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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING SCIENCE AND MATHEMATICS
SCHOOL OF ENGINEERING SCIENCES
Doctor of Philosophy
RADIAL BASIS FUNCTION BASED MESHLESS METHODS
FOR FLUID FLOW PROBLEMS
by Phani P. Chinchapatnam

This thesis is concerned with the development of meshless methods using radial basis functions for
solving fluid flow problems. The advantage of meshless methods over traditional mesh-based methods
is that they make use of a scattered set of collocation points in the physical domain and no connec-
tivity information is required. An important objective of the present research is to develop novel
meshless methods for unsteady flow problems. Symmetric/unsymmetric radial basis function collo-
cation schemes are proposed for solving an unsteady convection-diffusion equation for various Peclet
numbers. Both global and compactly supported radial basis functions are used and the convergence
behaviours of various radial basis functions are studied. The performance of the presented schemes
is shown by using both uniform as well as scattered distribution of points. Numerical results suggest
that these schemes are capable of obtaining accurate results for low and medium Peclet numbers.
Next, two directions have been explored in this thesis for using radial basis functions to solve large
scale problems encountered in fluid flow problems. They are namely, domain decomposition schemes
and radial basis functions in finite difference mode. These schemes are shown to be computationally
efficient and also aid in circumventing the ill-conditioning problem. The performance of both schemes
are evaluated by solving the unsteady convection-diffusion problem. The last part of this thesis is
concerned with the solution of the 2D Navier-Stokes equations. Meshless methods based on radial
basis collocation and scattered node finite difference schemes are formulated for solving steady and
unsteady incompressible Navier-Stokes equations. A novel ghost node strategy is proposed for incor-
porating the no-slip boundary conditions. Optimisation strategies based on residual error objective
and leave-one-out statistical criterion are proposed to evaluate the optimal shape parameter value in
case of the multiquadric RBF for collocation and scattered finite difference approaches respectively.
Standard benchmark problems like the driven cavity flows in square and rectangular domains and
backward facing step flow problem are solved to study the performance of the developed schemes.
Finally, a higher order radial basis function based scattered node finite difference method is proposed

for solving the incompressible Navier-Stokes equations.
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Chapter 1

Introduction

1.1 Motivation

The behaviour of physical systems is generally governed by certain partial differential equa-
tions (PDEs). In Fluid Mechanics, the Navier-Stokes (NS) equations, developed indepen-
dently by Navier and Stokes in 1920, form the central system of PDEs governing fluid flows.
These equations are derived by satisfying the mass, momentum and energy conservation for
an infinitesimal fluid element. The system of NS equations, supplemented by empirical laws
for the dependence of viscosity and thermal conductivity on other flow variables and by a
constitutive law defining the nature of the fluid, completely describe all low phenomena.
Analytical solutions of the NS equations exist only for simple cases like the Poiseuille flow,
Couette flow and certain other specific flows. In general, numerical methods are needed to
predict fluid flows. Traditionally, Finite Difference (FD), Finite Element (FE), Finite Vol-
ume (FV) or Boundary Element (BE) methods are used for solving fluid problems (Hirsch,
1991; Brebbia, 1978; Zienkiewicz & Taylor, 2000). These methods are acknowledged to have
achieved a high degree of sophistication and success in solving fluid flow problems. These
computational methods are all based on a mesh discretisation (a subdivision of the spatial
flow domain into numerous finite volume/elements/cells) that has to be generated in advance
or dynamically modified as the solution progresses (adaptive meshing). The continuum NS
equations are then approximated on these meshed points or volumes, leading to an algebraic
linear or nonlinear system of equations. These system of equations are then solved by appro-
priate numerical methods to obtain the unknown solution. Although the above mentioned
methods are highly popular, there exist some unresolved issues with these numerical methods

like the awkward treatment of irregular boundary in FDM, the storage of huge data in FEM

1
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and the difficulty of treating singularities and deriving fundamental solutions in BEM (Young
et al., 2004). In addition, the accuracy of the presented methods depends on the type of
mesh that is used to discretise the physical domain (Tanaka, 1999). Also, typically with these
methods only the function is continuous across the meshes, but not its partial derivatives.
In practise, one uses a lower order polynomial for function approximation in these methods
due to the polynomial snaking problem!. While higher order schemes are necessary for more
accurate approximations of the spatial derivatives they are not sufficient without monotonic-
ity constraints i.e., the approximation should be either increasing/decreasing or else remain
constant. Because of the lower order schemes typically employed the spatial truncation errors
can only be controlled by using progressively smaller meshes (Kansa, 1999).

Although significant advances have been made in the area of grid generation over the
last few decades, it still remains a complex and time consuming process and, in many cases
it can absorb far more time and cost than the numerical solution itself. Not only can
mesh based methods be very complex and time consuming but for many flow problems
such as free surface, moving boundaries, boundary layer, front tracking/shock (where mesh
crossover /distortion is a significant problem), large deformations in materials, crack growth
in materials etc., they are acknowledged to be not cost-effective due mainly to the use of
the element structure/connectivity of the elements in the mesh (Zerroukat et al., 2000). For
example, in FEM, if the element is heavily distorted, shape functions for this element are of
poor quality and thus the numerical results may not be acceptable (Wang & Liu, 2002).

In recent years, there has been an upsurge of interest in the development of so-called
meshfree methods as an alternative to the mesh based methods. The term “meshfree”
indicates the ability of a numerical simulation process being constructed entirely from a set
of nodes which generally are randomly scattered through the domain of analysis and do not
have any pre-specified connectivity between each other. These meshfree methods are also
referred to in the literature as meshless, gridless, element free or cloud methods (Belytschko
et al., 1996).

The emergence of these methods in science and engineering (and in particular fluid /struc-
tural mechanics) are in their very early stages and have not yet reached the effectiveness
and robustness of mesh based methods such as FD, FE, FV and BE methods. However they
have major advantages in that a) No mesh structure is needed, b) they are very suitable

for problems involving complicated or rapidly changing domain geometry, c) they are highly

!Polynomial snaking refers to the highly wiggled approximations obtained using higher order polynomials.
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flexible and easily modified (addition and subtraction of nodes) without major implemen-
tation difficulties and can be easily extended to higher dimensions, d) these schemes can as
well be applied on any kind of meshes or their hybrids. The aim of meshless methods for
PDEs is to eliminate at least the structure of the mesh and approximate the solution entirely
using the nodes/points (irregular random points) rather than the nodes of an element/grid
based discretisation. Since only points are required, meshless methods offer great potential
to accurately and efficiently solve fluid flow problems with complex configurations (Batina,
1993; Onate et al., 1996; Shu et al., 2003).

The earliest attempts on meshless methods was probably done by Perrone & Kao (1975);
Liszka & Orkisz (1984). They introduced the generalised FD schemes on arbitrary grids. The
present day meshfree methods can be grouped under the following divisions based on the kind
of interpolation/approximation techniques utilised. The first is based on the Moving Least-
Squares (MLS) technique. This type of interpolation technique is adopted by many popular
meshfree methods like Element Free Galerkin (EFG) (Belytschko et al., 1994; Lu et al., 1994),
Reproducing Kernel Particle (RKP) (Liu et al., 1995), Partition of Unity (PU) (Melenk &
Babuska, 1996; Griebel & Schweitzer, 2000), Finite Point (FP) (Onate et al., 1996), Meshless
Local Petrov-Galerkin (Atluri & Zhu, 1998) and Diffuse Element (DE) (Nayroles et al., 1992)
methods. The least squares technique allows an optimised approximation derived from an
over-determined set of equations and generally the resultant coefficient matrix is symmetric
and positive definite. However as the LS approximation does not pass through the nodal
points, the essential boundary conditions cannot be imposed directly. Most of the above
mentioned methods are based on the Galerkin projection and are not truly meshfree as they
require an auxiliary mesh to perform integration with respect to space. The next one is
motivated from statistical theory and Monte Carlo integrations. Examples of this kind are
Smoothed Particle Hydrodynamics (SPH) (Moraghan, 1982, 1988; Gingold & Moraghan,
1997), Corrected Smooth Particle Hydrodynamics (CSPH) (Kulasegaram et al., 2000). SPH
is used to model collision and explosion of stars and is well suited for rapidly expanding
computational domains. However, the application of these methods is limited to unbounded
domains and they perform badly for bounded domains. For an overview and a comparative
study of some of these methods see Duarte (1995); Belytschko et al. (1996); Fries & Matthies
(2003).

The other type of meshfree methods are based on functional approximation using Radial

Basis Functions (RBFs). For many years, RBFs have been synonymous with scattered data
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interpolation especially in higher dimensions (Franke, 1982; Wendland, 1995). The excel-
lent performance of RBF's for scattered data interpolation motivates their use in developing
meshfree schemes for solving PDEs. The Unsymmetric RBF collocation (Kansa, 1990a.,b),
Symmetric RBF collocation (Fasshauer, 1996), Dual Reciprocity (Chen et al., 1998), and
DRM-MFS-RBF method (Golberg et al., 1999), RBF-DQ (Shu et al., 2003) are some of the
RBF based meshfree methods available in the literature for solving PDEs.

As all the meshfree schemes are point based schemes, they must possess some essential
properties in order for them to be applicable to practical problems. The sensitivity of these
schemes to a variable number of points in each interpolation domain must be low enough to
preserve the freedom of adding, moving or removing points. This sensitivity is very high in
meshfree techniques using the LS approximation (Fries & Matthies, 2003) as compared to
RBF based approximations. Also, as RBFs are univariate functions, RBF based schemes can
be easily extended to higher dimensions. In addition RBF based schemes have the advantage
of being truly meshfree as compared to some of the meshless or element free methods where
some kind of auxiliary grid is needed and thus eliminating many of the advantages of the
meshfree philosophy. Moreover, any RBF based scheme generally has higher-order accuracy
than the standard FD schemes on scattered nodes. More specifically RBF based methods
seem to have exponential convergence rates (Cheng et al., 2003; Boztosun & Charafi, 2002;
Hon & Mao, 1998). The above mentioned advantages of RBFs leads us to choose RBFs as

the basis for developing meshfree schemes for fluid flow problems.

1.2 Scope and objectives

The present research focuses on the development of meshfree methods for fluid flow problems.
The primary objective of the present research is to develop RBF based meshless techniques for
a wide class of fluid flow problems with a particular emphasis on time-dependent problems.
We aim to develop computationally efficient procedures for use in large scale problems so
that the developed algorithms are suitable for industrial applications.

The approach used here aims to achieve this objective by systematically solving time-
dependent linear and nonlinear problems. The first goal of this research is to develop and
validate meshless methods based on RBFs for model flow problems. Next, the aim is to
develop novel algorithms to tackle large scale problems. Subsequently, the aim is to integrate

all the developed algorithms to develop a robust meshfree solver for fluid flow problems. The



Chapter 1 Introduction 5

scope of the present research in these directions is summarised below:

1.2.1 Comparison of various RBF's for solving PDEs

It has been shown in the literature that RBFs perform very well for solving a wide class of
PDEs (Hon et al., 1997; Zerroukat et al., 1998; Hon & Mao, 1998). Extensive studies on
the performance of different RBF's for scattered data interpolation can be found in Franke
(1982). However, no study has been done as to how different RBFs perform when applied to
the solution of PDEs. The present research aims to bridge this gap by performing extensive
numerical studies on a model flow problem. The behaviour of fluid flows, in general, is
governed by two components viz., convection and diffusion. Hence the model problem chosen
is the unsteady convection-diffusion problem. The convergence behaviour of various globally
supported and compactly supported RBFs are examined for both uniform as well as scattered
set of points. Also, a symmetric RBF collocation method is proposed for time-dependent
problems. We show that the symmetric RBF method is capable of obtaining good results
with the additional advantage of the coefficient matrix being (anti)-symmetric and less ill-

conditioned as compared to the unsymmetric RBF collocation method.

1.2.2 Large scale problems: Domain decomposition

Although global RBF methods have been shown to have very high convergence rates, the
resulting coefficient matrix is dense and becomes highly ill-conditioned. Possible ways of
circumventing this ill-conditioning problem have been suggested in Kansa & Hon (2000).
Also, as the coefficient matrix is dense this hinders the application of RBF's to solve large
scale fluid dynamics problems, as they are computationally intensive when a large number
of collocation points are used. In this thesis, we propose two different overlapping domain
decomposition techniques to solve time-dependent and nonlinear problems. As the physical
domain is divided into small sub-domains, we obtain small coefficient matrices which can be
easily solved instead of a large dense matrix, thus making the proposed methods computa-
tionally efficient. The condition numbers of the resultant sub-domain coefficient matrices are
smaller as compared to the single domain coefficient matrices. Further, these schemes allow
for efficient parallelisation. All the above mentioned advantages render the proposed RBF

based domain decomposition algorithms suitable for application to large scale problems.
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1.2.3 Large scale problems: RBFs in finite difference mode

An alternative approach involving the use of RBFs to construct finite difference approxima-
tions (RBF-FD) is explored in this thesis. The weights of the RBF-FD method are obtained
by solving local RBF interpolation problems set-up around each node in the computational
domain. A key advantage of this method is that the resulting coefficient matrices are sparse
and hence it can be applied to solve large scale problems. An optimisation strategy based
on the statistical leave-one-out criterion is applied to obtain the optimal value of the shape
parameter. A novel ghost node strategy is proposed for satisfying boundary conditions. This
strategy preserves the freedom of having completely random distribution of nodes in the
domain of interest. Finally, a higher order discretisation of the RBF-FD method is also

developed for application to fluid problems using the RBF Hermite interpolation technique.

1.2.4 Applications to incompressible Navier Stokes equations

The developed methodologies are extended for solving the steady and unsteady incompress-
ible Navier-Stokes equations. We consider the driven cavity flows and the backward facing
step flow which occur in a variety of industrial applications. These problems have been stud-
ied throughout the literature and serve as benchmarks for testing new algorithms. Numerical

results are obtained for both uniform and scattered distribution of points.

1.3 Layout of the thesis

The remainder of this thesis is arranged as follows:

Chapter 2 presents a brief overview of RBFs. The properties of RBFs and its application
to solving interpolation problems is discussed. Earlier work on solution of PDEs using RBF's
is also summarised. The various theoretical and computational issues governing RBF based
methods are discussed.

Chapter 3 presents detailed numerical studies on a model linear time-dependent PDE.
The symmetric RBF method is extended for solving time-dependent PDEs. The stability
analysis of the methods is also presented. The convergence properties of different RBF's are
studied when applied to solve the convection-diffusion equation.

Chapter 4 introduces domain decomposition methods for solving large scale problems.
Meshfree overlapping Schwarz schemes are proposed for time-dependent problems. These

methods are shown to be computationally more efficient than the single domain RBF collo-
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cation method. Also, the proposed domain decomposition schemes are shown to reduce the
ill-conditioning problem present in RBF schemes.

Chapter 5 introduces the application of radial basis functions in a finite difference mode
(RBF-FD). The coefficient matrices obtained are sparse and hence are suitable for application
to large scale problems. A leave-one-out statistical criterion is employed as the objective
function for optimisation of the shape parameter. Model Poisson and convection-diffusion
equations are solved to investigate the performance of this method.

Chapter 6 deals with meshless methods using RBF collocation for the incompressible
Navier-Stokes equations. The steady state equations are considered and the test problems
of driven cavity flows and backward facing step flow are solved. The merits and demerits of
RBF collocation methods are listed.

Chapter 7 demonstrates the suitability of the RBF-FD for solving the incompressible
Navier-Stokes equations. A ghost node strategy is employed for satisfying no-slip boundary
conditions. Finally, a higher order RBF-FD method using Hermite interpolation techniques
is presented for solving the Navier-Stokes equations.

Chapter 8 summarises the contributions and major conclusions of this research. Some

directions for future research are also outlined.



Chapter 2

Overview of radial basis functions

In this chapter, we present a brief overview of radial basis functions (RBFs) and their appli-
cations in scientific computing. The definitions of RBFs are introduced and interpolation of
scattered data using RBF's is discussed. Then we show how RBFs can be used in the numer-
ical solution of partial differential equations by the method of collocation. Some theoretical
and computational aspects which arise when using RBF's for developing meshfree methods

are also elaborated.

2.1 Radial basis functions

We first present the following definitions for continuous functions.

Definition 2.1. A function ¢ : R — R is called a radial basis function if ¢(x) = ¢(y)
whenever ||z|| = ||y|| where ||.|| denotes the Euclidean norm and R? denotes the d-dimensional

space on R and x,y € R%

Definition 2.2. A function ¢ : R™ — R is strictly conditionally positive definite of order m

(SCPD(m)) if for every set of distinct data points x1,...,xy C RY

N N

DY AiNo([l@s — ) > 0

i=1 j=1

for all A\,..., Ay satisfying,
N
i=1
for all polynomials p of degree less than m.

Table 2.1 lists some globally supported RBFs (GSRBF) that are commonly used in the

literature. The Euclidean norm is denoted by r = || - || and o is a shape parameter. The

8
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influence of GSRBF's extends from —oo to +00. The last column of Table 2.1 indicates the

strictly conditionally positive definiteness order of each GSRBF.

TABLE 2.1: Globally supported radial basis functions

o(r) = r?’logr, B eN thin plate splines (TPS) SCPD(B+1)
o(r) = (r® + 02)? multiquadrics (MQ) SCPD(1)
o(r) = (r2+02)T inverse multiquadrics (IMQ) SCPD(0)
o(r) = & Gaussians (GAU) SCPD(0)
p(r) =1, 3>0,8¢ 2N quintic splines (QS) SCPD([B/2])

Figure 2.1 shows a number of globally supported RBFs. We plot the Gaussian RBF's
with increasing shape parameter values in the first row of the figure. It can be seen that for
the Gaussians, increasing the value of o leads to flatter and flatter RBFs. Similar trends
can be observed for MQ and IMQ), as is apparent from second and third rows of Figure 2.1.
In the next two rows, we plot the different TPS and QS RBFs. Throughout this thesis all
RBF's which incorporate a shape parameter in their definition like multiquadrics, inverse
multiquadrics and Gaussians are collectively referred to as o-tunable RBFs.

Another class of RBFs, known as compactly supported radial basis functions (CSRBFSs),
due to Wendland (Wendland, 1995), Wu (Wu, 1995) and Buhmann (Buhmann, 2000) are
also used. The central idea of CSRBFs is to use a polynomial as a function of r with support
on [0,1]. CSRBFs must be strictly positive definite in RY for all d less than or equal to some
fixed value dy. The basic definition of the CSRBF ¢; ;,(r) have the form

Gue(r) = (L —r)ip(r), for k> 1, (2.1)
with the following conditions

I-—r™ ifo<r<li,
0 ifr>1,

(1-ry =

where | = L%J + k + 1 is the dimension number, 2k is the smoothness! of the function and
p(r) is a prescribed polynomial. Table 2.2 lists out some of the Wendland CSRBF's generally

used in the literature when d = 3.

LA function is said to have smoothness C™ if all its derivatives up to order m exist and are continuous

functions.
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10

GAU: 0 =0.01

FIGURE 2.1: Globally supported RBFs (The functions are plotted in the [—1,1] x [—1,1]

region)
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TABLE 2.2: Compactly supported radial basis functions (Wendland, 1995)

RBF Smoothness
popo(r)=(1-r)2 o0
¢31(r) = (1 —r)idr+1) o2
Ga2(r) = (1 —7)%(35r° +18r + 3) o
¢5,3(r) = (1 —r)8(32r3 + 25r% + 8r + 1) 6

Note that unlike GSRBFSs, the influence of CSRBFs is local in [0,1] and the influence
vanishes on [1,00). Also, we can scale a basis function with compact support on [0, ] by

replacing  with 5 where 4 is referred to as the support parameter of the CSRBF.

2.2 RBF interpolation

RBFs are widely used for scattered data interpolation (Wendland, 1995). The problem of

multivariate interpolation can be stated as follows:

Problem 2.3. Given data (z;, f;), j =1,...,N with x; € R4, f; € R find a continuous
function S(x), such that S(x;) = f;, j=1,...,N.

