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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING SCIENCE AND MATHEMATICS

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

RADIAL BASIS FUNCTION BASED MESHLESS METHODS

FOR FLUID FLOW PROBLEMS

by Phani P. Chinchapatnam

This thesis is concerned with the development of meshless methods using radial basis functions for

solving fluid flow problems. The advantage of meshless methods over traditional mesh-based methods

is that they make use of a scattered set of collocation points in the physical domain and no connec-

tivity information is required. An important objective of the present research is to develop novel

meshless methods for unsteady flow problems. Symmetric/unsymmetric radial basis function collo-

cation schemes are proposed for solving an unsteady convection-diffusion equation for various Peclet

numbers. Both global and compactly supported radial basis functions are used and the convergence

behaviours of various radial basis functions are studied. The performance of the presented schemes

is shown by using both uniform as well as scattered distribution of points. Numerical results suggest

that these schemes are capable of obtaining accurate results for low and medium Peclet numbers.

Next, two directions have been explored in this thesis for using radial basis functions to solve large

scale problems encountered in fluid flow problems. They are namely, domain decomposition schemes

and radial basis functions in finite difference mode. These schemes are shown to be computationally

efficient and also aid in circumventing the ill-conditioning problem. The performance of both schemes

are evaluated by solving the unsteady convection-diffusion problem. The last part of this thesis is

concerned with the solution of the 2D Navier-Stokes equations. Meshless methods based on radial

basis collocation and scattered node finite difference schemes are formulated for solving steady and

unsteady incompressible Navier-Stokes equations. A novel ghost node strategy is proposed for incor-

porating the no-slip boundary conditions. Optimisation strategies based on residual error objective

and leave-one-out statistical criterion are proposed to evaluate the optimal shape parameter value in

case of the multiquadric RBF for collocation and scattered finite difference approaches respectively.

Standard benchmark problems like the driven cavity flows in square and rectangular domains and

backward facing step flow problem are solved to study the performance of the developed schemes.

Finally, a higher order radial basis function based scattered node finite difference method is proposed

for solving the incompressible Navier-Stokes equations.
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All matrices and vectors are denoted in bold format

d̄ Minimum distance between any two centres

Ū Average velocity

δt Time step

δ Support parameter of CSRBF
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Dt Material derivative
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Bcφ(‖x − c‖) Operator B applied on the RBF as a function of the second argument c

Bxφ(‖x − c‖) Operator B applied on the RBF as a function of the first argument x

xv
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C Set of collocation points

L Arbitrary differential operator

Lcφ(‖x − c‖) Operator L applied on the RBF as a function of the second argument c

Lxφ(‖x − c‖) Operator L applied on the RBF as a function of the first argument x

O(.) Computational complexity

S Artificial boundary operator

Re Reynolds number

∇ Gradient operator

∇2 Laplacian operator

∇2∇2 Biharmonic operator

‖.‖ Euclidean norm

‖.‖∞ Infinity norm

ν Convergence rate

Ω Closed domain in physical space

ω Vorticity

φ(.) Radial basis function in R
d

Πd
m−1 Space of polynomials of degree ≤ (m− 1) in d variables

ψ Streamfunction

R Set of real numbers

R
+ Set of positive real numbers

R
d Set of real numbers of dimension d

ρ Density

σ Shape parameter

σcrit Critical shape parameter
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δij Kronecker delta

λ RBF coefficient vector

Φ Gram matrix

σ Cauchy stress tensor

x Spatial coordinates

~n Outward normal vector

~v Constant velocity vector

Ξ Viscous dissipation function

a,b,c Constants

Cv Specific heat at constant volume

f(x),g(x) Arbitrary functions in x
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h Mesh spacing
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L Characteristic Length

L Width of the channel in backward-facing step flow
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NB Number of boundary centres
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Ne Number of sub-domains
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p Unit cost of evaluating an RBF

p(x) Polynomial in x
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q Heat flux vector

Q(xi, σ) Cost functional at a node xifor a particular shape parameter σ

r Radial distance

R(.) Residual function

T Temperature

t Time coordinate

tf Final time

U Characteristic speed of flow

u,v Cartesian velocity components

BE Boundary Element

CD Convection Diffusion

CN Crank Nicholson

CSPH Corrected Smoothed Particle Hydrodynamics

CSRBFs Compactly Supported Radial Basis Functions

DDMs Domain Decomposition Methods

DE Diffuse Element

EFG Element Free Galerkin

FD Finite Difference

FE Finite Element

FP Finite Point

FV Finite Volume

GAU Gaussian

GSRBFs Globally Supported Radial Basis Functions
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Chapter 1

Introduction

1.1 Motivation

The behaviour of physical systems is generally governed by certain partial differential equa-

tions (PDEs). In Fluid Mechanics, the Navier-Stokes (NS) equations, developed indepen-

dently by Navier and Stokes in 1920, form the central system of PDEs governing fluid flows.

These equations are derived by satisfying the mass, momentum and energy conservation for

an infinitesimal fluid element. The system of NS equations, supplemented by empirical laws

for the dependence of viscosity and thermal conductivity on other flow variables and by a

constitutive law defining the nature of the fluid, completely describe all flow phenomena.

Analytical solutions of the NS equations exist only for simple cases like the Poiseuille flow,

Couette flow and certain other specific flows. In general, numerical methods are needed to

predict fluid flows. Traditionally, Finite Difference (FD), Finite Element (FE), Finite Vol-

ume (FV) or Boundary Element (BE) methods are used for solving fluid problems (Hirsch,

1991; Brebbia, 1978; Zienkiewicz & Taylor, 2000). These methods are acknowledged to have

achieved a high degree of sophistication and success in solving fluid flow problems. These

computational methods are all based on a mesh discretisation (a subdivision of the spatial

flow domain into numerous finite volume/elements/cells) that has to be generated in advance

or dynamically modified as the solution progresses (adaptive meshing). The continuum NS

equations are then approximated on these meshed points or volumes, leading to an algebraic

linear or nonlinear system of equations. These system of equations are then solved by appro-

priate numerical methods to obtain the unknown solution. Although the above mentioned

methods are highly popular, there exist some unresolved issues with these numerical methods

like the awkward treatment of irregular boundary in FDM, the storage of huge data in FEM

1
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and the difficulty of treating singularities and deriving fundamental solutions in BEM (Young

et al., 2004). In addition, the accuracy of the presented methods depends on the type of

mesh that is used to discretise the physical domain (Tanaka, 1999). Also, typically with these

methods only the function is continuous across the meshes, but not its partial derivatives.

In practise, one uses a lower order polynomial for function approximation in these methods

due to the polynomial snaking problem1. While higher order schemes are necessary for more

accurate approximations of the spatial derivatives they are not sufficient without monotonic-

ity constraints i.e., the approximation should be either increasing/decreasing or else remain

constant. Because of the lower order schemes typically employed the spatial truncation errors

can only be controlled by using progressively smaller meshes (Kansa, 1999).

Although significant advances have been made in the area of grid generation over the

last few decades, it still remains a complex and time consuming process and, in many cases

it can absorb far more time and cost than the numerical solution itself. Not only can

mesh based methods be very complex and time consuming but for many flow problems

such as free surface, moving boundaries, boundary layer, front tracking/shock (where mesh

crossover/distortion is a significant problem), large deformations in materials, crack growth

in materials etc., they are acknowledged to be not cost-effective due mainly to the use of

the element structure/connectivity of the elements in the mesh (Zerroukat et al., 2000). For

example, in FEM, if the element is heavily distorted, shape functions for this element are of

poor quality and thus the numerical results may not be acceptable (Wang & Liu, 2002).

In recent years, there has been an upsurge of interest in the development of so-called

meshfree methods as an alternative to the mesh based methods. The term “meshfree”

indicates the ability of a numerical simulation process being constructed entirely from a set

of nodes which generally are randomly scattered through the domain of analysis and do not

have any pre-specified connectivity between each other. These meshfree methods are also

referred to in the literature as meshless, gridless, element free or cloud methods (Belytschko

et al., 1996).

The emergence of these methods in science and engineering (and in particular fluid/struc-

tural mechanics) are in their very early stages and have not yet reached the effectiveness

and robustness of mesh based methods such as FD, FE, FV and BE methods. However they

have major advantages in that a) No mesh structure is needed, b) they are very suitable

for problems involving complicated or rapidly changing domain geometry, c) they are highly

1Polynomial snaking refers to the highly wiggled approximations obtained using higher order polynomials.
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flexible and easily modified (addition and subtraction of nodes) without major implemen-

tation difficulties and can be easily extended to higher dimensions, d) these schemes can as

well be applied on any kind of meshes or their hybrids. The aim of meshless methods for

PDEs is to eliminate at least the structure of the mesh and approximate the solution entirely

using the nodes/points (irregular random points) rather than the nodes of an element/grid

based discretisation. Since only points are required, meshless methods offer great potential

to accurately and efficiently solve fluid flow problems with complex configurations (Batina,

1993; Onate et al., 1996; Shu et al., 2003).

The earliest attempts on meshless methods was probably done by Perrone & Kao (1975);

Liszka & Orkisz (1984). They introduced the generalised FD schemes on arbitrary grids. The

present day meshfree methods can be grouped under the following divisions based on the kind

of interpolation/approximation techniques utilised. The first is based on the Moving Least-

Squares (MLS) technique. This type of interpolation technique is adopted by many popular

meshfree methods like Element Free Galerkin (EFG) (Belytschko et al., 1994; Lu et al., 1994),

Reproducing Kernel Particle (RKP) (Liu et al., 1995), Partition of Unity (PU) (Melenk &

Babuska, 1996; Griebel & Schweitzer, 2000), Finite Point (FP) (Onate et al., 1996), Meshless

Local Petrov-Galerkin (Atluri & Zhu, 1998) and Diffuse Element (DE) (Nayroles et al., 1992)

methods. The least squares technique allows an optimised approximation derived from an

over-determined set of equations and generally the resultant coefficient matrix is symmetric

and positive definite. However as the LS approximation does not pass through the nodal

points, the essential boundary conditions cannot be imposed directly. Most of the above

mentioned methods are based on the Galerkin projection and are not truly meshfree as they

require an auxiliary mesh to perform integration with respect to space. The next one is

motivated from statistical theory and Monte Carlo integrations. Examples of this kind are

Smoothed Particle Hydrodynamics (SPH) (Moraghan, 1982, 1988; Gingold & Moraghan,

1997), Corrected Smooth Particle Hydrodynamics (CSPH) (Kulasegaram et al., 2000). SPH

is used to model collision and explosion of stars and is well suited for rapidly expanding

computational domains. However, the application of these methods is limited to unbounded

domains and they perform badly for bounded domains. For an overview and a comparative

study of some of these methods see Duarte (1995); Belytschko et al. (1996); Fries & Matthies

(2003).

The other type of meshfree methods are based on functional approximation using Radial

Basis Functions (RBFs). For many years, RBFs have been synonymous with scattered data
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interpolation especially in higher dimensions (Franke, 1982; Wendland, 1995). The excel-

lent performance of RBFs for scattered data interpolation motivates their use in developing

meshfree schemes for solving PDEs. The Unsymmetric RBF collocation (Kansa, 1990a,b),

Symmetric RBF collocation (Fasshauer, 1996), Dual Reciprocity (Chen et al., 1998), and

DRM-MFS-RBF method (Golberg et al., 1999), RBF-DQ (Shu et al., 2003) are some of the

RBF based meshfree methods available in the literature for solving PDEs.

As all the meshfree schemes are point based schemes, they must possess some essential

properties in order for them to be applicable to practical problems. The sensitivity of these

schemes to a variable number of points in each interpolation domain must be low enough to

preserve the freedom of adding, moving or removing points. This sensitivity is very high in

meshfree techniques using the LS approximation (Fries & Matthies, 2003) as compared to

RBF based approximations. Also, as RBFs are univariate functions, RBF based schemes can

be easily extended to higher dimensions. In addition RBF based schemes have the advantage

of being truly meshfree as compared to some of the meshless or element free methods where

some kind of auxiliary grid is needed and thus eliminating many of the advantages of the

meshfree philosophy. Moreover, any RBF based scheme generally has higher-order accuracy

than the standard FD schemes on scattered nodes. More specifically RBF based methods

seem to have exponential convergence rates (Cheng et al., 2003; Boztosun & Charafi, 2002;

Hon & Mao, 1998). The above mentioned advantages of RBFs leads us to choose RBFs as

the basis for developing meshfree schemes for fluid flow problems.

1.2 Scope and objectives

The present research focuses on the development of meshfree methods for fluid flow problems.

The primary objective of the present research is to develop RBF based meshless techniques for

a wide class of fluid flow problems with a particular emphasis on time-dependent problems.

We aim to develop computationally efficient procedures for use in large scale problems so

that the developed algorithms are suitable for industrial applications.

The approach used here aims to achieve this objective by systematically solving time-

dependent linear and nonlinear problems. The first goal of this research is to develop and

validate meshless methods based on RBFs for model flow problems. Next, the aim is to

develop novel algorithms to tackle large scale problems. Subsequently, the aim is to integrate

all the developed algorithms to develop a robust meshfree solver for fluid flow problems. The
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scope of the present research in these directions is summarised below:

1.2.1 Comparison of various RBFs for solving PDEs

It has been shown in the literature that RBFs perform very well for solving a wide class of

PDEs (Hon et al., 1997; Zerroukat et al., 1998; Hon & Mao, 1998). Extensive studies on

the performance of different RBFs for scattered data interpolation can be found in Franke

(1982). However, no study has been done as to how different RBFs perform when applied to

the solution of PDEs. The present research aims to bridge this gap by performing extensive

numerical studies on a model flow problem. The behaviour of fluid flows, in general, is

governed by two components viz., convection and diffusion. Hence the model problem chosen

is the unsteady convection-diffusion problem. The convergence behaviour of various globally

supported and compactly supported RBFs are examined for both uniform as well as scattered

set of points. Also, a symmetric RBF collocation method is proposed for time-dependent

problems. We show that the symmetric RBF method is capable of obtaining good results

with the additional advantage of the coefficient matrix being (anti)-symmetric and less ill-

conditioned as compared to the unsymmetric RBF collocation method.

1.2.2 Large scale problems: Domain decomposition

Although global RBF methods have been shown to have very high convergence rates, the

resulting coefficient matrix is dense and becomes highly ill-conditioned. Possible ways of

circumventing this ill-conditioning problem have been suggested in Kansa & Hon (2000).

Also, as the coefficient matrix is dense this hinders the application of RBFs to solve large

scale fluid dynamics problems, as they are computationally intensive when a large number

of collocation points are used. In this thesis, we propose two different overlapping domain

decomposition techniques to solve time-dependent and nonlinear problems. As the physical

domain is divided into small sub-domains, we obtain small coefficient matrices which can be

easily solved instead of a large dense matrix, thus making the proposed methods computa-

tionally efficient. The condition numbers of the resultant sub-domain coefficient matrices are

smaller as compared to the single domain coefficient matrices. Further, these schemes allow

for efficient parallelisation. All the above mentioned advantages render the proposed RBF

based domain decomposition algorithms suitable for application to large scale problems.
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1.2.3 Large scale problems: RBFs in finite difference mode

An alternative approach involving the use of RBFs to construct finite difference approxima-

tions (RBF-FD) is explored in this thesis. The weights of the RBF-FD method are obtained

by solving local RBF interpolation problems set-up around each node in the computational

domain. A key advantage of this method is that the resulting coefficient matrices are sparse

and hence it can be applied to solve large scale problems. An optimisation strategy based

on the statistical leave-one-out criterion is applied to obtain the optimal value of the shape

parameter. A novel ghost node strategy is proposed for satisfying boundary conditions. This

strategy preserves the freedom of having completely random distribution of nodes in the

domain of interest. Finally, a higher order discretisation of the RBF-FD method is also

developed for application to fluid problems using the RBF Hermite interpolation technique.

1.2.4 Applications to incompressible Navier Stokes equations

The developed methodologies are extended for solving the steady and unsteady incompress-

ible Navier-Stokes equations. We consider the driven cavity flows and the backward facing

step flow which occur in a variety of industrial applications. These problems have been stud-

ied throughout the literature and serve as benchmarks for testing new algorithms. Numerical

results are obtained for both uniform and scattered distribution of points.

1.3 Layout of the thesis

The remainder of this thesis is arranged as follows:

Chapter 2 presents a brief overview of RBFs. The properties of RBFs and its application

to solving interpolation problems is discussed. Earlier work on solution of PDEs using RBFs

is also summarised. The various theoretical and computational issues governing RBF based

methods are discussed.

Chapter 3 presents detailed numerical studies on a model linear time-dependent PDE.

The symmetric RBF method is extended for solving time-dependent PDEs. The stability

analysis of the methods is also presented. The convergence properties of different RBFs are

studied when applied to solve the convection-diffusion equation.

Chapter 4 introduces domain decomposition methods for solving large scale problems.

Meshfree overlapping Schwarz schemes are proposed for time-dependent problems. These

methods are shown to be computationally more efficient than the single domain RBF collo-
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cation method. Also, the proposed domain decomposition schemes are shown to reduce the

ill-conditioning problem present in RBF schemes.

Chapter 5 introduces the application of radial basis functions in a finite difference mode

(RBF-FD). The coefficient matrices obtained are sparse and hence are suitable for application

to large scale problems. A leave-one-out statistical criterion is employed as the objective

function for optimisation of the shape parameter. Model Poisson and convection-diffusion

equations are solved to investigate the performance of this method.

Chapter 6 deals with meshless methods using RBF collocation for the incompressible

Navier-Stokes equations. The steady state equations are considered and the test problems

of driven cavity flows and backward facing step flow are solved. The merits and demerits of

RBF collocation methods are listed.

Chapter 7 demonstrates the suitability of the RBF-FD for solving the incompressible

Navier-Stokes equations. A ghost node strategy is employed for satisfying no-slip boundary

conditions. Finally, a higher order RBF-FD method using Hermite interpolation techniques

is presented for solving the Navier-Stokes equations.

Chapter 8 summarises the contributions and major conclusions of this research. Some

directions for future research are also outlined.



Chapter 2

Overview of radial basis functions

In this chapter, we present a brief overview of radial basis functions (RBFs) and their appli-

cations in scientific computing. The definitions of RBFs are introduced and interpolation of

scattered data using RBFs is discussed. Then we show how RBFs can be used in the numer-

ical solution of partial differential equations by the method of collocation. Some theoretical

and computational aspects which arise when using RBFs for developing meshfree methods

are also elaborated.

2.1 Radial basis functions

We first present the following definitions for continuous functions.

Definition 2.1. A function φ : R
d → R is called a radial basis function if φ(x) = φ(y)

whenever ‖x‖ = ‖y‖ where ‖.‖ denotes the Euclidean norm and R
d denotes the d-dimensional

space on R and x,y ∈ R
d.

Definition 2.2. A function φ : R
+ → R is strictly conditionally positive definite of order m

(SCPD(m)) if for every set of distinct data points x1, . . . ,xN ⊂ R
d

N∑

i=1

N∑

j=1

λiλjφ(‖xi − xj‖) > 0

for all λ1, . . . , λN satisfying,
N∑

i=1

λip(xi) = 0,

for all polynomials p of degree less than m.

Table 2.1 lists some globally supported RBFs (GSRBF) that are commonly used in the

literature. The Euclidean norm is denoted by r = ‖ · ‖ and σ is a shape parameter. The

8
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influence of GSRBFs extends from −∞ to +∞. The last column of Table 2.1 indicates the

strictly conditionally positive definiteness order of each GSRBF.

Table 2.1: Globally supported radial basis functions

φ(r) = r2β log r, β ∈ N thin plate splines (TPS) SCPD(β + 1)

φ(r) = (r2 + σ2)
1
2 multiquadrics (MQ) SCPD(1)

φ(r) = (r2 + σ2)
−1
2 inverse multiquadrics (IMQ) SCPD(0)

φ(r) = e−
r2

σ Gaussians (GAU) SCPD(0)

φ(r) = rβ, β > 0, β /∈ 2N quintic splines (QS) SCPD(⌈β/2⌉)

Figure 2.1 shows a number of globally supported RBFs. We plot the Gaussian RBFs

with increasing shape parameter values in the first row of the figure. It can be seen that for

the Gaussians, increasing the value of σ leads to flatter and flatter RBFs. Similar trends

can be observed for MQ and IMQ, as is apparent from second and third rows of Figure 2.1.

In the next two rows, we plot the different TPS and QS RBFs. Throughout this thesis all

RBFs which incorporate a shape parameter in their definition like multiquadrics, inverse

multiquadrics and Gaussians are collectively referred to as σ-tunable RBFs.

Another class of RBFs, known as compactly supported radial basis functions (CSRBFs),

due to Wendland (Wendland, 1995), Wu (Wu, 1995) and Buhmann (Buhmann, 2000) are

also used. The central idea of CSRBFs is to use a polynomial as a function of r with support

on [0, 1]. CSRBFs must be strictly positive definite in R
d for all d less than or equal to some

fixed value d0. The basic definition of the CSRBF φl,k(r) have the form

φl,k(r) = (1 − r)n+p(r), for k ≥ 1, (2.1)

with the following conditions

(1 − r)n+ =





(1 − r)n if 0 ≤ r < 1,

0 if r ≥ 1,

where l = ⌊d2⌋ + k + 1 is the dimension number, 2k is the smoothness1 of the function and

p(r) is a prescribed polynomial. Table 2.2 lists out some of the Wendland CSRBFs generally

used in the literature when d = 3.

1A function is said to have smoothness Cm if all its derivatives up to order m exist and are continuous

functions.
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Figure 2.1: Globally supported RBFs (The functions are plotted in the [−1, 1] × [−1, 1]

region)
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Table 2.2: Compactly supported radial basis functions (Wendland, 1995)

RBF Smoothness

φ2,0(r) = (1 − r)2+ C0

φ3,1(r) = (1 − r)4+(4r + 1) C2

φ4,2(r) = (1 − r)6+(35r2 + 18r + 3) C4

φ5,3(r) = (1 − r)8+(32r3 + 25r2 + 8r + 1) C6

Note that unlike GSRBFs, the influence of CSRBFs is local in [0, 1] and the influence

vanishes on [1,∞). Also, we can scale a basis function with compact support on [0, δ] by

replacing r with r
δ where δ is referred to as the support parameter of the CSRBF.

2.2 RBF interpolation

RBFs are widely used for scattered data interpolation (Wendland, 1995). The problem of

multivariate interpolation can be stated as follows:

Problem 2.3. Given data (xj , fj), j = 1, . . . ,N with xj ∈ R
d, fj ∈ R find a continuous

function S(x), such that S(xj) = fj, j = 1, . . . ,N .

The function S(x) is assumed to be given by a linear combination of RBFs, i.e.,

S(x) =

N∑

j=1

λjφ(‖x − xj‖) + p(x), (2.2)

where φ(‖x−xj‖) is a RBF centred on the point xj , p(x) =
∑M

k=1 γkpk(x) where p1(x), . . . ,

pM (x) form a basis for the M =


 d+m− 1

m− 1


-dimensional linear space Πd

m−1 of polyno-

mials of total degree less than or equal to m−1 in d variables, and {λj}Nj=1 are the unknown

RBF coefficients. The following conditions are imposed on the approximation S(x),� S(xj) = fj, ∀j = 1, 2, . . . ,N ,� N∑

j=1

λjpk(xj) = 0, ∀k = 1, 2, . . . ,M ,

leading to a system of equations which can be written down in matrix form as


 A P

P T 0








λ

γ



 =





f

0



 , (2.3)
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where A ∈ R
N×N is referred to as the Gram matrix, λ ∈ R

N is the undetermined coefficient

vector and f ∈ R
N is the vector of function values. For sake of clarity, the matrix A in

expanded form is given below

A =




φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xN‖)
...

...
...

...

φ(‖xN − x1‖) φ(‖xN − x2‖) · · · φ(‖xN − xN‖)


 . (2.4)

Now from Equation (2.3), it can be seen that Problem 2.3 is well-posed if and only if

the coefficient matrix is non-singular, i.e., its inverse exists. Micchelli (1986) proved that

the interpolation problem in Equation (2.3) is solvable when the following two conditions are

met: (1) the set of points {xj}Nj=1 are distinct, and (2) the degree of the appended polynomial

is chosen to be the order of strictly conditionally positive definiteness of the RBF used.

Franke (1982) performed numerical experiments using 29 different interpolation meth-

ods on two-dimensional analytic functions and found out that the RBF interpolation tech-

nique using multiquadrics outperformed all other interpolation techniques. Madych & Nelson

(1989) proved that interpolation with MQ is exponentially convergent based on reproducing

kernel Hilbert spaces. Similar results were obtained by Buhmann (1990); Wu & Schaback

(1993). The error estimates for other RBFs can be found in Wendland (1997). In fact, it was

proved that the RBF interpolant is the best Hilbert-space approximation to the interpolation

data in Sun (1994). We now demonstrate the ability of RBF interpolation by approximating

Franke’s function (Franke, 1982),

F (x, y) = 3
4

[
exp

(
− (9x−2)2

4 − (9y−2)2

4

)
+ exp

(
− (9x+1)2

49 − (9y+1)2

10

)]
+

1
2 exp

(
− (9x−7)2

4 − (9y − 3)2
)
− 1

5 exp
(
−(9x− 4)2 − (9y − 7)2

)
.

(2.5)

We use Gaussian RBFs and taking 20 data points, the results obtained are shown in Figure

2.2. The left hand side shows Franke’s function and the right hand side shows the RBF

interpolant. It can be seen that with just 20 data points, the RBF interpolant approximates

Franke’s function very closely.

We briefly review another method known as the Hermite-RBF interpolation technique.

