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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Nicola Hoyle

The search for the most effective method for the geometric parameterization of many
internal fluid flow applications is ongoing. This thesis focuses on providing a general-
purpose automated parameterization strategy for use in design optimization. Commer-
cial Computer-Aided Design (CAD) software, Computational Fluid Dynamics (CFD)
software and optimizer tools are brought together to offer a generic and practical solu-
tion. A multi-stage parameterization technique for three-dimensional surface manipula-
tion is proposed. The first stage in the process defines the geometry in a global sense,
allowing large scale freedom to produce a wide variety of shapes using only a small set
of design variables. Invariably, optimization using a simplified global parameterization
does not provide small scale detail required for an optimal solution of a complex ge-
ometry. Therefore, a second stage is used subsequently to fine-tune the geometry with
respect to the objective function being optimized. By using Kriging response surface
methodology to support the optimization studies, two diverse applications, a Formula
One airbox and a human carotid artery bifurcation, can be concisely represented through

a global parameterization followed by a local parameterization.
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Chapter 1

Introduction

In today’s society, it is easy to forget how far the human race has progressed through
increased use of technology over the last 100 years. Perhaps the most distinguishing
manifestations of this historical era are the developments of the motor-car and the aero-
plane. Both have brought a revolution in transport that has established a contemporary
lifestyle entirely different from any that preceded it. The motor-car industry has grown
to such an extent over the last century that its booms and slumps have the ability to
unsettle governments, an economic theory endorsed by a former president of General
Motors, Charles E. Wilson: “What is good for the country is good for General Motors
and vice-versa”. The growth in transport by aeroplane has also been immense as many
people now travel across the continents of the world by aeroplane, both on business and
on holiday. As recently as ten years ago, most people would not have imagined that they
would be able to travel from England to the south of France, albeit on a low-budget

airline, for less than the cost of a train fare from Brighton to London.

The development of technology has spawned this growth, and most recently this has
been accelerated by the increased availability and capability of the digital computer.
From the mid-20th century onwards, not only were machines used to calculate perfor-
mance data using analysis software, but also they slowly infiltrated design offices, with
the development of Computer-Aided Design (CAD) software providing an efficient al-
ternative to hand-drawn blueprints. Another important advance that occurred during
this period was the development of software to allow computational modelling of fluid

flow behaviour; that is Computational Fluid Dynamics (CFD).
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The aerospace and the car industries primarily have been responsible for the development
of these systems. In the present day, computers, along with in-house and commercially
available CAD and CFD software, provide an indispensable support to the field of en-
gineering. The impact of many diverse engineering applications on a broad spectrum
of our everyday lives has provided a need to acquire a greater comprehension of flow
physics particularly for the purposes of design. This can be accomplished with the use
of optimizers in conjunction with CAD and CFD packages, but to be successful such
an optimization must operate on an effective geometric description. What follows is
a brief history of CAD and the use of CAD within CFD-based optimization studies.
Therein, the motivation of the work documented in this thesis is discussed and this

chapter concludes with an outline of the material covered in the following chapters.

1.1 Computer-Aided Geometric Design

1.1.1 A Brief History

The first recorded use of curves within a manufacturing environment was in the early
Roman shipbuilding industry. A ship’s ribs, or the wooden wireframe structure joined
together at the keel defining the shape of the hull, were produced using templates which
could be reused repeatedly. Any ship’s hull could then be produced by modifying the
geometry of the ribs.

Before the advent of computers, parametric curves were drawn with a high level of
precision using a set of templates known as French curves: carefully designed wooden
sections of conics and spirals. A curve is drawn by following the required sections of a
French curve. Another tool used for the drawing of smooth parametric curves, mentioned
in the work of du Monceau (1752), is known as a spline. This apparatus comprises a
flexible piece of wood that is gently bent and held in place at discrete points with metal
weights, known as ducks; see Figure 1.1. The curve is the shape created by the position
and weight of the ducks. For large scale drawings produced at this time, attics (or lofts)

of buildings were used to accommodate them - the word lofting has its origin here.
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Slexible wood

FIGURE 1.1: Mechanical spline tool (illustration given by Raalamb (1691))

It was not only the shipbuilding industry but also the aircraft industry that provided
foundations to the field of Computer-Aided Design. Customarily, the construction tem-
plate of an aircraft was defined by a series of conics which were drawn by draughtsmen
and stored in the form of blueprints. A more efficient alternative was realised by Liming
in 1944 (Liming, 1944). This involved storing a design in terms of a set of numerical
variables instead of hand-drawn curves, and in doing so translated classical draughting
techniques into numerical algorithms. However, the method to transform hand-drawn
blueprints on the draughtsman’s drawing board to mathematically defined curves and

surfaces for computational representation was not clear.

In the 1950s, digital computers began their infiltration into design offices and Boeing
developed and employed software based upon Liming’s work in the design of fuselages.
For the design of wings, however, a different kind of curve was developed by Boeing
employees J. Ferguson and D. MacLaren. This was the origin of what we now know
as spline curves, the mathematical counterpart of the mechanical spline. Although the
first mathematical reference to splines was presented by Schoenberg (1946), Ferguson
and MacLaren’s idea was to piece cubic space curves together to form twice differentiable
composite curves used in the geometrical definition of wings (MacLaren, 1958; Ferguson,
1964). Because of this, the curves were capable of interpolating easily through a set of
points by minimizing a function similar to the physical properties of the mechanical
spline tool. In modern parlance, the spline referred to in today’s CAD world is instead
thought of as the smoothest piecewise polynomial curve that passes through a set of

fixed points.

During the ’50s and ’60s, many institutions and industries worked on constructing com-

putational curves and surfaces mostly in isolation. However, although it had several
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FIGURE 1.2: Bézier’s basic curve

independent beginnings, the foundations of modern CAD engines subsequently became
largely established in the French car industry. It was in 1959 that Citroén hired a young
mathematician, Paul de Faget de Casteljau, in order to resolve some of the theoretical
problems that had arisen in the transition from the physical to computational representa-
tion of parts. Unlike Liming’s approach, de Casteljau initially built a system principally
aimed at the ab initio design of curves and surfaces instead of concentrating on the
computational duplication of their existing blueprints. From the start, he implemented
the use of Bernstein polynomials with what is now known as the de Casteljau algorithm,
and in doing so pioneered a new technique: control polygons (courbes a péles). Instead
of defining a curve (or surface) through points on it, a control polygon utilizes points
near it. This meant that the curve (or surface) was not changed directly; instead, the
alteration of the control polygon itself instigated an intuitive change in the curve (or
surface). This work was kept secret by Citroén until the algorithm was first published
by Krautter and Parizot (1971).

Concurrently, Citroén’s competitor Renault had also realized the need for computational
representations of mechanical parts. Renault’s design department was headed by Pierre
Bézier who, although he was aware of similar developments at Citroén, proceeded to
look at the theoretical problems of the transition independently. Using de Casteljau’s
algorithm, Bézier’s initial idea was to characterize a “basic curve”, defined as the inter-
section of two elliptic cylinders; see Figure 1.2. These two cylinders were defined inside
a parallelepiped, affine transformations of which would result in affine transformations
of the curve. Later, polynomial formulations were developed and subsequently extended

to higher degrees.

It was not until the 1970s that there began a confluence of these different research
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approaches. In 1974, R. Barnhill and R. Riesenfeld used the construction and repre-
sentation of free-form curves, surfaces or volumes to define a now very familiar term:
Computer-Aided Geometrical Design or CAD. For further reading on the history of
CAD, please refer to Farin (2002).

Bézier's work was widely published (Bézier, 1967, 1968, 1974, 1977) and Forrest’s ar-
ticle (Forrest, 1972) on Bézier curves contributed greatly to the popularity of Bézier
curves. UNISURF, the Renault CAD/CAM system, was developed solely to use Bézier
curves and surfaces. Dassault followed in Renault’s footsteps and built the system EVE,
later evolving into CATTA (Computer Aided Three-Dimensional Interactive Applica-
tion) (CATIA®, 2004). Today, CATIA, along with other commercial CAD packages,
facilitates the use of both parametrically defined and “free-form” curves and surfaces.
This ability to represent a design using an efficient mathematical model allows the CAD

software to be coupled to an optimization process.

1.1.2 The Role of Geometry Parameterization in CFD-Based Design

Optimization

With the progress of CAD and CFD software, automated optimization processes using
these computational tools have proven popular, allowing hi-tech industries to produce
numerous computational designs quickly and relatively inexpensively. These designs can
be analysed with respect to an appropriate measure of merit, evaluated and modified,
and thus updated in a cyclical manner until a final optimal design is reached. Providing
efficient design optimization processes has created a hub of activity within engineering
research (Siddall, 1982). The enhanced efficiency of optimization techniques has enabled
the search of larger design spaces in which optimal designs can be found in numerous

varied applications; see Keane and Robinson (1999).

Efficient optimization principally relies on concise sets of design parameters defining the
geometry under examination. When a concise set of parameters is not readily available,
designers may forego the potential to produce radical designs with a superior measure of
merit. For previously tested and understood concepts and designs, design optimization

is sometimes seen as a gradual evolution and improvement.
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In cases where there is a limited understanding of the flow behaviour associated with the
geometry under scrutiny, a reduced geometric control capability may prove detrimental
in finding an optimal design. Ideally, the geometry parameterization would allow maxi-
mum control of the geometric shape whilst preserving a concise set of design parameters
for the purpose of an efficient optimization process. However, the form of parameteri-
zation itself is often unclear. The literature on geometry parameterization techniques is
substantial. Samareh (2001) surveyed a number of available techniques and assessed each
on its suitability in dealing with complex models. It is clear that for design optimization
studies, the particular geometry parameterization technique implemented can have an
enormous impact on the final outcome. If a wing geometry is parameterized simply with
planform and chord variation describing its shape, the optimal design may be localised
to the area of the wing which these two particular features affect and so will not capture
the true “global” nature of the wing shape that one may need to consider, including
factors such as twist and sweep. A global geometry needs to be considered during a
complete design process, and particularly in conceptual design. Local parameterization
methods can be considered once a reasonably good global design has been reached, either

through an initial optimization process or through a proven best pre-existing design.

One of the first studies of an optimal condition with its analysis described by the math-
ematical theory of fluid dynamics was performed by Glowinski and Pironneau (1975).
Subsequently, aerofoils became a popular subject for CFD-based optimization problems

characterized by Hicks et al. (1974) and Jameson (1988).

As a result of the extensive research performed on aerofoil and wing parameterization, it
has become accepted to parameterize the overall shape of external wings through a set
of well-known parameters: chord, span, planform, twist, sweep and shear. However, for
internal fluid flow applications such as a diffuser, its parameterization cannot be defined
using such well-known geometric quantities. In this case, manipulating the geometry to

achieve a certain physical flow behaviour is a road less travelled.

Diffusers have been the subject of optimization since the late 1950s. Early experimen-
tal work classified the major flow regimes within straight diffusers (Kline et al., 1959;
Fox and Kline, 1962). Relationships were deduced between these flow regimes and the
diffuser characteristics (Reneau, 1967) whilst, concurrently, simple geometry parameter-

izations gave room for more efficient designs; see Carlson et al. (1967). Although still
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experimental at this stage, this was an important start in recognizing the impact of
geometry parameterization on the optimization process using analysis codes instead of
practical experiments to determine results. In the last few decades, maximum optimizer
efficiency for aerodynamic utilization has been sought, implying that a geometry pa-
rameterization containing a concise set of design variables is desirable. Madsen (1998),
Madsen et al. (1999) and Madsen et al. (2000) have highlighted the use of geometry
parameterization in optimization studies for straight diffusers and Ghate et al. (2004)

parameterized an S-shaped duct for optimization.

The development of parametric models within modern CAD engines is a key area of
research. CAD, originally developed as an alternative to the drawing board, allowed for
the improvement of design productivity and accuracy when first introduced. Common
engineering shapes were soon parameterized and linked within the design part inside the
CAD software to facilitate the automatic manipulation of the computational geometry to
accommodate the required change. This eliminated the need for the designer to redraw
the part in CAD and, in turn, made it practical to rapidly produce numerous design
variations. The ability to differentiate between the large number of designs produced

provided the link between CAD and analysis software such as CFD to optimize designs.

CAD-based parameterization has distinct advantages over other approaches, as it en-
ables large alterations from the original shape without necessarily destroying the shape
topology. In addition, the less complex shape configuration does not require more ad-
vanced tools to enable mesh deformation in concurrence with shape change. Almost all
engineering firms use CAD as an integral part of their design process. It is because of
this that the scope of this thesis is limited to CAD-based parameterization techniques,

aiming to offer a generic, practical and industrially realistic solution.

1.2 Background and Objective of work

In this thesis, efficient and flexible methods of geometry parameterization are sought
for use in an automated design optimization. Initially these are developed for use with
a F1 airbox. This particular internal flow duct has been chosen due to the author’s
interest in the sport and the lack of agreed practice in this particular industrial sector.

After a thorough study of techniques used on plane geometries, the best and simplest
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parameterization for obtaining a good global shape is selected. Following this, a ge-
ometry manipulation technique is developed and used in a general automated design

optimization process for a three-dimensional geometry.

To illustrate the generic capability of the parameterization technique developed, a second
case study has been tested: the shape optimization of a human carotid artery bifurcation.
The choice of parameterization technique poses a similar problem but in this case the
shape fit of the parametric model to that of a real artery geometry is optimized, aiming

to achieve a close likeness.

Early motoring was seen as a new and somewhat dangerous form of outdoor sport which
presented a new element - the ever-changing machine - for the sportsman to contend
with. Not only has the domestic car improved on a huge scale, the sport of motor-racing
has developed alongside, the pinnacle of which for both drivers and manufacturers is the

Formula One (F1) World Championship.

The principles of aerodynamics developed from early aviation have been passed into the
automotive industry and used to enhance the performance of racing cars. With the
advent of the F1 World Championship, chassis design, engine technology, suspension
technology and aerodynamic aids improved. F1 cars became faster, more agile and more
spectacular to watch. The rapid development of computational power has permitted the

feasibility of computational design, and latterly, shape optimization.

The design of engine air intakes, in particular those used in F1, has become a significant
consideration as engines continually improve in sophistication and performance. Intake
design seeks to maximize static pressure acting on the intake stroke of the engine cylin-
ders. High static pressure over the cylinders increases the cylinder charge density and
hence engine power. The design of the airbox geometry, including its bend through 90°
and the position of the air filter element, all have an impact on both the static pressure
recovery and cylinder-to-cylinder air distribution and thus engine performance. During
the first few decades of the 20th century, it was known that diffusers could convert kinetic
energy at the diffuser entry into static pressure at the exit, albeit with low efficiency.
Improvement of the efficiency of this effect started in 1938 (Patterson, 1938). F1 aero-
dynamicists have studied engine air intakes since the 1950s. These began as small air

vents in the engine cover bodywork over the cylinders in front of the driver. Ten years
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FIGURE 1.3: Airbox inlet (2003 season)

later, the introduction of rear-engined cars left the engines exposed with no covering
bodywork. By 1972, the teams had designed large scoop-like airboxes sitting above the
driver’s head. Safety, however, increasingly became an issue and roll bar structures were
introduced. Two large scoops either side of the roll bar then became the norm, reducing
in size through the early eighties until, in 1989, airboxes appeared akin to those seen

today, see Figure 1.3.

F1 is a highly competitive sport and so time, cost and good results are critical. Careful
design of individual components can often provide the necessary advantage to enhance
performance. However, regulation constraints may limit the level of design improvement.
For modern air intakes, expansion of the flow is required over a short distance while
turning through 90° due to the roll bar specifications and engine layout configuration;
see FTA (2005). During the time of the present study, the F1 teams place a 3-litre
V10 engine behind the driver (see Figure 1.4); the position of the airbox thus takes
advantage of the ramming effects of the oncoming air at high speeds. The engine filter
is located over a trumpet tray, at the bottom of which sits an offset array of 10 engine

inlet trumpets, one for each of the cylinders.

For the 2006 season, the engine specification has changed to 2.4-litre V8 engines. The
airboxes are very similar in their positioning to the illustration in Figure 1.4, the only
difference between the airboxes contained in this thesis and the ones that will be seen
on the track in 2006 is the number of cylinders: 10 instead of 8. Interestingly, during
the pre-2006 season testing when the V8 engines were not yet ready for the track, the

cars were seen with an airbox inlet adaption, illustrated in Figure 1.5. By limiting the
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airbox
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FIGURE 1.4: Airbox positioning within the F1 car

FIGURE 1.5: Restriction of entry area to limit engine power (see inset), seen to have
been used on certain F1 cars during the pre-2006 season testing

air to the engine, the performance was reduced sufficiently to simulate the performance

that would be experienced from the new, less powerful, engine.

In comparison to race car design, arterial geometry parameterization is a relatively new
topic of research. However, the use of computational modelling has become a powerful
research tool in aiding the understanding of arterial biomechanical behaviour and its re-
lation to atherosclerosis, a common disease which can lead to stroke, heart attacks, eye
and kidney problems. A detailed and informative review of computational techniques
currently being used for research into patient-specific biomechanics for potential treat-
ment decision making can be found in Steinman et al. (2003). Although surgeons have
not yet accepted these techniques for routine clinical use, an improved understanding
of local haemodynamics in a broad variety of different conditions, including the effect

after surgical intervention, may lead ultimately to the possibility of a patient-specific
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predictive medicine approach to surgical intervention. Taylor et al. (1999) has adopted
this approach for the planning of bypass surgery, Guadagni et al. (2001) discusses opti-
mizing the treatment of congenital heart defects and Cebral et al. (2000) and Steinman

et al. (2002a) uses the approach for cerebral aneurysms.

It is widely accepted that internal wall geometry is correlated with the sites of atheroscle-
rosis. Early experimental and CAD models of the carotid artery bifurcation were highly
idealised as “Y-shaped” models. Although better approximations are now used through
“tuning fork” artery shapes, they can be applied only in a general sense. Examples of a
Y-shaped artery model and a tuning fork artery model in comparison with the shape of
a real artery model can be seen in Figure 1.6. Much more sophisticated image process-
ing techniques have been developed for 3D geometry reconstruction of arteries based on
Magnetic Resonance Imaging (MRI) (Steinman, 2002; Steinman et al., 2002b; Antiga
and Steinman, 2004). This method captures the large variation in shape and dimensions
of the arteries from patient to patient. For patient specific analysis it is important to
capture an accurate computational representation of the artery for accurate flow sim-
ulations. Through accurate CFD modelling in realistic arteries, doctors are beginning
to understand the link between the arterial haemodynamics, other physiology and the
build up of disease. However, parametric models are also of importance to develop an
understanding of how changes in arterial wall shape affect the haemodynamic behaviour.
The industry, at present, although possessing powerful visualization tools to represent
and reconstruct extremely accurate computational arteries, lacks a realistic parametric
model for use in computational research. One key benefit of a realistic parametric geom-
etry is to enable research to determine those patients for whom interventional medicine
may be favourable. For example, by understanding the haemodynamics connected with
key geometrical factors, a connection between arterial geometry and a pre-disposition
of lower leg iscaemia in certain diabetics may be discovered. The techniques developed

for studying F1 airboxes have been adopted here for building arterial models.

The main objective of this thesis is to develop a fully automated general-purpose pa-
rameterization strategy providing a global manipulation of the geometry surface followed
by a local surface deformation for use in the design optimization of three-dimensional

internal fluid flow applications.
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FIGURE 1.6: Y-shaped artery model (left), tuning fork artery model (centre) and real
artery model (right)

1.3 Thesis Outline

In Chapter 2, the setup of an automated design optimization process is discussed. Each
part of the process is described in detail and the geometry parameterization techniques
available in commercial CAD software packages are surveyed. The implementation of
a Design of Experiments (DoE) approach followed by the use of CFD is described and
response surface methodology is proposed as the optimization approach used in this
thesis. Response surface methodology is a means of quickening an exhaustive search

process to find an optimal design.

Chapter 3 contains a mathematical description, in general terms, of response surface
approximation theory. Kriging is the focus here, and a discussion of the various search
techniques is given. Furthermore, for computationally expensive cases, a concentrated
exploration in a reduced area of the response surface for additional improvement in

design and convergence towards an optimum is described.

Chapter 4 implements a number of techniques surveyed in Chapter 2 in the design
optimization of a plane straight expanding duct and a constant width elbow turning
through 90°. The results of these studies are compared and each technique is analysed
with respect to the number of design variables required and the amount of global shape
control given. As the straight diffuser and elbow comprise both the features of an airbox
in terms of expansion and turning of the flow, a suitable parameterization technique with
good global shape control for a plane F1 airbox is then proposed and implemented in a

2D design optimization study.
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The purpose of Chapter 5 is to propose a general automated multi-stage design optimiza-
tion process for three-dimensional internal fluid flow applications with the capability of
providing both a globally parametric representation of the geometry as well as a locally
adaptable representation. The first stage is a global technique allowing the identifica-
tion of a generally good geometry, and the second stage is a local technique providing
features unavailable with the global technique for fine-tuning the geometry to gain im-
provements towards an optimal design representation. This chapter presents a survey
of 3D surface representations, and from the conclusions drawn, the most appropriate

surface manipulation techniques are chosen and a general automated process outlined.

In Chapter 6, the automated multi-stage optimization process built up in previous chap-
ters is applied to a three-dimensional F1 airbox. A parametric geometry is constructed
and a good global geometry found. The second stage of the process is implemented and
local deformations of the airbox surface are optimized to achieve a high performance

geometry.

Chapter 7 considers the multi-stage optimization process developed in Chapter 5, but
now applied to the shape optimization of a realistic parametric human carotid artery
bifurcation model. The initial artery geometry is determined from an automated analysis
of scanned data of a real artery. The error between the parametric CAD model and the
real artery is minimized through a local geometry manipulation stage. CFD analysis is
performed on the resulting CAD model and compared with a CFD simulation through

the ‘real’” artery.

Finally, in Chapter 8, the contributions made are noted and general conclusions drawn
from the work presented along with suggestions for future research resulting from these

investigations.



Chapter 2

Design Optimization

Methodology

Optimization, in short, can be described as the action or process of rendering the most
favourable outcome under a particular set of circumstances. Optimization as a concept
is familiar to all as, instinctively, we search for the best solution given a set of circum-
stances in many everyday activities. This general concept of optimization is ubiquitous
in countless applications, for example, in engineering design, biomechanics, weather pre-

diction, econometrics and financial forecasting to name but a few.

In formulating a design optimization problem, we wish to find the best solution to a
specific problem defined by a finite number of design variables, such that a desired per-
formance criterion can be maximized (e.g. recovery time, fuel efficiency, profit, etc.) or
minimized (e.g. aerodynamic drag, weight, loss, etc.). This criterion can be expressed
explicitly in terms of an ‘objective function’. In addition to this, limitations or ‘con-
straints’ may be imposed (e.g. physical size, manufacturing capability, economic). By
systematically adjusting the values of all design variables, a ‘good’ (feasible) or ‘best’

(optimal) solution may be found.

In mechanical design an optimization framework commonly incorporates geometry con-
struction, analysis and post-processing software, each of which has developed throughout
the course of the last 40 years, often independently. As a result, difficulties often arise

in determining an optimal solution when an efficient automation of the process cannot
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FIGURE 2.1: A generalised optimization strategy

be achieved due to software incompatibility. In an optimization process one must accept

possible limitations generated from software integration difficulties.

A typical design optimization framework is illustrated in Figure 2.1, each step of which

is discussed in further detail in the subsequent sections, giving a description of the

automated system architecture employed throughout this thesis.
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2.1 An Automated System Architecture

One of the primary issues faced by industries employing various software technologies
is that of the incompatibility between the software input and output file requirements.
To circumnavigate these issues, in-house codes may be written largely to provide a
seamless integration of software. However, due to the nature of industry, these codes are
rarely homogeneously shared across all business units resulting in wasted effort, time

and money as different units produce their own ad hoc solutions.

To remain consistent with the use of only commercially available design and analysis
software in this thesis, the design optimization process is incorporated within the Grid-
Enabled Optimization and Design Search for Engineering (GEODISE) system (Geodise,
2002). The GEODISE system is implemented using the Matlab ® environment (Mat-
lab ®, 2002) as an engineering portal giving remote access to the required CAD software
CATIA V5 ® Dassault Systemes, analysis software Fluent™ (2003a) and optimization
software OPTIONS (Keane, 2002). Matlab is adopted due to its prevalence in the engi-

neering fraternity, making the toolkit flexible and easily extendible.

As the use of optimization in design is becoming more commonplace, and designers
are demanding evermore accurate simulations, larger models are being tested requiring
CFD computations many orders of magnitude larger than the optimization methods
themselves. This in turn requires greater computational resources making this process
well suited to the use of Grid computing (Foster, 2002; Eres et al., 2005). For many
designers the integration of several heterogeneous environments and/or incompatible
software on such a large scale would be a daunting undertaking. The development
of Grid technologies with the Open Grid Services Architecture (OGSA) (Foster et al.,
2002) and the Open Grid Services Infrastructure (OGSI, 2003) has allowed this type of

service-orientated computation to become easily adopted.

The GEODISE toolkit is composed of a hierarchy of components which is depicted in Fig-
ure 2.2. Each box, from the scripting environment through computation to the applica-
tions, are exposed as Grid services and are connected appropriately in this service-based
workflow; see Xue et al. (2004). Low level compute toolbox functions are available along
with the input scripts for the OptionsMatlab toolbox. Users can then access remote

compute resources such as the Condor Cluster shown in Figure 2.2, where the Globus
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FIGURE 2.2: GEODISE system architecture

server (Globus, 2002) provides the middleware allowing the compilation of the remote
resources. This server provides much of the functionality that the system requires includ-
ing authentication, authorization, job submission, data transfer and resource monitoring.
The applications box depicted in Figure 2.2 holds the array of higher level geometry,
optimization, pre- and post-processing and CFD functions that the toolkit then calls

with the appropriate input files from the user’s filestore.
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2.2 Geometric Parameterization

To begin the design search and optimization process shown in Figure 2.1, a parametric
geometry must first be considered. Parameterization is here defined as the specification
of a geometry by means of a finite number of parameters or design variables which are
allowed to assume values in a given bounded range. The choice of method for geometric
parameterization becomes crucial when used in conjunction with an optimizer. This
choice is problematic, however, as in many situations one is faced with myriad feasible
methods, sometimes with no real distinction between the advantages of one over another.
The challenge is in selecting an appropriate set of design variables to allow a large amount
of geometric variability or ‘strong shape control’ of the CAD created geometry, whilst
retaining as compact a set as possible for the sake of efficient optimization. Strong
shape control is important, allowing the optimizer to discover less intuitive designs with
the potential to produce superior results. A proper choice of design variables usually
requires a good understanding of the flow physics surrounding the geometry and the
type of design variables likely to affect the objective function. In many internal fluid
flow applications, however, the flow behaviour is not clearly understood. In particular,
for cases where the designer is unable to predict likely changes in flow behaviour caused
by certain changes in the geometry and whether these changes are likely to improve the
design. In the absence of a clear understanding of the flow physics, strong shape control
is essential in order to relate the design variables to the flow behaviour . A survey of
the most common curve parameterization methods has been performed to determine the
best choice of method to achieve strong shape control, retaining a set of only few design

variables.

2.2.1 Polynomial Curves

In the field of numerical analysis, a spline is regarded as a special function defined in
a piecewise manner by polynomials. In computer science, in particular the subfields of
CAD and computer graphics, a spline is regarded as a piecewise parametric polynomial
curve (Farin, 1990). Spline approaches to curve contouring have the advantages of
providing a compact set of design variables and are naturally smooth. It is a popular

representation, not only due to its inherent smoothness but also due to the simplicity of
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FIGURE 2.3: A piecewise cubic spline

its construction and evaluation and its capacity to create complex shapes. An example of
a spline parameterization can be seen in Figure 2.3. Here, a piecewise spline comprising
three polynomial (cubic) curves Si(x), So(x) and S3(x) with end control points at (zg,yo)
and (x3,y3) and two mid master points (x1,y1) and (z2,y2) is shown. At each of the mid

master points, the piecewise splines join with first and second order continuity.

In its most general form, a univariate polynomial spline S : [a,b] — R consists of

polynomial pieces S; : [x;, z;+1] — R, where

a=r9g <21 < < xp_1<xp=n>0 (2.1)

Hence,

S(z) = S1(x), zo<x<u,

S(x) = Sa(x), =1 <w <y, (2.2)

S(z) = Sp(x), zp—1 <z < Xy

The vector x = (zg, 21, ..., T ) is known as the knot vector and if the knots are equidistant

it is a uniform spline. The smoothness is determined by the parametric continuity of
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one polynomial piece to the next. Continuity C7 implies that the two adjoining pieces

S; and ;41 share common derivative values from order zero to order j.

The advantages of using this technique are the ease with which one can define paramet-
ric continuity, specify the curve tangency at the start and end of the curve and have
interpolation through all the control points given. However, in cases where C? is im-
posed, one may see a tendency for the curve to oscillate. If this occurs, small changes
could lead to dire ramifications on the geometry. By changing only one control point
position, the entire curve is modified which would not be ideal if only a local change to
the curve is desired. If a complex shape is modelled, the degree may be increased to
allow for greater flexibility, however, this would incur a greater computational effort to

evaluate the curve with a large number of points needed to describe the complex shape.

For the remainder of this thesis, the focus is mainly on the cubic spline, where each S;

is of degree 3, and the term “spline” in used in this restricted sense.

2.2.2 Bézier Curves

For simple geometries, Bézier curves (Bézier, 1970) are equally as effective as polynomial
splines with, again, smooth and accurate properties represented concisely. Braibant and
Fleury (1984) demonstrated that Bézier curves are well suited to geometric parameteri-
zation when used in optimization studies, while Farin (1990) describes some of the more

useful properties of this particular technique.

In essence, a Bézier curve approximates a set of points, as opposed to the interpolation
seen with polynomial splines, although the curve end points are interpolated. A Bézier
curve can be calculated based on some n + 1 points to be interpolated. An example
of a Bézier curve parameterization can be seen in Figure 2.4 with two master control
points Py and Pj3, through which the curve interpolates, and two knots P; and P, -
four control points in total. Using this method one cannot prescribe the start and end
tangency conditions. This is determined by the tangency calculated between the first
two control points (FPy, P;) and the last two control points (P, P3) respectively. An
additional advantage of this technique is that it is useful for curve collision detection,

as the curve will lie within the convex closure of the control points. A Bézier curve is
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FIGURE 2.4: A Bézier curve

also invariant under affine transformations, i.e., rotation, scaling or translation of the

control points result in the rotation, scaling or translation of the curve itself.

Mathematically, a Bézier curve can be defined as follows. Given a set of n 4+ 1 control

points P, ..., P,, the Bézier (or Bernstein-Bézier) curve is given by

where x € [0, 1] and i=0,...,n.