The function S(x) is assumed to be given by a linear combination of RBFs, i.e.,

N
z) = Moz — ;) +p(), (2.2)
j=1
where ¢(|lx — x;||) is a RBF centred on the point x;, p(x) = 2124:1 Yipk () where py(z), ...,
d+m—1 ) )
py(x) form a basis for the M = -dimensional linear space I1¢,_; of polyno-
m—1
mials of total degree less than or equal to m —1 in d variables, and {); }é\le are the unknown

RBF coefficients. The following conditions are imposed on the approximation S(x),

L] S(wj):fj, Vj:].,Q,...,N,

N
° Z)‘jpk(wj) =0, Vk=1,2,..., M,
7=1

leading to a system of equations which can be written down in matrix form as

A P A f
Pl o ~ 0
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where A € RV*¥ jg referred to as the Gram matrix, A € RY is the undetermined coefficient
vector and f € RV is the vector of function values. For sake of clarity, the matrix A in

expanded form is given below

o(lzr —z1l])  o(lzr —2l) - oz —zn|)
A= : : : : . (2.4)

O(ley —xl)) ooy —x2l)) - olley —znl)

Now from Equation (2.3), it can be seen that Problem 2.3 is well-posed if and only if
the coefficient matrix is non-singular, i.e., its inverse exists. Micchelli (1986) proved that
the interpolation problem in Equation (2.3) is solvable when the following two conditions are
met: (1) the set of points {x; };VZI are distinct, and (2) the degree of the appended polynomial
is chosen to be the order of strictly conditionally positive definiteness of the RBF used.

Franke (1982) performed numerical experiments using 29 different interpolation meth-
ods on two-dimensional analytic functions and found out that the RBF interpolation tech-
nique using multiquadrics outperformed all other interpolation techniques. Madych & Nelson
(1989) proved that interpolation with MQ is exponentially convergent based on reproducing
kernel Hilbert spaces. Similar results were obtained by Buhmann (1990); Wu & Schaback
(1993). The error estimates for other RBFs can be found in Wendland (1997). In fact, it was
proved that the RBF interpolant is the best Hilbert-space approximation to the interpolation
data in Sun (1994). We now demonstrate the ability of RBF interpolation by approximating
Franke’s function (Franke, 1982),

o) = 4o (072 - )y (g )

5 exp (—M — 9y — 3)2) —Lexp(—(9z—4)2 — (9y — 7)?).

(2.5)

We use Gaussian RBFs and taking 20 data points, the results obtained are shown in Figure
2.2. The left hand side shows Franke’s function and the right hand side shows the RBF
interpolant. It can be seen that with just 20 data points, the RBF interpolant approximates
Franke’s function very closely.

We briefly review another method known as the Hermite-RBF interpolation technique.
In this context we are given data {x;, £;f},i=1,...,N, ; € R where £ = {Ly,...,Ln}
is a linearly independent set of continuous linear functionals. We try to find an interpolant

of the form

N
S(x) =Y NLso(|lz —cll), xeRY, (2.6)
j=1
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satisfying
LiS=°L,if, i=1,...,N

Here, £€ indicates the functional £ acting on ¢ viewed as a function of the second argument
c. We then obtain a linear system of the form H +A = L;f where the entries of the matrix
are

H. (i,j) = LiLsh, i,j=1,...,N. (2.7)

The matrix H + is guaranteed to be non-singular when ¢(||.||) is positive definite and the
data points {m}é\;l are distinct, see Wu (1998) for a detailed theoretical analysis.

Besides direct interpolation, RBFs are widely used in medical imaging (Carr et al., 1997),
surface reconstruction (Dinh et al., 2002) and Neural networks (Park & Sandberg, 1991) to

name a few.

2.3 RBF collocation for PDEs

In this section, we briefly outline how RBF's can be used for solving partial differential equa-
tions (PDEs). The main advantage of RBF based methods is that they are truly meshless
schemes since only a scattered set of collocation points is used and no connectivity informa-
tion is required. Also, since RBFs are dimension independent (¢ is only a function of r),
the extension of these meshless schemes to higher dimensions is straight forward. Generalis-

ing the concept of RBF interpolation (Equations (2.2-2.4)), if £ is an interior linear partial
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differential operator with some boundary operator B, then an approximation u(x) to the

solution u(x) of Lu(x) = f(x); x € Q, Bu(x) = g(x); x € I can be obtained by letting
N

~

u(x) = Z)\jqb(Hac — xj||) (known as unsymmetric method (Kansa, 1990a)). The unknown
j=1
RBF coefficients are obtained by satisfying

Lu(x;) = f(x:) 1<i<ng, 2.8)
Bu(x;) = g(x;)) ng+1<i<N,

where N is the total number of collocation points considered and ng is the number of interior
collocation points.

An alternative procedure, known as the symmetric RBF collocation method, and based
on Hermite interpolation was proposed by Fasshauer (1996) and further studied by Franke

& Schaback (1998). Here, the approximation of the function u(x) is written as

ng N
a(@) =Y MLz —¢l)+ Y NB(lz —¢) + pl), (2.9)

j=1 j=na+1
where L€ is the interior differential operator £ operated on the second argument (centres) of
the RBF ¢(||x — ¢j||) and B¢ refers to the boundary operator similarly. The coefficient
matrices generated here are (anti)-symmetric as opposed to the unsymmetric coefficient

matrices generated by the earlier method.

2.4 Theoretical and computational aspects

In this section, we discuss the theoretical and computational issues encountered in RBF based
methods. The RBF interpolation problem is well-posed provided one appends a polynomial
of degree m to an RBF of SCPD(m) and the data points {x;} are distinct, see Micchelli
(1986). In the case of unsymmetric RBF collocation, the non-singularity of coefficient matrix,
cannot be proved from RBF interpolation as the rows of the coefficient matrix are gener-
ated by two different operators (Fasshauer, 2005). Even though theoretical results for the
unsymmetric method are scarce, this method is quite popular due to the inherent simplicity
of implementation and its exponential convergence rate, see Kansa (1990a,b); Sharan et al.
(1997). In Kansa (1999), it was suggested that if the centres of the RBF are distinct and the
PDE problem is well-posed, the coefficient matrix is generally found to be non-singular. Oc-
currences of singular coefficient matrix are very rare (Hon & Schaback, 2001). Also note that

the coefficient matrices generated are dense and hence require O(N?) memory and O(N?)
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operations for factorisation. A variety of PDEs like initial value problems (Hon & Mao,
1997), tissue engineering problems (Hon et al., 1997), Burger’s equation (Hon & Mao, 1998),
shallow water equations (Wong et al., 1999) and financial problems (Hon & Mao, 1999) have
been solved using unsymmetric RBF method. In comparison the symmetric method is well-
posed and the non-singularity of the coefficient matrix has been proved in Wu (1998). Also,
as one increases the number of RBF centres in a problem, the coefficient matrices of both
methods tend to become highly-ill-conditioned. It is worth mentioning at this point that
several proposals have been made to reduce this ill-conditioning (Kansa & Hon, 2000) like
preconditioners, domain decomposition methods and block solvers. We address this issue
in more detail in the latter part of the thesis. Finally, in the context of RBF interpolation,
Beatson et al. (1999) showed that by recasting the RBFs into a different set of basis functions
based on far field expansions of the RBF's leads to better conditioned matrices. This change
in basis leads to approximate cardinal functions and lowers the computational cost of solving
the interpolation problem to O(N log N) operations. For more details on cardinal functions,
the reader is referred to Buhmann & Micchelli (1992); Baxter (1992).

We now turn our attention to the issue of selecting the shape parameter in o-tunable
RBFs. In the case of MQ interpolation, Madych (1992) showed that the convergence rate is
O(V%), where v < 1 and h is the average distance between pairs of data centres. In case of
o-tunable RBF's, the accuracy of the RBF interpolant increases as the shape parameter o is
increased. However, this increase in ¢ tends to make the Gram matrix highly ill-conditioned.
This condition is referred to as Schaback’s uncertainty principle (Schaback, 1995). It is found
that the RBF approximations are more accurate at the verge of ill-conditioning. Numerical
studies by Cheng et al. (2003) have shown that when MQ RBF is applied to elliptic PDEs,
the convergence rate of the unsymmetric method is O(& %), where £ is a constant.

From the above presented facts, it can be clearly seen that the shape parameter influences
the accuracy profoundly. Unfortunately, no theoretical results are present in the literature
which strongly suggest guidelines on what value of ¢ should be used. In RBF interpolation
methods, the value of ¢ can be estimated by statistical techniques like the leave-one out
procedure . In this procedure, one constructs the RBF interpolant using N — 1 data points
and then predicts the function value at the N* point. The value of ¢ is then re-adjusted
so that the predicted function value is the same as the known function value at . More
details about how to implement computationally efficient procedures to estimate the value

of o for interpolation and regression problems can be found in Keane & Nair (2005). This
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procedure has been later developed to obtain the optimal shape parameter for each stencil
in the RBF-FD method. However, such a statistical procedure cannot be directly applied for
RBF collocation method for PDEs. Empirical studies have been made by researchers in the
past to obtain a suitable value for the shape parameter (see Franke (1982); Hardy (1990);
Carlson & Foley (1991); Rippa (1999)). Hardy (1971) suggested the value of the shape
parameter o for MQ RBF to be kept as 0.815d,in, where dyi, is the minimum distance
between any two centres in the domain. Kansa et al. (Kansa, 1990b; Kansa & Carlson,

1992) conducted numerical studies on the MQ RBF and came up with the following relation

2 _ 2 Omax \(+=1)
Ui_amin( 2 )Nl )
min
where o2, and o2, are preset parameters, N is the total number of data centres and i

denotes the index of the point where the RBF is centred. It has been shown that using
variable shape parameters leads to better conditioning of the coefficient matrix. However,
these results are specific to MQ and cannot be generalised to other RBFs. In this thesis
for RBF collocation methods, we propose an optimisation strategy for obtaining the shape
parameter using a suitable norm of the residual as the objective function, for time-dependent

PDEs.



Chapter 3

RBF Collocation Schemes

In this chapter, we present a series of numerical experiments conducted on the unsteady
convection-diffusion equation (CD). The convection-diffusion equation is widely used to
model a variety of physical, chemical, economical and financial forecasting processes to name
a few (Roos et al., 1996). The peculiarity of this equation is that it represents the coupling
of two different phenomena, convection and diffusion. It also serves as a simplified model
problem to the Navier-Stokes equation in fluid dynamics. One major difficulty when solving
this problem arises from the fact that when the convective term dominates, the approxima-
tion can be contaminated due to spurious oscillation and numerical diffusion (Morton, 1995).
The governing equation is parabolic for diffusion dominated cases and turns hyperbolic for
convection dominated cases. Traditionally, Finite Difference (FD) and Finite Element (FE)
schemes have been utilised to solve the convection-diffusion equation. These schemes work
well for diffusion dominated problems. However, when the convective term dominates, special
methods with artificial viscosity, upwinding etc., have to be used to stabilise the numerical
scheme (Ferziger & Peric, 1999; Zienkiewicz & Taylor, 2000). All the above schemes are grid
based schemes which need a discretisation of the domain into elements, which in itself can
be a non-trivial task for complicated domains. Previous work focusing on the solution of the
steady and unsteady convection-diffusion equations using RBFs can be found in the litera-
ture; see, for instance, Kansa (1990b); Boztosun & Charafi (2001); Power & Barraco (2002);
Li & Chen (2003); Zerroukat et al. (2000); Boztosun et al. (2002); Boztosun & Charafi (2002)
and the references therein.

In this chapter we present a numerical study to investigate the performance of different
RBFs for the unsteady CD equation (Chinchapatnam et al., 2006b). We also develop a

new symmetric collocation scheme for time-dependent problems and compare it with the

17
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unsymmetric scheme. The stability analysis of both unsymmetric and symmetric schemes
for explicit as well as Crank Nicholson (CN) time-stepping are presented. Finally, numerical
results are presented for one-dimensional and two-dimensional problems to compare the
performance of the unsymmetric and symmetric collocation techniques. More specifically,
we compare the performance of Gaussian (e="/7), MQ ((1 + ?)%), IMQ ((r? + 02)%1),
TPS (r*logr, r%1logr, r®logr) and Quintics (r”). Numerical studies suggest that symmetric
collocation is only marginally better than the unsymmetric approach. Further it appears

that both collocation techniques require a very dense set of collocation points in order to

achieve accurate results for convection dominated cases.

3.1 Formulations

In this section, we present unsymmetric and symmetric collocation schemes using RBFs to
spatially discretise the unsteady convection-diffusion equation. We also present a #-weighted
time stepping scheme for temporal discretisation.

Consider an unsteady convection-diffusion equation of the form

ou(zx,t)

o T Lu@,t) = f(@t) 2eQC R ¢ > 0, (3.1)

where L is the convection-diffusion operator, of the form
L= (kV*+V-V), (3.2)

where V2 and V denote the Laplacian and the gradient operator, respectively. The diffusion
coefficient is denoted by k; V' is a constant velocity vector and u(x,t) represents a potential
function. The CD equation is solved on a bounded physical domain 2 where 0f2 denotes its
boundary and f(z,t) is a known function.

Equation (3.1) has to be supplemented with an initial condition of the form
u(x,t) = up(x), t=0, (3.3)
and with a boundary condition given by
Bu(x,t) = g(x,t), t>0, (3.4)

where B can be a Dirichlet, Neumann or a mixed boundary operator; ug(x) and g(x,t) are

known functions.
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A dimensionless number known as the Peclet number defined by P, = %, where L is a

characteristic length, relates the convection phenomenon to the diffusion phenomenon for the
CD equation. When the Peclet number is high (= P, > 50.0), the convection term dominates

and when the Peclet number is low (=~ P. < 1.0) the diffusion term dominates.

3.1.1 Unsymmetric RBF-Theta collocation scheme

In the unsymmetric scheme, the solution wu(x,t) is approximated by a linear combination of

RBFs as N
u(z,t) = Z Aj(t) o(lle — ¢, (3.5)

j=1
where ¢(||z — ¢;]|): R? — R is a RBF with centre ¢; € R%. \;(t), j = 1,2,...,N are
undetermined RBF coefficients which evolve with time.

The centres of the RBFs used in Equation (3.5) are chosen from a cloud of points situated
within the domain 2 and on the boundary 09, i.e., C = {(¢;i)|i=1,n, € 2 (¢i)|i=ny+1.n44n, €
00}, where ng and ny, denote the number of centres inside the domain and on the boundary,
respectively. Henceforth, we shall denote the total number of centres as N (N = ng + ny).
For simplicity of presentation, consider the case when the set C coincides with the set of
collocation points. Substituting Equation (3.5) in the governing Equation (3.1) and in the

boundary conditions leads to

> d—tj (i = ¢l) = fi(t) = Y AiL¥ (|l — ¢5])) i=1,...,n4, (3.6)
_ j=1

N

j=1

where L¢(||x; — ¢;||) and B*¢(||x; — ¢;||) denote the application of the convection-diffusion
and boundary operators on the RBF ¢(||x — c||) as a function of the first variable i.e.,  and
evaluated at x;.

Equations (3.6) and (3.7) can be rewritten in matrix form as

dx
®ugs =~ LTBA, (3.8)

B*®\ = g, (3.9)

where ®,4, L2®,; € RN X e RN, f € R, B*®, ¢ R»*N and g € R™. For sake of
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clarity, the matrix ®4 and ®y, can be written in expanded form as

sz —al) - oller—enl) - oller—exl)
B, = : : : e RN,
¢([|#n, —e1l) -+ O([@n, —engl) -+ @(llen, —enll)
lznr—el) - dllEne—enl) - Ol —enl)
B, = : : : e R™N,
¢(||mnd+nb - Cl”) ¢(||mnd+nb _CndH) ¢(||mnd+nb _CNH)

and the vectors f, A and g in their expanded form read as

f = (fifefud € R™,
A = [)\1)\2...)\nd...)\N]T eRY,
g = (g1 92 Gny ] - € R™.

Using the notation A" = X(t"*1), where t"*! = t" 4 6t and introducing f-weighting
0<0<1), we get
( g

An+1 o An

5 b= {0 L2PNT £ (1 - 0) L2P A, (3.10)

@4{
BE@,\"T! = gt (3.11)
Equations (3.10) and (3.11) can be combined as follows

®,+0 0t LDy B, — (1-0) 6t L2y N 5t frtt

AT = . (312)
qu,() 0 gn—i-l
where 0 € RN,
Equation (3.12) can be rewritten in compact form as
N = HIH A"+ H'F", (3.13)
where
D, 40 0t LTPy P, — (1 — 9) ot LTD®,
+= , H_ =
B*®,, 0
and
+1
ptl ot f"
gn+1

Equation (3.5) applied for all interior and boundary collocation points can be written in
matrix form as

u =AM, (3.14)
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Py
where A = € RVXN denotes the Gram matrix.

@,
Using Equation (3.14), Equation (3.13) can be written in terms of the discrete values of

the field variable as
N =AH'H_ A 'u"+ AH'F" (3.15)

Since no theoretical proof exists for the invertibility of the matrix H when 6 > 0 (Hon
& Schaback, 2001), it is not possible to show that unsymmetric collocation scheme is well
posed for such cases. For the case of the explicit scheme with § = 0, only the Gram matrix
A needs to be inverted. Provided the set of collocation points are distinct, the invertibility

of this matrix can be guaranteed due to the result of Micchelli (1986).

3.1.2 Symmetric RBF-Theta collocation scheme

Next we present a symmetric collocation scheme for the unsteady convection-diffusion equa-
tion. In this scheme, as in the case of Fasshauer’s method (Fasshauer, 1996), the potential
function u(x,t) is approximated as

ng+np

ZA ) LG —cil)+ D N(t) Bo(lw — ) + P (=), (3.16)

j=na+1
where £¢ and B¢ are operators applied on the RBF as a function of the second variable i.e.,
¢, and P™(x) is a polynomial term of degree m < N.
For positive definite RBF's such as IMQ and Gaussian we do not need to add a polynomial
term to guarantee invertibility. Hence, by letting P™(x) = 0 and substituting Equation
(3.16) into the governing Equation (3.1) and boundary conditions and collocating on set C,

we obtain

ng+nyg

d\; d);
Z ]E%(H-’Bi—cjll) + ) ]B%(H-’Bz cill)

J=1 J=na+1

nd

SN LT L ([l — ) (3.17)
j=1

ng+nyg

— > LBl — o) = fi(t), i=1,...na,

Jj=nq+1

TLd—‘rTLb

Z)\ BLG(|wi—cjl)+ Y NBBG(|lzi—cill) = git), i=na+1,...,ng+mnp. (3.18)
Jj=1 j=ng+1
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Rewriting Equations (3.16) and (3.18) in matrix form and applying #-weighting (0 < 6 <
1), we get
[L®; + B°®g+ 6t 0 (L°L®g+ LB D) AT =6t 7!

