budgets in the initial optimisation.

The first of these uses one third of the total simulation budget in the initial optimisa-

tion, while the second uses two thirds. The other parameters remain identical to that of

the initial geometric filtration optimisation. The DOE of both the initial optimisations

use approximately half of the total budget for that optimisation, while the secondary

optimisation uses one third. The alternate tuning strategy is again employed with 30

aerofoils selected to form the snapshot ensemble using a clustering algorithm. Once

again the first N POD bases are selected to reproduce 99.99% of the cumulative per-

centage variation. The results for each of these optimisations along with those for the

initial optimisation, which splits the total simulation budget evenly between the initial

and secondary optimisations, are presented in Table 7.1. It should be noted that the

optimisation using two thirds of the simulation budget in the initial optimisation com-

mences with a DOE identical to that of the traditional krig defined in Section 6.5.3.

This case therefore provides a direct performance comparison to the traditional kriging

approach.

Initial : Secondary
Mean CD

CL
Std CD

CL
Mean CL

CD
Std CL

CD

Time
Budget (hr)

A 1:2 1.14× 10−2 4.14× 10−4 88.0 3.15 5.50
B 1:1 1.13× 10−2 3.76× 10−4 89.0 2.98 4.15
C 2:1 1.14× 10−2 2.69× 10−4 88.0 2.08 5.11
D 2:1* 1.13× 10−2 2.65× 10−4 88.6 2.06 4.95

* Secondary optimisation containing no additional DOE points, only updates to a surrogate
model defined using the snapshot ensemble points.

Table 7.1: Comparison of geometric filtration optimisations using different ratios of
simulation budgets in the initial and secondary optimisations.
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The results presented in Table 7.1 indicate that although geometric filtration consistently

outperforms the traditional krig, in terms of the average final objective function, the size

of the initial optimisation budget has a noticeable impact on the consistency in the final

designs and a slight effect on the quality of these designs. Reducing the initial budget

to one third, (run A), slightly increases the average objective function of the final design

but also introduces a larger variation in the final objective function. Increasing the ratio

to one half, (run B), results in a reduction in the variation and slightly better designs

on average. A further increase to two thirds, (run C), results in a slight increase in the

average final objective function but a further reduction in the variation of these designs.

The results of this optimisation in particular serves to reinforce the performance improve-

ment offered by geometric filtration over the traditional kriging strategy. Both run C

and the traditional kriging optimisation begin from an identical DOE, but implementing

the reparameterisation of the problem results in better designs on average.
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Figure 7.1: Optimisation histories for each of the 50 optimisations utilising the geo-

metric filtration strategy with one third (a) and two thirds (b) of the total simulation

budget used in the initial optimisation

The optimisation histories of Figures 7.1(a), 7.1(b) and 6.5(a) help to explain these

results more clearly. From these optimisation histories one can observe that as more

effort is applied to the initial optimisation the quality of the designs obtained by the

end of the initial optimisation improves. This results in a snapshot ensemble containing

better designs hence the resulting filtration is able to retain better geometric features

and produce better designs in the secondary optimisation. One can also observe that the

variation in the final designs is related to the variation in the designs obtained from the

initial optimisation. A large spread in the quality of the initial optimisation produces a

corresponding spread in the final design (Figure 7.1(a)). Once again this is related to

the quality of the designs from the initial optimisation, providing the snapshot ensemble

with a series of poor designs where the reparameterisation will not contain information

to significantly improve the design.
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However, increasing the effort applied to the initial optimisation comes at the cost of a

reduction in the ability to effectively optimise the reparameterised problem. Although

better designs are found from which to construct the reparameterisation, fewer function

evaluations remain to exploit the reparameterisation fully. This results in a slight wors-

ening of the objective function of the final design observed when two thirds of the total

simulation budget is used in the initial optimisation. This can be countered to some

degree by reducing the size of the DOE evaluated at the beginning of the secondary op-

timisation. As the POD bases have been chosen to represent 99.99% of the cumulative

percentage variation, these points effectively exist within the secondary optimisation

design space. Using only these points as the DOE of the secondary optimisation frees

up more simulations to be used as updates to the kriging model. As seen by the final

result of Table 7.1, this produces designs with an average objective function close to

that of the initial geometric filtration optimisation, but with a much smaller variation

in the objective function of the final designs.

7.3 The Influence of Snapshot Ensemble Size

The initial geometric filtration optimisation used a total of 30 snapshot aerofoils in the

ensemble. To judge the effect of ensemble size the secondary optimisation is repeated a

further four times, varying ensemble size. For each of these additional optimisations the

same initial optimisation using the original aerofoil parameterisation is used, thereby

ensuring only the impact of ensemble size is observed. Snapshot ensembles of 10, 20, 30,

40 and 50 are all considered, the results of which are presented in Table 7.2.

Size of Snapshot
Mean CD

CL
Std CD

CL
Mean CL

CD
Std CL

CD

Time Mean No.
Ensemble (hr) of Bases

10 1.16× 10−2 3.36× 10−4 86.4 2.25 2.85 8.5
20 1.14× 10−2 3.46× 10−4 87.8 2.65 3.64 12.7
30 1.13× 10−2 3.76× 10−4 89.0 2.98 4.15 14.1
40 1.13× 10−2 3.48× 10−4 88.8 2.71 4.52 14.8
50 1.11× 10−2 3.48× 10−4 90.1 2.82 5.87 15.4

Table 7.2: Comparison of results using the geometric filtration optimisation method-
ology with an increasing snapshot ensemble size for a consistent 1:1 ratio of simulations

in the initial and secondary optimisations.

Increasing the size of the snapshot ensemble, especially if a clustering algorithm is used

to select the design points, increases the diversity of designs within the ensemble hence

increasing the number of bases required to represent 99.99% of the cumulative percent-

age variation. The number of bases required increases with the number of snapshot

aerofoils, however, after about 30 snapshots the increase in the number of bases is not

as pronounced. This indicates that even though further snapshots are adding some in-

formation they are similar to those already included in the ensemble so fewer additional

bases are required in order to fully represent them.
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Increasing ensemble size results in an improvement in the average objective function

of the final design. As suggested by the increase in the number of bases, adding more

designs to the ensemble increases the variation of geometries which can be represented

hence increasing the size of the design space. A larger more versatile design space results

in the capacity to create better geometries and thus a greater reduction in objective

function.

This can be visualised by considering the optimisation histories of Figures 7.2(a) and

7.2(b). In Figure 7.2(a) one can observe the progress of the secondary optimisation

based on the POD bases defined using an ensemble of 10 snapshot aerofoils. Using the

reparameterisation resulting from these snapshots in the secondary optimisation results

in less improvement in objective function compared to that of Figure 7.2(b). Here the

reparameterisation is based on 50 snapshots resulting in a more flexible reparameterisa-

tion and therefore produces a greater improvement in objective function on average.

One should note that as the number of bases increases so too does the number of variables

in the secondary optimisation, thereby increasing the difficulty of this optimisation given

a limited simulation budget. However, as discussed previously, if such a large cumulative

percentage variation is used to select the POD bases the ensemble design points exist

within the design space of the secondary optimisation. These points can therefore be

added to the initial DOE of the secondary optimisation. A larger ensemble size therefore

means a larger DOE in the secondary optimisation and the negative impact of the

increase in dimensionality is somewhat reduced. The larger number of points in the

secondary optimisation however does result in an increase in krig tuning time due to

the larger correlation matrix, as shown by the results of Table 7.2. An increase in the

number of variables in the secondary optimisation also results in an increase in the

number of hyperparameters and increases the complexity of the tuning process. The

cost of constructing the correlation matrix in each likelihood evaluation also increases.
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Figure 7.2: Optimisation histories for the geometric filtration strategy with the repa-

rameterisation based on 10 (a) and 50 (b) aerofoil snapshots
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7.4 The Influence of POD Bases Selection

In the above analysis it has been assumed that a cumulative percentage variation of

99.99% is enough to reproduce the snapshot aerofoils to such a degree that they exist

within the design space of the secondary optimisation. We now consider the relaxation

of this limit on the cumulative percentage variation and the subsequent ability of the

remaining POD basis functions to recreate the geometry of the original snapshot aerofoils

and, more importantly, the effect of any error in the geometric reconstruction on the

correct prediction of lift and drag.
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Figure 7.3: Demonstration of the accurate recreation of the original snapshot aerofoils

with increasing number of POD bases (a) and the effect this has on the error in lift and

drag coefficients (b)

We begin by analysing the recreation of 50 snapshot aerofoils from a typical ensemble

used in the previous analysis. This large ensemble was selected so as to provide a more

meaningful average of the effect of reducing the number of POD bases. Figure 7.3(a)

shows the change in the average error in the recreation of the geometry of the original

aerofoils as the number of bases used in the recreation increases. Obviously with only a

few bases the original aerofoils cannot be accurately recreated but increasing the number

of bases produces a rapid reduction in the error. For this particular ensemble the first

16 POD bases result in a cumulative percentage variation of greater than 99.99%. This

equates to a small average root mean square (RMS) reconstruction error of 3.64× 10−5.

Let us now consider the effect of this error in geometry recreation on the aerodynamic

properties used in the current aerofoil optimisation, specifically lift and drag. Fig-

ure 7.3(b) shows the average absolute error in both CL and CD as the number of bases

used to recreate the original ensemble of aerofoils is increased. As expected, increasing

the number of bases, and hence the accuracy of the geometric recreation, results in a
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reduction in the error of both lift and drag. This reduction is however not as rapid as

that of the reduction in geometric error.

It is generally recognised that even small changes to a geometry can significantly alter

these aerodynamic coefficients. This is especially true in the transonic flow regime

considered here, where slight changes to geometry can affect shock strength and position

and hence lift and drag. A relatively small error in the recreation of the geometry is

therefore required to accurately reproduce the aerodynamic response.

The results presented in Figure 7.3(b) show that when 16 POD bases are used, the error

in CL and CD are, respectively, 4.40× 10−3 and 8.02× 10−5 on average. An average CD

error of just under one drag count could be considered acceptable for the purposes of

including the snapshot objective function values within the DOE of the secondary opti-

misation. However, including these objective function values in a secondary design which

has utilised a smaller number of POD bases would be unwise unless provision is made

for the possible error in these results. Without such a provision the response surface

would not accurately represent the true response of the objective function to changes in

the POD basis coefficients, therefore introducing discontinuities in the response surface

which may hamper the secondary optimisation.

To further investigate the impact of POD bases a total of eleven further optimisations

are carried out, results of which are presented in Table 7.3. Each of these optimisations

uses an identical initial optimisation and an identical snapshot ensemble of 30 aerofoils.

The only difference here is that, after the POD bases are calculated, only the specified

number of bases are used in the aerofoil parameterisation of the secondary optimisation.

With the above observations in mind the objective function values of the snapshot

aerofoils are not included in any of the DOEs of the secondary optimisations. In all

cases a budget of 150 simulations is used in the secondary optimisation with one third

of these reserved for the DOE.