In this context we are given data {xi, Lif}, i = 1, . . . ,N, xi ∈ R
d where L = {L1, . . . ,LN}

is a linearly independent set of continuous linear functionals. We try to find an interpolant

of the form

S(x) =

N∑

j=1

λjLcjφ(‖x − c‖), x ∈ R
d, (2.6)



Chapter 2 Overview of radial basis functions 13

00.20.40.60.81

0
0.5

1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

xy

F
(x

,y
)

00.20.40.60.81

0
0.5

1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x
y

F
(x

,y
)

Franke’s function RBF Interpolant

Figure 2.2: Comparison of the true function and RBF interpolant using Gaussian RBF

satisfying

LiS = Lif, i = 1, . . . ,N

Here, Lc indicates the functional L acting on φ viewed as a function of the second argument

c. We then obtain a linear system of the form Ĥ+λ = Lif where the entries of the matrix

are

Ĥ+(i, j) = LiLcjφ, i, j = 1, . . . ,N. (2.7)

The matrix Ĥ+ is guaranteed to be non-singular when φ(‖.‖) is positive definite and the

data points {x}Nj=1 are distinct, see Wu (1998) for a detailed theoretical analysis.

Besides direct interpolation, RBFs are widely used in medical imaging (Carr et al., 1997),

surface reconstruction (Dinh et al., 2002) and Neural networks (Park & Sandberg, 1991) to

name a few.

2.3 RBF collocation for PDEs

In this section, we briefly outline how RBFs can be used for solving partial differential equa-

tions (PDEs). The main advantage of RBF based methods is that they are truly meshless

schemes since only a scattered set of collocation points is used and no connectivity informa-

tion is required. Also, since RBFs are dimension independent (φ is only a function of r),

the extension of these meshless schemes to higher dimensions is straight forward. Generalis-

ing the concept of RBF interpolation (Equations (2.2-2.4)), if L is an interior linear partial
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differential operator with some boundary operator B, then an approximation û(x) to the

solution u(x) of Lu(x) = f(x); x ∈ Ω, Bu(x) = g(x); x ∈ ∂Ω can be obtained by letting

û(x) =

N∑

j=1

λjφ(‖x − xj‖) (known as unsymmetric method (Kansa, 1990a)). The unknown

RBF coefficients are obtained by satisfying

Lû(xi) = f(xi) 1 ≤ i ≤ nd,

Bû(xi) = g(xi) nd + 1 ≤ i ≤ N,
(2.8)

where N is the total number of collocation points considered and nd is the number of interior

collocation points.

An alternative procedure, known as the symmetric RBF collocation method, and based

on Hermite interpolation was proposed by Fasshauer (1996) and further studied by Franke

& Schaback (1998). Here, the approximation of the function û(x) is written as

û(x) =

nd∑

j=1

λjLcφ(‖x − cj‖) +
N∑

j=nd+1

λjBcφ(‖x − cj‖) + p(x), (2.9)

where Lc is the interior differential operator L operated on the second argument (centres) of

the RBF φ(‖x − cj‖) and Bc refers to the boundary operator similarly. The coefficient

matrices generated here are (anti)-symmetric as opposed to the unsymmetric coefficient

matrices generated by the earlier method.

2.4 Theoretical and computational aspects

In this section, we discuss the theoretical and computational issues encountered in RBF based

methods. The RBF interpolation problem is well-posed provided one appends a polynomial

of degree m to an RBF of SCPD(m) and the data points {xj} are distinct, see Micchelli

(1986). In the case of unsymmetric RBF collocation, the non-singularity of coefficient matrix,

cannot be proved from RBF interpolation as the rows of the coefficient matrix are gener-

ated by two different operators (Fasshauer, 2005). Even though theoretical results for the

unsymmetric method are scarce, this method is quite popular due to the inherent simplicity

of implementation and its exponential convergence rate, see Kansa (1990a,b); Sharan et al.

(1997). In Kansa (1999), it was suggested that if the centres of the RBF are distinct and the

PDE problem is well-posed, the coefficient matrix is generally found to be non-singular. Oc-

currences of singular coefficient matrix are very rare (Hon & Schaback, 2001). Also note that

the coefficient matrices generated are dense and hence require O(N2) memory and O(N3)
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operations for factorisation. A variety of PDEs like initial value problems (Hon & Mao,

1997), tissue engineering problems (Hon et al., 1997), Burger’s equation (Hon & Mao, 1998),

shallow water equations (Wong et al., 1999) and financial problems (Hon & Mao, 1999) have

been solved using unsymmetric RBF method. In comparison the symmetric method is well-

posed and the non-singularity of the coefficient matrix has been proved in Wu (1998). Also,

as one increases the number of RBF centres in a problem, the coefficient matrices of both

methods tend to become highly-ill-conditioned. It is worth mentioning at this point that

several proposals have been made to reduce this ill-conditioning (Kansa & Hon, 2000) like

preconditioners, domain decomposition methods and block solvers. We address this issue

in more detail in the latter part of the thesis. Finally, in the context of RBF interpolation,

Beatson et al. (1999) showed that by recasting the RBFs into a different set of basis functions

based on far field expansions of the RBFs leads to better conditioned matrices. This change

in basis leads to approximate cardinal functions and lowers the computational cost of solving

the interpolation problem to O(N logN) operations. For more details on cardinal functions,

the reader is referred to Buhmann & Micchelli (1992); Baxter (1992).

We now turn our attention to the issue of selecting the shape parameter in σ-tunable

RBFs. In the case of MQ interpolation, Madych (1992) showed that the convergence rate is

O(ν
σ
h ), where ν < 1 and h is the average distance between pairs of data centres. In case of

σ-tunable RBFs, the accuracy of the RBF interpolant increases as the shape parameter σ is

increased. However, this increase in σ tends to make the Gram matrix highly ill-conditioned.

This condition is referred to as Schaback’s uncertainty principle (Schaback, 1995). It is found

that the RBF approximations are more accurate at the verge of ill-conditioning. Numerical

studies by Cheng et al. (2003) have shown that when MQ RBF is applied to elliptic PDEs,

the convergence rate of the unsymmetric method is O(ξ
σ
h ), where ξ is a constant.

From the above presented facts, it can be clearly seen that the shape parameter influences

the accuracy profoundly. Unfortunately, no theoretical results are present in the literature

which strongly suggest guidelines on what value of σ should be used. In RBF interpolation

methods, the value of σ can be estimated by statistical techniques like the leave-one out

procedure . In this procedure, one constructs the RBF interpolant using N − 1 data points

and then predicts the function value at the N th point. The value of σ is then re-adjusted

so that the predicted function value is the same as the known function value at xN . More

details about how to implement computationally efficient procedures to estimate the value

of σ for interpolation and regression problems can be found in Keane & Nair (2005). This
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procedure has been later developed to obtain the optimal shape parameter for each stencil

in the RBF-FD method. However, such a statistical procedure cannot be directly applied for

RBF collocation method for PDEs. Empirical studies have been made by researchers in the

past to obtain a suitable value for the shape parameter (see Franke (1982); Hardy (1990);

Carlson & Foley (1991); Rippa (1999)). Hardy (1971) suggested the value of the shape

parameter σ for MQ RBF to be kept as 0.815dmin, where dmin is the minimum distance

between any two centres in the domain. Kansa et al. (Kansa, 1990b; Kansa & Carlson,

1992) conducted numerical studies on the MQ RBF and came up with the following relation

σ2
i = σ2

min(
σ2

max

σ2
min

)(
i−1
N−1

) ,

where σ2
min and σ2

max are preset parameters, N is the total number of data centres and i

denotes the index of the point where the RBF is centred. It has been shown that using

variable shape parameters leads to better conditioning of the coefficient matrix. However,

these results are specific to MQ and cannot be generalised to other RBFs. In this thesis

for RBF collocation methods, we propose an optimisation strategy for obtaining the shape

parameter using a suitable norm of the residual as the objective function, for time-dependent

PDEs.



Chapter 3

RBF Collocation Schemes

In this chapter, we present a series of numerical experiments conducted on the unsteady

convection-diffusion equation (CD). The convection-diffusion equation is widely used to

model a variety of physical, chemical, economical and financial forecasting processes to name

a few (Roos et al., 1996). The peculiarity of this equation is that it represents the coupling

of two different phenomena, convection and diffusion. It also serves as a simplified model

problem to the Navier-Stokes equation in fluid dynamics. One major difficulty when solving

this problem arises from the fact that when the convective term dominates, the approxima-

tion can be contaminated due to spurious oscillation and numerical diffusion (Morton, 1995).

The governing equation is parabolic for diffusion dominated cases and turns hyperbolic for

convection dominated cases. Traditionally, Finite Difference (FD) and Finite Element (FE)

schemes have been utilised to solve the convection-diffusion equation. These schemes work

well for diffusion dominated problems. However, when the convective term dominates, special

methods with artificial viscosity, upwinding etc., have to be used to stabilise the numerical

scheme (Ferziger & Peric, 1999; Zienkiewicz & Taylor, 2000). All the above schemes are grid

based schemes which need a discretisation of the domain into elements, which in itself can

be a non-trivial task for complicated domains. Previous work focusing on the solution of the

steady and unsteady convection-diffusion equations using RBFs can be found in the litera-

ture; see, for instance, Kansa (1990b); Boztosun & Charafi (2001); Power & Barraco (2002);

Li & Chen (2003); Zerroukat et al. (2000); Boztosun et al. (2002); Boztosun & Charafi (2002)

and the references therein.

In this chapter we present a numerical study to investigate the performance of different

RBFs for the unsteady CD equation (Chinchapatnam et al., 2006b). We also develop a

new symmetric collocation scheme for time-dependent problems and compare it with the

17
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unsymmetric scheme. The stability analysis of both unsymmetric and symmetric schemes

for explicit as well as Crank Nicholson (CN) time-stepping are presented. Finally, numerical

results are presented for one-dimensional and two-dimensional problems to compare the

performance of the unsymmetric and symmetric collocation techniques. More specifically,

we compare the performance of Gaussian (e−r
2/σ), MQ ((1 + r2

σ )
1
2 ), IMQ ((r2 + σ2)

−1
2 ),

TPS (r4 log r, r6 log r, r8 log r) and Quintics (r7). Numerical studies suggest that symmetric

collocation is only marginally better than the unsymmetric approach. Further it appears

that both collocation techniques require a very dense set of collocation points in order to

achieve accurate results for convection dominated cases.

3.1 Formulations

In this section, we present unsymmetric and symmetric collocation schemes using RBFs to

spatially discretise the unsteady convection-diffusion equation. We also present a θ-weighted

time stepping scheme for temporal discretisation.

Consider an unsteady convection-diffusion equation of the form

∂u(x, t)

∂t
+ Lu(x, t) = f(x, t) x ∈ Ω ⊂ R

d, t > 0, (3.1)

where L is the convection-diffusion operator, of the form

L =
(
κ∇2 + V · ∇

)
, (3.2)

where ∇2 and ∇ denote the Laplacian and the gradient operator, respectively. The diffusion

coefficient is denoted by κ; V is a constant velocity vector and u(x, t) represents a potential

function. The CD equation is solved on a bounded physical domain Ω where ∂Ω denotes its

boundary and f(x, t) is a known function.

Equation (3.1) has to be supplemented with an initial condition of the form

u(x, t) = u0(x), t = 0, (3.3)

and with a boundary condition given by

Bu(x, t) = g(x, t), t > 0, (3.4)

where B can be a Dirichlet, Neumann or a mixed boundary operator; u0(x) and g(x, t) are

known functions.
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A dimensionless number known as the Peclet number defined by Pe = LV
κ , where L is a

characteristic length, relates the convection phenomenon to the diffusion phenomenon for the

CD equation. When the Peclet number is high (≈ Pe > 50.0), the convection term dominates

and when the Peclet number is low (≈ Pe < 1.0) the diffusion term dominates.

3.1.1 Unsymmetric RBF-Theta collocation scheme

In the unsymmetric scheme, the solution u(x, t) is approximated by a linear combination of

RBFs as

u(x, t) =
N∑

j=1

λj(t) φ(‖x − cj‖), (3.5)

where φ(‖x − cj‖) : R
d → R is a RBF with centre cj ∈ R

d. λj(t), j = 1, 2, . . . ,N are

undetermined RBF coefficients which evolve with time.

The centres of the RBFs used in Equation (3.5) are chosen from a cloud of points situated

within the domain Ω and on the boundary ∂Ω, i.e., C = {(ci)|i=1,nd
∈ Ω, (ci)|i=nd+1,nd+nb

∈
∂Ω}, where nd and nb denote the number of centres inside the domain and on the boundary,

respectively. Henceforth, we shall denote the total number of centres as N (N = nd + nb).

For simplicity of presentation, consider the case when the set C coincides with the set of

collocation points. Substituting Equation (3.5) in the governing Equation (3.1) and in the

boundary conditions leads to

N∑

j=1

dλj
dt

φ(‖xi − cj‖) = fi(t) −
N∑

j=1

λjLxφ(‖xi − cj‖) i = 1, . . . , nd, (3.6)

N∑

j=1

Bxφ(‖xi − cj‖) = gi(t) i = nd + 1, . . . , nd + nb, (3.7)

where Lxφ(‖xi− cj‖) and Bxφ(‖xi− cj‖) denote the application of the convection-diffusion

and boundary operators on the RBF φ(‖x− c‖) as a function of the first variable i.e., x and

evaluated at xi.

Equations (3.6) and (3.7) can be rewritten in matrix form as

Φd
dλ

dt
= f − LxΦdλ, (3.8)

BxΦbλ = g, (3.9)

where Φd, LxΦd ∈ R
nd×N , λ ∈ R

N , f ∈ R
nd , BxΦb ∈ R

nb×N , and g ∈ R
nb . For sake of
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clarity, the matrix Φd and Φb can be written in expanded form as

Φd =




φ(‖x1 − c1‖) · · · φ(‖x1 − cnd
‖) · · · φ(‖x1 − cN‖)

...
. . .

...
. . .

...

φ(‖xnd
− c1‖) · · · φ(‖xnd

− cnd
‖) · · · φ(‖xnd

− cN‖)


 ∈ R

nd×N ,

Φb =




φ(‖xnd+1 − c1‖) · · · φ(‖xnd+1 − cnd
‖) · · · φ(‖xnd+1 − cN‖)

...
. . .

...
. . .

...

φ(‖xnd+nb
− c1‖) · · · φ(‖xnd+nb

− cnd
‖) · · · φ(‖xnd+nb

− cN‖)


 ∈ R

nb×N ,

and the vectors f , λ and g in their expanded form read as

f = [f1 f2 · · · fnd
]T ∈ R

nd,

λ = [λ1 λ2 · · · λnd
· · ·λN ]T ∈ R

N ,

g = [g1 g2 · · · gnb
]T ∈ R

nb .

Using the notation λn+1 = λ(tn+1), where tn+1 = tn + δt and introducing θ-weighting

(0 ≤ θ ≤ 1), we get

Φd{
λn+1 − λn

δt
} = fn+1 − {θ LxΦdλ

n+1 + (1 − θ) LxΦdλ
n}, (3.10)

BxΦbλ
n+1 = gn+1. (3.11)

Equations (3.10) and (3.11) can be combined as follows


 Φd + θ δt LxΦd

BxΦb


λn+1 =


 Φd − (1 − θ) δt LxΦd

0


λn +


 δt fn+1

gn+1


 , (3.12)

where 0 ∈ R
nb×N .

Equation (3.12) can be rewritten in compact form as

λn+1 = H−1
+ H−λn + H−1

+ F n+1, (3.13)

where

H+ =


 Φd + θ δt LxΦd

BxΦb


 , H− =


 Φd − (1 − θ) δt LxΦd

0




and

F n+1 =


 δt fn+1

gn+1


 .

Equation (3.5) applied for all interior and boundary collocation points can be written in

matrix form as

u = Aλ, (3.14)
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where A =


 Φd

Φb


 ∈ R

N×N denotes the Gram matrix.

Using Equation (3.14), Equation (3.13) can be written in terms of the discrete values of

the field variable as

un+1 = AH−1
+ H−A−1un + AH−1

+ F n+1. (3.15)

Since no theoretical proof exists for the invertibility of the matrix H+ when θ > 0 (Hon

& Schaback, 2001), it is not possible to show that unsymmetric collocation scheme is well

posed for such cases. For the case of the explicit scheme with θ = 0, only the Gram matrix

A needs to be inverted. Provided the set of collocation points are distinct, the invertibility

of this matrix can be guaranteed due to the result of Micchelli (1986).

3.1.2 Symmetric RBF-Theta collocation scheme

Next we present a symmetric collocation scheme for the unsteady convection-diffusion equa-

tion. In this scheme, as in the case of Fasshauer’s method (Fasshauer, 1996), the potential

function u(x, t) is approximated as

u(x, t) =

nd∑

j=1

λj(t) Lcφ(‖x − cj‖) +

nd+nb∑

j=nd+1

λj(t) Bcφ(‖x − cj‖) + Pm(x), (3.16)

where Lc and Bc are operators applied on the RBF as a function of the second variable i.e.,

c, and Pm(x) is a polynomial term of degree m ≤ N .

For positive definite RBFs such as IMQ and Gaussian we do not need to add a polynomial

term to guarantee invertibility. Hence, by letting Pm(x) ≡ 0 and substituting Equation

(3.16) into the governing Equation (3.1) and boundary conditions and collocating on set C,

we obtain

nd∑

j=1

dλj
dt

Lcφ(‖xi − cj‖) +

nd+nb∑

j=nd+1

dλj
dt

Bcφ(‖xi − cj‖)

−
nd∑

j=1

λjLxLcφ(‖xi − cj‖) (3.17)

−
nd+nb∑

j=nd+1

λjLxBcφ(‖xi − cj‖) = fi(t), i = 1, . . . , nd,

nd∑

j=1

λjBxLcφ(‖xi−cj‖)+
nd+nb∑

j=nd+1

λjBxBcφ(‖xi−cj‖) = gi(t), i = nd+1, . . . , nd+nb. (3.18)
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Rewriting Equations (3.16) and (3.18) in matrix form and applying θ-weighting (0 ≤ θ ≤
1), we get

[LcΦd + BcΦd + δt θ (LxLcΦd + LxBcΦd)]λ
n+1 = δt fn+1

+ [LcΦd + BcΦd − δt (1 − θ) (LxLcΦd + LxBcΦd)]λ
n, (3.19)

[BxLcΦb + BxBcΦb]λ
n = gn+1. (3.20)

Let Φ̂d = LcΦd+BcΦd and Φ̂b = LcΦb+BcΦb. Hence, the preceding system of equations

can be written as

 Φ̂d + θ δt LxΦ̂d

BxΦ̂b


λn+1 =


 Φ̂d − (1 − θ) δt LxΦ̂d

0


λn +


 δt fn+1

gn+1


 . (3.21)

Equation (3.21) can be rewritten in compact form as

λn+1 = Ĥ
−1

+ Ĥ−λn + Ĥ
−1

+ F̂
n+1

, (3.22)

where

Ĥ+ =


 Φ̂d + θ δt LxΦ̂d

BxΦ̂b


 , Ĥ− =


 Φ̂d − (1 − θ δt LxΦ̂d

0




and

F̂
n+1

=


 δt fn+1

gn+1


 .

Equation (3.16) can be written in matrix form as

u = Âλ, (3.23)

where Â =


 Φ̂d

Φ̂b


 ∈ R

N×N .

Using Equation (3.23), equation (3.22) can be rewritten as

un+1 = ÂĤ
−1

+ Ĥ−Â
−1

un + ÂĤ
−1

+ F̂
n+1

. (3.24)

In contrast to the unsymmetric collocation scheme, it can be readily shown, using the

results of Wu (1998), that the matrix Ĥ+ is invertible for any value of θ provided the set

of collocation points are distinct. This implies that the symmetric collocation scheme is

well-posed.
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3.2 Stability analysis

In this section, we present an analysis of the stability of the unsymmetric and symmetric

meshless schemes using a matrix method. Initially, we consider the unsymmetric scheme.

A perturbation, en = un − ũn is introduced into Equation (3.15), where un is the discrete

exact solution and ũn is the numerically computed solution. The equation for the error en+1

can then be written as

en+1 = Ken, (3.25)

where the amplification matrix K = AH−1
+ H−A−1. The numerical scheme will be stable

if as n → ∞, the error en → 0. This can be guaranteed provided ρ(K) ≤ 1.0, where ρ(K)

denotes the spectral radius of the amplification matrix1 (necessary condition). Substituting

K in Equation (3.25) we get

H+A−1en+1 = H−A−1en. (3.26)

Assuming Dirichlet boundary conditions (i.e., B = I, where I is the identity operator),

Equation (3.26) can be written as

[I + θ δt M ]en+1 = [I − (1 − θ) δt M ]en, (3.27)

where I ∈ R
N×N is the identity matrix and the matrix M =


 LΦd

0


A−1.

It can be seen from Equation (3.27) that stability is assured if all the eigenvalues of the

matrix [I + θ δt M ]−1[I − (1 − θ) δt M ] are less than unity, i.e.,
∣∣∣∣
1 − (1 − θ) δt λM

1 + θ δt λM

∣∣∣∣ ≤ 1, (3.28)

where λM is an eigenvalue of the matrix M . The eigenvalues of the matrix M can be

calculated by solving the generalised eigenvalue problem

LΦds = λMAs. (3.29)

For the case of the Crank-Nicholson scheme (θ = 0.5), the inequality (3.28) is always satisfied

if λM ≥ 0. This implies the scheme is unconditionally stable if λM ≥ 0.

When θ = 0, we obtain the purely explicit time-stepping formulation. The condition for

stability then becomes

|1 − δt λM | ≤ 1. (3.30)

1The method is stable provided the spectral norm ‖K‖ ≤ 1, i.e., ρ(K) ≤ 1 (a necessary but not sufficient

condition).
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Hence the explicit formulation will be stable if

δt ≤ 2

λM
and λM ≥ 0. (3.31)

The stability criteria, Equation (3.28) and Equation (3.31), derived for the unsymmet-

ric collocation scheme can be readily extended to the symmetric scheme. Using the same

approach as for the unsymmetric scheme, it can be shown that the symmetric collocation

scheme (Equation 3.24) is stable, if
∣∣∣∣
1 − (1 − θ) δt λMH

1 + θ δt λMH

∣∣∣∣ ≤ 1, (3.32)

where λMH
is an eigenvalue of the matrix MH =


 LxΦ̂d

0


 Â

−1
. The symmetric scheme is

unconditionally stable for θ = 0.5, if λMH
≥ 0. Similar to the unsymmetric stability analysis,

for the explicit time-stepping case (θ = 0), we obtain the same inequality as Equation (3.31).

The only difference is that λM has to be replaced with λMH
.

It can be seen from inequalities (3.28) and (3.32) that the stability of the unsymmetric

and symmetric collocation schemes depends on three factors, viz., θ, δt and the eigenvalues

of the matrix M or MH . In the case of RBFs like TPS and Quintics, which do not have

a shape parameter, the eigenvalues of the matrix M or MH depend only on the mesh

spacing parameter h (h is defined to be the minimal distance between any two collocation

points in the domain). Hence, a distribution of collocation points is acceptable only if all

the eigenvalues (λMH
or λM ) are positive and θ = 0.5. However in the case of σ-tunable

RBFs, the stability also depends on the value of the shape parameter σ. An ideal solution

will be to establish bounds for the eigenvalues of the matrix M or MH as a function of the

mesh spacing parameter h and the shape parameter σ. Since no such result can be derived

explicitly, we numerically investigate the influence of the parameters h and σ on stability.

We concentrate on the case of the Crank-Nicholson scheme (θ = 0.5).

Figure 3.1 shows how the smallest eigenvalue of M (λmin) varies as a function of σ, when

the mesh spacing h is kept constant. Recollect that the stability condition is satisfied only

when λmin ≥ 0. It can be seen from Figure 3.1 that stability occurs over a varied region of

shape parameters. Also, we can observe that there exist pockets of stability and these pockets

tend to become narrower and narrower as the shape parameter σ increases. To further the

numerical studies on the issue of stability, we define a critical shape parameter σcrit, where

for all σ < σcrit, the stability conditions of the corresponding numerical scheme are satisfied

(For example σcrit ≈ 2 in Figure 3.1).
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Figure 3.1: A typical stability plot using IMQ RBF on the domain [0, 1]× [0, 1]
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Figure 3.2: Stability regimes for σ-tunable RBFs (unsymmetric method)

We present the regions of stability for each of the σ-tunable RBF as obtained numerically.

Figure 3.2 shows the stability regions of the three σ-tunable RBFs when the unsymmetric

formulation is applied. Figure 3.3 shows the stability regions of the Gaussian and IMQ RBFs

when the symmetric formulation is applied. On both these graphs, the mesh spacing h is

plotted on the x-axis and the values on y-axis represent (σcrit/h). Note that h is decreasing

as we go from left to right in Figure 3.2 and Figure 3.3. The critical shape parameter

(σcrit) is calculated for 9 different mesh spacings and a second order spline is fitted along
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Figure 3.3: Stability regimes for σ-tunable RBFs (symmetric method)

the points to obtain the regions of stability. From these figures, it can be seen that as the

number of collocation points increases, the range of shape parameter values over which the

stability condition is satisfied decreases. This would mean that as more and more collocation

points are added in the domain, the freedom of varying the shape parameter is decreased,

which would adversely affect the ability of the RBF to capture the solution of the intended

problem. Also, it can be seen that both schemes have quite similar regions of stability. For a

particular RBF, the stability region of the symmetric scheme is marginally larger than that

of the unsymmetric scheme.

3.3 Optimisation of shape parameter via residual minimisa-

tion

In the case of σ-tunable RBFs, the optimal value of the shape parameter σ is chosen by

observing the behaviour of a suitable residual error calculated on a very fine set of points in

the domain. This a posteriori error method has been employed earlier in the literature by

Cheng et al. (2003) in the context of solving elliptic operator problems.

In the case of the unsteady convection-diffusion equation, we calculate the residual error

for the unsymmetric scheme from the following relation derived from the governing CD

equation and the boundary condition
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δ(x, tn+1) =





f(x, tn) −
N∑

j=1

φ(‖x − cj‖)(
λn+1
j − λnj
δt

) −
N∑

j=1

λn+1
j (Lxφ(‖x − cj‖)) ; x ∈ Ω

g(x, tn) −
N∑

j=1

λn+1
j (Bxφ(‖x − cj‖)); x ∈ ∂Ω

(3.33)

Ideally, one should calculate the residual after every time step and tune the shape param-

eter accordingly. This however can be computationally very expensive. Hence, we calculate

the residual only for a few time steps and monitor its value at each value of σ.