O [LBy + BBy — 5t (1 —0) (LZLDy + L7B D), (3.19)

[B*LC®y, + BB @y A" = g™t (3.20)

Let @d =LP,;+BP, and &’b = L¢P+ B°P;,. Hence, the preceding system of equations

can be written as

D,+0 6t L7 D,— (1-0) 6t L°® 5t frtt
¢ E®a | ypir _ | Pa=(70) BN . (3.21)
qu,() 0 gn—i-l

Equation (3.21) can be rewritten in compact form as

XN H L H A+ H, P (3.22)
where
_ d,106t LD _ B, (1—-06t LD
H, - d - d H_ - a—( d
Br*®, 0
and

ﬁ’n—l—l _ ot .fn+1

gn+l

Equation (3.16) can be written in matrix form as

u= A, (3.23)

@,
@,
Using Equation (3.23), equation (3.22) can be rewritten as

where A = € RVXN,

-] =1 ntl
w' = AH,_ H A w"+AH, F' . (3.24)
In contrast to the unsymmetric collocation scheme, it can be readily shown, using the
results of Wu (1998), that the matrix H + is invertible for any value of 6 provided the set
of collocation points are distinct. This implies that the symmetric collocation scheme is

well-posed.
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3.2 Stability analysis

In this section, we present an analysis of the stability of the unsymmetric and symmetric
meshless schemes using a matrix method. Initially, we consider the unsymmetric scheme.
A perturbation, e = v — 4" is introduced into Equation (3.15), where u™ is the discrete
exact solution and " is the numerically computed solution. The equation for the error e”+!

can then be written as

e = Ke", (3.25)

where the amplification matrix K = AH J_rlH _A~!'. The numerical scheme will be stable
if as n — oo, the error €” — 0. This can be guaranteed provided p(K) < 1.0, where p(K)
denotes the spectral radius of the amplification matrix! (necessary condition). Substituting

K in Equation (3.25) we get
H, A 'e"'=H Ale" (3.26)

Assuming Dirichlet boundary conditions (i.e., B = Z, where Z is the identity operator),

Equation (3.26) can be written as

[I +6 6t M]e"™ = [I — (1 —0) 6t Mle", (3.27)
LD
where I € RV*V ig the identity matrix and the matrix M = a AL
0

It can be seen from Equation (3.27) that stability is assured if all the eigenvalues of the

matrix [I + 6 6t M| *[I — (1 —6) 6t M] are less than unity, i.e.,

1—(1—-0) 6t Ay
<1 2
1406t \y - (3.28)

where A\js is an eigenvalue of the matrix M. The eigenvalues of the matrix M can be

calculated by solving the generalised eigenvalue problem
,C<I>ds = )\MAS. (329)

For the case of the Crank-Nicholson scheme (6 = 0.5), the inequality (3.28) is always satisfied
if Apy > 0. This implies the scheme is unconditionally stable if A\y; > 0.
When 6 = 0, we obtain the purely explicit time-stepping formulation. The condition for

stability then becomes

11— 6t Ay < 1. (3.30)

!The method is stable provided the spectral norm ||K|| < 1, i.e., p(K) < 1 (a necessary but not sufficient

condition).
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Hence the explicit formulation will be stable if

2
0t < — and Ay >0. (3.31)
Am

The stability criteria, Equation (3.28) and Equation (3.31), derived for the unsymmet-
ric collocation scheme can be readily extended to the symmetric scheme. Using the same
approach as for the unsymmetric scheme, it can be shown that the symmetric collocation
scheme (Equation 3.24) is stable, if

1—(1—-0) 6t Ay,

<1 3.32
1+606t X My - ( )
. : . Lo®y | . .
where Ay, is an eigenvalue of the matrix My = A . The symmetric scheme is
0

unconditionally stable for = 0.5, if Ap7,, > 0. Similar to the unsymmetric stability analysis,
for the explicit time-stepping case (8 = 0), we obtain the same inequality as Equation (3.31).
The only difference is that Ay has to be replaced with Apz,.

It can be seen from inequalities (3.28) and (3.32) that the stability of the unsymmetric
and symmetric collocation schemes depends on three factors, viz., 8, §t and the eigenvalues
of the matrix M or M. In the case of RBFs like TPS and Quintics, which do not have
a shape parameter, the eigenvalues of the matrix M or My depend only on the mesh
spacing parameter h (h is defined to be the minimal distance between any two collocation
points in the domain). Hence, a distribution of collocation points is acceptable only if all
the eigenvalues (Apr, or Aps) are positive and # = 0.5. However in the case of o-tunable
RBFs, the stability also depends on the value of the shape parameter ¢. An ideal solution
will be to establish bounds for the eigenvalues of the matrix M or M g as a function of the
mesh spacing parameter h and the shape parameter o. Since no such result can be derived
explicitly, we numerically investigate the influence of the parameters A and o on stability.
We concentrate on the case of the Crank-Nicholson scheme (6 = 0.5).

Figure 3.1 shows how the smallest eigenvalue of M (Anyin) varies as a function of o, when
the mesh spacing h is kept constant. Recollect that the stability condition is satisfied only
when Apin > 0. It can be seen from Figure 3.1 that stability occurs over a varied region of
shape parameters. Also, we can observe that there exist pockets of stability and these pockets
tend to become narrower and narrower as the shape parameter ¢ increases. To further the
numerical studies on the issue of stability, we define a critical shape parameter o, where
for all o < o4it, the stability conditions of the corresponding numerical scheme are satisfied

(For example ot &~ 2 in Figure 3.1).
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FIGURE 3.1: A typical stability plot using IMQ RBF on the domain [0, 1] x [0, 1]
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FIGURE 3.2: Stability regimes for o-tunable RBFs (unsymmetric method)

We present the regions of stability for each of the o-tunable RBF as obtained numerically.
Figure 3.2 shows the stability regions of the three o-tunable RBFs when the unsymmetric
formulation is applied. Figure 3.3 shows the stability regions of the Gaussian and IMQ RBFs
when the symmetric formulation is applied. On both these graphs, the mesh spacing A is
plotted on the z-axis and the values on y-axis represent (oeit/h). Note that h is decreasing
as we go from left to right in Figure 3.2 and Figure 3.3. The critical shape parameter

(0crit) is calculated for 9 different mesh spacings and a second order spline is fitted along
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FIGURE 3.3: Stability regimes for o-tunable RBFs (symmetric method)

the points to obtain the regions of stability. From these figures, it can be seen that as the
number of collocation points increases, the range of shape parameter values over which the
stability condition is satisfied decreases. This would mean that as more and more collocation
points are added in the domain, the freedom of varying the shape parameter is decreased,
which would adversely affect the ability of the RBF to capture the solution of the intended
problem. Also, it can be seen that both schemes have quite similar regions of stability. For a
particular RBF, the stability region of the symmetric scheme is marginally larger than that

of the unsymmetric scheme.

3.3 Optimisation of shape parameter via residual minimisa-

tion

In the case of o-tunable RBFs, the optimal value of the shape parameter ¢ is chosen by
observing the behaviour of a suitable residual error calculated on a very fine set of points in
the domain. This a posteriori error method has been employed earlier in the literature by
Cheng et al. (2003) in the context of solving elliptic operator problems.

In the case of the unsteady convection-diffusion equation, we calculate the residual error
for the unsymmetric scheme from the following relation derived from the governing CD

equation and the boundary condition
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( N )\n-l—l _\n N
(,t") = Y _ollw — e ) (F—5—") = DA (Lo(lle —¢5)); =@
j=1 j=1
5(m’tn+1) —
N
gla. ") = Y NHB (|2 — ¢l))); = € 00
j=1

(3.33)

Ideally, one should calculate the residual after every time step and tune the shape param-

eter accordingly. This however can be computationally very expensive. Hence, we calculate
the residual only for a few time steps and monitor its value at each value of o.

Figure 3.4 shows how the actual error in the solution as well as the residual error varies

as a function of the shape parameter o for two typical values of P. = 1.0 and P. = 10.0.

The actual error ¢ is defined as the Lo, norm of the difference between the analytical and

the numerically obtained solutions, i.e.,

£ = ||uanalytical - unumerical”om

and the residual error shown in Figure 3.4 is the Lo norm of the residual error vector.

It can be seen from Figure 3.4 that the Lo norm of the residual error vector behaves
similarly as the actual solution error with respect to the shape parameter. Hence the Lo norm
of the residual error vector can be used to estimate the optimal value of the shape parameter
when the exact solution of the problem is not known. In the numerical studies presented in the
next section, we compute the optimal value of ¢ using Brent’s one-dimensional minimisation
procedure (Brent, 1973), with the Ly norm of the residual error as the objective function to
be minimised. It can be noted from Figure 3.4 that there is a significant amount of noise
near the right edge of the plots. Hence, we fitted a third-order polynomial to the Lo norm
of the residual error as a function of the shape parameter till the point the first fluctuation

occurs. Subsequently, we use Brent’s method to search for the minima of the polynomial.

3.4 Numerical study: 1D problem

In this section, we present numerical studies for the 1D unsteady convection-diffusion prob-
lem employing unsymmetric and symmetric meshless approaches. We also investigate the
convergence trends of various RBFs on this problem. For the ease of implementation, in

the unsymmetric method, we have removed the polynomial term in the approximation of
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FIGURE 3.4: Solution and residual error Vs shape parameter (o) for MQ RBF

the potential function by RBFs. It is worth noting that for conditionally positive definite
RBFs, an additional polynomial term needs to be augmented to Equation (3.5) in order to
guarantee invertibility of the Gram matrix (Micchelli, 1986). However, it has been shown
that with or without the polynomial term the approximation provided by RBFs does not
vary much (Power & Barraco, 2002; Wong et al., 1999).

We solve the unsteady 1D CD equation using an increasing number of collocation points.
The results are plotted on a logarithmic scale with decreasing mesh spacing h on the x-axis
and the error € on the y-axis. The mesh spacing h is defined as the minimum spacing between

any two collocation points in the domain. For o-tunable RBFs, at every point in subsequent
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FIGURE 3.5: Analytical solution behaviour for three different Peclet numbers for the 1D

convection-diffusion equation (¢ = 1.0, b =0.1, V = 1.0)

graphs, the shape parameter is tuned to its optimal value, using the procedure outlined in
Section 3.3.

We consider the following one-dimensional problem,
TG Z v g<a<t1,t>0, (3.34)
x x
with the following Dirichlet boundary conditions and initial condition
u(0,t) = ae® | u(1,t) = ae® ¢ t >0,
u(z,0) = ae” .

In Equation (3.34), x is the diffusion coefficient, V' is a constant representing the velocity

and a,b,c are some arbitrary constants. The analytical solution for the above problem is

given by
V +VV?Z+4kb
u(x,t) = ae” " where c¢= 5 T > 0. (3.35)
K
The Peclet number for the above problem is defined as P, = % The analytical solution is

shown in Figure 3.5 for three Peclet numbers. Numerical results obtained for the 1D problem
using the unsymmetric meshless collocation scheme are presented for various Peclet numbers

in subsequent subsections.
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3.4.1 Uniform distribution

We consider a uniform distribution of collocation points initially. Uniformly distributed
collocation points ranging from Ny, = 11 to Nyax = 101 have been taken in the 1D domain

for studying the convergence trends of each RBF.
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FIGURE 3.6: Accuracy of different GSRBF's for Peclet number 1.0 (1D problem): a = 1.0,
b=0.1,V =1.0,x=1.0,6t=0.001, ¢ty =1.0,0 =0.5

Figure 3.6 shows the convergence trends of each of the GSRBF when P, = 1.0. This is
the case when the convection term is comparable to the diffusion term. We find the RBF's
incorporating a shape parameter (MQ, IMQ and Gaussian), when properly tuned, have very
high convergence rates as compared to higher order TPS or quintics. From the figure, it can
be seen that the multiquadric (MQ) performs better compared to the other RBFs. We also
note that for the Gaussian RBF, the shape parameter optimisation procedure results in a
slight increase of the errors obtained as we increase the number of collocation points. This is
due to the fact that the Brent’s optimisation procedure searches for the optimal value in the
region o < ot whereas the value of ¢ leading to better results might lie in the other pockets
of stability as can be seen in Figure 3.2. It is of interest to note that higher order TPS (like
r®logr and r%1logr) tend to achieve results comparable to that of the multiquadrics as we
move from left to right in the graph (i.e., from a coarse to a dense set of collocation points).

We now investigate the behaviour of all the RBFs for a case when the convection term

slightly outgrows the diffusion term, i.e., P, = 10.0. The analytical solution is not completely
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FIGURE 3.7: Accuracy of different GSRBF's for Peclet number 10.0 (1D problem): a = 1.0,
b=0.1,V =10,x=0.1,6t=0.001,1¢; =1.0,0=0.5

smooth and hence for a small number of collocation points, all the RBFs are unable to capture
the solution with a high degree of accuracy (see Figure 3.7). However, infinitely differentiable
RBFs (MQ, IMQ and Gaussian) produce results with errors, ¢ ~ 1073. As we increase the
number of collocation points, r®log r and r%logr outperform MQ, IMQ and Gaussians.
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FIGURE 3.8: Accuracy of different GSRBFs for Peclet number 100.0 (1D Problem): a = 1.0,
b=0.1,V =10, k =0.01, 6t =0.001, t; =1.0,0 = 0.5
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Next consider the case of P, = 100.0, where the convection term completely dominates
over the diffusion term. For this case the analytical solution has a sharp discontinuity near
the left boundary. The convergence trends of various RBFs for P, = 100.0 are summarised
in Figure 3.8. It can be observed from the figure that the errors decrease as the number of
collocation points increases. The accuracy suffers as compared to the earlier cases of P. = 1.0
and P, = 10.0. This can be attributed to the numerical oscillations observed in the numerical
solution. However, for 271 collocation points spaced regularly in the 1D domain, we obtain
errors € of magnitude 6.600E — 03 and 5.068FE — 04 for r*logr and MQ RBFs respectively.
This suggests that in principle, the unsymmetric scheme is capable of capturing the solution
given sufficient number of collocation points. The main hindrance being that for a large

number of collocation points, the matrix H ; turns out to be highly ill-conditioned.

3.4.2 Unsymmetric Vs Symmetric schemes

We now investigate the performance of the symmetric scheme on this 1D problem. Gaussian
and IMQ RBFs are used as they do not require a polynomial term in their interpolation
to guarantee invertibility of the matrix H 4. Our results are summarised in Table 3.1 and
Table 3.2 for the Gaussian and IMQ RBFs respectively. The first column shows the number
of collocation points used in the domain. The errors obtained from both the schemes for
each of the Peclet numbers, are presented in the subsequent columns. It can be seen from
the results that the symmetric scheme is marginally better than the unsymmetric scheme.

However, the unsymmetric scheme has the advantage of being easier to implement.

TABLE 3.1: Errors € obtained using unsymmetric and symmetric schemes with Gaussian

RBF - 1D problem (0 = 0.5)

P, =1.0 P, =10.0 P, =100.0

N Unsym. Sym. Unsym. Sym. Unsym. Sym.

11 1.62E-06 2.50E-08 2.66E-03 1.13E-03 5.67E-01 5.45E-01
21 1.42E-06 7.60E-07 8.54E-05 7.72E-05 4.67E-01 2.29E-01
31 7.06E-05 5.79E-06 3.44E-04 2.81E-05 1.62E-01 9.82E-02
41 2.63E-06 2.68E-05 4.33E-04 4.86E-04 6.11E-02 6.30E-02
51 1.59E-04 9.73E-05 4.85E-04 1.27E-04 3.46E-02 3.43E-02
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TABLE 3.2: Errors € obtained using unsymmetric and symmetric schemes with inverse

multiquadric RBF - 1D problem (6 = 0.5)

P, =10 P, =10.0 P, =100.0
N Unsym. Sym. Unsym. Sym. Unsym. Sym.
11 9.93E-07 9.52E-08 1.66E-03 1.43E-03 4.73E-01 4.31E-01
21 2.44E-06 4.59E-08 1.87E-04 7.92E-05 2.39E-01 2.38E-01
31 2.77E-06 7.82E-07 6.49E-05 3.30E-05 9.55E-02 1.10E-01
41 1.62E-06 1.61E-06 8.58E-05 2.51E-05 6.25E-02 8.63E-02
51 3.20E-06 3.72E-06 5.81E-05 1.97E-05 3.94E-02 3.75E-02

3.5 Numerical study: 2D problem

Here, we investigate the behaviour of RBFs on a two dimensional analog of the one di-

mensional problem considered earlier. The implementation issues related to extending the

problem to the two-dimensional case are trivial since a RBF is a function of the Euclidean

distance between any two collocation points in the domain. We first present results obtained

using the unsymmetric scheme and subsequently we compare them with those obtained using

the symmetric scheme.
The governing equation is written as

ou 0%u 0u Ou ou
—_— = T~ o x 9 S Y S ]'; t

5 mamz—i-/iyayQ—kV—am—kVyay 0<z,y >0
with the boundary conditions

u(0,9,6) = ae"(L+ =), u(l,y,1) = ae (e~ +e7W),

u(x,0,t) = aeb (1 + e~ %), u(z,1,t) = aeb (e=T 4 e=Y),
and with the initial condition
u(z,y,0) =a (e_C” + e_ny) .
The analytical solution is given by
u(z,y,t) = ae™ (e_cﬁ + e_ny) ,

where

Vz:l: /172 4bz Vy:l:1/V2+4b/£y
Vi +4br >0 and = !

= > 0.
2K, “ 2Ky

Cp =

(3.36)

(3.37)

(3.38)

(3.39)
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FIGURE 3.9: Analytical solution behaviour for three different Peclet numbers for the 2D

convection-diffusion equation (¢ = 1.0, b = 0.1, x = 1.0) at time ¢t = 1.0

If we put V, =V, =V and k; = k, = k, for the two dimensional case we can define an
analogous Peclet number as P, = % As before, we present our results for the 2D problem
for three different Peclet numbers (1.0,10.0 and 100.0). The analytical solutions are shown
in Figure 3.9. We consider uniform and scattered distribution of collocation points for the
2D problem. The final results were obtained by predicting the solution u(x,t) on a fine mesh

points (50 x 50).

3.5.1 Uniform distribution

We consider uniformly distributed collocation points ranging from Ny, = 6 X 6 to Nypax =
25 x 25 in the 2D domain to obtain the convergence trends of each RBF.

Figure 3.10 shows the convergence trends of the RBF's for the 2D problem when P, = 1.0.
As before, o-tunable RBFs have high convergence rates and accurate results are obtained
with TPS provided there are sufficient number of collocation points.

From Figure 3.11, it can be observed that, for a small number of collocation points, the
errors in the approximation provided by various RBFs are quite high. As we move to the
right side of the graph we get acceptable results for r8logr, r%logr, MQ and IMQ RBFs.
This is the case of P, = 10.0 when the convection term is one order more than that of the
diffusion term. A minimal mesh of 21 x 21 uniform collocation points is needed for the RBF's

to produce acceptable results.
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FIGURE 3.11: Accuracy of different GSRBFs for Peclet number 10.0 (2D problem): a = 1.0,
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The accuracy of various RBFs for P, = 100.0 is shown in Figure 3.12. All the RBFs
with the given set of collocation points are not able to capture the sharp discontinuity
present in the analytical solution. This can be attributed to the fact that more number
of collocation points are needed to capture the discontinuity. However, as we increase the

number of collocation points it is observed that the coefficient matrix H becomes highly
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ill-conditioned.

We now investigate the rate of convergence of the meshless collocation methods. To the
best of our knowledge, theoretical results on RBF based meshless collocation methods for
time-dependent problems are scarce in the literature. However, theoretical estimates for RBF
interpolation are well known (Powell, 1992; Schaback, 1999). Also, for the symmetric RBF
method, convergence estimates for linear elliptic PDEs can be found in the work of Franke &
Schaback (1998). So, to gain some insight into the rate of convergence of meshless methods
for the unsteady convection-diffusion equation, we resort to a numerical study. We consider
the case when 6 = 0.5, which corresponds to the Crank-Nicholson scheme (CN), which is
second-order accurate in time. We let 6t = 1.0E — 04 to ensure that the temporal error terms
are very small in magnitude. We now estimate the convergence characteristics of the RBF
schemes as a function of the spatial distribution of collocation points (h) and Peclet number
(P.). Since the effect of the shape parameter () on the convergence is not well known, we
use a TPS (r®logr) which does not have a shape parameter. We use a collocation point set
of 11 x 11, 21 x 21, 25 x 25 and 30 x 30 for our numerical study.

Figure 3.13 shows the convergence rates of the unsymmetric method as obtained numeri-
cally for different Peclet numbers. Note that we use increasing mesh spacing h on the x-axis.
The slope (v) of each line in Figure 3.13 indicates the convergence rate. From the figure, it

can be seen that for low Peclet numbers the convergence rates are very high.
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F1GURE 3.13: Convergence rates of unsymmetric method for different Peclet numbers, RBF

=r8logr

FIGURE 3.14: Convergence rate, v, Vs Peclet number

Figure 3.14 shows how the convergence rate (v) varies with Peclet number. From this
figure, a qualitative idea of the rate of convergence as a function of P, can be obtained.
For each Peclet number, the unsymmetric method approximately converges at the rate of
O(h"), when 78 log 7 RBF is used. From Figure 3.14, it can be seen that the convergence rate
varies from O(h®) for low Peclet numbers to O(h??2) for P, = 50. Similar behaviour was also

observed when the symmetric method is used. This behaviour is expected because for high
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Pe, the ill-conditioning problem affects the accuracy of the unsymmetric and symmetric
schemes. It is also worth noting that similar trends are obtained when the time step is

decreased further.