No. of
Mean CD

CL
Std CD

CL
Mean CL

CD
Std CL

CD

Time
POD Bases (hr)

1 1.20× 10−2 3.79× 10−4 83.5 2.70 2.16
2 1.20× 10−2 3.77× 10−4 83.7 2.69 2.25
4 1.18× 10−2 4.42× 10−4 84.7 3.26 2.41
6 1.16× 10−2 4.06× 10−4 86.4 3.05 2.55
8 1.15× 10−2 3.74× 10−4 87.4 2.88 2.68
9 1.14× 10−2 3.80× 10−4 87.9 2.95 2.78
10 1.13× 10−2 3.85× 10−4 88.7 3.02 2.89
11 1.13× 10−2 3.66× 10−4 88.5 2.89 2.98
12 1.13× 10−2 3.38× 10−4 88.6 2.64 3.06
13 1.13× 10−2 3.62× 10−4 88.5 2.86 3.13
14 1.13× 10−2 3.49× 10−4 88.5 2.72 3.25

Table 7.3: Performance results for the geometric filtration strategy when the sec-
ondary optimisation employs a reduced number of POD bases in the parameterisation.
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Figure 7.4: Demonstration of the change in average objective function of the best

design found as the number of POD bases used in the reparameterisation is increased,

error bars denote ± one standard deviation

The results of Table 7.3, which are also presented graphically in Figure 7.4, demonstrate

the importance of including a significant number of the POD bases in the reparameteri-

sation. As expected, the more bases included the greater the flexibility of the secondary

parameterisation and the better the designs which can be produced, up to a point. Fig-

ure 7.4 demonstrates this very clearly, with a downward trend in the average objective

function of the final design as more POD bases are used.

However, when more than ten bases are used in the reparameterisation there is no

additional improvement in the objective function, in fact the designs are, on average,

slightly worse. As the number of bases increases so to does the number of variables in

the secondary optimisation. Given a constant simulation budget there will come a point

when the number of simulations is insufficient to result in a continual improvement in

objective function. Continually increasing the number of variables may therefore result

in a reduction in the quality of the final designs obtained, a phenomenon which was

observed previously in Chapter 3.

Including the objective functions from the snapshot aerofoils in the DOE of the secondary

optimisation increases the quality of the initial kriging response surface and improves

the average objective function of the final design. This accounts for the improvement

in average objective function obtained with the initial geometric filtration results, Sec-

tion 6.5.4, over those presented in Table 7.3. Even though the average number of bases is

larger, including the additional points helps the secondary optimisation achieve a better

design.

The reduction in tuning time over the previous strategies is a direct result of not in-

cluding the objective functions of the snapshot aerofoils within the secondary DOE.

Without these extra points the size of the correlation matrix is reduced and therefore

so is the total tuning cost. Once again the number of hyperparameters is reduced in
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the secondary optimisation when fewer bases are utilised. Although not implemented

here, the effort applied to the solution of the hyperparameter tuning problem could be

reduced accordingly.

In conclusion, if a reduced number of POD bases is used in the secondary optimisation,

careful consideration is required of the available simulation budget, the degree of geo-

metric flexibility in the reparameterisation and the accuracy to which the ensemble of

aerofoils are recreated.

7.5 Performance of a Restricted Kriging Dataset

Throughout the previous analysis of the geometric filtration strategy the impact of the

reduction in the number of sample points on the total optimisation time has been evident.

The reduction in the number of sample points reduces the cost of every evaluation of the

concentrated likelihood reducing the total optimisation cost from 22.0 hours, using the

traditional kriging strategy, to an average 4.2 hours for the initial geometric filtration

optimisation. The total optimisation time is reduced even further, to 2.9 hours, when

the objective functions for the snapshot ensemble are not included in the DOE of the

secondary optimisation and ten POD bases are used in the reparameterisation.

Reconsidering the traditional kriging strategy it is obvious that maintaining a constant,

restricted number of sample points reduces the overall tuning time. However, what effect

does such a restriction have on this strategy’s overall performance, and how does the

performance compare to that of geometric filtration at an equivalent total optimisation

cost? To this end a total of five additional optimisations are performed using the tradi-

tional kriging optimisation strategy but restricting the number of sample points within

the design space to the best 50, 75, 100, 150 and 200. For example, restricting the de-

sign space to 150 points results in the optimisation progressing normally after the DOE

until the limit of 150 points is reached. Once this limit is reached the objective function

values of future updates are compared to those of the points currently in the design

space and from these points the best 150 are retained. The results of this investigation

are presented in Table 7.4 and graphically in Figures 7.5(a) and 7.5(b).

Kriging
Mean CD

CL
Std CD

CL
Mean CL

CD
Std CL

CD

Time
Sample Size (hr)

50 1.21× 10−2 6.25× 10−4 82.6 4.22 1.49
75 1.15× 10−2 4.15× 10−4 86.8 3.01 2.67
100 1.14× 10−2 2.03× 10−4 88.0 1.56 4.31
150 1.13× 10−2 1.59× 10−4 88.2 1.24 8.07
200 1.15× 10−2 1.93× 10−4 87.3 1.45 11.59
300 1.16× 10−2 2.17× 10−4 86.4 1.62 21.97

Table 7.4: Performance results for the standard kriging optimisation approach with
varying sample size.
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Figure 7.5: Total wall time for a kriging optimisation as the number of sample points

used is reduced (a), average and standard deviation of the objective function of the

final design as the number of sample points used is reduced (b)

Figure 7.5(a) demonstrates the large reduction in the total optimisation time achiev-

able by restricting the maximum number of points within the response surface model.

Limiting the model to include only the 200 best points reduces the total time by ap-

proximately 47% while limiting the model to 100 points reduces the total time by 80%.

From these results one can observe that restricting the number of points to a maximum

of 100, results in a total optimisation time much more competitive with that of the ini-

tial geometric filtration results. However, geometric filtration still slightly outperforms

the restricted krig in terms of the average final objective function. The restricted krig

results in an average final objective function of 1.14 × 10−2, while geometric filtration

results in an average final objective function of 1.13× 10−2.

It should be noted that restricting the number of sample points has resulted in an

improvement in the overall performance of the traditional kriging strategy, with the

average final objective function decreasing from 1.16 × 10−2 with an unrestricted krig,

to 1.13×10−2 when the number of sample points is restricted to 150. This is however still

not as great an improvement in objective function as obtained with the initial geometric

filtration strategy.

In Section 7.4 a further reduction in the geometric filtration tuning time has been demon-

strated through a reduction in the number of POD bases used in the reparameterisation.

This reduction in bases prevents the original snapshots being reconstructed accurately

hence they are not included in the DOE of the secondary optimisation. This reduces

the total optimisation time to approximately 2.87 hours, 14% of the total time of the

traditional krig without any restriction on the number of sample points. In order for the

traditional krig to achieve a total time approaching this, the number of sample points

would have to be restricted to around 75. As the results of Table 7.4 show, this pro-

duces an average final objective function greater than geometric filtration achieves. The
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consistency between the final designs is also better when using the geometric filtration

strategy, producing a standard deviation in the objective function of 3.85 × 10−4 com-

pared to the kriging strategy’s standard deviation of 4.15× 10−4 when restricted to 75

sample points.

It must be noted that the above investigations employ a subset of the best points in the

construction of the correlation matrix during both the likelihood optimisation and the

krig prediction. This focuses the optimisation to regions around the best points with the

predictor reducing to the mean in those regions where points have been excluded due

to their poor quality. This is similar in some respects to geometric filtration where the

optimisation is focused via the reparameterisation procedure. Considering only the best

points in both the likelihood optimisation and prediction poses problems if expected

improvement, Section 2.3.4, were adopted to generate update points.

Although not considered here, an alternative is to consider a subset of the best points

during only the hyperparameter tuning process, with the complete dataset being em-

ployed in the construction of the kriging predictor. This produces a correct set of

hyperparameters in the region of the best designs and with broadly the correct fea-

tures over the whole design space. The resulting predictor could therefore be considered

correct in regions of interest but with more of the global features of the design space cap-

tured than the strategy employed above. However, open questions remain as to which

strategy performs best and precisely how points should be selected to form the reduced

dataset, especially in the case of expected improvement. Instead consider the above

results as a demonstration of the potential of a restricted dataset within the framework

of a traditional kriging optimisation.

7.6 A Restricted Dataset Within the Geometric Filtration

Framework

As the geometric filtration optimisation strategy is based upon a series of surrogate

model optimisations it stands to reason that any technique which can be applied to a

normal surrogate model can also be applied to geometric filtration. The initial or sec-

ondary optimisations could make use of gradient or Hessian enhanced surrogate models,

different updating formulations and could even incorporate variable fidelity simulations

through co-kriging.

We have observed that by restricting the number of sample points within a design space

through the retention of only the best points, the total optimisation time of a traditional

krig can be significantly reduced. However, not only was the time reduced but the

quality of the final design was observed to improve to some degree. We now consider

the application of this restriction in the number of sample points to both the initial
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and secondary optimisations of the geometric filtration strategy, along with a number

of other enhancements to the strategy based on the results presented previously.

Increasing the initial optimisation simulation budget was found to increase the consis-

tency in the designs obtained but at the cost of a slight reduction in the average objective

function of the final design. This reduction was countered by removing the additional

DOE points from the secondary optimisation and using only the points from the snap-

shot ensemble as the basis for the kriging response surface. Increasing the size of the

snapshot ensemble was observed to increase the variation in the resulting geometries

and hence increase the flexibility of the parameterisation used in the secondary optimi-

sation. However, this came at the cost of a slight increase in the number of variables in

the secondary optimisation and a slight increase in overall optimisation time.

We now consider an implementation of the geometric filtration strategy which takes all of

the observations made throughout the current chapter into account. Once again a total

of 300 simulations are used in the optimisation. To attempt to increase the consistency

between the final designs, two thirds of the total simulation budget is used in the initial

optimisation with half of these reserved for the DOE. The snapshot ensemble comprises

of a total of 50 aerofoils in an attempt to increase the flexibility of the parameterisation

used in the secondary optimisation. To improve the performance of the secondary opti-

misation the additional DOE is once again neglected and the remaining 100 simulations

are used as updates to a kriging model initially defined using the objective functions of

the snapshot points. Once again N bases are selected to represent at least 99.99% of

the cumulative percentage variation. A restricted dataset is employed in both the initial

and secondary optimisation strategies. In a manner similar to that of Section 7.5 the

best 100 points are kept throughout the course of the initial optimisation, while the best

50 points are kept throughout the course of the secondary optimisation.
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Figure 7.6: Optimisation histories for each of the 50 geometric filtration optimisations

using a restricted number of sample points (a), pressure distribution and geometry for

an example aerofoil with CD

CL
= 1.11× 10−2 or CL

CD
= 90.3 (b)



Chapter 7 Further Analysis of Geometric Filtration 118

The above implementation of the geometric filtration strategy obtained an average CD
CL

of 1.11× 10−2 which equates to a CL
CD

of 90.3. By adjusting the setup of the strategy in

this way, 88.6% of the improvement in objective function obtained by the direct search

has now been obtained with approximately 3% of the simulation budget. Utilising a

larger proportion of the total simulation budget in the initial optimisation results in

an increase in the consistency between the final designs with a standard deviation of

the final objective function reducing to 3.20 × 10−4 from 3.76 × 10−4 for the initial

implementation of the strategy. This is still not quite as good as that obtained during

the original investigation into the impact of initial optimisation size and is probably

due to the negative impact of the increase in the number of variables in the secondary

optimisation.

The optimisation histories of Figure 7.6(a) help to demonstrate graphically the clear

improvement over both the traditional krig and the various previous implementations

of the geometric filtration strategy presented in Section 6.5.4. Figure 7.6(b) presents an

example aerofoil resulting from a typical optimisation. As with the aerofoil resulting from

the initial geometric filtration strategy the upper surface shockwave has been removed

but there is a further reduction in upper surface pressure and an increase in lower

surface pressure. The combination of these features produce a better performing aerofoil

with a smaller drag to lift ratio than was obtained by the traditional kriging strategy,

Section 6.5.3.

Not only has this particular implementation of the geometric filtration strategy resulted

in consistently good designs but a restriction in the number of sample points in both

surrogate models has resulted in a substantial reduction in overall optimisation time

with each optimisation taking an average of 2.51 hours. The total optimisation time

has in fact been reduced to such a degree by the implementation of geometric filtration

that it is now faster than the extensive optimisation using the GA and DHC, which took

approximately 2.78 hours to complete.