Similar to the polynomial splines, these curves do not offer strong shape control, nor do
they offer an efficient way of describing complex shapes where a large number of control
points are required or where a high order curve is needed. One way of improving this
efficiency would be to divide the single Bézier curve into a number of lower order Bézier
curves but this has its own disadvantage in that it becomes more difficult to ensure

smoothness at the curve joins.
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2.2.3 B-splines

B-splines refers to basis splines. Their useage as parametric curves was investigated
by Schoenberg in the 1940s but did not become popular until the publications by de
Boor and Cox in the 1970s (de Boor, 1972; Cox, 1972) where they discovered recurrence
relations facilitating rapid evaluation of the basis functions. A generalized B-spline
is defined as follows. Suppose that we have a knot vector x containing m + 1 knots

o < x1 < ... < x4y, a B-spline is given by:

S(z) = ZP’ o n () x € [z, Tm), (2.5)
i=0

where P; are the control points and «; () are the basis functions.

The m by n B-spline basis functions of degree n can be defined using the Cox-de Boor

recursion formula,

1 ifl’j§$<$j+1

a]70 =
0 otherwise
T — T Titnal — Tj
jn(2) = 337_] Q1 (@) + = (@) (2.6)
j+tn — Ty Tjtn+1 — Lj+1

If the knots are equidistant then the B-spline is considered uniform. If n = m then
the B-spline degenerates into a Bézier curve. A B-spline has strong shape control and
has all the advantages of the Bézier curves although it is stricter in the sense that a
B-spline will lie within the union of the convex closures of all segments and also provides
greater shape control as moving a control point does not affect the whole curve, unlike

polynomial curves.

2.2.4 Hicks-Henne Bump Functions

Hicks and Henne (1978) developed a global shape function to efficiently modify aerofoil
sections. These are analytical shape functions which allow for strong shape control and

can be written in a general form (see Sébester and Keane (2002)):
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FIGURE 2.5: Two Hicks-Henne bump functions

Fz) = Zn: a <sin <m o ) > " (2.7)

1=1

for n bump functions and where z, z,, € [0, 1]. These functions always guarantee smooth
curves and can be described by three design variables per bump: the amplitude, a;, the

position of the bump peak, z,,, and the width of the bump, T;.

Figure 2.5 shows how two bump functions can be added to the line y = G(z) to create

a smooth and continuous parameterized curve defined by

—log 2 Ty —log 2 T
S(z) =G(z) + a1 (Sin <7T:E log @1 >> + as (sin <7T:E log =3 >> . (2.8)

2.3 Design of Experiments

Let us consider a k-dimensional design problem, i.e., a parametric model is employed
which uses k design variables. The k-dimensional design space in which the problem
is defined is commonly known as a hypercube. Response surface models (RSMs) (My-
ers, 1976; Box et al., 1978; Box and Draper, 1986; Khuri and Cornell, 1987; Myers and
Montgomery, 1995) are built based on a set of initial points, the locations of which can
be determined with an appropriate density according to a form of Design of Experi-
ments (DoE) approach (Mead, 1988). This approach materialized from the need of the
experimentalist to approximate the variation of the output or response over the whole

hypercube in a systematic and efficient manner.
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There are many methods for efficient space filling for which Montgomery (2000) provides
an authoritative text, but the choice of method is largely dependent on the type of
problem and the type of RSM selected. In a large proportion of methods, the sample
points filling the space occur in a relatively even but not a constant manner, except
for random space filling, where points could occur in batches with sparsely distributed

points in other areas of the design space.

For problems where there is no previous or intuitive knowledge as to how the surface
is likely to look, it is generally considered beneficial to use a technique which allows
arbitrary designs to which more designs may be added should the construction of the
response surface be poor. An LP7 method (Sobol, 1979), (Statnikov and Matusov, 1995)
provides an attractive solution to this problem. This technique allows for the addition
of new points into the design space without the need to reposition the existing points to
retain the even distribution of points. This method provides a reasonably good coverage
of the space although may have some limitations in coverage in comparison to a non-
extensible approach such as the Latin-hypercube method (Keane and Nair, 2005). These
DoE points supply the training data for the construction of a response surface. Typically,
it is considered that for there to be a sufficient number of points in the initial data set
to allow the initial response surface to be representative, approximately ten times the
number of design variables is needed (Jones et al., 1998). For further discussions on this

topic, refer to Sébester et al. (2005).

2.4 Computational Fluid Dynamics

Research into fluid flow problems started with the work of Newton. Significant progress
began in the mid 18th century with Leonhard Euler who, as legend has it, was invited
by Frederick the Great to Potsdam in 1741, whereupon he was asked to engineer a
water fountain. As a dedicated theorist, his route to success began with the need to
understand the laws of fluid motion. From this Euler developed a set of equations for the
motion of compressible, inviscid fluids in 1755. These equations are known today as the
‘Euler equations’ and are a set of partial differential equations (PDEs) expressing the
conservation of mass, momentum and energy. In 1821, Claude-Louis Navier and George

Stokes modified Euler’s equations to account for the forces between the molecules in an
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incompressible fluid, leading to the development of the equations of motion for viscous
fluids, commonly known as the Navier-Stokes equations. In all cases studied in this

thesis, incompressible flow is assumed.

Over the last half century, analysis codes approximating the solution of the Euler equa-
tions and the Navier-Stokes equations, or CFD software, have been developed. Today,
these codes take a number of different forms. The least computationally expensive

method, the panel method, is designed for irrotational flows.

The most computationally expensive method is a solution of the Navier-Stokes equations
involving viscosity and thus boundary layer activity. The Navier-Stokes equations can
be solved directly without any simplification via direct numerical simulation (DNS).
However, this requires a mesh fine enough to capture the smallest levels of turbulence,
which can be estimated by the turbulent microscale. Moreover, the higher the Reynolds
number, the smaller the turbulent microscale and hence a finer mesh is required. At the
Reynolds number of most practical engineering problems (such as those considered in
this thesis), the capture of the turbulent microscale would require such a fine mesh that
excessive computational resources would be needed. To overcome this, the Navier-Stokes
equations can be simplified using a Reynolds averaging process. This yields a set of PDEs
including Reynolds stress terms (which represent the unsteady, aperiodic motion in
which transported quantities fluctuate in time and space over the main fluid flow) within
the conservation of momentum equation. This method of finding a solution is known
as a Reynolds-Averaged-Navier-Stokes (RANS) calculation and requires a turbulence
model for closure, where the turbulence model provides a relation between the Reynolds

stresses and the mean flowfield.

CFD software is complex in its working as the Navier-Stokes equations cannot be solved
explicitly. What is needed is a scheme whereby a converged solution can be assumed
to provide a good approximation to the exact solution of the original equations. This

thesis uses the finite volume scheme.

The general idea for finite volume fluid flow simulations within a specified volume V is

as follows:
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e Mesh the volume — subdivide V into a finite number of adjoining control volumes
or ‘cells’. The centroid of each cell is known as the node and it is here where the

variable values are usually calculated.

e Discretization — integrate the PDEs over the control volumes to establish a set
of algebraic equations directly stating the conservation laws as a balance of cell
face fluxes and volume sources. In this thesis a finite-volume mesh is used and the

implicit segregated equations solved.

o Interpolation — for the transport variable values 1y at the cell faces, which are
needed to calculate the face fluxes, interpolation from the nodal values 1 is ac-
complished in this thesis using either a first or second order upwind scheme, i.e.
1y is derived from values in the cell upstream, or upwind, relative to the direction

of the normal of the flow velocity vector.

For further detail on general CFD techniques, see Anderson (1995). Returning to Fig-
ure 2.1, having located design points in the hypercube determined through a DoE, these
points are sampled by creating geometries defined by the DoE, meshed using an ap-
propriate size mesh determined by mesh dependency studies, and then simulated by
calling the CFD analysis code. In this thesis, the CFD code Fluent is used to perform
steady RANS simulations to determine the objective function. The most appropriate
turbulence model for the type of design problem is employed, more detail on which is

given in Chapters 4, 6 and 7.

2.5 Response Surface Methodology

During the last 15 years, response surface modelling (also known as surrogate or meta-
modelling) has played an important role in the practice of global optimization. It is an
area which is rapidly catching up with the sophistication of other commercial tools used
in the design optimization process available to the industrial sector today, such as CAD
and analysis software. Response surface models (RSMs) are created by the fitting of a
curve or surface to an initial data set of sampled points within the design space, thereby
inexpensively ‘mimicing’ the behaviour of the objective function and hence the solution

of the problem. RSMs encompass a range of different curve fitting techniques including
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polynomials (Montgomery, 2000), radial basis functions (Broomhead and Loewe, 1988;
Powell, 1987), Kriging (Matheron, 1963; Cressie, 1990) and support vector machines
(Christianini and Shawe-Taylor, 1999).

Today, not only are we seeing continuous improvements of the polynomial and radial
basis function approximation techniques and their usage inside an optimization process,
there is also much research interest in the neural networking approach (Hajela and
Berke, 1991; White et al., 1992), support vector machines and alternative kernel based
methods (Christianini and Shawe-Taylor, 1999) used for pattern recognition within data
sets. In very simple terms, neural networking involves a type of artificial intelligence
which attaches connections between the sampled input data. It is the organization
and weights of these connections that determine the output of an untried data point.
These methods provide promising ways of approximating sample data but their useage

is outside the scope of this thesis.

If only a DoE is implemented in order to locate an optimum solution to the design
problem, an excessive number of calls to the CFD analysis code would have to be made.
To evaluate the objective function through the solution of the Navier-Stokes equations, a
large computational cost is incurred. Therefore, to improve efficiency and, moreover, the
feasibility of utilizing optimization in industry, the objective function is approximated
by means of a RSM. This method has the essential and desirable feature of requiring
only a limited number of calls to the analysis code for the construction of the response
surface, given the dimensional size of the problem. Alternative techniques to response
surface methodology include direct genetic algorithm (GA) searches (Goldberg, 1989;
Hajela, 1999) and multi-start Dynamic Hill Climbers (DHCs) (Yuret and de la Maza,
1993). These involve more exhaustive searching over the design space to reach an optimal
value. This becomes impracticable for multi-dimensional problems such as those found

in many industrial applications.

In the generalised optimization framework (Figure 2.1), an update point is found by
building a response surface. Once the RSM is built, the accuracy of this surface ap-
proximating the objective function is determined by the surface fit, interpolating or
regressing, and the number of sample points used in the DoE. This surface can be up-
dated by placing further calls to the analysis software at appropriate points. The surface

is evaluated and then searched in lieu of the real problem to find the next most likely
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best point. There are three different types of update strategy for the Kriging RSM
approach to locate the next best update point: optimizing the predictor, minimizing
the prediction error or maximizing the expected improvement. These are discussed in
more detail in Chapter 3. The search of the surface can be performed either in serial or
parallel using GAs or DHCs. Having located this new point, the analysis code is called
to calculate the objective function at this point only. Once evaluated, these points are
added to the set of sample points and the RSM can be rebuilt. Updating the response
surface model in this way improves its accuracy and allows the update process to ef-
ficiently improve the design towards an optimal solution. It is important to note that
no surrogate modelling scheme is guaranteed to find the true global optimum except
when implementing a completely exhaustive search. The “Optimum design” featured
in Figure 2.1 and the term “optimum design” discussed hereafter is used to define the
best optimized design resulting from the optimization process and not the true global

optimum of the objective function.

Alternative RSM approaches are discussed briefly in Chapter 3. The following chapter
also provides a detailed mathematical description of Kriging and the process that is used

to determine the most suitable location for the update point.

2.6 Exploration of Reduced Design Space

Following each update point, a decision is made as to whether time taken to build the
response surface has exceeded a reasonable amount; see Figure 2.1. For high-dimensional
design problems, once the number of update points reaches into the few hundreds, the
time taken to build the response surface required to locate the next best candidate point
to be analysed can become prohibitively expensive. For example, in high-dimensionality
problems, a large initial DoE is performed but as the number of update points increases,
it becomes impracticable to build and tune the RSM using Kriging as the surface con-

struction time may exceed the time taken to analyse the update point itself.

At this point, a decision is also made as to whether the best design found is adequate
with respect to the type of problem and its objective function. Should the objective
function of the best design not be adequate, it is possible to further improve the design by

performing a concentrated exploration of a reduced area of the design space. This process
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is similar to the theory of trust region searches (Alexandrov et al., 1998). Provided a
reasonable number of update points have been calculated it is likely that the current best
point is near a promising optimum value. The design space around this best point can
be clipped and a concentrated exploration of this reduced design space performed. This
involves performing a DoE within this reduced design space in order to improve the best
design further. As this DoE can be run in parallel and no response surface construction
is necessary, this provides an efficient method of converging upon an optimum design.

Specific local search techniques are described in later chapters.

2.7 Summary

A description of a typical optimization process has been presented in this chapter. In-
variably, this process is automated. The description of the automatic progression of

procedures used in the work covered in this thesis is outlined.

Following the general structure of an optimization process, a parametric geometry must
be constructed. A number of techniques which provide the building blocks for curve
parameterization have been discussed. A DoE approach is then used to provide a set
of geometries which fill the design space efficiently. Analysis is performed on these
geometries providing the responses through which a response surface can be built. An
update point is found using the RSM and its objective function is found. If the time
to build the RSM is still reasonable, then the RSM is rebuilt including the recently
analysed update point and searched for the next update point. Once the time taken
to build the RSM becomes prohibitively expensive, the design may not have found an
adequate objective function, especially for design problems of high-dimensionality. If the
desired objective function has been satisfied then the optimum has been found. If not,
then an exploration of a reduced area of the design space can be performed around this
point to converge quickly to an optimal design. This description of a typical optimization
strategy has not elaborated upon the details of response surface modelling, in particular
Kriging, and how the most appropriate update point is located. Details of this can be

found in the following chapter.



Chapter 3

Optimization using Response

Surface Methodology

3.1 A Global Approximation

For the majority of engineering problems, the shape of the response surface is unknown.
Many objective functions are deceptive and can lead to an optimization process based
on a local approximation, which will only find a local maximum or minimum. In light
of this, it is paramount that an approximation based optimization routine progresses

towards the global optimum, or at least explores the design space reasonably widely.

RSMs can be one of two varieties: an interpolating model or a regression model. The
difference is that the construction of the surface occurs through the set of points that
have been sampled, in the case of interpolation, or near, in the case of regression. For
functions whose objective function curve or surface is not known a priori, the decision
as to whether the response surface should be allowed to feature regression is not ob-
vious. For a completely regressing response surface, the addition of more points may
not necessarily lead to a more accurate representation of the function, whereas the ad-
dition of more points in an interpolating surface involves more points of full accuracy.
However, it is important to note that unless the function is smooth and continuous,

the interpolating surface approximation may not represent the function very accurately

30
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in between the sampled points, since the requirement for interpolation can lead to the

surface ’overshooting’ or ‘undershooting’ the objective function values in such regions.

The definition of an RSM can differ widely. Montgomery (2000), for example, uses the
term for polynomials, while this thesis uses a more general definition. Here, two sorts

are considered: polynomial models and radial basis function (RBF) models.

Suppose a k-dimensional problem is sampled at n points X = {x1,X2,...,X,}, where
each x; (i = 1,...,n) is a vector containing k design variables z;1,x;o,...,x;. Each
sample point has a corresponding objective function value y;, collectively giving the

vector y = {y1,y2, e ayn}'

Polynomial models can be generalized by

I(x*) =Y aa, (3.1)
=1

where x* is the untried point, a; are coefficients and «; is a basis function where a set of

all polynomials in x with degree d can be generated by a basis B = {oy (x) [l = 1,...,n}.

For example, if d = 1, a basis will contain a combination of the constant 1 and any first
order term of z. If d = 2, a basis will contain a combination of the constant 1 and any

second order term of x and so on.

These are the simplest of global RSMs but as the objective function landscape becomes
more complex, higher order polynomials are required which increases the number of
points needed to build the response surface. Hence, low order polynomials are generally
considered for this type of approximation and because of this, there is a concern that it
may lead to large inaccuracies in the model. Radial basis functions differ from polynomial

models only in their choice of basis function. RBFs can be generalized by

§(x) =D ad(x —xp), (3.2)
t=1

where the new untried point x* is related to all of the sample points, a; are coeflicients,

and @ is commonly known as the kernel. There are a variety of different forms that ®
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can take to produce different basis function RSMs. A number of different examples can

be defined as follows.

O (x*—x1) = |Ix* — x4 linear spline
= |Ix* —x¢||*log (|[x* — x¢||) thin-plate spline 23
= |Ix* — x4 cubic spline 33
= exp <—”xg;2xt”> Gaussian

All of the models mentioned above can be solved in such a way to form interpolating
or regression models depending on the number of bases (Keane, 2004). Fourier analysis
methods and least-squares methods are just two of the many techniques available to

solve the models mentioned above.

Kriging (Matheron, 1963; Cressie, 1990) is a technique in the RBF category and is

generalized as

k
® = exp (— Z 0s|x; — th|ps> , (3.4)
s=1

where 65 and p; are unknown coefficients, commonly known as the hyperparameters.
These hyperparameters provide statistical information on the quality of the surface
being built and, once tuned, they can be used to rank the design variables in accordance
to their relative dominance, see Jones (2001) and Keane (2003). The hyperparameters
and their tuning will be discussed further in section 3.2. In most practical applications,

the above Gaussian function is used and is based on that given by Sacks et al. (1989).

Low order polynomial approximations have been shown to provide a poor global approx-
imation to some problems. However, Jones (2001) discusses the relative merits of the
Kriging technique’s robust capability in finding the true global optimum given poten-
tially deceptive functions. Due to the versatility of Kriging in its capability of approxi-
mating complex objective function landscapes and its provision of additional statistical
information of the surface, all cases studied here use a Kriging RSM for optimization

purposes.



Chapter 3 Optimization using Response Surface Methodology 33

3.1.1 Kriging

Kriging is a technique which provides a statistical interpretation so that, in addition to
the interpolator (or ‘predictor’), a measure of the possible errors in the model is ascer-
tained, which in turn may be used to position any further design points more prudently.
The response surface can represent an approximation of the objective function, the er-
ror of the approximated objective function values, or the expected improvement in the
objective function value that can hypothetically be attained over the design space. A
balance between global exploration of the design space and local exploitation of promis-
ing regions of the design space is sought. Searching over the approximated objective
function, the error of the approximation or the expected improvement of the approx-
imation provide different balances between exploration and exploitation. These three
methods are discussed in further detail in section 3.2.1 in order to determine the best

method for finding a global optimum design.

Although Kriging is a versatile and robust method of approximating an objective func-
tion, it should be noted, however, that Kriging is not suited to all practical applications.
Its efficiency is dependent largely upon the number of design variables defining the prob-
lem. In section 2.2 it has already been mentioned that strong shape control is important
and in many cases, this is achieved by increasing the number of design variables. There-
fore, one has to decide whether to trade-off the geometric complexity of the model for
the computational time required to obtain an adequate solution. Typically, Kriging is

computationally practicable for up to approximately 20 design variables (Keane, 2003).

3.2 The Update Process

The construction of the Kriging RSM can occur once the initial training data set, or DoE,
has been evaluated by the analysis code. Figure 3.1 presents the procedure for finding
an update point, showing the complete Kriging update process using the RSM (adapted
from Figure 2.1). Both the DoE method and the complete update process applied in
the optimization studies performed in this thesis are implemented using OPTIONS.

The DoE corresponds to a vector of n initial sample points. Let us consider the relation

between these n sampled points. Each of the n sample points has a response y determined
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FIGURE 3.1: Kriging update process

by the objective function y = f(x). Intuitively, assuming continuity of the objective
function f, the difference between the responses y(x;) and y(x;) will be small if the
distance between x; and x; is small. In statistical parlance, y(x;) and y(x;) are highly
correlated if ||x; — x| is small, while if ||x; — x;|| is large, the correlation will be small.

This correlation is expressed as

k
R(x;, Xj) =exp | — Z 10% \xis — xjs\ps + 10<6ij (3.5)

s=1
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satisfying R = 1 4+ 10¢ if x; = x; and R — 0+ 10 as ||x; — x;j|| — oo. The hyperpa-
rameters 6, and ps represent the variable dominance and response surface smoothness
respectively and ( is a third hyperparameter measuring the magnitude of regression al-
lowed. The regression term is included in all calculations performed in this thesis due
to the uncertainty of the smoothness and continuity of the objective function, whether
this is due to the nature of the problem or due to the inaccuracies encountered with the

discretization error of CFD solutions.

The correlation matrix is a square n X n matrix R in the form

1+10¢  R(x1,x2) -+ R(x1,%,)
R(x2,x 1+ 10¢ R(x2,x,
R = (? J . (? s (3.6)
For any random variable Y = {Y (x1),...,Y (x,)}", Y has a mean of 1z and a covariance

Cov(Y) = 0?R. Y now depends on the parameters i, 02, 0, ¢ and ps (s = 1,...,k).
To estimate the values of pu, 02, 0, ¢ and ps, a search is performed for the values of

these parameters which maximize the likelihood of the responses.

Supposing we have a set of responses

1

Yn

then the likelihood L, with unknown p and o2, can be defined as

1 1) R Yy -1
L—— L exp <_(y 1) i (v u)) ' (3.8)
(02)2(27)2 det R2 20

In practice, however, it is more convenient to choose the parameters p and o2 to maxi-

mize the log-likelihood function
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(y — 1) "R (y — 1p)
2072

1
LLF = —g log(0?) — 3 log(|R|) — + constant terms.  (3.9)

The maximum likelihood estimators (MLEs) ji and 62 (circumflex denotes a MLE) of

this are then defined by

1Ry
== Y 1
A= TrR=17’ (3.10)
— 14 Tp-1 — 14
2o -1 R (y—14) (3.11)

n

By substituting the values for ji and 62 into equation 3.9 the concentrated log-likelihood

function is obtained

1
CLLF = —g log(62) — 3 log(|R|) + constant terms. (3.12)

This concentrated log-likelihood function is maximized to find the MLEs for (, 85 and
ps, s = 1,...,k. This is known as ‘tuning’ the hyperparameters (see Figure 3.1) and
by doing this the accuracy of the RSM between the sample points is improved. Ad-
ditionally, the relative dominance of the design variables can be readily assessed using
the hyperparameters, logf; > 0, 0 < p < 2. For example, a large log 6 value indicates
a function where the objective value can change significantly over a small distance. p
determines the smoothness of the function; the smoother the function, the closer p is to
the value 2. For an interpolating model ( = —oo, or in practice -6 or less to prevent

ill-conditioning of the R matrix.

Note, however, that performing this hyperparameter tuning for each update can be
computationally expensive and so in this thesis the hyperparameters are tuned for every
10 update points, under the assumption that the character of the surface will remain

largely unchanged at intermediate updates.
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3.2.1 Searching the RSM

When exploiting the RSM, a search method is chosen to find the best candidate point
on the model that either

1. optimizes the predicted objective function value,
2. maximizes the prediction error of the predicted objective function value, or

3. maximizes the expected improvement one could achieve over the predicted objec-

tive function values.

Using the values of 0y, ps (s =1,...,k), ¢, ji and 62 found from building the RSM,
evaluating the RSM, and possibly tuning the hyperparameters, the following sections
3.2.1.1, 3.2.1.2 and 3.2.1.3 define the searches mathematically and provide an insight

into the best methods for locating a global optimum design.

Search techniques are many and varied. Genetic algorithms and DHCs have already
been mentioned. Others include simulated annealing and other evolutionary strategies.
Keane and Nair (2005) offer detailed insight into techniques available to exploit RSMs.

In all optimization studies in this thesis, a DHC method is used.

3.2.1.1 The Predictor

To arrive at a prediction for the objective function at some untried point x*, an objective
function value is estimated and augmented to the initial n-dimensional data set provided
by the DoE. It is ascertained, in the following steps, how consistent the estimated value
of the objective function at the untried point is with the already observed pattern of
variation between data points x and their corresponding responses y. Estimates of the

mean and variance of y are chosen to maximize the log-likelihood function

y —1p)" RNy —1p)
202

1
LLF = —g log(o?) — 3 log(|R|) — ( + constant terms. (3.13)
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Suppose x* is an unsampled point and the prediction of the objective function at this

point is y* = y(x*). An augmented set of responses is now y = (y  yn1(x*))7 with

R(x*,x1)

R(x*,xy,)

and

~ R r
R = . (3.14)
vl 1

With the augemented sets of data, and referring to equation 3.13, it is only the third term

that depends on y, and so the quantity to be maximized is the augmented log-likelihood

function
v — 1/ TR—I o
ALLF = — ¥ ) 5,2 ¥ ) + terms independent of y*
o
T -1
y—14 R r y— 14
* N I’T 1 * N
= = + terms independent of y*.
202
—1 o [T'R(y —141) . .
— _ * * f *
[202(1 — rTR—lr)] (Y —p) "+ [6’2(1 —TR-17) (y*—j)+terms independent of y* |
(3.15)
for which the maximum of this is the Kriging predictor:
j(x") = i +1"R (v — 1), (3.16)

For a full derivation, please refer to Appendix A.1.
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It is ¢ that is searched to find the value of x which optimizes the predicted objective
function value, thereby providing the location of the next update point. As the DoE is
augmented with values of the predicted objective function, this method tends towards an
exploitation of the RSM and so for poor approximations of the objective function, this
method could readily become trapped in a basin around a local optimum value. Jones
(2001) shows that the augmented log-likelihood function may depend on the predicted
value y* in two ways: first, if the curvature of the augmented log-likelihood function is
high, i.e., its value changes significantly as y* varies, the confidence in accuracy of the
Kriging predictor is high; and second, if the curvature of the augmented log-likelihood
function is low, i.e., different values of y* perform almost as well, the confidence in
accuracy of the Kriging predictor is low. Hence, the potential error of the predictor is

inversely related to the curvature of the augmented log-likelihood function

1
curvature = 0 TR 1)’ (3.17)

The measure of potential error is calculated in the following section.

3.2.1.2 Prediction Error

The mean square error, MSE, can be defined as

-1

0 1T 1 1— TR—ll 2

MSE:6'2 1—(1 I‘z;) :&2 1—I'TR_1P+%
1 R r, 1"R-11

(3.18)

where the first two terms represent the reciprocal of equation 3.17. For a full derivation,

please refer to Appendix A.2.

It is important to note that the the mean square error is conditional given that the
correlation parameters are known. In reality, however, they are simply maximum like-
lihood estimators from equation 3.12. This means that it is likely that the value given

by equation 3.18 underestimates the true uncertainty, especially when optimizing small

)
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dimensional problems. Bootstrapping methods are one technique of correcting the esti-
mation error (den Hortag et al., 2004) but further work relating to this is outside the
scope of this thesis. It is these values for the mean square error which are searched when
maximizing the error of the predicted objective function values to locate the next best

update point.

An advantage of this technique over updating using a search over the predictor to the
objective function is that the error is equal to zero at the sample points. Additionally,
the surface is explored with a much more global search. It must be noted, however, that
becoming trapped in a basin of a local optimum is still possible and the surface will be
exploited in these basins. A more robust method which is guaranteed to converge to an
optimal design is the method of finding the value of the improvement expected at an

untried point (Gutmann, 2001; Locatelli, 1997).

3.2.1.3 Expected Improvement

Expected improvement is the improvement expected to be achieved when sampling at an
untried point, given that there is an error in our prediction at that point. Let a random
variable Y ~ N(7(x), s?), where § is the Kriging predictor defined in equation 3.16 and
s? is the mean square error. For a maximization problem, let f,.. be the current best
objective function value, then an improvement I will be achieved if I = Y (x)— fyqz > 0.

The expectation of I can be defined as

E(I) = /1 :OO I {m%(x) exp [— (I+/ ’;L;zﬂx;g(x))z] } dI, (3.19)

which can be integrated to give

E(I) = s (u cdf(u) + pdf(u)), (3.20)
where cdf(u) is the normal cumulative distribution function and pdf(u) the normal
probability density function and where u = (§ — finaz)/s-

This is the function which is searched and maximized to find the next best update

point. This provides a good balance between exploration and exploitation of the surface
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(Sébester et al., 2005) and is used for all optimization studies performed in this thesis.

For the full derivation, again please see Appendix A.3.

3.2.1.4 Regression Term

Should a regression term be added into the correlation matrix such that

k

R(x;,x;) = exp <— Z@Smis - :L'js|p5> +10%6; 5, (3.21)
s=1

satisfying R = 1 + 10¢ if x; = x; and where 0; ; is the Kronecker delta, the correlation

matrix is of the form in equation 3.6. The augmented correlation matrix is in this case

defined as

- R r
R = ) (3.22)
rl 14106

This would not affect the equations for fi, 62 or the Kriging predictor §j. However, there

is a change in the mean square error and so equation 3.18 can be written as

-1
0 1”7 1

MSE =6 |[1+10° — (1 1]) : (3.23)
1 R ry

And by the same method given earlier, the mean square error including regression be-

comes

(1—-rTR711)?

a2 ¢ . Tp-1
MSE=6“{14+10>—-r" R 'r+ TR11

(3.24)
Note: This regression term in the form 10¢ is present in all calculations performed in

this thesis.

Using equation 3.24 to find s leads to problems with the convergence of E(I). To solve
this, OPTIONS eliminates the ¢ term and uses the value for the mean square error given

in equation 3.18 and uses
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1)) TR-1 1066, YR~ (y — 1

This results in error estimates which assume the data follows a smooth trend ignoring

the error due to the noise in the data. For further details see Forrester et al. (2006).

3.3 Summary

This chapter has introduced response surface methodology with a variety of approxima-
tion methods. Kriging has been chosen as the approximation method for use in global
optimization due to its versatility and capability of representing complex objective func-
tions. A number of steps have been outlined to determine the Kriging predictor and to
find the next update point by searching the surface of the predicted objective function
value, the prediction error or the expected improvement of the objective function value,
including the correction required when regression of the response surface is allowed. Ex-
pected improvement is chosen as the most appropriate type of update strategy due to
its robustness and capacity to guarantee eventually to find the location of the global

optimum assuming adequate time and resources.



Chapter 4

An Automated Single Stage
Shape Optimization Case Study

4.1 The Global Optimization of a Two-Dimensional Air-

box

The process described in chapters 2 and 3 is applied in this chapter to the design of
a two-dimensional airbox. To obtain an understanding of how the wall geometry and
centreline bend affect the efficiency of expansion and the efficient turning of the flow,
the two functions of the airbox are initially considered separately: that of expanding
the flow through a straight diffuser and that of turning the flow through 90° with no

expansion.

After a definition of the design objective and a discussion of the CFD model employed,
the initial focus is on the straight diffuser in section 4.4. Research has been carried out on
the optimal shape design of two-dimensional diffusers in turbulent flow using alternative
methods to provide an accurate prediction of the flow separation by Zhang et al. (1995)
and Lim and Choi (2004). These cases began from a widely studied optimal diffuser
design rather than from scratch, and applied a simple technique to obtain strong shape
control of the diffuser wall. Here, a variety of different geometry parameterization tech-
niques are assessed with the aim of determining the most effective method of obtaining a

geometry possessing a high degree of shape control using only a small number of design

43
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variables. A similar test is performed for a constant width elbow turning through 90° in
section 4.5. The best techniques are then fused together for the final parameterization

of a two-dimensional airbox in section 4.6.