Figure 3.4 shows how the actual error in the solution as well as the residual error varies

as a function of the shape parameter σ for two typical values of Pe = 1.0 and Pe = 10.0.

The actual error ε is defined as the L∞ norm of the difference between the analytical and

the numerically obtained solutions, i.e.,

ε = ‖uanalytical − unumerical‖∞,

and the residual error shown in Figure 3.4 is the L2 norm of the residual error vector.

It can be seen from Figure 3.4 that the L2 norm of the residual error vector behaves

similarly as the actual solution error with respect to the shape parameter. Hence the L2 norm

of the residual error vector can be used to estimate the optimal value of the shape parameter

when the exact solution of the problem is not known. In the numerical studies presented in the

next section, we compute the optimal value of σ using Brent’s one-dimensional minimisation

procedure (Brent, 1973), with the L2 norm of the residual error as the objective function to

be minimised. It can be noted from Figure 3.4 that there is a significant amount of noise

near the right edge of the plots. Hence, we fitted a third-order polynomial to the L2 norm

of the residual error as a function of the shape parameter till the point the first fluctuation

occurs. Subsequently, we use Brent’s method to search for the minima of the polynomial.

3.4 Numerical study: 1D problem

In this section, we present numerical studies for the 1D unsteady convection-diffusion prob-

lem employing unsymmetric and symmetric meshless approaches. We also investigate the

convergence trends of various RBFs on this problem. For the ease of implementation, in

the unsymmetric method, we have removed the polynomial term in the approximation of



Chapter 3 RBF Collocation Schemes 28

0 0.5 1 1.5 2 2.5 3

10
−6

10
−4

10
−2

10
0

10
2

10
4

Shape Parameter

E
rr

o
r

solution error
residual error

0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Shape Parameter

E
rr

o
r

solution error
residual error

1D:Low Peclet Number 1D:Medium Peclet Number

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10
−4

10
−2

10
0

10
2

10
4

10
6

Shape Parameter

E
rr

o
r

solution error
residual error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Shape  Parameter

E
rr

o
r

solution error
residual error

2D:Low Peclet Number 2D:Medium Peclet Number

Figure 3.4: Solution and residual error Vs shape parameter (σ) for MQ RBF

the potential function by RBFs. It is worth noting that for conditionally positive definite

RBFs, an additional polynomial term needs to be augmented to Equation (3.5) in order to

guarantee invertibility of the Gram matrix (Micchelli, 1986). However, it has been shown

that with or without the polynomial term the approximation provided by RBFs does not

vary much (Power & Barraco, 2002; Wong et al., 1999).

We solve the unsteady 1D CD equation using an increasing number of collocation points.

The results are plotted on a logarithmic scale with decreasing mesh spacing h on the x-axis

and the error ε on the y-axis. The mesh spacing h is defined as the minimum spacing between

any two collocation points in the domain. For σ-tunable RBFs, at every point in subsequent
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Figure 3.5: Analytical solution behaviour for three different Peclet numbers for the 1D

convection-diffusion equation (a = 1.0, b = 0.1, V = 1.0)

graphs, the shape parameter is tuned to its optimal value, using the procedure outlined in

Section 3.3.

We consider the following one-dimensional problem,

∂u

∂t
= κ

∂2u

∂x2
+ V

∂u

∂x
, 0 ≤ x ≤ 1 , t > 0, (3.34)

with the following Dirichlet boundary conditions and initial condition

u(0, t) = aebt , u(1, t) = aebt−c t > 0,

u(x, 0) = ae−cx.

In Equation (3.34), κ is the diffusion coefficient, V is a constant representing the velocity

and a,b,c are some arbitrary constants. The analytical solution for the above problem is

given by

u(x, t) = aebt−cx where c =
V ±

√
V 2 + 4κb

2κ
> 0. (3.35)

The Peclet number for the above problem is defined as Pe = V
κ . The analytical solution is

shown in Figure 3.5 for three Peclet numbers. Numerical results obtained for the 1D problem

using the unsymmetric meshless collocation scheme are presented for various Peclet numbers

in subsequent subsections.
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3.4.1 Uniform distribution

We consider a uniform distribution of collocation points initially. Uniformly distributed

collocation points ranging from Nmin = 11 to Nmax = 101 have been taken in the 1D domain

for studying the convergence trends of each RBF.
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Figure 3.6: Accuracy of different GSRBFs for Peclet number 1.0 (1D problem): a = 1.0,

b = 0.1, V = 1.0, κ = 1.0, δt = 0.001, tf = 1.0, θ = 0.5

Figure 3.6 shows the convergence trends of each of the GSRBF when Pe = 1.0. This is

the case when the convection term is comparable to the diffusion term. We find the RBFs

incorporating a shape parameter (MQ, IMQ and Gaussian), when properly tuned, have very

high convergence rates as compared to higher order TPS or quintics. From the figure, it can

be seen that the multiquadric (MQ) performs better compared to the other RBFs. We also

note that for the Gaussian RBF, the shape parameter optimisation procedure results in a

slight increase of the errors obtained as we increase the number of collocation points. This is

due to the fact that the Brent’s optimisation procedure searches for the optimal value in the

region σ < σcrit whereas the value of σ leading to better results might lie in the other pockets

of stability as can be seen in Figure 3.2. It is of interest to note that higher order TPS (like

r8 log r and r6 log r) tend to achieve results comparable to that of the multiquadrics as we

move from left to right in the graph (i.e., from a coarse to a dense set of collocation points).

We now investigate the behaviour of all the RBFs for a case when the convection term

slightly outgrows the diffusion term, i.e., Pe = 10.0. The analytical solution is not completely
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Figure 3.7: Accuracy of different GSRBFs for Peclet number 10.0 (1D problem): a = 1.0,

b = 0.1, V = 1.0, κ = 0.1, δt = 0.001, tf = 1.0, θ = 0.5

smooth and hence for a small number of collocation points, all the RBFs are unable to capture

the solution with a high degree of accuracy (see Figure 3.7). However, infinitely differentiable

RBFs (MQ, IMQ and Gaussian) produce results with errors, ε ≈ 10−3. As we increase the

number of collocation points, r8 log r and r6 log r outperform MQ, IMQ and Gaussians.
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Figure 3.8: Accuracy of different GSRBFs for Peclet number 100.0 (1D Problem): a = 1.0,

b = 0.1, V = 1.0, κ = 0.01, δt = 0.001, tf = 1.0, θ = 0.5
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Next consider the case of Pe = 100.0, where the convection term completely dominates

over the diffusion term. For this case the analytical solution has a sharp discontinuity near

the left boundary. The convergence trends of various RBFs for Pe = 100.0 are summarised

in Figure 3.8. It can be observed from the figure that the errors decrease as the number of

collocation points increases. The accuracy suffers as compared to the earlier cases of Pe = 1.0

and Pe = 10.0. This can be attributed to the numerical oscillations observed in the numerical

solution. However, for 271 collocation points spaced regularly in the 1D domain, we obtain

errors ε of magnitude 6.600E − 03 and 5.068E − 04 for r4 log r and MQ RBFs respectively.

This suggests that in principle, the unsymmetric scheme is capable of capturing the solution

given sufficient number of collocation points. The main hindrance being that for a large

number of collocation points, the matrix H+ turns out to be highly ill-conditioned.

3.4.2 Unsymmetric Vs Symmetric schemes

We now investigate the performance of the symmetric scheme on this 1D problem. Gaussian

and IMQ RBFs are used as they do not require a polynomial term in their interpolation

to guarantee invertibility of the matrix Ĥ+. Our results are summarised in Table 3.1 and

Table 3.2 for the Gaussian and IMQ RBFs respectively. The first column shows the number

of collocation points used in the domain. The errors obtained from both the schemes for

each of the Peclet numbers, are presented in the subsequent columns. It can be seen from

the results that the symmetric scheme is marginally better than the unsymmetric scheme.

However, the unsymmetric scheme has the advantage of being easier to implement.

Table 3.1: Errors ε obtained using unsymmetric and symmetric schemes with Gaussian

RBF - 1D problem (θ = 0.5)

Pe = 1.0 Pe = 10.0 Pe = 100.0

N Unsym. Sym. Unsym. Sym. Unsym. Sym.

11 1.62E-06 2.50E-08 2.66E-03 1.13E-03 5.67E-01 5.45E-01

21 1.42E-06 7.60E-07 8.54E-05 7.72E-05 4.67E-01 2.29E-01

31 7.06E-05 5.79E-06 3.44E-04 2.81E-05 1.62E-01 9.82E-02

41 2.63E-06 2.68E-05 4.33E-04 4.86E-04 6.11E-02 6.30E-02

51 1.59E-04 9.73E-05 4.85E-04 1.27E-04 3.46E-02 3.43E-02
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Table 3.2: Errors ε obtained using unsymmetric and symmetric schemes with inverse

multiquadric RBF - 1D problem (θ = 0.5)

Pe = 1.0 Pe = 10.0 Pe = 100.0

N Unsym. Sym. Unsym. Sym. Unsym. Sym.

11 9.93E-07 9.52E-08 1.66E-03 1.43E-03 4.73E-01 4.31E-01

21 2.44E-06 4.59E-08 1.87E-04 7.92E-05 2.39E-01 2.38E-01

31 2.77E-06 7.82E-07 6.49E-05 3.30E-05 9.55E-02 1.10E-01

41 1.62E-06 1.61E-06 8.58E-05 2.51E-05 6.25E-02 8.63E-02

51 3.20E-06 3.72E-06 5.81E-05 1.97E-05 3.94E-02 3.75E-02

3.5 Numerical study: 2D problem

Here, we investigate the behaviour of RBFs on a two dimensional analog of the one di-

mensional problem considered earlier. The implementation issues related to extending the

problem to the two-dimensional case are trivial since a RBF is a function of the Euclidean

distance between any two collocation points in the domain. We first present results obtained

using the unsymmetric scheme and subsequently we compare them with those obtained using

the symmetric scheme.

The governing equation is written as

∂u

∂t
= κx

∂2u

∂x2
+ κy

∂2u

∂y2
+ Vx

∂u

∂x
+ Vy

∂u

∂y
, 0 ≤ x, y ≤ 1; t > 0 (3.36)

with the boundary conditions

u(0, y, t) = aebt(1 + e−cyy), u(1, y, t) = aebt(e−cx + e−cyy),

u(x, 0, t) = aebt(1 + e−cxx), u(x, 1, t) = aebt(e−cxx + e−cyy),
(3.37)

and with the initial condition

u(x, y, 0) = a
(
e−cxx + e−cyy

)
. (3.38)

The analytical solution is given by

u(x, y, t) = aebt
(
e−cxx + e−cyy

)
, (3.39)

where

cx =
Vx ±

√
V 2
x + 4bκx

2κx
> 0 and cy =

Vy ±
√
V 2
y + 4bκy

2κy
> 0.
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Figure 3.9: Analytical solution behaviour for three different Peclet numbers for the 2D

convection-diffusion equation (a = 1.0, b = 0.1, κ = 1.0) at time t = 1.0

If we put Vx = Vy = V and κx = κy = κ, for the two dimensional case we can define an

analogous Peclet number as Pe = V
κ . As before, we present our results for the 2D problem

for three different Peclet numbers (1.0,10.0 and 100.0). The analytical solutions are shown

in Figure 3.9. We consider uniform and scattered distribution of collocation points for the

2D problem. The final results were obtained by predicting the solution u(x, t) on a fine mesh

points (50 × 50).

3.5.1 Uniform distribution

We consider uniformly distributed collocation points ranging from Nmin = 6 × 6 to Nmax =

25 × 25 in the 2D domain to obtain the convergence trends of each RBF.

Figure 3.10 shows the convergence trends of the RBFs for the 2D problem when Pe = 1.0.

As before, σ-tunable RBFs have high convergence rates and accurate results are obtained

with TPS provided there are sufficient number of collocation points.

From Figure 3.11, it can be observed that, for a small number of collocation points, the

errors in the approximation provided by various RBFs are quite high. As we move to the

right side of the graph we get acceptable results for r8 log r, r6 log r, MQ and IMQ RBFs.

This is the case of Pe = 10.0 when the convection term is one order more than that of the

diffusion term. A minimal mesh of 21×21 uniform collocation points is needed for the RBFs

to produce acceptable results.
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Figure 3.10: Accuracy of different GSRBFs for Peclet number 1.0 (2D problem): a = 1.0,

b = 0.1, Vx = 1.0, Vy = 1.0, κx = 1.0, κy = 1.0, δt = 0.001, tf = 0.1, θ = 0.5
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Figure 3.11: Accuracy of different GSRBFs for Peclet number 10.0 (2D problem): a = 1.0,

b = 0.1, Vx = 10.0, Vy = 10.0, κx = 1.0, κy = 1.0, δt = 0.001, tf = 0.1, θ = 0.5

The accuracy of various RBFs for Pe = 100.0 is shown in Figure 3.12. All the RBFs

with the given set of collocation points are not able to capture the sharp discontinuity

present in the analytical solution. This can be attributed to the fact that more number

of collocation points are needed to capture the discontinuity. However, as we increase the

number of collocation points it is observed that the coefficient matrix H+ becomes highly
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Figure 3.12: Accuracy of different GSRBFs for Peclet number 100.0 (2D problem): a = 1.0,

b = 0.1, Vx = 100.0, Vy = 100.0, κx = 1.0, κy = 1.0, δt = 0.001, tf = 0.1, θ = 0.5

ill-conditioned.

We now investigate the rate of convergence of the meshless collocation methods. To the

best of our knowledge, theoretical results on RBF based meshless collocation methods for

time-dependent problems are scarce in the literature. However, theoretical estimates for RBF

interpolation are well known (Powell, 1992; Schaback, 1999). Also, for the symmetric RBF

method, convergence estimates for linear elliptic PDEs can be found in the work of Franke &

Schaback (1998). So, to gain some insight into the rate of convergence of meshless methods

for the unsteady convection-diffusion equation, we resort to a numerical study. We consider

the case when θ = 0.5, which corresponds to the Crank-Nicholson scheme (CN), which is

second-order accurate in time. We let δt = 1.0E−04 to ensure that the temporal error terms

are very small in magnitude. We now estimate the convergence characteristics of the RBF

schemes as a function of the spatial distribution of collocation points (h) and Peclet number

(Pe). Since the effect of the shape parameter (σ) on the convergence is not well known, we

use a TPS (r8 log r) which does not have a shape parameter. We use a collocation point set

of 11 × 11, 21 × 21, 25 × 25 and 30 × 30 for our numerical study.

Figure 3.13 shows the convergence rates of the unsymmetric method as obtained numeri-

cally for different Peclet numbers. Note that we use increasing mesh spacing h on the x-axis.

The slope (ν) of each line in Figure 3.13 indicates the convergence rate. From the figure, it

can be seen that for low Peclet numbers the convergence rates are very high.
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Figure 3.13: Convergence rates of unsymmetric method for different Peclet numbers, RBF
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Figure 3.14: Convergence rate, ν, Vs Peclet number

Figure 3.14 shows how the convergence rate (ν) varies with Peclet number. From this

figure, a qualitative idea of the rate of convergence as a function of Pe can be obtained.

For each Peclet number, the unsymmetric method approximately converges at the rate of

O(hν), when r8 log r RBF is used. From Figure 3.14, it can be seen that the convergence rate

varies from O(h6) for low Peclet numbers to O(h2.2) for Pe = 50. Similar behaviour was also

observed when the symmetric method is used. This behaviour is expected because for high
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Pe, the ill-conditioning problem affects the accuracy of the unsymmetric and symmetric

schemes. It is also worth noting that similar trends are obtained when the time step is

decreased further.

3.5.2 Scattered distribution

We investigate the convergence trends of the various RBFs when a scattered set of collocation

points is taken in the computational domain. The random set of points were generated using

Sobol sequences (Sobol, 1979). Figure 3.15 shows the spatial distribution of the collocation

points for N = 121 and N = 625 points respectively.
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Figure 3.15: Scattered distribution of points

The convergence behaviours for Peclet numbers of 1.0 and 10.0 are presented in Figure

3.16. From the figures, it can be observed that the RBFs are capable of approximating the

solutions when a set of randomly scattered collocation points are used. The results obtained

are comparable with those obtained using a uniformly distributed collocation point set.

3.5.3 Unsymmetric Vs Symmetric schemes

We now present a comparison table between the unsymmetric scheme and the symmetric

scheme for the two-dimensional problem. As before, we observe that both the schemes

perform equally well. The results for the IMQ RBF are summarised in Table 3.3.

It can be seen from Table 3.3 that for Peclet numbers 10.0 and 100.0, the accuracy of both

the methods increases with the number of collocation points. From the last row in Table
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Figure 3.16: Convergence behaviours of various GSRBFs for the 2D unsteady convection-

diffusion problem on a scattered set of points

Table 3.3: Errors ε obtained using unsymmetric and symmetric schemes with IMQ RBF

- 2D problem (θ = 0.5)

Pe = 1.0 Pe = 10.0 Pe = 100.0

N Unsym. Sym. Unsym. Sym. Unsym. Sym.

11×11 4.70E-05 2.09E-05 9.00E-03 5.30E-03 9.22E-01 9.50E-01

21×21 5.48E-05 5.07E-05 1.60E-03 1.60E-03 2.87E-01 3.05E-01

25×25 6.87E-05 6.45E-05 1.00E-03 1.00E-03 1.70E-01 1.90E-01

41×41 5.25E-05 5.21E-05 4.36E-04 4.25E-04 6.36E-02 4.97E-02

3.3, the results obtained for Pe = 100 using 41 × 41 points indicate that to obtain better

accuracies using the unsymmetric or symmetric schemes, a large number of collocation points

will be needed. However, the collocation matrix H+ for the unsymmetric scheme and Ĥ+ for

symmetric scheme become highly ill-conditioned with increase in the number of collocation

points.
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Table 3.4: Error and computational cost of CSRBF φ(r) = (1 − r)6+(35r2 + 18r + 3) for

different support parameter values and Pe = 1.0, a = 1.0, b = 0.1, V = 1.0, κ = 1.0, N = 51

δ ε CPU Time (sec)

0.1 0.4413 2.3449

0.2 0.0127 2.5054

0.3 0.0049 2.6349

0.4 0.0024 2.8369

0.5 0.0013 2.9402

0.6 8.30E-04 3.0150

0.7 5.57E-04 3.1793

0.8 3.95E-04 3.2307

0.9 2.92E-04 3.2393

1.0 2.24E-04 3.2417

1.5 8.26E-05 3.3265

3.6 A note on compactly supported RBFs

In this section, we present the results obtained for the CD equation when CSRBFs are

used (Djidjeli et al., 2004). The computational cost incurred by the unsymmetric method is

recorded for different support parameter (δ) values. We have taken a constant N = 51 for the

1D unsteady problem. The results obtained are presented in Table 3.4. We also compare the

error vs computational cost in Figure 3.17. From the figure, it can be seen that one obtains

better accuracy by increasing the support parameter which brings it nearer and nearer to a

dense coefficient matrix. The denser the matrix becomes, the more the ill-conditioning. The

same behaviour was observed even for the 2D problem.

3.7 Conclusion

In this chapter, we presented unsymmetric and symmetric meshless schemes for the unsteady

convection-diffusion equation. A θ-weighting scheme was used for time stepping. Stability

analysis of unsymmetric and symmetric schemes was presented for implicit as well as explicit

time stepping. For RBFs with a variable shape parameter, an a posteriori residual method

was introduced to obtain the optimal value of the shape parameter.
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Figure 3.17: Error Vs computational cost for a typical CSRBF

Numerical studies for 1D and 2D unsteady convection-diffusion problems have been suc-

cessfully carried out. The convergence trends of several globally supported RBFs were exam-

ined for Peclet numbers 1, 10 and 100. Both uniform and scattered distribution of collocation

points were considered. Our numerical results show that RBF based meshless schemes achieve

good accuracies even for moderate Peclet numbers. Also, for the particular case of unsteady

convection-diffusion problems, the choice of RBF used does make an impact on the accuracy

of the numerical solution. The symmetric scheme produces marginally better results as com-

pared to the unsymmetric scheme. We observed that the condition numbers of symmetric

collocation matrix (Ĥ+) are generally smaller than the condition numbers of the unsymmet-

ric collocation matrix (H+), as reported in Fasshauer (1996). However, the implementation

of the symmetric scheme is more difficult. Based on the convergence results obtained for

different RBFs, it can be observed that infinitely differentiable RBFs incorporating a shape

parameter (MQ and IMQ) produce good results over a variety of mesh spacings. However,

RBFs such as TPS or quintics give accurate results when there is a dense set of collocation

points. Moreover, there is no need of σ-tuning in these RBFs. Based on these observations,

the multiquadric RBF is chosen as the basis function in this thesis. The stability analysis

for σ-tunable RBFs suggests that the width of the interval from which the shape parameter

can be chosen decreases as we increase the number of collocation points. Also, even though

CSRBFs produce banded matrices, their accuracy is very much dependent on the value of

the support parameter. For the CD equation, when the support is much less than 1, one
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obtains a very sparse matrix and the coefficient matrix is well-conditioned. However, the re-

sults obtained for such a sparse matrix are very inaccurate. The accuracy becomes better as

we increase the support. Consequently, we end up with a completely dense matrix (support

> 1) in order to obtain results equivalent to that of GSRBFs.

For the high Peclet number problem, both the unsymmetric and symmetric schemes are

capable of producing acceptable results provided we increase the number of collocation points.

This motivates the development of alternate RBF based methods which can solve large scale

problems without the condition number becoming worse. In the next two chapters we explore

the development of RBF methods capable of solving large scale problems for improving

computational efficiency and numerical stability.



Chapter 4

RBF-Domain Decomposition

Methods

In this chapter, we discuss different Domain Decomposition Methods (DDMs) using RBFs

for solving PDEs. As discussed in the previous chapters, RBF methods suffer from ill-

conditioning which hinders their application to large scale problems. The objective of this

work is to investigate how DDMs can be leveraged to improve the efficiency of RBF col-

location methods (which have such a good convergence rate) for large scale problems. We

propose overlapping domain decomposition methods which are illustrated for time-dependent

problems and nonlinear problems (Chinchapatnam et al., 2006a, 2005).

In 1870, Schwarz introduced the concept of domain decomposition through the classical

Schwarz alternating algorithm. From then till today, DDMs have been well developed and

utilised for solving PDEs using FD, FE and FV schemes. For a detailed exposition of the

application of DDMs for FD, FE and FV methods, the reader is referred to Smith et al.

(1996); Quarteroni & Valli (1999). There have been a few works on DDMs using RBFs by

Dubal (1994) and Beatson et al. (2000). Beatson et al. (2000) used the concept of DDMs for

efficiently solving the RBF interpolation problem. Recently, some studies on using DDMs

to solve PDEs by RBF collocation have appeared in the literature (Wong et al., 1999; Zhou

et al., 2003; Li & Hon, 2004). Overlapping DDMs, non-overlapping DDMs with matched

and unmatched grids using RBFs have been successfully presented to solve elliptic problems

in Li & Hon (2004).

43
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4.1 Time-dependent PDEs

For time-dependent problems, the explicit multizone method due to Wong et al. (1999) is

the only RBF based domain decomposition method existing in the literature to the best of

our knowledge. In this section, we present Schwarz overlapping schemes for the solution of

time-dependent problems using RBFs. The proposed schemes are compared with the global

RBF-Theta collocation method and the explicit multizone domain decomposition method

(Wong et al., 1999) by solving an unsteady convection-diffusion problem for various Peclet

numbers. Stability analysis of the presented schemes suggest that for radial basis functions

incorporating a free shape parameter, the freedom of varying the shape parameter decreases

with increase in the number of collocation points. Also, we find that a major disadvantage of

the explicit multizone method arises from the requirement of using a very small time step to

ensure numerical stability. In contrast the Schwarz algorithms coupled with a semi-implicit

time discretisation RBF scheme permit large values of time step to be used. Numerical

studies show that the ill-conditioning problem of the global RBF-Theta method is reduced

by the proposed Schwarz schemes. Also, with an increase in the number of sub-domains the

efficiency of the Schwarz schemes increases with a slight loss in the accuracy.

We illustrate the domain decomposition scheme for a general linear time-dependent equa-

tion of the form

∂u(x, t)

∂t
+ Lu(x, t) = f(x, t); x ∈ Ω ∈ R

d,

Bu(x, t) = g(x, t); x ∈ ∂Ω ∈ R
d, (4.1)

where Ω denotes a closed physical domain over which the PDE is to be solved and ∂Ω denotes

its boundary. Here, L is a linear differential operator and B is an operator which imposes the

boundary conditions; u(x, t) is the desired field solution and f(x, t), g(x, t) are prescribed

functions.

4.2 Explicit multizone method

In this method, a second order explicit forward difference scheme is used for time stepping.

Assuming f(x, t) ≡ 0 and Dirichlet boundary conditions, temporal discretisation of Equation

(4.1) leads to

u(x, tn+1) = u(x, tn) − δt [Lu(x, tn)] + (δt2/2)L2u(x, tn); x ∈ Ω,

u(x, tn+1) = g(x, tn+1); x ∈ ∂Ω,
(4.2)
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where L2u(x, tn) denotes the application of the operator twice on the function u(x, tn).

The physical domain Ω is divided into m non-overlapping sub-domains such that

Ω =

m⋃

k=1

Ωk.

The set of collocation points C of cardinality N is divided into m subsets Cj, j = 1, 2, . . . ,m

such that

Ck
⋂

Cj = ∅ if k 6= j

and
m⋃

k=1

Ck = C.

Note that the points in collocation set Ck are contained within the sub-domain Ωk.

Another set Bk is formed such that for each sub-domain Ωk, the elements in Bk contain

all the points in the other sub-domains that lie within a certain pre-specified distance (∆)

from the artificial boundary of the sub-domain Ωk,

Bk = {x ∈ Ωl/l 6= k and Ωl is adjacent to Ωk and x ∈ Cl,
and distance of x from artificial boundary ≤ ∆} .

For example, B1 contains points present in the neighbouring sub-domains Ωj (j 6= 1) and

adjacent to the artificial boundaries of Ω1 within a distance ∆.