Applying the lessons learned from the analysis of the performance of the geometric

filtration strategy has therefore resulted in an optimisation strategy which not only

outperforms a traditional kriging strategy but does so for a considerable reduction in

overall optimisation time even when applied in conjunction with a solver as fast as VGK.

7.7 Conclusions

The major parameters controlling the performance of the geometric filtration strategy,

introduced in Chapter 6, have been investigated. The impact of the size of the initial

optimisation budget, the size of the POD snapshot ensemble and the number of POD

basis functions selected, were all considered.
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The results of these investigations indicate that increasing the size of the initial op-

timisation budget effects consistency between final designs. Increasing the number of

snapshot aerofoils produces better final designs by increasing the flexibility of the pa-

rameterisation of the secondary optimisation. Selecting a reduced number of POD bases

reduces the cost and complexity of the secondary optimisation but at the expense of a

reduction in flexibility of the parameterisation. It was demonstrated that the number

of POD bases used in the secondary optimisation should be capable of capturing a large

percentage of the cumulative variation if the objective function values from the snapshot

aerofoils are to be included within the DOE of the secondary optimisation. Without a

sufficient number of bases the inclusion of these points may introduce discontinuities

into the response surface hampering the optimisation.

A restriction to the number of sample points used in constructing the response surface

was introduced and applied to the traditional kriging optimisation process to make it

more competitive in terms of the total optimisation time. This was found to not only

reduce the total cost of each optimisation but in some cases improve the average objective

function of the final design. Even with this improvement the traditional strategy still

produced designs which were on average worse than those obtained using geometric

filtration.

The flexibility of geometric filtration, with regard to the implementation of performance

enhancing features used in traditional surrogate models was demonstrated with the

application of a restriction in the number of sample points. The previous observations

made regarding the effect of an increased initial optimisation budget and an increase

in the size of the snapshot ensemble were also applied. The resulting optimisations

achieved a further improvement in the final average objective function, achieving 88.6%

of the improvement obtained by a direct genetic algorithm for 3% of the total simulation

budget.

In conclusion, Chapter 6 introduced the basic concept of geometric filtration and achieved

both a 3% improvement in the quality of the final design and a 81% reduction in tuning

cost over the traditional kriging strategy. Through investigating the performance param-

eters of the strategy and implementing the subsequent conclusions the strategy achieved

a 88.6% reduction in tuning time and a 4.5% improvement in objective function.



Chapter 8

Transonic Wing Optimisation

8.1 Introduction

The previous five chapters have considered a range of techniques designed to both im-

prove the performance and reduce the tuning cost of kriging.

Chapter 3 demonstrated the importance of a continual reassessment of the hyperparam-

eters of a kriging model throughout the course of an optimisation. The results of this

chapter also showed that the overall cost of tuning could be reduced by simply tuning

the hyperparamaters after every other set of updates to the model with little loss in

performance.

Chapters 4 and 5 first defined an adjoint of the concentrated likelihood function and

then utilised this within a hybridised particle swarm optimisation. This resulted in an

efficient tuning strategy similar in form to dynamic hill climbing, with simultaneous

exploration of unexplored regions of the likelihood space and exploitation via SQP using

the cheap gradient information. Chapter 5 further highlighted the need for a global

exploration of kriging hyperparameters as updates are added to the kriging model.

Chapters 6 and 7 introduced the geometric filtration optimisation strategy. This strategy

was improved, through considerable analysis of the strategy’s control parameters, to a

point where it outperformed the traditional kriging approach in terms of both the quality

of the final design and the total tuning time.

With the exception of geometric filtration, where the alternate tuning strategy was

employed throughout, each of the optimisation techniques discussed above has been

employed, and hence investigated, in isolation. It is therefore the aim of this chapter to

pull these various threads together into one encompassing process. The optimisation of

a transonic wing for minimum drag at a fixed lift is considered as a test case to compare

the performance of this strategy to traditional kriging with hyperparameters tuned after

every update via the baseline “Heavy” tuning strategy introduced in Chapter 3.

120
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8.2 Transonic Wing Design Problem

The baseline geometry for the transonic wing design case, presented in Figure 8.1, is

based upon a similar planform and thickness distribution to the DLR-F4 wind tunnel

model, Redeker and Müller [1985]. The wing has a semi-span of 0.52m with a crank

0.16m from the centreline. Leading edge sweep is identical to that of the DLR-F4 at 27.1°
while washout varies linearly from root to tip culminating in the tip twisted downwards

by 5° relative to the wing setting angle. The wing is defined by the 12% thick RAE-2822

transonic aerofoil at the tip and crank while a modified 14% thick RAE-2822 aerofoil is

used at the root with the sections varying linearly between root and crank. The resulting

thickness distribution is similar to that of a typical civil airliner, with a thicker root to

accommodate the internal wing structure and fuel tanks.

27.1
o

y

x

0.06m

0.2m

0.16m

0.52m

Figure 8.1: Baseline wing planform.

Aspect Ratio 9.4 Wing Area (m2) 0.115
Semi-span (m) 0.52 Wing Root Chord (m) 0.2
Λ1/4 25° Taper Ratio 0.3
Washout 5° Dihedral 0°
Aerofoil Section RAE-2822 Mach No. 0.8
Reynolds No. 6× 106 Target CL 0.45
Baseline CD 0.0204

Table 8.1: Definition of the baseline transonic wing geometry and flow conditions.

The wing is parametrised in a similar manner to the inverse design problem presented in

Section 3.4. Two Hicks-Henne bump functions are applied to both the upper and lower

surfaces of the defining aerofoil sections. The same bump functions are applied to the

tip, crank and root with the amplitude, position and sharpness of each bump permitted

to vary. Essentially, this results in a wing constructed from a linear spanwise lofting

of the RAE-2822 aerofoil which has been modified by four bump functions. A further

two variables define the twist of the wing at the crank and tip resulting in a total of
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14 variables. Reuther et al. [1999] use a similar parameterisation based on Hicks-Henne

functions in the optimisation of a business jet wing.

The wing is optimised for a minimum drag at a fixed lift coefficient of 0.45 at Mach 0.8

and a Reynolds number of 6× 106 with respect to the root chord, this being the typical

cruise conditions of a modern wide-body airliner. The analysis of the wing is carried

out using a combination of the full potential solver FP and a viscous drag correction

employing VGK. Although this wing analysis procedure, presented in Appendix E, is not

quite as accurate at transonic conditions as it is at low speed it does provide a relatively

cheap estimation of total drag which shall suffice for the purposes of this investigation.

The wing is analysed up to four times for every objective function evaluation in order

to calculate the setting angle producing the required lift. Two simulations, at different

angles of attack, are used to calculate the wings lift curve slope. Based on this lift

curve slope, and the assumption of linear change in lift with angle of attack, a third

simulation is carried out at the angle of attack predicted to give the required lift. If

necessary a fourth simulation, based on a linear interpolation of the lift coefficients and

corresponding angles of attack, is carried out if the error in the lift coefficient resulting

from the third simulation is more than ±0.0025.

With the required setting angle found, the viscous drag prediction is carried out and

added to the wave and vortex drag predictions from FP resulting in a prediction of the

total drag. This entire procedure takes approximately 45 minutes on a single processor.

The accuracy of the drag prediction at the desired flow conditions is therefore sacrificed

for a cheaper overall simulation. A RANS solver, for example, would require multiple

processor cores and take upwards of eight hours to evaluate a wing at a single angle of

attack. In the 24-32 hours taken to evaluate a single objective function using such a

solver, an entire optimisation can be completed using FP. This difference in evaluation

cost is essential to enable averaging of the following optimisation strategies. In essence

accuracy is substituted for repeatability since the aim is to examine the design process

rather than the design itself.

8.3 Traditional Kriging

In this test the traditional kriging optimisation employs a total budget of 210 objective

function evaluations. Of this total budget 70 are employed in the initial design of

experiments with the remaining 140 evaluations providing 14 batches of 10 updates

to the surrogate model. The kriging hyperparameters are tuned after every batch of

updates to the model via the “Heavy” strategy which involves an initial 5,000 likelihood

evaluations using a GA followed by a further 5,000 using a dynamic hill climber. Once

again, for the purposes of averaging, a total of 50 complete optimisations are carried

out, each commencing from a different initial design of experiments.
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The 50 optimisations obtain an average final drag coefficient of 0.0170 equating to a

16.8% improvement over the drag of the baseline wing. The search histories are presented

in Figure 8.2 for each of the 50 optimisations. The outlying design of Figure 8.2 is the

result of an apparent under prediction of the viscous drag relative to that obtained by

the other optimised designs and has therefore been removed from the calculations of

mean and standard deviation. Over the course of an optimisation an average of 4.8

hours was spent during each run tuning the hyperparameters.

0 50 100 150 200
0.015

0.016

0.017

0.018

0.019

0.02

0.021

C
D

Evaluation No.

 

 

D
O

E

Search History

Figure 8.2: Search histories of the traditional kriging based optimisation employing

the Heavy tuning strategy after every set of updates.

Figure 8.3 demonstrates the changes in both the sectional geometry and spanwise twist

distribution of the best design resulting from an example optimisation. As can be

observed the Hicks-Henne functions have reduced the thickness of the wing sections

from the leading edge to around the three quarter chord point. Aft of this point the

aerofoil sections return to the baseline shape. Such shape changes are typical of design

optimisations carried out at a single operating point since robustness to variations in

angle of attack, for example, are not required.

The root and crank pressure distributions of Figures 8.3(a) and 8.3(b) demonstrate a

reduction in shock strength along the wing and the movement of the shockwave forward

by approximately 5% of the chord. The reduction in shock strength results in a reduction

in the thickening of the boundary layer aft of the shockwave which leads to a reduction

in skin friction drag. The viscous drag coefficient therefore drops from 0.0107 for the

baseline wing to 0.0100 for the wing presented in Figure 8.3.

The final design results in a reduction to the degree of washout at both the crank and

tip. This coupled with the modifications to the wing sections results in a movement
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of the spanwise generation of lift away from the wing crank and towards the tip. This

is reflected in the difference between the pressure distributions at the wing root, Fig-

ure 8.3(c), where an increase in upper surface pressure relative to the baseline wing can

be observed in conjunction with a relatively consistent lower surface pressure.
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Figure 8.3: Comparison of the root (a), crank (b) and tip (c) aerofoils, sectional

pressure, twist distribution (d) and spanwise loading (e) of a typical design resulting

from the traditional kriging based optimisation (CD = 0.0170) to the baseline wing.

Essentially the optimisation is attempting to balance a reduction in viscous drag co-

efficient and shock strength with the generation of the required lift coefficient. The

modifications to the presented wing reduce the viscous and wave drag inboard of the
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wing crank but also decrease the lift generated by these sections. To balance this the op-

timisation reduces the degree of washout which tends to increase the loading on wingtip.

A similar phenomenon can be observed in the transonic wing optimisations of Keane

and Petruzzelli [2000].

While not considered in this optimisation, the increase in tip loading coupled with the

reduction in thickness could lead to structural problems. Loading the wing tip more

increases the bending moment at the root requiring a stronger and therefore heavier

wing. This could be countered through an estimation of the weight of the wing structure

and then adjusting the required lift accordingly. Heavier wings therefore require more

lift and are penalised in the optimisation by an increase in vortex drag, (see, for example,

Chapter 12 of Keane and Nair [2005]). A constraint on the wing thickness could also be

employed though this would require the construction of an additional surrogate model

and as a result would increase total tuning costs.

8.4 Geometric Filtration with Adjoint Enhanced Tuning

Employing both the geometric filtration strategy defined in Chapter 6 and the hybrid

hyperparameter tuning strategy defined in Chapter 5, the final optimisation strategy is

a little more complicated than that of the traditional kriging strategy employed above.