4.2 Design Objective

The design problem in all cases studied in this chapter is the maximization of pressure
recovery based on the internal flow through the diffuser. Steady, incompressible flow is

assumed and so the pressure recovery coefficient, C}, may be defined by

c, = Lo —Pu (4.1)
qu

where p, is the mass-averaged (or density-weighted) static pressure at the inlet, p, is

the mass-averaged static pressure at the filter and where

1
Gu = 5pU” (4.2)

denotes the dynamic pressure with p the fluid density and U the velocity at the inlet.

4.3 CFD Analysis and Optimization Strategy

All geometries are constructed using the CAD engine CATIA and imported into a mesh-
ing tool. Both meshing and flow simulations are executed using the commercial CFD
package Gambit™ (Fluent™, 2003a) and Fluent. To ensure that solutions yield suffi-
cient accuracy within Fluent, a mesh dependency study has been performed on a straight
walled diffuser prior to the optimization studies. An inlet mass flow rate of 10.8kgs™!
(Reynolds number, Re = 6 x 10°) is fixed, determined for a car travelling at approxi-
mately 70ms~! or approximately 150mph, and a paved quadrilateral /triangle structure
is used for the mesh. Structured quadrilateral cells of a fixed start size, growth rate
and depth were grown from the wall to capture the boundary layer. A ‘standard’ wall
function (the default setting in Fluent (Fluent™, 2003b)) was used which is based upon
the proposal of Launder and Spalding (1974). With this wall function, the logarithmic
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law for mean velocity is know to be valid for y™ > 30, where y* is the wall-normal
coordinate normalised by the local viscous length scale v/u,. For this study y* =~ 50.
Various mesh sizes were tested and solved with the same CFD model with a standard
k-e turbulence model at each attempt. Starting from a cell count of approximately 2000
cells, the mesh was progressively refined testing approximately 3, 6, 12, 24, 39, 75 and
120 thousand cell meshes. The profile of velocity U was set as uniform across the inlet
and the dependent variable of turbulent dissipation rate was calculated from a turbulent
intensity value of 1%, and the dependent variable of turbulent kinetic energy calculated
from a hydraulic diameter of 0.2m. Using these values, the static pressure recovery
value, C),, was calculated for each of the different mesh sizes and the results shown in
Figure 4.1. The percentage difference in (), value between the meshes comprising of
approximately 1500 cells and the finest mesh was 437%, whereas the percentage differ-
ence in C, value between the meshes comprising of approximately 39000 cells and the
finest mesh was 1.7%; this is considered to be a sufficiently accurate result. Hence a
mesh with approximately 39000 cells was chosen for the optimization studies presented
in this chapter. It is difficult to control the exact cell count when using an automated
process to mesh each design discovered by the optimizer. However, the meshes used
in this initial dependency study were created with a size function capability within the
Gambit meshing tool which allows the same growth rate from the boundary layer to be
developed regardless of the shape of the diffuser. Using this functionality, finer meshes
are produced by decreasing the distance between the mesh nodes on the diffuser walls
while maintaining a consistent boundary layer depth across meshes. The fixed boundary
layer depth is such that it will capture all of the boundary layer as it develops over the
streamwise distance x. The fixed boundary layer depth, fixed distance between wall
nodes and a fixed cell growth rate mean that the meshes produced during the optimiza-
tion processes later in this chapter will only vary by a small amount in terms of total

cell count given varying wall shapes.

The CFD analysis for all the studies carried out in this chapter involves solving the in-
compressible two-dimensional steady-state Reynolds-averaged Navier-Stokes equations.
The k-e turbulence model (Launder and Spalding, 1974) is used for the straight diffuser
study which is in keeping with the references studied, and the Spalart-Allmaras tur-

bulence model (Spalart and Allmaras, 1992) is applied in the constant width turning
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FIGURE 4.1: Graph illustrating the dependency of C), value with mesh density for a
2D straight walled diffuser

filter outflow

FIGURE 4.2: An example of a ~39000 cell mesh with inlet, filter and outflow positions

elbow and the final study in section 4.6. The change to using a Spalart-Allmaras model
is due to the fact that this model is more economic than the standard k-e¢ model and
more accurate for wall-bounded flows and flows with mild separation and recirculation
(Fluent™ 2003b). The boundary conditions for studies conducted in sections 4.4 and

! with a uniform profile at the inlet and

4.5 comprise a fixed mass flow rate of 10.8kgs™
a pressure outflow positioned at the exit of the duct. The exit of the duct is situated
downstream of the engine filter. The position of the engine filter is chosen to be at the
end of the diffuser expansion in the straight diffuser study, and at the end of the bend
in the elbow study. This is to ensure that any separation arising within the diffuser or
elbow does not pass through the outflow boundary. Mass-averaged static pressure values
are taken at the inlet and at the position of the filter. Figure 4.2 illustrates a mesh of

approximately 39000 cells and depicts the positions of the inlet, filter and outflow for
the straight diffuser.

For the study carried out in section 4.6, the large expansion required over such a short

distance coupled with the 90° bend means that a pressure outflow boundary condition
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at the filter is insufficient due to the unstabilized flow at this point caused by separation.
The diffuser could be extended downstream of the filter creating a long constant width
outflow duct as carried out in sections 4.4 and 4.5, but this is unrealistic in terms of
the nature of the airbox setup within an F1 race car. To ensure that an accurate
converged solution is obtained, the airbox model is extended to include the engine filter,
represented in Fluent by a one-dimensional porous jump, and the trumpet tray, an area
of fixed width situated between the filter and the engine trumpets which are positioned
over the cylinders. The area represented by the engine trumpets is classified as a velocity

inlet boundary condition.

A breathing engine sucks the air out of the airbox through the trumpets and so the
velocity inlet condition at the trumpets is given a negative velocity value. It is assumed
that the 4-stroke engine is at wide open throttle running at 18000 revolutions per minute
(rpm), i.e., 9000 intake strokes per minute or 150 intake strokes of the pistons per second.
Assuming 100% volumetric efficiency, the 3-litre engine requires 0.003 m? of air and hence

the engine requires a volume flow rate V = 0.45m3s~!.

This flow rate is also equal to
the product of the total cylinder area and the average piston velocity required by the

engine. From this the piston velocity can be calculated given the total cylinder area.

For the two-dimensional model to be representative of the real 3D case, the total trumpet
length is calculated by matching the 3D total cylinder area to filter area ratio. However,
within the 3D airbox there is a second expansion ratio of total cylinder area to total inlet
area to consider. For this 2D case, both cannot be considered. Thus, the length of the
diffuser inlet and length of the filter are fixed. The first expansion ratio of cylinder area
to filter area is considered more appropriate as the complete shape represents the centre
plane of a 3D airbox and the geometry parameterization techniques for defining the walls
can potentially be carried over into an airbox design strategy in three dimensions. Since
the 2D diffuser is effectively doing half the work needed to expand the flow through a 3D
airbox for the required breathing engine velocity, the velocity of the flow being sucked
out of the 2D trumpets needs to be increased to represent sensible inlet speeds akin to
those seen in the 3D case. The velocity through the engine trumpets is such that Re =
2 x 10 giving a velocity of 58ms~!. A pressure inlet is imposed at the diffuser inlet. The

porous jump values used here are given by the thickness and permeability of the engine
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filters typically used by F1 teams and have the following values: face permeability =

1.3 x 10~8m?, filter thickness = 15mm and inertial resistance factor = 1000m™".

Table 4.1 provides the boundary conditions and turbulence model setup values for each
of the three two-dimensional intake cases: the straight diffuser, the elbow, and the
diffuser turning through 90°. The under-relaxation values shown in Table 4.1 are used
to control the change of calculated nodal value during each CFD iteration. This occurs
due to the non-linearity of the equation set solved by Fluent. So, for a variable 1, the
new variable value depends on the old value through the relation ¥ = g + gA. The
higher the under-relaxation values (q), the faster the convergence rate. Each simulation

requires 1000 iterations to converge satisfactorily.

4.4 Straight Diffuser

In this section, three different parameterization techniques are considered for diffusers
with straight centrelines. These diffusers have a total expansion ratio (diffuser exit
length A, : diffuser inlet length A;,) of E = 4.5 and aspect ratio N/A;, = 1.6 where N

is the diffuser axial length.

The flow regimes classified by Fox and Kline (1962) established a correlation between
diffuser performance and flow separation occurrence for varying expansion ratio and as-
pect ratio values at Reynolds number Re = 1.6 x 10°. Ideally, to obtain the best possible
diffuser performance, the diffuser is designed in such a way so that no areas of separa-
tion are induced. This is because the separation regions obstruct the effective passage
of flow and therefore the diffuser experiences increased losses. However, if a straight
wall is imposed for the diffuser, the expansion and aspect ratios are such that, referring
to Reneau et al. (1967)’s flow regimes, flow separation would be expected. Hence, the
purpose of this parameterization exercise within the design optimization strategy is to

allow contouring of the wall so that separation is reduced or even eliminated.

Wall contouring was first tested for two-dimensional straight diffusers using experimental
means by Carlson et al. (1967). It was found that for £ € [1.5,4.5] and N/A;, € [3, 18],
bell-shaped wall geometries returned the highest C, value within their optimization

study. Madsen et al. (1999) studied this problem using CFD and modern optimizer
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Straight Diffuser

LElbow

Diffuser with Bend

Mesh size ~ 39,000 cells ~39.000 cells ~39.000 cells
DoE LPt LPt LP1
RSM Kriging (E(1)) Kriging (E(1)) Kriging (E(1))
Search method DHC DHC DHC
Turbulence Model Standard k-g Spallart-Almaras Spallart-Almaras
Near-Wall Treatment Standard N/A N/A
L BT —— 10.8 10.8
(kegs™) : :
Discretization:
Pressure Standard Standard Standard
P'“"’L“‘(VO“L}I‘:;‘;‘L SIMPLEC SIMPLEC SIMPLEC

Momentum
Moditied Turbulent

d .
2" order upwind

d .
2" order upwind

d F
2" order upwind

Viscosity N/A 2" order upwind 2" order upwind
Turbulence Kinetic Energy 2" order upwind N/A N/A
Turbulence Dlss1palt{1;:j 2™ oeder upwind N/A N/A
Under-Relaxation:
Pressure 0.8 0.8 0.8
Density | | |
Body Forces | | |
Momentum 0.8 0.8 0.8
Modified Turbulent :
Viscosity M e g
Turbulent Viscosity l | |
Turbulence Kinetic Energy 0.8 N/A N/A
Turbulence Dissipation 08 N/A N/A

Rate

TABLE 4.1: CFD and optimization setup values for Fluent (Fluent™, 2003b)

codes, maximizing the static pressure rise and adopting a B-spline parameterization
with five master points along the wall. They compared computed results through the
use of CFD with those obtained experimentally by Reneau (1967) by imposing a re-
creation of the same inlet conditions for a straight walled diffuser. It was shown that
for the straight walled benchmark diffuser, the CFD code consistently overestimated
the pressure recovery values found via experiment. This was explained by the use of a
stationary CFD model where flow separation occurs. However, it was confirmed that
with the diffuser geometries falling within the bounds E € [1.5,3] with a constant

aspect ratio N/A;, = 3, Madsen et al’s parameterization technique coupled with their



Chapter 4 An Automated Single Stage Shape Optimization Case Study 50

-~ Madsen et al data
“““ 13187 cells
0.65 -=+= 37500 cells
—— 68492 cells

0.6f

0.4

0.35

03 . . .
0 500 1000 1500 2000

Number of iterations

FIGURE 4.3: Validation between CFD model and Madsen et al. (1999)

optimization strategy produced bell-shaped diffusers which were found to return the
highest static pressure recovery (C), values), the same conclusion reached by Carlson et

al.

Validation of the CFD analyses discussed here is depicted in Figure 4.3 by comparison
with the results in Madsen et al for a straight walled diffuser with F = 1.5 and N/A;, =
3. As shown, the pressure recovery values converged to within 2% of those in Madsen
et al. (1999). Madsen et al’s diffuser did not contain any separation and nor did the
model tested here. This was validated by examining the wall shear stress values which

remained positive along the wall throughout the diffuser.

4.4.1 Geometry Parameterization

Parameterization One — Polynomial Splines

Here the model comprises four separate piecewise polynomial splines, referred to here-
after simply as splines, that pass through five master points along the wall. The advan-
tage of using piecewise splines is the capability of governing the C' and C? continuity
at each join. This observation means that more local control of the wall can be obtained
by specifying the appropriate continuity at each master point. By demanding the conti-
nuity of the second order derivative at each master point, the rate of change of gradient
is constant at these spline joins preventing an overshoot which can create a “rippling”

effect along the curve — a situation that should be avoided.
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FIGURE 4.4: Spline parameterization of straight diffuser

The duct is defined to be symmetrical about its centerline with a cross-section area given

by

A (x) = A + (Ao - Ae) B (x) (4’3)

where 0 < (x) < 1. The parameter [ is varied along the duct by treating it as a
function of the = coordinate of the centerline at that particular cross-section. To avoid
the problem of “rippling” through these points, the first and last splines are cubic and
the middle two are quadratic curves. This approach means that the problem is not
restricted by having too many constraints over the geometry to maintain continuity at
the joints between the curves. Ghate et al. (2004) followed this approach to parameterize

a duct using three piecewise cubics.

A five dimensional problem can then be set up as in Figure 4.4.

The piecewise variation of 3 is then prescribed as

cintciertasr? e, 0<z<m

Co1 + 22 T + Co3 7 , 1 <r <22

Bla) = - (4.4)
31 + C32 T + 33 22 , o <x<uz3

canteprtenr’ ey, r3<e<ay
Using the boundary conditions, and the continuity conditions on (3 and setting the
derivative at the end points to be zero, the coefficients ¢;; can be expressed entirely in
terms of x1,--- ,x5 and [y, --- , 33, with the area of each cross-section being calculated

using equation 4.3.
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Parameterizations Two and Three — Hicks-Henne functions

A curve can also be modelled using the bump functions introduced by Hicks and Henne
(1978). Their general form has been discussed previously in section 2.2. These functions
always guarantee smooth curves and also have the appropriate end constraints, i.e.,
zero curvature. Here the function is superimposed onto a simple straight sided duct.
Using one of these bump functions to describe the wall geometry provides three design
variables: the amplitude, a, the distance along the duct centerline where the bump peak

is situated, z,, and the width of the bump, 7.

Finally, the third parameterization involves two Hicks-Henne bump functions summed
together giving a total of six design variables. This provides further geometries where

stronger shape control of the curve is possible.

4.4.2 Results

In this first optimization study, a DoE was evaluated with a number of experiments
equal to ten times the number of design variables, and twice this number of update
points was computed, which is in keeping with standard practice (Sébester and Keane,
2002). Due to the low number of design variables used, the RSM build time was not
sufficiently limiting to lead to the need for an exploration of a reduced area of the design

space.

After the optimal design was found, convergent-divergent diffusers presented competitive
C), values for all of the tested parameterization techniques. By converging the flow
slightly at the inlet, the acceleration of the flow increases the local Reynolds number, the
turbulence of the core flow and hence the turbulence of the boundary layer. This increase
in turbulence is sufficient to prevent the onset of separation. The contours of velocity
magnitude in a convergent-divergent diffuser, here found via the single Hicks-Henne
approach, and in a straight walled diffuser are illustrated in Figure 4.5 for comparison.
In the straight walled figure at the top, it can be seen that above the main core of flow
there is an area of recirculation. Here, the flow has separated close to the diffuser entry
as can be seen by the wall shear stress values along the wall in Figure 4.6. Because

there is a region of high velocity flow and a region of very low velocity flow within the
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recirculation area at the filter point, the mass-averaged static pressure recovery returns
a low overall value of C}, = 0.21. In contrast, the flow in the converging-diverging wall
diffuser pictured at the bottom of Figure 4.5 expands with no separation, verified by
positive wall shear stress values along the wall shown in Figure 4.7, and has a more
even pressure uniformity across the filter. Because of this, the flow is generally at
a relatively low velocity through the filter, even with the slight acceleration near the
inlet caused by the converging wall, and hence returns a higher mass-averaged static
pressure recovery value of C}, = 0.36. The optimum diffuser for both the double Hicks-
Henne function and the spline technique also yielded a convergent-divergent diffuser
almost exactly matching that of the one shown at the bottom of Figure 4.5. Hence,
given an appropriate optimization strategy in terms of an accurately represented RSM,
the different parameterization techniques tested are capable of producing results with
the same geometrical features. In conclusion, given a straight diffusion of flow, the
single Hicks-Henne approach uses the fewest design variables. However, for a turning
expanding diffuser as studied in section 4.6, a polynomial spline parameterization or a
double Hicks-Henne function would be the appropriate option to pursue because a single
Hicks-Henne function applied upon a straight line connecting the entry to the filter of
the airbox would only allow for one bump to contour the shape, whereas the other two
techniques are capable of producing a convergence near the entry and a bulge near the

exit, for example, giving stronger shape control of the wall.

With the inlet speed and expansion conditions, the point of separation occurring within
the diffusers studied here are different to those studied by Carlson et al. (1967) and Mad-
sen et al. (1999, 2000). This explains why none of the three parameterization techniques
yielded a bell-shaped optimal design in contrast with the optimal bell-shaped designs
found by them. The physical reasoning behind the bell-shaped designs is that provided
the boundary layer is sufficiently turbulent at the inlet, they ensure that the boundary
layer remains attached during the prime area enlargement. However, the studies in this
chapter have a higher inlet speed than those studies of Carlson et al and Madsen et al
and a larger expansion ratio for the boundary layer to remain attached. Hence, bell-
shapes produced poor designs as the flow could not re-attach within the specified axial
length, where the re-attachment occurred between 0.8 m and 1.2 m downstream of the

filter, resulting in a low C), value. Figure 4.8 illustrates an example of such a bell-shaped
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F1GURE 4.5: Filled contours of velocity magnitude in the whole computational domain

of the symmetry half of a straight wall (top) and optimum convergent-divergent wall

(bottom) diffuser (the diffuser section has been magnified to illustrate the difference in
wall geometry)
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FIGURE 4.6: Wall shear stress values in the streamwise direction along the wall of a
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FIGURE 4.7: Wall shear stress values in the streamwise direction along the wall of the
the convergent-divergent diffuser shown at the bottom of Figure 4.5.
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FI1GURE 4.8: Filled contours of velocity magnitude in the whole computational domain
of the symmetry half of a bell-shaped diffuser (the diffuser section has been magnified
to show the wall shape more clearly)

design with C}, = 0.12. Due to the fixed engine position and strict overall car dimensions
required by the F1 regulatory bodies, a longer diffuser to follow the flow streamlines in

order for the flow to re-attach cannot be allowed.

Prior studies such as the five-dimensional case using B-splines tested by Madsen et al.
(1999, 2000) constrained the geometries such that a positive wall slope was seen along the
wall. However, considering the different required speed and expansion, this condition was
not stipulated. By allowing the possibility of a constriction near the inlet, a prevention
of separation would be possible. For the Hicks-Henne defined parameterizations the
variable bounds were not limited so that a negative bump amplitude would be rejected
for points placed near the entry point. Despite the spline technique limiting the wall
height variable (3 to the interval [0, 1], see Figure 4.4, the value of 3 and the position of
the first control point coupled with an appropriate 3 value for the second control point

could lead to a wall shape with a negative wall gradient, as seen near the inlet.

4.5 Elbow

Following the approach of the previous section two different parameterization methods

for a duct of constant width turning through 90° are discussed next. The purpose of
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X = control points

parallel walls

FIGURE 4.9: Geometry parameterization shown for a Bézier curve defined centreline

this study is to understand the flow physics surrounding the centreline bend and to

determine the best method for use in a curved diffuser.

4.5.1 Geometry Parameterization

An optimization cycle is implemented on a non-diffusing elbow over the same distance
in which an F1 airbox turns the flow. This returns similar ), values no matter how
the geometry is varied because the boundary layers on both walls remain attached. By
shortening the distance over which the elbow bends through 90° separation can be forced,
making the optimizer work harder to differentiate between alternative parameterizations.

This shortened distance is used in the following optimization studies of this section.

Parameterization One — Bézier curves

The first method employs a Bézier curve with six overall control points defining the
centreline, of which two are considered as variables (see Figure 4.9). Two parallel walls
are constructed equidistant from the centerline on each side to define the constant width
elbow. Horizontal and vertical tangency conditions are implemented at the entry and
exit, respectively, by fixing control points along the required tangency. These conditions
prevent designs harbouring a sharp point at the diffuser exit onto which the trumpet

tray would join.
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Parameterization Two — Polynomial splines

This parameterization utilises a spline passing through three points positioned along the

centreline. Again, two parallel equidistant walls are placed either side of the centreline.

4.5.2 Results

Similarly to the studies of section 4.4, none of the techniques tested in this section are
high-dimensional problems, and again an optimal design is found before an exploration

of a reduced area of the design space is deemed necessary.

Here, all of the designs tested within the optimization process returned a negative pres-
sure recovery. This is because there is no expansion and hence no pressure is being
recovered due to the reduction of the flow’s kinetic energy. Thus, the static pressure
over the filter or exit of the bend is less than the static pressure at which the flow enters
the bend. However, both parameterization methods returned similar optimum pressure
recoveries of C), = —0.0413 for the Bézier curve method and C), = —0.0415 for the spline
method, with similar geometries. These geometries turn the flow through 90° and at a

gradual and even rate throughout the bend. This ensures no boundary layer separation.

Although both designs produce similar optimum C), values, in looking forward towards
the fusing of the expansion and the bend, the piecewise spline approach appears to be
the most efficient when defining the centerline bend. Bézier curves have an inherent
problem in that tangency at an end point of the curve cannot be set without requiring
extra fixed control points next to the entry and exit points in the direction of the required
tangency through which the Bézier curve must pass. The degree of tangency is then
based upon the distance of these extra control points away from the points positioned
on the entry and filter planes, which could become extra variables if necessary. This
drawback is easily overcome by using polynomial splines. Given this extra complication
within the geometry, the remaining study is pursued with the piecewise cubic spline

defined centreline.
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4.6 Diffuser with Bend

4.6.1 Combined Geometry Parameterization

The fusion of the expansion and bend parameterizations from the preceding two sections
is next used to create a two-dimensional airbox model. It is important to note that to
maximize the amount of shape control of the complete diffuser given to the optimizer,
thus allowing the production of potentially radical results, the upper and lower walls
need to be completely decoupled. Thus, the positioning of the control points through
which the upper wall spline passes must be independent of the control points defining the
lower wall spline. This is ensured by using a model in which there are no links between
the centerline bend and spline control point positioning variables of the lower wall.
Problems of wrinkles or loops forming on the lower wall spline leading to geometrically

infeasible designs are then prevented.

The chosen parameterization involves the use of piecewise cubic splines for all three
sections. As noted in section 4.4, the most efficient simple expansion materialised as a
convergent-divergent diffuser. Hence, here the upper and lower wall variables are left
free to produce convergent-divergent diffusers should high C), values be returned for this
combination of design variables. In section 4.5, it was shown that an efficient turning
of the flow occurs through a regular and gradual bend and hence the ranges allowed
for the three centerline control points are chosen with this in mind. The following
parameterization technique for the airbox model features decoupled walls together with
the capability of designs allowing converging walls or a wide range of features due to the

strong shape control.

The technique adopted is illustrated in Figure 4.10. This requires a total of 16 design
variables: six for the centerline control points CP1(x,y), CP2(z,y), CP3(x,y); five for the
upper wall 7,1, 742, 743 (these are the normal distances from the centerline) positioned
by two variable ratios, D1 and D3, along the centerline with the middle ratio, D5, fixed
at 0.5; and five for the lower wall rj1, 79,73 (these are the distances along the lines

intersecting the centerline) defined by two variables ¢1 and ¢3 with ¢y fixed at 45°.
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FIGURE 4.10: Geometry parameterization of 2D airbox model

4.6.2 Results

Although 16 design variables is practicable for the use of Kriging as the RSM approach,
the limit of practical RSM building times is reached due to the high-dimensionality
of this problem. The time taken to build the RSM with 300 points in 16 dimensions
exceeded the time necessary to run the simulation for each update point itself. Hence
extending the optimization strategy to include a simple, concentrated exploration of a

reduced area of the design space is warranted (Figure 2.1).

For this study, the populating of the design space using a DoE and the search for
the updates is performed within a 16-dimensional hypercube defined by the upper and
lower bounds of the 16 design variables. The design space in which the concentrated
exploration is performed after the global RSM based search is fixed in a reduced area
of this design space. A small percentage of the design space for each variable is taken
around the current best point found after the updates. This exploration region is 20% of
each of the design variable ranges with the centre of this smaller hypercube at the best
point. Within this exploration region a localised set of geometries are constructed via a
further 50 point LP7 DoE and these points are evaluated using the CFD code to obtain
their objective function values. No RSM is built using these values as the purpose of
this search is to find potentially superior designs through the dense sampling of points
within a small area without imposing any assumptions as to the nature of the design

landscape, which would occur when fitting an RSM.
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FIGURE 4.11: Optimization history: 200 DoE points followed by 100 update points,
further followed by a 50 point exploration in 20% of the design space

Figure 4.11 shows the development of the optimization process, showing C), values for
design points 1 to 200 representing the initial 200 DoE points, design points 201 through
300 representing the subsequent RSM based update points and the final 301 to 350 design
points from the 50 point concentrated exploration. The bold line indicates the current

best optimum as each point is added.

A wide range of interestingly shaped diffusers have been produced within the first 300
design points, from convergent-divergent wall shapes to diffusers with bulges featured on
the lower and upper walls. Many designs, such as the convergent-divergent types contain
no areas of separation. However, due to the increase in kinetic energy of the flow through
the slight convergence of the wall near the inlet, the pressure recoveries are lower than
the best value seen; the best ranges between C), ~= 0.7 and C,, ~= 0.8. Designs that are
similar to those seen within the actual race cars are also found within the design space,
with straight upper walls to fit within the present design of roll bar structure, i.e., they
have no radical geometric features such as bulges seen on either wall. Velocity contours
of one such airbox can be seen in Figure 4.12 where separation has been completely
eliminated. However, with a pressure recovery of C, = 0.7805 it is significantly lower
than the best design found. The best design found in the first 300 calculations has a
pressure recovery of C}, = 0.9316 and the velocity contours for this geometry are shown

in Figure 4.13. Here, completely different geometric features have emerged. Two small
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FIGURE 4.12: Filled contours of velocity magnitude (top) and velocity vectors (bottom)
of velocity magnitude in a design which contains no flow separation, with C}, = 0.7805

bulges have been formed along the lower wall inducing separation within these bulges; the
bubbles of separation are completely contained within the bulges. The upper wall also
contains a bulge, and within this another bubble of separation forms. It is important to
note here that these bulges are not due to the case of inadvertent “rippling”, as described
in section 4.4.1. All three control points along the lower spline, in this case, sit at the
inflexion points of the curve and so the spline is not ‘overshooting’ the point, which is

what leads to the “rippling” situation.
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FIGURE 4.13: Filled contours of velocity magnitude (top) and velocity vectors (bottom)
of velocity magnitude in the best design after 100 update points, with C, = 0.9316

After 300 design points, the process continues with a concentrated exploration around
the current best point found (with C, = 0.9316). In Figure 4.11 these are shown as
design points 301 to 350. It is clear that by focusing on a small region within such a
large design space, and by performing a dense search in this area, the model is converged
more quickly to a better design yielding a higher C), value. The optimum design found
returned a pressure recovery C, = 0.9658 and the velocity contours for this geometry

are illustrated in Figure 4.14. As can be seen here, the upper bulge has been reduced
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Variable Lower Upper | Best value Best value after
bound bound | after updates | concentrated exploration

CPlz 0.1 0.175 0.1408 0.1399

CP1ly | -0.015 0 -0.0122 -0.0120

CP2z | 0.25 0.325 0.2501 0.2481

CP2y | -0.08 0 -0.0675 -0.0685

CP3z | 0.375 0.55 0.4181 0.4290

CP3y | -0.202 -0.09 -0.2018 -0.1920

Upper x ratio 1 | 0.05 0.45 0.1853 0.1703
Upper x ratio 2 0.5 0.5 0.5 0.5

Upper x ratio 3 | 0.55 0.9 0.6162 0.5943

ry1 | 0.055 0.08 0.0651 0.0673

ry2 | 0.07 0.14 0.1359 0.1333

ru3 | 0.145 0.28 0.2128 0.2111

o1 5 40 17.9152 18.3529
105 45 45 45 45

o3 50 85 84.8928 83.5803

rip | -0.08  -0.055 -0.0734 -0.0712

rg | -0.14  -0.07 -0.1295 -0.1234

rg | -0.2 -0.15 -0.1506 -0.1462

Pressure recovery 0.9316 0.9658

TABLE 4.2: Design parameters and their corresponding bounds with the variable values
for the best design found after 100 update points and again after a further 50 point
exploration

slightly, eliminating separation on this wall. The lower bulges, however, remain present
and capture small bubbles of separation within them. The upper and lower bounds of
the whole design space, together with the design variable values for the best design after

300 design points and after the concentrated exploration are shown in Table 4.2.

An interesting observation is that after the evaluation of the update points and analysis of
the best design obtained, one intuitively may think that a better design could be achieved
by eliminating separation, creating a design with walls approximately following the flow
streamlines of the airbox illustrated by the velocity contours in Figure 4.13. However,
the subsequent concentrated exploration did produce a design without separation which
returned a pressure recovery value C), = 0.9452; the velocity contours for this geometry
are shown in Figure 4.15. If the streamlines of the airbox in Figure 4.13 were followed,
the upper wall would have been straight. What has been shown in this study is that
by a small manipulation of the design variables, separation can be eliminated without
following the streamlines of the best design after the update process to produce a design

with a higher pressure recovery value. Another interesting design found within the
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concentrated exploration returning a high pressure recovery value of C, = 0.9555 is
shown in Figure 4.16. This airbox does feature a straight upper wall as well as two
small bumps on the lower wall. This is of particular interest to the F1 aerodynamicist
as this design would not require a redesign of the current roll bar structure in which the

airbox sits.

It must be noted here that all the results discussed in this section are dependent on both
the grid and the turbulence model chosen for the CFD simulation. It is likely that these
same geometries simulated using a different turbulence model would produce different
values of pressure recovery. However, the overall conclusions made here are to determine
the capability of the parameterization techniques used to produce the geometries. Should
a preferable CFD set up be found to produce more accurate pressure recovery results,
the conclusions regarding the capability of the parameterization technique remains the

same.