3.5.2 Scattered distribution

We investigate the convergence trends of the various RBFs when a scattered set of collocation
points is taken in the computational domain. The random set of points were generated using
Sobol sequences (Sobol, 1979). Figure 3.15 shows the spatial distribution of the collocation

points for N = 121 and N = 625 points respectively.

1« @ © © < @ @ © < < 1« T g S PN T o
o 0 > O Opo o 0
o o © SIS OO OOO o 9 o , © OO o © 80 o ©
0.9 o o o o o . E: 0970 %, % o0 %50 % 0% ° o ©o o, 0 0 0 %]
o [e) e} fe) o o o
o o o 0o 05 O o 0 © o % o %0 o O o
o o o o o o o o o 07 4 o o
0.8¢ o o ¢ 08 © o 0o %°%50, 9% © o o0 50
© o 08 °© o o © 5 ©°0 % o OO o©°
o o o O o 00 e} o,
o o, © [e) ¢} o O o
0.7% ° . © o 4 orfo e T %P T0 00 g0 06 9 0 g O o
o o o
o °© o ° o OoOOOOo OOOO oOOOOOOo OOOOO
o S o )
066 o o ° 5 4 0650 9 OOOOO %, o© © % o 5% %0 OO 0 07
o o o o o o]
° o o o o o
© o 0 0° o7 79, %0, © T0o 0% g ° o ©
0.5¢ o © o 4 0.5¢ o o 0 o o o
. o o o T o o © 09 o o o % 0g oo o O
° o 090 009 B o0 2 oo 0 o
(o} (o} o
b o . o . o 4 04to © o %0 o, o 02 ® % °. %o o0 % of
o
o o o % ° 6 % o % OOOOOO o o o 0 9%
L o o P 0 % ¢ o %o 00 o %, 000
0.34 ° o o o 0.3 o 04 0 0 0° o [} o © 0o 005 o
o o %g °o 0 o © o 28 o © 3o
o o o] O 0. ©
0.2¢ o © © 9 02¢ o ©° o° €570 "% o S 0% 0y %0 0 ©
o o © 0y 0 o. © % o9 005 ° 50 o ©
o o o o © o o 3 o ©o o O o OO o %0
9} L [eR®) o o 00 O, ]
0.14 ° 5 o 4 0150 o (%o o 0o © % 0o % o %
° o o o © %o OoO fe) o O o S o ¢} o
o o0 9% g ° o o © o ©g ©
o o & & o o o & o o o 7 . o o ] . ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N = 121 points N = 625 points

FIGURE 3.15: Scattered distribution of points

The convergence behaviours for Peclet numbers of 1.0 and 10.0 are presented in Figure
3.16. From the figures, it can be observed that the RBFs are capable of approximating the
solutions when a set of randomly scattered collocation points are used. The results obtained

are comparable with those obtained using a uniformly distributed collocation point set.

3.5.3 Unsymmetric Vs Symmetric schemes

We now present a comparison table between the unsymmetric scheme and the symmetric
scheme for the two-dimensional problem. As before, we observe that both the schemes
perform equally well. The results for the IMQ RBF are summarised in Table 3.3.

It can be seen from Table 3.3 that for Peclet numbers 10.0 and 100.0, the accuracy of both

the methods increases with the number of collocation points. From the last row in Table
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FI1GURE 3.16: Convergence behaviours of various GSRBFs for the 2D unsteady convection-

diffusion problem on a scattered set of points

TABLE 3.3: Errors € obtained using unsymmetric and symmetric schemes with IMQ RBF

- 2D problem (6 = 0.5)

P.=1.0 P, =10.0 P, =100.0

N Unsym. Sym. Unsym. Sym. Unsym. Sym.

11x11 4.70E-05 2.09E-05 9.00E-03 5.30E-03 9.22E-01 9.50E-01
21x21  5.48E-05 5.07E-05 1.60E-03 1.60E-03 2.87E-01 3.05E-01
25x25 6.87TE-05 6.45E-05 1.00E-03 1.00E-03 1.70E-01 1.90E-01
41x41  5.25E-05 5.21E-05 4.36E-04 4.25E-04 6.36E-02 4.97E-02

3.3, the results obtained for P, = 100 using 41 x 41 points indicate that to obtain better
accuracies using the unsymmetric or symmetric schemes, a large number of collocation points
will be needed. However, the collocation matrix H | for the unsymmetric scheme and H 4 for
symmetric scheme become highly ill-conditioned with increase in the number of collocation

points.
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TABLE 3.4: Error and computational cost of CSRBF ¢(r) = (1 — )% (35 + 18r + 3) for
different support parameter values and P, = 1.0, a=1.0,6=0.1,V =1.0, kx = 1.0, N =51

o € CPU Time (sec)
0.1  0.4413 2.3449
0.2  0.0127 2.5054
0.3  0.0049 2.6349
0.4  0.0024 2.8369
0.5 0.0013 2.9402
0.6 8.30E-04 3.0150
0.7 5.57E-04 3.1793
0.8 3.95E-04 3.2307
0.9 2.92E-04 3.2393
1.0 2.24E-04 3.2417
1.5 8.26E-05 3.3265

3.6 A note on compactly supported RBFs

In this section, we present the results obtained for the CD equation when CSRBFs are
used (Djidjeli et al., 2004). The computational cost incurred by the unsymmetric method is
recorded for different support parameter (§) values. We have taken a constant N = 51 for the
1D unsteady problem. The results obtained are presented in Table 3.4. We also compare the
error vs computational cost in Figure 3.17. From the figure, it can be seen that one obtains
better accuracy by increasing the support parameter which brings it nearer and nearer to a
dense coefficient matrix. The denser the matrix becomes, the more the ill-conditioning. The

same behaviour was observed even for the 2D problem.

3.7 Conclusion

In this chapter, we presented unsymmetric and symmetric meshless schemes for the unsteady
convection-diffusion equation. A f-weighting scheme was used for time stepping. Stability
analysis of unsymmetric and symmetric schemes was presented for implicit as well as explicit
time stepping. For RBF's with a variable shape parameter, an a posterior: residual method

was introduced to obtain the optimal value of the shape parameter.
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Numerical studies for 1D and 2D unsteady convection-diffusion problems have been suc-
cessfully carried out. The convergence trends of several globally supported RBF's were exam-
ined for Peclet numbers 1, 10 and 100. Both uniform and scattered distribution of collocation
points were considered. Our numerical results show that RBF based meshless schemes achieve
good accuracies even for moderate Peclet numbers. Also, for the particular case of unsteady
convection-diffusion problems, the choice of RBF used does make an impact on the accuracy
of the numerical solution. The symmetric scheme produces marginally better results as com-
pared to the unsymmetric scheme. We observed that the condition numbers of symmetric
collocation matrix (f—I\ +) are generally smaller than the condition numbers of the unsymmet-
ric collocation matrix (H 4 ), as reported in Fasshauer (1996). However, the implementation
of the symmetric scheme is more difficult. Based on the convergence results obtained for
different RBF's, it can be observed that infinitely differentiable RBFs incorporating a shape
parameter (MQ and IMQ) produce good results over a variety of mesh spacings. However,
RBF's such as TPS or quintics give accurate results when there is a dense set of collocation
points. Moreover, there is no need of o-tuning in these RBFs. Based on these observations,
the multiquadric RBF is chosen as the basis function in this thesis. The stability analysis
for o-tunable RBF's suggests that the width of the interval from which the shape parameter
can be chosen decreases as we increase the number of collocation points. Also, even though
CSRBFs produce banded matrices, their accuracy is very much dependent on the value of

the support parameter. For the CD equation, when the support is much less than 1, one
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obtains a very sparse matrix and the coefficient matrix is well-conditioned. However, the re-
sults obtained for such a sparse matrix are very inaccurate. The accuracy becomes better as
we increase the support. Consequently, we end up with a completely dense matrix (support
> 1) in order to obtain results equivalent to that of GSRBFs.

For the high Peclet number problem, both the unsymmetric and symmetric schemes are
capable of producing acceptable results provided we increase the number of collocation points.
This motivates the development of alternate RBF based methods which can solve large scale
problems without the condition number becoming worse. In the next two chapters we explore
the development of RBF methods capable of solving large scale problems for improving

computational efficiency and numerical stability.



Chapter 4

RBF-Domain Decomposition

Methods

In this chapter, we discuss different Domain Decomposition Methods (DDMs) using RBF's
for solving PDEs. As discussed in the previous chapters, RBF methods suffer from ill-
conditioning which hinders their application to large scale problems. The objective of this
work is to investigate how DDMs can be leveraged to improve the efficiency of RBF col-
location methods (which have such a good convergence rate) for large scale problems. We
propose overlapping domain decomposition methods which are illustrated for time-dependent
problems and nonlinear problems (Chinchapatnam et al., 2006a, 2005).

In 1870, Schwarz introduced the concept of domain decomposition through the classical
Schwarz alternating algorithm. From then till today, DDMs have been well developed and
utilised for solving PDEs using FD, FE and FV schemes. For a detailed exposition of the
application of DDMs for FD, FE and FV methods, the reader is referred to Smith et al.
(1996); Quarteroni & Valli (1999). There have been a few works on DDMs using RBFs by
Dubal (1994) and Beatson et al. (2000). Beatson et al. (2000) used the concept of DDMs for
efficiently solving the RBF interpolation problem. Recently, some studies on using DDMs
to solve PDEs by RBF collocation have appeared in the literature (Wong et al., 1999; Zhou
et al., 2003; Li & Hon, 2004). Overlapping DDMs, non-overlapping DDMs with matched
and unmatched grids using RBFs have been successfully presented to solve elliptic problems

in Li & Hon (2004).

43
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4.1 Time-dependent PDEs

For time-dependent problems, the explicit multizone method due to Wong et al. (1999) is
the only RBF based domain decomposition method existing in the literature to the best of
our knowledge. In this section, we present Schwarz overlapping schemes for the solution of
time-dependent problems using RBFs. The proposed schemes are compared with the global
RBF-Theta collocation method and the explicit multizone domain decomposition method
(Wong et al., 1999) by solving an unsteady convection-diffusion problem for various Peclet
numbers. Stability analysis of the presented schemes suggest that for radial basis functions
incorporating a free shape parameter, the freedom of varying the shape parameter decreases
with increase in the number of collocation points. Also, we find that a major disadvantage of
the explicit multizone method arises from the requirement of using a very small time step to
ensure numerical stability. In contrast the Schwarz algorithms coupled with a semi-implicit
time discretisation RBF scheme permit large values of time step to be used. Numerical
studies show that the ill-conditioning problem of the global RBF-Theta method is reduced
by the proposed Schwarz schemes. Also, with an increase in the number of sub-domains the
efficiency of the Schwarz schemes increases with a slight loss in the accuracy.

We illustrate the domain decomposition scheme for a general linear time-dependent equa-
tion of the form

Ou(x,t)

BT + Lu(x,t) = f(=x,t); xcQeRY

Bu(xz,t) = g(x,t); x € 90 € RY, (4.1)

where ) denotes a closed physical domain over which the PDE is to be solved and 0f2 denotes
its boundary. Here, £ is a linear differential operator and B is an operator which imposes the
boundary conditions; u(ax,t) is the desired field solution and f(x,t), g(x,t) are prescribed

functions.

4.2 Explicit multizone method

In this method, a second order explicit forward difference scheme is used for time stepping.
Assuming f(x,t) = 0 and Dirichlet boundary conditions, temporal discretisation of Equation

(4.1) leads to

u(z, ") = u(x, t") — 5t [Cu(z, t™)] + (6t2/2) L2u(x, t"); x €,

(4.2)
u(m7tn+1) = g(m7tn+1); x € 0,
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where £2u(zx,t") denotes the application of the operator twice on the function u(zx,").

The physical domain € is divided into m non-overlapping sub-domains such that

Q= CJ Q.
k=1
The set of collocation points C of cardinality IV is divided into m subsets C;, j = 1,2,...,m
such that
Ch[\Ci=0 if k#j
and

6 Cr =C.
k=1

Note that the points in collocation set Cj are contained within the sub-domain €.
Another set By, is formed such that for each sub-domain 0, the elements in By contain
all the points in the other sub-domains that lie within a certain pre-specified distance (A)

from the artificial boundary of the sub-domain €,

B ={x € O/l # k and  is adjacent to Q and x € Cj,

and distance of x from artificial boundary < A}.

For example, B; contains points present in the neighbouring sub-domains €2; (j # 1) and
adjacent to the artificial boundaries of £2; within a distance A.

In addition to the above two sets of points, another set Sy is chosen such that for a
particular sub-domain 2, S contains a set of randomly chosen points from sub-domains {;
(I # k). Care needs to be exercised to ensure that the points in the set S are sparsely and
evenly distributed over the other sub-domains. A schematic figure of the multizone domain
decomposition is shown in Figure 4.1. Here, the whole domain is divided into three sub-
domains. The solid lines indicate the natural boundaries and the dash-dotted lines indicate
the artificial boundaries. In the figure the spatial distributions of the points in the sets Cy,
B and S; are shown.

For each sub-domain k, we now define Qj, as

O = Ci| Bk Sk

At a given time step ¢ = t", an RBF is fitted on each of the computational sub-domain
Qk, i.e.,

up(@) = Y Nolllz -z Vo € Q. (4.3)

ijQk



Chapter 4 RBF-Domain Decomposition Methods 46

Points in Sl

| T
........ P o X '
........ P o A .
........ . ’ .
........ b o x 5
........ b ox >% .
........ i: o < 1
R - R Q, P TG,
........ Fooxx $
-------- P C I
........ 0 o !
........ N‘ !
1
........ {3 5 Artificial ]
........ £ © boundary X X X
........ & o ]
¢ !
........ P ! "
........ g O ! .
........ v o * A
e e e e o o o b O :
i - '
Points in C, _“Points inB, - Pounda
boundary

FIGURE 4.1: Point distributions in the multizone sub-domains

Note that the total number of points in the set j, denoted by Nj, is less than N.
Collocating on each of the point in Qy, the following RBF interpolation problem for each

sub-domain can be solved to obtain the RBF coefficients,
AL = uy. (4.4)

Note that the sub-domain coefficient matrix Ay does not vary with the time step. Hence
A}, needs to be inverted only once and the inverse can be used to calculate A} efficiently
at subsequent time steps. Once A} are calculated, the partial derivatives present in the
operator £ are determined for each of the collocation points present in C,. Note that the
points present in B and S are C-points of some other sub-domain.

The solution is advanced to the next time step t = " for 2, using Equation (4.2). Once

u;t1(x) is obtained for each sub-domain, the solution over the whole domain € is
u (@) = u " (@)x(®), (4.5)
where
1, if ey
Xk () =

The continuity of the solution across the artificial boundaries of sub-domain €, is satisfied
in an indirect fashion by including the data point sets B and Si. It is worth noting that
the explicit multizone scheme is easy to parallelise since the sub-domain RBF interpolation

problems are independent of each other.
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4.3 Overlapping Schwarz domain decomposition methods

In this subsection, we present the additive and multiplicative Schwarz algorithms. The
computational domain €2 is divided into k& non-overlapping sub-domains. Each of the sub-
domains €2, is extended to a larger sub-domain with overlap dx; between neighbouring regions
Q; and €.

We denote the extended sub-domain, its natural boundary and the artificial boundary
overlapped with other neighbouring sub-domains as €, 9, and I';,, respectively. Let €, =
Qi J 09 |UT'k denote the closed sub-domain, S denote the artificial boundary operator and
v be the artificial boundary value of the sub-domain €, extracted from neighbouring sub-
domains. Figure 4.2 shows how the sub-domains are formed when the whole domain 2 is
divided into two sub-domains. The spatial distribution of the collocation points is also shown

in this figure.

0
hboooooooeoocooeooeosoo0o0o0000

FIGURE 4.2: Point distributions in the Schwarz sub-domains

Applying the RBF-Theta method presented in Chapter 3 to each closed sub-domain

an operator problem of the following form can be arrived at:

up(x, ") + 6t OLug(z, ") = wg(x,t) — 0t (1 — 0)Lup(z, ") + 6t fe(z,t"T) =€ Q4
Buk(mv tn+1) = gk’(w’ tn+1) T e an
Suk(m’ tn+1) = I)/k(w’ tn+l) x €Ly,

(4.6)

where B and S can be Dirichlet, Neumann or Robin-type boundary conditions. The basic
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idea of the overlapping Schwarz schemes is to solve Equation (4.6) for each sub-domain in
an iterative fashion.

For each iteration i, Equation (4.6) can be compactly written in matrix form as

HX = HOAL+ FUP 801 (4.7)
where
D)+ 0t OLDg Dy —0t(1—0) LBy
Hf = B®y ;. , Hy = 0 ;
SP; 0
and
0 0
Fitl = gt S?—Jrll,k = 0
0 Qs
+1

As can be seen from Equation (4.7), only S’?_Lk changes across the iterations in the
right hand side of the equation, for a particular time t = t"*!. Note that the matrix H ,j
for each sub-domain does not change over iterations and hence needs to be inverted only
once. For the case when B and S are identity operators (Dirichlet conditions), the stability
analysis developed for the RBF-Theta method can be applied. Hence, the Schwarz schemes
are unconditionally stable for 8 = 0.5 and Aps > 0.

In the Schwarz additive algorithm, the values on the artificial boundaries are updated
after solving the operator problem for all the sub-domains. On the common boundary, the
value of the field variable is taken to be the average of the field variable values obtained from
solving the individual sub-domain problems. This enforces continuity of the field variable
across the whole domain.

In the Schwarz multiplicative version of the algorithm, the field variable value is updated
in a sequential fashion. First, we solve Equation (4.7) on the first sub-domain. Then, the
boundary values of the field variable are updated. Then we solve Equation (4.7) for the next
sub-domain. We continue in this fashion, until we obtain convergence. Note that parallel
implementation of the multiplicative Schwarz scheme is much more difficult than that of the

additive Schwarz scheme.
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4.4 Computational effort

In this section, the computational effort required of the Schwarz schemes is estimated. It is
compared with the global RBF-Theta method and the explicit multizone method.

It can be shown that the operation count of the RBF-Theta method may be shown to be

XRBF—Theta ~ 4N?p + 2N3p + Nngp + T (Nngp + npp + N?p) , (4.8)

where N = ng(interior) + ny(boundary) is the number of collocation points, T = g—’; is the

number of time steps and p is one unit cost of evaluating the RBF. In Equation (4.8), the
first term is the computational cost required to formulate the matrices A and H,. The
second term refers to the LU decompositions of the above two matrices. If the given set
of collocation points does not change, then we need to decompose the coefficient matrices
only once. The third term comes from obtaining the values of the RBF coefficients from the
initial condition. Finally, the fourth term represents the computational cost incurred over T
time evaluations.

Next, to calculate the operation count for the explicit method, we assume N, as the
number of sub-domains used and s < N% refers to the number of extra points needed in each
sub-domain (deriving from the subset S). Also T = g—’; is the number of time evaluations
needed to reach the final time ¢;.

The operation count for the explicit multizone method is

Matrix Formulations LU Decompositions

] N ? N 2
Xexplicit ~ Ne [(F +3> p+2 <F +S—le> p

(%)

N N
+ TexNe <E + 8> <3E + 3s — 2le> P

~

+ Ne

e

Time evaluations (4.9)

In Equation (4.9), the first term comes from the matrix formulations, the second term
from the LU factorisations of the N, sub-domain Gram matrices and the third term is the
operation count happening over T, time evaluations.

We now present the operation count for the Schwarz DDM (additive and multiplicative).
We denote the percentage of overlap (assumed constant over all the sub-domains) as 9.
Hence, the number of collocation points in each sub-domain are approximately (Nﬂe + ON).