The optimisation again employs a total budget of 210 objective function evaluations,

commencing with an initial design of experiments of 70 points. The same 50 design of

experiments employed by the traditional kriging optimisation are re-used. This not only

provides a more meaningful comparison between the strategies but reduces the total

number of actual function evaluations required over the course of the study.

Once again a total of 140 objective function evaluations are used to update the surrogate

model. Of these, 70 are employed in the initial optimisation with the remaining 70 used

in the secondary optimisation. Updates are again evaluated in batches of 10 but the

hyperparameters are now only tuned after every other batch of updates. Instead of

the “Heavy” tuning strategy employed above, the hybrid hyperparameter optimisation

strategy of Chapter 5 is employed. This utilises the adjoint of the likelihood and the

equivalent of approximately 2,000 likelihood evaluations.

The combination of the alternate tuning strategy of Chapter 3 and the geometric filtra-

tion strategy results in a total of eight tunes of the hyperparameters, four in the initial

optimisation and a further four in the secondary optimisation. The traditional kriging

strategy above, however, employs a total of 14 hyperparameter tunes over the course of

the optimisation.
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Upon the completion of the initial optimisation, 35 designs are selected via KMEANS

clustering, (Anderberg [1975]), for use in the reparameterisation procedure. The snap-

shot vectors include the perturbations to the upper and lower surface from the Hicks-

Henne functions along with the tip and crank twist angles. As per Chapter 6 a high

cumulative percentage of variation is chosen so that the original designs exist within the

new design space. The 35 designs therefore form the design of experiments of the sec-

ondary optimisation with the remaining 70 objective evaluations used purely to update

the model.

Traditional Geometric Filtration Percentage
Optimisation & Hybrid Tuning Improvement

Average CD 0.0170 0.0169 0.8%
Standard Deviation CD 2.6× 10−4 2.9× 10−4 -12.9%
Total Tuning Time 4.82 1.28 73.4%

Table 8.2: A comparison of the results of the traditional kriging optimisation and the
geometric filtration optimisation with hybrid alternate tuning.

The 50 optimisations obtain an average drag coefficient of 0.0169, which equates to

a 17.4% improvement in drag over the baseline wing design. As shown in Table 8.2,

this equates to a 0.8% improvement over the drag obtained by the traditional kriging

optimisation but at the cost of a 12.9% increase in the consistency between the final

designs. The standard deviation increased from 2.6 × 10−4 when using the traditional

strategy to 2.9 × 10−4 when using geometric filtration. These results are illustrated

by the optimisation histories of Figure 8.4. As with Figure 8.2 the outlying design of

Figure 8.4 is the result of an under prediction of viscous drag and has been removed

from any statistical calculations.

The application of the geometric filtration strategy results in a significant reduction

in overall tuning time, with the total time spent tuning hyperparameters dropping by

approximately 73% from 4.8 hours to 1.3 per run. Not only does the application of the

hybrid tuning strategy in conjunction with tuning after alternate updates, reduce the

total number of likelihood evaluations but the reparameterisation procedure reduces the

size of the correlation matrix from 130×130, at the final tune of the initial optimisation,

to 35× 35 at the initial tune of the secondary optimisation. In contrast, the correlation

matrix constructed by the traditional strategy increases continually from 70 × 70 to

200× 200 by the final hyperparameter tune. As observed in Chapter 6 such a reduction

in correlation matrix size, and to a lesser extent the reduction in the number of variables

in the secondary optimisation, results in a significant reduction in tuning expense.
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Figure 8.4: Search histories of the combination geometric filtration and hybrid alter-

nate tune optimisation.
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Figure 8.5: Comparison of the convergence of the transonic wing design problem after

the DOE when employing traditional kriging and geometric filtration with alternate

hybridised tuning.

Figure 8.5 compares the average optimisation histories of both strategies. Over the

course of the initial optimisation the geometric filtration strategy keeps pace with the

traditional strategy very well and only begins to lose out over the final two sets of
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updates. This is impressive considering that, in terms of the equivalent number of likeli-

hood evaluations, the geometric filtration strategy employs only 11% of the evaluations

carried out by the traditional approach.

The reparameterisation procedure, employing 35 of the designs resulting from the ini-

tial optimisation, results in an average of 12.7 POD bases being required to reconstruct

99.995% of the cumulative percentage variation. This equates to a 9% reduction in the

number of variables in the secondary optimisation. Although the number of variables

does reduce, it is not to the same extent observed with the aerofoil optimisation of Chap-

ter 6. However, unlike the aerofoil optimisation, a slightly larger cumulative percentage

variation is required to recreate the original wings to the desired degree and to therefore

have them effectively exist within the design space of the secondary optimisation. Nev-

ertheless when the reparameterisation is employed in the secondary optimisation, the

geometric filtration strategy immediately begins to outperform the traditional strategy,

Figure 8.5.

Figure 8.6 demonstrates the changes in both the sectional geometry and spanwise twist

distribution of a wing resulting from an example geometric filtration optimisation. The

thickness of the wing has been reduced around 10-100% chord on the upper surface and

around 0-70% chord on the lower surface. The lower surface of the trailing edge also has

a slight indentation around the 95% chord point. Like Figure 8.3, the degree of twist

has been reduced but to a lesser extent.

Like the design presented in Figure 8.3 the shockwave on the upper wing surface has

been moved forward, but not quite as far. Whereas the shockwave at the wing’s crank,

Figure 8.3(b), was at approximately 70% of the chord, the shockwave is now at approx-

imately 75% chord, much closer to the shock’s original position on the baseline wing.

The strength of the shockwave on the wing’s upper surface has also been reduced slightly

over the design of Figure 8.3.

The reduction in shock strength has once again reduced the thickening of the boundary

layer aft of the shock. However, as the shockwave of Figure 8.6 is closer to the trailing

edge of the wing than that of Figure 8.3 the region of the wing affected by the increase in

skin friction drag due to the shockwave is smaller. This and the removal of the adverse

pressure gradient found along the wing leading edge towards the wingtip, Figure 8.3(c)

results in a reduction in the viscous drag coefficient. The viscous drag coefficient of

the wing presented in Figure 8.6 is 0.0093 compared to 0.0100 of the wing presented in

Figure 8.3.

As with the design resulting from the traditional optimisation, the wing loading has

been increased towards the wingtip as the optimisation attempts to reduce the wave

and viscous drag but maintain the required lift coefficient.
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Figure 8.6: Comparison of the root (a), crank (b) and tip (c) aerofoils, sectional

pressure, twist distribution (d) and spanwise loading (e) of a typical design resulting

from the geometric filtration optimisation (CD = 0.0168) to the baseline wing.
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Figure 8.7: Root wing section of a final design, (CD = 0.0169), where the secondary

parameterisation is capable of producing geometries impossible with the initial param-

eterisation.

Figure 8.7 presents the root aerofoils section and pressure distribution of an additional

design resulting from the geometric filtration optimisation. While this design demon-

strates the reduction in drag through the movement of the shockwave to the trailing

edge of the wing it also demonstrates an important feature of the reparameterisation

process.

In this case the parameterisation of the secondary optimisation is capable of producing

designs not previously possible in the initial parameterisation. Consider the upper sur-

face of Figure 8.7. Here, the aerofoil thickness has been increased around both the leading

and trailing edges while simultaneously being reduced in between. The addition of two

Hicks-Henne bump functions to this surface, as is the case in the initial parameterisation,

would be incapable of reproducing such a geometry. Rather, the reparameterisation pro-

cedure has identified that local changes to the leading and trailing edges are required

along with a more general change in the 10-70% chord region. The same is true for the

lower surface with the leading edge radius increased, the thickness reduced between the

10-70% chord region and a small bump added to the trailing edge. Geometric filtration

can therefore not only reduce the number of variables but, for some parameterisations,

simultaneously expand the secondary parameterisation to regions of the design space

unobtainable with the initial parameterisation.

This can be explained further by considering the simple Hicks-Henne based parameter-

isation presented in Figure 8.8. Here a one variable parameterisation has been defined
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consisting of a single Hicks-Henne function where the position of the peak is permitted

to vary and the amplitude and sharpness parameter remain a constant. Clearly the orig-

inal parameterisation can produce a peak at only one point. Assuming two promising

designs were returned, one with a peak at x = 0.1 and another with a peak at x = 0.9

and the proper orthogonal decomposition of a snapshot ensemble containing these two

designs is carried out, only one basis function is required to completely recreate both of

the original geometries. The resulting mean, shown in Figure 8.8 along with the POD

basis function, is not a flat line, instead it contains two peaks the heights of which are

augmented by the addition of the basis function times a modal coefficient. Obviously

when the modal coefficient is equal zero the resulting design will contain two bumps.

The process of geometric filtration has therefore resulted in a new parameterisation

which has expanded the design space to include designs not previously possible with the

original parameterisation but which can still exactly recreate the two selected designs

from the original parameterisation.

Figure 8.8: A simple example of a design space expansion using Geometric Filtration.

8.5 Potential Time Savings

Although a 14 variable problem is considered here, the potential reduction in tuning

cost will improve further as the number of dimensions and hence the number of updates

and function evaluations increases. Figure 1.3 of Chapter 1 demonstrated the total

cost of the hyperparameter tuning process given a 15d total evaluation budget, a 5d

DOE, updates added in batches of 10 evaluations and the hyperparameter optimisation

requiring 10,000 evaluations of a Matlab coded likelihood function, after every update.

The timings presented in Figure 1.3 were calculated based on a full factorial sampling of

timings for a single evaluation of the likelihood function given a particular dimensionality

and sampling density. The resulting timings were then interpolated and used to predict
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the time for 10,000 likelihood evaluations at each stage of the entire optimisation process

as updates are added to the kriging model. A total tuning time could then be calculated

through a summation of these individual times. Utilising this data it is possible to

ascertain an approximation to the total time each of the presented tuning strategies

spends tuning hyperparameters throughout the course of an optimisation. The variation

in total tuning time over a range of problem dimensionalities is presented graphically in

Figure 8.9 for each tuning strategy.

Applying the alternate strategy reduces the total cost by approximately 52%, whilst the

application of the hybrid tuning strategy reduces the total cost by approximately 80%.

Applying the geometric filtration strategy, assuming a 25% reduction in the number

of variables upon reparameterisation and a snapshot ensemble of approximately 2.5d,

reduces the total tuning cost by approximately 66.5%. The application of these strategies

in isolation to a 30 variable design problem, for example, would reduce the total tuning

time from 93.1 hours, to approximately 45.0 hours when tuning after alternate updates,

32.2 hours when applying geometric filtration and 18.6 hours when utilising the hybrid

tuning strategy.
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Figure 8.9: A Comparison of the potential tuning cost savings when employing the

alternate tuning strategy, hybridised tuning, geometric filtration and a combination of

the three.

The application of all three strategies however, has the potential to reduce the total

tuning cost by approximately 96%. This is a significant improvement and would reduce

the total cost incurred in tuning the hyperparameters of a 30 variable problem to ap-

proximately 3.5 hours. Such a large reduction of over 89 hours is enough to carry out



Chapter 8 Transonic Wing Optimisation 133

a series of additional function calls of even a high fidelity computational simulation if

desired.

The 96% reduction in tuning time could be reduced even further by the application

of a restricted dataset in the construction of the correlation matrix used in the tuning

process. As demonstrated in Section 7.5 reducing the size of the correlation matrix in

such a manner can have a considerable impact on the total tuning cost incurred over

the course of an optimisation. Questions remain however, as to how much the dataset

should be restricted, which points should be retained and how this would affect the

optimisation if, say, expected improvement were used to generate update points.