It can be seen that, for all the airboxes illustrated in Figures 4.14, 4.15 and 4.16, the
elimination of separation on the upper wall is desired to return a high pressure recovery.
However, it is also clear that the lower wall bulges are useful features in delivering an
efficient expansion of the flow without experiencing losses from extensive separation.
These bulges are allowed to exist due to the parameterization technique proposed, the
key attribute of which is the geometric independence of the upper wall from the lower
wall. Bulges containing small regions of separation have previously been seen to be
beneficial in terms of reducing excessive non-uniformity of the flow at the diffuser exit
when applied to a curved subsonic S-duct diffuser (Zhang et al., 2000). Increased losses
in the airbox occur from separation. This is not the case here as the small separation
bubbles are completely contained within the lower wall bumps. In this study, the two
bulges containing small separation bubbles are beneficial, returning a higher pressure
recovery over that of a design which eliminates separation entirely. The balance between
the size of bump on the upper wall and size of bumps on the lower wall, which together
control the expansion of the flow as it turns, is very fine. This balance has been explored
computationally through the capability of the parameterization technique proposed as
it has strong shape control. However, there is a need for further research into such

features, including experimental testing.
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FIGURE 4.14: Filled contours (top) and velocity vectors (bottom) of velocity magnitude
in the optimum design found having completed a 50 point concentrated exploration with
Cp = 0.9658

4.7 Summary

This chapter has explored several curve parameterization techniques for the optimization
of a straight diffuser and of a constant width elbow to develop an understanding of how
to effectively parameterize a two-dimensional F1 airbox. The conclusions drawn from
the initial studies aided the development of a novel parameterization technique for a 2D

airbox allowing strong shape control of the wall.
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FIGURE 4.15: Filled contours (top) and velocity vectors (bottom) of velocity magnitude
in a design which contains no separation with C, = 0.9452 found during the 50 point
concentrated exploration

The 2D airbox has been optimized with respect to pressure recovery. Due to the rela-
tively high number of design variables needed to allow for strong shape control of the wall,
a concentrated exploration of the design space was necessary to find an optimum design,
as the time taken to build the RSM to locate update points became prohibitively expen-
sive. Radical designs with high pressure recovery values were found to contain bulges,
highlighting the importance of strong shape control in the construction of a parametric

geometry.
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FIGURE 4.16: Filled contours (top) and velocity vectors (bottom) of velocity magnitude
in a design with a straight upper wall and C, = 0.9555 found during the 50 point
concentrated exploration

The optimum geometry found after the concentrated exploration of the design space
featured a large bulge on the upper wall and two small bulges on the lower wall, the bulges
acting as areas where the separated flow could be contained. For the set of boundary
conditions used in this chapter, the bulges were beneficial to the airbox’s performance.
This leads to a desire to perform a design optimization study on a three-dimensional
airbox to determine whether such bulges may be beneficial for a more realistic flow

simulation. Clearly, a three-dimensional parameterization technique that could provide
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strong shape control of the whole airbox wall and also allow for three-dimensional bulges
needs to be developed. In light of this, a variety of three-dimensional parameterization

techniques are discussed in the chapter that follows.



Chapter 5

Automated Multi-Stage Shape

Optimization with Deformation

(AMSSOD)

In Chapter 2 a number of parametric representations of curves were reviewed and in
Chapter 4 these techniques were used in optimizing 2D diffusers. To progress into three
dimensions, a comprehension of how CAD engines deal with surface representation is

appropriate.

In three dimensions, the two main methods of geometry modelling that CAD engines
use are solid modelling and surface modelling. Solid modelling allows a surface to be
generated as a composite of primitive solids. Cubes, cylinders, spheres and cones, for
example, are used with boolean operations to intersect, subtract or append each other to
build up a model with a complex surface. Surface modelling, on the other hand, utilises
parametric representations of surfaces to describe a complex object. The majority of
engineering problems implement both of these methods successfully. Surface modelling
is more general and requires perhaps a simpler and more intuitive construction via
parametric curves; this is particularly useful where part of a complex surface is not clearly
representable by a boolean collection of operations. For the studies that are represented
later in this thesis, an important consideration is whether the method of describing the

geometry may be fully automated and easy to manipulate. In this sense, drawbacks
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of representing a complex object may be overcome with the parametric method. This
chapter focuses on the parametric representation of surfaces for use in the manipulation

of three dimensional surfaces.

Parametric surface definition can be split into two main camps: surface patching and
polygon meshing. A surface patch can be described as a single bivariate surface element
(u,v) — R? where u,v € [0,1] (see Figure 5.1). Complex surfaces are modelled using a
number of these patches fitted together, much in the same way as piecewise curves are
fitted together to obtain a higher degree of complexity as described in Chapter 2. A
polygon mesh, on the other hand, is a much simpler way of representing a surface. It is
favoured by communities who wish to avoid the additional time and computational cost
of re-meshing after a small manipulation of the geometry. This type of surface is de-
scribed simply as a discrete set of points making up an array of polygons fitted together;
i.e., the collection of discrete points are joined together by straight lines to define a two-
dimensional “meshed” curve. Although the polygon mesh is simpler and more flexible in
many cases, a surface patch has a number of distinct advantages. First, the parametric
representation is analytical and properties of the surface may be extracted, whereas the
exactness and smoothness of a polygon mesh can only be improved by increasing the
resolution of the polygons which can be expensive for complex surfaces. Second, as the
deformation or manipulation of surfaces is a necessity when dealing with design opti-
mization, manipulation of a parametric surface patch is achieved through altering the
values of the control points which define it. The modified surface is just as well defined
as its original counterpart and, as such, will retain its smoothness and topology. With
a polygon mesh, however, if the change to the discrete set of mesh points is made to
a geometry of low curvature, described by few polygons, and this change results in a
surface of high curvature, the number of polygons defining the surface becomes too few
and the accuracy and smoothness of the geometry is compromised. This problem can be
corrected by individual polygon subdivision in the appropriate area but it is not a trivial
procedure and will require greater memory for the storage of the increased number of
mesh points. A crude example of this is shown in Figure 5.2. The wireframe of the
teapot on the left is defined by a parametric non-uniform rational B-spline (NURBS)
surface (a form of surface patch) and the wireframe of the teapot on the right is defined

by polygons. It is clear that the NURBS surface captures the shape more accurately
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FIGURE 5.2: Wireframe model of teapot constructed with NURBS surfaces (left) and
a polygon mesh (right)

and is inherently smooth. In contrast, the polygons need to be defined using a much
finer resolution to capture the required curvature. It is for these reasons that all the
three-dimensional surfaces in the subsequent chapters are defined as parametric surface
patches, and each change in geometry is exported for re-meshing before analysis via

CFD.

In many methods of surface patching with CAD engines, lofting tools are used to provide
a surface between guiding curves or boundaries. Between these guiding curves, CAD
engines commonly calculate the construction of a network of interpolating curves. This
network of curves acts as the surface patch boundaries and each of these patches is ‘filled
in’ to generate the surface geometry. It is important to understand how the automated
lofting works in such CAD engines as it is this that may ultimately limit the capability of
automated surface manipulation. The following section considers how the representation
of an object impacts on the way in which it can be manipulated. The subsequent sections
present a survey of a variety of commonly used surface representations, along with
their advantages and disadvantages with respect to automated shape optimization. The
chapter concludes by proposing an automated multi-stage parametrization technique for

three-dimensional shape optimization to be implemented in the following chapters.
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5.1 Global versus Local Geometry Manipulation

The parametric method used to represent an object’s surface usually constrains the na-
ture and extent to which the surface can be manipulated. The technique that is used to
manipulate this surface becomes the deciding factor for whether the required manipula-
tion can be achieved. In previous chapters the importance of maintaining strong shape
control of the geometry in the method of parameterization has been mentioned. To
recapitulate, strong shape control allows a large amount of geometric variability given a

specified set of design parameters.

Due to the complex nature of many three-dimensional objects, it is important to consider
whether the geometry change that is permitted through the method of parameterization
has an impact on the geometry as a whole or on a small area of the geometry. These
impacts can be thought of as acting in a global or a local sense. The advantage of a
technique which allows one to manipulate a geometry in a global sense is that it can be
used to perform design optimization studies for conceptual design, for which it is unclear
to the designer what general shape should be chosen. Efficient optimization processes
require a compact set of design variables, as discussed in Chapter 2. In defining a
parametric geometry with a compact set of design variables, with each variable having
a global affect, an optimal conceptual design in terms of any metric is rapidly achieved.
However, if the required complexity of the shape is not present (because local surface
control has been sacrificed in favour of low-dimensionality), then the use of a local
parameterization technique, with both a compact set of design variables and strong
shape control, would facilitate a more efficient optimization study. By using a local
parametric deformation technique, independent of any previous global technique used,
efficient optimization of local regions of such geometries is possible. A brief survey
of techniques which may be used to parametrically define three-dimensional surfaces
follows. Each technique has its own merits in terms of global and local manipulations

of the surface and these are discussed.

5.1.1 Non-Uniform Rational Polynomial Spline Surfaces

Non-uniform rational polynomial spline (NURPS) surface representation is used for the

lofting of multi-section surfaces and for filling an area defined by a closed boundary
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curve in CATIA V5. This type of surface interpolates the control points defining the
patch boundaries. The surface is generally used when surface sections are built using
boundary curves or guide splines, which could be defined using polynomial spline curves
or Bézier curves. A baseline airbox geometry defined by multi-section surfaces with four

guiding polynomial splines can be seen in Figure 5.3.

FIGURE 5.3: Baseline geometry defined using NURPS surfaces

Such a surface can be manipulated automatically via an external design table by chang-
ing the values of the control points defining the guiding curves. An increase in the
number of control points and/or guiding curves will increase the extent of the allowed
manipulation in a local sense. It is conceivable that one could maximize the possibility
of local surface manipulation, after attaining a good global shape, by increasing the
number of guiding curves. This would require a re-parameterization of the model and
re-lofting so that the surface passes through the added guiding curves. However, this
will provide a larger number of parameters and therefore reduces the computational
efficiency of the design search. Thus, although simple and straightforward for attaining
automated global surface manipulation, this method cannot be considered for a local

manipulation technique.

5.1.2 Non-Uniform Rational B-spline Surfaces

Non-uniform rational B-spline (NURBS) surfaces are a generalisation of the B-spline
surface patches; the key departure from NURPS is the weighting of the control points
which makes NURBS surfaces rational. Let u and v define a bivariate patch (u,v €

[0,1]), then a NURBS surface S(u,v) of order (p,q) is defined parametrically with its
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shape determined by control points, P; ;, weights w; ; and the NURBS basis functions
Nim and Nj

>t 2o Nip(u)Njq(v)wi ;P ;
> im0 2o Nip(u)Njq(v)wij

S(u,v) = (5.1)
For a more detailed review of NURBS curves and surfaces, please refer to Piegl and

Tiller (1996).

The continuity of this type of surface depends only on the basis functions and not on
the control points. NURBS have all the advantages of B-splines, while extending liberty
of modelling. Rational cubic surfaces allow the construction of conic sections such as
spheres and cylinders as well as free-form shapes. In contrast to the NURPS surface

previously described, NURBS are simply rational polynomial patches of a fixed degree.

The construction of NURBS surfaces requires a quadrilateral mesh of m x n points;
very few objects can be constructed appropriately with a single rectangular patch. A
combination of patches to describe complex shapes can, however, lead to complications.
These complications are often in the form of continuity at points where patches meet.

For complex surfaces, deforming a NURBS patch can result in a number of problems:

e the patches can tear apart at the seams leaving a discontinuous geometry, or

e the continuity could be made to force the curvature to zero creating flat spots on

the geometry in these regions.

In order to address these problems, high degree patches could replace the patches at
these problem points. However, this adds more control points to the set of parameters,

increasing the complexity of the model.

Another disadvantage of NURBS surfaces is that, if a local shape deformation is required,
detail is added to the mesh of control points by adding more if necessary, but, unless
the local patch can be trimmed and located to a specific position, extra control points
are added where they are not necessary, thus increasing the parameter set without good
cause. This is illustrated in Figure 5.4. If trimming of the surfaces is avoided, allowing

the patch to span a section of the NURBS surface from inlet to filter, and if a small local
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F1GURE 5.4: NURBS surface representation with a mesh of control points over a de-
formation patch

FIGURE 5.5: An example of the inner wall surface of a real artery

area within this patch is to be deformed, a complex deformation may require a much
finer mesh of control points than those shown in Figure 5.4. This would add control
points where no deformation is necessary and increase the complexity of the entire model,

perhaps making this method unsuitable for a local geometry manipulation.

For a three-dimensional airbox study, these surfaces provide a good representation of
the global shape and a surface can be defined with a coarse net of control points. The
positions of these points can easily be modified to alter the shape of the airbox wall. The
position of each control point requires only three design variables. If the modification of
more than one control point at a time is required, then a compact set of design variables
can still be retained for an efficient global optimization process for the first stage in the
two stage process. Local manipulation, however, may increase the parameter count to

beyond the practicable limit for use in optimization.
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FIGURE 5.6: NURBS surface representation of artery (left) with the net of control
points defining the lower right hand side of the bifurcation (right)

Figure 5.5 shows a surface fitted through a cloud of points collected via a scan of a patient
artery cast. It is clear that to represent a realistic parametric carotid artery bifurcation
model, a combination of NURBS surface patches is necessary to capture sufficient detail.
For such a complex geometry, the general shape can be captured and an example of a
CAD fit to the real artery shape can be seen on the left of Figure 5.6. The right of Figure
5.6 shows the net of control points controlling the NURBS patch defining the lower right
hand side of the carotid artery bifurcation. To capture the global shape of the surface,
a large number of patches is required and a fine net of control points to capture the
complexity of the shape. The patch is not as straightforward as the deformation patch
shown for the airbox. It is because of this that a global surface fit can be achieved but,
even with the tangency conditions set at the boundary of the patch, when a control point
near the boundary is displaced, resulting surface deformations become problematic with

seam discontinuities.

Figure 5.7 illustrates the displacement of a control point near the patch boundary, its
resulting surface deformation and the seam discontinuity at the join with its adjacent
surface patch. It is because of this problem that this technique could not be considered

for any local surface deformations.

5.1.3 Partial Differential Equations

Bloor and Wilson (1990) presented an efficient method of parameterizing surfaces by

solving partial differential equations (PDEs). With this method, the surface is treated
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deformed surface

FIGURE 5.7: Seam discontinuity at patch boundary created by the displacement of a
control point in the control net

as a boundary value problem and produces surfaces as the solutions to elliptic PDEs.
This requires a small set of design variables and thus provides an efficient technique for
use in conjunction with an optimization tool. A number of boundary curves representing
positional and derivative conditions of the resulting surface are used. Each of these
boundary curves is described by a set of parameters which define values of translation,
rotation and dilation in three dimensions as well as a smoothing parameter. For complex
objects, a number of PDE patches can be combined at common boundaries and the
automation of this technique is straightforward (see Ugail and Wilson (2003)). A clear
advantage of this form of surface representation is that it eliminates any discontinuities
between surface patches that can occur with some of the spline-based surface patch

techniques.
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FIGURE 5.8: Illustration of positional and derivative boundary curves to define a 3D
airbox

P>

For a three-dimensional airbox, let us assume that two positional boundary curves would
be used, one fixed at the inlet and the other fixed at the filter position, p; and ps
respectively, as shown in Figure 5.8. To provide satisfactory geometric manipulation in
a global sense just two derivative boundary curves d; and do could be used. Discounting
the need for rotation of d; and ds, allowing the translation to occur along the airbox
centreline and the dilation to occur along a direction normal to the centreline, the set
of parameters will consist of just six transformation design parameters and a smoothing
design parameter which can be determined and fixed prior to an optimization study. To
manipulate both the boundary curves concurrently, at least 12 design parameters would
be needed. Although this number falls within the practical limit of parameters for the
efficient use of the Kriging response surface methodology discussed in Chapter 3, there
are methods of manipulating the global shape of an airbox with even fewer parameters,
for example using NURPS, and so this technique, although practical and straightforward

to implement, may not be the most efficient approach for the subsequent studies.

For the representation of a realistic computational human carotid artery bifurcation,
geometry data from a real artery is analysed and so the boundary curves can be defined
with a high accuracy to give a globally good parametric representation. However, the
combination of patches required to model the bifurcation could be problematic. Surfaces
are needed to represent the common carotid artery, the internal carotid artery and the
external carotid artery separately. Joining these patches requires common boundaries,

of which none exist in this case.

Undoubtedly, this is a powerful global manipulation technique and certainly has many
advantages for applications regarding automated design optimization. Local manipu-

lation is indeed possible, but not easy and may require a dense collection of boundary
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curves to capture a particular geometric feature accurately, significantly increasing the

parameter count.

5.1.4 Three-Dimensional Hicks-Henne Functions

Following the two-dimensional Hicks-Henne function described in section 2.2.4, a three-

dimensional surface bump function is described in the general form by:

_ _log2 _ log2 T
flu,v) =h |:<SiD7T’LL fog “P) <sin7w fog ”P)] , (5.2)

where u and v are the bivariate surface directions (u,v € [0, 1]), (up, vp) is the position of
the bump peak or the deformation centre, h is the bump amplitude and T is a measure
of the bump width. Each sine function can be raised to a different power which would
allow for two bump width parameters and result in asymmetrical patches. However, the
simplest case of one bump width parameter is pursued here to keep the design variable
count to a minimum. Figure 5.9 illustrates a surface patch with a Hicks-Henne bump
function of this type. As the bump width parameter or curvature ratio (if the limit curve
is normalised) decreases, the bump peak flattens and the deformation stretches further
towards the limit curve. A surface representation of decreasing curvature ratio can be

seen in Figure 5.10; each bump has a height A = 1.

This type of surface patch can be applied in a local sense to a NURPS surface in CATTA
and the surface can be deformed automatically via CATIA’s visual basic scripting lan-
guage. A Hicks-Henne patch applied to the baseline airbox can be seen in Figure 5.11.
The limit curve of this patch is normalised such that the bivariate surface patch varies in
u and v between 0 and 1. For one bump, the limit curve can be drawn anywhere on the
original surface. The surface then includes the patch within the area of the limit curve,
so that when the patch is deformed, this deformation then becomes part of the surface.
The only drawback is that when the surface has already been deformed with one patch,
the limit curve has to remain the same and cannot be drawn on an already deformed
surface. This is a limitation in CATTA not a limitation inherent to the technique. By re-
taining fixed limit curve patches, any number of deformations can be performed either in

different areas or on top of one another, allowing the locality of the surface manipulation
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FI1GURE 5.9: Hicks-Henne bump deformation patch
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FI1GURE 5.10: Hicks-Henne bump surface deformation patch with decreasing curvature
ratio
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FIGURE 5.11: Baseline geometry (left) and geometry with Hicks-Henne surface patch
(right)

in one direction to be explicitly controlled. The curvature variable controls the locality
in the second dimension allowing the construction of ridges of deformations. Obviously
this form of surface manipulation can only be applied in a local deformation sense, but
it is easily automated and can be defined with only two design variables in addition to
the patch boundaries: the bump height and the curvature of the deformation within the

limit curve.

5.1.5 Free-Form Deformation

Free-form deformation (FFD) is a subset of the soft object animation (SOA) algorithms
used in computer graphics and animation for morphing images and deforming models.
This particular method can only achieve modest geometry changes (Barr, 1984; Seder-
berg and Parry, 1986; Watt and Watt, 1992) and may restrict the shape control of
either a global or local manipulation. Sederberg and Parry (1986) presented a technique
whereby an object is embedded in a space that is then deformed. This process is analo-
gous to embedding an object in a parallelepiped of clear flexible plastic. In the analogy,

the plastic is deformed and the object changes shape.

Lamousin and Waggenspack (1994) modified FFD to include a NURBS definition and
multiple blocks to model complex shapes; an example of a NURBS block can be seen in
Figure 5.12. The undeformed FFD block consists of a regular lattice of control points
arranged along the block coordinate system (u, v, w) which is independent of, but initially
parallel to, the object’s coordinate system. A detailed description of deformation process

is outside the scope of this work.
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FIGURE 5.12: Trivariate NURBS volume

A disadvantage of these methods is in the indirect control of the deformation through
adjusting control points or weights of the embedding volume. It is difficult to get the ob-
jects to pass through desired points precisely; for example, in the global manipulation of
a CAD artery model to achieve a position of the control points determined by analysing
a real artery geometry. Moreover, a large number of control points in complex models
makes it impractical to determine the exact number of control points to be changed and
how they must be changed to produce the desired deformation. Hsu et al. (1992), mo-
tivated by these deficiencies, investigated the direct manipulation of FFD. Given source
and target points, their method automatically computes the necessary repositioning of
the control points using a least-squares formulation. Although this is a start to providing
more practical engineering applications for this method, its primary drawback is that it
may fall down when finding the new positions of the control points. Complex, subtle,
local deformations are then necessary as the number of FFD blocks required renders this

technique unworkable.

5.1.6 Subdivision Surfaces

Geometric representation of three-dimensional models through subdivision surfaces is
a relatively new technology. This technique defines a high-resolution polygon mesh
that is generated automatically from a low-resolution polygon mesh hull via smoothing
algorithms to closely approximate a NURBS surface. The subdivision surface itself can
be described as the limit of an infinite number of refinements. They were introduced
simultaneously by Edwin Catmull and Jim Clark (Catmull and Clark, 1978), and by

Daniel Doo and Malcolm Sabin (Doo and Sabin, 1978). Little progress was made until
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FIGURE 5.13: A cube with three levels of recursive subdivision

FIGURE 5.14: Control points of step zero representation; the highlighted (yellow) con-
trol point is moved from its original position (left) to a displaced position (right)

the 1990s when much research was performed in developing these types of surfaces for use
in computer animation. They are now widely used in the computer graphics industry.
For example, Pixar Animation used NURBS based software in films such as Toy Story
in 1995 and A Bug’s Life in 1998 until it was discarded in favour of subdivision schemes

for Toy Story II in 1999, Monsters Inc. in 2001 and Finding Nemo in 2003.

An example of the first three steps of recursive subdivision is illustrated in Figure 5.13;
in this case the subdivision surface actually represents a smooth sphere, this is shown
as the far left image in Figure 5.15. These figures were produced using the animation

software MAYA (2005).

Moving the control points of the step zero representation shown in Figure 5.14, where the
highlighted control point is displaced, provides a global manipulation of the surface. The
deformed surface is shown as the second image from the left in Figure 5.15 and shows

the smooth sphere stretched in the direction in which the control point was moved.
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FIGURE 5.15: Rendered surface of the subdivision representation (far left), global

deformation of surface from manipulation of step zero control points (second from left),

local deformation of surface from manipulation of step three control points (third from
left), combined global followed by local deformation of surface (far right)

FIGURE 5.16: Control points of step three representation; the highlighted (yellow)
control point is moved from its original position (left) to a displaced position (right)

Moving the control points of the step three representation, shown in Figure 5.16 where
the highlighted control point is displaced, however, provides a very local manipulation
of the surface. This local manipulation can be seen in the third image from the left in
Figure 5.15 where only a very small area of the surface is deformed and the global shape

remains spherical.

Edits of the control points in both a global sense and a local sense can be combined on

the same surface, which can be seen in the far right image of Figure 5.15.

Interestingly, NURBS and subdivision surface representations share a common founda-
tion, the uniform cubic B-spline (see equation 2.5 with n=3). Subdivision surfaces are
uniform (usually cubic) B-splines in tensor product regions of the mesh, but they be-
come non-polynomial at extra-ordinary vertices. At these vertices the surface continuity
usually drops to first order. However, no explicit manipulation of the control points is
necessary to achieve this smoothness and so eliminates the problems of NURBS surface

patches highlighted in section 5.1.2.

The main advantages of subdivision surfaces over NURBS modelling are that:

e the refinement process is numerically stable,
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e they are simpler to implement, and

e they can be used to describe highly complex topologies and have the ability to

provide both global and local refinement.

Since they were developed specifically for the animation industry, subdivision surfaces
introduce new problems when used in CAD software that are not present with a NURBS
representation. The method is unsuitable for CAD in its present form but with new
research, some authors believe that this technology will replace CAD NURBS modeling

in the future.

5.2 Multi-Stage Geometry Parameterization

Having discussed some alternative parameterization techniques for global and local sur-
face manipulation, a multi-stage geometry parameterization process for use in conjunc-
tion with an optimization process is now presented. The key advantage of a multi-stage
parameterization process is to enable optimization of the geometry on both a global
and a local level. If a single stage parameterization process could provide both global
and local manipulation capabilities from the outset, on an unoptimized geometry us-
ing a small set of design variables, then only this stage would be needed to provide an
efficient optimization process to determine the optimal geometry. This is not the case
with many applications, especially those concerning internal fluid flows. It has already
been mentioned that much research has been performed on external body geometries
such as aerofoils, and their parameterization techniques are well understood in deter-
mining which local manipulations of the geometry will result in desired flow behaviour

and performance metrics.

For internal fluid flow applications the designer is faced with myriad different forms of
geometries for a wide variety of purposes, many of which have yet to be parameterized
suitably for any form of optimization. There is as yet no ‘best practice’ means of
parameterizing an internal fluid flow component, either for simple ducts such as those

discussed in Chapter 4, or for three-dimensional models.

Against this background, a simple, yet effective, multi-stage parameterization technique

has been devised which will cater for previously unparameterized geometries. The first
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stage parameterizes the geometry very simply, retaining a small set of design variables,
and allowing the freedom of large geometry changes in a global sense. The second stage
uses a local parametrization technique independent of the first stage, allowing a fine
tuning of the global shape to occur. It is important to use parameterization techniques
for both stages that are commonly accessible or can easily be implemented in as many
of the modern commercial CAD engines as possible, so that industries may be able to
implement this process with the software and computing power that is readily available.
Having surveyed a number of commonly used techniques of surface representation, the
methods best suited for this multi-stage geometry parameterization tool are chosen for
use in the design optimization of internal fluid flow applications. These are presented in

what follows.

5.2.1 Stage 1

For the first stage, polynomial splines are chosen to define a general global geometry
shape. We can easily alter the number of guiding splines and control points through
which these splines pass and so they can be applied to any internal fluid flow design
problem. The capability of capturing distinctly localised features of the surface may
be limited, but can be overlooked given that any local detail of the geometry will be
picked up in Stage 2. The bounds of movement of the control points through which the
guiding splines pass are straightforward to specify and can be fixed easily if geometric
constraints are necessary. Although the PDE approach would perform in much the
same way, fewer parameters are needed for the polynomial splines. NURBS surfaces
also provide a useful global parameterization technique. For complex models, a large
number of control points or a number of NURBS patches may be necessary, in which
case any local deformations placed on these surfaces may disrupt the continuity between

these patches, rendering this method unsuitable for a multi-stage process.

5.2.2 Stage 2

Stage 2 provides a geometry tuning tool for allowing local geometry features not available
from the general modifications allowed through the global parametrization technique

using polynomial splines described in Stage 1. This stage can also be described as
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FIGURE 5.17: Procedure for implementing the multi-stage parameterization technique
within an optimization process

providing a correction to the lofted areas generated by the CAD engine between the
guiding splines used in Stage 1. The main two contenders capable of parameterizing small
local geometry changes are the FFD technique, or the Hicks-Henne bump function. The
Hicks-Henne bump patch is easily controlled automatically and uses just two variables
once the position of the deformation centre and patch boundary has been determined.
FFD, on the other hand, is neither intuitive with respect to its automated manipulation
capabilities, nor is it obvious to an optimizer as to which control points of the embedding
volume need to be adjusted in order to deform a specific local area of the geometry
surface. With this in mind, the Hicks-Henne bump functions are chosen as the surface

deformation technique.

5.3 Optimization using AMSSOD

To perform an automated multi-stage shape optimization with deformation (AMSSOD),
the parameterization and optimization techniques need to be united to run entirely
automatically. Figure 5.17 charts a general outline of the multi-stage parameterization

process within a design optimization framework.

The Stage 1 process allows the designer to construct a simple parameterization using
polynomial splines and CAD lofting in between these guiding splines to generate the

surface. The parametric geometry is optimized with respect to the problem specific
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objective function, where this optimization process follows the format outlined in Figure
2.1. The best design with respect to the objective function is taken and Stage 2 begins
with the reparameterization of the geometry to utilise the bump tool. It is here in the
process where the position of the limit curves, which will remain fixed throughout the
Stage 2 process, is decided. As these must be fixed, limit curves are chosen to allow any
part of the surface to be deformed except along the limit curve itself. Appropriate limit
curves are chosen such that they lie along the surface in a position where a deformation
would be considered unlikely. For example, they can lie along the optimized splines

defining the geometry from Stage 1.

The position of the first local deformation patch must next be determined. Positional
determination of deformation patches is not obvious in many cases. If the flow through
the application is well understood and certain desired geometric features are required, a
simple mapping can be implemented. Knowing how the geometry can be manipulated
to achieve the required flow features, the patch can be positioned accordingly and an
optimization process including a DoE and updates of the bump height and curvature,

outlined in Figure 2.1, performed to find the optimal shape of the deformation.

In many cases, the best positioning of a patch is simply not known. In this case, it
is straightforward to automate a DoE of bump positions, heights and curvatures to
determine promising positions for a deformation with respect to the problem objective
function. Updates are then performed to determine the optimum position and size
of deformation. In practice, given the representation of the Stage 1 surface, only the
creation of a bump and the alteration of the height and curvature of the deformation via
CATIA’s visual basic scripting are necessary. The original parameters remain in place
but are fixed at the best Stage 1 geometry. Stage 2 can be repeated as many times as

necessary to achieve an optimal design.

5.4 Summary

This chapter has reviewed three-dimensional surface representations and manipulation
techniques. The most appropriate techniques to offer a global parameterization and a
local parameterization have been chosen. For a given geometry, the global parameter-

ization is used to optimize a given metric to obtain a good general shape. Following
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this, a local parameterization technique is used to deform the generally good surface,
fine-tuning the geometry to achieve an improved objective function. The local parame-
terization process optimizes just two design variables, making this a good tool to provide
an efficient optimization process allowing any number of local deformations to be made
to the geometry. The multi-stage process is wrapped as an automated process utilising
polynomial splines for the Stage 1 global surface manipulation technique, and Hicks-
Henne surface patches for the local deformations in Stage 2. The process is implemented
for two very different three-dimensional case studies which are presented in the following

two chapters.



Chapter 6

AMSSOD Implemented on a

Three-Dimensional Airbox

In this chapter, the studies performed on the two-dimensional airbox in Chapter 4 are
extended into three dimensions. The design optimization study in two dimensions re-
vealed that, through a parameterization technique allowing strong shape control of the
wall, interesting wall shape features are allowed to materialize as the design study con-
verges to an optimum. The optimum shape featured bulges on the walls of the airbox,
with the bulges providing regions for the flow to separate and reattach before passing
through the filter and into the trumpet tray. These optimal shapes further emphasize
the need for a parameterization technique providing strong shape control. This chapter
focuses on a design optimization study for a three dimensional airbox and describes the
parameterization technique used within the multi-stage process outlined in the previous

chapter. The design problem is explained and the results are presented.

6.1 Geometry Parameterization

This study utilises the automated multi-stage shape optimization with deformation
(AMSSOD) technique discussed in Chapter 5. The general outline of the process is
specialised to suit this particular problem. This airbox specific multi-stage process can

be seen in Figure 6.1.

91
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FI1GURE 6.1: AMSSOD process for airbox

The objective function for the optimization processes described in Figure 6.1 is the
pressure recovery calculated as the difference between the average static pressure at the
inlet and at the airbox filter. The formulation of this objective function is found in

section 4.2.