Let njter be the number of Schwarz iterations needed to converge at each time step (assumed
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constant). Then the operation count for the Schwarz schemes is given by

Matrix Formulations LU Decompositions
N 3
XSchwarz ~ Ne + 2N, <_ +5N> p

N 2 N 2
2 = + 6N S
<Ne+5 > p—|—<Ne nb> P Ne

N 2 N ON
+ N, <E+5N> p+T[niter N, <E+5N> <Ne +5N—nb>]p

Time evaluations (4.10)

Note that the difference between Schwarz additive and Schwarz multiplicative schemes ap-
proximately is in the value of njie;.
We now compare the computational effort required by the explicit multizone method with

respect to the Schwarz schemes. The following assumptions are made:
e Tox = aT - niter) and a > 1.
e ny=fa (B<1).
e s=0N=v9N (y<1).
Now, subtracting Equation (4.10) from Equation (4.9), we obtain
N2

Xexplicit — XSchwarz ~ P77 X
Ne

(1 —ﬁ)2+2N372+4NW627—2(1 +7)2—%(1 +7)° + (1 +7) (a(3y =208+ 3) + 5 — 7 — 2) Thiter
—— N — ——’ e ——
om o1 o o) O(31) o(1) O(a)

(4.11)

From Equation (4.11), it can be seen that

N
Xexplicit — XSchwarz = <O(Oé T niter) - O(F)) >> 0.
e

4.5 RBF-DDM for unsteady convection-diffusion equation

In this section, we apply the domain decomposition algorithms to solve the unsteady convection-
diffusion equation for different Peclet numbers. The two dimensional unsteady convection-

diffusion problem of the form

%— @4_ @—FV@-FV%
~ Reggr g T e Y 8y

L0<az,y<1,t>0 4.12
e <uz,y (4.12)
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is considered with the initial and boundary conditions given in Equation (3.38) and Equation
(3.37) respectively. The analytical solution is given in Equation (3.39).

If we put V, =V, =V and k; = k, = k, for the two dimensional case we can define an
analogous Peclet number as P, = V/k. In our numerical studies, the values of the constants
a and b are taken to be 1.0 and 0.1 respectively.

For the Schwarz additive and multiplicative schemes, the artificial boundary operator S

||uz‘.,k—ui71,k||2

is chosen to be a Dirichlet operator and the iterations were terminated when el

<

1079 on all the sub-domains €y, where i is the iteration number.

4.5.1 Effect of number of collocation points

In this section we present the results of the RBF-Theta collocation method and compare it
with the three domain decomposition schemes presented in this chapter. The convection-
diffusion equation was solved for three different Peclet numbers (1, 10 and 100). We use the
MQ RBF in our numerical studies. The analytical expressions for the derivatives of MQ RBF
are given in Appendix A. The shape parameter ¢ was chosen from a fixed set of values such
that the residual error is a minimum for the RBF-Theta method and the obtained value of
shape parameter (o) is also used for the DDMs. The shape parameter o was chosen such that
the matrix M has positive eigenvalues to satisfy the stability conditions as derived earlier.
Note that as the multizone method is an explicit method, the time step used in this case
is very small (6¢ = 107°). In the case of RBF-Theta and Schwarz domain decomposition
methods, the stability criterion does not impose any restriction on the time step for § = 0.5.
We have taken a time step of 6t = 1072 for these methods. The final times at which the
solutions are compared with the exact solution are taken to be t; = 0.1 and £y = 1.0. The
error € is defined as the L-infinity norm of the difference between the analytical and the

numerical solutions, i.e.,

€= ||uanalytic - unumerical”oo» (413)

and the computational cost is assumed to be proportional to the CPU time (7°) taken by the
method. The code was written in C language and the platform used was an AMD Athlon
machine with an MP 2600+ processor.

We first study the case of P, = 1.0 for which the convection and diffusion effects are
comparable. The analytical solution obtained is smooth. Tables 4.1 and 4.2 summarise the
results obtained using DDMs when the physical domain is divided into two sub-domains for

ty = 0.1 and ty = 1.0, respectively. 'Nlter’ is the average number of iterations taken for the
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Schwarz schemes to converge.

In Table 4.3 and Table 4.4, we present the results obtained using the three different DDMs
with the RBF-Theta method for the case of P, = 10.0 at t; = 0.1 and t; = 1.0, respectively.
Here, the convection term is one order of magnitude larger than of the diffusive term and
hence the analytical solution obtained is not smooth but has a slight discontinuity in it.
Finally, in Table 4.5 and Table 4.6, we present the results for P, = 100.0 at times ¢y = 0.1
and ty = 1.0, respectively.

We can see from the second columns of Tables 4.1 - 4.6, that the accuracy of RBF-Theta
method depends on the value of the shape parameter (o) used. However as seen from Figure
3.2, the freedom of varying shape parameter decreases with an increase in the number of
collocation points. This stability restriction and the ill-conditioning of the coefficient matrix
are responsible for loss of accuracy of the RBF-Theta method for a very large number of
collocation points. In this section, we concentrate on the behaviour of Schwarz schemes as

compared to the explicit method and the RBF-Theta method.

TABLE 4.1: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for P. = 1.0, ty = 0.1, RBF = MQ), overlap = 30%

RBF-Theta Method  Explicit Multizone Additive Schwarz Multiplicative Schwarz
N (o) € T (sec) € T (sec) € NIter 7 (sec) € NIter 7 (sec)

200 (0.60)  1.01E-04 0 7.86E-04 8 1.60E-04 5 0 2.12E-04 5 0
400 (0.40)  9.30E-06 0 5.43E-05 32 1.22E-05 10 0 1.20E-05 7 0
900 (0.20)  2.76E-05 2 1.03E-04 140 2.97E-05 15 2 2.59E-05 10 2
1600 (0.10)  9.73E-05 7 1.03E-04 442 9.75E-05 20 7 9.73E-05 12 7
3600 (0.05) 1.24E-04 48 3.60E-04 2079 1.18E-04 28 43 1.17E-04 17 40
4900 (0.01)  9.52E-04 113 9.37E-04 35 85 9.35E-04 20 78

From these tables, it can be seen that additive and multiplicative Schwarz domain decom-
position techniques produce results which are as accurate as the RBF-Theta method but at
less computational cost. Although the explicit multizone method produces good results, the
CPU time (7) taken by it is much larger compared to Schwarz schemes primarily because
of the restriction in the time step. The CPU time taken is in agreement with the theoretical
results (computational effort) presented in Section 4.4.

For the case of high Peclet numbers, the Schwarz schemes generate better results as

compared to the RBF-Theta method due to better condition numbers (K) of the sub-domain
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TABLE 4.2: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for P. = 1.0, ty = 1.0, RBF = MQ, overlap = 30%

RBF-Theta Method  Explicit Multizone Additive Schwarz Multiplicative Schwarz
N (o) € T (sec) € T (sec) € NIter 7 (sec) € NIter 7 (sec)

200 (0.50)  2.33E-04 0 9.07E-04 100 3.93E-04 5 0 5.09E-04 5 0
400 (0.45)  4.61E-06 1 5.54E-05 321 6.75E-06 10 1 6.67E-06 7 1
900 (0.20)  3.08E-05 5 1.17E-04 1448 3.36E-05 15 4 3.34E-05 10 4
1600 (0.10)  1.15E-04 16 1.16E-04 20 13 1.15E-04 12 13
3600 (0.05) 1.61E-04 91 1.47E-04 28 63 1.47E-04 17 63
4900 (0.01)  1.08E-03 182 1.08E-03 35 117 1.06E-03 20 117

TABLE 4.3: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for P. = 10.0, ¢ty = 0.1, RBF = MQ), overlap = 30%

RBF-Theta Method  Explicit Multizone Additive Schwarz Multiplicative Schwarz
N (o) € T (sec) € T (sec) € NIter 7 (sec) € NIter 7 (sec)

200 (0.33) 1.81E-02 0 1.86E-02 8 1.72E-02 5 0 1.74E-02 4 0
400 (0.40) 1.46E-03 1 3.74E-03 32 1.46E-03 9 0 1.46E-03 6 0
900 (0.20) 1.06E-03 2 1.19E-03 143 1.12E-03 12 2 1.11E-03 8 2
1600 (0.10)  1.52E-03 7 6.95E-04 440 1.53E-03 16 7 1.52E-03 10 6
3600 (0.05) 1.23E-03 49 2.39E-03 2041 1.23E-03 23 37 1.23E-03 14 35
4900 (0.01)  7.53E-03 104 7.08E-03 29 80 7.08E-03 17 75

coefficient matrices [for example, at P, = 100.0, N = 3600, KRpr_Theta = O(10714) and
Kschwarz = 0(10+13) for N, = 2 sub-domains|. Further, from Table 4.6 it can be seen that
the RBF-Theta method fails to generate results when N > 5000. However, the Schwarz
schemes can reach to a maximum of N = 6000 for N, = 2 sub-domains. It can be noted
from Tables 4.1 - 4.6 that the multiplicative scheme converges in about half the number of
iterations taken by the additive scheme. We wish to mention that the Schwarz schemes can

be implemented in a parallel fashion to further speed up the computations.

4.5.2 Influence of number of domains

Here, we investigate the influence of number of sub-domains on the accuracy and compu-

tational cost when Schwarz domain decomposition methods are employed. The unsteady
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TABLE 4.4: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for P. = 10.0, ¢ty = 1.0, RBF = MQ), overlap = 30%

RBF-Theta Method  Explicit Multizone Additive Schwarz Multiplicative Schwarz
N (o) € T (sec) € T (sec) € NIter 7 (sec) € NIter 7 (sec)

200 (0.55) 1.24E-02 1 2.20E-02 99 1.22E-02 5 1 1.29E-02 4 1
400 (0.40) 1.63E-03 1 4.10E-03 304 1.61E-03 9 1 1.61E-03 6 1
900 (0.20) 1.25E-03 5 2.76E-03 1431 1.28E-03 12 4 1.28E-03 8 4
1600 (0.10)  1.83E-03 16 1.93E-03 16 11 1.93E-03 10 11
3600 (0.05) 1.59E-03 98 1.68E-03 23 58 1.67E-03 14 57
4900 (0.01)  8.54E-03 183 8.32E-03 29 107 8.31E-03 17 107

TABLE 4.5: Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

methods: Numerical Results for P. = 100.0, ty = 0.1, RBF = MQ, overlap = 30%

RBF-Theta Method  Explicit Multizone Additive Schwarz Multiplicative Schwarz
N (o) € T (sec) € T (sec) € NIter 7 (sec) € NIter 7 (sec)

200 (0.35)  2.79E-01 0 2.36E-01 9 1.97E-01 13 0 2.45E-01 8 0
400 (0.40) 1.29E-01 1 6.27E-02 30 1.40E-01 28 0 1.39E-01 20 0
900 (0.20) 2.07E-02 2 2.25E-02 141 1.37E-02 12 2 1.38E-02 8 2
1600 (0.10)  1.93E-02 7 4.34E-02 441 1.49E-02 7 7 1.49E-02 5 7
3600 (0.05) 1.61E-02 48 4.28E-02 2055 1.30E-02 7 37 1.38E-02 5 37
4900 (0.01) 1.61E-02 103 1.42E-02 8 74 1.42E-02 6 73

convection-diffusion equation was solved for P, = 10.0. The computational cost is measured
by the CPU time taken to solve this problem. The total number of collocation points was
fixed at 3600 and the physical domain was subdivided into 2, 4 and 8 sub-domains. A
constant overlap of 30% was used and the final time ¢ty = 1.0. The results were compared
with the single domain RBF-Theta method. The results for the additive and multiplicative
Schwarz schemes are presented in Figures 4.3 and 4.4, respectively.

From these figures, we observe that as the number of sub-domains increases, the compu-
tational cost decreases. However, the accuracy of the method also suffers. Similar behaviour

was observed for Peclet numbers 1 and 100.
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TABLE 4.6:
methods: Numerical Results for P. = 100.0, t; = 1.0, RBF = MQ, overlap = 30%

Comparison of DDM Schemes with the global RBF-Theta and explicit multizone

RBF-Theta Method

Explicit Multizone

Additive Schwarz

Multiplicative Schwarz

N (o) € T (sec) € T (sec) € NIter 7 (sec) € NIter 7 (sec)
200 (0.35) 2.99E-01 1 3.09E-01 99 2.20E-01 13 1 2.48E-01 8 0
400 (0.40) 1.09E-01 1 6.86E-02 319 1.22E-01 99 1 1.21E-01 39 1
900 (0.20) 2.98E-02 5 2.47E-02 1427 1.88E-02 12 5 1.87E-02 8 5
1600 (0.10)  3.93E-02 16 2.96E-02 7 14 2.96E-02 5 13
3600 (0.05) 4.53E-02 91 3.60E-02 7 67 3.60E-02 5 66
4900 (0.01)  7.02E-02 180 6.02E-02 8 124 6.02E-02 6 125
5400 (0.01) 5.97E-02 6 150 5.97E-02 5 150
6000 (0.01) 5.16E-02 6 185 5.16E-02 5 183
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FIGURE 4.3: Comparison of accuracy and computational cost Vs number of sub-domains

for the additive Schwarz scheme: N = 3600, P, = 10.0, t; = 1.0, RBF = MQ), o = 0.05,

4.5.3 Influence of overlap

Number of Domains (Ne)

overlap = 30%

In this subsection, we investigate the influence of the degree of overlapping on the Schwarz

domain decomposition schemes. The degree of overlap is defined as the ratio of the physical

length of the overlapping region to the physical length of each sub-domain. In this study we

let P, = 10.0 and the total number of collocation points was taken to be 3600. The results
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FI1GURE 4.4: Comparison of accuracy and computational cost Vs number of sub-domains for
the multiplicative Schwarz scheme: N = 3600, P, = 10.0, t; = 1.0, RBF = MQ, ¢ = 0.05,
overlap = 30%

are presented in Table 4.7, when the physical domain 2 is divided into 4 sub-domains.
From Table 4.7, it can be observed that as the overlap increases, the accuracy becomes

better. However, the computational cost increases as more amount of work needs to be done

on the overlap regions across the iterations. After an overlap of 30%, the computational time

taken is almost same as the single domain RBF-Theta method.

4.5.4 Numerical convergence

To the best of our knowledge, theoretical convergence analysis of meshless schemes for time-
dependent problems using RBF collocation continues to be an open problem. In this section,
we present the convergence characteristics of the domain decomposition schemes as obtained
numerically in order to aid the understanding of the developed methods. The convergence
history of Schwarz additive and multiplicative schemes for two cases is plotted in Figure 4.5.
From the figure, it is apparent that the multiplicative scheme converges much faster than
the additive scheme.

We now estimate the convergence orders of RBF-Theta and RBF-Theta with domain
decomposition schemes as a function of the shape parameter (o) and the mesh spacing (h).
The error ¢ is assumed to be O(X(ﬁ)n), where 0 < x < 1 (Cheng et al., 2003). Seven

different mesh spacings in the range of Ay, = 0.025 to hpmax = 0.16 are taken for single
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TABLE 4.7: Overlapping influence on the Schwarz DDM schemes for P, = 10.0, N = 3600,
Ne=4,t,=1.0

Overlap (%) Additive Schwarz Multiplicative Schwarz
€ CPU time (sec) € CPU time (sec)
3 9.89E-03 28 9.896E-03 25
6 9.87E-03 33 9.877E-03 30
10 9.77E-03 36 9.769E-03 32
13 9.67E-03 41 9.678E-03 36
16 9.611E-03 42 9.609E-03 38
26 9.42E-03 52 9.425E-03 52
50 9.155E-03 86 9.156E-03 75
83 8.919E-03 142 8.992E-03 126
96 8.83E-03 181 8.825E-03 183

domain and four different mesh spacings for the two sub-domain case. The shape parameter
was also varied in the range of 0.05 < o < 0.3 and the resulting convergence plots are shown
in Figure 4.6 (—log;o(¢) Vs loglo(%)). For a constant shape parameter value, the mesh
density decreases as we go to the right on the z-axis and for a constant mesh spacing the
value of o increases as we go to the right. From figure 4.6, it can also be seen that the
rates of convergence for the single (n = 3.6366) and two sub-domain (7 = 4.0188) cases are
comparable to each other. The convergence rate, 7, is obtained by a linear fit through the

data. Similar behaviours were observed for P, = 10.0.

4.6 Concluding remarks

Overlapping Schwarz additive and multiplicative domain decomposition methods were devel-
oped for solving time-dependent problems using radial basis function collocation for spatial
discretisation and a theta weighting scheme for temporal discretisation. The developed meth-
ods are applied to a 2D unsteady convection-diffusion equation and are compared with the
global RBF-Theta collocation method presented in the Chapter 3 and an explicit multizone
method described in the literature. Numerical results obtained show that the domain decom-

position methods give results which are as accurate as the RBF-Theta method but at much
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FIGURE 4.6: Convergence plot of RBF-Theta and RBF-DDM scheme for P, = 1.0, ty = 1.0

less computational cost, particularly for very large number of collocation points. However as
the number of sub-domains are increased, the accuracy suffers. The developed DDM schemes
can be made even more computationally effective by parallel implementation. However, the
problem of obtaining the optimal value of shape parameter still exists and the optimisation
strategy outlined in Section 3.3 is computationally expensive. In the next chapter, we ex-

plore an alternative strategy of using RBFs in a finite difference mode as opposed to the
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collocation methods proposed till now for solving partial differential equations.



Chapter 5

RBFs in a Finite-Difference Mode
(RBF-FD)

In the previous chapter, overlapping domain decomposition schemes were formulated for time
dependent PDEs to improve the computational efficiency when a large number of collocation
points are needed. This chapter outlines an alternative RBF based formulation which gen-
erates a local interpolant using scattered data RBF interpolation method, thus generating
sparse coefficient matrices. This idea of using RBFs in a finite-difference mode (RBF-FD)
was proposed by Wright & Fornberg (2006), Shu et al. (2003) and Tolstykh & Shirobokov
(2003) independently in the literature.

We begin by looking at the finite difference methodology. Consider a typical central finite
difference scheme for estimating the derivative of function u(x,y) with respect to x. The
function derivative at any grid point (4, j) can be written in the form

% = D W)Uk (5.1)
(@3)  kefi-1,i,i+1}
where u( ;) is the function value at the grid point (k, j).

The unknown coefficients wy ;) are obtained using polynomial interpolation or Taylor
series (Fornberg, 1996, 1998). The set of nodes {(i — 1,7),(i + 1,j)} along with the node
(i,7) are collectively referred to as stencil in the finite difference literature. The polynomial
interpolation strategy however imposes a restriction that the nodes in the stencil be situated
on some kind of a structured grid. This restriction can be circumvented if the approximation
of the function derivative can be written as a linear combination of function values on a
scattered set of nodes in the stencil. The methodology for obtaining the coefficients or

weights of the FD formulas becomes the focus of the issue now. Abgrall (1994); Schonauer &
60
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Adolph (2001) extended the classical polynomial interpolation technique. This however leads
to several ambiguities in deriving the scattered node FD formulas and also the problem of
well-posedness for polynomial interpolation in more than one dimension (Wright & Fornberg,
2006).

In the RBF-FD concept, the weights of the FD formulas are obtained using the RBF

interpolation technique. This approach has the following merits:

e The problem of well-posedness in polynomial interpolation is overcome as RBF inter-

polation is well-posed in multidimensional problems.

e RBF interpolants are capable of accurately approximating the function derivatives

(Tolstykh & Shirobokov, 2003).

e Since the approximations are based on scattered nodes with no connectivity informa-

tion, this method can be regarded as a truly meshless method.

5.1 Basic formulation

In this section, we present a brief outline of the RBF-FD formulation for solving partial
differential equations. We begin with a recap of the scattered RBF interpolation problem
using the multiquadric RBF. Given a set of distinct nodes «; € R%, i = 1,--- ,n, and a
corresponding scalar function values u(x;), i = 1,--- ,n, the standard RBF interpolation
problem is to find an interpolant of the form
n
u(@) = s(x) =Y Nio(||lz — il]) + 5, (5.2)
i=1
where ¢(||.]|) is the multiquadric RBF and 3 is a constant. The expansion coefficients
{Ai}l~, and (3 are determined by enforcing the conditions s(x;) = u(x;), @ = 1,---,n,

and > ;| A; = 0. Imposing these conditions leads to a symmetric block linear system of

equations
® e A u
= ) (5.3)
e’ 0 I&; 0
where ®;; = ¢(||z; — z;]), i,j=1-,n ande;=1, i=1n.

The RBF interpolant can alternatively be written in Lagrange form as

s(@) = x(llz — il u(z)), (5.4)
=1
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where x (|| — @;||) is of the form Equation (5.2) and satisfies the usual cardinal conditions

ie.,
1, if x
0, if x+# x;,

= Iy,

i=1, (5.5)

X([l& = l]) = 1.