8.6 Conclusions

In this chapter hybrid hyperparameter tuning, alternate tuning and geometric filtration

have been demonstrated in tandem to be effective in the optimisation of a transonic

wing. This combination of optimisation strategies not only considerably reduces the

total tuning time but does so while offering a slight improvement in the quality of the

final designs.

A traditional kriging based optimisation, employing the “Heavy” tuning strategy of 5,000

likelihood evaluations of both a genetic algorithm and dynamic hill climb achieved an

average drag coefficient of 0.0170 which equates to a 16.8% reduction over the baseline

wing design. Combining the three optimisation strategies presented within this thesis

resulted in an average drag coefficient of 0.0169, an improvement of 0.8% over that

obtained by the traditional optimisation.

Tuning the hyperparameters over the course of the traditional optimisation took, on

average, a total of 4.8 hours per run, while a total of only 1.3 hours were spent tuning

over the course of the proposed strategy. This equates to a considerable, 73.4% reduction

in overall tuning time.

When applied to the Hicks-Henne based wing parameterisation, the geometric filtration

strategy demonstrated an interesting result. Not only did the POD based reparame-

terisation procedure reduce the total number of variables in the secondary optimisation

by approximately 9%, but the secondary parameterisation was capable of producing ge-

ometries impossible to reproduce with the initial parameterisation. The upper surface of

one final design was demonstrated to require the addition of more than two bump func-

tions to recreate the geometry. The geometric filtration procedure was therefore able to

recognise that bumps were required in more than two locations with the resulting POD

bases then reflecting this. Geometric filtration can therefore reduce the total number

of variables while, for some parameterisations, simultaneously expanding the secondary

parameterisation to regions of the design space previously unobtainable.
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Based on the assumption of a like for like comparison it is predicted that the combination

of geometric filtration and hybrid and alternate tuning would result in a 96% reduction

in total tuning time. The total tuning time of a 30 variable design optimisation would

therefore drop from 93.1 hours to much more acceptable 3.5 hours.



Chapter 9

Conclusions & Recommendations

for Further Work

9.1 Conclusions

The proliferation of surrogate modelling in the field of engineering design optimisation

has resulted in the effective application of expensive, high fidelity computer simulations

within the optimisation process. Requiring fewer function evaluations than direct global

optimisation techniques, such as genetic algorithms or simulated annealing, surrogate

modelling techniques, such as kriging, construct a surrogate of the response of an objec-

tive function to changes in the variables from an initial sampling of the design space. The

resulting model is then updated in regions of interest found by searching the model with

a global optimiser. While the number of true objective function evaluations is reduced,

the construction of such surrogates involves the global optimisation of a multi-modal

likelihood function which can be time consuming, particularly at high dimensions.

The research contained within this thesis is aimed at reducing kriging hyperparameter

tuning costs and improving the performance of kriging optimisations at high dimensions.

To this end a number of important contributions to the field of kriging based optimisation

have been made:

• The global reassessment of kriging hyperparameters, as updates are added, has

been demonstrated to be a necessity.

• The tuning of hyperparameters after every other set of updates can be effective

and reduce the total tuning cost.

• An efficient adjoint of the likelihood function has been derived.

• A hybridised particle swarm algorithm has been developed which makes effective

use of the adjoint of the likelihood.

135
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• A novel kriging based optimisation strategy, termed geometric filtration, has been

developed which attempts to capture the common features of good designs and

develop a reparameterisation based upon them.

The optimisation of the likelihood function required in the construction of a kriging

model is often referred to as hyperparameter tuning. In Chapter 3 a number of different

tuning strategies were investigated with regard to the inverse design of a transonic aero-

foil. The degree and frequency of the hyperparameter tuning process and the number of

hyperparameters optimised, were all considered. It was demonstrated, and reinforced in

Chapter 5, that a continual global reassessment of a kriging model’s hyperparameters is

a necessity for an effective optimisation. A single global optimisation of the hyperparam-

eters after only the design of experiments, for example, was found to severely hamper

the optimisation process, as was a single global optimisation followed by only local im-

provement. However, it was shown that a continual, but reduced, global reassessment of

the hyperparameters, (tuning after alternate updates), could reduce the overall tuning

cost by approximately 50% but have little impact on the quality of the final design.

To reduce the cost of the likelihood optimisation an adjoint of the likelihood was de-

rived via manual reverse algorithmic differentiation. This adjoint was demonstrated to

be considerably more efficient than a more traditional analytical differentiation of the

likelihood and was found to be capable of calculating the likelihood and all its gradients

for approximately twice the cost of a single likelihood evaluation. The adjoint was also

demonstrated to be less cost sensitive to an increase in the number of sampling points,

especially at high dimensions.

An efficient hybrid optimisation algorithm based on the combination of a particle swarm,

SQP and a particle reinitialisation procedure was developed. The controlling parameters

of this algorithm were derived through a series of optimisations aimed at maximising

the algorithms performance with respect to hyperparameter tuning. The final strategy

employs the equivalent of approximately 2,000 likelihood evaluations, an 80% reduction

over the tuning strategy of Chapter 3 whilst obtaining comparable results. A 30 variable

aerofoil design problem was also used to compare the hybrid strategy to a GA-DHC

tuning strategy of comparable cost. The hybrid strategy demonstrated a considerable

acceleration in convergence, achieving the final design of the GA-DHC strategy with 100

fewer function evaluations.

A novel optimisation strategy involving two kriging based response surface optimisa-

tions and a proper orthogonal decomposition (POD) based reparameterisation, termed

geometric filtration, has been introduced and investigated in considerable detail. The

strategy employs an initial kriging optimisation of the original design problem with a

subset of the resulting designs forming a snapshot ensemble for the purposes of POD.

The resulting POD basis functions then act as a reparameterisation of the original prob-

lem, filtering out badly performing designs, reducing the number of variables and in
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some instances allowing regions of the design space not available in the original pa-

rameterisation to be explored. The basic geometric filtration strategy achieved a 3%

improvement over the designs obtained using a traditional kriging strategy while also

reducing the total tuning time from 22 to 4.2 hours. Upon careful investigation of the

effort expended in the initial optimisation, the number of snapshots and the number of

bases functions selected, the strategy achieved a 4.5% improvement over the traditional

kriging optimisation for a total tuning time of 2.5 hours.

The optimisation and tuning strategies investigated, were demonstrated to be just as

effective when combined. The optimisation of a 14 variable wing design problem was

utilised to compare the traditional kriging approach to a combination of geometric fil-

tration, hybrid hyperparameter optimisation, and alternate tuning. This combination of

strategies achieved an average 0.8% improvement in the drag obtained by the traditional

optimisation but for a significant reduction in overall tuning cost. The 4.8 hours spent

tuning hyperparameters when using the traditional optimisation was reduced to a total

of 1.3 hours, which equates to a 73.4% reduction in tuning cost.

In conclusion, the work presented in this thesis has gone some way to achieving a consid-

erable reduction in kriging hyperparameter tuning cost whilst resulting in an improve-

ment in final design performance. Be it through the likelihood adjoint’s inexpensive

gradients which are relatively cost insensitive to both problem dimensionality and the

number of sampling points, the simplicity of the alternate tuning strategy, or the com-

plexity of geometric filtration or the hybrid particle swarm. The strategies developed

can work in isolation or in combination to reduce the cost of the hyperparameter tuning

process and result in more efficient optimisations where the effort can be expended in

evaluating designs rather than in constructing surrogate models.

9.2 Recommendations for Further Work

9.2.1 Likelihood Adjoint and Tuning Strategies

Although a number of improvements with respect to the cost and performance of kriging

have been demonstrated throughout the course of this thesis, there remain a number of

areas ripe for further investigation.

Chapters 4 and 5 introduced and demonstrated the efficiency of an adjoint of the concen-

trated likelihood function employed in the kriging hyperparameter tuning process. The

application of this cheap gradient information proved extremely effective in reducing

the total number of likelihood evaluations. However, within the literature there are a

number of extensions and modifications to the basic kriging strategy which also require

a likelihood optimisation in their construction.
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Gradient and Hessian information, if available, can be exploited in gradient and Hessian

enhanced kriging models where the resulting surrogate not only represents the given

objective function values but matches the first and second derivatives of the objective

function. Such models can accurately represent the true design space with relatively few

sampling points, (Leary et al. [2004]).

Objective functions obtained from simulations of varying fidelity can be exploited through

co-kriging. This allows a large quantity of cheap data to be coupled with a small quan-

tity of expensive data, for example, data from a simple panel code can be coupled with

data from a RANS simulation. The resulting model constructed from a large number of

cheap evaluations and corrected by a few expensive evaluations is more accurate than a

model constructed from the expensive calculations alone, Forrester et al. [2007].

As with kriging the construction of such models requires the selection of an appropriate

set of hyperparameters. In the case of gradient and Hessian enhanced kriging the hy-

perparameter optimisation process can be simplified to some extent with the restriction,

p = 2. However, at high dimensions the size of the correlation matrix grows consider-

ably. The correlation matrix of a gradient enhanced kriging model, for example, must

not only contain correlations between data points but also between data points and

gradients and between gradients and themselves. The size of the correlation matrix of

a gradient enhanced krig is therefore (d+1)n× (d+1)n while a Hessian enhanced krig,

which includes correlations between second derivatives, is (2d + 1)n × (2d + 1)n. Such

large matrices incur a high factorisation cost which naturally makes the hyperparameter

tuning process an expensive one.

An adjoint of the likelihood of a gradient or Hessian enhanced kriging model may there-

fore be extremely effective in reducing model construction cost. Ascertaining an efficient

hybridised optimiser to utilise such an adjoint would also be an interesting goal. With

such vast quantities of data it may prove to be the case that a simple gradient based

local search is all that is required.

Co-kriging suffers from slightly different issues with respect to hyperparameter tuning,

but nevertheless may still benefit from an adjoint of the likelihood. Co-kriging approxi-

mates the expensive data as a model of the cheap data, multiplied by a scaling factor ρ,

plus a second model which represents the difference between the cheap scaled data and

the expensive data. There are therefore twice as many hyperparameters and a scaling

constant requiring optimisation. The number of hyperparameters increases further as

more levels of fidelity are included in the overall model. More hyperparameters coupled

with the cheapness of the low fidelity simulations equates to both more likelihood opti-

misations and more expensive likelihood evaluations as more data points are included.

Chapter 5 explored the performance of a number of different global optimisation method-

ologies with respect to hyperparameter optimisation. Missing from the list of strategies,

however, was the technique of surrogate modelling itself. Although the construction of
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a kriging model of the likelihood space is not advocated here, as it would of course lead

to the perpetual tuning of an ever increasing number of hyperparameters, it would be

possible to construct a gradient enhanced RBF model relatively cheaply. The question

however, is at what point does the construction and searching of such a model become

cheaper than the original likelihood evaluations? Only at this point is a surrogate based

optimisation of the likelihood plausible. This was not the case for the examples pre-

sented in Chapter 5 but such a strategy may become efficient when the correlation matrix

becomes extremely large such as in the construction of a high dimensional gradient or

Hessian enhanced kriging model.

9.2.2 Geometric Filtration

The geometric filtration strategy, introduced in Chapter 6, has been demonstrated to

be effective at further reducing the cost of the hyperparameter tuning process whilst

producing equivalent or better final designs than a traditional kriging optimisation.

However, there remain a number of aspects of this strategy which could be investigated in

the future. The mixing of parameterisations and a repeated reparameterisation process

could be considered.

In Chapters 6 and 7 geometric filtration was applied to the optimisation of an aerofoil

parameterised via two NURBS curves. In Chapter 8 the strategy was applied to the

optimisation of a wing, the sections of which were modified through a series of Hicks-

Henne bump functions. However, there exist within the literature a range of different

parameterisation techniques.