6.1.1 Stage 1

Using polynomial splines to define the Stage 1 geometry, Stage 1 is a simple process of
constructing a parametric geometry and optimizing its design variables, as illustrated in
Figure 6.1. As discussed in the previous chapter, the idea behind this initial step is to
perform an optimization of the global shape to determine a generally ‘good’ geometry.
The airbox is parameterized with four splines: one defining the backbone of the airbox on
the upper surface, one defining the centre of the lower surface and two either side of the

central lower spline. Each spline passes through two control points positioned between



Chapter 6 AMSSOD Implemented on a Three-Dimensional Airbox 93

filter (porous zone)

" airbox exit at cylinder heads

FIGURE 6.2: Stage 1 parameterization, side elevation (not to scale)

FIGURE 6.3:

XXX}

FIGURE 6.4: Stage 1 parameterization, planform (not to scale)

the entry and the filter. Three of these splines are chosen to define the lower section
as, following the two-dimensional study, areas of separated flow forming in the lower
section are expected. This allows for strong shape control in a global sense with only
eight design variables. To retain maximum control of the overall airbox wall shape, the
three splines defining the lower section of the airbox wall are kept completely decoupled
from that of the backbone spline. This parameterization is illustrated in Figures 6.2,

6.3 and a planform of the geometry can be seen in Figure 6.4.
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Two fixed points, D and D, are placed at % ratio and % ratio, respectively, along the
centreline bend. The two points through which the upper spline passes are defined by the
distances r,; and r,2 measured along a line normal to the centreline bend at Dy and Do,
respectively. Points S; and S5 along the centreline bend are fixed by the intersection
of lines drawn by fixed ¢; and ¢2 in the zy-plane at & and § respectively. The two
points through which the central lower spline passes are defined by the distances r;; and
r19, measured along the lines drawn between S7, So and the origin respectively, as can
be seen in Figure 6.2. From S; and S, an angle (2 of & defines the two lines, one on
the plane made by the z-axis and the line defined by ¢, and the second on the plane
made by the z-axis and the line defined by ¢o. This can be seen more clearly in Figure
6.3, where the plane on which  is measured also passes through the z-axis and the
line L. Along these lines defined by €2, the distances ry; and 7y define the distances to
the points through which the lower left spline passes (see the left illustration of Figure
6.3). A similar process is carried out with Q equal to —% along which the distances
ri.1 and rp.o define the points through which the lower right spline passes. These four
splines defined by ry1, T2, 711, T2, Tu1, T2, Tir1, T2 Make up the eight design variable

parameterization of Stage 1.

To simplify this set of parameters further, symmetry in the xy-plane is initially assumed,
i.e. ry1 = ry1 and 0 = 709, thus reducing the parameter count to six. This requirement
is by no means mandatory but, after careful consideration, the choice was made in favour
of the smallest set of parameters possible to facilitate a fast optimization convergence
towards a good global geometry. This then allows for the Stage 2 process to provide
any asymmetrical features that may allow a superior pressure recovery performance.
An asymmetry is exhibited in the airbox flow due to the staggered arrangement of the

cylinders; an asymmetrical optimal design can therefore be expected.

6.1.2 Stage 2

The Stage 2 process begins by determining the position of appropriate limit curves.
Imagine the deformation patch as a piece of cloth and the limit curve the edge of that
cloth. This cloth can then be wrapped around the airbox surface with one edge fixed at
the inlet and the opposite edge fixed at the filter position. The cloth could be wrapped

entirely around the airbox, joining edges along the central lower spline, for example. As
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FIGURE 6.5: Spherical polar coordinates defined for airbox

the 2D study presented in Chapter 4 found bulges on the lower wall to be beneficial,
the cloth is wrapped around the airbox fixing one of its edges along the lower left spline
and the other along the lower right spline. This then determines the limit curve of the
deformation patch. A second deformation patch can similarly be wrapped around the
remaining lower surface of the airbox. The most appropriate limit curve is employed

when the bump position is determined.

A new bump deformation can then be created on the airbox wall. This is achieved by
automatically writing a suitable macro which is then run through CATIA. The macro
creates a point at the midpoint of the airbox centreline. From here, a point in spherical

polar coordinates (r, 0, ¢) is chosen, where

T = rcosfsin ¢
y = rsinfsin ¢ (6.1)

Z = T COoS ¢,

thus describing a point on a sphere, of fixed radius r, encompassing the airbox. 6 € [0, 27|
is the angle in the zz-plane and ¢ € [0, 27] refers to the angle coming out of that plane,

as can be seen in Figure 6.5.
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This point is projected onto the airbox surface along a direction normal to the surface.
By encompassing the airbox within a sphere, the positioning of a point is allowed any-
where on the airbox surface even if deformations have already been placed on the surface.

This projected point then serves as the centre for the Stage 2 geometry deformation.

It is not clear exactly where local deformations should be located to improve the pressure
recovery. ldeally, a spray of individual local deformations on the surface could be used
to develop a mapping between consequential flow features and the position of the defor-
mation. The development of this kind of mapping would neither be trivial nor generic.
Although the result may be of use in predicting the areas best suited for deformation, in
order to rigorously define a true mapping function a large study of bump deformations
may be required. This cannot be generalized to all internal flow ducts and nor could it
be generalised to an airbox with varying flow conditions. As it is the aim of this thesis
to present an efficient optimization scheme utilizing this two-stage process, the develop-
ment of such a mapping would be expensive and perhaps superfluous to obtaining an
optimum airbox geometry. Hence, to decide the position of the local deformation, a DoE
is performed with the positional polars 6, ¢, the bump height A and the curvature as
variables. This spray of bumps over the airbox surface determines favourable locations
of deformations. Updates are then performed to obtain the best position and shape of
deformation. The model with the optimal deformation is then saved, and the process

repeated accordingly.

6.2 CFD Analysis

To ensure that the solutions yield sufficient accuracy, a mesh dependency study on a
baseline three-dimensional airbox geometry was performed. The geometry was tested
with nine different mesh resolutions ranging from 100,000 cells to 5,500,000 cells (please
see Appendix B.3). The comparison of the pressure recovery alone is inconclusive and
so the velocity profiles along planar cuts at varying positions through the airbox are
considered. This comparison shows that the 500,000 cell study would be an adequate

mesh size.

Although this determines the accuracy of the solution output from Fluent, it is yet to

be considered as to whether the accuracy of the prescribed CFD boundary conditions
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in comparison to a realistic flow situation is adequate. A uniform velocity profile fixed
at the inlet does not adequately represent the inlet flow situation of a real airbox as
there are many factors, in particular the boundary layer development at the inlet lip,
which have been ignored. Hence, the flow external to the entire airbox was simulated as
well as its internal flow. The baseline airbox geometry was used with a thick surface to
simulate effectively the development of the boundary layer on the inlet lip which would
affect the velocity profile at the airbox inlet. Using an internal airbox mesh of 1,250,000
cells, the total cell count of the entire domain both internally and externally was just
under three million cells. This is considered far too expensive for the current study.
Instead, two alternative options were tested. In the first, the velocity profile at the
inlet of the simulation with the complete external domain was captured, exported and
then imported into a simulation of the internal flow only. This was used instead of the
uniform velocity profile originally prescribed for the internal airbox flow. In the second
alternative a much smaller box which encased only the inlet was drawn. This gives a
truer boundary layer development at the inlet lip of the airbox without a substantial

increase in cell count.

For this case study, Stage 1 is performed with these two alternative CFD simulations,
the first using the imported velocity profile from the external domain study as the inlet
boundary condition, and the second using a reduced external domain around the airbox
inlet only. The results of the multi-stage process are presented in the following section.
Appendix B gives the details of the mesh dependency study, the results of the CFD
simulations of the full external domain and the reduced external flow domain, as well as

the simulation with a prescribed velocity inlet condition.

6.3 Results

For a converged solution, all the subsequent studies are performed by solving the RANS
equations with a k-e ‘realizable’ turbulence model, meaning that the model satisfies
certain mathematical constraints on the normal stresses, consistent with the physics
of turbulent flows. Please refer to the Fluent manual (Fluent™ 2003b) for further
details. Here, non-equilibrium wall functions are used for the near wall treatment.

These are different to the ‘standard’ Launder and Spalding (Launder and Spalding, 1974)
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wall functions used for the two-dimensional studies in Chapter 4. Its defining elements
are that Launder and Spalding’s log-law for mean velocity is sensitized to pressure-
gradient effects and that it uses a two-layer-based concept to compute the budget of
turbulent kinetic energy in the wall-neighbouring cells (Fluent™, 2003b). Even though
an appropriate mesh size was chosen based upon the mesh dependency study performed
in Appendix B, a different choice of mesh size or turbulence model could possibly provide
different values for the pressure recovery values than those presented here. However, the
overall conclusions regarding the geometry parameterization techniques would not be

affected.

6.3.1 Stage 1 with Profiled Velocity Inlet Condition

The optimization history for the Stage 1 parameterization for the imported velocity inlet
profile case is shown in Figure 6.6. This figure shows the C), values for design points 1 to
75 representing the initial DoE followed by design points 76 to 175 representing the 100
update points. The bold line indicates the current best design C), value as each update
point is added. In this case the size of the initial DoE is selected based on the rule of
thumb of using approximately ten times the number of design variables to produce a
reasonably accurate response surface. 100 updates are then performed to converge to
an optimum due to the limited computational resources and time allowed. Using just
six design variables, each solution using a profiled velocity inlet takes approximately
eight hours when run in parallel across two Xeon 2.8GHz compute nodes each with two
processors. At this point, it is unnecessary to perform a concentrated exploration in a
reduced area of the design space since the Stage 2 process should fine-tune the geometry

sufficiently to converge to an optimal design.

The velocity contours for sections through the best design after the first 75 points can be
seen in Figure 6.7 along with the wall shear stress showing separation in the y-direction.
It is clear that the walls of the airbox contain no unusual bulges akin to those found
in the two-dimensional study presented in Chapter 4. This design returns a pressure

recovery of C,=0.8399.

Figure 6.8 shows the velocity contours at each section cut through the airbox in sequence

to show the flow developing from the inlet to the filter, through the filter and onto the
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FIGURE 6.6: Optimization history for the airbox with a prescribed inlet profile

cylinders. The legend of contours of velocity magnitude are the same as those shown
in Figure 6.7. It can be seen that the flow remains attached along the upper wall
throughout the airbox but separates from the lower wall as the airbox begins to turn
the flow. As the area of separation is large, a bulge along the lower wall could not be
big enough to contain it entirely, and hence this may be the reason why bulges such as

those seen on the lower wall of the optimum 2D airbox are not present here.

The optimum design found during the updates returned a pressure recovery C,, = 0.8915.
Its velocity contours through sections of this airbox design can be seen in Figure 6.9 along
with the wall shear stress showing separation in the y direction. Figure 6.10 depicts the
velocity contours in each section. The comparison of geometry between the best design
after the DoE study and the best design after the updates is shown in Figure 6.11. The
upper and lower bounds of each design parameter and their values for the best geometry

after the DoE and the final best geometry can be compared in Table 6.1.

Figure 6.11 shows clearly that the best design after the updates has changed the upper
wall to accommodate a larger cross-sectional area near the inlet, and a depression to-

wards the exit. These are the largest differences between the variables shown in Table
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L
FI1GURE 6.10: Contours of velocity magnitude through individual sections of the best
geometry after updates, C},=0.8915
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FIGURE 6.11: Geometry shown for best after DOE, C), = 0.8399, (left) and updates,
C, = 0.8915, (right)

Variable Lower Upper Best after | Best after
bound (m) bound (m) | DoE (m) | updates (m)
Tyl 0.055 0.1 0.0592 0.0998
T2 0.1 0.28 0.1281 0.1001
T 0.055 0.15 0.1055 0.1058
TI9 0.11 0.2 0.1184 0.1217
T 0.055 0.12 0.1098 0.1069
T1ro 0.12 0.17 0.1309 0.1401
Pressure recovery ‘ ‘ 0.8399 ‘ 0.8915

TABLE 6.1: Design parameters and their corresponding bounds with a comparison of
the parameter values for the designs of the best airbox with a profiled velocity inlet
after the DoE points and after the completion of the updates

6.1. There is also a slight increase in the lower central wall distance of the second control
point, producing a slightly straighter contour shape. Finally, there is an increase in the
distance to the second control point along the side walls, also allowing for a slightly
straighter wall contour shape. From the illustrations of velocity contours in Figures 6.7
and 6.9, the effect of the bump near the inlet is to create a region of slower flow along
the upper wall of the airbox at this point. This coupled with a straighter lower wall

shape result in a larger but a more uniform area of flow separation on the lower wall.

6.3.2 Stage 1 with External Domain

The optimization history for the case with a small external domain around the airbox
inlet is shown in Figure 6.12. Here, the C, values are plotted against the number of
points, where the first 75 points represent the same DoE as used in section 6.3.1, and the

remaining points representing the updates. Using the same six design variables, each
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FIGURE 6.12: Optimization history for the airbox geometry with small external domain
around inlet

solution of this airbox with external domain around the inlet lip takes approximately
18 hours when run in parallel across two Xeon 2.8GHz compute nodes each with two

Processors.

It is clear that there is a difference in solution between these inlet conditions. Interest-
ingly, in the majority of cases, the cases solved with the small external domain around
the inlet gave lower pressure recovery values. It can be seen that there are a few ge-
ometries returning poor pressure recovery values that performed significantly differently.
In these cases, the geometries feature large bulges on either the upper or lower walls.
This shows that a small alteration in inlet flow condition could have a large effect on
the majority of the airbox flow. In this case, the best design after the initial DoE with
the external domain is, in fact, the same as that found after the DoE with the imported
velocity inlet profile, point number 28. Due to changes to the flow, the pressure recov-
ery returned is lower; C,=0.8003. The velocity contours of sections through this airbox
along with the wall shear stress showing separation in the y direction are shown in Fig-
ure 6.13. There is a slight difference in flow from that seen in Figure 6.7. In particular

the increased areas of flow separation along the upper wall by section 14 (counted from
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Variable Lower Upper Best after | Best after
bound (m) bound (m) | DoE (m) | updates (m)
Tul 0.055 0.1 0.0592 0.0800
T2 0.1 0.28 0.1281 0.1270
T 0.055 0.15 0.1055 0.1126
T2 0.11 0.2 0.1184 0.1107
Tir1 0.055 0.12 0.1098 0.0957
Tiro 0.12 0.17 0.1309 0.1271
‘ Pressure recovery ‘ ‘ 0.8003 ‘ 0.8288 ‘

TABLE 6.2: Design parameters and their corresponding bounds with a comparison of
the parameter values for the designs of the best airbox with a small external domain
around the inlet after the DoE points and after the completion of the updates

the inlet), illustrated in Figure 6.14, accounts for the loss in pressure recovery. After
the updates, the best geometry had a pressure recovery of C},=0.8288. The velocity
contours through this geometry can be seen in Figure 6.15 along with the wall shear
stress in the y direction. The velocity contours in each section are depicted in 6.16, with

the comparison of shapes before and after the updates depicted in Figure 6.17.

The design parameter values for the best geometries after the initial DoE and after the

updates are be compared in Table 6.2.

From Table 6.2, the lower wall geometry has changed slightly, providing a larger cross-
sectional area near the inlet reducing the area of separation on the lower wall. It is also
clear that the upper wall shape has changed in a similar way to that of the best geometry
found after the updates with the imported velocity inlet profile. Due to the bump on the
upper wall, the onset of separation is delayed along the lower wall, and a reduced area
of separation along the upper wall is seen near the filter. The right and left lower walls
also experience a decrease in distance from the centerline, creating a straighter airbox
wall shape near the inlet but still bulging out slightly towards the filter. The difference
between the distances of the two control points along these lower side walls are roughly

the same as those of the case with an imported velocity inlet profile.

From the Stage 1 studies, it can be concluded that although the presence of the external
domain may provide more accurate solutions, here the optimization process returns the
same best geometry after the DoE and the best geometries present similar features after

the update process, i.e. the design trends, which are crucial to provide a meaningful
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FIGURE 6.14: Contours of velocity magnitude through individual sections of the best
geometry after DOE, C,=0.8003
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FIGURE 6.15: Contours of velocity magnitude through sections of the best geome-
try after updates, C},=0.8288, and its corresponding wall shear stress shown in the y
direction
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FIGURE 6.16: Contours of velocity magnitude through individual sections of the best
geometry after updates, C},=0.8288
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FIGURE 6.17: The best geometry after the initial DOE, C},, = 0.8003, (left) and updates,
C, = 0.8288, (right)

design search, are the same. In the Stage 2 studies, only the profiled velocity inlet case

is used due to the faster run times.

Interestingly, during the search for a globally good geometry no good geometries fea-
turing large bulges on either the upper or lower walls, akin to those seen in the two-
dimensional case, are found in this study. Although the reduced number of design
variables would allow for one bulge to be generated on either wall, the appearance of
two bulges is not possible due to the reduced number of design variables and, thus, the

reduced shape control.

6.3.3 Stage 2

The best geometry from Stage 1, using the profiled velocity inlet case, is used as the
input to Stage 2, as shown in Figure 6.1. A DoE of bump position (0,¢ € [0,27]),
height (h(m) € [—0.03,0.05]) and curvature (€ [0, 1]) on the best design from Stage 1 is
analysed using the same objective function. A 50 point DoE was followed by 30 update
points and the optimization history can be seen in Figure 6.18 where these points are

shown by * following the Stage 1 process.

The best geometry returned a pressure recovery of €, = 0.8903 with the positional
variables § = 33.75°, ¢ = 168.75°, height h = 0.0375m and curvature=0.41. This design
can be seen in Figure 6.19 with the bump deformation encircled. Its velocity magnitude

contours are also shown in Figure 6.20 along with the wall shear stress in the y direction.
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FIGURE 6.18: The optimization history of Stage 2 following the Stage 1 update points

FIGURE 6.19: Best design after the Stage 2 updates with the bump deformation encir-
cled, €}, = 0.8903

The velocity magnitude contours through each individual section are depicted in Figure

6.21.

Here the bump is positioned on the upper surface of the airbox wall just to one side of
the spline defining the backbone of the airbox in the Stage 1 parameterization. Although

the contours are very similar in comparison to the velocity contours shown for the best
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geometry after Stage 2, C}, = 0.8903



Chapter 6 AMSSOD Implemented on a Three-Dimensional Airbox 115

FIGURE 6.22: Designs found during Stage 2 process with C, = 0.8876 (left) and
Cp = 0.8878 where the bump deformations are encircled (right)

geometry after the Stage 1 updates (Figures 6.9 and 6.10), it can be seen that the bump
causes a slight bias in the flow separation and from section 8 through to section 14

(counting from the inlet) a slightly larger area of separated flow is apparent.

The process tested here has allowed the position of the bump as well as the height and
curvature of the deformation to be tested together. The initial DoE returns promising
locations of bumps that may be favourable and the updates allow the bump to be
moved around these points to find the optimum bump position, height and curvature.
In this case, the DoE returned a number of good designs with bumps returning pressure
recoveries greater than C, = 0.88 and where the bumps were placed in quite different
areas. T'wo such bumps can be seen in Figure 6.22 both with similar pressure recoveries
of €}, = 0.8876 for the design shown on the left and C, = 0.8878 for the design shown
on the right.

The design on the left shows the bump deformation clearly as an indent on the left hand
side of the airbox, whereas the design on the right shows the bump deformation as an
indent on the upper wall left of the spline defining the backbone. Both of these designs
show favourable areas as to where a deformation may improve the pressure recovery but
in very different positions. Hence, the optimizer tested areas around both deformation
positions determining whether the design is improved towards a local optimum or in

fact the global optimum. Because of this, the Stage 2 updates could not locate a design
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with a bump which had a greater pressure recovery than that of the best geometry of

Stage 1 with C), = 0.8915.

This suggests that perhaps the Stage 1 parameterization had too much shape control and
allowed the optimizer to find a near optimal design during the Stage 1 updates. It may
also suggest that one particular favourable area of improvement, such as the position of
the bump which returns the highest pressure recovery in the initial DoE, may need to
be chosen to allow the search to concentrate in this area to find an improvement instead
of over the whole surface. To locate other areas where bumps are favourable, the Stage

2 process can be repeated accordingly.

From analysing the variables for each of the 30 update points as they were added to the
RSM, it is clear that the updates are focusing on a specific promising area where the
height variable is being altered but is very close to zero. This can be seen in Figure 6.23
where the variables 0, ¢, and h chosen for each update point are shown. This suggests
that the optimization process may be driving the bump height down to zero as this
is where the optimum geometry (the same geometry found in the Stage 1 updates) is
to be found. If this is the case, it implies that the Stage 1 parameterization was too
good, providing too much shape control, allowing the optimum geometry to be found.
In hindsight, the Stage 1 process should have been performed on a geometry with even
fewer design variables in its parameterization to allow the Stage 2 process to work to its
best ability, i.e. by locating and fine-tuning the upper surface bump found here in the

Stage 1 updates.

To test the Stage 2 process further and to allow for one bump to be placed and optimized
in a favourable position, the location of the bump can be fixed after an initial DoE in
Stage 2 with the positional and bump height variables to be tested. The bump height
and curvature of the deformation can then be optimized at this point to improve the
pressure recovery. Given that the geometry found after the Stage 1 updates may be
a near optimum design, this modification to the Stage 2 process is tested on a known
non-optimal geometry: the best design found after the initial DoE study in Stage 1 for
the profiled inlet case with C, = 0.8399.

The optimization history of this can be seen in Figure 6.24. Here, the red dashed line

indicates the improvement in design after the initial DoE points of Stage 1 (shown as o).
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FIGURE 6.24: The optimization history of Stage 2 after the best geometry found during
the Stage 1 DoE (0) and after the best geometry found during the Stage 1 updates (*)

The black line in this figure indicates the progress of the Stage 1 update points (shown
by +) followed by the Stage 2 process that was performed upon the best geometry found

after the Stage 1 updates (shown by x).

The best improvement in pressure recovery in the initial 30 point DoE on the three
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FIGURE 6.25: Best design after the Stage 2 updates performed following the Stage 1
DoE, with the bump deformation encircled, C}, = 0.8684

variables 0,¢ € [0,27] and bump height A(m) € [-0.05,0.1], is found with a bump
located at 8 = 22.5°, ¢ = 337.5° and height h = 0.0531m. This gives an improvement
from C) = 0.8399 to C), = 0.8673. Continuing the process shown in Figure 6.1, a DoE
of bump height and curvature, using this position as the centre of the deformation, is
then performed. After 10 DoE points and 10 update points, the optimal deformation
size is found to be h = 0.00125m and curvature = 0.63. This gives a pressure recovery of
C, = 0.8684. This geometry is seen in Figure 6.25 with the velocity contours shown in
Figure 6.26 along with the wall shear stress showing separation in the y direction. Figure

6.27 depicts the velocity magnitude contours at varying sections through the airbox.

The velocity contours show a reduced area of separation from section 7 (counted from
the inlet) in comparison with the best geometry after the Stage 1 DoE (the velocity

contours through which are shown in Figures 6.7 and 6.8).

From Figure 6.24, it is clear that the Stage 1 updates perform better in terms of finding
a geometry with a higher pressure recovery more quickly. The best geometry after
this Stage 2 process can be seen in Figure 6.25 and the best geometry found after the
same number of points during the Stage 1 update process can be seen in Figure 6.28. In
comparison, although the initial Stage 2 DoE has found a favourable position close to the
backbone spline, as the centre of deformation has been fixed, the centre of deformation

could not move towards the backbone spline to return a better pressure recovery value.
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FIGURE 6.27: Contours of velocity magnitude through individual sections of the best
geometry after one deformation, C},=0.8684
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FIGURE 6.28: Best design after 50 Stage 1 update points with C, = 0.8808

From this, it can be concluded that given a suitably non-optimal design, Stage 2 may
be performed effectively by choosing a favourable area of bump position from the initial
DoE and then updating the position, height and curvature of the deformation in a small
area of the design space in this favourable region. A careful balance has to be struck
here since time will be saved by not searching in other promising areas, but these could

then be tested by repeating the Stage 2 process accordingly.

6.4 Summary

This chapter has implemented the AMSSOD process described in Chapter 5, and a
parameterization technique to define an optimal 3D airbox has also been presented. The
parameterization is a continuation of the 2D parameterization presented in Chapter 4,
therefore retaining strong shape control through a decoupling of any geometrical links
between the upper and lower wall guiding splines. Stage 1 has been effectively tested,
and the optimization process has been performed for two different inlet flow conditions.

A significant improvement in pressure recovery during this stage is found.

Due to the strong shape control present in the Stage 1 parameterization, the Stage 2
process, performed on the best geometry found after the Stage 1 updates, could not
improve upon the pressure recovery. The Stage 2 update points tested geometries in
a number of favourable regions until the strategy became focused in one favourable
region gradually reducing the bump height variable towards zero in order to improve

the pressure recovery. This suggested that the geometry found in Stage 1 was indeed a
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near optimum design. In hindsight, an even simpler parameterization for the airbox in

Stage 1 should have been chosen to allow the Stage 2 process to work to its best ability.

The Stage 2 process was tested further on a non-optimal design and the position of the
deformation centre was fixed at a favourable position determined by the initial Stage 2
DokE so that the search for an improved design by altering the bump height and curvature
was focused in one favourable position. This Stage 2 process yielded an improved design
with better pressure recovery. The resulting geometry had a local deformation at a
position near the backbone spline of the airbox. However, the design could have been
further improved towards the shape of the near-optimal design found in the Stage 1
updates if the position of the deformation centre were allowed to vary in a reduced
area of the design space around the favourable position chosen from the initial DoE
to move closer towards the backbone spline. For the general case of internal fluid flow
applications where the location of a local deformation is unknown, a Stage 2 search in
a reduced area of the design space around a favourable position chosen from the initial
Stage 2 Dok should be used. To allow deformations in other favourable locations, the

Stage 2 process can be repeated accordingly.



Chapter 7

AMSSOD Implemented on a
Human Carotid Artery

Bifurcation

The human carotid arteries supply the head and neck with blood via the two common
carotid arteries (CCAs); they ascend in the neck and each divides into two branches
at their respective bifurcation points: the external carotid artery (ECA) supplies the
exterior of the head, the face and the greater part of the neck; and the internal carotid
artery (ICA) supplies to a great extent the parts within the brain and eye cavity (see
Figure 7.1). The geometry of a carotid artery bifurcation is illustrated by a point cloud

formed from a scan of a patient artery shown in Figure 7.2.

Carotid originates from the Greek word karotides meaning heavy sleep. Ancient Greek
physicians believed that by pressing hard on these arteries heavy sleep and loss of con-
sciousness was induced. We now know that the carotid is the key artery which carries
oxygen from the heart to the brain and logically, its constriction would indeed deprive
the brain of oxygen leading to loss of body functionality and consciousness. Today, a
common cause for concern medically is the progressive narrowing or hardening of the
arteries over time due to the build up of fatty deposits, atherosclerosis. Atherosclerosis
occurs naturally with age but is also accelerated by other risk factors such as high blood

pressure, the presence of diabetes, cigarette smoking, antecedent cardiovascular disease,

123
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FIGURE 7.1: An illustration of the position of the carotid artery

FIGURE 7.2: A point cloud of a carotid artery bifurcation
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atrial fibrillation and electrocardiographic abnormalities (Wolf et al., 1991). The build
up of fatty deposits within the intimal layer of the artery can cause a stricture around
which a further build up on the inner lumen of the artery may be seen. This is known
as a stenosis. Stenoses commonly occur at the bifurcation of the CCA into the ICA
and ECA. At the point of bifurcation, a healthy ICA features a spacious bulb before
the artery tapers downstream towards the brain. It is in the spacious region that a
recirculation flow is present. Due to the nature of recirculatory flows, there exists an
area of low shear stress, present on the inner wall, and it is here where a build up of

plaque is seen in the inner wall of the artery.

In a healthy artery the flow is laminar (Ku, 1997). However, as the plaque builds up,
the constriction caused by deposition of plaque in the artery results in a increase in flow
velocity at this point. As the artery widens again downstream of the constriction, the
flow velocity drops and the pressure increases which causes further build up downstream
of the constriction. In areas such as the ICA sinus bulb, recirculatory flow is present
around the plaque build up. As the stenosis becomes more severe, the flow becomes faster
into the bifurcation strengthening the recirculatory flow. A danger materializes when
there occurs a sudden rupturing of the inner wall plaque cap, due to the recirculatory
flow and the elevated shear through the constriction, potentially leading to an embolism;
where a clot or a mass of foreign material is carried by the bloodstream and becomes

lodged in an artery, the blood flow is blocked.

It is this fragmentation of the plaque cap of the stenosis which is of interest in the
current investigation. If the embolus is small and carried up the ICA, blurred vision
is one of the symptoms that the patient may experience. If the embolus in the ICA is
large, it lodges in the brain causing damage to nerve cells due to the interrupted blood
flow. This is more commonly known as a stroke. A stroke can cause coma, paralysis,
speech problems and dementia. Currently, stroke is the third primary cause of death in

the UK, after heart disease and cancer, and is the leading cause of severe disability.

The postulation of a link between the arterial geometry, its corresponding blood flow
patterns and the development of atherosclerosis first became evident in the 1960s (Fry,
1968). Since then, there has been a keen interest in understanding the detailed arterial
fluid dynamics (Caro et al., 1971). However, the link between the geometry, the flow

and the development of atherosclerosis remains to be identified (Davies, 2000).
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Our interest in the carotid artery stems from this need for a fuller understanding of the
local haemodynamics or blood flow patterns that occur in the carotid artery bifurcation.
This notion that haemodynamics plays an important role in the development and pro-
gression of atherosclerosis means that, by extensive studies of arterial geometries and
their related blood flow patterns, the medical community can progress towards improved

diagnoses and treatment of arterial disease.

Advances in medical imaging have allowed doctors and researchers to visualise the extent
of arterial disease. Images of the arteries can be obtained with high accuracy, but the
process of measuring haemodynamic patterns becomes untenable due to the length of
time needed to produce these images. Instead, CFD is used to model the pulsatile blood
flow through the arteries. A number of studies have been performed on diseased arteries
with idealised geometries or two-dimensional models (Milner et al., 1998) which can only
be applied to the very general human case. Although the medical field has benefited
from great insights that these studies have provided, it is apparent that the use of three-
dimensional patient-realistic geometries coupled with suitable realistic flow conditions
are vital in order to fully characterize the three-dimensional flow patterns. Much research
has been performed more recently into three-dimensional vessel reconstruction via the
translation of patient image scans into patient specific CAD based geometries compatible
with meshing and CFD tools (Steinman et al., 2002b; Antiga and Steinman, 2004).
With the recent advances in high resolution medical imaging, arterial geometries can
be measured non-invasively. Magnetic Resonance Imaging (MRI), for example, can
capture the outer and inner wall geometry of the carotid bifurcation in a number of
planar scans which can be reconstructed into a computational model and so provide a
precise and accurate representation of the patient’s artery and disease build up. CFD
models can then be run on these computational geometries and these CFD models give
a quantification of the blood flow that is at least as accurate as regular invasive methods

(Milner et al., 1998; Moore et al., 1999).