In addition to the above two sets of points, another set Sk is chosen such that for a

particular sub-domain Ωk, Sk contains a set of randomly chosen points from sub-domains Ωl

(l 6= k). Care needs to be exercised to ensure that the points in the set S are sparsely and

evenly distributed over the other sub-domains. A schematic figure of the multizone domain

decomposition is shown in Figure 4.1. Here, the whole domain is divided into three sub-

domains. The solid lines indicate the natural boundaries and the dash-dotted lines indicate

the artificial boundaries. In the figure the spatial distributions of the points in the sets C1,

B1 and S1 are shown.

For each sub-domain k, we now define Ω̄k as

Ω̄k = Ck
⋃

Bk
⋃

Sk.

At a given time step t = tn, an RBF is fitted on each of the computational sub-domain

Ω̄k, i.e.,

unk(x) =
∑

xj∈Ω̄k

λjφ(‖x − xj‖) ∀x ∈ Ω̄k. (4.3)
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Figure 4.1: Point distributions in the multizone sub-domains

Note that the total number of points in the set Ω̄k denoted by N̄k is less than N .

Collocating on each of the point in Ω̄k, the following RBF interpolation problem for each

sub-domain can be solved to obtain the RBF coefficients,

Akλ
n
k = unk . (4.4)

Note that the sub-domain coefficient matrix Ak does not vary with the time step. Hence

Ak needs to be inverted only once and the inverse can be used to calculate λnk efficiently

at subsequent time steps. Once λnk are calculated, the partial derivatives present in the

operator L are determined for each of the collocation points present in Ck. Note that the

points present in Bk and Sk are C-points of some other sub-domain.

The solution is advanced to the next time step t = tn+1 for Ωk using Equation (4.2). Once

un+1
k (x) is obtained for each sub-domain, the solution over the whole domain Ω is

un+1(x) = un+1
k (x)χk(x), (4.5)

where

χk(x) =





1, if x ∈ Ωk

0, if x /∈ Ωk

The continuity of the solution across the artificial boundaries of sub-domain Ωk is satisfied

in an indirect fashion by including the data point sets Bk and Sk. It is worth noting that

the explicit multizone scheme is easy to parallelise since the sub-domain RBF interpolation

problems are independent of each other.
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4.3 Overlapping Schwarz domain decomposition methods

In this subsection, we present the additive and multiplicative Schwarz algorithms. The

computational domain Ω is divided into k non-overlapping sub-domains. Each of the sub-

domains Ωk is extended to a larger sub-domain with overlap δkl between neighbouring regions

Ωl and Ωk.

We denote the extended sub-domain, its natural boundary and the artificial boundary

overlapped with other neighbouring sub-domains as Ωk, ∂Ωk and Γk, respectively. Let Ω̄k =

Ωk

⋃
∂Ωk

⋃
Γk denote the closed sub-domain, S denote the artificial boundary operator and

γk be the artificial boundary value of the sub-domain Ω̄k extracted from neighbouring sub-

domains. Figure 4.2 shows how the sub-domains are formed when the whole domain Ω is

divided into two sub-domains. The spatial distribution of the collocation points is also shown

in this figure.
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Figure 4.2: Point distributions in the Schwarz sub-domains

Applying the RBF-Theta method presented in Chapter 3 to each closed sub-domain Ω̄k,

an operator problem of the following form can be arrived at:

uk(x, t
n+1) + δt θLuk(x, tn+1) = uk(x, t

n) − δt (1 − θ)Luk(x, tn) + δt fk(x, t
n+1) x ∈ Ωk

Buk(x, tn+1) = gk(x, t
n+1) x ∈ ∂Ωk

Suk(x, tn+1) = γk(x, t
n+1) x ∈ Γk,

(4.6)

where B and S can be Dirichlet, Neumann or Robin-type boundary conditions. The basic
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idea of the overlapping Schwarz schemes is to solve Equation (4.6) for each sub-domain in

an iterative fashion.

For each iteration i, Equation (4.6) can be compactly written in matrix form as

H+
k λn+1

i,k = H−
k λnk + F n+1

k + Sn+1
i−1,k, (4.7)

where

H+
k =




Φd,k + δt θLΦd,k

BΦb,k

SΦs,k


 , H−

k =




Φd,k − δt(1 − θ)LΦd,k

0

0


 ,

and

F n+1
k =




0

gn+1
k

0


 , Sn+1

i−1,k =




0

0

γn+1
i−1


 .

As can be seen from Equation (4.7), only Sn+1
i−1,k changes across the iterations in the

right hand side of the equation, for a particular time t = tn+1. Note that the matrix H+
k

for each sub-domain does not change over iterations and hence needs to be inverted only

once. For the case when B and S are identity operators (Dirichlet conditions), the stability

analysis developed for the RBF-Theta method can be applied. Hence, the Schwarz schemes

are unconditionally stable for θ = 0.5 and λM ≥ 0.

In the Schwarz additive algorithm, the values on the artificial boundaries are updated

after solving the operator problem for all the sub-domains. On the common boundary, the

value of the field variable is taken to be the average of the field variable values obtained from

solving the individual sub-domain problems. This enforces continuity of the field variable

across the whole domain.

In the Schwarz multiplicative version of the algorithm, the field variable value is updated

in a sequential fashion. First, we solve Equation (4.7) on the first sub-domain. Then, the

boundary values of the field variable are updated. Then we solve Equation (4.7) for the next

sub-domain. We continue in this fashion, until we obtain convergence. Note that parallel

implementation of the multiplicative Schwarz scheme is much more difficult than that of the

additive Schwarz scheme.
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4.4 Computational effort

In this section, the computational effort required of the Schwarz schemes is estimated. It is

compared with the global RBF-Theta method and the explicit multizone method.

It can be shown that the operation count of the RBF-Theta method may be shown to be

χRBF−Theta ≈ 4N2p+ 2N3p+Nndp+ T
(
Nndp+ nbp+N2p

)
, (4.8)

where N = nd(interior) + nb(boundary) is the number of collocation points, T =
tf
δt is the

number of time steps and p is one unit cost of evaluating the RBF. In Equation (4.8), the

first term is the computational cost required to formulate the matrices A and H+. The

second term refers to the LU decompositions of the above two matrices. If the given set

of collocation points does not change, then we need to decompose the coefficient matrices

only once. The third term comes from obtaining the values of the RBF coefficients from the

initial condition. Finally, the fourth term represents the computational cost incurred over T

time evaluations.

Next, to calculate the operation count for the explicit method, we assume Ne as the

number of sub-domains used and s≪ N
Ne

refers to the number of extra points needed in each

sub-domain (deriving from the subset S). Also Tex =
tf
δt is the number of time evaluations

needed to reach the final time tf .

The operation count for the explicit multizone method is

Matrix Formulations LU Decompositions

χexplicit ≈

︷ ︸︸ ︷

Ne

[(
N

Ne
+ s

)2

p+ 2

(
N

Ne
+ s− nb

)2

p

]
+

︷ ︸︸ ︷

Ne

[(
N

Ne
+ s

)3

p

]

+ TexNe

(
N

Ne
+ s

)(
3
N

Ne
+ 3s− 2nb

)
p

︸ ︷︷ ︸
Time evaluations (4.9)

In Equation (4.9), the first term comes from the matrix formulations, the second term

from the LU factorisations of the Ne sub-domain Gram matrices and the third term is the

operation count happening over Tex time evaluations.

We now present the operation count for the Schwarz DDM (additive and multiplicative).

We denote the percentage of overlap (assumed constant over all the sub-domains) as δ.

Hence, the number of collocation points in each sub-domain are approximately ( NNe
+ δN).

Let niter be the number of Schwarz iterations needed to converge at each time step (assumed
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constant). Then the operation count for the Schwarz schemes is given by

Matrix Formulations LU Decompositions

χSchwarz ≈

︷ ︸︸ ︷

Ne

[
2

(
N

Ne
+ δN

)2

p+

(
N

Ne
− nb

)2

p

]
+

︷ ︸︸ ︷

2Ne

(
N

Ne
+ δN

)3

p

+Ne

(
N

Ne
+ δN

)2

p+ T

[
niter Ne

(
N

Ne
+ δN

)(
2N

Ne
+ δN − nb

)]
p

︸ ︷︷ ︸
Time evaluations (4.10)

Note that the difference between Schwarz additive and Schwarz multiplicative schemes ap-

proximately is in the value of niter.

We now compare the computational effort required by the explicit multizone method with

respect to the Schwarz schemes. The following assumptions are made:� Tex = α(T · niter) and α≫ 1.� nb = β N
Ne

(β < 1).� s = δN = γN (γ < 1).

Now, subtracting Equation (4.10) from Equation (4.9), we obtain

χexplicit − χSchwarz ≈ p
N2

Ne
×


(1 − β)2︸ ︷︷ ︸+ 2N2

e γ
2

︸ ︷︷ ︸+ 4
N2
e

N
γ

︸ ︷︷ ︸
− 2(1 + γ)2︸ ︷︷ ︸−

N

Ne
(1 + γ)3

︸ ︷︷ ︸
+ (1 + γ)︸ ︷︷ ︸ (α(3γ − 2β + 3) + β − γ − 2)︸ ︷︷ ︸Tniter


 .

O(1) O(1) O(1) O(1) O( NNe
) O(1) O(α)

(4.11)

From Equation (4.11), it can be seen that

χexplicit − χSchwarz ≡
(
O(α T niter) −O(

N

Ne
)

)
>> 0.

4.5 RBF-DDM for unsteady convection-diffusion equation

In this section, we apply the domain decomposition algorithms to solve the unsteady convection-

diffusion equation for different Peclet numbers. The two dimensional unsteady convection-

diffusion problem of the form

∂u

∂t
= κx

∂2u

∂x2
+ κy

∂2u

∂y2
+ Vx

∂u

∂x
+ Vy

∂u

∂y
, 0 ≤ x, y ≤ 1, t > 0 (4.12)
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is considered with the initial and boundary conditions given in Equation (3.38) and Equation

(3.37) respectively. The analytical solution is given in Equation (3.39).

If we put Vx = Vy = V and κx = κy = κ, for the two dimensional case we can define an

analogous Peclet number as Pe = V/κ. In our numerical studies, the values of the constants

a and b are taken to be 1.0 and 0.1 respectively.

For the Schwarz additive and multiplicative schemes, the artificial boundary operator S
is chosen to be a Dirichlet operator and the iterations were terminated when

‖ui,k−ui−1,k‖2

‖ui,k‖2
<

10−6 on all the sub-domains Ω̄k, where i is the iteration number.

4.5.1 Effect of number of collocation points

In this section we present the results of the RBF-Theta collocation method and compare it

with the three domain decomposition schemes presented in this chapter. The convection-

diffusion equation was solved for three different Peclet numbers (1, 10 and 100). We use the

MQ RBF in our numerical studies. The analytical expressions for the derivatives of MQ RBF

are given in Appendix A. The shape parameter σ was chosen from a fixed set of values such

that the residual error is a minimum for the RBF-Theta method and the obtained value of

shape parameter (σ) is also used for the DDMs. The shape parameter σ was chosen such that

the matrix M has positive eigenvalues to satisfy the stability conditions as derived earlier.

Note that as the multizone method is an explicit method, the time step used in this case

is very small (δt = 10−5). In the case of RBF-Theta and Schwarz domain decomposition

methods, the stability criterion does not impose any restriction on the time step for θ = 0.5.

We have taken a time step of δt = 10−2 for these methods. The final times at which the

solutions are compared with the exact solution are taken to be tf = 0.1 and tf = 1.0. The

error ε is defined as the L-infinity norm of the difference between the analytical and the

numerical solutions, i.e.,

ε = ‖uanalytic − unumerical‖∞, (4.13)

and the computational cost is assumed to be proportional to the CPU time (T ) taken by the

method. The code was written in C language and the platform used was an AMD Athlon

machine with an MP 2600+ processor.

We first study the case of Pe = 1.0 for which the convection and diffusion effects are

comparable. The analytical solution obtained is smooth. Tables 4.1 and 4.2 summarise the

results obtained using DDMs when the physical domain is divided into two sub-domains for

tf = 0.1 and tf = 1.0, respectively. ’NIter’ is the average number of iterations taken for the
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Schwarz schemes to converge.

In Table 4.3 and Table 4.4, we present the results obtained using the three different DDMs

with the RBF-Theta method for the case of Pe = 10.0 at tf = 0.1 and tf = 1.0, respectively.

Here, the convection term is one order of magnitude larger than of the diffusive term and

hence the analytical solution obtained is not smooth but has a slight discontinuity in it.

Finally, in Table 4.5 and Table 4.6, we present the results for Pe = 100.0 at times tf = 0.1

and tf = 1.0, respectively.

We can see from the second columns of Tables 4.1 - 4.6, that the accuracy of RBF-Theta

method depends on the value of the shape parameter (σ) used. However as seen from Figure

3.2, the freedom of varying shape parameter decreases with an increase in the number of

collocation points. This stability restriction and the ill-conditioning of the coefficient matrix

are responsible for loss of accuracy of the RBF-Theta method for a very large number of

collocation points. In this section, we concentrate on the behaviour of Schwarz schemes as

compared to the explicit method and the RBF-Theta method.

Table 4.1: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for Pe = 1.0, tf = 0.1, RBF = MQ, overlap = 30%

RBF-Theta Method Explicit Multizone Additive Schwarz Multiplicative Schwarz

N (σ) ε T (sec) ε T (sec) ε NIter T (sec) ε NIter T (sec)

200 (0.60) 1.01E-04 0 7.86E-04 8 1.60E-04 5 0 2.12E-04 5 0

400 (0.40) 9.30E-06 0 5.43E-05 32 1.22E-05 10 0 1.20E-05 7 0

900 (0.20) 2.76E-05 2 1.03E-04 140 2.97E-05 15 2 2.59E-05 10 2

1600 (0.10) 9.73E-05 7 1.03E-04 442 9.75E-05 20 7 9.73E-05 12 7

3600 (0.05) 1.24E-04 48 3.60E-04 2079 1.18E-04 28 43 1.17E-04 17 40

4900 (0.01) 9.52E-04 113 9.37E-04 35 85 9.35E-04 20 78

From these tables, it can be seen that additive and multiplicative Schwarz domain decom-

position techniques produce results which are as accurate as the RBF-Theta method but at

less computational cost. Although the explicit multizone method produces good results, the

CPU time (T ) taken by it is much larger compared to Schwarz schemes primarily because

of the restriction in the time step. The CPU time taken is in agreement with the theoretical

results (computational effort) presented in Section 4.4.

For the case of high Peclet numbers, the Schwarz schemes generate better results as

compared to the RBF-Theta method due to better condition numbers (K) of the sub-domain
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Table 4.2: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for Pe = 1.0, tf = 1.0, RBF = MQ, overlap = 30%

RBF-Theta Method Explicit Multizone Additive Schwarz Multiplicative Schwarz

N (σ) ε T (sec) ε T (sec) ε NIter T (sec) ε NIter T (sec)

200 (0.50) 2.33E-04 0 9.07E-04 100 3.93E-04 5 0 5.09E-04 5 0

400 (0.45) 4.61E-06 1 5.54E-05 321 6.75E-06 10 1 6.67E-06 7 1

900 (0.20) 3.08E-05 5 1.17E-04 1448 3.36E-05 15 4 3.34E-05 10 4

1600 (0.10) 1.15E-04 16 1.16E-04 20 13 1.15E-04 12 13

3600 (0.05) 1.61E-04 91 1.47E-04 28 63 1.47E-04 17 63

4900 (0.01) 1.08E-03 182 1.08E-03 35 117 1.06E-03 20 117

Table 4.3: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for Pe = 10.0, tf = 0.1, RBF = MQ, overlap = 30%

RBF-Theta Method Explicit Multizone Additive Schwarz Multiplicative Schwarz

N (σ) ε T (sec) ε T (sec) ε NIter T (sec) ε NIter T (sec)

200 (0.33) 1.81E-02 0 1.86E-02 8 1.72E-02 5 0 1.74E-02 4 0

400 (0.40) 1.46E-03 1 3.74E-03 32 1.46E-03 9 0 1.46E-03 6 0

900 (0.20) 1.06E-03 2 1.19E-03 143 1.12E-03 12 2 1.11E-03 8 2

1600 (0.10) 1.52E-03 7 6.95E-04 440 1.53E-03 16 7 1.52E-03 10 6

3600 (0.05) 1.23E-03 49 2.39E-03 2041 1.23E-03 23 37 1.23E-03 14 35

4900 (0.01) 7.53E-03 104 7.08E-03 29 80 7.08E-03 17 75

coefficient matrices [for example, at Pe = 100.0, N = 3600, KRBF−Theta = O(10+14) and

KSchwarz = O(10+13) for Ne = 2 sub-domains]. Further, from Table 4.6 it can be seen that

the RBF-Theta method fails to generate results when N > 5000. However, the Schwarz

schemes can reach to a maximum of N = 6000 for Ne = 2 sub-domains. It can be noted

from Tables 4.1 - 4.6 that the multiplicative scheme converges in about half the number of

iterations taken by the additive scheme. We wish to mention that the Schwarz schemes can

be implemented in a parallel fashion to further speed up the computations.

4.5.2 Influence of number of domains

Here, we investigate the influence of number of sub-domains on the accuracy and compu-

tational cost when Schwarz domain decomposition methods are employed. The unsteady
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Table 4.4: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for Pe = 10.0, tf = 1.0, RBF = MQ, overlap = 30%

RBF-Theta Method Explicit Multizone Additive Schwarz Multiplicative Schwarz

N (σ) ε T (sec) ε T (sec) ε NIter T (sec) ε NIter T (sec)

200 (0.55) 1.24E-02 1 2.20E-02 99 1.22E-02 5 1 1.29E-02 4 1

400 (0.40) 1.63E-03 1 4.10E-03 304 1.61E-03 9 1 1.61E-03 6 1

900 (0.20) 1.25E-03 5 2.76E-03 1431 1.28E-03 12 4 1.28E-03 8 4

1600 (0.10) 1.83E-03 16 1.93E-03 16 11 1.93E-03 10 11

3600 (0.05) 1.59E-03 98 1.68E-03 23 58 1.67E-03 14 57

4900 (0.01) 8.54E-03 183 8.32E-03 29 107 8.31E-03 17 107

Table 4.5: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for Pe = 100.0, tf = 0.1, RBF = MQ, overlap = 30%

RBF-Theta Method Explicit Multizone Additive Schwarz Multiplicative Schwarz

N (σ) ε T (sec) ε T (sec) ε NIter T (sec) ε NIter T (sec)

200 (0.35) 2.79E-01 0 2.36E-01 9 1.97E-01 13 0 2.45E-01 8 0

400 (0.40) 1.29E-01 1 6.27E-02 30 1.40E-01 28 0 1.39E-01 20 0

900 (0.20) 2.07E-02 2 2.25E-02 141 1.37E-02 12 2 1.38E-02 8 2

1600 (0.10) 1.93E-02 7 4.34E-02 441 1.49E-02 7 7 1.49E-02 5 7

3600 (0.05) 1.61E-02 48 4.28E-02 2055 1.30E-02 7 37 1.38E-02 5 37

4900 (0.01) 1.61E-02 103 1.42E-02 8 74 1.42E-02 6 73

convection-diffusion equation was solved for Pe = 10.0. The computational cost is measured

by the CPU time taken to solve this problem. The total number of collocation points was

fixed at 3600 and the physical domain was subdivided into 2, 4 and 8 sub-domains. A

constant overlap of 30% was used and the final time tf = 1.0. The results were compared

with the single domain RBF-Theta method. The results for the additive and multiplicative

Schwarz schemes are presented in Figures 4.3 and 4.4, respectively.

From these figures, we observe that as the number of sub-domains increases, the compu-

tational cost decreases. However, the accuracy of the method also suffers. Similar behaviour

was observed for Peclet numbers 1 and 100.
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Table 4.6: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for Pe = 100.0, tf = 1.0, RBF = MQ, overlap = 30%

RBF-Theta Method Explicit Multizone Additive Schwarz Multiplicative Schwarz

N (σ) ε T (sec) ε T (sec) ε NIter T (sec) ε NIter T (sec)

200 (0.35) 2.99E-01 1 3.09E-01 99 2.20E-01 13 1 2.48E-01 8 0

400 (0.40) 1.09E-01 1 6.86E-02 319 1.22E-01 99 1 1.21E-01 39 1

900 (0.20) 2.98E-02 5 2.47E-02 1427 1.88E-02 12 5 1.87E-02 8 5

1600 (0.10) 3.93E-02 16 2.96E-02 7 14 2.96E-02 5 13

3600 (0.05) 4.53E-02 91 3.60E-02 7 67 3.60E-02 5 66

4900 (0.01) 7.02E-02 180 6.02E-02 8 124 6.02E-02 6 125

5400 (0.01) 5.97E-02 6 150 5.97E-02 5 150

6000 (0.01) 5.16E-02 6 185 5.16E-02 5 183
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Figure 4.3: Comparison of accuracy and computational cost Vs number of sub-domains

for the additive Schwarz scheme: N = 3600, Pe = 10.0, tf = 1.0, RBF = MQ, σ = 0.05,

overlap = 30%

4.5.3 Influence of overlap

In this subsection, we investigate the influence of the degree of overlapping on the Schwarz

domain decomposition schemes. The degree of overlap is defined as the ratio of the physical

length of the overlapping region to the physical length of each sub-domain. In this study we

let Pe = 10.0 and the total number of collocation points was taken to be 3600. The results
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Figure 4.4: Comparison of accuracy and computational cost Vs number of sub-domains for

the multiplicative Schwarz scheme: N = 3600, Pe = 10.0, tf = 1.0, RBF = MQ, σ = 0.05,

overlap = 30%

are presented in Table 4.7, when the physical domain Ω is divided into 4 sub-domains.

From Table 4.7, it can be observed that as the overlap increases, the accuracy becomes

better. However, the computational cost increases as more amount of work needs to be done

on the overlap regions across the iterations. After an overlap of 30%, the computational time

taken is almost same as the single domain RBF-Theta method.

4.5.4 Numerical convergence

To the best of our knowledge, theoretical convergence analysis of meshless schemes for time-

dependent problems using RBF collocation continues to be an open problem. In this section,

we present the convergence characteristics of the domain decomposition schemes as obtained

numerically in order to aid the understanding of the developed methods. The convergence

history of Schwarz additive and multiplicative schemes for two cases is plotted in Figure 4.5.

From the figure, it is apparent that the multiplicative scheme converges much faster than

the additive scheme.

We now estimate the convergence orders of RBF-Theta and RBF-Theta with domain

decomposition schemes as a function of the shape parameter (σ) and the mesh spacing (h).

The error ε is assumed to be O(χ(
√

σ

h
)η

), where 0 < χ < 1 (Cheng et al., 2003). Seven

different mesh spacings in the range of hmin = 0.025 to hmax = 0.16 are taken for single
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Table 4.7: Overlapping influence on the Schwarz DDM schemes for Pe = 10.0, N = 3600,

Ne = 4, tf = 1.0

Overlap (%) Additive Schwarz Multiplicative Schwarz

ε CPU time (sec) ε CPU time (sec)

3 9.89E-03 28 9.896E-03 25

6 9.87E-03 33 9.877E-03 30

10 9.77E-03 36 9.769E-03 32

13 9.67E-03 41 9.678E-03 36

16 9.611E-03 42 9.609E-03 38

26 9.42E-03 52 9.425E-03 52

50 9.155E-03 86 9.156E-03 75

83 8.919E-03 142 8.992E-03 126

96 8.83E-03 181 8.825E-03 183

domain and four different mesh spacings for the two sub-domain case. The shape parameter

was also varied in the range of 0.05 ≤ σ ≤ 0.3 and the resulting convergence plots are shown

in Figure 4.6 (− log10(ε) Vs log10(
√
σ
h )). For a constant shape parameter value, the mesh

density decreases as we go to the right on the x-axis and for a constant mesh spacing the

value of σ increases as we go to the right. From figure 4.6, it can also be seen that the

rates of convergence for the single (η = 3.6366) and two sub-domain (η = 4.0188) cases are

comparable to each other. The convergence rate, η, is obtained by a linear fit through the

data. Similar behaviours were observed for Pe = 10.0.

4.6 Concluding remarks

Overlapping Schwarz additive and multiplicative domain decomposition methods were devel-

oped for solving time-dependent problems using radial basis function collocation for spatial

discretisation and a theta weighting scheme for temporal discretisation. The developed meth-

ods are applied to a 2D unsteady convection-diffusion equation and are compared with the

global RBF-Theta collocation method presented in the Chapter 3 and an explicit multizone

method described in the literature. Numerical results obtained show that the domain decom-

position methods give results which are as accurate as the RBF-Theta method but at much
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Figure 4.5: Convergence history on artificial boundaries for additive and multiplicative

Schwarz schemes (N = 1600, Pe = 1.0, σ = 0.1)
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Figure 4.6: Convergence plot of RBF-Theta and RBF-DDM scheme for Pe = 1.0, tf = 1.0

less computational cost, particularly for very large number of collocation points. However as

the number of sub-domains are increased, the accuracy suffers. The developed DDM schemes

can be made even more computationally effective by parallel implementation. However, the

problem of obtaining the optimal value of shape parameter still exists and the optimisation

strategy outlined in Section 3.3 is computationally expensive. In the next chapter, we ex-

plore an alternative strategy of using RBFs in a finite difference mode as opposed to the
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collocation methods proposed till now for solving partial differential equations.



Chapter 5

RBFs in a Finite-Difference Mode

(RBF-FD)

In the previous chapter, overlapping domain decomposition schemes were formulated for time

dependent PDEs to improve the computational efficiency when a large number of collocation

points are needed. This chapter outlines an alternative RBF based formulation which gen-

erates a local interpolant using scattered data RBF interpolation method, thus generating

sparse coefficient matrices. This idea of using RBFs in a finite-difference mode (RBF-FD)

was proposed by Wright & Fornberg (2006), Shu et al. (2003) and Tolstykh & Shirobokov

(2003) independently in the literature.

We begin by looking at the finite difference methodology. Consider a typical central finite

difference scheme for estimating the derivative of function u(x, y) with respect to x. The

function derivative at any grid point (i, j) can be written in the form

∂u

∂x

∣∣∣∣
(i,j)

≈
∑

k∈{i−1,i,i+1}
w(k,j)u(k,j), (5.1)

where u(k,j) is the function value at the grid point (k, j).