Kulfan [2008], for example, introduced shape and class functions which relate directly

to recognisable features of an aerofoil geometry, such as the leading edge radius or boat-

tail angle. By representing the shape function as an nth order Bernstein polynomial any

aerofoil can be recreated and optimised by altering the coefficients. Sobieczky [1998]

introduced the PARSEC method of aerofoil generation via 11 basic and recognisable

parameters such as leading edge radius, thickness and boat tail angle. Although similar

to the method of Kulfan [2008] in this respect, it can only be applied to the parame-

terisation of aerofoils and wings. Bloor and Wilson [1995] introduced the PDE method,

which generates surfaces via a series of partial differential equations.

Given a particular optimisation problem, the question remains as to which parameteri-

sation is the most effective. A study could be performed on each and the most suitable

parameterisation selected, but this may waste valuable information from the simulations

of the other parameterisations. Geometric filtration could therefore be employed to com-

bine a series of parameterisations into a new secondary parameterisation which captures

the best features of all of them. However, careful consideration would be required as to

the number of snapshots selected from each parameterisation.



Chapter 9 Conclusions & Recommendations for Further Work 140

Very high dimensional problems may benefit from a repeated reparameterisation proce-

dure. At high dimensions, given a suitably large evaluation budget it may be possible

to split the optimisation process into a series of sub-optimisations each separated by a

POD based reparameterisation. The optimisation would therefore see a gradual reduc-

tion in the number of variables as the optimisation progresses which, it is hoped, would

gradually converge on the best design features. A repeated reparameterisation would

also drastically reduce the cost of the hyperparameter tuning process as the correlation

matrix is repeatedly reduced in size. However, careful consideration must be given to

the sufficient exploration of the design space before each reparameterisation. Failure to

do so might result in suboptimal performance with snapshots constructed from poorer

designs.
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Hyperparameter Tuning Strategy

Graphs
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Figure A.1: Averaged results of the inverse design optimisation using the Heavy

tuning strategy and a budget of 75 simulations (a) and 150 simulations (b); best result

indicated by a dotted line, error bars indicate ± one standard deviation.
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Figure A.2: Averaged results of the inverse design optimisation using the Light tuning

strategy and a budget of 75 simulations (a) and 150 simulations (b); best result indicated

by a dotted line, error bars indicate ± one standard deviation.
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Figure A.3: Averaged results of the inverse design optimisation using the Single

tune strategy and a budget of 75 simulations (a) and 150 simulations (b); best result

indicated by a dotted line, error bars indicate ± one standard deviation.
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Figure A.4: Averaged results of the inverse design optimisation using the Alternate

tuning strategy and a budget of 75 simulations (a) and 150 simulations (b); best result

indicated by a dotted line, error bars indicate ± one standard deviation.
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Figure A.5: Averaged results of the inverse design optimisation using the ? tuning

strategy and a budget of 75 simulations (a) and 150 simulations (b); best result indicated

by a dotted line, error bars indicate ± one standard deviation.
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Reverse Mode Likelihood

Sub-Functions

function [L] = Cholesky[R]

% initialize L as the lower triangle of R

for k = 1:n

L(kk) =
√

L(kk)

for j = k+1:n

L(jk) =
L(jk)
L(kk)

end

for j = k+1:n

for i = j:n

L(ij) = L(ij)−L(ik)L(jk)

end

end

end

Cholesky factorization, Smith [1995]

function [F̄ ] = Reverse_Cholesky[L,L̄]

F̄ = L̄

for k = n:1

for j = k+1:n

for i = j:n

F̄ (ik) = F̄ (ik)− F̄ (ij)L(jk)

F̄ (jk) = F̄ (jk)− F̄ (ij)L(ik)

end

end

for j = k+1:n

F̄ (jk) =
F̄ (jk)
L(kk)

F̄ (kk) = F̄ (kk)−L(jk)F̄ (jk)

end

F̄ (kk) =
F̄ (kk)
2L(kk)

end

Reverse Cholesky factorization, Smith [1995]
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function [T1] = fwardsub[L,a]

% Where a = (y − 1µ̂)

T1(1) =
a(1)
L(11)

for i = 2:n

S = 0

for j = 1:i− 1

S = S +L(ij)T1(j)

end

T1(i) =
a(i)−S
L(ii)

end

Forward Substitution, Press et al. [1986]

function [L̄2] = Reverse_fwardsub[T̄1,L,T1]

for i = n:2

ā(i) =
T̄1(i)
L(ii)

L̄2(ii) = −ā(i)T1(i)

for j = 1:i− 1

L̄2(ij) = −ā(i)T1(j)

T̄1(j) = T̄1(j)− ā(i)L(ij)

end

end

ā(1) =
T̄1(1)
L(11)

L̄2(11) = −ā(1)T1(1)

Reverse Differentiation of Forward Substitution

function [T2] = bwardsub[LT ,T1]

T2(n) =
T1(n)

LT (nn)

for i = n− 1:1

S = 0

for j = i+ 1:n

S = S +LT (ij)T2(j)

end

T2(i) =
T1(i)−S

LT (ii)

end

Back Substitution, Press et al. [1986]

function [L̄1,T̄1] = Reverse_bwardsub[T̄2,LT ,T2]

for i = 1:n− 1

T̄1(i) =
T̄2(i)

LT (ii)

L̄1(ii) = −T̄1(i)T2(i)

for j = i+ 1:n

L̄1(ij) = −T̄1(i)T2(j)

T̄2(j) = T̄2(j)− T̄1(i)LT (ij)

end

end

T̄1(n) =
T̄2(n)

LT (nn)

L̄1(nn) = −T̄1(n)T2(n)

Reverse Differentiation of Back Substitution



Appendix C

Comparison of Hyperparameter

Optimisers

Heavy Tuning Strategy Basic Particle Swarm

No. of Mean Standard Tuning Mean Standard Tuning
Variables Obj. Deviation Time (hrs) Obj. Deviation Time (hrs)

3 0.171 0.006 0.028 0.171 0.006 0.014
6 0.141 0.015 0.298 0.145 0.016 0.149
9 0.122 0.024 1.246 0.132 0.026 0.623
12 0.130 0.029 3.366 0.133 0.022 1.683
18 0.132 0.031 14.054 0.132 0.026 7.027

Table C.1: Details of the quality of the final designs resulting from the standard
“Heavy” tuning strategy and the basic particle swarm.

SQP Tuning Strategy

No. of Mean Standard Mean No. of Tuning
Variables Obj. Deviation Likelihood Evals. Time (hrs)

3 0.179 0.009 57.2 1.5× 10−4

6 0.157 0.011 101.9 0.003
9 0.147 0.022 245.9 0.031
12 0.153 0.019 314.9 0.11
18 0.145 0.021 487.2 0.69

Table C.2: Details of the quality of the final designs resulting from the SQP tuning
strategy.
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Heavy & SQP Strategy

No. of Mean Standard Mean No. of Tuning
Variables Obj. Deviation Likelihood Evals. Time (hrs)

3 0.173 0.008 84.8 0.003
6 0.161 0.014 37.5 0.014
9 0.156 0.021 67.0 0.041
12 0.165 0.014 85.0 0.091
18 0.167 0.013 74.1 0.276

Table C.3: Details of the quality of the final designs resulting from the a kriging
optimisation with hyperparameters tuned initially via the “Heavy” strategy and sub-
sequently by a SQP search commenced from the previous set of hyperparameters.

GA-DHC (2000 Evaluations) Hybrid Swarm Tuning Strategy

No. of Mean Standard Tuning Mean Standard Tuning
Variables Obj. Deviation Time (hrs) Obj. Deviation Time (hrs)

3 0.1725 0.0050 0.005 0.1710 0.0060 0.005
6 0.1429 0.0144 0.060 0.1480 0.0171 0.060
9 0.1242 0.0293 0.249 0.1202 0.0271 0.249
12 0.1268 0.0253 0.673 0.1313 0.0281 0.673
18 0.1395 0.0306 2.811 0.1358 0.0276 2.811

Table C.4: Details of the quality of the final designs resulting from the developed
hybrid particle swarm tuning strategy.



Appendix D

Hybrid Particle Swarm

Optimisation Results

Local Min. Min. Prob of No. of Points
Pop. No. Search Local Swarm Reinitialisation Reinitialised Obj.
Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final) Func.

32 50 0.810 39 3 17 0.05 0.50 0.80 0.52 -0.090
50 34 0.532 22 3 7 0.59 0.39 0.02 0.94 -0.086
77 21 0.761 17 8 8 0.77 0.36 0.80 0.78 -0.083
97 18 0.879 8 12 25 0.15 0.25 0.97 0.91 -0.083
97 18 0.879 8 36 20 0.15 0.25 0.97 0.04 -0.082
54 31 0.408 16 3 17 0.09 0.39 0.09 0.19 -0.082
60 28 0.574 21 12 46 0.59 0.14 0.41 0.29 -0.081
19 87 0.994 39 4 2 0.71 0.51 0.59 0.01 -0.081
60 28 0.573 24 12 24 0.78 0.15 0.40 0.17 -0.081
97 18 0.880 4 17 29 0.51 0.10 0.96 0.02 -0.081

Table D.1: Parameters for the 10 best performing hybrid swarms given an underlying
two variable optimisation problem and a fixed budget of 2000 evaluations.

Local Min. Min. Prob of No. of Points
Pop. No. Search Local Swarm Reinitialisation Reinitialised Obj.
Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final) Func.

61 29 0.092 29 6 7 0.58 0.59 0.10 0.36 -1.115
81 20 0.061 6 14 46 0.61 0.53 0.06 0.28 -1.067
66 26 0.085 15 9 16 0.59 0.53 0.03 0.35 -1.032
62 25 0.078 19 2 51 0.63 0.43 0.14 0.64 -1.031
81 23 0.056 16 36 43 0.54 0.32 0.07 0.39 -1.031
11 154 0.128 150 3 7 0.51 0.53 0.78 0.36 -1.022
56 32 0.036 20 5 23 0.61 0.48 0.17 0.36 -1.020
61 17 0.114 10 15 28 0.67 0.03 0.18 0.07 -1.015
62 26 0.078 21 17 44 0.63 0.79 0.14 0.59 -1.009
70 26 0.078 15 2 46 0.60 0.49 0.16 0.37 -1.006

Table D.2: Parameters for the 10 best performing hybrid swarms given an underlying
five variable optimisation problem and a fixed budget of 2000 evaluations.
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Local Min. Min. Prob of No. of Points
Pop. No. Search Local Swarm Reinitialisation Reinitialised Obj.
Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final) Func.

63 25 0.045 15 1 50 0.44 0.63 0.84 0.005 -3.149
15 99 0.083 77 6 9 0.52 0.67 0.93 0.04 -3.125
81 20 0.061 2 22 55 0.55 0.62 0.49 0.14 -3.024
16 99 0.064 81 1 10 0.55 0.17 0.96 0.04 -3.007
34 46 0.075 38 0 26 0.50 0.71 0.86 0.05 -2.994
74 21 0.065 16 6 50 0.55 0.20 0.54 0.04 -2.994
96 16 0.064 6 23 73 0.540 0.81 0.50 0.01 -2.989
10 166 0.077 94 0 10 0.540 0.81 0.71 0.002 -2.976
22 71 0.061 6 6 16 0.63 0.35 0.71 0.16 -2.966
20 80 0.074 26 8 3 0.56 0.13 0.99 0.01 -2.953

Table D.3: Parameters for the 10 best performing hybrid swarms given an underlying
10 variable optimisation problem and a fixed budget of 2000 evaluations.

Local Min. Min. Prob of No. of Points
Pop. No. Search Local Swarm Reinitialisation Reinitialised Obj.
Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final) Func.