There has been much research into the possible connection between the development
of atherosclerosis and an individual patient’s artery geometry features. Thomas et al.
(2005) concluded from their studies that the development of arterial disease could not

conclusively be linked with the general arterial geometrical properties of young healthy



Chapter 7 AMSSOD Implemented on a Human Carotid Artery Bifurcation 127

individuals. Due to the similarity between young, healthy artery geometries in compari-
son to the enormous variations seen between the geometry of mildly diseased arteries, it
is evident that the development of atherosclerosis becomes apparent in each individual
with age, but early detection of those that will be adversely affected by atherosclero-
sis is challenging. It is therefore necessary to acquire a greater understanding of the
haemodynamics of normal, mildly diseased arteries, as well as heavily stenosed arteries.
Clearly, it would be difficult to undertake a large patient population study of patients
diagnosed with carotid artery disease to try and assess possible geometric links with the
build up of the disease. Instead, the focus of this study concentrates on the arterial
geometry of an individual patient to construct a parameterized realistic computational
representation of the artery. The key advantage in constructing a realistic parametric
artery based on image reconstructions (Steinman et al., 2002b), is the ability to use
parameters in optimization studies. For example, the benefit of certain treatments can

be optimized given patient-realistic parametric artery models.

Carotid angioplasty followed by stenting is a common treatment for atherosclerosis. This
procedure involves inserting a catheter which is guided towards the carotid artery. It
carries a small balloon that inflates to flatten the plaque against the artery wall. The
stent, which is made of a stainless steel wire mesh in the shape of a small tube is in-
serted into the artery to hold it open. This then restores normal flow in the carotid
artery so that blood and oxygen can get to the brain. Carotid angioplasty and stenting
is being used increasingly as a safer and more cost effective alternative to the carotid
endarterectomy procedure which involves the physical removal of the plaque from the
artery. To date, however, no conclusive long-term results can be drawn from the stenting
procedure as it is a relatively recent treatment. However, problems can occur such as
a re-stenosis occurring in less than six months after the implantation. This has been
observed in a number of patients (Yadav et al., 1997; Wholey et al., 1998). Clearly, the
effect on the local blood flow caused by a stent insertion is not fully understood. An
alternative form of treatment is anastomosis, or bypassing, of the artery and, poten-
tially, this discipline can make good use of a parametric representation of the carotid
artery bifurcation. For fast and efficient optimization studies, it is desirable to employ
a compact set of design variables. The AMSSOD parametrization techniques presented

earlier in this thesis provides an effective geometry manipulation process. This would
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facilitate the future efficient optimization of the benefit of treatment, elucidating the
change in characteristics of the blood flow caused by the treatment, potentially allowing
surgeons to decide which patients would favour certain treatments. Not only may this
provide a better understanding of the haemodynamical effects of various treatments but
also provide some insight into the suitability of the procedures and whether of surgi-
cal intervention is favourable. This provides the motivation for the construction of a

realistic parametric artery model.

7.1 Geometry Parameterization

The first and foremost difficulty which is faced when approaching the parametrization of
a carotid artery bifurcation is the recognition of geometric features common to all types
of arteries. Figure 7.3 illustrates the large diversity of arterial geometries (BioFluid-
MechanicsLab). These arteries are digitised silhouette images of postmortem specimen
casts of the inner lumen boundaries on the arterial walls. Here, the patients are of
different sexes and are aged between 49 and 90. This chapter utilises the AMSSOD
technique described in Chapter 5 to recreate automatically a parametric model of one

of these artery geometries with the realistic patient-specific features.

Some obvious common geometrical features are seen in Figure 7.3, each of which has
substantial variations between one artery and the next. Examples of such variations are
seen in the ICA bulb width, the ICA and ECA branch angles and the diameter of the
ICA, ECA and CCA. An early generic synthetic geometry for experimental uses of the
carotid artery bifurcation was developed by Bharadvaj et al. (1982) who represented
the artery mainly by Y-shaped models. A relatively new geometry representation is the
tuning fork model (Ding et al., 2001). A typical CAD geometry of this “tuning-fork”
carotid artery bifurcation is seen in Figure 7.4. Although these models capture the
general geometry and size of the I[CA, ECA and CCA, they are not capable of capturing
differences between geometries such as those seen in Figure 7.3, and so any specific
internal blood flow characteristics resulting from these geometrical differences could not

be captured.

The variation of inter- and intra-patient arterial geometries leads to a corresponding vari-

ability in the haemodynamic environment. It is therefore very important that a practical
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FIGURE 7.3: Silhouettes of digitised patient artery casts courtesy of BioFluidMechan-
icsLab

FIGURE 7.4: A typical CAD carotid artery bifurcation

parametric artery model should be capable of detailed and complex manipulations. The
huge geometric variation between different patient geometries can be described by fac-
tors such as the branch angles, tortuosity (Brinkman et al., 1994), curvature (Smedby,
1998) and (non-)planarity (Friedman and Ding, 1998). The relative magnitude of these
features could make the difference between a potentially fatal or non-fatal progression
of atherosclerosis. In the severe cases of stenoses where surgical intervention is required,
it is fairly routine to carry out an MRI scan of the patient’s artery. This scanned data is

used here to construct a base parametric model which, although idealised, captures the
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main geometrical features such as branch angle, diameter, tortuosity and non-planarity.

In many cases, assumptions and constraints inherent to CAD techniques are imposed
on the geometric CAD models, thus limiting the overall flexibility to create patient-
realistic geometries (Ding et al., 2001). However, the multi-stage technique proposed
in this thesis overcomes a number of constraints imposed by the surface generation
properties adopted by the CAD engine. Here CATIA is used to construct a realistic

parametric CAD model, using the implementation of the process outlined in Figure 7.5.

Given scanned data for a real human artery, a baseline parametric model is constructed
in Stage 1. Stage 2 then manipulates the base parametric CAD model so as to capture
the localised features of the real artery geometry. The error between the base model and
the real artery model is assessed and the CAD model is updated to reduce this error
until a sufficiently accurate fit is found. The following sections outline the two stages in

more detail.

7.1.1 Stage 1

The Stage 1 process outlined in Figure 7.5 begins by defining a parametric geometry.
In other words, the choice of parameters necessary to construct the artery for future
optimization work must be decided. It is important to have accurate artery diameters
at varying sections along the artery. Determining the ICA branch angle will provide
the orientation of the ICA at the bifurcation as well as the plane along which the bulb
width is measured. With this in mind, it is possible to analyse data from any scan
automatically to output these parameter values. For this study it was not possible to
acquire MRI scan data directly but a point cloud, consisting of approximately 7000
points, taken from a scan of a postmortem specimen cast of the inner lumen boundaries
on the arterial wall (BioFluidMechanicsLab) was used instead. An MRI would output

a similar set of points but with a varying degree of resolution of the slices.

The analysis of the point cloud data begins by translating the geometry so that its
origin is found near the exit of the CCA into the root of the bifurcation cavity. This can
be achieved by roughly slicing the point cloud data into zy-planes at varying z values,
where the z direction is aligned with the principal flow direction. Gaps in the data are

indicative of the plane intersecting both the ICA and the ECA. The diameter of the
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FIGURE 7.5: AMSSOD process for a carotid artery bifurcation
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artery slices on these planes is determined. Where the planes intersect the CCA, the
diameter should be reasonably constant and so the new origin is placed on the plane

downstream of the plane where the diameter increases significantly.

Once the new origin has been found, the key to calculating the values of the parameters
is locating the “divider” point. This is the point on the inner arterial wall between
the ECA and the ICA at the bifurcation, shown by F in Figure 7.6. To do this, the
r-axis is split into regular intervals of approximately Imm in length. In each of these
intervals, the z-distance between each adjacent point is calculated. If this value is below
a specified tolerance the maximum z-value is found. Should the distance be above the
specified tolerance, it indicates that in this particular interval of xz-values, the ICA or the
ECA may be crossing over the bifurcation. In this case, the maximum of the z values
situated below the gap is found. The z coordinate of the divider point is then taken to
be the minimum z value of the set of maximum z-values for each interval of z. The x
and y coordinates of the divider point are then found accordingly. Having found this
divider point, tortuosity of the artery must be considered. Given specified intervals of
rotation about the z-axis 6 (0 € [0, 27]), the geometry is rotated through increments of
f and the process described above repeated for calculating the minimum value of the set
of maximum z-values for each interval in z. If this new z coordinate for the divider point
is found to be less than the original z coordinate of the divider point with no rotation,
the divider point z coordinate is replaced. The x and y values are found accordingly and
are rotated back through -0 to replace the original = and y coordinates. This process is

repeated at increments of # until the true divider point is found.

Now the coordinates of the divider point have been determined, the point cloud can be
intersected at one plane midway between the new translated origin and the CCA inlet,
at point K in Figure 7.6. At these three planes (J, K and O in Figure 7.6), an ellipse is
fitted to the point cloud data and sampled at the CCA inlet and the midway plane with
five points, and the plane at the origin is sampled at eight points. These eight points are
used to start an appropriate number of splines to define the ICA and ECA (see Figure
7.6).

Next, a suitable number of planes are chosen to intersect the bifurcating artery above
the origin on plane O. This has a greater resolution than the intersection of the CCA in

order to capture the greater detail in geometry through the bifurcation and along the
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z= C plane

FIGURE 7.6: Carotid artery bifurcation parameterization for Stage 1
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ICA and ECA. For this study six intersecting planes equally spaced from the origin at
the root of the bifurcation to the ICA exit are chosen; see Figure 7.7. At each of these
planes, ellipses are fitted to the data on each of the six intersections, as shown in Figure

7.7, and the diameter and the centroids of these ellipses extracted.

The root points of the ECA and the ICA, shown by points D and E respectively in Figure
7.6, are determined by finding the coordinates of closest points on the intersecting plane,

directly downstream of the divider point, to the divider point at F.

The branch angle of the ICA is next found by calculating the angle between the divider
point, at F, and the root ICA point, at E, on the zz-plane. This angle defines the plane

in which the bulb width is measured.

The intersecting planes further downstream of the divider point (see Figure 7.7) allow
for the centroid and diameter of the ICA and ECA to be input into the CATIA model
to define the arteries on the z=A plane and surrounding the centroids at G, L, M and H
depicted in Figure 7.6. These values give an accurate representation of the non-planarity
and tortuosity downstream of the bifurcation. As there is only one intersecting plane
through the ECA on the z=A plane, the ECA is extended to the next intersecting plane
with constant diameter to allow for an ECA outflow sufficiently far downstream to aid
the convergence of the CFD solution. The parameters which determine the Stage 1
model are defined in Table 7.1, and are illustrated in Figure 7.6. An external design
table is used to control these parameter values. This allows the model to be altered
automatically by changing the parameter values inside the design table. An outline of

the code used to determine the parameter values automatically is provided in Appendix

C.

7.1.2 Stage 2

With the Stage 1 CAD geometry complete, the purpose of Stage 2 is to minimize the
error with respect to real artery point cloud data. To determine this error, the CAD
model is sampled at a number of points. To do this, the Stage 1 model is intersected
on zy-planes of varying z value from the origin through the bifurcation to the ICA exit.
Here, the bifurcation root area is intersected five times including the plane upon which

the divider point lies. Maintaining the same distance between intersections, the arteries
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FiGure 7.7: Ellipses fitted to the point cloud at the six intersections

Notations | Description

Height of bifurcation point plane above z, y-plane at origin

ICA branch angle

Height of ICA exit plane above x, y-plane at origin

Cartesian coordinates (ECArootX, ECArootY, A)

Cartesian coordinates (ICArootX, ICArootY, A)

Cartesian coordinates (3 (D(z) — E(z)), 3(D(y) — E(y)), A + BifurcationRoot)
Centroid coordinate of ECA exit (ECAcent(x), ECAcent(y), I)
Centroid coordinate of ICA exit (ICAcent(x), ICAcent(y), C)

Height of ECA exit plane above z, y-plane at origin

Sampled point cloud at z=min(z) plane at 5 points

Sampled point cloud at z=min(z)/2 plane at 5 points

Centroid of sampled point cloud at z=I describing circle of radius L,
Centroid of sampled point cloud at z=R describing circle of radius M,
Bulb width

Sampled point cloud on z=0 plane at 8 points

OZErRu~OQQHEHOQW>

TABLE 7.1: Parameters and formulae for the parametric CAD bifurcation model
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FIGURE 7.8: Positions of cross-sections at various z-axis values

downstream of the divider point are intersected six times, making 11 intersections in
total. Note that the intersection planes are positioned to align with the dense regions
of the point cloud. To ensure that the intersection is not placed within a gap between
the slices making up the point cloud, a band width of %Omm is positioned around the
intersecting plane. This band is moved along the artery until a slice of points from the
point cloud is captured within it and the new value of the intersecting plane is stored.
This step is shown in the second box of Stage 2 in Figure 7.5. The revised values of the
intersection planes are then used in a macro to automate the intersection of the Stage 1
model with 15 points sampling each intersection at regular intervals. Figure 7.8 shows

the Stage 1 CAD geometry with the intersecting planes.

The CATIA macro exports the 15 points on each intersection to a file which is read
by a Matlab code to extract the coordinates of these points. The nearest point in the
point cloud to each sample point is found and the square error between each of the CAD
sampled points and the point cloud is determined. Following the flow chart in Figure
7.5, the sum of the square errors of each intersection is calculated. This allows the
intersection with the highest sum of square errors to be found. The worst point on this
plane at which the square error is highest is found and a new point in the CAD model
corresponding to the target point cloud point is created. This point is then projected

onto the CAD artery surface along a direction normal to the surface, as the surface



Chapter 7 AMSSOD Implemented on a Human Carotid Artery Bifurcation 137

FIGURE 7.9: Limit curve (shown as the solid line) used for near side Stage 2 deforma-
tions

will be deformed along this direction. This eliminates the possibility of the deformation
overshooting the target point cloud. The macro then creates a new bump with this
projected point at its centre. Within the model, two limit curves are defined, one of
which is shown in Figure 7.9. Either the near side or the far side of the bifurcation is
deformed depending on the position of the projected point onto the surface. The limit
curves are placed here as they must remain fixed throughout the whole Stage 2 process as,
in CATTA V5, new limit curves cannot be drawn on an already deformed surface to allow
for further deformations. Deformations can, however, be placed independently or on top
of each other as required. Once the bump has been created and the surface is deformed,
the macro then re-intersects the deformed model, exporting the new coordinates of the

deformed sample points.

After deciding the location of the deformation, its size must then be optimized. The
design objective for this problem is as follows. After each bump is added, the coordinates
of the 15 points on each intersecting plane in the CAD model are exported. The following
code is run to determine the closest point in the point cloud data to each of the 15 points

on each intersection

Here, t(i) is the position of the point in CloudPts which is closest to intersection_pt(i,:)
and d(i) the corresponding distance which is taken to be the error objective function

which is minimized when optimizing the bump height.

The curvature of the bump, however, can only be found by minimizing a different ob-

jective, that of the sum of the errors on all points on all planes:
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Algorithm 1
for each intersection do
t = zeros(size(zi,1),1);
d = zeros(size(xi,1),1);
for i=1:15 do
produce a matrix yi consisting of tiled copies of intersection_pt(i,:) of the same
size as size(CloudPts,1);
find minimum distance between intersection_pt(i,:) and CloudPts;
[d(i),t(¢)] = min(sum((z-yi)?,2));
end for
end for

11 15
Suerror = » > d(i) (7.1)
j=1 i=1

First, with the height of the bump as the design variable with a constant curvature
ratio of 1, the optimization tool OPTIONS (Keane (2002)) is used to create a Design
of Experiments (DoE) of five points. The DoE points are prescribed at heights of
Om, 0.00125m, 0.0025m, 0.00375m and 0.005m if the error (d(7)) is positive and Om,
-0.00125m, -0.0025m, -0.00375m and -0.005m if d(i) < 0. This is followed by five update
points to find the optimum bump height. Second, a DoE of five points prescribed at fixed
optimal bump height and curvature ratios of 0, 0.25, 0.5, 0.75 and 1 is used, followed by
five update points. The model with optimum bump height and curvature is then saved.
The errors are analysed to determine whether the fit between the CAD model and the
real data is sufficient. This process is repeated adding more and more deformations until

this condition is satisfied.

An outline of the code used to determine the best intersection planes, the macro for
intersecting the Stage 1 geometry and the macro for creating deformations automatically

is provided in Appendix C.2.

The purpose of the Stage 2 geometry manipulation is to correct the error which is
inherent in the Stage 1 CAD model. This error is not due to the CAD engine itself but
due to the simplicity with which the initial geometry is described. Here, an increase in
the number of splines describing the Stage 1 geometry will not increase the number of
design variables and thus has no impact on the efficiency of the optimization process.
In this case, the greater the number of splines, the greater the complexity of the model.

Although no optimization occurs based upon these parameters, the purpose of this study
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is to create a parametric model whose parameters can easily be manipulated within an
efficient optimization study. For example, should an optimization study be performed
to maximize the degree of stenosis before surgical intervention becomes necessary for a
particular patient geometry, perhaps three parameters would be altered to change the
diameter of the artery at the position of the stenosis. A more complex geometry requires
more variables to implement the same change thereby reducing the optimization process’

efficiency and practicality.

7.2 Results

At the end of Stage 1, the set of parameter values for the new geometry are stored in
the design table. These are given in Table 7.2. By allowing an external design table
to control the changes to the CAD model, a number of different patient geometries can
be described automatically with this Stage 1 process, examples of which can be seen in

Appendix C.1.

Figure 7.10 illustrates the fit between the real artery, shown in orange, and the Stage
1 CAD geometry, shown in beige. The fit is good in that it captures the non-planarity
of the ICA and ECA, and the mild tortuosity experienced by the geometry downstream
of the bifurcation root. However, there are features on the real geometry, such as the
cavity seen at the root of the ECA which are not captured by the intersections. It is
features such as these that should be captured in Stage 2. If this is not the case, then
the resolution of the intersections performed at the start of Stage 2 must be refined to
allow for sharp contained bumps which may lie between intersections. If this does not
allow for appropriate deformations to capture the true features of the real artery, the
resolution of the initial Stage 1 zy-plane intersections must be refined to more accurately

describe the splines defining the initial Stage 1 geometry.

From Figure 7.10 it becomes apparent as to where the main error between these two
geometries lies. Clearly, the area of the bifurcation root is underestimated in the Stage
1 geometry. This is due to the small number of splines guiding the shape of the ICA
and the ECA. Ellipses were not fitted to the point cloud at intersections between the
origin and the divider point because it would be unusual for the shape to be close to an

ellipse in many cases. By providing sample points on an ellipse, the actual shape of this
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Parameters Value
A (m) 2.0318000e-02
B (deg) 3.1608137e+01
C (m) 4.0636000e-02

ECArootX (m)
ECArootY (m)
ICArootX (m)
ICArootY (m)
BifurcationRoot (m)
ECAcentX(m)
ECAcentY (m)
ICAcentX (m)
ICAcentY (m)
I (m)
Jexy) (m)

K(z) (m)
L centroid(x,y) (m)
Ly (m)
M centroid(x,y) (m)
R (m)
M, (m)
N (m)
O(x,y) (m)

O centroid
ECA diameter at exit

-3.8040000e-03
4.3480000e-03
9.4400000e-04
7.5000000e-04

-3.3760000e-03

-5.0975000e-03
4.4360000e-03
9.6195000e-03
5.3665000e-03
2.7100000e-02

(2.5000000e-04,-2.9845000e-03)
-1.1772254e-03,-1.1151984e-03
-3.4865246e-03,-1.8292081e-03
-3.4865246e-03,-4.1397919¢-03
-1.1772254e-03,-4.8538016e-03
-4.6374000e-02
(2.8300000e-04,-1.7240000e-03)
(-1.2496003e-03,3.8544335e-04)
(-3.7293997e-03,-4.2029231e-04)
(-3.7293997e-03,-3.0277077e-03)
(-1.2496003e-03,-3.8334434e-03)
-2.3187000e-02
(3.8025000e-03,3.6400000e-04)
5.7630000e-03/2
(9.7050000e-03, 4.6960000e-03)
3.3863333e-02
3.2380000e-03/2
6.89188e-03
(6.4900000e-04,-7.7650000e-04)
(-8.2061474e-05,8.3605701e-04)
(-1.8470000e-03,1.5040000e-03)
(-3.6119385e-03,8.3605701e-04)

AA/_\A
— — — —

(-4.3430000e-03,-7.7650000e-04 )
(-3.6119385e-03,-2.3890570e-03)
(-1.8470000e-03,-3.0570000e-03)
(-8.2061474e-05,-2.3890570e-03)
(-1.8470000e-03,-7.7650000e-04 )
3.1050000e-03

TABLE 7.2: Parameter values used in the design table for the Stage 1 model
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FIGURE 7.10: Difference in geometry between the patient artery (orange) and the
parametric CAD geometry (beige) after Stage 1 shown from four different angles (plane
3 and point 15 on plane 3 are also illustrated)

section of the artery surface could be grossly misjudged and result in an unnecessary

increase in parameters. Here, the surface is a loft between the splines guiding its shape.

As would be expected given the explanation above, the largest sum of point errors is
found initially on plane 3, with the highest square error at sample point 15 on this
plane, shown in Figure 7.10. A bump is created on the artery surface and the errors are
minimized to find the optimal height and curvature of the deformation for each bump. In
this study, six deformations are performed and the optimal bump height and curvature

values can be seen in Table 7.3.

The square errors at each point, interpolated over the surface of the artery, along with the
sum of the square errors on the intersecting planes for the initial geometry constructed
in Stage 1 are illustrated in Figure 7.11. Plane 3 has the largest error of 2.318x10~5m?
and the worst region on this plane is shown to be in red on the far side of the artery as

pictured and on the ICA side, at sample point 15. The optimization of Bump 1 applied
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TABLE 7.3: Table showing the optimal values of bump height and curvature for the
worst point found after Stage 1 and each subsequent bump

to the Stage 1 artery shows the reduction of this error in Figure 7.12. Here, the error
on plane 3 has been reduced, although it still remains the highest on this plane. The
highest point of error is now on the near ECA side of the artery on the same plane.
After the optimization of Bump 2, the results are seen in Figure 7.13. Figures 7.14-7.17
show the results after Bumps 3-6 respectively. With each new bump, the maximum sum
of square errors is reduced, as shown on the right hand side of each of these figures. The
percentage difference in the total sum of square errors after Stage 1 and after Bump 6 is
41%, the reduction after each bump of this error can be seen in Figure 7.18. The greatest
planar sum of square errors reduces from 2.318x107° after Stage 1, to 7.026x107%, a

percentage difference of 70%.

Although the error reductions are significant, the process comes to a halt after six
deformations. This is because the search for the next worst point, and therefore the
projected bump position, lies along the limit curve. As the limit curve itself cannot
be deformed, the process is concluded. This is a consequence of using CATIA V5 to
model the geometry rather than of the overall multi-stage approach. The limit curves
lie along the guiding splines defined with control points taken from the analysis of the
real artery data at a small number of intersections. To obtain a greater reduction in

error, the process would return to Stage 1 and intersect the point cloud data with a
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FIGURE 7.11: Square error between CAD and real geometry shown on the left along
with the sum of square errors on the intersecting xy-planes shown on the right, after
Stage 1

finer resolution and translate this into the Stage 1 geometry. The Stage 2 process could
then be repeated and more deformations may be allowed before the error falls along the
limit curve. As it is a comparison between the error between discrete points rather than

between surfaces, total accuracy or 100% reduction in error will never be achieved.

An outline of the macro construction for the automatic placing of deformations is given

in Appendix C.2.

7.2.1 CFD Comparison of Patient and CAD Carotid Artery Bifurca-
tion Model

To obtain an idea as to how the local manipulation of the artery surface in Stage 2
has improved the accuracy of the artery shape, the flow simulations through the Stage
1 CAD model and the Stage 2 CAD model can be compared with the original target

artery geometry.
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FIGURE 7.12: Square error between CAD and real geometry shown on the left along
with the sum of square errors on the intersecting xy-planes shown on the right, after
Bump 1

All models are meshed using a mesh model kindly provided by Dr Neil W. Bressloff
using a hex-core hybrid volume mesh with an interval size of 0.48mm. This was chosen
in light of the mesh dependency study performed by Bressloff et al. (2004). For this
study, this interval size generated a volume mesh containing approximately 65,000 cells.
An example of this mesh is shown in Figures 7.19 and 7.20, where the mesh is cut through
the yz-plane to reveal the hex-core. This mesh comprises structural hexahedral cells in
the centre of the artery and tetrahedral cells on the outer edges of the volume. The
interval size used is the length of each side of the cell in the hex-core. The tetrahedral
cells toward the edges of the volume have an interval size of this and smaller. Using this

interval size, the boundary layer along the artery wall will be captured.

The flexibility of the artery walls are neglected in the following studies. The entry to
the artery birfurcation is set as a user-defined velocity inlet and the exits of the artery

through the ICA and ECA are set as outflows.

The pulsatile velocity inflow waveform, set as the boundary condition at the CCA inlet, is
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FIGURE 7.13: Square error between CAD and real geometry shown on the left along
with the sum of square errors on the intersecting xy-planes shown on the right, after
Bump 2

shown in Figure 7.21. This inlet velocity profile is based on the pulse used by Holdsworth
et al. (1999) and has a time-averaged Reynolds number of Re = 271. The density of
blood is assumed to be pyooq = 1035kgm 3, the viscosity is n = 0.0035kgm~'s, the CCA
diameter at the inlet is doca = 0.008m and the mass flow split between the ECA and the
ICA is of the ratio 30:70. As the peak Reynolds number falls below the critical value of
approximately 2300 for steady fully developed pipe flow, laminar flow through the artery
is assumed. Steady solves have been performed for a carotid artery bifurcation (Bressloff
et al., 2004) and although these solves capture to a mild extent the recirculatory flow

inside the ICA sinus bulb, an unsteady solve captures this recirculatory region more

accurately.

Hence, all cases are solved using an unsteady non-Newtonian pulsatile flow coupled
with the Pressure-Implicit with Splitting of Operators (PISO) pressure-velocity coupling
scheme. A time step of 0.0001s is employed and thus 9170 time steps were required

to simulate one complete pulse at the inflow. The full details of this are outlined in

Appendix C.3.
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FIGURE 7.14: Square error between CAD and real geometry shown on the left along
with the sum of square errors on the intersecting xy-planes shown on the right, after
Bump 3

Two metrics are considered for comparison. First,

wa = /S dA_ (7.2)

where w4 is the area of the negative wall shear stress, dA_ is the area vector of a cell
for all values of negative time-averaged shear stress 7(Pa) and S represents the artery

inner wall surface. And second,

|22 7i(7-)id Aq])
Zi 7idA;

7=

(7.3)

integrated across all wall mesh faces with incremental area dA;, where for the ith element

S lmul(-1y

(7-)i N (7.4)
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FIGURE 7.15: Square error between CAD and real geometry shown on the left along
with the sum of square errors on the intersecting xy-planes shown on the right, after
Bump 4

signifies the average value of the wall shear stress magnitude, |7,,|, across N time steps.
If the y-component of |7,,| is negative, j = 1, and if the y-component of |7,,| is positive,

j = 0. Furthermore, ~; is defined as

1 if (7_'_)2' <0

0 otherwise

Tw 18 the wall shear stress defined by

ou
on’

o>

Tw =1 (7.6)

where v is the blood velocity, 7 the blood viscosity and f, t normal and tangential unit
vectors on the inner artery wall respectively.

The comparison of results from the CFD simulations can be seen in Table 7.4. The

area of negative shear regions, w4, has improved from a 53% difference between the
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FIGURE 7.16: Square error between CAD and real geometry shown on the left along
with the sum of square errors on the intersecting xy-planes shown on the right, after

Bump 5
wa (m?) | 7 (Pa)
After Stage 1 71.95 3.41
After Bump 6 of Stage 2 | 123.96 7.85
Real 153.69 7.20

TABLE 7.4: Comparison of w4 and 7 values after the CFD simulations through the
artery after Stage 1, Stage 2 and the real geometry

Stage 1 geometry and the real geometry to a 19% difference between the final Stage 2
geometry after 6 bumps and the real geometry. Meanwhile 7, indicating the extent of
the recirculation region averaged over one pulse, has improved from a 52% difference to
a 9% difference after Bump 6 of Stage 2. Contour plots of the time-averaged wall shear
stress, 7, for each of the Stage 1, Stage 2 after Bump 6 and real geometries can be seen

in Figures 7.22, 7.23 and 7.24 respectively.

To show the negative regions of 7, a magnification of the bifurcation region shows the
improvement of the match between the CAD geometries after Stage 1 and after Stage
2 in Figures 7.25 and 7.26 respectively, and the real geometry, in Figure 7.27. For the

geometry after Stage 2, the negative wall shear stress experienced is much more similar to
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Bump 6
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FIGURE 7.18: Progression of the total error after each bump
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F1GURE 7.19: Slice of ~ 65000 cell mesh, cut through the yz-plane to reveal the hex
core

F1GURE 7.20: Slice of ~ 65000 cell mesh, cut through the zy-plane to reveal the hex
core
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FIGURE 7.21: Velocity inflow waveform at inlet to the CCA to simulate human pulsatile
blood flow
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FIGURE 7.22: 7 shown on the CAD geometry after Stage 1
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FIGURE 7.23: 7 shown on the CAD geometry after Stage 2
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FIGURE 7.24: 7 shown on the real artery geometry
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FIGURE 7.25: 7 < 0 shown on the CAD geometry after Stage 1
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FIGURE 7.26: 7 < 0 shown on the CAD geometry after Stage 2

that of the real geometry than the region of negative wall shear stress experienced by the
smooth idealised CAD model after Stage 1. Although not exact, due to the limitations
of the CAD engine requiring the designer to keep the limit curve fixed throughout Stage
2, it is a much more accurate representation of a parametric artery in comparison to the

idealised parametric carotid artery bifurcation models available in the field to date.
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FIGURE 7.27: 7 < 0 shown on the real artery geometry

7.3 Summary

In this chapter the AMSSOD process has been implemented to provide a patient-realistic
parametric representation of the human carotid bifurcation. It has shown to be beneficial
and to work effectively given a suitable problem. An initial parametric geometry was
constructed with diameter values, branch angles and values describing the non-planarity
and tortuosity taken from an automated analysis of real artery data. This geometry
served as the Stage 1 geometry. From here, the error between this initial CAD geometry
and the real artery geometry was calculated. Deformations to the surface were made
in order to improve the accuracy of the CAD model at the regions of greatest error.
In total, six deformations in Stage 2 were performed and a significant improvement in
accuracy has been highlighted both in terms of geometrical error and with respect to

CFD results for the parametric model compared to the target artery data.



Chapter 8

Discussion and Conclusion

In modern engineering design search and optimization, geometry parameterization plays
a key role in determining the design capability of the optimization process, and has a
significant impact on computational efficiency. Early primitive forms of optimization
processes were developed for the aerospace industry by Orville and Wilbur Wright. The
improvements to the design of their aeroplane based upon experimental testing led to
the first powered flight at Kitty Hawk in December 1903. In terms of internal fluid flow
applications, curve contouring techniques were put in place to begin the improvement
of diffuser efficiency in the early 1900s, but these relied on analytical flow solutions
(Patterson, 1938). With the invention and widespread uptake of digital computers,
various parametric techniques to efficiently define aerodynamic bodies for optimization
were developed; for example, Hicks and Henne presented a method based on surface
patches in 1978. Providing an efficient optimization process through parametric design
soon caught on and has provided a field of research that has grown enormously to the
present day and can now be seen across many diverse engineering communities (Siddall,

1982).