The unknown coefficients w(k,j) are obtained using polynomial interpolation or Taylor

series (Fornberg, 1996, 1998). The set of nodes {(i − 1, j), (i + 1, j)} along with the node

(i, j) are collectively referred to as stencil in the finite difference literature. The polynomial

interpolation strategy however imposes a restriction that the nodes in the stencil be situated

on some kind of a structured grid. This restriction can be circumvented if the approximation

of the function derivative can be written as a linear combination of function values on a

scattered set of nodes in the stencil. The methodology for obtaining the coefficients or

weights of the FD formulas becomes the focus of the issue now. Abgrall (1994); Schonauer &

60
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Adolph (2001) extended the classical polynomial interpolation technique. This however leads

to several ambiguities in deriving the scattered node FD formulas and also the problem of

well-posedness for polynomial interpolation in more than one dimension (Wright & Fornberg,

2006).

In the RBF-FD concept, the weights of the FD formulas are obtained using the RBF

interpolation technique. This approach has the following merits:� The problem of well-posedness in polynomial interpolation is overcome as RBF inter-

polation is well-posed in multidimensional problems.� RBF interpolants are capable of accurately approximating the function derivatives

(Tolstykh & Shirobokov, 2003).� Since the approximations are based on scattered nodes with no connectivity informa-

tion, this method can be regarded as a truly meshless method.

5.1 Basic formulation

In this section, we present a brief outline of the RBF-FD formulation for solving partial

differential equations. We begin with a recap of the scattered RBF interpolation problem

using the multiquadric RBF. Given a set of distinct nodes xi ∈ R
d, i = 1, · · · , n, and a

corresponding scalar function values u(xi), i = 1, · · · , n, the standard RBF interpolation

problem is to find an interpolant of the form

u(x) ≈ s(x) =
n∑

i=1

λiφ(‖x − xi‖) + β, (5.2)

where φ(‖.‖) is the multiquadric RBF and β is a constant. The expansion coefficients

{λi}ni=1 and β are determined by enforcing the conditions s(xi) = u(xi), i = 1, · · · , n,
and

∑n
i=1 λi = 0. Imposing these conditions leads to a symmetric block linear system of

equations 
 Φ e

eT 0




 λ

β


 =


 u

0


 , (5.3)

where Φi,j = φ(‖xi − xj‖), i, j = 1, · · · , n, and ei = 1, i = 1, · · · , n.

The RBF interpolant can alternatively be written in Lagrange form as

s̄(x) =

n∑

i=1

χ(‖x − xi‖)u(xi), (5.4)
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where χ(‖x − xi‖) is of the form Equation (5.2) and satisfies the usual cardinal conditions

i.e.,

χ(‖x − xi‖) =





1, if x = xi,

0, if x 6= xi,
i = 1, · · · , n. (5.5)

The basic idea of the RBF-FD methodology is to approximate function derivatives as a

linear combination of the function values like in Equation (5.1). In the derivation that follows,

we present the RBF-FD methodology for approximating any arbitrary linear differential

operator acting on the function u(x), denoted by Lu(x). The unknown function u(x) at any

node, say x1, in the domain is approximated by an RBF interpolant with the centres placed

on the node itself and some n− 1 surrounding nodes. These n nodes constitute the support

region/stencil for the node x1. A schematic diagram of the support region for the node x1

is shown in the Figure 5.1.

Figure 5.1: Schematic diagram of a RBF-FD stencil. The circle indicates the supporting

region/stencil for the node x1

To derive RBF-FD formula at the node x1, we approximate the differential operator using

the Lagrangian form of the RBF interpolant i.e.,

Lu(x1) ≈ Ls̄(x1) =

n∑

i=1

Lχ(‖x1 − xi‖)u(xi). (5.6)

Equation (5.6) can be rewritten as a FD formula of the form

Lu(x1) ≈
n∑

i=1

w(1,i)u(xi), (5.7)

where the RBF-FD weights {w(1,i)}ni=1 are formally given by the operator L applied on the
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Lagrange form of the basis functions i.e.,

w(1,i) = Lχ(‖x1 − xi‖). (5.8)

In practise, the RBF-FD weights are computed by solving the linear system

 Φ e

eT 0



T 
 w

µ


 =


 LΦ1

0


 (5.9)

where LΦ1 denotes the evaluation of the column vector LΦ = [Lφ(‖x − x1‖) Lφ(‖x −
x2‖) · · · Lφ(‖x−xn‖)]T at the node x1. Here, µ is a scalar value related to the constant β

in Equation (5.2) and enforces the condition
n∑

i=1

w(1,i) = 0,

which ensures that the stencil is exact for all constants. The complete derivation is given in

Appendix C.

As the differential operator L can be arbitrary, a similar procedure can be used to obtain

the weights for all function derivatives. The convention followed for denoting the weights for

any point xi with n supporting points is w
(x)
i ,w

(y)
i ,w

(xx)
i or w

(yy)
i when the operator (L) is

∂
∂x , ∂

∂y ,
∂2

∂x2 or ∂2

∂y2
, respectively. Once the coefficients are computed, they are stored and used

to discretise the partial differential equation in a similar manner as in the finite difference

method.

We now illustrate the RBF-FD approach for a Poisson problem of the form

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (x, y) ∈ Ω (5.10)

with Dirichlet boundary condition

u(x, y) = g(x, y), (x, y) ∈ Γ (5.11)

where Γ represents the boundary of the domain Ω.

We consider a five noded stencil for evaluating the function derivatives. At the node x1

with the stencil {x1,x2,x3,x4,x5}, the weights for ∂2u
∂x2 |x=x1 and ∂2u

∂y2
|x=x1 are obtained by

solving Equation (5.9) written in expanded form as



φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − x5‖) 1

φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − x5‖) 1
...

...
...

...
...

φ(‖x5 − x1‖) φ(‖x5 − x2‖) · · · φ(‖x5 − x5‖) 1

1 1 · · · 1 0







w
(xx)
1

w
(xx)
2

...

w
(xx)
5

µ




=




φ,xx (x1,x1)

φ,xx (x1,x2)
...

φ,xx (x1,x5)

0




,

(5.12)
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


φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − x5‖) 1

φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − x5‖) 1
...

...
...

...
...

φ(‖x5 − x1‖) φ(‖x5 − x2‖) · · · φ(‖x5 − x5‖) 1

1 1 · · · 1 0







w
(yy)
1

w
(yy)
2

...

w
(yy)
5

µ




=




φ,yy (x1,x1)

φ,yy (x1,x2)
...

φ,yy (x1,x5)

0




,

(5.13)

where φ,xx(xi,xj) = ∂2

∂x2 [φ(‖x − xj‖)]|x=xi
and φ,yy(xi,xj) = ∂2

∂y2
[φ(‖x − xj‖)]|x=xi

.

It can be seen that the RBF-FD weights solely depend on the relative positioning of the

nodes and the basis functions used. Once these two parameters are defined for a particular

problem, the estimation of weights can be done in the pre-processing stage. Once the RBF-

FD weights are obtained, the discretisation of the governing PDE at the node x1 gives

5∑

j=1

(w
(xx)
(1,j) + w

(yy)
(1,j))u(xj) = f1. (5.14)

This procedure is repeated for each of the interior nodes to obtain the discretised form

of the PDE at each of the interior nodes. Substituting the function values uj from bound-

ary condition Equation (5.11) whenever the support point xj ∈ Γ, we obtain a system of

equations which can be written in matrix form as

Au = f , (5.15)

where u is the vector of the unknown function values at all the interior nodes and f is

the source vector including the boundary terms. Note that the matrix A is sparse and

well-conditioned and can hence be effectively inverted.

5.2 Implementation and computational aspects

In this section, we outline some of the implementation and computational aspects for the

RBF-FD formulation.

5.2.1 Determination of local support for interior nodes

As the derivative approximation for each interior node is performed in a local support region,

the problem of determining the local support at each interior node is of importance. A static

or dynamic approach can be pursued in order to obtain the support for the node.

In the static approach, the support region for each interior nodal point is fixed before

performing the discretisation of the governing PDE. For example, the local support can be
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a circle in two-dimension and a sphere in three dimension i.e, for a central node xi, its local

support is defined as

Support(xi) = {j : 0 < ‖xj − xi‖ < Ri} (5.16)

where Ri is the radius of the circle or sphere, and represents the size of the local support.

An alternative approach would be to choose the n−nearest neighbours of the point xi.

In the dynamic or adaptive approach, one can select the support points adaptively by de-

riving a suitable a posteriori estimate. This approach can be very useful for solving problems

which exhibit a large variation in local characteristics. For example, the support of a node

in a region is more when the function gradients are changing rapidly and in regions where

the variations are less or smooth, the support may be smaller.

Further, in both the approaches the essential point in computational cost terms is search-

ing for n− 1 nodes based on a certain criterion (e.g. Euclidean distance) to form the stencil

for a particular node. If the complete domain is represented by N discrete points, the com-

putational cost incurred would be O(N2). The efficiency of the searching algorithm can be

increased by obtaining a triangulation of the whole node distribution which then will enable

to locate the supporting points of a particular node quickly. Another idea as implemented in

Cecil et al. (2004) is to use a binning method. In this method, the entire domain is divided

into a coarse structured grid C. Then for each coarse grid cell a list of all nodes that lie inside

the cell is created. Hence, to determine the support for a node lying in the coarse grid cell,

we need to determine the n nearest nodes by searching through the list of that particular

cell. The binning method can be made more efficient by recursively dividing each coarse cell.

Note that all these approaches implicitly make use of connectivity information.

5.2.2 Shape parameter

Another factor of importance in determining the accuracy of the numerical approximation by

RBFs is the shape parameter value. Wright & Fornberg (2006) indicated that for infinitely

smooth radial functions like the multiquadric, the standard RBF interpolant converges to

the Lagrange polynomial as the shape value tends to zero, under certain conditions (Driscoll

& Fornberg, 2002). This in effect translates to that in the limit, the RBF-FD stencils recover

the traditional FD formulas, at least in the case of one dimension. In Wright & Fornberg

(2006), the results for RBF-FD method were obtained by varying the shape parameter in a

certain fixed range. Shu et al. (2003) and Cecil et al. (2004) proposed normalisation of scale

in the support region, motivated by the finite element method where each element is usually
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mapped into a regular shape in the computational space. These strategies for obtaining the

shape parameter are however not optimal.

In this chapter, we outline a strategy based on the leave-one-out statistical criterion for

determining the optimal value of the shape parameter for a RBF-FD stencil.

5.2.3 Incorporation of boundary conditions

The implementation of the RBF-FD is straightforward when the prescribed boundary con-

ditions are Dirichlet in nature. However, when Neumann or mixed boundary conditions are

specified, the implementation issues need to be explained in more detail. On the lines of the

RBF-FD discretisation performed for interior nodes, one can define a support region for the

boundary nodes and obtain the corresponding weights for the derivatives. This approach

has the advantage of consistent discretisation throughout the domain, but suffers from the

decrease of accuracy as the information is based from only one side of the boundary (Ding

et al., 2005). Shu et al. (2003) proposed so-called locally orthogonal grids around boundaries,

and then discretised the derivatives by one-sided finite difference schemes. Although this ap-

proach has the advantage of obtaining accurate discretisations on the boundary, it may be

tedious to generate such grids for complex geometries. Later in Chapter 7, when the RBF-

FD method is used to solve the incompressible Navier-Stokes equations, we present a ghost

node based strategy for incorporating boundary conditions which alleviates the necessity of

any special node placements near the boundary.

5.3 RBF-FD Vs RBF collocation

In this section, we study the performance and accuracy of the RBF-FD approach on a model

Poisson problem and compare the results obtained with the global RBF collocation method.

Consider the Poisson equation of the form as in Equation (5.10) in a [0, 1] × [0, 1] square

domain with

f(x, y) = −751π2

144 sin (πx6 ) sin (7πx
4 ) sin (3πy

4 ) sin (5πy
4 )+

7π2

12 cos (πx6 ) cos (7πx
4 ) sin (3πy

4 ) sin (5πy
4 )+

15π2

8 sin (πx6 ) sin (7πx
4 ) cos (3πy

4 ) cos (5πy
4 ).

(5.17)

The exact solution of this problem (Cheng et al., 2003) is given by

uex(x, y) = sin (
πx

6
) sin (

7πx

4
) sin (

3πy

4
) sin (

5πy

4
). (5.18)
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We assume Dirichlet boundary conditions on all four sides with its value calculated from the

exact solution Equation (5.18).

RBF-FD: Stencil A RBF-FD: Stencil B

Figure 5.2: RBF-FD stencils

We consider two types of supporting regions/stencils as shown in Figure 5.2. Figure 5.3

displays the L∞ norm of the error (ε) at different values of the shape parameter (σ) and mesh

spacings (h) for each of the considered stencils. Figure 5.4 presents the results for the same

Poisson problem as obtained by the RBF collocation method. It can be seen that the global

RBF collocation method gives more accurate results than the RBF-FD method provided

an optimal value of the shape parameter is used. However, the sensitivity of the solution

with respect to the shape parameter is more in RBF collocation method as compared to the

RBF-FD method. This high sensitivity of RBF collocation method makes it very difficult

for any gradient based optimisation strategy to obtain the shape parameter value, and some

sort of smoothing strategies like polynomial fitting (see Chapter 3) need to be used with the

objective function to obtain the optimal shape parameter value. This is not the case for

RBF-FD method. Another advantage of the RBF-FD method as can be seen in Figure 5.3 is

that for a fixed value of shape parameter, the numerical solution is guaranteed to converge as

the mesh spacing is decreased. This behaviour is not guaranteed for the collocation method

as can be seen in Figure 5.4.

As presented in previous chapters, the global RBF collocation method has limitations

in applications to large scale problems because of the dense and ill-conditioned coefficient

matrices. The RBF-FD method alleviates this problem. The coefficient matrices generated

are sparse and well-conditioned; In the case of uniform discretisations, the coefficient matrices

are banded. Figure 5.5 shows the sparsity patterns of the coefficient matrices obtained

for a Poisson problem with different radii of support. Note that the sparsity mimics the

standard FD discretisations as the nodes are placed in an uniform fashion. The sparsity of
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Figure 5.3: Accuracy of RBF-FD method for Poisson problem using Stencil A and Stencil

B
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Figure 5.4: Accuracy of RBF collocation method for Poisson problem

the coefficient matrices facilitates reduced storage and faster evaluation of numerical solutions

at almost comparable accuracy.

5.4 Shape parameter tuning

The RBF-FD method essentially obtains an approximation of the function derivative at a

node as a linear combination of function values on its supporting nodes, with its weights

obtained using the standard RBF interpolation method. The generalisation performance or

the degree of smoothness of the RBF interpolant can depend to a significant extent on the

value of shape parameter. It can also be seen from Figure 5.3 that the accuracy of the RBF-

FD method also depends significantly on the value of the shape parameter used. Hence, it is

of interest to examine techniques for estimating the optimum value of the shape parameter
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Figure 5.5: Sparsity patterns in RBF-FD coefficient matrices

in order to ensure good generalisation performance of each RBF-FD stencil. In this section,

we present a methodology for obtaining the optimal value of the shape parameter for RBF-

FD stencils based on the technique of cross-validation commonly employed in statistical

data modelling. This methodology has been earlier utilised in context of scattered data

interpolation and regression problems; see, for example Rippa (1999); Wang (2004).

5.4.1 Cross-validation and Leave-One-Out (LOO) procedure

The idea of cross-validation is usually employed to determine the effectiveness of a particular

model/interpolant. Given the set of data and the observed values at each data point, the

methodology involves partitioning the data set into N clusters which may or may not be of

equal size. Using the N−1 partitions (learning set) to construct a model and then predicting

the values on the remaining cluster (validation set), an error value for the model capability

can be obtained. Each of the N error terms can then be averaged to give the prediction error

of the complete data set for a particular parameter value. For the case of small data sets

as in the RBF-FD method, a particularly useful cross-validation technique for estimating

the error of the function approximation is the leave-one-out method. In this method, the

function approximation/interpolant is constructed by leaving out one data point and the

left-out point is used as the validation point. An N element error vector can be obtained by

repeating this N times with each data point as the validation point. The prediction error for

a particular shape parameter value can then be calculated by averaging the N error terms.

A brief mathematical derivation for the LOO error predictor function or the cost functional

Q(x, σ) for the RBF-FD method, based on Rippa (1999) is presented. The cost functional
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should be able to imitate the behaviour of the error between the RBF-FD interpolant and

the actual function derivative with respect to the shape parameter value. The equation for

the cost functional for any node xi with N supporting points is given by

Q(xi, σ) = ‖Ei‖2, (5.19)

with each element in the vector Ei defined as

Eik = fk − S(k)(xk, σ), k = 1, 2, · · · ,N, (5.20)

where S(k)(xk) is the interpolant of the function derivative obtained without using the sup-

porting node xk as a RBF centre i.e.,

S(k)(xk, σ) =
N∑

j=1,j 6=k
λ(k)φ(‖xk − xj‖, σ). (5.21)

The learning set for a particular Ei
k can then be defined as all data values other than fk,

which is the validation point in the leave-one-out form of cross-validation. Note that in

RBF-FD, if L is the operator for which the RBF-FD weights need to be found at the node

xi, the data vector is given by

fk = Lφ(‖xi − xk‖, σ), k = 1, 2, · · · ,N. (5.22)

It can be observed that at any node xi, for a particular value of the shape parameter,

a direct evaluation of Equation (5.19) requires solving an (N − 1) × (N − 1) system of

linear equations N times, and evaluation of S(k)(xk, σ) for k = 1, 2, · · · ,N . This method

can become computationally expensive even for a moderate number of nodes in the stencil.

Fortunately, after some matrix manipulations, the elements of Ei can be efficiently computed

as

Eik =
λk

m
(k)
k

, (5.23)

where λk is the kth element of the RBF-FD weight vector,

λ = A−1f ,

and m
(k)
k is the (k, k) element of the inverse of the Gram matrix A. The complete derivation

is shown in Appendix B. The computational cost of estimating Ei is that of performing a LU

decomposition of the Gram matrix A and then the cost of N solutions of the linear system,

Am(k) = e(k), k = 1, 2, · · · ,N (5.24)
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Figure 5.6: Behaviour comparison of true error and cost function using Leave-One-Out

criterion for 1D interpolation problem

where e(k) is the kth column of the N × N identity matrix. Since the LU factorisation of

A is known, the computational cost of solving Equation (5.24) is significantly less than that

of the direct evaluation of the cost function. Other computationally efficient algorithms like

estimating the cost function when the singular value decomposition of the matrix A is given

or using the QR decomposition can also be pursued.

Figure 5.6 shows the behaviour of the true error and the cost functional value for a simple

1D interpolation problem as a function of the shape parameter. The function (Franke, 1982)

is given by

f(x) =
3

4

(
exp

(
−(9x− 2)2

4

)
+ exp

(
−(9x+ 1)2

49

))

+
1

2
exp

(
−(9x− 7)2

4

)
− 1

5
exp

(
−(9x− 4)2

)
. (5.25)

Ten uniformly spaced data points in [0, π2 ] were considered and the resultant RBF interpolate

was evaluated at 100 uniformly spaced points. The true error is evaluated as

ε = ‖fexact − fpredicted‖2.

The values of the shape parameter for which the minimum of the true error and cost func-

tional are also displayed. From the figure, it can be seen that the cost functional Q(x, σ)

approximates the behaviour of the true error quite accurately.



Chapter 5 RBFs in a Finite-Difference Mode (RBF-FD) 72

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

σ

ε

11 X 11 Points 

21X21 Points 

31X31 Points 

Figure 5.7: Accuracy of LOO optimised shape parameter for Poisson equation

5.4.2 Optimisation of LOO

To obtain the optimal value of the shape parameter, the cost functional evaluation procedure

must be coupled with an optimisation routine to determine the optimal value of σ through

iteration. The simplest way of obtaining the minima of the cost function Q(xi, σ) is to use a

grid search method. A shape parameter range is selected and is then divided uniformly and

Q(xi, σ) is estimated at each of the divided points. The minima of the cost function is then

obtained and the corresponding value of the shape parameter is its optimal value. Another

way is to use optimisation routines like the Brent’s method or the Nelder search method. In

this thesis, we use the Nelder search algorithm provided in MATLAB for optimising the shape

parameter value. Note that the computational cost incurred by the optimisation routine for

the RBF-FD method is much less than the strategy presented earlier in Chapter 3 for the

RBF collocation method.

5.4.3 Numerical studies

Figure 5.7 presents the accuracy of the proposed shape parameter optimisation strategy.

The Poisson equation is solved with the source term given in Equation (5.17). We consider

a uniform node distribution of 11 × 11, 21 × 21 and 31 × 31. The behaviour of the accuracy

of the RBF-FD method (measured in L2 norm) with respect to shape parameter for each of

the node set is shown in the figure, and the corresponding accuracy obtained by optimising

the shape parameter is shown by dotted lines. From Figure 5.7, it can be observed that

the proposed strategy indeed obtains a very good approximation of the optimal value of
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the shape parameter for a little additional cost during the pre-processing stage when the

RBF-FD weights are computed.

5.5 RBF-FD for the unsteady convection-diffusion equation

In this section, we present the RBF-FD formulation for the 2D unsteady convection diffusion

equation presented in the earlier chapter. The governing PDE is given by

∂u

∂t
= κx

∂2u

∂x2
+ κy

∂2u

∂y2
+ Vx

∂u

∂x
+ Vy

∂u

∂y
, 0 ≤ x, y ≤ 1, t > 0. (5.26)

In the RBF-FD method, we begin with representing the complete domain with a set

of scattered nodes present in the interior and on the boundary. For each interior node, a

supporting region/stencil is identified by choosing N nearest nodes. Then at each node,

a local RBF interpolation problem is set up to determine the RBF-FD weights for each

derivative (see section 5.1). This completes the pre-processing stage.

Once the RBF-FD method is applied to discretise the spatial derivatives in the governing

equation, Equation (5.26), we obtain at any interior node xi,

dui
dt

= κx

N∑

j=1

w
(xx)
(i,j)uj + κy

N∑

j=1

w
(yy)
(i,j)uj + Vx

N∑

j=1

w
(x)
(i,j)uj + Vy

N∑

j=1

w
(y)
(i,j)uj , (5.27)

where N is the total number of interior and boundary nodes which lie in the support-

ing region/stencil for the node xi, and w
(x)
(i,j), w

(y)
(i,j), w

(xx)
(i,j) , w

(yy)
(i,j) are the RBF-FD weights

obtained from the system of Equations (5.9) with the corresponding differential operator

( ∂∂x ,
∂
∂y ,

∂2

∂x2 ,
∂2

∂y2
) applied to the basis functions on the right hand side.

Discretising Equation (5.27) using forward difference in time and θ-weighting scheme; and

denoting the value of any physical quantity at t = tn with the superscript n, we obtain

un+1
i − uni
δt

= θ




N∑

j=1

(
κxw

(xx)
(i,j) + κyw

(yy)
(i,j)

)
un+1
j +

N∑

j=1

(
Vxw

(x)
(i,j) + Vyw

(y)
(i,j)

)
un+1
j




+ (1 − θ)




N∑

j=1

(
κxw

(xx)
(i,j) + κyw

(yy)
(i,j)

)
unj +

N∑

j=1

(
Vxw

(x)
(i,j) + Vyw

(y)
(i,j)

)
unj


 .

(5.28)

Equation (5.28) written for each interior node leads to a system of equations which can be

solved to obtain the solution at t = tn+1.
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5.5.1 Numerical results

In this subsection, we present a comparison between the RBF-Theta method presented in

Chapter 3 and the RBF-FD method for the unsteady convection diffusion equation. The

initial and boundary conditions are given in Equations (3.38) and (3.37). The exact solution

for this problem is given in Equation (3.39). We consider a uniform distribution of points

ranging from h = 0.1 to h = 0.01, where h is the mesh spacing. The multiquadric RBF is

used for numerical studies and for the RBF-FD method, the stencil B shown in Figure 5.2

is used. The shape parameter for the RBF-Theta method is obtained by the optimisation

strategy outlined in section 3.3 and for the RBF-FD method, the optimal value of the shape

parameter is obtained using the leave-one-out criterion proposed in this chapter (see section

5.4).

Figure 5.8 presents the convergence behaviour for both the methods when the Peclet

number is 1.0. The results are compared at final times tf = 0.1 and tf = 1.0 in the left and

the right sub-figures. From the plots, it can be seen that the RBF-FD method converges in

a linear fashion as compared to the RBF-Theta method, i.e., better accuracy is obtained as

we decrease the mesh spacing. However, in the case of RBF-Theta method, for a particular

mesh spacing provided we use the optimal value of the shape parameter, the accuracy is

better than the RBF-FD method. Similar behaviours are observed for Peclet number 10.0

(see, Figure 5.9) and 100.0 (see, Figure 5.10).
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Figure 5.8: Comparison of RBF-FD vs RBF-Theta methods for the unsteady convection

diffusion equation, Pe = 1.0
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Figure 5.9: Comparison of RBF-FD vs RBF-Theta methods for the unsteady convection

diffusion equation, Pe = 10.0
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Figure 5.10: Comparison of RBF-FD vs RBF-Theta methods for the unsteady convection

diffusion equation, Pe = 100.0

5.6 Conclusions

A methodology using RBFs in a finite difference mode (RBF-FD) is presented for solving

time-dependent PDEs. This method approximates the function derivatives at a node in terms

of the function values on a scattered set of points present in support region of the node. The

RBF-FD method uses local interpolation problems and hence generates sparse and well-

conditioned matrices. It also has the property of decreased sensitivity with respect to the

shape parameter value in comparison with the RBF collocation method. A shape parameter

tuning strategy based on the statistical leave-one-out criterion is proposed for choosing an

optimal value of the shape parameter for a RBF-FD stencil. Numerical studies conducted on

a Poisson equation and the unsteady convection-diffusion equation show that the RBF-FD
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method has the property of monotonic increase in the accuracy of the numerical solution as

number of nodes in the domain are increased. This property is not guaranteed for the RBF-

Theta collocation method. In addition, due to small RBF coefficient matrices generated at

each node, the shape parameter optimisation is computationally very efficient compared to

the optimisation strategy proposed for the RBF-Theta collocation method earlier in Chapter

3. The remaining chapters of this thesis are concerned with developing RBF collocation and

RBF-FD schemes for the incompressible Navier Stokes equations.