20 87 0.073 56 6 3 0.52 0.19 0.86 0.56 -4.038
24 73 0.094 7 7 6 0.52 0.19 0.58 0.54 -3.811
74 22 0.091 17 10 62 0.61 0.26 0.86 0.30 -3.467
24 71 0.100 11 11 13 0.52 0.21 0.97 0.53 -3.452
78 21 0.055 5 11 58 0.60 0.26 0.28 0.28 -3.444
56 27 0.084 28 5 50 0.97 0.05 0.98 0.38 -3.392
17 98 0.134 46 1 16 0.65 0.37 0.86 0.13 -3.388
99 17 0.084 14 46 53 0.52 0.23 0.97 0.53 -3.361
15 114 0.100 109 3 12 0.12 0.22 0.96 0.61 -3.357
37 42 0.095 9 3 34 0.64 0.31 0.84 0.93 -3.340

Table D.4: Parameters for the 10 best performing hybrid swarms given an underlying
15 variable optimisation problem and a fixed budget of 2000 evaluations.

Local Min. Min. Prob of No. of Points
Pop. No. Search Local Swarm Reinitialisation Reinitialised Obj.
Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final) Func.

15 87 0.064 22 6 3 0.82 0.27 0.43 0.11 -8.075
15 85 0.059 6 6 2 0.73 0.24 0.74 0.08 -7.705
15 84 0.062 14 6 3 0.82 0.27 0.37 0.08 -7.527
15 85 0.061 15 5 4 0.82 0.26 0.64 0.11 -7.504
17 75 0.057 20 7 2 0.79 0.27 0.93 0.10 -7.284
15 88 0.060 11 5 2 0.76 0.27 0.21 0.12 -7.274
17 75 0.060 14 7 3 0.76 0.26 0.18 0.08 -7.270
16 79 0.058 8 6 4 0.84 0.27 0.06 0.06 -7.228
16 79 0.062 7 7 2 0.59 0.27 0.50 0.07 -7.225
16 81 0.063 9 7 2 0.86 0.28 0.30 0.09 -7.209

Table D.5: Parameters for the 10 best performing hybrid swarms given an underlying
25 variable optimisation problem and a fixed budget of 2000 evaluations.



Appendix E

Description & Validation of the

FP Wing Analysis Process

E.1 Overview of the FP Algorithm

The inviscid full-potential (FP) method for three dimensional wing and wing-body com-

binations was developed and released by ESDU in 2002. The package encompasses grid

generation, flow solution and post-processing, ESDU [2002].

FP generates computational meshes for both isolated wing and wing-body cases via a

conformal mapping scheme, similar to that employed within VGK, ESDU [1996b]. All

wing configurations are assumed to be symmetric about the aircraft centerline while any

fuselage is assumed to be axially symmetric about the centerline. This provides a simple

geometric definition of the fuselage but restricts the analysis of real world configurations

where fuselages are not usually axis-symmetric, especially towards the tail. FP can

however deal with reasonably complex wing geometries including wings with curved

leading and trailing edges, edge discontinuities (cranks) and forward or rearward sweep.

As the geometry is defined at a series of spanwise sections, spanwise variations in twist,

camber and thickness can be easily represented.

With an appropriate conformal mesh generated, FP proceeds to compute the exact so-

lution to the inviscid compressible three dimensional potential flow equations via the

application of a finite differencing scheme. Convergence speed is improved by the adop-

tion of a multi-grid scheme with three levels of grid fineness. The finest grid, corre-

sponding to the original mesh of up to 115200 cells is employed at the final stage of

the computation with medium and coarse grids, of 14400 and 7200 cells respectively,

employed in the proceeding stages. Full convergence can be achieved in typically 800

iterations with 200 iterations using the coarse grid and 100 using the medium grid. Run

150
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convergence criteria can be set so the analysis completes when lift or drag has converged

to a predefined degree.

Spanwise lift and drag coefficients are calculated through the integration of the computed

pressure coefficients at each wing section, with the overall wing lift and drag coefficients

calculated by integrating along the wing span. The embedded calculation of drag does

not however, distinguish between vortex and wave drag, ESDU [2002].

Part four of the FP manual, ESDU [2006a], describes a post processor provided with

the FP package which evaluates the trailing vortex drag and wave drag components of a

wing’s inviscid drag coefficient. Trailing vortex drag is calculated using a method based

on linearised theory and therefore ignores the effects of rolling-up and downward deflec-

tion of the trailing vortex sheet, “Model A” of Ashill and Fulker [1987]. This method is

discussed in more detail by Lock [1985]. The wave drag component is calculated via both

the “first-order” and the “improved method” of Lock which is implemented in ESDU-

87003, ESDU [1987]. These methods of calculating wave drag are also implemented

within VGK, ESDU [1996b].

E.2 Viscous Drag Correction

E.2.1 Overview

As described above, the FP wing analysis package will only provide the vortex and wave

drag components of a wing’s total drag. The viscous drag component therefore remains

an unknown. However, ESDU recently published a method for the prediction of the

viscous drag coefficient for a wing in shock-free and attached flow. Such a prediction

can therefore be added to the inviscid drag components from FP to obtain a prediction

of the total drag for a wing.

The method described briefly in ESDU [2008a], with a full derivation presented in ESDU

[2008b], is used to calculate a wing’s minimum profile drag coefficient, CDPmin0, incre-

ment in profile drag due to twist, (∆CDPmin)ε, lift-dependent viscous drag factor, Kvisc

and lift coefficient for minimum viscous drag, CLmin. Each of these coefficients is then

used to calculate the viscous drag coefficient of a wing via,

CDvisc = CDPmin0 + (∆CDPmin)ε +Kvisc(CL − CLmin)
2, (E.1)

where CL is the lift coefficient of the wing.
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E.2.2 Minimum Profile Drag Coefficient of an Untwisted Wing

The local profile drag is defined as the force acting in the freestream direction at a

specific station of the wing and therefore arises from two physical components, the

local pressure and skin friction drag coefficients. ESDU [2008b] demonstrates that at a

spanwise position along a wing the minimum local profile drag can be shown to be,

Cdpmin = (Cdmin − Cdf0) cos
2 Λ1/4 + Cdf0. (E.2)

With Cdmin, the minimum profile drag coefficient and Cdf0, the zero lift skin friction

coefficient of the streamwise aerofoil section in 2D flow and Λ1/4 the local quarter chord

sweep angle of the wing. Both Cdmin and Cdf0 can be obtained using ESDU [2006b]

and ESDU [2006c] respectively. Alternatively the program described in ESDU [2006d]

or indeed VGK, (which was in fact used in the derivation of these empirical methods),

could be used.

A prediction of the minimum profile drag of an untwisted wing can then be calculated

by integrating the local minimum profile drag across the wing,

CDPmin0 =

∫ 1

0
Cdpmin

(c
c̄

)
dη. (E.3)

It was demonstrated in ESDU [2008b] however, that given a relatively simple straight

wing with a constant or linear spanwise variation in thickness and a constant camber

and chordwise boundary layer transition point, the above integral can be approximated

by the local minimum profile drag coefficient of the mid-span section,

CDPmin0 = [Cdpmin]η=0.5 . (E.4)

Alternative forms of Equation E.2 are presented in Appendix A of ESDU [2008b] which

use spanwise aerofoil sections normal to the quarter chord line of the wing. The equation

for minimum local profile drag will therefore become either,

Cdpmin = [(Cdmin)n − (Cdf0)n] cos
3 Λ1/4 + (Cdf0)n cos

0.2 Λ1/4, (E.5)

or,

Cdpmin = [(Cdmin)n − (Cdf0)n] cos
3 Λ1/4 + (Cdf0)s, (E.6)

with the subscripts n and s defining the normal or streamwise section respectively.

E.2.3 Increment in Minimum Profile Drag Due to Twist

ESDU [2008b] demonstrated that twisting a wing increases the minimum profile drag

coefficient above that of a similar untwisted wing. This increment in profile drag due
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to wing twist, (∆CDPmin)ε, was found to be dependent on the local angle of twist

relative to wing setting angle at two spanwise locations, the maximum local twist angle,

taper ratio, aspect ratio, section thickness and Reynolds number. Given a wing with a

relatively simple twist, the increment in profile drag coefficient due to twist is,

(∆CDPmin)ε = 1.2× 10−5kGkRc̄η|ε|m |ε|m
[
1− η|ε|m(1− λ)

(1 + λ)2

]
(|ε|0.2 + |ε|0.8) , (E.7)

where |ε|m is the magnitude of the maximum relative twist in degrees and η|ε|m is the

spanwise position of this twist. |ε|0.2 and |ε|0.8 refer to the magnitudes of the relative

twist at 20% and 80% span respectively.

The factor kRc̄ accounts for the effect of Reynolds number based on mean aerodynamic

chord and is calculated by,

kRc̄ = 6.62 + 0.0743(logRc̄)
2 − 1.36 logRc̄. (E.8)

The factor kG accounts for the combined effects of aspect ratio and the thickness of the

aerofoil section at η = 0.5. This relationship is derived in ESDU [2008b] and can be

calculated using Figure 1 of ESDU [2008a].

E.2.4 Lift-Dependent Viscous Drag Factor

ESDU [2008b] also derives an equation relating the wing lift dependent viscous drag

factor to the viscous lift curve slope of the wing, a1w, and the ratio of viscous to inviscid

lift-curve slopes, a0
a0T

, of an aerofoil section at a spanwise reference station,

Kvisc =
1.15

a1w

[
1−

(
a0
a0T

)
ηref

]
. (E.9)

The location of the spanwise reference station can be calculated from the wings taper

ratio, aspect ratio and quarter chord sweep from the figures presented in ESDU [2008a].

Alternatively ESDU [2008b] states that ηref corresponds to the spanwise station at

which the local lift coefficient equals the total lift coefficient for the whole wing. As FP

provides a spanwise lift distribution this can be used to calculate ηref , this technique

was actually employed in the derivation of the figures presented in ESDU [2008a].

The lift-curve slope of the wing in inviscid flow was demonstrated in ESDU [2008b] to be

reasonably similar to that of the wing in viscous flow, hence the inviscid lift curve slope

can be employed in Equation E.9. This can be calculated using the figures or software

of ESDU [1996a].
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The ratio of viscous to inviscid lift-curve slope for the aerofoil section at ηref can be

calculated directly using the software package of ESDU [2006d] or through a combination

of this package and VGK.

E.2.5 Lift Coefficient for Minimum Viscous Drag

ESDU [2008b] demonstrates that for either a twisted or untwisted wing of varying span-

wise camber the lift coefficient for minimum viscous drag is,

CLmin =
−1.21a1w(α0vw)c

1−
(
a0T
a0

)
ηref

a1w
πAr

. (E.10)

The lift-curve slope of the wing, a1w, and ratio of viscous to inviscid lift curve slope of

the ηref aerofoil section are known from the calculation of the lift dependent drag factor.

While the aspect ratio, Ar, is also known.

The component of zero-lift angle of attack for the wing in viscous flow due to camber,

(α0vw)c, however, is yet to be determined. This parameter requires the determination

of the spanwise variation of local zero-lift angle of attack for the streamwise aerofoil

sections in viscous flow, α0v. As shown in Appendix A of ESDU [2008a], these angles

can be combined with the known spanwise lift distribution, overall lift coefficient of the

wing and the known wing geometry to predict a wing’s zero-lift angle of attack,

(α0vw)c =

∫ 1

0

(
Clη
CL

cη
c̄

)
α0v dη. (E.11)

The zero-lift angle of each spanwise aerofoil section can be found using the software

package of ESDU [2006d] or once again via VGK simulations of the aerofoil. For the

interested reader, ESDU [2008a] contains a number of worked examples demonstrating

the calculation of the viscous drag coefficient for a series of wings.