Despite the plethora of research into parameterization methods, the most appropriate
construction of a parametric geometry to allow for efficient optimization studies has
proved to be an enigma for many internal fluid flow applications. The intention of the
research documented in this thesis has been to investigate techniques which provide a
large amount of freedom to generate radical shapes for a particular internal flow topology

while retaining an efficient optimization process. All research has been performed within
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commercially available software using practicable computational resources in order to
offer industries a realistic solution. This has led to a general-purpose process comprising
a multi-stage parameterization and optimization framework, providing the ability to
perform strong shape control in tandem with an efficient convergence to an optimal
design. The remainder of this chapter summarizes the progress of the research presented
in this thesis, highlighting the contributions to the field that this research has made and
relating any shortcomings. Areas of further work highlighted by this thesis are also

discussed.

8.1 Hitherto...

The research presented in this thesis has, at its core, the use of commercial software tools.
It aims to confirm the practicalities of using commercial software in the engineering
field and to develop its uses further in design optimization. Optimization frameworks
embedded in automated architectures are commonly used for engineering problems. An
outline of the GEODISE automated architecture used throughout this thesis is described
in Chapter 2, followed by a description of a typical optimization process. A study of
curve parametrization techniques is undertaken as these, more often than not, provide
the building blocks for almost all parametric geometry constructions across the industry.
Design of Experiment approaches, CFD theory and an introduction to optimization using
response surface methodology and convergence to an optimal design using concentrated
exploration in a reduced area of the design space for high-dimensional problems are

described.

Chapter 3 provides a detailed mathematical description of the response surface modelling
approach of Kriging. Kriging is chosen for all optimization studies presented in this thesis
due to its versatility in representing complex objective function landscapes. For many
internal fluid flow applications, the objective function landscape is not known and so a
global optimizer which has the ability to cope with a highly non-linear objective function
is favourable. One shortcoming of this method is that Kriging is only workable if the
design variable count is low, typically fewer than 20. Compute resources required to build
the response surface for problems with greater dimensionality increase substantially,

often beyond the compute resources available in a typical industrial environment.



Chapter 8 Discussion and Conclusion 157

The optimization process is first implemented by testing several parameterization tech-
niques on a straight diffuser and an elbow. This study generated an understanding of the
type of optimal designs that materialised for expanding flow and for flow turning through
a bend. Although the best designs produced from each individual study presented very
similar geometric features, it is clear that a range of parameterization techniques pro-
vided good designs with varying design variables. Chapter 4 highlighted the importance
of the parameterization technique implemented and its impact on the resulting designs
produced. A key factor of any parameterization method is whether it is allowed the free-
dom to produce a wide variety of geometrical shapes. Significant freedom in this sense
suggests the ability to perform strong shape control. A parameterization approach that
possesses this ability will be able to produce intuitive shapes and also radical shapes,
resulting in a potentially superior objective function value. From the insight gained with
these studies, a parametric geometry of a two-dimensional F1 airbox was constructed
and optimized with respect to its performance. Radical shapes were produced with high
performance values, indicating that the chosen parameterization technique offers strong

shape control.

From this, a progression into three-dimensional studies required a parameterization tech-
nique capable of producing radical shapes akin to those seen in Chapter 4. As the geom-
etry construction is performed using a commercial CAD package, surface representation
must be understood before a survey of surface manipulation techniques is undertaken.
Chapter 5 reviews a variety of surface manipulation techniques that may be used in
automated optimization processes. Each approach is considered in terms of whether
it controls the shape manipulation in a global or a local sense. The idea of providing
a multi-stage parameterization technique that can perform both global and then local
surface manipulations, optimizing the geometry as a whole, is deemed advantageous so
that fine-tuned and perhaps asymmetrical designs can be produced via an optimization
process using only a small set of design parameters. Polynomial splines are chosen for
the global manipulation approach and three-dimensional Hicks-Henne bump functions
are chosen for local surface manipulation. These two approaches are combined together
to form a general-purpose automated multi-stage parameterization and optimization
framework. In Chapter 5, this automated multi-stage shape optimization with defor-

mation (AMSSOD) process is outlined, and this approach was used in the subsequent
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optimization studies.

In Chapter 6, the AMSSOD process was performed on a three-dimensional F1 airbox.
Stage 1 was carried out effectively and a parametric geometry was constructed using
polynomial splines. To test the realistic nature of the flow conditions, the geometry in
Stage 1 was optimized with two different flow conditions at the airbox inlet. Stage 2 was
implemented starting with the best geometry found after the Stage 1 optimization. The
pressure recovery of the best geometry found in Stage 1 could not be improved upon
during the Stage 2 process indicating that the geometry found in Stage 1 was a near op-
timal design. Simplifying the Stage 1 parameterization to reduce the shape control may
allow the Stage 2 process to work to its best ability in finding an optimal design through
local deformation. The Stage 2 process was further tested on a non-optimal geometry
from Stage 1 and, after this Stage 2 process, a design with deformation was produced
returning an improved pressure recovery. From this study, it was also concluded that
for internal fluid flow applications where the best location of a deformation is unknown,
the Stage 2 process should focus on optimizing the deformation position, height and
curvature in a reduced area of the design space around a favourable area chosen from

the initial Stage 2 DoE.

Following this, a completely different application was chosen to illustrate the generic
capability of the AMSSOD process: the human carotid artery bifurcation. In this case,
one of the criticisms of computational research in this field is the idealised nature of
parametrically defined computational arteries used in which many of the important
geometrical details are not captured. Here, instead of optimizing the arterial shape for
a performance metric, the error between a parametric CAD model and a real artery
geometry was minimized using the AMSSOD process to provide a realistic parametric
artery which may be used for further research. The Stage 1 geometry was found via an
automated analysis of real artery data to extract key geometrical features. Stage 2 then
deformed the artery in the regions of highest error, the majority of which were found in
the region of the lofts between the guiding splines defining the ICA and the ECA in the
bifurcation root. This process worked effectively for six deformations of the CAD artery
model. A limitation of the specific CAD tool being used was deemed responsible in not
allowing the arbitrary placement of deformation limit curves once the surface has already

been deformed. Thus, the Stage 2 process came to a halt as the regions of highest error
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lay along this limit curve. The Stage 2 process, however, reduced the error significantly.
The improvement was demonstrated by running CFD studies on the geometry produced
after each of the two stages, comparing the results with the real artery flow simulation.
A dramatic reduction in the difference between the time-averaged negative wall shear
stresses was seen as well as a reduction in the difference between the area of the negative
wall shear stress, indicating that this process has been successful. The AMSSOD process
has been shown to allow complex objects to be parameterized with only a small number
of design variables, and can be used with many more optimization studies performed on

internal fluid flow applications.

In summary, the main contribution that this thesis makes is in the development of a
multi-stage parameterization process utilising a geometric tool for local surface defor-

mation for use in the optimization of 3D shape applications.

Additionally, the work of this thesis has:

e provided an in-depth analysis of parameterization techniques for two-dimensional

and three-dimensional shape optimization studies;

e highlighted the current capabilities and limitations for local parametric deforma-

tions available in commercial CAD software packages;

e investigated the use of curve parameterization techniques to provide a novel ge-

ometry parameterization for the design optimization of a 2D airbox;

e developed an automated multi-stage process for use in design optimization studies
that works wholly within existing commercial CAD software, facilitating the file

exportation for meshing and CFD analysis;

e demonstrated the capability of the multi-stage parameterization process by devel-
oping a parametric model of a 3D F1 airbox, the successful design optimization of

which resulted in an improvement in pressure recovery;

e demonstrated the versatility of the multi-stage parameterization process by de-
veloping a parametric model of a 3D human carotid bifurcation geometry. The
effective use of this parametric model followed by local surface deformations al-
lowed for a successful shape optimization, improving the match between a CAD

produced model and a real carotid artery bifurcation.
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8.2 Thereafter

Although the multi-stage shape optimization tool has been shown to provide a powerful
means to facilitate the optimization of global geometric shape followed by local geometric
shape in two optimization studies, the current deficiencies of the CAD engine in relation
to the local deformations of surface geometries has restrained the ability to repeatedly
apply patches as desired. Therefore, a further investigation into arbitrarily placed limit
curves on already deformed geometries could lead to a significant improvement in the

results of Stage 2 in the AMSSOD framework.

A simpler Stage 1 parameterization of the three-dimensional F1 airbox discussed in
Chapter 6 could lead to an improved performance of the Stage 2 process, where the

Stage 2 search is in an area of one favourable deformation location only.

Further to the artery problem studied in Chapter 7, a repeatable process through Stage
1 to sample real artery data at more locations, to increase the number of control points
along the splines which define the ICA and ECA, may reduce the error further. The
Stage 2 process can then be repeated to provide the correction of the lofting between

these guiding splines as previously demonstrated.

Directly following this work, the results presented in Chapter 7 may help to identify
patients for whom treatment through interventional medicine is likely to be favourable.
Metrics can be developed to further understand the role of elevated shear stress regions
and reversed flow in connection with arterial disease sites in a large number of different

geometries and corresponding haemodynamic environments.

It is likely that a parametric study, using the technique for geometry construction illus-
trated in Chapter 7, would be beneficial in exploring the impact of surgical intervention,
as well as attempting to further understand the effects of geometrical differences. One
example of this is the question of how the geometrical difference between normal arteries

and arteries of certain diabetic patients affects the pre-disposition of lower leg iscaemia.

Furthermore, the parametric definition of patient specific arteries could be used to re-
search the effect of applying anastomosis to a diseased artery. Although stent insertion is
a popular form of treatment of the carotid artery and other arteries particularly around

the heart, anastomosis or bypassing of the artery is also common. Providing research
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on the haemodynamic effects of a bypass would benefit surgeons in helping to optimize

the benefit of treatment.



Appendix A

Kriging Theory

Kriging is what is known by statisticians as a Gaussian stochastic process (Doob, 1934).
The word ‘stochastic’ is of Greek origin meaning “pertaining to chance” and is syn-
onymous with ‘random’. A stochastic process can then be defined as a process to
approximate unsampled points using random variables (Wolfram, 2002), in this case
corresponding to the set of responses. This approximation is defined by a response

surface model.

Kriging, named after its inventor Krige (1951), is a technique first developed for use in
geology. Its original purpose was to use prior knowledge about the spatial distribution
of a mineral within a given sample space to predict the level of mineral concentration at

unsampled points.

What follows are the mathematical derivations of three different types of updating the
RSM; the first updates the RSM at an unsampled points where the maximum likelihood
of the predicted objective function value is highest (section A.1), the second updates the
RSM at an unsampled point where the error of the prediction is highest (section A.2),
and the third updates the RSM at an unsampled point where the expectation of the

improvement of the objective function is highest (section A.3).
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A.1 Maximum Likelihood

A vector of n initial sample points is found using a Design of Experiments. A sample
at an untried point x* is then needed at which the objective function value or response
y(x*) = f(x*), where f is the objective function is uncertain. This uncertainty can
be represented by associating y(x*) with a Normal distribution N(p,c?). Before the
analysis code is called and the untried x* sampled, the relation of the untried point to
the n previously sampled points is considered. Assuming continuity of f, the difference
between the responses y(x;) and y(x;) will be small if the distance between x; and x;
is small. This has a statistical interpretation being that y(x;) and y(x;) are highly

correlated if ||x; — x;|| is small. This correlation is expressed as

k
R(x;,x;) = exp (— Z 01| zis — :Ejs|ps) , (A1)
s=1

satisfying R = 1 if x; = x;.

The correlation matrix is a square n X n matrix R in the form

1 R(x1,x2) -+ R(x1,%xy)
R(x9,x 1 R(x2,xp
ro | o) - Ao | "
R(xn, X1) 1
To summarize, for any random variable Y = {Y (x1),...,Y (x,)}", Y has a mean of 1

and a covariance Cov(Y) = ¢?R. Y now depends on the parameters u, o2, fs and ps
(s =1,...,k). To estimate the values of u, o2, 5 and ps values for these parameters

are chosen which will maximize the likelihood of the responses.

Suppose there are a set of responses

Y1

Yn



Appendix A Kriging Theory 164

then the likelihood can be defined as the hypothetical probability that an event which
has already occurred would yield a specific outcome (Fisher, 1912, 1921, 1922; Edwards,
1997). Each y; (i = 1,...,n) has a probability density function

2
pdf(y; V) = - 127T exp <—%> , (A.4)

where the vector V contains the two unknown parameters p and 2. The likelihood, L,

may therefore be written as

and assuming the y;s are independent,

n

— 1 o (y_lu)TRfl(y_lp/)
T oFentdart O ( 207 ). (A.5)

In practice, however, it is more convenient to choose the parameters to maximize the

log-likelihood function In L(V) where

(y 1) "R (y — 1p)
202

1
InL(V) = —g log(o?) — 3 log(|R|) — + constant terms. (A.6)
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The maximum likelihood estimators fi and 62 of the respective parameters ;o and o are
those functions of y1,...,y, which maximize the log-likelihood function. Mathemati-

cally, V = V(yl, ..., Yn) is such that
L(V) =sup L(V) for all responses y. (A.7)
A\

Usually the maximum occurs at a unique point in the parameter space and does not lie

on the boundary. Then

=0, i=12, (A.8)

is solved where V; = p and Vo = o2. Tt must also be assumed that the domain in which

pdf is non-zero does not depend on either u or o?.

Hence, the maximum likelihood estimators /1 and 62 can be derived as follows:

OnL(V)) _,_ 'Ry —1p)
ou - 202

= 1R 'y-1"R'14=0

N o 1"R 'y

p=SPITRT1
~_1TR7y
A= JrR11 (A.9)

OWL(V)) _ n  (y-In'R(y—1p
002 202 204
— 1) "R (y -1
I D) y—1p) _

o2
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= "= L 4 . (A.10)

By substituting equations A.9 and A.10 into equation A.6 the concentrated log-likelihood

function

1
CLLF = —g log(62) — 3 log(|R|) + constant terms. (A.11)

is obtained. This concentrated log-likelihood function can be maximized to find the
estimators and 0, and p, (s =1,...,k) by equating the derivative of equation A.11 with
respect to 6, to zero and similarly equating the derivative of equation A.11 with respect
to ps to zero. These estimates can then be used to compute R and subsequently, to

compute the values of i and 6.

To arrive at a prediction for the objective function at some untried point x* an objective
function value is estimated and augmented to the initial n-dimensional data set. It is
ascertained, in the following steps, how consistent the guestimated value of the objective
function at the untried point is with the already observed pattern of variation between
data points and their responses. An intuitive predictor of y* = y(x*) would be the value

which maximizes the augmented log-likelihood function.

Let ¥ = (y7 yni1(x*))T be the augmented (n + 1)-dimensional vector of responses and

r be the vector of correlations

r= : . (A.12)

R = , (A.13)
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and the augmented log-likelihood function becomes

(¥ — 1) "Ry — 1/1)

L(y*) - - 202

+ terms independent of y* (A.14)

il
= + terms independent of y*.  (A.15)

Using Theil’s partitioned inverse formula

-1 RT'+RIr(1 —r'R7r)" "R | —R7Ir(1 TR Ir)!

—(1-r"R7 )" IrTR! | (1—r"R71r)7!
(A.16)

The augmented log-likelihood therefore becomes

€\ -1 *  AN2 rTR’_l(y B 1:&) * A . *
L(y*) = [2(;2(1 - rTR—lr)] (y* =)+ [&2(1 — TR Iy) (y*—f1)+terms independent of y*.
(A.17)
By taking the derivative with respect to y* and equating to zero
—1 PANE 'R (y — 1j1)
- *— =0. Al
[02(1 — rTR-1r) (" =) [&2(1 —rTR-r) 0 (4.18)

Solving this for y* then gives the Kriging predictor

j(x) = i+ "Ry — 1), (A.19)
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A.2 Prediction Error — A Gaussian Approach

In this section, the mean square prediction error for an interpolating model is derived
fully from first principles. The adjustment made for a regressing model is shown in

Section 3.2.1.4.

Given a set of designs S = {s1,..., s,} and data (responses) ys = {y(s1),...,y(sn)} one
can consider the linear predictor 7(x) = c(x)Ty; of y(x) at a arbitrary untried x. For

an interpolating model the correlation matrix is defined by

1 R(x1,x2) -+ R(x1,%xy)
R(x9,x 1 R(x2,xp
r_| ™ ’ 2 _ ( ’ s (A.20)
R(xp,x1) 1

Replace y;s by corresponding random quantity Y = {Y(s1),...,Y (sn)}’. Treat §(x)
as random and compute the mean square error (MSE) of the predictor averaged over a
random process. The best linear unbiased predictor (BLUP) is obtained by choosing an

n X 1 vector ¢(x) to minimize the MSE.

Let
fx1)
X
F— f('2) 7 (A.21)
f(xn)
and let r, = [R(x1,X), ..., R(xy,x)]" for untried x as described earlier. The stochastic
model can be written as
Y=Fu+z (A.22)
where z = (Z(x1),...,Z(x,))? is the error function in the stochastic process and y is

the mean of the observed responses.
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Also define A = (Ay,..., A,41) so that the linear combinations Y and Z can be defined
by Y =3, AY(x;) and Z = Y, A;Z(x;) where each A; represents a weight. Define
fT = Zz Aifz, and T = Zz Airy,.

Then, for any linear predictor ¢(x)7Y of Y (x), the MSE of the predictor is:

MSE = E(c(x)TY - ¥(x))”
= Flc(x)TYYTe(x) 4+ Y(x)? — 2c(x)TYY (x)]
E[c(x)"(Fu+2)(Fu+2)Tc(x) + (fu+ 2)* = 2c(x)" (Fu+2)(fr + Z(x))]
= c(®)"Fpuc(x)"'Fu —2¢(x)"Fufu+ fufp+ cov(c(x)"Y,c(x)"Y)
+eov(Y,Y) — 2cov(c(x)TY,Y)
= (c(x)TFpu— fTu)? + c(x)T6°Re(x) + ATRAG? — 2¢(x)T6%r

— 52 [ATRA + c(X)TRC(X) — 2C(X)Tf] )
(A.23)

(following the proof given by Schonlau (1997) for the error estimation of a linear com-
bination of Y;’s), subject to the constraint F7c(x) = f, which itself follows from

Ec(x)TY)=cx)'Fuand E(Y(x)) = fTuV p.

In this case, however, the focus is on one Y; rather than a linear combination and hence

ATRA =1, f=f,and T =r,.

Now let us introduce Lagrange multipliers for the unbiased constraint equation F7¢(x) =

().

LEMMA: To minimize a function ¢(x) subject to a constraint 1)(x) = constant, one
looks for the solutions of Vi(x) = A(x) where V is the gradient with respect to the

variable chosen to minimize ¢(x).

In this case

p(x) =6%[1+ c(x)TRe(x) — 2c(x)Trx] (A.24)

and
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$(x) = Fle(x) = fo (A.25)
For V = =2 the equation Vi(x) = \i)(x) becomes

Oc(x)’

6*Re(x) — 6%r, = AF (A.26)

*Re(x) — 6%r, — \F =0, (A.27)

which together with the constraints there are a system of equations:

5’Re(x) — A\F = &%r,

(A.28)
Fle(x) = fo.
Hence the BLUP must satisfy
FT -\ v
= f (A.29)
F R c(x) 52,
Recall, the BLUP
§(x) = c(x)"ys. (A.30)
Now, c¢(x)Ty, can be written as
T - —1 T
- 0 0 F x 0
c(x)"ys = = / . (A31)
C(X) ys F R ry ys

by subsituting appropriately from equation A.29.
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The inverse partition matrix formula is now derived to solve equation A.31.

As R is symmetric, then

-1

0 FT a AT
= , (A.32)
F R v T
for some o € R, v € R and symmetric T' € R"*™ where R € R™*".
The relation
0 FT a 7
=1y (A.33)
F R ~ T
yields
ATF =1, (A.34)
oFT +yTR =0, (A.35)
AFT + TR = I,. (A.36)
Equation A.35 implies
v = —aR7F, (A.37)
and substituting this into equation A.34 one obtains
1
Substituting A.38 into A.37, one finds
R™'F
v (A.39)

T~ FIRIF
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Finally, it follows from A.36 that

R 'FFTR!
Fr={I;—vFHR'"=R'-——— A4
Therefore,
. FT _1 _(FTR—IF)—I ’ (R—IF(FTR—IF)—I)T
F R
R'FF'R'F)"! | R -RI'FEFR'F)'FIR!
(A.41)
and so,
T -1
0 F 0
g(x) = (fi.r1)
F R Vs
_ o FR7y, TR (y _FFTR_lys
T FTR-IF ® FTR-IF
= feli+r R (ys — F1). (A.42)

In Kriging, F = 1 and f, = 1 and it can be seen that by substitution into A.42 the
Kriging predictor 3.16 is obtained.

Upon substituting F = 1 and f, = 1 into equation A.28 and substituting into equation

A.23 given that ATRA =1,

MSE =6*1+c"Re — 2cTr,] = 62[1 + cF(r, + A1) — 2¢Tr,]

=621 —clry] + A
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Now

A
= 6214+ c"Re—2c"r,] =62 |1-(1 )| ,
c
hence the mean square error A.23 becomes
T -1
0 1 1
MSE =6% |1— (1 rl) (A.43)
1 R ry

Using equation A.41 with F =1,

-1

1 R Iy

= (-1"R ')+ "RMIATR) Y

I(RTMIATR 1) HT + "R - TR (1TR11)"11TRY)

ry

= —11TR'1) 1 +TRMI(ATR)H
HFIRTMI(AITR1M) e+ "Ry —rTRIIATR 1) " 11TR Iy

TR-1 —1\T TR-111TR-1
_ TRy 11 +rR 11+1(R )'r rRTII'R r (A.44)
1TR-11 1TR-11 1TR-11 1TR-11
Thus
-1
0 17 1

1 R Iy
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11-r"R111 - 1r"TR M1 + TR 111TR 1p

_ Tp-—1
=1-rR 'r+ ITR-11
TRy 1-r"R°M -r"RM14+r"RM11TR 1)
—or T 1TR-11
T —-11\2
o Tp-1., I-r'R71)
=1-rR r+ TR 1 (A.45)
The MSE is
T -1
01 1 1— TR—ll 2
61— (1 rl) —o? 1R LTI RO
1 R T, 1TR-11
(A.46)

For further details see Cressie (1993).

A.3 Expected Improvement

A more sophisticated and most robust form of response surface, in terms of the con-
vergence to a global optimum, is that of the expected improvement. This involves the
computation of how much improvement one can expect to achieve when sampled at an
untried point. Let the random variable Y (x) = (Y (x1),...,Y (x,))" ~ N (4(x), s*(x))
where § is the kriging predictor as defined in equation A.19 and s? is the mean square

error without the regression term as defined in equation A.46.

Let us assume that one wishes to find an optimum minimum solution to the objective
function and the current best objective function value is f;,;,. An improvement of I will
be achieved if I = fp,;, — Y (x) > 0. The probability density function of achieving this

improvement is given by

T —(x 2
pdf(Y (x), 5(x)) = \/ﬂ%(x)exp i 23{}();’( ) (A.47)
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The expectation of I can be defined as
I=0c0
E(I(Y)) = / I(Y) pdf(Y,g) dI (A.48)
=0
So,
I=00 N 2
1 min I—
E(I) = / I {7exp [— & Qy(x)) ]}dl. (A.49)
1=0 V27s(x) 25(x)
Let us make a change of variables
Y-y min J
At R 1 | (A.50)
S S
which implies that s dZ = dY.
It is known that Y = fi;n — I so
I=foin—"Y=su+9§—-Y =su—sZ=s(u—2). (A.51)
As there would be a negative improvement value if Z > u,
slu—2) , Z<u
I (A.52)

Now,

E(I) = / I(Y)pdf(Y) dY = / [(Z)pdf(Z) s dZ

—00
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su 2 S 20"
= E(I) e™% 24z + [—_ e~ %72

B \/%_ 27 oo
= BE(l)=s u\/%_ﬂ_ / 22 47 4 \/%_w o2 (A.53)
S B(I) = s (u cdi(u) + pdf(u), (A.54)

where cdf(u) is the standard normal cumulative distribution function and pdf(u) is the

standard normal probability density function.

When finding an optimum maximum solution to the problem with the current best
objective function value as fy,q4:, an improvement I will be achieved if Y = I — fi00.

Equation A.54 is achieved but in this case with v = (§ — fiaz)/5-
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3D Airbox Analysis Setup

B.1 Mesh Generation

B.1.1 Internal Airbox

For the design optimization process to run entirely automatically, the CAD geome-
try must be imported into a meshing tool using an executable script, in these studies
GAMBIT™ (Fluent™, 2003a) is used. The majority of meshing tools available com-
mercially run in batch mode via reading a journal file. The set up of this journal file is
important as, more often than not, one is faced with compatibility issues between the

output file from the CAD engine and the meshing software.

The geometry created by CATIA for the internal walls of the 3D airbox can be seen
in Figure B.1. The front section of the trumpet tray has been hidden to illustrate the

location of the cylinders.

B.1.2 External Flow around Airbox

To date, the representation of the airbox has been based solely on its internal flow
given a fixed uniform mass flow rate at the inlet. However, the flow simulation must
be realistic enough to draw conclusions about the geometry manipulation. To do this
an airbox positioned at the centre of a large box is tested and the flow external to the
airbox is simulated as well as the internal flow. This requires a thick-surfaced geometry

177
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Ficure B.1: CATIA baseline geometry of walls of internal airbox without the front
trumpet tray section to illustrate the position of the cylinders

FiGUure B.2: CATIA geometry of thick-surfaced airbox with the front trumpet tray
section hidden to illustrate the location of the cylinders

to allow the boundary layer development entering the airbox around the inlet lip to
be captured, rather than a prescribed boundary condition of a uniform mass flow rate.
The thick-surfaced baseline geometry can be seen in Figure B.2. Only one simulation to
capture the developed inlet profile is required and the mesh can be constructed manually

if necessary.

An illustration of the mesh generated can be seen in Figure B.3. This includes a close
up view of how the mesh is treated at the inlet lip faces to ensure an accurate represen-
tation of the stagnation points, which occur at the inlet, along with the boundary layer

development into the internal part of the airbox.
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FIGURE B.3: Unstructured mesh of a thick surfaced 3D airbox
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Ficure B.4: CATIA geometry of thick-lipped airbox with the front trumpet tray
section hidden to illustrate the location of the cylinders

B.1.3 Reduced External Flow around Airbox

Ideally, all simulations performed should include the external box for a realistic solution.
However, this is considered far too expensive for a design study with a few hundred runs.
The addition of the external box described in the previous section adds approximately
one and a half million cells to the mesh count. An alternative option is to draw a
much smaller box around just the inlet of the airbox to simulate the boundary layer
development provided by the thick surface around the airbox inlet lip. The geometry
produced by CATTA is now designed to have a fixed inlet lip with the inlet of the internal
airbox in the same position as for the internal airbox case. This allows the geometry to
change freely with the change of design parameter values without affecting the lip. Such

a geometry can be seen in figure B.4 with a lip thickness of 15mm.

The mesh to simulate a smaller airbox can be constructed automatically. An illustration

of the mesh generated is seen in Figure B.5.
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FIGURE B.5: Unstructured mesh of a thick surfaced 3D airbox
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B.2 Flow Simulation

To run a flow simulation automatically, a journal file is read into Fluent in a similar way

to that of the meshing journal described above.

B.2.1 Internal Airbox Simulation with Uniform Inlet Profile

An annotated and abridged journal file for the internal airbox flow simulation with a
fixed uniform mass flow rate at the inlet is given below. In all cases, the mesh file is first
loaded into the serial solver Fluent. Here, the grid domain is reordered and the domain
partitioned appropriately given the number of parallel processors to be used. This is

then written out as a case (.cas) file.

The case file is then read in by the parallel Fluent solver and the boundary conditions

set as follows:

file read-case "filename.cas"

define models viscous ke-standard y

define boundary-conditions mass-flow-inlet , y 0.5894 n 1 1 n 0y yyn1nOnOnnny
5 0.41

define boundary-conditions pressure-outlet , n Onnynny55n

define boundary-conditions fluid fluid.3 nnny 000001nnyni1O0O00O01O0mn 75000000
n 75000000 n 75000000 n 1000 n 1000 n 1000 0 O n 1

1 with the turbulence

This means that the inlet mass flow rate is set at 0.5894kgs™
specification method as intensity of 5% and a hydraulic diameter of 0.41m. The pressure
outlet condition also specifies the turbulence specification method with an intensity of 5%
and a hydraulic diameter of 5m. The boundary conditions set for the porous zone acting

as the engine filter, fluid.3, has a viscous resistance of 75000000m~2 in all directions and

an inertial resistance of 1000m~—! in all directions.

Under-relaxation factors are set and the solution is iterated with first order upwind:

solve set under-relaxation pressure 0.6 mom 0.7
solve initialize initialize-flow

solve iterate 1500
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The turbulence model is now changed to the ke-realizable with non-equilibrium wall func-
tions enabled. The pressure velocity coupling is changed from SIMPLE to SIMPLEC,
the under-relaxation factors raised and the upwind scheme for momentum changed to
second order:

define models viscous ke-realizable y near-wall-treatment

non-equilibrium-wall-fn y

solve set p-v-coupling 21

solve set under-relaxation pressure=0.8 mom=0.8

solve set discretization-scheme mom 1

solve iterate 2000

Finally the upwind schemes for the turbulent kinetic energy and dissipation rate are
both changed to second order:

solve set discretization-scheme k 1 epsilon 1

solve iterate 1500

The case and data files are then written out in compressed form:

file write-case-data "filename.cas.gz"

B.2.2 Simulation Including Complete External Domain

The journal file for the flow simulation including the external flow around the airbox is

similar and is as follows.

Read in appropriately reordered and partitioned .cas file. Initially define the turbulence
model to be the standard ke model. Define the velocity boundary conditions as follows:

define boundary-conditions velocity-inlet velocity_inlet.l1 nny yn 50 ynny 3 10

define boundary-conditions velocity-inlet velocity_inlet.2 nny yn -9y nnyb55

This means that the front face of the external box has a velocity set to 50ms™" in the X
direction (perpendicular to the face) with a turbulence specification method of intensity
at 3% and hydraulic diameter of 10m. The velocity condition set at the cylinder faces
is -9ms~! and so the air is being sucked out of the airbox at a velocity required by the
engine at 18000rpm. At the cylinders the turbulence specification method is of intensity

and hydraulic diameter of 5% and 5m respectively.
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The boundary conditions for the velocity inlet for the external box, the pressure outlet,
and the porous zone, fluid.5, are the same as for the internal flow simulation run file
above. The initial under-relaxation factors and iteration number are set as the following:
solve set under-relaxation pressure 0.6 mom 0.7 k 0.6 epsilon 0.8

solve initialize initialize-flow

solve iterate 1500

The turbulence model is then changed to the realizable ke, the pressure-velocity coupling
set to SIMPLEC and the upwind scheme for momentum is changed to second order as
in the run file for the internal simulation. After 2000 iterations, the upwind schemes
for the turbulence kinetic energy and dissipation rate are both set to second order and
1500 iterations are performed. This concludes the external flow simulation and the case
and data files are written out. The velocity profile at the airbox inlet is captured and

written to a file.