Chapter 6

RBF Collocation Scheme for the

Incompressible Navier-Stokes

Equations

In this chapter, we give a brief overview of the equations governing incompressible fluid flows

and propose an RBF collocation method for solving them. Numerical studies conducted

in Chapters 3 and 4 show that the RBF collocation method gives accurate results for the

model convection-diffusion equation (at moderate Peclet numbers) which is a precursor to

the Navier-Stokes equations. These studies also suggest that the multiquadric RBF produces

more accurate solutions provided an appropriate value of the shape parameter is used. We

therefore use this RBF in studies on the Navier-Stokes equations.

RBF collocation methods have been applied earlier to solve fluid flow problems in the

literature. Young et al. (2004) solved the Stokes’s equations (Re = 0) using the RBF col-

location method. An alternative approach known as the Integrated Radial Basis Function

Networks (IRBFN) developed by Mai-Duy & Tran-Cong (2001) was also utilised for solving

the incompressible Navier Stokes equations. These are the only occurrences of using RBF

collocation for solving the Navier-Stokes equations to the best of our knowledge. In this

chapter, we present an improved version of the RBF collocation method for solving incom-

pressible viscous flows. A novel ghost centre strategy is employed to satisfy the boundary

conditions. The issue of shape parameter and its influence on the accuracy of the computed

solution is discussed. Numerical results are presented for example problems like square and

rectangular driven cavity flows and flow over a backward facing step.

77
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6.1 Incompressible Navier-Stokes equations

Incompressible flows can be defined as those flows for which the density is constant on all par-

ticle paths. The governing equations represent mathematical statements of the conservation

laws of physics, i.e.,

1. Fluid mass is conserved.

2. The rate of change of momentum equals the sum of forces on a fluid particle.

3. The rate of change of energy is equal to the sum of the rate of heat addition and the

rate of work done on a particle.

These statements are transformed into mathematical equations as� Conservation of Mass:
Dρ

Dt
+ ρ∇ · u = 0, (6.1)

where ρ is the density of the fluid, u is the velocity vector and D
Dt denotes the material

derivative ( DDt = ∂
∂t+u·∇). As the density is constant for incompressible flows Equation

(6.1) reduces to

∇ · u = 0. (6.2)� Conservation of Momentum:

ρ
Du

Dt
= ∇ · σ + ρf , (6.3)

where σ is the Cauchy stress tensor and f is the body force vector measured per unit

mass.� Conservation of Energy:

ρCv
DT

Dt
= −∇ · q + Q + Ξ, (6.4)

where T is the temperature, q is the heat flux vector, Q is the internal heat generation

(measured per unit volume), Ξ is the viscous dissipation function and Cv is the specific

heat at constant volume.

The constitutive relation expressing the Cauchy stress in terms of strain for Newtonian fluids

is given by

σij = −pδij + 2µu̇i,j, (6.5)
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where µ is the viscosity coefficient and δij is the Kronecker delta tensor. For a complete

derivation of Navier-Stokes equations, the reader is referred to any standard textbook on

fluid mechanics (Batchelor, 1967; Ferziger & Peric, 1999).

The incompressible Navier-Stokes equations are a system of nonlinear second order equa-

tions. The mathematical classification of these equations can be done and it turns out that

for steady flow problems, the equations are elliptic in nature and for unsteady flow problems,

they are of mixed type in nature. This classification is important when boundary conditions

are specified. In this thesis, we focus on the numerical solution of incompressible viscous

flows, which are governed by the steady/unsteady NS equations.

The NS equations and the continuity equation (conservation of mass) for a two-dimensional

incompressible Newtonian fluid flow in Cartesian coordinate system are given by

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (6.6)

where (u, v) denote the Cartesian components of the velocity vector, ν is the kinematic

viscosity and p denotes the pressure field. In these equations, the body force terms are

neglected.

The velocity components can be alternatively defined in terms of streamfunction (ψ) as

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Equation (6.6) can be simplified by introducing two new variables: the streamfunction (ψ)

and the vorticity (ω) defined by

ω =

(
∂v

∂x
− ∂u

∂y

)
. (6.7)

The governing equations then become

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω = 0,

∂ω

∂t
+

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
= ν

(
∂2ω

∂x2
+
∂2ω

∂y2

)
. (6.8)

Let L be a characteristic length and U a characteristic speed of the flow, then variables can

be non-dimensionalised as follows:

x̄ =
x

L
, ȳ =

y

L
, t̄ =

t

L/U
, ū =

u

U
, v̄ =

v

U
, ψ̄ =

ψ

UL
, ω̄ =

ω

U/L
. (6.9)
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Equation (6.8) then becomes

∂2ψ̄

∂x̄2
+
∂2ψ̄

∂ȳ2
+ ω̄ = 0,

∂ω̄

∂t̄
+

(
∂ψ̄

∂ȳ

∂ω̄

∂x̄
− ∂ψ̄

∂x̄

∂ω̄

∂ȳ

)
=

1

Re

(
∂2ω̄

∂x̄2
+
∂2ω̄

∂ȳ2

)
(6.10)

where Re = UL
ν is known as the Reynolds number.

For steady state flows, dropping the temporal terms the governing equations (with the

bars dropped for the sake of brevity) become

∇2ω = Re

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
, (6.11)

ω = −∇2ψ, (6.12)

where ∇2 is the Laplacian operator.

The streamfunction-vorticity formulation has been successfully used by a number of re-

searchers over the past several decades to test new methods for the numerical solution of

fluid flow problems. However, there is an uncertainty in the numerical treatment of the

vorticity values particularly over a no-slip boundary. The vorticity ω is defined through the

Poisson equation, Equation (6.12) , which needs to be solved discretely on the boundaries so

that boundary vorticity values can be specified for solving the vorticity transport equation,

Equation (6.11). A variety of numerical approximations have been carried out for specifying

the vorticity values on the boundary when finite difference schemes are employed to solve the

governing equations. For more details on these schemes, see, Thom (1928); Jensen (1959);

Woods (1954); Spotz (1995). This difficulty of imposing appropriate vorticity boundary con-

ditions can be circumvented by substituting Equation (6.12) into Equation (6.11) thereby

obtaining a nonlinear biharmonic equation in terms of the streamfunction alone, i.e.,

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
− Re

[
u

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
+ v

(
∂3ψ

∂y3
+

∂3ψ

∂x2∂y

)]
= 0. (6.13)

• For unsteady flows, in the same way, it can be shown that Equation (6.10) becomes

−Re
∂

∂t
(∇2ψ)+

∂4ψ

∂x4
+2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
−Re

[
u

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
+ v

(
∂3ψ

∂y3
+

∂3ψ

∂x2∂y

)]
= 0.

(6.14)

In the context of traditional finite differences, the numerical solution of Equation (6.13) or

Equation (6.14) is cumbersome since a higher order stencil is typically required to solve the
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above equations satisfactorily. However, as we show next, in RBF collocation methods, the

complexity of the problem does not change as one tries to solve Equation (6.13)/Equation

(6.14).

6.2 Formulation

In this section, we present an improved version of the RBF collocation method and its

application to steady incompressible viscous flows.

The nonlinear PDE in Equation (6.13) is solved using the RBF collocation method and

the Newton iteration technique. In Newton iteration, one starts with an initial solution

ψ(0) and then obtains a sequence {ψ(i)} of approximate solutions using the Newton iteration

formula, ψ(i) = ψ(i−1) + ξ. At each Newton iteration i, the following linear PDE needs to be

solved for the correction ξ:

∇2∇2ξ − Re

[(
∂ψ(i−1)

∂y

∂

∂x
(∇2ξ) +

∂

∂x
(∇2ψ(i−1))

∂ξ

∂y

)

−
(
∂ψ(i−1)

∂x

∂

∂y
(∇2ξ) +

∂

∂y
(∇2ψ(i−1))

∂ξ

∂x

)]
= −R(ψ(i−1)) (6.15)

where R(ψ(i−1)) is the residual of the governing equation at iteration i which is given by

R(ψ(i−1)) =
∂4ψ(i−1)

∂x4
+ 2

∂4ψ(i−1)

∂x2∂y2
+
∂4ψ(i−1)

∂y4
− Re

[
∂ψ(i−1)

∂y

×
(
∂3ψ(i−1)

∂x3
+
∂3ψ(i−1)

∂x∂y2

)
− ∂ψ(i−1)

∂x

(
∂3ψ(i−1)

∂y3
+
∂3ψ(i−1)

∂x2∂y

)]
. (6.16)

The boundary condition that needs to be satisfied at iteration i is given by

Bξ = g(x, y) − Bψ(i−1). (6.17)

where B can be Dirichlet, Neumann or a mixed differential operator.

In the present formulation, the unknown streamfunction is expanded in terms of a linear

combination of RBFs centred at randomly spaced points in the domain i.e.,

ψ(x) =

NI+NB∑

j=1

αjφ(‖x − xj‖). (6.18)

where NI and NB are the number of RBF centres placed in the interior and on the boundary,

respectively. The undetermined weights, {αj}(NI+NB)
j=1 , are which are calculated by colloca-

tion. For simplicity, the set of RBF centres is assumed to coincide with the set of collocation
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points. The governing PDE is satisfied on each of the interior collocation points and the

boundary conditions on the boundary collocation points. By virtue of representation of the

unknown function as in Equation (6.18), the derivatives of the unknown functions are noth-

ing but a linear combination of the corresponding derivatives of the basis functions. Thus,

for example, if L is any linear partial differential operator, one obtains

Lψ(x) =

NI+NB∑

j=1

αjLφ(‖x − xj‖) (6.19)

As an initial approximation to the unknown function is provided in case of the Newton

iteration, an interpolation problem is solved to obtain the RBF coefficients (α
(0)
j ). Thus, the

initial approximation to streamfunction satisfies

ψ(0)(x) =

NI+NB∑

j=1

α
(0)
j φ(‖x − xj‖). (6.20)

The function approximation at any Newton iteration i is obtained by solving the linear

PDE in Equation (6.15). Hence at iteration i, the streamfunction is given by

ψ(i)(x) =

NI+NB∑

j=1

(α
(i−1)
j + δj)φ(‖x − xj‖), (6.21)

where δ is obtained by solving the following linear system of equations:

NI+NB∑

j=1

δj

[
∇2∇2φ(‖xi − xj‖) −

(
a(xi)

∂

∂x
(∇2φ(‖xi − xj‖)) + b(xi)

∂

∂y
(φ(‖xi − xj‖))

)

+

(
c(xi)

∂

∂y
(∇2φ(‖xi − xj‖) + d(xi)

∂

∂x
(φ(‖xi − xj‖))

)]
= R

(
ψ(i−1)(xi)

)

i = 1, 2, · · · ,NI , (6.22)

and

NI+NB∑

j=1

δj [Bφ(‖xi − xj‖)] = g(xi) − Bψ(i−1)(xi)

i = NI + 1,NI + 2, · · · ,NI +NB . (6.23)

In Equation (6.22), a(x), b(x), c(x) and d(x) are all functions of the previous iteration

estimate ψ(i−1) and are given by

a(x) = Re
∂ψ(i−1)

∂y
, b(x) = Re

∂

∂x
(∇2ψ(i−1)),

c(x) = Re
∂ψ(i−1)

∂x
and d(x) = Re

∂

∂y
(∇2ψ(i−1)). (6.24)
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The Newton iterations are continued until

‖R
(
ψ(i)(x)

)
‖∞ ≤ ε, (6.25)

where ε is a pre-determined convergence limit.

In the case of unsteady flows, a nonlinear system of equations is obtained at each time

step which can be solved using the Newton iteration method as shown above.

6.3 Incorporation of boundary conditions

In the case of incompressible viscous flows, as two boundary conditions are prescribed at

each boundary collocation point, we obtain an overdetermined system of equations for the

RBF weights which can then be solved in a least squares sense.

In this section, we present an alternative strategy based on ghost centres for incorporating

the boundary conditions. For example, the no-slip boundary conditions over any boundary

Γ are given by

ψ = C1 x ∈ Γ

∂ψ
∂n = C2 x ∈ Γ

(6.26)

where C1 and C2 are constants and ~n is the outward normal direction from the boundary.

It can be seen from Equation (6.26) that we have a pair of boundary conditions for the

streamfunction. Hence, it is proposed to express the streamfunction in terms of RBFs chosen

over the domain and also a set of ghost centres chosen outside the domain equal to the number

of boundary centres. The RBF approximation for the streamfunction can be rewritten as

ψ(x) =

N+G∑

j=1

αjφ(‖x − xj‖), (6.27)

where N is the total number of collocation points (including interior and boundary) and

G is the number of ghost centres, respectively. A schematic diagram of the RBF centre

distribution along with the ghost centres is shown in Figure 6.1.

By using the ghost centres, a square system of equations is obtained which can be solved

for the RBF weights. In order to compare the accuracy of the proposed ghost centres strategy

with the least squares approach, we solve a model biharmonic equation of the form

∂4ψ

∂x4
+ 2

∂4ψ

∂2x∂2y
+
∂4ψ

∂y4
= F (x, y) (6.28)

with boundary conditions in terms of ψ and ∂ψ
∂n .
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Figure 6.1: A Schematic representation of RBF centres in the domain

Consider the test problem (Mai-Duy & Tanner, 2005), where

F (x, y) = 16π4[4 cos (2πx) cos (2πy) − cos (2πx) − cos (2πy)], (6.29)

and the exact solution is given by

ψexact = 4 sin2 (πx) sin2 (πy). (6.30)

Figure 6.2 presents the accuracy and convergence behaviour of RBF collocation method

with least squares and ghost centres strategy. The error ε is defined as the L∞ norm of the

difference between the exact and computed solutions. From the figure, it can be seen that

the ghost centres strategy gives significantly better accuracy.

6.4 Implementation aspects

In this section, we discuss some of the implementation aspects of the presented meshless

method.

Many of the RBFs incorporate a user-defined shape parameter. This scalar parameter

determines the region of influence of the RBF. Numerical studies on RBF collocation methods

have shown that the multiquadric RBF gives better performance as compared to other RBFs

(Larsson & Fornberg (2003); see also Chapter 3). In this study, we employ the multiquadric

RBF to test the accuracy of the present formulation. It has been observed that in the case

of RBF collocation, the accuracy of the numerical solution depends heavily on the value of

the shape parameter. However, obtaining the optimal value of the shape parameter remains
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Figure 6.2: Convergence plot obtained for least squares and ghost centres strategy for RBF

collocation method (σ = 3dmin)

elusive and is still an open problem in the literature. The influence of the shape parameter

on the accuracy of the obtained numerical solution generally follows an U-shaped curve with

the accuracy becoming worse after a certain value of the shape parameter is exceeded due to

ill-conditioning effects. In fact good accuracy is achieved only at the on-set of ill-conditioning

(Schaback, 1995).

Various empirical estimates for the shape parameter have been proposed in the literature

(Kansa, 1990b; Hardy, 1990). In this chapter, we estimate the shape parameter as

σ = βd̄, (6.31)

where β is a positive scalar and d̄ is the minimum distance between any two centres in the

domain. Numerical studies in Chapter 3 have shown that the residual error on a suitable

fine grid is a good indicator of the accuracy of the solution. Hence one way of obtaining the

optimal value of the shape parameter is as follows. We start with an initial value of 1 for

β and its value is progressively increased in discrete steps while monitoring the value of L2

norm of the residual error.

Note that since a global shape parameter is used, the radial basis function φ(‖x − xj‖)
must incorporate scale parameters Lx and Ly in each direction, particularly for problems

where the magnitudes of the distances between points in x and y directions are significantly

different. For example when scale parameters are used, the expression for the multiquadric

RBF becomes

φ(‖x − xj‖) =

√(
x− xj
Lx

)2

+

(
y − yj
Ly

)2

+ σ2 (6.32)
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Also, it is well known that the Newton iteration technique does not guarantee convergence

when the starting point is far from the actual solution and when the Jacobian matrix is ill-

conditioned. Hence, one resorts to secant techniques or trust-region techniques when the

initial guess is far from the solution (Coleman & Li, 1994, 1996). Details of trust region

techniques can be obtained elsewhere (Coleman & Li, 1994, 1996). In the numerical studies

presented here, we employ the trust region algorithm provided in MATLAB 6(release 13)

package.

6.5 Numerical results

In this section, we present numerical results obtained by using the presented RBF collocation

method for square driven cavity flow, a rectangular driven cavity with aspect ratio 2.0 and

flow over a backward facing step.

6.5.1 Square driven cavity flow

In this section a two-dimensional lid-driven cavity problem is solved and the results are

compared with those obtained by Ghia et al. (1982) who used a multigrid finite difference

method with a mesh size of 129 × 129.

The boundary conditions for the driven cavity problem on a [0× 1]2 domain are given by

ψ = 0, ∂ψ∂x = 0 on x = 0 and x = 1,

ψ = 0, ∂ψ∂y = 0 on y = 0,

ψ = 0, ∂ψ∂y = 1 on y = 1.

(6.33)

We consider uniform collocation point sets ranging from 11×11 to 61×61. A random set

of collocation points obtained by perturbing the uniform distribution set is also considered

to show the accuracy of the presented method for randomly spaced points. The Reynolds

numbers used in the present study are {0, 100, 400, 1000, 3200}. For each Reynolds number,

the solution obtained by solving the previous Reynolds number in the set was taken as the

initial guess for the trust-region algorithm. During the numerical experiments, we observed

that the Newton algorithm converges in about 10-15 iterations. As compared to the large

mesh used by Ghia et al. (1982), it is found that the RBF approximations give results of

comparable accuracy even with a grid as small as 41 × 41 for moderate Reynolds numbers

(see Figs 6.4-6.12). In fact for Re < 400, a coarse grid of 11 × 11 predicts the solution with

good accuracy. The figures presented were those obtained using the multiquadric RBF. From
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the figures, it can be seen that the primary and secondary vortices were captured accurately

using the present method. For high Reynolds numbers, the viscous boundary layer near each

wall is captured satisfactorily.

The presented formulation is checked first for the Stokes problem (Re=0). Uniform and

randomly spaced distribution of points are considered. The point distributions for 31 × 31

are shown in Figure 6.3. Figure 6.4 and Figure 6.5 show the streamfunction and vorticity

contours for 31 × 31 set of points. The value of d̄ is taken to be 0.033.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a) Uniform distribution b) Random distribution

Figure 6.3: Point distributions for 31× 31 points

We now present comparison studies for Reynolds number 100.0. Figure 6.6 shows the

streamfunction and vorticity contours obtained for 31×31 uniformly distributed set of points.

Figure 6.7 presents the comparison of the velocities obtained on the horizontal and vertical

centre-lines of the cavity with those obtained by Ghia et al. (1982). From the figures, it can

be seen that the RBF collocation method can accurately capture the solution.

The results obtained for Reynolds number 400 are presented in Figure 6.8, and comparison

with Ghia’s results is presented in Figure 6.9. Similar comparison studies are presented for

higher Reynolds numbers in Figures 6.10-6.12. It can be observed that the present meshless

formulation results agree very well with those of Ghia et al. (1982).

6.5.2 Rectangular driven cavity flow

We now consider the problem of a lid driven flow in a rectangular cavity with aspect ratio

of 2. The problem is defined and solved in the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2. This problem
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Figure 6.4: Square driven cavity: Re = 0, contours of streamfunction and vorticity

obtained using 31 × 31 uniform point distribution
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Figure 6.5: Square driven cavity: Re = 0, contours of streamfunction and vorticity

obtained using 31 × 31 random point distribution
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Figure 6.6: Square driven cavity: Re = 100, contours of streamfunction and vorticity

obtained using 31 × 31 uniform point distribution
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and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 100
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Figure 6.8: Square driven cavity: Re = 400, contours of streamfunction and vorticity

obtained using 31 × 31 uniform point distribution
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Figure 6.9: Square driven cavity: Comparison of velocity profiles obtained on the vertical

and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 400
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Figure 6.10: Square driven cavity: Streamline patterns obtained for Re = 1000 using

41 × 41 uniform points and Re = 3200 using 61 × 61 uniform points
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Figure 6.11: Square driven cavity: Comparison of velocity profiles obtained on the vertical

and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 1000 using

41 × 41 uniform and random distributions
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is solved for three different Reynolds numbers of 100, 400 and 1000. A uniform distribution

of points is considered for solving this problem.

The streamfunction contours obtained for the three Reynolds numbers are shown in Fig-

ures 6.13 - 6.14. From the figures, it can be observed that there are two rotating primary

vortices as well as secondary vortices in the bottom corners of the rectangular cavity. The top

primary vortex properties are reported in Table 6.1 and are compared with those obtained

by Bruneau & Jouron (1990). It can be seen that the primary vortex strength and location

values obtained are in in close agreement with the benchmark results.

Table 6.1: Rectangular driven cavity: Top primary vortex strength and location and

comparison with Bruneau & Jouron (1990)

Reynolds Number ψmin ψmin location

100 (Bruneau & Jouron, 1990) -0.1033 (0.6172, 1.7344)

Present Method -0.1032 (0.617, 1.734)

400 (Bruneau & Jouron, 1990) -0.1124 (0.5547, 1.5938)

Present Method -0.1125 (0.555, 1.610)

1000 (Bruneau & Jouron, 1990) -0.1169 (0.5273, 1.5625)

Present Method -0.1178 (0.525, 1.57)

6.5.3 Backward-facing step flow

The final model problem presented is flow over a backward-facing step. We use Gartling’s

problem definition (Gartling, 1990). Consider a channel of width L downstream of origin

and width L
2 upstream of origin, separated by a backward facing step as shown in Figure

6.15. Flow is assumed to be fully developed as it passes the inlet at x = 0 and has an average

velocity Ū . The problem domain is the channel starting at the inlet and extends downstream

a distance D long enough for the flow to again become fully developed. Reynolds number

is defined as ŪL
ν . The boundary conditions for the problem are given in Table 6.2. The

downstream distance D is taken to be 30L in order for the flow to be fully developed. This

completes the specification of the problem.

Figure 6.16 presents contours of streamfunction and vorticity for Re = 200. It can be seen

from the figure that a recirculation zone is formed downstream of the step face. The recir-

culation zone details obtained by the present method are compared against those obtained
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Figure 6.12: Square driven cavity: Comparison of velocity profiles obtained on the vertical

and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 3200 using

61 × 61 uniform distribution
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31 × 61 uniform point distribution
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Figure 6.14: Rectangular driven cavity: Streamline patterns obtained for Re = 400 using

31 × 61 uniform points and Re = 1000 using 41 × 81 uniform points
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Figure 6.15: Backward-facing step flow

by using finite elements (Barragy, 1993) in Table 6.3. It can be seen that the finite element

method under estimates the recirculation region from the table.

6.6 Conclusions

A radial basis function based meshless method is presented for the numerical solution of

incompressible Navier-Stokes equations in streamfunction formulation. This method is ca-

pable of obtaining numerical solutions on a uniformly spaced or random set of points. A
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Table 6.2: Boundary conditions for backward-facing step flow

Inlet: ψ = 2y2 (3 − 4y), ∂ψ
∂x = 0.

Outlet: ψ = 1
4

(
1 + 3y − 4y3

)
, ∂ψ
∂x = 0.

Step: ψ = 0, ∂ψ
∂x = 0.

Bottom Wall: ψ = 0, ∂ψ
∂y = 0.

Top Wall: ψ = 0.5, ∂ψ
∂y = 0.
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Figure 6.16: Backward-facing step: Re = 200, contours of streamfunction and vorticity

obtained using 41 × 41 uniform point distribution. Note that the scale parameters used for

this problem are Lx = 30 and Ly = 1.0

Table 6.3: Backward-facing step: Re = 200, Primary vortex strength and location, length

of recirculation region and its comparison with higher order finite elements (Barragy, 1993)

Present Method Finite Elements (Barragy, 1993)

Length of Recirculation 2.72 2.67

ψmin -0.0315 -0.0331

ψmin location (1.333,−0.2167) (1.0021,−0.2030)

novel ghost centre strategy was employed for incorporating the boundary conditions which

circumvents the difficulty of specifying vorticity boundary conditions. A square driven cav-

ity, rectangular cavity with aspect ratio 2 and backward-facing step flow were solved and
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the results obtained by the present method are compared with benchmark solutions. From

the comparisons made, it can be seen that the presented method can solve incompressible

viscous flow problems accurately. However, the present method generates dense coefficient

matrices which can be expensive to invert for large scale problems. The domain decompo-

sition methods developed earlier in this thesis can be used when large scale problems are

solved. However, the issue of optimal shape parameter value still remains as the shape pa-

rameter optimisation using L2 norm of the residual error is computationally expensive. The

next chapter presents a formulation for the incompressible NS equations using the RBF-FD

method presented earlier in Chapter 5 that allows the shape parameter to be tuned efficiently.



Chapter 7

RBF-FD Schemes for the

Incompressible Navier-Stokes

Equations

In this chapter, we present the RBF-FD formulation for the incompressible Navier Stokes

equations in streamfunction vorticity form. As shown in Chapter 5, the RBF-FD formulation

generates sparse coefficient matrices and is hence suitable for large scale problems. The

spatial discretisation of the incompressible NS equations is done using the RBF-FD method

and the temporal discretisation is achieved by explicit Euler time-stepping and the Crank-

Nicholson scheme. A novel ghost node strategy is employed for incorporating the no-slip

boundary conditions. The performance of the RBF-FD method with the ghost node strategy

is evaluated by solving driven cavity flow problems. Finally, a higher-order RBF-FD scheme

which uses ideas from Hermite interpolation is proposed for solving the steady NS equations.