The basic idea of the RBF-FD methodology is to approximate function derivatives as a
linear combination of the function values like in Equation (5.1). In the derivation that follows,
we present the RBF-FD methodology for approximating any arbitrary linear differential
operator acting on the function u(x), denoted by Lu(x). The unknown function u(x) at any
node, say @1, in the domain is approximated by an RBF interpolant with the centres placed
on the node itself and some n — 1 surrounding nodes. These n nodes constitute the support
region/stencil for the node x;. A schematic diagram of the support region for the node x;

is shown in the Figure 5.1.
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FIGURE 5.1: Schematic diagram of a RBF-FD stencil. The circle indicates the supporting

region/stencil for the node x

To derive RBF-FD formula at the node @1, we approximate the differential operator using

the Lagrangian form of the RBF interpolant i.e.,

Lu(x1) ~ L5(x1) = Z Lx(ler — 24 |)u(x;). (5.6)
i=1
Equation (5.6) can be rewritten as a FD formula of the form
Lu(xy) ~ Zw(l,i)u(a:i), (5.7)
i=1

where the RBF-FD weights {w(l,i)}?zl are formally given by the operator £ applied on the



Chapter 5 RBF’s in a Finite-Difference Mode (RBF-FD) 63

Lagrange form of the basis functions i.e.,

wi g = Lx(ler - ai): (5.3)
In practise, the RBF-FD weights are computed by solving the linear system
T
d e w LD
= (5.9)
el o 7 0

where £®; denotes the evaluation of the column vector L& = [Lo(||x — z1|]) Lo(||lz —
xo||) -+ Lo(||x — x,]))]T at the node x1. Here, p is a scalar value related to the constant 3

in Equation (5.2) and enforces the condition

n
> wap =0,
i=1
which ensures that the stencil is exact for all constants. The complete derivation is given in
Appendix C.
As the differential operator £ can be arbitrary, a similar procedure can be used to obtain
the weights for all function derivatives. The convention followed for denoting the weights for

(=) () (zz) (vy)

any point x; with n supporting points is w;”’,w;” ,w;”" or w;””’ when the operator (L) is

8%, a%v 53—;2 or (98—;2, respectively. Once the coefficients are computed, they are stored and used
to discretise the partial differential equation in a similar manner as in the finite difference
method.

We now illustrate the RBF-FD approach for a Poisson problem of the form

0?u  0%u
@4_8—% = f(x,y), (7,y) € (5.10)
with Dirichlet boundary condition
u(z,y) =g(z,y), (z,y) €l (5.11)

where I' represents the boundary of the domain €.

We consider a five noded stencil for evaluating the function derivatives. At the node @

with the stencil {x1, 2, 3, x4, x5}, the weights for %H:wl and %\w:ml are obtained by

solving Equation (5.9) written in expanded form as

s(ler —ai])) o(lar —aal) - dlwr—asl) 1| [ ™ ] [ ¢uw (@1, @)
$(|@s — 1)) d(|ma—aal) - d(|lme—wsl) 1| | ws™ b v (w1, 22)
$(lws — 1)) d(lws —aal) - S(lws—asl) 1| | wl 6 2 (1, 5)
i 1 1 1 o)1 w» | | 0

(5.12)
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sz —zi1l) o(|lm —aal) - bz —asl) 1| [ 0 By (1, 21)

o(lza—m1l) O(|lms—aal) - G(lwe—asl) 1 || w? By (@1, 22)

les —zl) o(lws —wal) - olllws—asll) 1| | wi Oy (@1, 25)

I 1 1 1 O_ |~ i 0 ]
(5.13)

where ¢ 4 (T4, @) = 2 [B([[@ — ||y, a0d & gy (@i, m)) = 27 (B2 — 25|,

It can be seen that the RBF-FD weights solely depend on the relative positioning of the
nodes and the basis functions used. Once these two parameters are defined for a particular
problem, the estimation of weights can be done in the pre-processing stage. Once the RBF-

FD weights are obtained, the discretisation of the governing PDE at the node x1 gives

5

S +wl ula;) = fi. (5.14)
j=1

This procedure is repeated for each of the interior nodes to obtain the discretised form
of the PDE at each of the interior nodes. Substituting the function values u; from bound-
ary condition Equation (5.11) whenever the support point ; € I', we obtain a system of

equations which can be written in matrix form as
Au = f, (5.15)

where w is the vector of the unknown function values at all the interior nodes and f is
the source vector including the boundary terms. Note that the matrix A is sparse and

well-conditioned and can hence be effectively inverted.

5.2 Implementation and computational aspects

In this section, we outline some of the implementation and computational aspects for the

RBF-FD formulation.

5.2.1 Determination of local support for interior nodes

As the derivative approximation for each interior node is performed in a local support region,
the problem of determining the local support at each interior node is of importance. A static
or dynamic approach can be pursued in order to obtain the support for the node.

In the static approach, the support region for each interior nodal point is fixed before

performing the discretisation of the governing PDE. For example, the local support can be
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a circle in two-dimension and a sphere in three dimension i.e, for a central node x;, its local
support is defined as

Support(x;) = {j : 0 < ||&; — x;|| < R;} (5.16)

where R; is the radius of the circle or sphere, and represents the size of the local support.
An alternative approach would be to choose the n—nearest neighbours of the point ;.

In the dynamic or adaptive approach, one can select the support points adaptively by de-
riving a suitable a posteriori estimate. This approach can be very useful for solving problems
which exhibit a large variation in local characteristics. For example, the support of a node
in a region is more when the function gradients are changing rapidly and in regions where
the variations are less or smooth, the support may be smaller.

Further, in both the approaches the essential point in computational cost terms is search-
ing for n — 1 nodes based on a certain criterion (e.g. Euclidean distance) to form the stencil
for a particular node. If the complete domain is represented by N discrete points, the com-
putational cost incurred would be O(N?). The efficiency of the searching algorithm can be
increased by obtaining a triangulation of the whole node distribution which then will enable
to locate the supporting points of a particular node quickly. Another idea as implemented in
Cecil et al. (2004) is to use a binning method. In this method, the entire domain is divided
into a coarse structured grid C. Then for each coarse grid cell a list of all nodes that lie inside
the cell is created. Hence, to determine the support for a node lying in the coarse grid cell,
we need to determine the n nearest nodes by searching through the list of that particular
cell. The binning method can be made more efficient by recursively dividing each coarse cell.

Note that all these approaches implicitly make use of connectivity information.

5.2.2 Shape parameter

Another factor of importance in determining the accuracy of the numerical approximation by
RBFs is the shape parameter value. Wright & Fornberg (2006) indicated that for infinitely
smooth radial functions like the multiquadric, the standard RBF interpolant converges to
the Lagrange polynomial as the shape value tends to zero, under certain conditions (Driscoll
& Fornberg, 2002). This in effect translates to that in the limit, the RBF-FD stencils recover
the traditional FD formulas, at least in the case of one dimension. In Wright & Fornberg
(2006), the results for RBF-FD method were obtained by varying the shape parameter in a
certain fixed range. Shu et al. (2003) and Cecil et al. (2004) proposed normalisation of scale

in the support region, motivated by the finite element method where each element is usually
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mapped into a regular shape in the computational space. These strategies for obtaining the
shape parameter are however not optimal.
In this chapter, we outline a strategy based on the leave-one-out statistical criterion for

determining the optimal value of the shape parameter for a RBF-FD stencil.

5.2.3 Incorporation of boundary conditions

The implementation of the RBF-FD is straightforward when the prescribed boundary con-
ditions are Dirichlet in nature. However, when Neumann or mixed boundary conditions are
specified, the implementation issues need to be explained in more detail. On the lines of the
RBF-FD discretisation performed for interior nodes, one can define a support region for the
boundary nodes and obtain the corresponding weights for the derivatives. This approach
has the advantage of consistent discretisation throughout the domain, but suffers from the
decrease of accuracy as the information is based from only one side of the boundary (Ding
et al., 2005). Shu et al. (2003) proposed so-called locally orthogonal grids around boundaries,
and then discretised the derivatives by one-sided finite difference schemes. Although this ap-
proach has the advantage of obtaining accurate discretisations on the boundary, it may be
tedious to generate such grids for complex geometries. Later in Chapter 7, when the RBF-
FD method is used to solve the incompressible Navier-Stokes equations, we present a ghost
node based strategy for incorporating boundary conditions which alleviates the necessity of

any special node placements near the boundary.

5.3 RBF-FD Vs RBF collocation

In this section, we study the performance and accuracy of the RBF-FD approach on a model
Poisson problem and compare the results obtained with the global RBF collocation method.
Consider the Poisson equation of the form as in Equation (5.10) in a [0, 1] x [0, 1] square

domain with

@) = 7‘2’3&2 in (%) sin (75%) sin (%34) sin (%) +

T cos(%) (T)sm(?’ﬂ)sm(szy)—i— (5.17)

The exact solution of this problem (Cheng et al., 2003) is given by

e (2, ) = sin(ﬂ—g)sin(%)sin(%)sin(%). (5.18)
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We assume Dirichlet boundary conditions on all four sides with its value calculated from the

exact solution Equation (5.18).

RBF-FD: Stencil A RBF-FD: Stencil B

FIGURE 5.2: RBF-FD stencils

We consider two types of supporting regions/stencils as shown in Figure 5.2. Figure 5.3
displays the Lo, norm of the error (¢) at different values of the shape parameter (o) and mesh
spacings (h) for each of the considered stencils. Figure 5.4 presents the results for the same
Poisson problem as obtained by the RBF collocation method. It can be seen that the global
RBF collocation method gives more accurate results than the RBF-FD method provided
an optimal value of the shape parameter is used. However, the sensitivity of the solution
with respect to the shape parameter is more in RBF collocation method as compared to the
RBF-FD method. This high sensitivity of RBF collocation method makes it very difficult
for any gradient based optimisation strategy to obtain the shape parameter value, and some
sort of smoothing strategies like polynomial fitting (see Chapter 3) need to be used with the
objective function to obtain the optimal shape parameter value. This is not the case for
RBF-FD method. Another advantage of the RBF-FD method as can be seen in Figure 5.3 is
that for a fixed value of shape parameter, the numerical solution is guaranteed to converge as
the mesh spacing is decreased. This behaviour is not guaranteed for the collocation method
as can be seen in Figure 5.4.

As presented in previous chapters, the global RBF collocation method has limitations
in applications to large scale problems because of the dense and ill-conditioned coefficient
matrices. The RBF-FD method alleviates this problem. The coefficient matrices generated
are sparse and well-conditioned; In the case of uniform discretisations, the coefficient matrices
are banded. Figure 5.5 shows the sparsity patterns of the coefficient matrices obtained
for a Poisson problem with different radii of support. Note that the sparsity mimics the

standard FD discretisations as the nodes are placed in an uniform fashion. The sparsity of
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FIGURE 5.4: Accuracy of RBF collocation method for Poisson problem

the coefficient matrices facilitates reduced storage and faster evaluation of numerical solutions

at almost comparable accuracy.

5.4 Shape parameter tuning

The RBF-FD method essentially obtains an approximation of the function derivative at a
node as a linear combination of function values on its supporting nodes, with its weights
obtained using the standard RBF interpolation method. The generalisation performance or
the degree of smoothness of the RBF interpolant can depend to a significant extent on the
value of shape parameter. It can also be seen from Figure 5.3 that the accuracy of the RBF-
FD method also depends significantly on the value of the shape parameter used. Hence, it is

of interest to examine techniques for estimating the optimum value of the shape parameter
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FIGURE 5.5: Sparsity patterns in RBF-FD coefficient matrices

in order to ensure good generalisation performance of each RBF-FD stencil. In this section,
we present a methodology for obtaining the optimal value of the shape parameter for RBF-
FD stencils based on the technique of cross-validation commonly employed in statistical
data modelling. This methodology has been earlier utilised in context of scattered data

interpolation and regression problems; see, for example Rippa (1999); Wang (2004).

5.4.1 Cross-validation and Leave-One-Out (LOO) procedure

The idea of cross-validation is usually employed to determine the effectiveness of a particular
model/interpolant. Given the set of data and the observed values at each data point, the
methodology involves partitioning the data set into N clusters which may or may not be of
equal size. Using the N —1 partitions (learning set) to construct a model and then predicting
the values on the remaining cluster (validation set), an error value for the model capability
can be obtained. Each of the N error terms can then be averaged to give the prediction error
of the complete data set for a particular parameter value. For the case of small data sets
as in the RBF-FD method, a particularly useful cross-validation technique for estimating
the error of the function approximation is the leave-one-out method. In this method, the
function approximation/interpolant is constructed by leaving out one data point and the
left-out point is used as the validation point. An N element error vector can be obtained by
repeating this NV times with each data point as the validation point. The prediction error for
a particular shape parameter value can then be calculated by averaging the N error terms.
A brief mathematical derivation for the LOO error predictor function or the cost functional

Q(x,0) for the RBF-FD method, based on Rippa (1999) is presented. The cost functional
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should be able to imitate the behaviour of the error between the RBF-FD interpolant and
the actual function derivative with respect to the shape parameter value. The equation for

the cost functional for any node x; with N supporting points is given by
Q@ 0) = | E||2, (5.19)
with each element in the vector E° defined as
Ei=f,— S®(zy,0), k=12 N, (5.20)

where S*) () is the interpolant of the function derivative obtained without using the sup-

porting node x; as a RBF centre i.e.,

S (x,, 0 Z AR o (||y, — 5], o). (5.21)
J=1j#k

The learning set for a particular Eﬁg can then be defined as all data values other than fj,
which is the validation point in the leave-one-out form of cross-validation. Note that in
RBF-FD, if L is the operator for which the RBF-FD weights need to be found at the node

x;, the data vector is given by
e = Lo(||xi — k], o), k=1,2,---  N. (5.22)

It can be observed that at any node x;, for a particular value of the shape parameter,

a direct evaluation of Equation (5.19) requires solving an (N — 1) x (N — 1) system of

linear equations N times, and evaluation of S (k)(ack,a) for k = 1,2,--- ,N. This method

can become computationally expensive even for a moderate number of nodes in the stencil.

Fortunately, after some matrix manipulations, the elements of E* can be efficiently computed
as

Ei = L (5.23)

o

where \j, is the & element of the RBF-FD weight vector,
A=A"'f,

and m,(gk) is the (k, k) element of the inverse of the Gram matrix A. The complete derivation
is shown in Appendix B. The computational cost of estimating E' is that of performing a LU

decomposition of the Gram matrix A and then the cost of N solutions of the linear system,

Am®) = k) k=1,2,---,N (5.24)
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FIGURE 5.6: Behaviour comparison of true error and cost function using Leave-One-Out

criterion for 1D interpolation problem

where e®) is the k™ column of the N x N identity matrix. Since the LU factorisation of
A is known, the computational cost of solving Equation (5.24) is significantly less than that
of the direct evaluation of the cost function. Other computationally efficient algorithms like
estimating the cost function when the singular value decomposition of the matrix A is given
or using the QR decomposition can also be pursued.

Figure 5.6 shows the behaviour of the true error and the cost functional value for a simple

1D interpolation problem as a function of the shape parameter. The function (Franke, 1982)

)

I — T2
+% exp <_¥> — éexp (—(9ac — 4)2). (5.25)

is given by

Ten uniformly spaced data points in [0, 5] were considered and the resultant RBF interpolate

was evaluated at 100 uniformly spaced points. The true error is evaluated as

€= ”fexact - fpredictedHQ-

The values of the shape parameter for which the minimum of the true error and cost func-
tional are also displayed. From the figure, it can be seen that the cost functional Q(x, o)

approximates the behaviour of the true error quite accurately.
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FIGURE 5.7: Accuracy of LOO optimised shape parameter for Poisson equation

5.4.2 Optimisation of LOO

To obtain the optimal value of the shape parameter, the cost functional evaluation procedure
must be coupled with an optimisation routine to determine the optimal value of ¢ through
iteration. The simplest way of obtaining the minima of the cost function Q(x;, o) is to use a
grid search method. A shape parameter range is selected and is then divided uniformly and
Q(x;,0) is estimated at each of the divided points. The minima of the cost function is then
obtained and the corresponding value of the shape parameter is its optimal value. Another
way is to use optimisation routines like the Brent’s method or the Nelder search method. In
this thesis, we use the Nelder search algorithm provided in MATLAB for optimising the shape
parameter value. Note that the computational cost incurred by the optimisation routine for
the RBF-FD method is much less than the strategy presented earlier in Chapter 3 for the
RBF collocation method.

5.4.3 Numerical studies

Figure 5.7 presents the accuracy of the proposed shape parameter optimisation strategy.
The Poisson equation is solved with the source term given in Equation (5.17). We consider
a uniform node distribution of 11 x 11, 21 x 21 and 31 x 31. The behaviour of the accuracy
of the RBF-FD method (measured in Ly norm) with respect to shape parameter for each of
the node set is shown in the figure, and the corresponding accuracy obtained by optimising
the shape parameter is shown by dotted lines. From Figure 5.7, it can be observed that

the proposed strategy indeed obtains a very good approximation of the optimal value of
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the shape parameter for a little additional cost during the pre-processing stage when the

RBF-FD weights are computed.

5.5 RBF-FD for the unsteady convection-diffusion equation

In this section, we present the RBF-FD formulation for the 2D unsteady convection diffusion

equation presented in the earlier chapter. The governing PDE is given by

2 2
ou 0“u 8u+V8u+V8

B = @_‘_%y@—yz 5 vy’ 0<z,y<1, t>0. (5.26)

In the RBF-FD method, we begin with representing the complete domain with a set
of scattered nodes present in the interior and on the boundary. For each interior node, a
supporting region/stencil is identified by choosing N nearest nodes. Then at each node,
a local RBF interpolation problem is set up to determine the RBF-FD weights for each
derivative (see section 5.1). This completes the pre-processing stage.

Once the RBF-FD method is applied to discretise the spatial derivatives in the governing

equation, Equation (5.26), we obtain at any interior node x;,

N
duz: Z 'uJ“‘“wa%ZJ/uJ_'_VZw(z3u7+vzw j) Ui (5.27)

where N is the total number of interior and boundary nodes which lie in the support-

(z) () (zz)  (vy)
ing region/stencil for the node x;, and Wiy Wiy Wi gy, Wi g are the RBF-FD weights
obtained from the system of Equations (5.9) with the corresponding differential operator
( 8‘1, gy, aamg, a; ) applied to the basis functions on the right hand side.
Discretising Equation (5.27) using forward difference in time and #-weighting scheme; and

denoting the value of any physical quantity at ¢ = ¢" with the superscript n, we obtain

n n N
L 0|3 (ol ) 3 (v + )

N N
(zx) W)\ , n (z) (v) n
+(1=0) | (”x“’(z’,j) T “yw(z‘,j)> ui+ ) (wa(aj) +V, w(m)) Y
j=1 J=1

(5.28)

Equation (5.28) written for each interior node leads to a system of equations which can be

solved to obtain the solution at ¢t = ¢"*1.
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5.5.1 Numerical results

In this subsection, we present a comparison between the RBF-Theta method presented in
Chapter 3 and the RBF-FD method for the unsteady convection diffusion equation. The
initial and boundary conditions are given in Equations (3.38) and (3.37). The exact solution
for this problem is given in Equation (3.39). We consider a uniform distribution of points
ranging from A = 0.1 to h = 0.01, where h is the mesh spacing. The multiquadric RBF is
used for numerical studies and for the RBF-FD method, the stencil B shown in Figure 5.2
is used. The shape parameter for the RBF-Theta method is obtained by the optimisation
strategy outlined in section 3.3 and for the RBF-FD method, the optimal value of the shape
parameter is obtained using the leave-one-out criterion proposed in this chapter (see section
5.4).