Note: The reduced external domain simulation uses the same instructions as above with

the exportation of the inlet velocity profile.

B.2.3 Simulation with Prescribed Inlet Velocity Profile

The velocity profile captured in the previous section is imported into the journal file for
the internal flow and is used instead of the uniform mass flow rate at the entry. The
journal file for the simulation remains the same as that for section B.2.1 except the
boundary condition for the entry is replaced with:

file read-profile "InletProfile.prof"

define boundary-conditions velocity-inlet , n y y y y n "inlet_face" "x-velocity" y n "inlet_face"

"y-velocity" y n "inlet_face" "z-velocity" nnn y 5 0.41

B.2.4 Comparison of all Simulations

The results of the flow simulations on the centerplane for the baseline geometries of that
with a uniform inlet profile can be seen in Figure B.6 and for the baseline geometry
with the imported velocity inlet profile can be seen in Figure B.7. The inlet profile is

exported from the single simulation including a full external domain, the centerplane of
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FIGURE B.6: Filled contours of velocity magnitude on the centreplane of the 3D airbox
of a uniform mass flow rate inlet profile

velocity contours can be seen in Figure B.8. The centerplane of velocity contours shown

for the reduced external domain can be seen in Figure B.9.

B.3 Mesh Dependency Study

To determine the most appropriate mesh size to use for the design studies in Chapters
6 and 7, a number of different mesh sizes, from 100,000 cells to 5,500,000 cells for the
internal flow domain, were analysed using Fluent and the C), values calculated. The

results can be seen in Figure B.10.

It is clear that there is a downward trend from the coarsest mesh to the finest mesh but
there is only a percentage difference of less than 2% between the 500,000 cell mesh and

the 5,500,000 cell mesh rendering this comparison inconclusive.

Instead, the velocity profiles taken at various stages along the flow path through the

airbox are examined. These stages are shown as lines A, B and C in Figure B.11.
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FIGURE B.7: Filled contours of velocity magnitude on the centreplane of the 3D airbox
of a prescribed velocity inlet profile
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FiGURE B.8: Filled contours of velocity magnitude on the centreplane of the 3D airbox
with full external domain
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F1cUre B.9: Filled contours of velocity magnitude on the centreplane of the 3D airbox
with a small external box around inlet lip
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FIGURE B.10: Graph illustrating the dependency of the C}, value with the mesh density
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line B

line C
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FiGUurE B.11: Position of lines at which velocity profiles are taken

The X velocity profiles at line A are shown in Figure B.12, the X and Y components of
the velocity profile at line B are illustrated in Figure B.13 and the Y velocity profile at
line C is shown in Figure B.14. The profiles at all mesh sizes are shown along with the
profiles taken from the simulation run with the imported velocity inlet profile containing

a developed boundary layer.

It can be seen from these profile comparisons that the coarsest mesh which has the closest
match to the profile of the finest mesh would be that of the 1,250,000 cell mesh, although
the 500,000 cell mesh would be considered adequate. Velocity contour illustrations of

the 500,000 cell case are shown in Figure B.6.

The profiles shown of the simulation with the developed boundary layer condition at the
inlet is not significantly different with it returning a pressure recovery value of C, = 0.65.
This is only a 4.5% percentage difference to the C), value of the 1,250,000 cell simulation.
Hence, although the fixed uniform mass flow inlet boundary condition using a 1,250,000
cell mesh would be ideal, it is considered that a 500,000 cell mesh is a realistic enough
model to use for the purpose of geometric shape control within the design process studied

in Chapter 6.
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FIGURE B.12: Velocity Profile at Line A. The lower figure is a magnification of the
area within the circle shown in the upper figure.
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FIGURE B.13: Velocity Profile at Line B. The upper figure shows the X velocity com-

ponent profile and the lower figure shows the Y velocity component profile.
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FiGURE B.14: Velocity Profile at Line C. The lower figure is a magnification of the
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Appendix C

Carotid Artery Analysis Setup

C.1 Automated Artery Point Cloud Analysis

The following section describes the automated point cloud analysis to extract the key
geometrical features described by design variables in the CATTA design table. A synopsis

of the code used is given at appropriate points.

The geometry is rotated to align the blood flow with the z-axis. The geometry is
translated such that the origin of the xy-plane lies approximately near the root of the

bifurcation on the CCA.

load PointCloud_x_coords.dat

load PointCloud_y_coords.dat

load PointCloud_z_coords.dat

Xlength=max (PointCloud_x_coords)-min(PointCloud_x_coords) ;

Ylength=max (PointCloud_y_coords)-min(PointCloud_y_coords) ;

Zlength=max (PointCloud_z_coords)-min(PointCloud_z_coords) ;

if Xlength==max(Xlength, Ylength, Zlength);
PointCloud_x_coords=points_z_coords;
PointCloud_y_coords=points_y_coords;
PointCloud_z_coords=points_x_coords;

else if Ylength==max(Xlength, Ylength, Zlength);
PointCloud_x_coords=points_x_coords;
PointCloud_y_coords=points_z_coords;
PointCloud_z_coords=points_y_coords;

else

192
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PointCloud_x_coords=points_x_coords;
PointCloud_y_coords=points_y_coords;
PointCloud_z_coords=points_z_coords;

end

The point cloud analysis is performed to enable the extraction of key geometrical features

of the patient’s artery with which a reasonably accurate CAD model is constructed. The

key issue is finding the dividing point of the artery at the bifurcation from a spray of

points, typically totalling approximately 7000 points.

This is not trivial due to the

possibility of a patient artery featuring extreme tortuosity and non-planarity. By slicing

the artery finely, with an appropriate resolution, in the x-direction, one finds the position

of the maximum z value of each slice, checking for the possibility of the ICA or ECA

crossing above the divider point further downstream within the same slice of x values.

The minimum value of the array of maximum z values found is taken to be the divider.

MinX=min(points_x_coords);
MaxX=max (points_x_coords) ;
Resolution=30;
Dist=(MaxX-MinX) /Resolution;
for k=1:Resolution

j=1;

for i=1:size(points_x_coords)

if points_x_coords(i) < MaxX-(Dist#*(k-1)) & points_x_coords(i) > Max X-(Distxk)

x_slice(j)=points_x_coords(i);
y-slice(j)=points_y_coords(i);

z_slice(j)=points_z_coords(i);

=3+
end
end
save ([‘x_slice’ num2str(k) ‘.dat’], ‘x_slice’,’-ascii’)
save ([‘y_slice’ num2str(k) ‘.dat’], ‘y_slice’,’-ascii’)
save ([‘z_slice’ num2str(k) ‘.dat’], ‘z_slice’,’-ascii’)

clear x_slice

clear y_slice

clear z_slice

end for k=1:Resolution
Ak}=load([‘z_slice’ num2str(k) ’.dat’]);
end

for k=1:Resolution



Appendix C Carotid Artery Analysis Setup 194

if max(A{k})>0
for i=1:size(A{k},2)-1
if abs(A{k}(i)-A{k}(i+1))<0.005
B(k)=max (A{k});
else
B(k)=A{k}(i);
end
else
B(k)=1;
end
end
end
[Divider_Z,position]=min(B);
[Divider_Z,Divider_position|=max (Aposition);
C=load([‘y_slice’ num2str(position) ¢.dat’]);
D=load([‘x_slice’ num2str(position) ¢.dat’]);
Divider_Y=C(Divider_position) ;

Divider_X=D(Divider_position);

From the appropriate z-slice the x coordinate is determined. For the y coordinate, the
first few points at the maximum z value must be considered to ensure that the divider
point does not lie on the wall of the ICA or ECA. By analysing the y values of these few
points, it can be determined whether the dividing point represents a peak or perhaps a

flatter divide.

Interpolate appropriate x and y values in the appropriate x-slice given a small cluster
of maximum z values, say five maximum values, to find the coordinates of the divider

point:

Divider_coords=[DIV_X, DIV_.Y, DIV_Z];

So far, the possibility of artery tortuosity has been ignored. To achieve the correct
coordinates of the dividing point taking account of potential tortuosity, the artery is
sliced in the x-direction at varying rotations of the point cloud. After a full rotation

through 27 the true z value of the divider point is chosen.
choose the increments of theta_incr through which the artery is rotated

for theta = O:theta_incr:2x*pi
R = [cos(theta), -sin(theta); sin(theta), cos(theta)l;

NewX=R*points_x_coords;
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NewY=R*points_y_coords;

NewZ=points_z_coords;

Re-slice as above to find the minimum maximum z value from all the x-slices and find the divider
point coordinates.

end

The (x,y,z) coordinates of the dividing point at the artery bifurcation has now been
found. If the artery has been rotated through angle 6, the (x’,y’,2z’) coordinates found
must be translated using the inverse rotation matrix to find the true (x,y,z).

R_inv = [cos(theta), sin(theta); -sin(theta), cos(theta)l;

[DIV_X, DIV.Y, DIV_Z] = R_inv*[DIV_X,DIV_Y,DIV_Z];

The point cloud is then be split into intersections at any given resolution below and above
the dividing point. The diameter of the artery at each of these z-planes is determined
and likewise the artery centroid points. The diameters of the separate ICA and ECA
arteries on the same plane are determined from the points lying either side of the dividing

point in the xz-plane.

An ellipse is fitted to the point cloud at these intersections and sampled at the required
number of points, N. The ellipse has a major axis of radius R1 (the x diameter of the
artery at each intersection), a minor axis of radius R2 (the y diameter of the artery at
each intersection), each ellipse is not rotated through any angle and the ellipse is centred
at x0, yO (the x,y centroid of the artery at each intersection). The coordinates of the

points are given by ellipseX and ellipseY .

for each intersection
if length(R1) =length(x0)
A=length(R1)*length(x0);
else
A=length(R1);
end;

angle=0;

for k=1:A
if length(x0)==
centreX=x0;
centreY=yO0;
radiusMaj=R1(k);
radiusMin=R2 (k) ;
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if length(angle)==

ang=angle;
else

ang=angle (k) ;
end;
elseif length(R1l)==

centreX=x0(k) ;

centreY=y0 (k) ;

radiusMaj=R1;

radiusMin=R2;

ang=angle;
elseif length(x0)==length(R1)

centreX=x0(k) ;

centreY=y0 (k) ;

radiusMaj=R1(k) ;

radiusMin=R2(k) ;

ang=angle (k) ;
end;
theta=linspace(0,2*pi,N(rem(k-1,size(N,1))+1,:)+1);
ellipseX=radiusMaj*cos(theta)*cos(ang)-sin(ang)*radiusMin*sin(theta)+centreX;
ellipseY=radiusMaj*cos(theta)*sin(ang)+cos(ang)*radiusMin*sin(theta)+centreY;

end

The fitted ellipses to the point cloud are seen for the artery discussed are shown in

Chapter 7 can be seen in Figure C.1.

The ICA branch angle also must be determined for the Stage 1 CAD model representa-
tion. This is achieved by finding the closest point on the plane immediately above the

dividing point of the ICA and of the ECA. The angle to the horizontal is determined.

All the components for the design table have now been found and the parametric CAD

model can be updated.

To test this process, a number of other arteries were analysed and the CAD table up-
dated. The results of which can be seen in Tables C.1, C.2, C.3, C.4 with their corre-
sponding ellipses fits in Figures C.2, C.4, C.6, C.8 respectively, and their corresponding
fits to the arteries they represent in Figures C.3, C.5, C.7 and C.9 respectively.
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Ficure C.1: Ellipses fitted to the point cloud at specified z-plane intersections
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Ficure C.2: Ellipses fitted to the point cloud of artery 1 at specified z-plane intersec-
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Parameters Value
A (m) 0.012818

B (deg) 23.6436

C (m) 0.038453
ECArootX (m) 0.023061
ECArootY (m) 0.00106
ICArootX (m) 0.017483
ICArootY (m) 0.000421
BifurcationRoot (m) -0.0053472
ECAcentX (m) 0.027300

ECAcentY (m) 0.0022
ICAcentX (m) 0.019227
ICAcentY (m) 0.011244
I (m) 0.0006755

J(x.y) (m) (0.004733,6.3¢-05)

(0.0020755,0.0036352)
(-0.0022245,0.0022707)
(-0.0022245,-0.0021447)
(0.0020755,-0.0035092)

J(z) (m) -0.033882
K(x,y) (m) (0.011749,0.000929)
(0.0089077,0.0042396)
(0.0043103,0.0029751)
(0.0043103,-0.0011171)
(0.0089077,-0.0023816)

K(z) (m) -0.016941
L centroid(x,y) (m) (0.013100,0.001100)
L, (m) 0.005973/2
M centroid(x,y) (m) (0.011494,0.000704)
R (m) 0.032044
M, (m) 0.004021 /2
N (m) 0.006800
O(x,y) (m) (0.019655,0.0015535)

(0.018589,0.0040874)
(0.016015,0.005137)
(0.01344,0.0040874)
(0.012374,0.0015535)
(0.01344,-0.00098042)
(0.016015,-0.00203)
(0.018589,-0.00098042)
O centroid (0.016015,0.0015535)
ECA diameter at exit 0.003468

TABLE C.1: Parameter values for Stage 1 model of artery 1
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FIGURE C.3: Difference in geometry between the patient artery (orange) and the
parametric CAD geometry (beige) of artery 1
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Ficure C.4: Ellipses fitted to the point cloud of artery 2 at specified z-plane intersec-
tions
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Parameters Value
A (m) 0.015984
B (deg) 23.1581
C (m) 0.031967
ECArootX (m) 0.004547
ECArootY (m) -0.002995
ICArootX (m) 0.00115
ICArootY (m) -0.000475
BifurcationRoot (m) -0.002565
ECAcentX(m) 0.005878
ECAcentY (m) -0.00394
ICAcentX (m) 0.015984
ICAcentY (m) -0.005576
I (m) -0.002932
J(x,y) (m) (0.002693,0.000478)
(0.00082596,0.003256)

(-0.002195, 0.0021949)
(-0.002195,-0.0012389)
(0.00082596,-0.0023)

J(z) (m) -0.034471
K(x,y) (m) (0.003346,-0.00025)
(0.0015159,0.0025699)
(-0.0014452,0.0014928)
(-0.0014452,-0.0019928)
(0.0015159,-0.0030699)

K(z) (m) 10.017236
L centroid(x,y) (m) | (-0.002978,-0.0020595)
L, (m) 0.008256 /2
M centroid(x,y) (m) | (-0.0055865,-0.0030725)
R (m) 0.026639
M, (m) 0.004673/2
N (m) -0.010053
O(xy) (m) (0.003494,-0.001002)

(0.0027219,0.00094396)
(0.000858,0.00175)
(-0.0010059,0.00094396)
(-0.001778,-0.001002)
(-0.0010059,-0.002948)
(0.000858,-0.003754)
(0.0027219,-0.002948)

O centroid (0.000858,-0.001002)
ECA diameter at exit 0.00395

TABLE C.2: Parameter values for Stage 1 model of artery 2
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FIGURE C.5: Difference in geometry between the patient artery (orange) and the
parametric CAD geometry (beige) of artery 2
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Ficure C.6: Ellipses fitted to the point cloud of artery 3 at specified z-plane intersec-
tions
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Parameters Value
A (m) 0.015095
B (deg) 61.9275
C (m) 0.03019
ECArootX (m) 0.005315
ECArootY (m) -0.004703
ICArootX (m) 0.0024
ICArootY (m) -0.003843
BifurcationRoot (m) -0.0005015
ECAcentX(m) 0.010551
ECAcentY (m) -0.004972
ICAcentX (m) 0.020127
ICAcentY (m) -0.0043475
I (m) -0.002117
J(x,y) (m) (0.003422,0.000127)
(0.0011849,0.0031143)
(-0.0024347, 0.0019732)
(-0.0024347,-0.0017192)
(0.0011849,-0.0028603)
J(z) (m) -0.062363
K(x,y) (m) (0.004208,-0.0017455)
(0.0021295,0.0012594)
(-0.0012335,0.00011161)
(-0.0012335,-0.0036026)
(0.0021295,-0.0047504)
K(z) (m) -0.031182
L centroid(x,y) (m) (-0.0031095,-0.001932)
L, (m) 0.009353 /2
M centroid(x,y) (m) (-0.004621,-0.0020985)
R (m) 0.025158
M, (m) 0.007438/2
N (m) 0.0082869
O(x,y) (m) (0.005592,-0.0025125)
(0.0047003,-0.00030244)
(0.0025475,0.000613)
(0.00039471,-0.00030244)
(-0.000497,-0.0025125)
(0.00039471,-0.0047226)
(0.0025475,-0.005638)
(0.0047003,-0.0047226)
O centroid (0.0025475,-0.0025125)

ECA diameter at exit

0.004269

TABLE C.3: Parameter values for Stage 1 model of artery 3
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FIGURE C.7: Difference in geometry between the patient artery (orange) and the

parametric CAD geometry (beige) of artery 3
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Parameters Value
A (m) 0.017051

B (deg) 4.9843

C (m) 0.051152
ECArootX (m) -0.014344
ECArootY (m) -0.00593
ICArootX (m) -0.010294
ICArootY (m) -0.005297
BifurcationRoot (m) -0.0045
ECAcentX(m) -0.017615
ECAcentY (m) -0.0065
ICAcentX (m) 0.00836
ICAcentY (m) -0.00325
I (m) -0.00256

J(x,y) (m) (0.003766,0.000238)

(0.0012802,0.0036181)

(-0.0027419, 0.002327)
(-0.0027419,-0.001851)
(0.0012802,-0.0031421)

J(z) (m) -0.042408
K(x,y) (m) (0.004429,-0.0016815)

(0.0020658,0.0014974)
(-0.0017578,0.00028317)
(-0.0017578,-0.0036462)
(0.0020658,-0.0048604)

K(z) (m) 10.021204
L centroid(x,y) (m) | (-0.0067095,-0.0021235)
L, (m) 0.004669/2
M centroid(x,y) (m) | (-0.0037275,-0.0026835)
R (m) 0.042627
M, (m) 0.005/2
N (m) 0.006943
O(x,y) (m) (0.001798,-0.004008)

(0.00082721,-0.0016251)
(-0.0015165,-0.000638)
(-0.0038602,-0.0016251)
(-0.004831,-0.004008)
(-0.0038602,-0.0063909)
(-0.0015165,-0.007378)
(0.00082721,-0.0063909)

O centroid (-0.0015165,-0.004008)
ECA diameter at exit 0.004669

TABLE C.4: Parameter values for Stage 1 model of artery 4
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FicureE C.9: Difference in geometry between the patient artery (orange) and the
parametric CAD geometry (beige) of artery 4

C.2 Automated Creation of New Bump Deformation

The matlab function outlined below writes out a visual basic script macro which can be
run in batch using CATTA. BCOUNT describes the current number of deformations applied
to the model, bump_h is the bump height, Pt_coords are the coordinates of the point
cloud point whose nearest CAD model point has the greatest error. Join is the limit
curve used, curvature is the curvature of the deformation and Intersect Pt_start
is the point number at which the sample points of the intersections from the previous

deformation starts.
function write_catvbs(BCOUNT,bump_h,Pt_coords,Join,curvature)

Intervals=[1,1/15,2/15,3/15,4/15,5/15,6/15,7/16,8/15,9/15,10/15,11/15,12/15,13/16,14/15] ;
NEW_CATVBS=fopen(‘Stage2_bumpN.catvbs’,’w’);

fprintf (NEW_CATVBS, ‘Language="VBSCRIPT"\n\n’) ;

fprintf (NEW_CATVBS, ‘Sub CATMain()\n\n’);

fprintf (NEW_CATVBS, ‘Set documentsl = CATIA.Documents\n’);

fprintf (NEW_CATVBS, [‘Set partDocumentl=documentsl.Open("CAD_bump‘num2str (BCOUNT-1)’.CATPart")\n’]1);
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A new point at the position of the cloud point whose closest CAD point has the largest

error is created:

fprintf (NEW_CATVBS, ‘Set partl=partDocumentl.Part\n’);

fprintf (NEW_CATVBS, ‘Set hybridShapeFactoryl=partl.HybridShapeFactory\n’);

fprintf (NEW_CATVBS, [‘Set hybridShapePointCoordl=hybridShapeFactoryl.AddNewPointCoord(‘num2str(
Pt_coords(1))’, ‘num2str (Pt_coords(2))’, ‘num2str (Pt_coords(3))’)\n’]);

fprintf (NEW_CATVBS, ‘Set hybridBodiesl=partl.HybridBodies\n’);

fprintf (NEW_CATVBS, ‘Set hybridBodyl=hybridBodiesl.Item("ICA_BULB")\n’);

fprintf (NEW_CATVBS, ‘hybridBodyl.AppendHybridShape hybridShapePointCoordi\n’);

fprintf (NEW_CATVBS, ‘partl.InWorkObject=hybridShapePointCoordl\n’);

fprintf (NEW_CATVBS, ‘partl.Update\n’);

This new point is projected onto the artery surface to act as the centre of the deformation:

fprintf (NEW_CATVBS, ‘Set referencel=partl.CreateReferenceFromObject (hybridShapePointCoord1)\n’);
fprintf (NEW_CATVBS, ‘Set hybridShapesl=hybridBodyl.HybridShapes\n’);

fprintf (NEW_CATVBS, [‘Set hybridShapeBumpl=hybridShapes1.Item("Bump. ‘num2str (BCOUNT-1)’")\n’]);
fprintf (NEW_CATVBS, ‘Set reference2=partl.CreateReferenceFromObject (hybridShapeBumpl)\n’);
fprintf (NEW_CATVBS, ‘Set hybridShapeProjectl=hybridShapeFactoryl.AddNewProject(referencel,reference2)
\n’);

fprintf (NEW_CATVBS, ‘hybridShapeProjectl.SolutionType=0\n’);

fprintf (NEW_CATVBS, ‘hybridShapeProjectl.Normal=True\n’) ;

fprintf (NEW_CATVBS, ‘hybridShapeProjectl.SmoothingType=0\n’) ;

fprintf (NEW_CATVBS, ‘hybridBodyl.AppendHybridShape hybridShapeProjecti\n’);

fprintf (NEW_CATVBS, ‘partl.InWorkObject=hybridShapeProjecti\n’);

fprintf (NEW_CATVBS, ‘partl.Update\n’);

A line is created normal to the surface at the projected point to describe the direction

along which the deformation will be made:

fprintf (NEW_CATVBS, ‘Set reference3=partl.CreateReferenceFromObject (hybridShapeBumpl)\n’);

fprintf (NEW_CATVBS, ‘Set referenced4=partl.CreateReferenceFromObject (hybridShapeProjectl)\n’);

fprintf (NEW_CATVBS, ‘Set hybridShapeLineNormall=hybridShapeFactoryl.AddNewLineNormal (reference3,reference4,
0.000000,3.000000,False)\n’);

fprintf (NEW_CATVBS, ‘hybridBodyl.AppendHybridShape hybridShapeLineNormall\n’);

fprintf (NEW_CATVBS, ‘partl.InWorkObject=hybridShapeLineNormall\n’);

fprintf (NEW_CATVBS, ‘partl.Update\n’);

Create the new deformation:

fprintf (NEW_CATVBS, ‘Set referenceb=partl.CreateReferenceFromObject (hybridShapeBumpl)\n’);
fprintf (NEW_CATVBS, [‘Set hybridShapeAssemblel=hybridShapesl.Item("Join. ‘num2str(Join)’")\n’1);
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fprintf (NEW_CATVBS, ‘Set reference6=partl.CreateReferenceFromObject (hybridShapeAssemblel)\n’);
fprintf (NEW_CATVBS, ‘Set reference7=partl.CreateReferenceFromObject (hybridShapeProjectl)\n’);
fprintf (NEW_CATVBS, ‘Set reference8=partl.CreateReferenceFromObject (hybridShapeLineNormall)\n’);
fprintf (NEW_CATVBS, ‘Set hybridShapeBump2=hybridShapeFactoryl.AddNewBump(reference5)\n’);
fprintf (NEW_CATVBS, ‘hybridShapeBump2.LimitCurve=reference6\n’);

fprintf (NEW_CATVBS, ‘hybridShapeBump2.DeformationCenter=reference7\n’);

fprintf (NEW_CATVBS, ‘hybridShapeBump2.DeformationDir=reference8\n’);

fprintf (NEW_CATVBS, [‘hybridShapeBump2.DeformationDistValue="‘num2str (bump_h)’\n’]);

fprintf (NEW_CATVBS, ‘Set parametersl=partl.Parameters\n’);

fprintf (NEW_CATVBS, [‘Set realParaml=parametersl.Item("Part2\ICA_BULB\Bump. ‘num2str (BCOUNT)
’\Center curvature ratio")\n’l);

fprintf (NEW_CATVBS, ‘realParam.value=0.01\n’);

fprintf (NEW_CATVBS, ‘hybridShapeBump2.CenterTension=realParaml\n’);

fprintf (NEW_CATVBS, ‘hybridBody1l.AppendHybridShape hybridShapeBump2\n’);

fprintf (NEW_CATVBS, ‘partl.InWorkObject=hybridShapeBump2\n’) ;

fprintf (NEW_CATVBS, ‘partl.Update\n’);

The model is now re-intersected with the new deformation:

for each plane
fprintf (NEW_CATVBS, [‘Set hybridShapePlaneOffset*
num2str (i) ’=hybridShapesl.Item("Plane. ‘num2str (Plane(i))’")\n’1);
fprintf (NEW_CATVBS, [‘Set reference‘num2str(j(i))’=partl.
CreateReferenceFromObject (hybridShapePlaneOffset ‘num2str(i)’)\n’1);
fprintf (NEW_CATVBS, [‘Set reference‘num2str(j(i)+1)’=partl.
CreateReferenceFromObject (hybridShapeBump2)\n’1) ;
fprintf (NEW_CATVBS, [‘Set hybridShapelntersection‘num2str(i)’=hybridShapeFactoryl.
AddNewIntersection(reference ‘num2str(j(i))’,reference ‘num2str(j(i)+1)’)\n’]1);
fprintf (NEW_CATVBS, [‘hybridShapeIntersection‘num2str(i)’.PointType=0\n’]);
fprintf (NEW_CATVBS, [ ‘hybridBodyl.AppendHybridShape hybridShapelntersection‘num2str(i)’
\n’1);
fprintf (NEW_CATVBS, [‘partl.InWorkObject=hybridShapeIntersection‘num2str(i)’\n’1);
fprintf (NEW_CATVBS, ‘partl.Update\n’);

end

On the intersecting planes where the intersection passes through both the ICA and
the ECA, a geometric entity nearest to either the ICA or the ECA is chosen to define

separate intersections for each of these arteries on the same plane.

Finally, each of the intersections is sampled with 15 equally spaced points.
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for each intersection

k=1;
1=1;
for m=1:15
fprintf (NEW_CATVBS, [‘Set hybridShapeIntersection‘num2str (i) ’=hybridShapesl.Item("
Intersect. ‘num2str (INTERSECTION) ’")\n’]);
fprintf (NEW_CATVBS, [‘Set reference‘num2str(l)’=partl.CreateReferenceFromObject (
hybridShapeIntersection‘num2str(i)’)\n’]);
fprintf (NEW_CATVBS, [‘Set hybridShapePointOnCurve ‘num2str (k)’=hybridShapesl.Item("
Point. ‘num2str (Intersect_Pt_start+(15%(i-1)))’")\n’]1);
fprintf (NEW_CATVBS, [‘Set reference’num2str(1+1)’=partl.CreateReferenceFromObject (
hybridShapePointOnCurve ‘num2str(k)’)\n’]);
fprintf (NEW_CATVBS, [‘Set hybridShapePointOnCurve ‘num2str (k+1)’=hybridShapeFactoryl.
AddNewPointOnCurveWithReferenceFromPercent (reference ‘num2str (1)’ ,reference ‘num2str(1+1)’,
‘num2str (Intervals(m))’,False)\n’]);
fprintf (NEW_CATVBS, [‘hybridBodyl.AppendHybridShape hybridShapePointOnCurve ‘num2str(k+1)’\n’]);
fprintf (NEW_CATVBS, [‘partl.InWorkObject=hybridShapePointOnCurve ‘num2str (k+1)’\n’1);
fprintf (NEW_CATVBS, ‘partl.Update\n’);
k=k+2;
1=1+2;
end
end

This geometry is exported as a step file. In matlab, a simple code is run to extract the
cartesian coordinates of the points sampling the intersections before calculating the new

error between these deformed points and the real artery point cloud.

fprintf (NEW_CATVBS, ‘Set fs=CATIA.FileSystem\n’);

fprintf (NEW_CATVBS, ‘Set f=fs.GetFile("DesignPointInfo.txt")\n’);
fprintf (NEW_CATVBS, ‘Set ts=f.0OpenAsTextStream("ForReading")\n’);
fprintf (NEW_CATVBS, ‘dataline=ts.ReadLine\n’);

fprintf (NEW_CATVBS, ‘DesPointNum=CDbl (dataline)\n’);

fprintf (NEW_CATVBS, ‘StpFile=ts.ReadLine\n’);

fprintf (NEW_CATVBS, ‘ts.Close\n’);

fprintf (NEW_CATVBS, ‘partDocumentl.ExportData StpFile,"stp"\n’);
fprintf (NEW_CATVBS, ‘End Sub\n’);

fclose (NEW_CATVBS) ;
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C.3 Flow Simulation

A user-defined function is used to impart the pulsatile waveform onto the velocity inlet
at the entry to the CCA of the arteries. The Fourier series representation of the inflow

velocity is given by

1 13 2nmt 2nmt
_ ) & , 1
T nz::l (a o8 (0.917)  bn sin (0.917)) (G-1)

The Fourier coefficients are given by
a = [6.000, 1.076, —2.315, —2.705, —0.639, 1.775, 1.168, —0.202, —0.267, —0.152, 0.146, 0.118, 0.056, 0.010]

b = [0.000, 2.989, 3.071, —1.979, —1.583, —1.903, 1.065, 0.578, 0.152, —0.202, —0.133, 0.022, 0.050, 0.072]

The Fluent log file used to run the simulation was kindly supplied by Dr Neil W. Bressloff

and the outline of which is as follows.

file read-case filename.msh

define user-defined u-d-m 2

define user-defined use-contributed-cpp yes

define user-defined interpreted-functions inlet_pulse.c , , no

define models solver segregated yes

define models viscous laminar yes

define materials change-create air blood yes , 1035.0 no no yes constant 0.0035 no no no no
no no yes

define operating-conditions operating-pressure ,

define models unsteady-2nd-order yes

define boundary-conditions velocity-inlet inflow nn y y y y "udf" "inlet_y_velocity" yes
define boundary-conditions outflow eca_out 0.3

define boundary-conditions outflow ica_out 0.7

solve set discretization-scheme mom 1

solve set p-v-coupling 22

solve set under-relaxation pressure 0.9 mom 0.9

solve initialize compute-defaults velocity-inlet inflow

solve initialize initialize-flow

solve monitors residual check-convergence y nnn

solve monitors residual convergence-criteria le-8 plot yes print yes

solve monitors residual n-save 10000 n-disp 10000
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solve monitors surface set-monitor , wall-shear wall , n no no no ,

solve set time-step 0.0001 solve dual-time-iterate 9170 1
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