7.1 Incompressible Navier-Stokes equations

The non-dimensional governing equations for unsteady incompressible Navier Stokes equa-

tions expressed in terms of vorticity (ω) and streamfunction (ψ) are given by

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (7.1)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (7.2)

97
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where Re is the Reynolds number and u, v denote the components of velocity in the x and

y directions which can be expressed in terms of the streamfunction as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (7.3)

In the RBF-FD method, we begin with representing the complete domain by a set of

scattered nodes present in the interior and on the boundary. For each interior node, a

supporting region/stencil is identified by choosing N nearest nodes. Then at each node,

a local RBF interpolation problem is set up to determine the RBF-FD weights for each

derivative (see section 5.1). This completes the pre-processing stage.

Once the RBF-FD method is applied to discretise the spatial derivatives in the governing

equations, Equation (7.1) and Equation (7.2), we obtain at any interior node xi,

dωi
dt

+ ui

N∑

j=1

w
(x)
(i,j)ωj + vi

N∑

j=1

w
(y)
(i,j)ωj

=
1

Re




N∑

j=1

(w
(xx)
(i,j) + w

(yy)
(i,j))ωj


 , (7.4)

and
N∑

j=1

(w
(xx)
(i,j) + w

(yy)
(i,j))ψj = −ωi, (7.5)

where N is the total number of interior and boundary nodes which lie in the support-

ing region/stencil for the node xi, and w
(x)
(i,j), w

(y)
(i,j), w

(xx)
(i,j) , w

(yy)
(i,j) are the RBF-FD weights

obtained from the system of Equations (5.9) with the corresponding differential operator

( ∂∂x ,
∂
∂y ,

∂2

∂x2 ,
∂2

∂y2 ) applied to the basis functions on the right hand side.

The system of ordinary differential equations obtained for vorticity after spatial discreti-

sation, Equation (7.4), is advanced in time using the basic Euler time-stepping scheme.

Denoting the value of any physical quantity at t = tn with the superscript n, we obtain

ωn+1
i − ωni
δt

+ uni

N∑

j=1

w
(x)
(i,j)ω

n
j + vni

N∑

j=1

w
(y)
(i,j)ω

n
j

=
1

Re




N∑

j=1

(w
(xx)
(i,j) + w

(yy)
(i,j))ω

n
j


 , (7.6)

where δt is the time-step. Similarly Equation (7.4) is temporally discretised using a θ-
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weighting scheme (0 ≤ θ ≤ 1), the discretised equation at the node xi reads as

ωn+1
i − ωni
δt

= θ


 1

Re

N∑

j=1

(
w

(xx)
(i,j) + w

(yy)
(i,j)

)
ωn+1
j −

uni

N∑

j=1

w
(x)
(i,j)ω

n+1
j − vni

N∑

j=1

w
(y)
(i,j)ω

n+1
j




+(1 − θ)


 1

Re

N∑

j=1

(
w

(xx)
(i,j) + w

(yy)
(i,j)

)
ωnj −

uni

N∑

j=1

w
(x)
(i,j)ω

n
j − vni

N∑

j=1

w
(y)
(i,j)ω

n
j


 . (7.7)

Equations (7.6) and (7.7) need to be supplemented by the boundary condition for vorticity.

The value of vorticity at the boundary is obtained by higher-order finite difference expressions

(Spotz, 1995); see Table 7.1. Here, the subscript b refers to the value of the quantity on the

boundary and subscript 1 refers to the interior node which is locally orthogonal to the

boundary and at a distance h from the boundary.

Table 7.1: O(h3) wall boundary conditions (Spotz, 1995)

Left Wall: ωb = − 3
h

[
vb +

(
ψ1−ψb

h

)
+ ω1h

6

]

Right Wall: ωb = 3
h

[
vb +

(
ψb−ψ1

h

)
− ω1h

6

]

Bottom Wall: ωb = 3
h

[
ub −

(
ψ1−ψb

h

)
− ω1h

6

]

Top Wall: ωb = − 3
h

[
ub −

(
ψb−ψ1

h

)
+ ω1h

6

]

Once the value of vorticity in the whole domain is obtained, the governing equation for

the streamfunction, Equation (7.2), is solved with Dirichlet boundary conditions to update

the streamfunction. This process is repeated until convergence,

‖ωnew − ωold‖2

‖ωnew‖2
≤ ε, (7.8)

where ǫ is a pre-determined convergence limit. The complete procedure is outlined in Table

7.2.
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Table 7.2: RBF-FD Algorithm for Incompressible Navier Stokes equations

Given an initial guess ψ0 and ω0 and a particular node configuration:

1. For each interior node, determine the support/stencil size.

2. Obtain the RBF-FD weights by solving the RBF interpolation problem.

3. Advance the vorticity solution to the next step using a suitable time-stepping algorithm.

4. Calculate the vorticity on the boundary using Table 7.1.

5. Solve Equation (7.2) with Dirichlet boundary conditions for streamfunction to obtain

the new streamfunction values.

6. Check for convergence. If converged, stop Else go to step 3.

7.2 Ghost node strategy for incorporating boundary condi-

tions

In the previous section, a locally orthogonal grid at the boundary is used to enforce the

no-slip boundary conditions. This restriction on the nodes near the boundary makes the

implementation of boundary conditions very straight forward. Considerable amount of work

would be needed however to ensure a locally orthogonal grid near curved surfaces, and hence

this approach would be cumbersome for complex geometries. In this section, we propose

a method for implementing the no-slip boundary conditions based on ghost nodes. This

ghost node strategy enables randomly placed points near the boundary and is still able to

satisfy the boundary conditions accurately. Sample point distributions used in the locally

orthogonal grid and the ghost node strategies are shown in Figure 7.1.

The no-slip boundary conditions at a boundary Γ are given by

ψ = C1 x ∈ Γ,

∂ψ

∂~n
= C2 x ∈ Γ (7.9)

where C1 and C2 are constants and ~n is the outward normal direction from the boundary.

In the proposed strategy, each boundary node is associated with a support region/stencil

which also includes a ghost node placed outside the computational domain. The RBF-FD

discretisation is carried out to approximate the normal derivative at the boundary node xi,

i.e.,

∂ψ

∂~n

∣∣∣∣
xi

=
N∑

j=1

w
(~n)
(i,j)ψj + w

(~n)
(i,ghost)ψghost, (7.10)
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Locally Orthogonal Grid Ghost Nodes Grid

Figure 7.1: Schematic figure depicting the locally orthogonal boundary and the ghost

nodes. Note that the ghost nodes are represented as grey shaded circles.

where N is the number of supporting points inside and on the boundary. The value of the

streamfunction at the ghost node is evaluated by substituting the no-slip boundary condition

Equation (7.9) and the streamfunction values of the interior nodes evaluated at the previous

time step in Equation (7.10). The value of vorticity on the boundaries can then be evaluated

by RBF-FD discretisation of Equation (7.2) at the boundary node xi.

7.3 Numerical studies

In this section, we present numerical studies conducted on two test problems using the

modified RBF-FD scheme with the ghost node strategy.

7.3.1 Square driven cavity flow

We first present numerical studies conducted on the lid-driven cavity flow problem in a

square [0, 1]× [0, 1] domain. The boundary conditions for this problem are given in Equation

(6.33). The results obtained using the presented RBF-FD formulation are validated against

the benchmark multigrid finite difference results obtained in Ghia et al. (1982).

We use the time-dependent form of the governing equations in streamfunction-vorticity

form. The spatial discretisation is done using the RBF-FD scheme while the temporal dis-

cretisation is carried out using the Crank-Nicholson method (Equation (7.7) with θ = 0.5),

with a time step δt = 0.01. Both uniform and random point distributions are considered and

the flow problem is solved for three different Reynolds numbers (Re = {100, 400, 1000}). We
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Figure 7.2: Comparison of wall vorticity obtained using ghost nodes on the moving

boundary of the square driven cavity flow with Ghia et al. (1982)

use 9 supporting points in each RBF-FD stencil for discretisations of the function derivatives

and the value of shape parameter is obtained using the leave-one-out optimisation strategy,

outlined in Chapter 5, for each RBF-FD stencil. To apply the no-slip boundary conditions,

the ghost node strategy proposed in Section 7.2 is employed on the boundary RBF-FD sten-

cils. This facilitates a complete random point distribution in the interior of the domain.

We begin by examining the accuracy of the proposed ghost node strategy. Figure 7.2

shows the wall vorticity distribution obtained on the moving lid for the square lid-driven

cavity flow problem at two different Reynolds numbers. A complete random distribution of

points without any restriction at the nodes near the boundary was considered for obtaining

the results. The results are compared with the wall vorticity values obtained by Ghia et al.

(1982) for the purpose of validation. From the figures, it can be seen that the obtained

vorticity distribution agrees well with the benchmark results.

In Figure 7.3, the streamfunction and vorticity contours obtained using the RBF-FD

method for Re = 100 are shown. The results displayed are generated using 41×41 randomly

spaced points. From the plot of the streamfunction contours it can be seen that the secondary

and tertiary vortices near the bottom wall are also captured. It is worth noting that the global

features of the flow were captured with relatively small 21 × 21 distribution of points.

The comparison of velocity components at the horizontal and vertical centres of the cavity

with those obtained by Ghia et al. (1982) are displayed in Figure 7.4. The velocity profiles

obtained using 31× 31 and 41× 41 uniform and random distribution of points are presented

in Figure 7.4. From Figure 7.4, it can clearly be seen that the velocity profiles are captured
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Figure 7.3: Square driven cavity: Re = 100, contours of streamfunction and vorticity

obtained using 41 × 41 random point distribution
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Figure 7.4: Square driven cavity: Comparison of velocity profiles obtained on the vertical

and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 100

accurately as the number of points in the domain is increased.

Figure 7.5 shows the streamfunction and vorticity contours obtained for Re = 400 and

51× 51 random point distribution.The comparison of velocity profiles is presented in Figure

7.6. To accurately capture the velocity profiles for Re = 400, a larger number of points

(51 × 51) were needed as compared to those required for Re = 100 (41 × 41). However,
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the points required were much less than that of second order finite difference method which

required about 129 × 129 points in order to capture the velocity profiles (Ghia et al., 1982).
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Figure 7.5: Square driven cavity: Re = 400, contours of streamfunction and vorticity

obtained using 51 × 51 random point distribution
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Figure 7.6: Square driven cavity: Comparison of velocity profiles obtained on the vertical

and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 400

Similar results for Re = 1000 are shown in Figure 7.7 and Figure 7.8. The primary,

secondary and tertiary vortices are captured satisfactorily. The velocity profiles obtained

using 51 × 51 and 61 × 61 uniform and random point distributions are displayed in Figure
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Figure 7.7: Square driven cavity: Re = 1000, contours of streamfunction and vorticity

obtained using 61 × 61 random point distribution
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Figure 7.8: Square driven cavity: Comparison of velocity profiles obtained on the vertical

and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 1000

In comparison with the RBF collocation method developed earlier in Chapter 6, the

RBF-FD method is able to provide similar accuracy but at much lower computational cost.

This reduction in computational cost is mainly due to the sparse structure of the coefficient

matrices. It is also observed that although the sensitivity of the shape parameter is reduced
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for the RBF-FD method, the shape parameter still influences the accuracy of the obtained

solution, particularly when random node stencils are used for spatial discretisation.

7.3.2 Rectangular driven cavity flow

In this subsection, we apply the RBF-FD approach with the ghost node strategy for solving

the driven cavity flow in a rectangular cavity with aspect ratio 2. The problem definition

is provided in Section 6.5.2. The results are validated against those obtained by Gupta &

Kalita (2005).
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Figure 7.9: Rectangular driven cavity: Streamline patterns obtained for Re = 100 using

41 × 81 uniform point distribution

The streamfunction contours obtained for the three Reynolds numbers are shown in Fig-

ures 7.9 - 7.10. From the figures, it can be observed that there are two rotating primary

vortices as well as secondary vortices in the bottom corners of the rectangular cavity. The top

primary vortex properties are reported in Table 7.3, and are compared with those obtained

by Bruneau & Jouron (1990). It can be seen that the RBF-FD method results are in close

agreement with the benchmark results.

7.4 Higher-order RBF-FD schemes

In the first part of this chapter, we demonstrated the applicability of RBF-FD schemes for the

incompressible Navier-Stokes equations. We now explore a higher-order version of the RBF-

FD scheme using ideas from Hermite interpolation. This higher-order discretisation method

using RBFs can be regarded as a generalisation of the Mehrstellenvarfahren introduced by
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Table 7.3: Rectangular driven cavity: Top primary vortex strength and location and

comparison with Bruneau & Jouron (1990)

Reynolds Number ψmin ψmin location

100 (Bruneau & Jouron, 1990) −0.1033 (0.6172, 1.7344)

Present Method −0.1030 (0.625, 1.721)

400 (Bruneau & Jouron, 1990) −0.1124 (0.5547, 1.5938)

Present Method −0.1120 (0.555, 1.6125)

1000 (Bruneau & Jouron, 1990) −0.1169 (0.5273, 1.5625)

Present Method −0.1165 (0.525, 1.57)
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Figure 7.10: Rectangular driven cavity: Streamline patterns obtained for Re = 400 using

81 × 161 uniform points and Re = 1000 using 101× 201 uniform points

Collatz (1960) and later developed into compact FD formulas by Lele (1992). In the compact

FD methodology, for example, the partial derivative of an unknown function with respect to

the x-coordinate at any grid point (i, j) is given by

∂u

∂x

∣∣∣∣
(i,j)

≈
∑

k∈{i−1,i,i+1}
w(k,j)u(k,j) +

∑

k∈{i−1,i+1}
w̃(k,j)

∂u

∂x

∣∣∣∣
(k,j)

. (7.11)

The accuracy of the finite difference approximation is increased by adding the second term

(derivative information), as shown in Equation (7.11). Note that this additional term does not

change the stencil size at the grid point (i, j) in the compact finite difference methodology.
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Higher order RBF-FD methods were earlier used for the solution of linear and nonlinear

Poisson problems (Wright & Fornberg, 2006). In this thesis, this work is extended to develop

higher-order schemes for the incompressible Navier-Stokes equations. We demonstrate the

higher-order accuracy of the presented formulation by solving the steady state incompressible

Navier Stokes equations.

7.4.1 Basic formulation

The RBF-FD method generates a local RBF interpolant for expressing the function deriva-

tives at a node as a linear combination of the function values on the nodes present in the

support region of the considered node. In the spirit of compact finite difference schemes, the

accuracy of the RBF-FD discretisation can be increased by considering not only the function

values but also the derivative values on the nodes present in the supporting region. The

weights of the higher-order stencil are computed using the Hermite interpolation technique.

We begin with a brief introduction to the Hermite interpolation method. Let L be an

arbitrary linear differential operator and let η be a vector containing some combination of

m ≤ n distinct numbers from the set {1, 2, · · · , n}. The function values u(xi) are specified at

each of the n distinct data points {xi}ni=1. In addition, data corresponding to the differential

operator operating on the the function, Lu(xηl
), is specified at m points {xηl

}ml=1. Note that

the point set {xηl
}ml=1 is a subset of the set {xi}ni=1. Then, the interpolant passing through

all the data can be written as

u(x) ≈ s(x) =
n∑

i=1

λiφ(‖x − xi‖) +
m∑

l=1

λ̃lL2φ(‖x − xηl
‖) + β, (7.12)

where L2φ(‖.‖) is a basis function derived by the functional L acting on the multiquadric

basis φ(‖.‖) as a function of the second variable (centre) and β is a constant. The unknown

coefficients are obtained by enforcing the conditions s(xi) = u(xi), i = 1, · · · , n; Ls(xηl
) =

Lu(xηl
), l = 1, · · · ,m; and

∑n
i=1 λi = 0. Imposing these conditions leads to the following

block linear system of equations




Φ L2Φ e

LΦ LL2Φ 0

eT 0T 0







λ

λ̃

β


 =




u

Lu

0


 , (7.13)
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where

Φi,j = φ(‖xi − xj‖), i, j = 1, · · · , n,
L2Φi,j = L2φ(‖xi − xηj

‖), i = 1, · · · , n, j = 1, · · · ,m,
LΦi,j = Lφ(‖xηi

− xj‖), i = 1, · · · ,m, j = 1, · · · , n,
LL2Φi,j = LL2φ(‖xηi

− xηj
‖), i = 1, · · · ,m, j = 1, · · · ,m,

and ei = 1, i = 1, · · · , n. Equation (7.13) is solved using a backward substitution routine.

The Hermite interpolant can also be written in Lagrange form as

s̄(x) =

n∑

i=1

χ(‖x − xi‖)u(xi) +

m∑

l=1

χ̃(‖x − xηl
‖)Lu(xηl

), (7.14)

where χ(‖x−xi‖) and χ̃(‖x−xηl
‖) are of the form Equation (7.12) and satisfy the cardinal

conditions, i.e.,

χ(‖xk − xi‖) =





1, if k = i,

0, if k 6= i,
k = 1, · · · , n, (7.15)

Lχ(‖xηk
− xi‖) = 0, k = 1, · · · ,m, (7.16)

and

χ̃(‖xk − xηl
‖) = 0, k = 1, · · · , n, (7.17)

Lχ̃(‖xηk
− xηl

‖) =





1, if k = l,

0, if k 6= l,
k = 1, · · · ,m. (7.18)

Figure 7.11: Schematic diagram of a higher-order RBF-FD stencil. The circle indicates

the supporting region/stencil for the node x1.

Equation (7.14) is the basis for deriving higher-order RBF-FD stencils. Consider the

node x1 with its support region containing n points, denoted by a dashed circle around x1
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in Figure 7.11. The goal is to obtain a higher-order RBF-FD discretisation of Lu(x1). The

nodes in the support region which are shaded grey are those nodes where both the function

values (u(x)) and the functional values (Lu(x)) are used i.e., the set η of cardinality, say,

m ≤ n.

The higher-order RBF-FD discretisation for Lu(x1) is given by the Lagrange form of the

interpolant, i.e.,

Lu(x1) ≈ Ls̄(x1) =
n∑

i=1

Lχ(‖x1 − xi‖)u(xi) +
m∑

l=1

Lχ̃(‖x1 − xηl
‖)Lu(xηl

). (7.19)

Equation (7.19) can be rewritten as a compact FD formula of the form

Lu(x1) ≈
n∑

i=1

wL
(1,i)u(xi) +

m∑

l=1

w̃L
(1,l)Lu(xηl

), (7.20)

where the weights for higher-order RBF-FD {wL
(1,i)}ni=1 and {w̃L

(1,l)}ml=1 are now given by

wL
(1,i) = Lχ(‖x1 − xi‖), w̃L

(1,l) = Lχ̃(‖x1 − xηl
‖), (7.21)

where the superscript L on the weights denote that the higher-order RBF-FD weights are

computed for that particular operator.

In practise, the weights are computed by solving the linear system




Φ L2Φ e

LΦ LL2Φ 0

eT 0T 0




T 


w

w̃

µ


 =




L⋆Φ1

L⋆Φ̃1

0


 , (7.22)

where L⋆Φ1 and L⋆Φ̃1 denote the evaluation of the column vectors L⋆Φ = [Lφ(‖x−x1‖) Lφ(‖x−
x2‖) · · · Lφ(‖x − xn‖)]T and L⋆Φ̃ = [LL2φ(‖x − xη1‖) LL2φ(‖x − xη2‖) · · · LL2φ(‖x −
xηm‖)]T at the node x1. Here, µ is a scalar value related to the constant β in Equation (7.12)

and enforces the condition
n∑

i=1

w(1,i) = 0,

which ensures that the stencil is exact for all constants. The derivation of Equation (7.22)

is very similar to that of the derivation presented in Appendix C.

Once the weights are computed by solving Equation (7.22) for each node, they can be

stored and used to discretise the partial differential equation in a similar manner as in the

compact finite difference schemes.

We now illustrate the higher-order RBF-FD approach for a Poisson problem of the form

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (x, y) ∈ Ω (7.23)
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with Dirichlet boundary condition

u(x, y) = g(x, y), (x, y) ∈ Γ (7.24)

where Γ represents the boundary of the domain Ω.

We consider a stencil for a node x1 as shown in Figure 7.12, where the function values u(x)

are taken for nodes with single circle and for the double circled nodes both u(x) are Lu(x)

are used. Following the previous notation, η = {2, 4, 6, 8} and the value of any physical

quantity at the node xi is denoted by the subscript i.

Figure 7.12: Higher order RBF-FD stencil for Poisson Problem

The weights for this stencil are obtained by solving

AHW = b, (7.25)

where

AH =

2
66666666666666666666664

φ(‖x1 − x1‖) · · · φ(‖x1 − x9‖) L2φ(‖x1 − xη1
‖) · · · L2φ(‖x1 − xη4

‖) 1

φ(‖x2 − x1‖) · · · φ(‖x2 − x9‖) L2φ(‖x2 − xη1
‖) · · · L2φ(‖x2 − xη4

‖) 1

...
...

...
...

...
...

...

φ(‖x9 − x1‖) · · · φ(‖x9 − x9‖) L2φ(‖x9 − xη1
‖) · · · L2φ(‖x9 − xη4

‖) 1

Lφ(‖xη1
− x1‖) · · · Lφ(‖xη1

− x9‖) LL2φ(‖xη1
− xη1

‖) · · · LL2φ(‖xη1
− xη4

‖) 0

Lφ(‖xη2
− x1‖) · · · Lφ(‖xη2

− x9‖) LL2φ(‖xη2
− xη1

‖) · · · LL2φ(‖xη2
− xη4

‖) 0

...
...

...
...

...
...

...

Lφ(‖xη4
− x1‖) · · · Lφ(‖xη4

− x9‖) LL2φ(‖xη4
− xη1

‖) · · · LL2φ(‖xη4
− xη4

‖) 0

1 · · · 1 0 · · · 0 0

3
77777777777777777777775

14×14

,

W =
h
w

L
(1,1) · · · w

L
(1,9) ewL

(1,1) · · · ewL
(1,4) µ

iT

and
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b = [Lφ(‖x1 − x1‖) · · · Lφ(‖x1 − x9‖) LL2φ(‖x1 − xη1
‖) · · · LL2φ(‖x1 − xη4

‖) 0]T .

Once the higher-order RBF-FD weights are determined we proceed to the next step, i.e.,

discretisation. The discretisation of the governing equation, Equation (7.23), at node x1 is

given by
9∑

j=1

wL
(1,j)uj +

4∑

l=1

w̃L
(1,l)Luηl

= f1. (7.26)

Note that from the governing equation, (Equation (7.23)), Luηl
at the node xηl

is given by

fηl
which is known. Hence, Equation (7.26) becomes

9∑

j=1

wL
(1,j)uj = f1 −

4∑

l=1

w̃L
(1,l)fηl

. (7.27)

This procedure is repeated for each of the interior nodes to obtain the discretised form of

the PDE at each of the interior nodes. Substituting the function values uj from boundary

condition, Equation (7.24), whenever the support point xj ∈ Γ, we obtain a system of

equations which can be written in matrix form as

Au = f , (7.28)

where u is the vector of the unknown function values at all the interior nodes and f is

the source vector including the boundary terms. This equation can be solved to obtain the

unknown vector u.

7.4.2 Numerical studies

In this section, we present numerical studies conducted on a model Poisson and steady state

convection-diffusion equation using the higher-order RBF-FD method presented in the earlier

subsections.

The source term and exact solution for Poisson equation are given in Equation (5.17) and

Equation (5.18). We consider the 9 noded stencil for the RBF-FD method and the stencil

shown in Figure 7.12 for the higher-order RBF-FD method. The shape parameter obtained

for the RBF-FD stencil using the leave-one-out criterion is used for the higher-order RBF-FD

method.

Figure 7.13 presents the convergence behaviours obtained for the Poisson problem using

both the RBF-FD and higher-order RBF-FD method. It can be clearly seen that the higher-

order RBF-FD method is more accurate than the RBF-FD method for the same number of

nodes or mesh spacing (h).
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Figure 7.13: Comparison of convergence behaviours of RBF-FD and higher-order RBF-FD

for a model Poisson equation

The steady convection-diffusion problem that is considered next is

∂2u

∂x2
+
∂2u

∂y2
− Pe

∂u

∂x
= 0, (7.29)

in the domain [0, 1] × [0, 0.6] with the boundary conditions

u = 1 on x = 0, u = 2 on x = 1, (7.30)

∂u

∂y
= 0 on y = 0, ∂u

∂y = 0 on y = 1. (7.31)

The exact solution for this problem is given by

uexact = 2 − 1 − exp [Pe(x− 1)]

1 − exp (−Pe)
. (7.32)

Figure 7.14 presents the convergence plots of the RBF-FD and higher-order RBF-FD for

the convection diffusion problem, Equation (7.29), for two Peclet numbers 1.0 and 10.0. The

operator L is taken as

L ≡ ∂2

∂x2
+

∂2

∂y2
− Pe

∂

∂x
,

and the higher-order RBF-FD weights are obtained using Equation (7.22). From Figure

7.14, it can be seen that the results obtained using the higher-order method is at least two

orders more accurate than that of RBF-FD method. It is also worth mentioning that for

Pe = 100.0, with a uniform discretisation of 201 × 201 nodes, the error norm observed for

the computed solution using higher-order RBF-FD was ε = O(10−4).
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Figure 7.14: Comparison of convergence behaviours of RBF-FD and higher-order RBF-FD

for a model steady state convection-diffusion equation

7.5 Higher order RBF-FD for the incompressible NS equa-

tions

The previous section outlined the idea of using the Hermite interpolation technique to obtain

a higher-order RBF-FD discretisation for each RBF-FD stencil. It can be observed that a

family of higher-order schemes can be derived by defining which operator L one is using

for the higher-order RBF-FD stencil. In this section, we present one such formulation for

the steady state incompressible NS equations. This formulation has the advantage of easier

implementation of the no-slip boundary conditions. We begin with recalling the governing

equations of steady incompressible flows in streamfunction (ψ) - vorticity (ω) formulation:

∇2ψ = −ω, (7.33)

∇2ω = Re

(
u
∂ω

∂x
+ v

∂ω

∂y

)
, (7.34)

where Re is the Reynolds number and (u, v) are the Cartesian velocity components of the

flow.

As usual, we begin by discretising the entire domain into a set of interior and boundary

nodes and determine the stencil at each node. Each higher-order RBF-FD stencil contains

n nodes and the vector η of cardinality m ≤ n. The stencil information consists of the



Chapter 7 RBF-FD Schemes for the Incompressible Navier-Stokes Equations 115

function values (ψ(x) or ω(x)) at each of the n nodes and the functional information (Lψ(x)

or Lω(x)) on each of the m nodes. Note that the operator L is arbitrary.