E.3 FP for Matlab

While the FP wing analysis package is undoubtably a useful tool, there exists no batch

mode which can be used to analyse a series of wings of varying geometry. Likewise

the above procedure for calculating a prediction of the viscous drag coefficient is useful

and validated in ESDU [2008a] at low speed, but it requires manual calculation of the

coefficients. To this end a series of Matlab functions were developed which construct

the necessary input files for FP, run the FP post-processor and parse the output data.

Another function was developed which calculates a prediction of the viscous drag coef-

ficient. This function incorporates a number of modifications to the simplified method
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presented above and in ESDU [2008a]. The spanwise integral, Equation E.3, is used to

calculate CDPmin0 rather than the simplification of Equation E.4. This integral can be

based on the local minimum profile drag of the streamwise aerofoil sections or of sections

normal to the wing quarter chord line, Equations E.2 and E.5 respectively.

Instead of calculating the minimum profile drag via the software package of ESDU

[2006d], the Matlab function utilises a series of VGK simulations. The software package

of ESDU [2006d] is the combination of a series of previous investigations into subsonic

aerofoil performance prediction, notably ESDU [1997, 1998, 2006b,c], utilising VGK sim-

ulations of a series of existing aerofoils. Using actual VGK simulations in the wing drag

prediction function however, provides an improved capability for dealing with the more

unusual aerofoil geometries encountered over the course of an aerodynamic optimisation.

The software package of ESDU [2006d] is also restricted somewhat beyond Mach 0.5-0.6.

VGK simulations relax this restriction, providing data up to approximately Mach 0.725.

The VGK simulations also provide the viscous lift curve slope of the aerofoil and the

zero-lift angle of incidence, which are necessary for the calculation of Kvisc and CLmin.

The factor KG required in the calculation of the increment in minimum profile drag

due to twist is obtained via a curve fits to the data presented in Figure 1 of ESDU

[2008a]. Likewise the inviscid lift curve slope of the wing, a1w required in the calculation

of both Kvisc and CLmin, is calculated via a series of curve fits to the data presented

in Figure 1 of ESDU [1996a]. An ESDU software package is available which contains

these figures and calculates the lift curve slope of a wing, however this was found to be

somewhat unreliable. Using the raw data within Matlab was found to give equivalent

results but neglected some of the additional forward sweep data embedded within the

software package.

Other required information, such as the wing geometry, the spanwise loading and the

aerodynamic coefficients are provided by the preceding FP simulations.

E.4 FP Validation Cases

Three validation cases are now presented for FP in combination with the viscous drag

prediction. Both subsonic and transonic cases are considered. An overview of the wing

geometries and flow conditions for all three cases are presented in Table E.1. To aid in the

visualisation of each test case the corresponding planforms are presented in Figure E.2.

The first validation case is taken from Brebner and Wyatt [1961] and consists of a highly

swept wing with a taper ratio of 1 and a simple RAE 101 aerofoil section. This is a

low speed case, with a freestream Mach number of 0.2, for which an experimental drag

polar is available. The second case is the classic transonic, low aspect ratio ONERA-M6

wing, taken from Schmitt and Charpin [1979]. This wing is a standard test case for
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Brebner Wing ONERA-M6
Lockheed
Wing “A”

Aspect Ratio 5 3.8 8
Wing Area (m2) 1.29 0.753 0.053
Λ1/4 45° 23.3° 25°
Taper Ratio 1 0.562 0.4
Washout 0° 0° 4.8°
Dihedral 0° 0° 0°
Aerofoil Section RAE 101 (12%) ONERA-D -
Mach No. 0.2 0.84 0.8
Reynolds No. 2.1× 106 14.8× 106 8.22× 106

Table E.1: Description of the low speed and transonic wing validation cases.

the validation of pressure profiles at transonic conditions. The third and final case is

the Lockheed wing “A” taken from Burdges and Hinson [1984]. This test case is more

representative of the wing of a modern transonic transport jet. Both sectional pressure

distributions and drag polars are available for this wing from the literature.
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Figure E.1: Planform and dimensions of the (a) Brebner wing, (b) ONERA-M6 and

(c) Lockheed Wing “A”.

E.5 Brebner Wing Validation

The Brebner low speed wing case, shown in Figure E.1, was modelled in FP through

the definition of the root and tip aerofoil sections. The wing was simulated at a series

of angles of attack and the lift and vortex drag recorded. The viscous drag correction

described previously was then used to calculate the coefficients of the viscous drag polar.

These coefficients were then used to predict the viscous drag at each lift coefficient.

A total of 10 streamwise aerofoil sections were used in the calculation of the viscous

drag polar parameters via the integral method described previously. Each of the VGK
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simulations assumed that transition of the boundary layer occurred at 1% chord, with

the root aerofoil section having a Reynolds number of 2.1× 106.
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Figure E.2: Comparison of experimental drag polar and those predicted by FP with

the viscous correction for the Brebner wing.

Figure E.2 compares the experimental drag polar of Brebner and Wyatt [1961] with that

predicted by a combination of FP and the vicous drag correction. One can observe that

there is a close correlation between the two drag polars. The lift-dependent viscous drag

factor, Kvisc, appears to correspond closely with the experimental results, given that the

curvature of the two drag polars closely matches. The lift coefficient for minimum drag,

CLmin, is also close to that of the experimental with both being approximately equal

to zero. There is however a slight error in the minimum wing profile drag coefficient,

CDPmin. The viscous correction predicts a value of CDPmin equal to 0.093 while the

experimental results appear to suggest a minimum profile drag of 0.102. An error of 9

drag counts is reasonably close to that obtained in the validation of the viscous drag

correction in ESDU [2008a].

Unsurprising the correlation in drag coefficients drops of at higher lift coefficients when

the effects of separation come into play. These effects are not taken into account by

either FP or the viscous drag prediction.

E.6 ONERA-M6 Validation

The ONERA-M6 wing was analysed by FP at a Mach number of 0.84 and at an angle

of attack of 2°. The resulting pressure distributions at a series of spanwise sections are

compared to the experimental results of Schmitt and Charpin [1979] in Figure E.3.



Appendix E Description & Validation of the FP Wing Analysis Process 158

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

x/c

C
p

 

 

Experimental
FP

(a)

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

x/c

C
p

(b)

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

x/c

C
p

(c)

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

x/c

C
p

(d)

Figure E.3: Comparison of experimental pressure distributions with those predicted

by FP at four spanwise sections of the ONERA-M6 wing, (a) η = 0.2, (b) η = 0.44, (c)

η = 0.8 and (d) η = 0.95.

One can observe from the comparisons of pressure distributions that FP is clearly capable

of capturing major flow features to a reasonable degree of accuracy. Along the span

of the wing FP accurately predicts the leading edge suction peak. The location and

strength of any shocks present also appear to be accurately captured towards the wing

tip. Some errors are present however, closer to the wing root where FP appears to

predict a sharper pressure change close to the mid-chord point than is displayed by

the experimental results. The predicted lower surface pressures match those of the

experimental results almost perfectly, which is unsurprising given that there are no

major pressure discontinuities present.

E.7 Lockheed Wing “A” Validation

The third and final validation case is that of the Lockheed Wing “A” taken from Burdges

and Hinson [1984]. Unlike either the Brebner wing or the ONERA-M6, this wing has not

been previously used in the validation of either the viscous drag correction or FP. Both

pressure profiles and drag polars are presented in the literature for a series of freestream

Mach numbers.
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The geometry of Wing “A” is also significantly different from that of the Breber and

ONERA-M6, with a high aspect ratio, swept wing defined by two different unsymmet-

rical root and tip aerofoil sections with a straight-line loft between them. With these

features and 4.8°of washout, Lockheed Wing “A” is a more complex geometry and there-

fore much more indicative of a modern civil aircraft wing.
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Figure E.4: Comparison of experimental pressure distributions with those predicted

by FP at four spanwise sections of Lockheed Wing “A”, (a) η = 0.3, (b) η = 0.5, (c)

η = 0.7 and (d) η = 0.95.

Figure E.4 compares the pressure distributions predicted by FP to the experimental

distributions at four spanwise sections. The wing was analysed at Mach 0.8 with a

lift coefficient of 0.536. Unlike the ONERA-M6 there is a noticeable difference in the

pressure distributions, particularly towards the wing root. At η = 0.3 the experimental

results exhibit a single well behaved shockwave on the upper surface, while the FP results

appear to exhibit a series of large pressure discontinuities across the surface.

At the remaining stations FP appears to predict the approximate location of the shock-

wave but tends to over predict the shock strength. Unlike the results for the ONERA-M6,

FP no longer accurately predicts the leading edge suction. Instead the pressures on the

upper surface forward of the shockwave tend to be greater than the experimental with

the regions aft of a shock being predicted as lower than the experimental. However FP’s

prediction of the lower surface pressure is generally good across the span of the wing.
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The calculation of lift via the integration of pressure across the wing therefore results

in an identical lift to the experimental. This lift coefficient however is at a significantly

lower angle of attack to that of the experiment. FP requires the wing be angled at 0.92°
to the freestream while the experimental results are from a wing with an angle of attack

2.94°. Such a large discrepancy is puzzling given that FP predicted the flow over the

ONERA-M6 so well at an identical angle of attack to the experiment and at a much

higher freestream velocity than this current case.
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Figure E.5: Comparison of experimental drag polar and those predicted by FP with

the viscous correction for Lockheed Wing “A”.

A series of simulations of the Lockheed wing “A” were carried out at nine different

angles of attack and the corresponding wave and vortex drag coefficients obtained. These

results were combined with the minimum profile drag coefficient, increment in profile

drag due to twist, lift dependent drag factor and lift coefficient for minimum viscous

drag to construct the drag polar presented in Figure E.5. Upon comparison to the

experimental results at the same freestream velocity one can observe a severe under

prediction of the total drag coefficient by approximately 32% at CL = 0. This is rather

unsurprising considering the errors in pressure distribution and the unsuitability of the

method employed in the viscous drag prediction to flows in the transonic regime. The

combination of FP and viscous correction does however, appear to correctly predict the

overall shape of the wing’s drag polar.
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E.8 Limitations of FP & Viscous Drag Correction

The validation results presented above indicate that FP is a fast and reasonably reliable

method of calculating the inviscid performance of a simple wing at both low and high

speed. Although the geometry definition employed by FP is flexible enough to model

complex wing geometries with, for example, forward sweep, drooped or upswept wing

tips and multiple planform discontinuities the results, especially at high speed, should

be considered with care as there are few similar experimental cases for validation.

The viscous prediction is limited much more than FP both geometrically and in terms of

the applicability of the method upon which it is based. The method is based purely upon

a combination of wing planform, twist and wing sectional data. The accurate prediction

of viscous drag of a wing with unusual planforms or wing tips is therefore unlikely.

The datasets employed within the prediction of viscous drag also have some restrictions.

The determination of a1w, for example, is restricted to wings with a minimum mid-chord

sweep of 0°. Both the ratio of viscous to inviscid lift curve slope and the zero-lift angle

employed in the calculation of the lift-dependent viscous drag factor and lift coefficient

for minimum drag are assumed to be from wing sections in the streamwise direction and

not normal to the quarter chord, which is the case if Equation E.5 is employed at higher

Mach numbers where VGK may fail at the streamwise velocity.

The method itself was developed purely for wings in shock-free attached flow. Its ap-

plication to transonic cases, such as those above and in Chapter 8 could therefore be

considered questionable. However, one can observe an advantage of this method when

one compares the computational expense to that of a RANS simulation involving up-

wards of 2 million cells and taking several hours on multiple processor cores. Whether

employed in conjunction with more expensive simulations or on its own at the concep-

tual/preliminary design stage, FP in conjunction with the viscous prediction provides a

cheap means of assessing a potential wing design, which for simple wings at low speeds

has been demonstrated to be quite accurate.
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