Figure 5.8 presents the convergence behaviour for both the methods when the Peclet
number is 1.0. The results are compared at final times t; = 0.1 and ¢ty = 1.0 in the left and
the right sub-figures. From the plots, it can be seen that the RBF-FD method converges in
a linear fashion as compared to the RBF-Theta method, i.e., better accuracy is obtained as
we decrease the mesh spacing. However, in the case of RBF-Theta method, for a particular
mesh spacing provided we use the optimal value of the shape parameter, the accuracy is
better than the RBF-FD method. Similar behaviours are observed for Peclet number 10.0
(see, Figure 5.9) and 100.0 (see, Figure 5.10).
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F1cure 5.8: Comparison of RBF-FD vs RBF-Theta methods for the unsteady convection

diffusion equation, P, = 1.0
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FiGUrE 5.9: Comparison of RBF-FD vs RBF-Theta methods for the unsteady convection
diffusion equation, P, = 10.0
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F1Gure 5.10: Comparison of RBF-FD vs RBF-Theta methods for the unsteady convection

diffusion equation, P, = 100.0

5.6 Conclusions

A methodology using RBFs in a finite difference mode (RBF-FD) is presented for solving

time-dependent PDEs. This method approximates the function derivatives at a node in terms

of the function values on a scattered set of points present in support region of the node. The

RBF-FD method uses local interpolation problems and hence generates sparse and well-

conditioned matrices. It also has the property of decreased sensitivity with respect to the

shape parameter value in comparison with the RBF collocation method. A shape parameter

tuning strategy based on the statistical leave-one-out criterion is proposed for choosing an

optimal value of the shape parameter for a RBF-FD stencil. Numerical studies conducted on

a Poisson equation and the unsteady convection-diffusion equation show that the RBF-FD
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method has the property of monotonic increase in the accuracy of the numerical solution as
number of nodes in the domain are increased. This property is not guaranteed for the RBF-
Theta collocation method. In addition, due to small RBF coefficient matrices generated at
each node, the shape parameter optimisation is computationally very efficient compared to
the optimisation strategy proposed for the RBF-Theta collocation method earlier in Chapter
3. The remaining chapters of this thesis are concerned with developing RBF collocation and

RBF-FD schemes for the incompressible Navier Stokes equations.



Chapter 6

RBF Collocation Scheme for the
Incompressible Navier-Stokes

Equations

In this chapter, we give a brief overview of the equations governing incompressible fluid flows
and propose an RBF collocation method for solving them. Numerical studies conducted
in Chapters 3 and 4 show that the RBF collocation method gives accurate results for the
model convection-diffusion equation (at moderate Peclet numbers) which is a precursor to
the Navier-Stokes equations. These studies also suggest that the multiquadric RBF produces
more accurate solutions provided an appropriate value of the shape parameter is used. We
therefore use this RBF in studies on the Navier-Stokes equations.

RBEF collocation methods have been applied earlier to solve fluid flow problems in the
literature. Young et al. (2004) solved the Stokes’s equations (Re = 0) using the RBF col-
location method. An alternative approach known as the Integrated Radial Basis Function
Networks (IRBFN) developed by Mai-Duy & Tran-Cong (2001) was also utilised for solving
the incompressible Navier Stokes equations. These are the only occurrences of using RBF
collocation for solving the Navier-Stokes equations to the best of our knowledge. In this
chapter, we present an improved version of the RBF collocation method for solving incom-
pressible viscous flows. A novel ghost centre strategy is employed to satisfy the boundary
conditions. The issue of shape parameter and its influence on the accuracy of the computed
solution is discussed. Numerical results are presented for example problems like square and

rectangular driven cavity flows and flow over a backward facing step.

7
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6.1 Incompressible Navier-Stokes equations

Incompressible flows can be defined as those flows for which the density is constant on all par-
ticle paths. The governing equations represent mathematical statements of the conservation

laws of physics, i.e.,
1. Fluid mass is conserved.
2. The rate of change of momentum equals the sum of forces on a fluid particle.

3. The rate of change of energy is equal to the sum of the rate of heat addition and the

rate of work done on a particle.
These statements are transformed into mathematical equations as

e Conservation of Mass:

Dp
V.- 1
pr TPV =0 (6.1)

where p is the density of the fluid, w is the velocity vector and % denotes the material
derivative (% = %—i—u'V). As the density is constant for incompressible flows Equation
(6.1) reduces to

V-u=0. (6.2)

e Conservation of Momentum:

Du
PE—V'U‘FPJE’ (6.3)

where o is the Cauchy stress tensor and f is the body force vector measured per unit
mass.

e Conservation of Energy:
DT

C —
Pth

=-V-q+Q+E, (6.4)

where T is the temperature, q is the heat flux vector, @ is the internal heat generation
(measured per unit volume), Z is the viscous dissipation function and C), is the specific

heat at constant volume.

The constitutive relation expressing the Cauchy stress in terms of strain for Newtonian fluids
is given by

oij = —pd;j + 2p; ;, (6.5)
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where g1 is the viscosity coefficient and 4;; is the Kronecker delta tensor. For a complete
derivation of Navier-Stokes equations, the reader is referred to any standard textbook on
fluid mechanics (Batchelor, 1967; Ferziger & Peric, 1999).

The incompressible Navier-Stokes equations are a system of nonlinear second order equa-
tions. The mathematical classification of these equations can be done and it turns out that
for steady flow problems, the equations are elliptic in nature and for unsteady flow problems,
they are of mixed type in nature. This classification is important when boundary conditions
are specified. In this thesis, we focus on the numerical solution of incompressible viscous
flows, which are governed by the steady/unsteady NS equations.

The NS equations and the continuity equation (conservation of mass) for a two-dimensional

incompressible Newtonian fluid flow in Cartesian coordinate system are given by

@ 4+ @ = 0

oxr oy
ot ox oy p Oz dz?  0y? )’
ov ov ov 10p v 0%

where (u,v) denote the Cartesian components of the velocity vector, v is the kinematic
viscosity and p denotes the pressure field. In these equations, the body force terms are
neglected.

The velocity components can be alternatively defined in terms of streamfunction () as

_ oy oy

U—a—y, U——%.

Equation (6.6) can be simplified by introducing two new variables: the streamfunction (v)

and the vorticity (w) defined by

Jov  Ou
The governing equations then become
0% 0%
@ + 8—3/2 +w = 0,
Ow 0Y 0w O Ow B Pw  Pw
ot +<8y 0r  ox ay> - V((‘)x? Tz ) (68)

Let L be a characteristic length and U a characteristic speed of the flow, then variables can

be non-dimensionalised as follows:

t _ u
U= —, 0=

v _t v
LU’ U U

‘i:_ag:

i t= , W= —. (6.9)

Y
L’
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Equation (6.8) then becomes

Py 0%

ﬁ + 8—@2 +w = 0,
0w o 0w O Ow 1 (0’0 O*w
et —_— — ——— — = —_— -y - .1
o+ <ay 0z oz ay> Re <8x2 T (6.10)

% is known as the Reynolds number.

where Re =
For steady state flows, dropping the temporal terms the governing equations (with the

bars dropped for the sake of brevity) become

0Y 0w O Ow

2 _ T

V“w = Re <8y %% I 8y> (6.11)
w = —V2, (6.12)

where V2 is the Laplacian operator.

The streamfunction-vorticity formulation has been successfully used by a number of re-
searchers over the past several decades to test new methods for the numerical solution of
fluid flow problems. However, there is an uncertainty in the numerical treatment of the
vorticity values particularly over a no-slip boundary. The vorticity w is defined through the
Poisson equation, Equation (6.12) , which needs to be solved discretely on the boundaries so
that boundary vorticity values can be specified for solving the vorticity transport equation,
Equation (6.11). A variety of numerical approximations have been carried out for specifying
the vorticity values on the boundary when finite difference schemes are employed to solve the
governing equations. For more details on these schemes, see, Thom (1928); Jensen (1959);
Woods (1954); Spotz (1995). This difficulty of imposing appropriate vorticity boundary con-
ditions can be circumvented by substituting Equation (6.12) into Equation (6.11) thereby

obtaining a nonlinear biharmonic equation in terms of the streamfunction alone, i.e.,

Ot ot Ot 03 031 031 D31
G 28x28y2 * oyt Re [u (ﬁ * 8x8y2> v <8—y3 * 8x28y>] =0 (6.13)

e For unsteady flows, in the same way, it can be shown that Equation (6.10) becomes

Y. (VSR (R ) Py P P 0%
—Re— 2 — - i -
Reg (V) + 0 V2502 Tyt R0 |\ a8 T awaz ) T\ agr T antay )| T
(6.14)

In the context of traditional finite differences, the numerical solution of Equation (6.13) or

Equation (6.14) is cumbersome since a higher order stencil is typically required to solve the
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above equations satisfactorily. However, as we show next, in RBF collocation methods, the
complexity of the problem does not change as one tries to solve Equation (6.13)/Equation

(6.14).

6.2 Formulation

In this section, we present an improved version of the RBF collocation method and its
application to steady incompressible viscous flows.

The nonlinear PDE in Equation (6.13) is solved using the RBF collocation method and
the Newton iteration technique. In Newton iteration, one starts with an initial solution
() and then obtains a sequence {w(i)} of approximate solutions using the Newton iteration
formula, 1@ = (=D 4 ¢ At each Newton iteration i, the following linear PDE needs to be

solved for the correction &:

- WY 0 o D oo 1)y 8
V2VZE — Re < oy os Y T g (VYT gy
o= 9 _, 9 o2 -\ 98 ) | _ (i—1)
_< e (V) + () ) | = Rt (6.15)

where R(z/)(i_l)) is the residual of the governing equation at iteration 7 which is given by

Ry =

841/1(i_1) N 841[)(i_1) N 841[)(i_1) B 8’(/)<Z_1)
ozt Ox20y? oyt ¢ Oy

3 (i—1)  93.5(i—1) (1) [ 23.5(i=1)  23.,(i—1)
O _% o 9 . (6.16)
ox3 Ox0y? Ox oy3 0x20y

The boundary condition that needs to be satisfied at iteration ¢ is given by
B¢ = g(x,y) - ByUY. (6.17)

where B can be Dirichlet, Neumann or a mixed differential operator.
In the present formulation, the unknown streamfunction is expanded in terms of a linear
combination of RBFs centred at randomly spaced points in the domain i.e.,

Ni+Np

Pa)= Y alllz — ). (6.18)

j=1

where N; and Np are the number of RBF centres placed in the interior and on the boundary,

(N1+NB)

respectively. The undetermined weights, {a;} =1 , are which are calculated by colloca-

tion. For simplicity, the set of RBF centres is assumed to coincide with the set of collocation
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points. The governing PDE is satisfied on each of the interior collocation points and the
boundary conditions on the boundary collocation points. By virtue of representation of the
unknown function as in Equation (6.18), the derivatives of the unknown functions are noth-
ing but a linear combination of the corresponding derivatives of the basis functions. Thus,
for example, if £ is any linear partial differential operator, one obtains

Nr+Np

L) = D alo(|x — ) (6.19)

j=1
As an initial approximation to the unknown function is provided in case of the Newton
iteration, an interpolation problem is solved to obtain the RBF coefficients (ag-o)). Thus, the
initial approximation to streamfunction satisfies

Ni+Np

vO) = Y alV6(|lz — ). (6.20)

j=1
The function approximation at any Newton iteration ¢ is obtained by solving the linear
PDE in Equation (6.15). Hence at iteration ¢, the streamfunction is given by

Nr+Np

pO(@) = > (@Y + 8oz — 25, (6.21)

j=1
where é is obtained by solving the following linear system of equations:

Nr+Np

> 0|73l — ) — (ol g (7ol = al) + ey (@l - a1))

J=1

i=1,2,---,Ny, (6.22)
and
Nr+Np .
S 5 Bl — all)] = gla) — By (@)
7j=1
i=N;y+1,N;+2,--- ,N;+ Ng. (6.23)

In Equation (6.22), a(x), b(x), c¢(x) and d(x) are all functions of the previous iteration

estimate ¢~ and are given by

_ oY R C QS
a(x) = Re oy b(x) = Reax(v P ),
o opty 0 9 o e
c(x) =Re o and d(z) = Rea—y(v (0 ). (6.24)
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The Newton iterations are continued until

IR (49()) lle <, (6.25)

where ¢ is a pre-determined convergence limit.
In the case of unsteady flows, a nonlinear system of equations is obtained at each time

step which can be solved using the Newton iteration method as shown above.

6.3 Incorporation of boundary conditions

In the case of incompressible viscous flows, as two boundary conditions are prescribed at
each boundary collocation point, we obtain an overdetermined system of equations for the
RBF weights which can then be solved in a least squares sense.

In this section, we present an alternative strategy based on ghost centres for incorporating
the boundary conditions. For example, the no-slip boundary conditions over any boundary

I' are given by
fw:_cé vel (6.26)
7, = Ca xel
where C7 and Cy are constants and 77 is the outward normal direction from the boundary.
It can be seen from Equation (6.26) that we have a pair of boundary conditions for the
streamfunction. Hence, it is proposed to express the streamfunction in terms of RBFs chosen

over the domain and also a set of ghost centres chosen outside the domain equal to the number

of boundary centres. The RBF approximation for the streamfunction can be rewritten as

N+G

P(x) = > ajéllle — ), (6.27)

j=1
where N is the total number of collocation points (including interior and boundary) and
G is the number of ghost centres, respectively. A schematic diagram of the RBF centre
distribution along with the ghost centres is shown in Figure 6.1.
By using the ghost centres, a square system of equations is obtained which can be solved
for the RBF weights. In order to compare the accuracy of the proposed ghost centres strategy

with the least squares approach, we solve a model biharmonic equation of the form

oty oty oty
5 + 282$82y + oyt F(z,y) (6.28)

. .. . o
with boundary conditions in terms of ¢ and 3.
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FIGURE 6.1: A Schematic representation of RBF centres in the domain

Consider the test problem (Mai-Duy & Tanner, 2005), where
F(x,y) = 16m*[4 cos (2rz) cos (2my) — cos (2mx) — cos (27y)], (6.29)
and the exact solution is given by
Vexact = 4sin? (rz) sin? (my). (6.30)

Figure 6.2 presents the accuracy and convergence behaviour of RBF collocation method
with least squares and ghost centres strategy. The error ¢ is defined as the Lo, norm of the
difference between the exact and computed solutions. From the figure, it can be seen that

the ghost centres strategy gives significantly better accuracy.

6.4 Implementation aspects

In this section, we discuss some of the implementation aspects of the presented meshless
method.

Many of the RBF's incorporate a user-defined shape parameter. This scalar parameter
determines the region of influence of the RBF. Numerical studies on RBF collocation methods
have shown that the multiquadric RBF gives better performance as compared to other RBF's
(Larsson & Fornberg (2003); see also Chapter 3). In this study, we employ the multiquadric
RBF to test the accuracy of the present formulation. It has been observed that in the case
of RBF collocation, the accuracy of the numerical solution depends heavily on the value of

the shape parameter. However, obtaining the optimal value of the shape parameter remains
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FIGURE 6.2: Convergence plot obtained for least squares and ghost centres strategy for RBF

collocation method (0 = 3din)

elusive and is still an open problem in the literature. The influence of the shape parameter
on the accuracy of the obtained numerical solution generally follows an U-shaped curve with
the accuracy becoming worse after a certain value of the shape parameter is exceeded due to
ill-conditioning effects. In fact good accuracy is achieved only at the on-set of ill-conditioning
(Schaback, 1995).

Various empirical estimates for the shape parameter have been proposed in the literature

(Kansa, 1990b; Hardy, 1990). In this chapter, we estimate the shape parameter as
o = A3d, (6.31)

where f3 is a positive scalar and d is the minimum distance between any two centres in the
domain. Numerical studies in Chapter 3 have shown that the residual error on a suitable
fine grid is a good indicator of the accuracy of the solution. Hence one way of obtaining the
optimal value of the shape parameter is as follows. We start with an initial value of 1 for
6 and its value is progressively increased in discrete steps while monitoring the value of Lo
norm of the residual error.

Note that since a global shape parameter is used, the radial basis function ¢(|lx — x;||)
must incorporate scale parameters L, and L, in each direction, particularly for problems
where the magnitudes of the distances between points in x and y directions are significantly

different. For example when scale parameters are used, the expression for the multiquadric

RBF becomes
2 2
T — Y=y
¢<||m—m»||>:\/< ) (L) e (6.32)
J L, L,
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Also, it is well known that the Newton iteration technique does not guarantee convergence
when the starting point is far from the actual solution and when the Jacobian matrix is ill-
conditioned. Hence, one resorts to secant techniques or trust-region techniques when the
initial guess is far from the solution (Coleman & Li, 1994, 1996). Details of trust region
techniques can be obtained elsewhere (Coleman & Li, 1994, 1996). In the numerical studies
presented here, we employ the trust region algorithm provided in MATLAB 6(release 13)
package.

6.5 Numerical results

In this section, we present numerical results obtained by using the presented RBF collocation
method for square driven cavity flow, a rectangular driven cavity with aspect ratio 2.0 and

flow over a backward facing step.

6.5.1 Square driven cavity flow

In this section a two-dimensional lid-driven cavity problem is solved and the results are
compared with those obtained by Ghia et al. (1982) who used a multigrid finite difference
method with a mesh size of 129 x 129.

The boundary conditions for the driven cavity problem on a [0 x 1]2 domain are given by

1/;:0,2—?0’:0 on z=0andx=1,

1/120,%21 on y=1.

We consider uniform collocation point sets ranging from 11 x 11 to 61 x 61. A random set
of collocation points obtained by perturbing the uniform distribution set is also considered
to show the accuracy of the presented method for randomly spaced points. The Reynolds
numbers used in the present study are {0, 100,400, 1000, 3200}. For each Reynolds number,
the solution obtained by solving the previous Reynolds number in the set was taken as the
initial guess for the trust-region algorithm. During the numerical experiments, we observed
that the Newton algorithm converges in about 10-15 iterations. As compared to the large
mesh used by Ghia et al. (1982), it is found that the RBF approximations give results of
comparable accuracy even with a grid as small as 41 x 41 for moderate Reynolds numbers
(see Figs 6.4-6.12). In fact for Re < 400, a coarse grid of 11 x 11 predicts the solution with

good accuracy. The figures presented were those obtained using the multiquadric RBF. From
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the figures, it can be seen that the primary and secondary vortices were captured accurately

using the present method. For high Reynolds numbers, the viscous boundary layer near each

wall is captured satisfactorily.

0). Uniform and

The presented formulation is checked first for the Stokes problem (Re

randomly spaced distribution of points are considered. The point distributions for 31 x 31

are shown in Figure 6.3. Figure 6.4 and Figure 6.5 show the streamfunction and vorticity

contours for 31 x 31 set of points. The value of d is taken to be 0.033.
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FIGURE 6.3: Point distributions for 31 x 31 points

We now present comparison studies for Reynolds number 100.0. Figure 6.6 shows the

streamfunction and vorticity contours obtained for 31 x 31 uniformly distributed set of points.

Figure 6.7 presents the comparison of the velocities obtained on the horizontal and vertical

centre-lines of the cavity with those obtained by Ghia et al. (1982). From the figures, it can

be seen that the RBF collocation method can accurately capture the solution.

The results obtained for Reynolds number 400 are presented in Figure 6.8, and comparison

with Ghia’s results is presented in Figure 6.9. Similar comparison studies are presented for

higher Reynolds numbers in Figures 6.10-6.12. It can be observed that the present meshless

formulation results agree very well with those of Ghia et al. (1982).

ty flow

1ven cavl

6.5.2 Rectangular dr

We now consider the problem of a lid driven flow in a rectangular cavity with aspect ratio

, 0 <y < 2. This problem

<z<Ll1

of 2. The problem is defined and solved in the rectangle 0
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is solved for three different Reynolds numbers of 100, 400 and 1000. A uniform distribution
of points is considered for solving this problem.

The streamfunction contours obtained for the three Reynolds numbers are shown in Fig-
ures 6.13 - 6.14. From the figures, it can be observed that there are two rotating primary
vortices as well as secondary vortices in the bottom corners of the rectangular cavity. The top
primary vortex properties are reported in Table 6.1 and are compared with those obtained
by Bruneau & Jouron (1990). It can be seen that the primary vortex strength and location

values obtained are in in close agreement with the benchmark results.