The higher-order RBF-FD discretisations for the Laplacian of streamfunction at each

interior node xi is given by

∇2ψ(xi) ≈
n∑

j=1

w∇2

(i,j)ψ(xj) +

m∑

l=1

w̃∇2

(i,l)

{
∇2ψ(xηl

)
}
, (7.35)

where the higher-order RBF-FD weights {w∇2

(i,j)}nj=1 and {w̃∇2

(i,l)}ml=1 are obtained using Equa-

tion (7.25) with the operator L ≡ ∇2. Similarly the discretisation of Laplacian of vorticity

can be obtained as

∇2ω(xi) ≈
n∑

j=1

w∇2

(i,j)ω(xj) +

m∑

l=1

w̃∇2

(i,l)

{
∇2ω(xηl

)
}
. (7.36)

For the sake of brevity, we denote the value of any physical quantity at node xj by the

subscript j. In Equation (7.35), the second term (quantity in curly brackets) can be replaced

by the right hand side of Equation (7.33). Similarly, in Equation (7.36), the second term

can be replaced by the right hand side of Equation (7.34). The modified discretisations now

become

∇2ψi ≈
n∑

j=1

w∇2

(i,j)ψj +

m∑

l=1

w̃∇2

(i,l)(−ωηl
), (7.37)

and

∇2ωi ≈
n∑

j=1

w∇2

(i,j)ωj + Re

m∑

l=1

w̃∇2

(i,l)

(
u
∂ω

∂x
+ v

∂ω

∂y

)

ηl

. (7.38)

We now return to the solution of the governing NS equations via a fixed point iteration

scheme. Denoting the iteration number k with a superscript k on the physical variable, the

governing equations at iteration k + 1 for the node xi are given by

∇2ψk+1
i = −ωki ,

∇2ωk+1
i = Re

[
ūi

(
∂ω

∂x

)k+1

i

+ v̄i

(
∂ω

∂y

)k+1

i

]
, (7.39)

where ūi and v̄i are the current estimates of components of the velocity vector. Substituting

the derived higher-order RBF-FD discretisations for Laplacian of streamfunction (Equation

(7.37)) and vorticity (Equation (7.38)) in to Equation (7.39), we obtain

n∑

j=1

w∇2

(i,j)ψ
k+1
j +

m∑

l=1

w̃∇2

(i,l)

(
−ωkηl

)
= −ωki , (7.40)
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and
n∑

j=1

w∇2

(i,j)ω
k+1
j +Re

m∑

l=1

w̃∇2

(i,l)

[
ūηl

(
∂ω

∂x

)k

ηl

+ v̄ηl

(
∂ω

∂y

)k

ηl

]

−Re


ūi

n∑

j=1

w
(x)
(i,j)ω

k+1
j + v̄i

n∑

j=1

w
(y)
(i,j)ω

k+1
j


 = 0. (7.41)

Note that in Equation (7.41), the vorticity gradients
(
∂ω
∂x ,

∂ω
∂y

)
were discretised using the

RBF-FD method.

The velocity components (ū, v̄) in Equation (7.41) are obtained using the higher-order

RBF-FD discretisations given by

ūi ≡
∂ψ̄

∂y

∣∣∣∣
i

≈
n∑

j=1

wy(i,j)ψ̄j +

m∑

l=1

w̃y(i,l)
∂ψ̄

∂y

∣∣∣∣
ηl

, (7.42)

v̄i ≡ − ∂ψ̄

∂x

∣∣∣∣
i

≈ −




n∑

j=1

wx(i,j)ψ̄j +
m∑

l=1

w̃x(i,l)
∂ψ̄

∂x

∣∣∣∣
ηl


 , (7.43)

where ψ̄ is the current estimate of the streamfunction.

The iteration procedure is explained for a problem with no-slip boundary conditions.

Recall that the no-slip boundary condition consists of a Dirichlet and a Neumann condition

for streamfunction at each boundary point, see Equation (7.9). Now, given an initial guess

for streamfunction and vorticity, we solve the system of equations arising from satisfying

Equation (7.40) at all interior nodes along with the Dirichlet boundary conditions for the

streamfunction to obtain the new estimate for streamfunction (ψ̄). To obtain the new velocity

vector estimate, the system of equations arising from satisfying Equation (7.42)/ Equation

(7.43) at all interior nodes is solved. Note that whenever the support point xηl
for a node

is on the boundary, the Neumann condition for streamfunction is used thus facilitating an

easier implementation of no-slip boundary conditions. Next, the new estimate of vorticity

on the boundary is obtained using the ghost node strategy proposed in Section 7.2. Once

the velocity vector estimate is known, the linear system of equations arising from satisfying

Equation (7.41) is solved with the Dirichlet vorticity conditions obtained using the ghost

node strategy. Once the physical quantities are obtained, we advance to the next iteration.

This procedure is repeated until convergence.

7.5.1 Numerical results

We now present numerical results obtained for the higher-order RBF-FD method for the

steady incompressible NS equations. The formulation outlined in Section 7.5 is used to solve
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the square lid-driven cavity flow. Figure 7.15 presents the streamfunction contours obtained

for the cavity flow at Re = 100 with a uniform distribution of 31 × 31 nodes. The left

subfigure solution is obtained using the RBF-FD method and the right subfigure is obtained

using the higher-order RBF-FD method. From Figure 7.15, it can be clearly seen that the

higher-order method captures the solution more accurately with a small number of 31 × 31

points.
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Figure 7.15: Comparison of convergence behaviours of RBF-FD and higher-order RBF-FD

for a model steady state convection-diffusion equation

Figure 7.16 estimates the performance of higher-order RBF-FD and RBF-FD in terms of

accuracy. On the x-axis, the mesh spacing h is plotted on a log scale in the reverse direction.

On the y-axis, the minimum value of streamfunction ψmin in the whole domain (strength of

the primary vortex) is plotted. The benchmark value obtained by Ghia et al. (1982) is shown

as a horizontal dotted line in the figure. From Figure 7.16, it can clearly be observed that

the higher-order method captures the true solution at considerably less points (h ≈ 0.033)

as compared to the original RBF-FD method.

7.6 Concluding remarks

The RBF-FD method is presented for solving incompressible Navier-Stokes equations. This

method approximates the function derivatives at a node in terms of the function values on a

scattered set of points present in support region of the node. The RBF-FD method uses local
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Figure 7.16: Convergence of ψmin for higher-order RBF-FD and RBF-FD at Reynolds

number 100

interpolation problems and hence generates sparse and well-conditioned matrices. It also has

the property of decreased sensitivity with respect to shape parameter value in comparison

with the RBF collocation method. A ghost node strategy employed for incorporating no-slip

boundary conditions removes the limitations of having a locally orthogonal grid near the

boundary and thus makes the method more suitable for complete random node discretisa-

tions. Numerical studies conducted on the driven cavity flow problems using the RBF-FD

method show that this method achieves accurate results which are in good agreement with

the benchmark results.

A higher-order RBF-FD method is explored for solving partial differential equations. The

higher-order method is obtained by using Hermite RBF interpolation method to construct

the function approximation at each node in the domain. A higher-order formulation for

steady incompressible Navier-Stokes equations is presented. The accuracy of the higher-

order method is investigated by solving for a model Poisson equation, convection diffusion

equation and square lid-driven cavity flow. Numerical results obtained indicate that this

method indeed is a higher-order method with a higher capability of spatial resolution with

respect to the RBF-FD method.



Chapter 8

Conclusions and Future Areas of

Research

This chapter concludes the thesis with a brief synopsis of the primary conclusions and con-

tributions of the present research work. Some directions for future research are also outlined.

8.1 Research summary and contributions

The main focus of this thesis is to develop meshless methods for fluid dynamics problems

using radial basis function collocation methods. These methods require only a scattered set

of nodes or points in the domain instead of a mesh which is the case for traditional methods

such as FD, FE or FV methods. Two methodologies for solving PDEs have been presented

in this thesis. The first is the collocation and second one is using RBFs in a finite difference

mode. Benchmark flow problems for the incompressible Navier Stokes equations have been

solved using meshless methods developed on the basis of both the methodologies. The main

conclusions and contributions made in this doctoral research are summarised below.

8.1.1 Comparisons of various RBFs for unsteady flow problems

We presented a detailed comparison on the performance of various RBFs when applied to

solve the unsteady convection-diffusion equation. A symmetric RBF collocation method

for time-dependent problems was proposed and comparisons were made with the existing

unsymmetric RBF collocation method. Both global and compactly supported RBFs were

used and the convergence behaviours of each RBF were investigated for three different Peclet

119
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numbers. A residual based optimisation strategy was employed to determine the shape

parameter value in the case of σ-tunable RBFs. Numerical results suggest that the presented

meshless methods are capable of generating accurate results for low and medium Peclet

numbers. At very high Peclet numbers, both the unsymmetric as well as the symmetric

schemes are not able to capture the sharp discontinuity in the solution due to worsening of

the condition numbers of the coefficient matrices. The discontinuity may be captured by

adding artificial dissipation or by combining the RBF collocation methodology with the flux

limiter schemes as in computational fluid dynamics literature.

8.1.2 RBFs & Domain decomposition methods

Overlapping Schwarz domain decomposition algorithms using RBFs were proposed for so-

lution of unsteady linear PDEs. The proposed algorithms were compared with an existing

multizone algorithm using RBFs (Wong et al., 1999). It was shown that the proposed algo-

rithms are much more computationally efficient than the multizone method. We also showed

that the Schwarz schemes are much faster than the global RBF collocation method due to

smaller matrices. Further, with increasing number of subdomains the proposed schemes

are much faster with an acceptable loss of accuracy. Finally, these schemes reduce the ill-

conditioning problem associated with the RBF collocation methods. All these features make

the Schwarz overlapping schemes attractive for solving large scale problems. The proposed

Schwarz schemes were also extended to nonlinear elliptic PDEs. The behaviour of the schemes

for nonlinear problems was shown to be similar to that of the unsteady linear problem.

8.1.3 RBFs in finite difference mode

An alternative strategy to domain decomposition methodology was also pursued in order to

develop meshless methods using RBFs for large scale problems. The basic idea is to generate

function approximations on a cloud of nodes in the local support region/stencil of a node.

This method results in sparse coefficient matrices and hence is suitable for solving large scale

fluid flow problems. A novel shape parameter optimisation strategy was developed using sta-

tistical estimators like the leave-one-out criterion as the objective function to determine the

optimal shape parameter value for each RBF-FD stencil. Numerical studies were conducted

on model unsteady convection-diffusion equation to ascertain the efficiency of the RBF-FD

method.
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8.1.4 Meshless schemes for incompressible NS equations

Meshless methods based on global RBF collocation and RBF-FD were developed for solving

steady and unsteady incompressible Navier-Stokes equations. A novel ghost node strategy

was employed for satisfying the no-slip boundary conditions for both collocation and RBF-

FD methods. For the RBF-FD method, this strategy enables the method to be suitable

for complete random point discretisation in the domain. Benchmark test problems like the

driven cavity flow in a square region, rectangular driven cavity with aspect ratio 2 and a

backward facing step flow were solved using the developed meshless methods. Finally, a

higher-order RBF-FD method was explored for solving the incompressible Navier Stokes

equations. Numerical results suggest a high spatial resolution for the higher-order scheme

for model convection-diffusion and NS equations.

8.2 Future areas of research

An outline for some directions for future research is presented below� Shape parameter tuning for collocation methods:

In this thesis, research conducted on the application of global RBF collocation methods

for fluid flow problems show that these methods have the potential of obtaining very

good accuracies with considerably less number of points as compared to traditional

mesh based methods. However, the high convergence rates are subject to obtaining the

optimal value of shape parameter (σ). An optimisation strategy based on residual error

minimisation is proposed in this thesis. However, this strategy may be computationally

expensive especially for unsteady flow problems, if one wants to obtain the optimal

value of σ at each time step. Further research is required in this direction to develop

more computationally efficient algorithms for tuning the shape parameter.� Higher order RBF-FD:

Better spatial resolution techniques using Hermite interpolation methods were explored

for solving the NS equations in this thesis. Further work is required to extend the

technique for unsteady NS equations and for compressible flows. Also, a variety of

higher-order schemes may be developed for NS equations depending on the operator

which is considered during Hermite interpolation. In this thesis, two examples of such

discretisations were investigated. It remains to investigate other type of discretisations
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and establish the computational efficiency of each of the discretisations.� Domain decomposition for NS

Domain decomposition methods for RBF collocation were developed for linear time-

dependent problems and nonlinear elliptic PDEs. These domain decomposition meth-

ods can be further extended to solve nonlinear time dependent PDEs and the Navier-

Stokes equations. These methods have the potential of high convergence rates provided

the optimal value of shape parameter is used. Further, it would be interesting to apply

these schemes for large-scale problems encountered in 3D fluid flow problems.



Appendix A

Derivatives of multiquadric RBFs

The analytical expressions for the derivatives of the multiquadric radial basis function are

presented. The definition of the basis function used is given by

φ(‖x − c‖) =
√

(x− h)2 + (y − k)2 + σ2, (A.1)

where x = (x, y) is the collocation point and c = (h, k) is the centre of the RBF and σ is the

shape parameter. The partial derivatives for the multiquadric RBF are presented below.

∂φ

∂x
=

x− h√
(x− h)2 + (y − k)2 + σ2

, (A.2)

∂φ

∂y
=

y − k√
(x− h)2 + (y − k)2 + σ2

, (A.3)

∇2φ =
(x− h)2 + (y − k)2 + 2σ2

[(x− h)2 + (y − k)2 + σ2]
3
2

, (A.4)

∂3φ

∂x2∂y
=

(y − k)
[
2(x− h)2 − (y − k)2 − σ2

]

[(x− h)2 + (y − k)2 + σ2]
5
2

, (A.5)

∂3φ

∂x∂y2
= −(x− h)

[
(x− h)2 − 2(y − k)2 + σ2

]

[(x− h)2 + (y − k)2 + σ2]
5
2

, (A.6)

∇2∇2φ =
15
[
(x− h)2 + (y − k)2 + 2σ2

] [
(x− h)2 + (y − k)2

]

[(x− h)2 + (y − k)2 + σ2]
7
2

−18
(
(x− h)2 + (y − k)2

)
+ 12σ2

[(x− h)2 + (y − k)2 + σ2]
5
2

+
4

[(x− h)2 + (y − k)2 + σ2]
3
2

, (A.7)

where ∇2 and ∇2∇2 denote the Laplacian and biharmonic operators respectively.
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Appendix B

Derivation of Leave-One-Out

objective function for RBF-FD

stencil

The leave-one-out cross validation estimator is given by

E(σ) =

N∑

i=1

(
f̄i − fi

)2
, (B.1)

where {xi, fi}Ni=1 is the observed data and f̄i is the function value predicted at the ith data

point using multiquadric basis approximation based on the database that excludes the ith

data.

Let

ei = f̄i − fi. (B.2)

Partition matrix A as

A =


 Ā Ã(:, i)

Ã
T
(:, i) Aii


 , (B.3)

where Ã(:, i) is the ith column of the MQ coefficient matrix without the ith row and the

superscript T denotes the transpose. Ā denotes the rest of matrix A.

By definition of f̄i, it can be computed from

f̄i = Ã
T
(:, i)λ̄, (B.4)

where λ̄ is the solution of the following system of equations:

Āλ̄ = f̃ . (B.5)
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Rewriting Equation (B.4) and Equation (B.5) as

Āλ + Ã(:, i) = f̄

Ã
T
λ̄ +Aii − 0 = f̃i, (B.6)

Equation (B.6) can be expressed in matrix form as


 Ā Ã(:, i)

Ã
T
(:, i) Aii




 λ̄

0


 =


 f̄

f̄i


 , (B.7)

or

A


 λ̄

0


 =


 f̄

f̄i


+


 0

f̄i − fi


 . (B.8)

Premultiplying both sides of Equation (B.8) by B = A−1, we get


 λ̄

0


 = B


 f̄

f̄i


+ B


 0

f̄i − fi


 . (B.9)

Now the first term on the right hand side of Equation (B.9) is the partitioned MQ ap-

proximation coefficient of the whole data set. Hence,


 λ̄

0


 =


 λ̃

λi


+ B


 0

f̄i − fi


 . (B.10)

From the last system of equations we have

E(σ) =

N∑

i=1

(
λi
Bii

)2

. (B.11)



Appendix C

Derivation for obtaining RBF-FD

weights for a typical RBF-FD

stencil

The derivation for obtaining the RBF-FD weights for a typical RBF-FD stencil is presented.

We denote the unknown function by u(x). Consider a three noded RBF-FD stencil given in

Figure C.1. The RBF interpolant for the function u(x) on the considered stencil is given by

û(x) = λ1φ(‖x − x1‖) + λ2φ(‖x − x2‖) + λ3φ(‖x − x3‖) + β, (C.1)

where φ(‖x − x1‖), φ(‖x − x2‖) and λ3φ(‖x − x3‖) are the multiquadric RBFs centred on

each of the nodes x1, x2 and x3 nodes respectively and β is an unknown constant. λ1, λ2

and λ3 are the uknown RBF coefficients.

By satisfying the conditions that the interpolant should pass through the function values

Figure C.1: Schematic diagram of a three noded RBF-FD stencil
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at the nodes x1, x2 and x3 and λ1 + λ2 + λ3 = 0, we obtain the system of equations




u1

u2

u3

0




=




φ11 φ12 φ13 1

φ21 φ22 φ23 1

φ31 φ32 φ33 1

1 1 1 0







λ1

λ2

λ3

β



, (C.2)

where φij = φ(‖xi − xj‖), i, j = 1, 2, 3. Let the matrix in Equation (C.2) be denoted by A.

The unknown coefficients are given by




λ1

λ2

λ3

β




=




ϕ11 ϕ12 ϕ13 ϕ14

ϕ21 ϕ22 ϕ23 ϕ24

ϕ31 ϕ32 ϕ33 ϕ34

ϕ41 ϕ42 ϕ43 ϕ44







u1

u2

u3

0



, (C.3)

where ϕij denotes the ijth element of A−1.

The goal of RBF-FD method is to express

Lu(x1) ≈ w1u1 + w2u2 +w3u3, (C.4)

where w1, w2 and w3 are the RBF-FD weights. Applying the operator L on the interpolant

(Equation (C.1)), we obtain

Lu(x1) ≈ Lû(x1) = λ1Lφ(‖x1 − x1‖) + λ2Lφ(‖x1 − x2‖) + λ3Lφ(‖x1 − x3‖). (C.5)

Substituting the values of λ1, λ2 and λ3 from Equation (C.3) in Equation (C.5) and

rearranging in the form of Equation (C.4), we obtain




w1

w2

w3

µ




=




ϕ11 ϕ12 ϕ13 ϕ14

ϕ21 ϕ22 ϕ23 ϕ24

ϕ31 ϕ32 ϕ33 ϕ34

ϕ41 ϕ42 ϕ43 ϕ44




T 


Lφ(‖x1 − x1‖)
Lφ(‖x1 − x2‖)
Lφ(‖x1 − x3‖)

0



. (C.6)

Note that µ is a dummy constant which enforces that the stencil is exact for all constants.

Equation (C.6) can be rewritten as




φ11 φ12 φ13 1

φ21 φ22 φ23 1

φ31 φ32 φ33 1

1 1 1 0




T 


w1

w2

w3

µ




=




Lφ(‖x1 − x1‖)
Lφ(‖x1 − x2‖)
Lφ(‖x1 − x3‖)

0



. (C.7)



References

Abgrall, R. (1994). On essentially non-oscillatory schemes on unstructured meshes: anal-

ysis and implementation. Journal of Computational Physics, 114, 45–58.

Atluri, T. & Zhu, T. (1998). A new meshless local Petrov-Galerkin (MLPG) approach in

computational mechanics. Computational Mechanics, 22, 117–127.

Barragy, E. (1993). Parallel Finite Element Methods and Iterative Solution Techniques for

Viscous Incompressible Flows. Ph.D. thesis, University of Texas at Austin.

Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press,

Cambridge, UK.

Batina, J.T. (1993). A gridless Euler/Navier-Stokes solution algorithm for complex-aircraft

applications. Tech. Rep. AIAA-1993-333, AIAA.

Baxter, B. (1992). The asymptotic cardinal function of the multiquadric φ(r) = (r2 + c2)
1
2

as c→ ∞. Computers and Mathematics with Applications, 24, 1–6.

Beatson, R.K., Cherrie, J.B. & Mouat, C.T. (1999). Fast fitting of radial basis func-

tions: methods based on preconditioned GMRES iteration. Advances in Computers and

Mathematics, 11, 253–270.

Beatson, R.K., Light, W.A. & Billings, S. (2000). Fast solution of the radial basis func-

tion interpolation equations: domain decomposition methods. SIAM Journal on Scientific

Computing , 22, 1717–1740.

Belytschko, T., Lu, Y. & Gu, L. (1994). Element free Galerkin methods. International

Journal for Numerical Methods in Engineering , 37, 229–256.

128



REFERENCES 129

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. & P.Krysl (1996). Meshless

methods: An overview and recent developments. Computer Methods in Applied Mechanics

and Engineering , 139, 49–74.

Boztosun, I. & Charafi, A. (2001). RBF-based meshless schemes for advection-diffusion

problems. Advances in Boundary Elements Technical Series, II, 573–.

Boztosun, I. & Charafi, A. (2002). An analysis of the linear advection-diffusion equa-

tion using mesh-free and mesh-dependent methods. Engineering Analysis with Boundary

Elements, 26, 889–895.

Boztosun, I., Charafi, A., Zerroukat, M. & Djidjeli, K. (2002). Thin-plate spline

radial basis function scheme for advection-diffusion problems. Electronic J. Bound. Elem.,

BETEQ, 267–282.

Brebbia, C.A. (1978). The Boundary Element Method for Engineers. Pentech Press, Lon-

don.

Brent, R.P. (1973). Algorithms for Minimization without Derivatives. Prentice Hall, En-

glewood Cliffs, NJ.

Bruneau, C.H. & Jouron, C. (1990). An efficient scheme for solving steady incompressible

Navier-Stokes equations. Journal of Computational Physics, 89, 389–413.

Buhmann, M.D. (1990). Mutivariate interpolation in odd dimensional Euclidean spaces

using multiquadrics. Constructive Approximation, 6, 21–34.

Buhmann, M.D. (2000). A new class of radial basis functions with compact support. Math-

ematics of Computation, 70, 307–318.

Buhmann, M.D. & Micchelli, C.A. (1992). Multiquadric interpolation improved. Com-

puters and Mathematics with Applications, 24, 21–25.

Carlson, R.E. & Foley, T.A. (1991). The Parameter R2 in multiquadric interpolation.

Computers and Mathematics with Applications, 21, 29–42.

Carr, J.C., Fright, W.R. & Beatson, R.K. (1997). Surface interpolation with radial

basis functions for medical imaging. IEEE Transactions on Medical Imaging , 16, 96–107.



REFERENCES 130

Cecil, T., Qian, J. & Osher, S. (2004). Numerical methods for high dimensional

Hamilton-Jacobi equations using radial basis functions. Journal of Computational Physics,

196, 327–347.

Chen, C.S., Brebbia, C.A. & Power, H. (1998). Dual Reciprocity method for Helmholtz-

type operators. Boundary Elements, 20, 495–504.

Cheng, A.H.D., Golberg, M.A., Kansa, E.J. & Zammito, G. (2003). Exponential

convergence and H-c multiquadric collocation method for partial differential equations.

Numerical Methods for Partial Differential Equations, 19, 571–594.

Chinchapatnam, P.P., Djidjeli, K. & Nair, P.B. (2005). Meshless domain decompo-

sition schemes for nonlinear elliptic PDEs. In K.J. Bathe, ed., Third MIT Conference on

Computational Fluid and Solid Mechanics, 1082–1086.

Chinchapatnam, P.P., Djidjeli, K. & Nair, P.B. (2006a). Domain decomposition for

time-dependent problems using radial based meshless methods. Numerical Methods for

Partial Differential Equations, Published Online: 25th May, 2006.

Chinchapatnam, P.P., Djidjeli, K. & Nair, P.B. (2006b). Unsymmetric and symmetric

meshless schemes for the unsteady convection-diffusion equation. Computer Methods in

Applied Mechanics and Engineering , 195, 2432–2453.

Coleman, T.F. & Li, Y. (1994). On the convergence of reflective newton methods for large

scale nonlinear minimization subject to bounds. Mathematical Programming , 67, 189–224.

Coleman, T.F. & Li, Y. (1996). An interior trust region approach for nonlinear minimiza-

tion subject to bounds. SIAM Journal on Optimization, 6, 418–445.

Collatz, L. (1960). The Numerical Treatment of Differential Equations. Springer, Berlin.

Ding, H., Shu, C. & Tang, D.B. (2005). Error estimates of local multiquadric-based

differential quadrature (LMQDQ) method through numerical experiments. International

Journal for Numerical Methods in Engineering , 63, 1513–1529.

Dinh, H.Q., Turk, G. & Slabaugh, G. (2002). Reconstruction surfaces by volumetric

regularization using radial basis functions. IEEE Transactions on Pattern analysis and

Machine Intelligence, 24, 1358–1371.



REFERENCES 131

Djidjeli, K., Chinchapatnam, P.P., Nair, P.B. & Price, W.G. (2004). Global and

compact meshless schemes for the unsteady convection-diffusion equation. In Proceedings

of the International Symposium on Health Care and Biomedical Research Interaction, 8

pages on CDROM.

Driscoll, T.A. & Fornberg, B. (2002). Interpolation in the limit of increasingly flat

radial basis functions. Computers and Mathematics with Applications, 43, 413–422.

Duarte, C.A. (1995). A review of some meshless methods to solve partial differential equa-

tions. Tech. rep., Texas institute for Computational and Applied Mathematics, University

of Texas at Austin.

Dubal, M.R. (1994). Domain decomposition and local refinement for multiquadric approx-

imations. Applied Scientific Computing , 1, 146–171.

Fasshauer, G.E. (1996). Solving partial differential equations by collocation with radial ba-
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