TABLE 6.1: Rectangular driven cavity: Top primary vortex strength and location and

comparison with Bruneau & Jouron (1990)

Reynolds Number Ymin Ymin location

100 (Bruneau & Jouron, 1990) -0.1033 (0.6172,1.7344)
Present Method -0.1032  (0.617,1.734)

400 (Bruneau & Jouron, 1990) -0.1124 (0.5547,1.5938)
Present Method -0.1125  (0.555,1.610)

1000 (Bruneau & Jouron, 1990) -0.1169 (0.5273,1.5625)
Present Method -0.1178 (0.525,1.57)

6.5.3 Backward-facing step flow

The final model problem presented is flow over a backward-facing step. We use Gartling’s
problem definition (Gartling, 1990). Consider a channel of width L downstream of origin
and width % upstream of origin, separated by a backward facing step as shown in Figure
6.15. Flow is assumed to be fully developed as it passes the inlet at z = 0 and has an average
velocity U. The problem domain is the channel starting at the inlet and extends downstream
a distance D long enough for the flow to again become fully developed. Reynolds number
is defined as % The boundary conditions for the problem are given in Table 6.2. The
downstream distance D is taken to be 30L in order for the flow to be fully developed. This
completes the specification of the problem.

Figure 6.16 presents contours of streamfunction and vorticity for Re = 200. It can be seen

from the figure that a recirculation zone is formed downstream of the step face. The recir-

culation zone details obtained by the present method are compared against those obtained
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by using finite elements (Barragy, 1993) in Table 6.3. It can be seen that the finite element

method under estimates the recirculation region from the table.

6.6 Conclusions

A radial basis function based meshless method is presented for the numerical solution of

incompressible Navier-Stokes equations in streamfunction formulation. This method is ca-

pable of obtaining numerical solutions on a uniformly spaced or random set of points. A
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TABLE 6.2: Boundary conditions for backward-facing step flow

o

Inlet: v = 22 (3 — 4y), 3. = 0.
Outlet: ¢ =1 (1+3y—4y?), 9L =
. _n 9% _
Step: ¢ =0, 5> =0.
. 0 9% _
Bottom Wall: ¢ =0, oy =
Top Wall: ¢ = 0.5, 32 = 0.
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FIGURE 6.16: Backward-facing step: Re = 200, contours of streamfunction and vorticity
obtained using 41 x 41 uniform point distribution. Note that the scale parameters used for

this problem are L, = 30 and L, = 1.0

TABLE 6.3: Backward-facing step: Re = 200, Primary vortex strength and location, length

of recirculation region and its comparison with higher order finite elements (Barragy, 1993)

Present Method Finite Elements (Barragy, 1993)
2.72

Length of Recirculation
wmin

Ymin location

-0.0315
(1.333,-0.2167)

2.67
-0.0331
(1.0021, —0.2030)

novel ghost centre strategy was employed for incorporating the boundary conditions which

circumvents the difficulty of specifying vorticity boundary conditions. A square driven cav-

ity, rectangular cavity with aspect ratio 2 and backward-facing step flow were solved and
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the results obtained by the present method are compared with benchmark solutions. From
the comparisons made, it can be seen that the presented method can solve incompressible
viscous flow problems accurately. However, the present method generates dense coefficient
matrices which can be expensive to invert for large scale problems. The domain decompo-
sition methods developed earlier in this thesis can be used when large scale problems are
solved. However, the issue of optimal shape parameter value still remains as the shape pa-
rameter optimisation using Lo norm of the residual error is computationally expensive. The
next chapter presents a formulation for the incompressible NS equations using the RBF-FD

method presented earlier in Chapter 5 that allows the shape parameter to be tuned efficiently.



Chapter 7

RBF-FD Schemes for the
Incompressible Navier-Stokes

Equations

In this chapter, we present the RBF-FD formulation for the incompressible Navier Stokes
equations in streamfunction vorticity form. As shown in Chapter 5, the RBF-FD formulation
generates sparse coefficient matrices and is hence suitable for large scale problems. The
spatial discretisation of the incompressible NS equations is done using the RBF-FD method
and the temporal discretisation is achieved by explicit Euler time-stepping and the Crank-
Nicholson scheme. A novel ghost node strategy is employed for incorporating the no-slip
boundary conditions. The performance of the RBF-FD method with the ghost node strategy
is evaluated by solving driven cavity flow problems. Finally, a higher-order RBF-FD scheme

which uses ideas from Hermite interpolation is proposed for solving the steady NS equations.

7.1 Incompressible Navier-Stokes equations

The non-dimensional governing equations for unsteady incompressible Navier Stokes equa-

tions expressed in terms of vorticity (w) and streamfunction () are given by

ho | B B 1 (00 P
ot Ox Oy Re\0z2 0y2)’

ox2 oy

97
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where Re is the Reynolds number and u, v denote the components of velocity in the x and

y directions which can be expressed in terms of the streamfunction as

_ow W
u_8_y’ V= (7.3)

In the RBF-FD method, we begin with representing the complete domain by a set of
scattered nodes present in the interior and on the boundary. For each interior node, a
supporting region/stencil is identified by choosing N nearest nodes. Then at each node,
a local RBF interpolation problem is set up to determine the RBF-FD weights for each
derivative (see section 5.1). This completes the pre-processing stage.

Once the RBF-FD method is applied to discretise the spatial derivatives in the governing

equations, Equation (7.1) and Equation (7.2), we obtain at any interior node x;,

dw @ W
7 x Yy
L + ZZw(m)w] + vZZw(Jw]
j=1 j=1
1| (@z) | (yy)
= Re waé?ﬁwé’é’ﬂwn ) (7.4)
]:
and
N
>y + e = —wi (7.5)

where N is the total number of interior and boundary nodes which lie in the support-
: : : , (z) () (zz)  (yy) _ :
ing region/stencil for the node x;, and Wiy Wiy Wi gy, Wi g are the RBF-FD weights
obtained from the system of Equations (5.9) with the corresponding differential operator
(a%v 8%, %, %) applied to the basis functions on the right hand side.

The system of ordinary differential equations obtained for vorticity after spatial discreti-
sation, Equation (7.4), is advanced in time using the basic Euler time-stepping scheme.

Denoting the value of any physical quantity at ¢ = ¢t with the superscript n, we obtain

wgﬂ_l _w? n al () n n al (y) =n
s W PR D DAL
j=1 j=1
1|~ o) )y
= Fe |26 Twin) | (7.6)
j=1

where 6t is the time-step. Similarly Equation (7.4) is temporally discretised using a 6-
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weighting scheme (0 < 6 < 1), the discretised equation at the node x; reads as

W?H_W? _ 1 & (z) wy)\  n+l
— = ! :Z( Wiig) TG ))” -

u; Zw(i,j)wj — Zw(zj)wj . (7.7)

Equations (7.6) and (7.7) need to be supplemented by the boundary condition for vorticity.
The value of vorticity at the boundary is obtained by higher-order finite difference expressions
(Spotz, 1995); see Table 7.1. Here, the subscript b refers to the value of the quantity on the
boundary and subscript 1 refers to the interior node which is locally orthogonal to the

boundary and at a distance h from the boundary.

TABLE 7.1: O(h?®) wall boundary conditions (Spotz, 1995)

Left Wall: wy = —3 [v n (wl m) n wTh}
Right Wall: =3 [vb ( ) _ WT}
Bottom Wall: — 3 [u ( ) _ WT}
Top Wall: wp = =2 |y — (M) n WT}

Once the value of vorticity in the whole domain is obtained, the governing equation for
the streamfunction, Equation (7.2), is solved with Dirichlet boundary conditions to update

the streamfunction. This process is repeated until convergence,

||Wnew_wold||2 <e, (78)
[|wnew||2

where € is a pre-determined convergence limit. The complete procedure is outlined in Table

7.2.
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TABLE 7.2: RBF-FD Algorithm for Incompressible Navier Stokes equations

Given an initial guess ¥° and w° and a particular node configuration:

1. For each interior node, determine the support/stencil size.
Obtain the RBF-FD weights by solving the RBF interpolation problem.
Advance the vorticity solution to the next step using a suitable time-stepping algorithm.

Calculate the vorticity on the boundary using Table 7.1.

ARl o

Solve Equation (7.2) with Dirichlet boundary conditions for streamfunction to obtain
the new streamfunction values.

6. Check for convergence. If converged, stop Else go to step 3.

7.2 Ghost node strategy for incorporating boundary condi-

tions

In the previous section, a locally orthogonal grid at the boundary is used to enforce the
no-slip boundary conditions. This restriction on the nodes near the boundary makes the
implementation of boundary conditions very straight forward. Considerable amount of work
would be needed however to ensure a locally orthogonal grid near curved surfaces, and hence
this approach would be cumbersome for complex geometries. In this section, we propose
a method for implementing the no-slip boundary conditions based on ghost nodes. This
ghost node strategy enables randomly placed points near the boundary and is still able to
satisfy the boundary conditions accurately. Sample point distributions used in the locally
orthogonal grid and the ghost node strategies are shown in Figure 7.1.

The no-slip boundary conditions at a boundary I' are given by

¢=Ol wEF,

O
= r .
o Co T < (7.9)

where C7 and (5 are constants and 77 is the outward normal direction from the boundary.
In the proposed strategy, each boundary node is associated with a support region/stencil
which also includes a ghost node placed outside the computational domain. The RBF-FD
discretisation is carried out to approximate the normal derivative at the boundary node x;,

ie.,
N

Z 1/}3 + w(z éhost wghosta (710)
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FIGURE 7.1: Schematic figure depicting the locally orthogonal boundary and the ghost

nodes. Note that the ghost nodes are represented as grey shaded circles.

where N is the number of supporting points inside and on the boundary. The value of the
streamfunction at the ghost node is evaluated by substituting the no-slip boundary condition
Equation (7.9) and the streamfunction values of the interior nodes evaluated at the previous
time step in Equation (7.10). The value of vorticity on the boundaries can then be evaluated

by RBF-FD discretisation of Equation (7.2) at the boundary node «;.

7.3 Numerical studies

In this section, we present numerical studies conducted on two test problems using the

modified RBF-FD scheme with the ghost node strategy.

7.3.1 Square driven cavity flow

We first present numerical studies conducted on the lid-driven cavity flow problem in a
square [0, 1] x [0, 1] domain. The boundary conditions for this problem are given in Equation
(6.33). The results obtained using the presented RBF-FD formulation are validated against
the benchmark multigrid finite difference results obtained in Ghia et al. (1982).

We use the time-dependent form of the governing equations in streamfunction-vorticity
form. The spatial discretisation is done using the RBF-FD scheme while the temporal dis-
cretisation is carried out using the Crank-Nicholson method (Equation (7.7) with 6 = 0.5),
with a time step 6t = 0.01. Both uniform and random point distributions are considered and

the flow problem is solved for three different Reynolds numbers (Re = {100,400, 1000}). We
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Ficure 7.2: Comparison of wall vorticity obtained using ghost nodes on the moving

boundary of the square driven cavity flow with Ghia et al. (1982)

use 9 supporting points in each RBF-FD stencil for discretisations of the function derivatives
and the value of shape parameter is obtained using the leave-one-out optimisation strategy,
outlined in Chapter 5, for each RBF-FD stencil. To apply the no-slip boundary conditions,
the ghost node strategy proposed in Section 7.2 is employed on the boundary RBF-FD sten-
cils. This facilitates a complete random point distribution in the interior of the domain.

We begin by examining the accuracy of the proposed ghost node strategy. Figure 7.2
shows the wall vorticity distribution obtained on the moving lid for the square lid-driven
cavity flow problem at two different Reynolds numbers. A complete random distribution of
points without any restriction at the nodes near the boundary was considered for obtaining
the results. The results are compared with the wall vorticity values obtained by Ghia et al.
(1982) for the purpose of validation. From the figures, it can be seen that the obtained
vorticity distribution agrees well with the benchmark results.

In Figure 7.3, the streamfunction and vorticity contours obtained using the RBF-FD
method for Re = 100 are shown. The results displayed are generated using 41 x 41 randomly
spaced points. From the plot of the streamfunction contours it can be seen that the secondary
and tertiary vortices near the bottom wall are also captured. It is worth noting that the global
features of the flow were captured with relatively small 21 x 21 distribution of points.

The comparison of velocity components at the horizontal and vertical centres of the cavity
with those obtained by Ghia et al. (1982) are displayed in Figure 7.4. The velocity profiles
obtained using 31 x 31 and 41 x 41 uniform and random distribution of points are presented

in Figure 7.4. From Figure 7.4, it can clearly be seen that the velocity profiles are captured
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and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 100

accurately as the number of points in the domain is increased.

Figure 7.5 shows the streamfunction and vorticity contours obtained for Re = 400 and

51 x 51 random point distribution.The comparison of velocity profiles is presented in Figure

7.6. To accurately capture the velocity profiles for Re = 400, a larger number of points

(51 x 51) were needed as compared to those required for Re = 100 (41 x 41). However,
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the points required were much less than that of second order finite difference method which

required about 129 x 129 points in order to capture the velocity profiles (Ghia et al., 1982).
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and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 400

Similar results for Re = 1000 are shown in Figure 7.7 and Figure 7.8. The primary,

secondary and tertiary vortices are captured satisfactorily. The velocity profiles obtained

using 51 x 51 and 61 x 61 uniform and random point distributions are displayed in Figure
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and horizontal centre-lines using RBF method with Ghia et al. (1982) for Re = 1000

In comparison with the RBF collocation method developed earlier in Chapter 6, the
RBF-FD method is able to provide similar accuracy but at much lower computational cost.
This reduction in computational cost is mainly due to the sparse structure of the coefficient

matrices. It is also observed that although the sensitivity of the shape parameter is reduced



Chapter 7 RBF-FD Schemes for the Incompressible Navier-Stokes Equations 106

for the RBF-FD method, the shape parameter still influences the accuracy of the obtained

solution, particularly when random node stencils are used for spatial discretisation.

7.3.2 Rectangular driven cavity flow

In this subsection, we apply the RBF-FD approach with the ghost node strategy for solving
the driven cavity flow in a rectangular cavity with aspect ratio 2. The problem definition
is provided in Section 6.5.2. The results are validated against those obtained by Gupta &
Kalita (2005).
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FIGURE 7.9: Rectangular driven cavity: Streamline patterns obtained for Re = 100 using

41 x 81 uniform point distribution

The streamfunction contours obtained for the three Reynolds numbers are shown in Fig-
ures 7.9 - 7.10. From the figures, it can be observed that there are two rotating primary
vortices as well as secondary vortices in the bottom corners of the rectangular cavity. The top
primary vortex properties are reported in Table 7.3, and are compared with those obtained
by Bruneau & Jouron (1990). It can be seen that the RBF-FD method results are in close

agreement with the benchmark results.

7.4 Higher-order RBF-FD schemes

In the first part of this chapter, we demonstrated the applicability of RBF-FD schemes for the
incompressible Navier-Stokes equations. We now explore a higher-order version of the RBF-
FD scheme using ideas from Hermite interpolation. This higher-order discretisation method

using RBFs can be regarded as a generalisation of the Mehrstellenvarfahren introduced by
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TABLE 7.3: Rectangular driven cavity: Top primary vortex strength and location and

comparison with Bruneau & Jouron (1990)

Reynolds Number Ymin Ymin location

100 (Bruneau & Jouron, 1990) —0.1033 (0.6172,1.7344)
Present Method —0.1030  (0.625,1.721)

400 (Bruneau & Jouron, 1990) —0.1124 (0.5547,1.5938)
Present Method —0.1120  (0.555,1.6125)

1000 (Bruneau & Jouron, 1990) —0.1169 (0.5273,1.5625)
Present Method —0.1165  (0.525,1.57)
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FIGURE 7.10: Rectangular driven cavity: Streamline patterns obtained for Re = 400 using

81 x 161 uniform points and Re = 1000 using 101 x 201 uniform points

Collatz (1960) and later developed into compact FD formulas by Lele (1992). In the compact
FD methodology, for example, the partial derivative of an unknown function with respect to
the z-coordinate at any grid point (4, 5) is given by
g—i R Y wapuent Y Uy % B (7.11)
(G3)  kefi—1,ii+1} ke{i—1,i+1} (k.3)
The accuracy of the finite difference approximation is increased by adding the second term
(derivative information), as shown in Equation (7.11). Note that this additional term does not

change the stencil size at the grid point (i,7) in the compact finite difference methodology.
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Higher order RBF-FD methods were earlier used for the solution of linear and nonlinear
Poisson problems (Wright & Fornberg, 2006). In this thesis, this work is extended to develop
higher-order schemes for the incompressible Navier-Stokes equations. We demonstrate the
higher-order accuracy of the presented formulation by solving the steady state incompressible

Navier Stokes equations.

7.4.1 Basic formulation

The RBF-FD method generates a local RBF interpolant for expressing the function deriva-
tives at a node as a linear combination of the function values on the nodes present in the
support region of the considered node. In the spirit of compact finite difference schemes, the
accuracy of the RBF-FD discretisation can be increased by considering not only the function
values but also the derivative values on the nodes present in the supporting region. The
weights of the higher-order stencil are computed using the Hermite interpolation technique.
We begin with a brief introduction to the Hermite interpolation method. Let £ be an
arbitrary linear differential operator and let 1 be a vector containing some combination of
m < n distinct numbers from the set {1,2,--- ,n}. The function values u(x;) are specified at
each of the n distinct data points {x;}}" ;. In addition, data corresponding to the differential
operator operating on the the function, Lu(zx,,), is specified at m points {a,, }[*,. Note that
the point set {@,, }/", is a subset of the set {x;} ;. Then, the interpolant passing through

all the data can be written as

n m
u(@) ~ s(@) = (e — ) + Y NLad(|lz —ay ) + 5, (7.12)
i=1 I=1

where Lo¢(||.||) is a basis function derived by the functional £ acting on the multiquadric
basis ¢(]|.]|) as a function of the second variable (centre) and 3 is a constant. The unknown
coefficients are obtained by enforcing the conditions s(x;) = u(x;), i = 1,--- ,n; Ls(x,,) =
Lu(xy), I =1,--- ,m;and > | \; = 0. Imposing these conditions leads to the following

block linear system of equations

P ,CQ(I) e A u
L® LL® O A

el o’ 0

(7.13)

o >
[
D

S e
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where
3% = oz —zjl), i,j=1,---,n,
Lo®;i; = Log(|xi —xyl), i=1,---,n, j=1,---,m,
L, ; = Lo(|zy —z5]), i=1,---,m, j=1,--,n,
LLyD; 5 = LLyp(||ly, —yyll), i=1,---,m, j=1,---,m,
and e; =1, i=1,---,n. Equation (7.13) is solved using a backward substitution routine.

The Hermite interpolant can also be written in Lagrange form as

ZX ([l — @il))u Z (le — @y, ) Lu(zy,), (7.14)

where x (|| —a;||) and X(||x — x,,||) are of the form Equation (7.12) and satisfy the cardinal

conditions, i.e.,

1, if k=i,
X(lzk — i) = k=1, n, (7.15)
0, if k#1i,
Lx(|zn, —=ill) =0, k=1,---,m, (7.16)
and
X(|xg —xy]) =0, k=1,--- ,n, (7.17)
~ 1, if k=1,
LX ||y, — @y |) = k=1, ,m. (7.18)
0, if k#I,
O
o 5 o
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FIGURE 7.11: Schematic diagram of a higher-order RBF-FD stencil. The circle indicates

the supporting region/stencil for the node ;.

Equation (7.14) is the basis for deriving higher-order RBF-FD stencils. Consider the

node x1 with its support region containing n points, denoted by a dashed circle around
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in Figure 7.11. The goal is to obtain a higher-order RBF-FD discretisation of Lu(x;). The
nodes in the support region which are shaded grey are those nodes where both the function
values (u(x)) and the functional values (Lu(x)) are used i.e., the set n of cardinality, say,
m <n.

The higher-order RBF-FD discretisation for Lu(x) is given by the Lagrange form of the
interpolant, i.e.,

Lu(z1) ~ L5(x) ZLX 1 — a;||)u( Zﬁx |21 — @, ||) Lu(zy,).- (7.19)
=1

Equation (7.19) can be rewritten as a compact FD formula of the form
n m
R~ Z w(ﬁlz)u(mz) + Z @ﬁ7l)£u(mnl), (7.20)
i=1 =1
where the weights for higher-order RBF-FD {w(l i Yie1 and {w(l ) }», are now given by
wh = Lxlllz —zil), @4, = LRl — @), (7.21)

where the superscript £ on the weights denote that the higher-order RBF-FD weights are
computed for that particular operator.

In practise, the weights are computed by solving the linear system

T
P £2q> e w ﬁ*q>1
LD LLD O w | =| 0, |, (7.22)
el o 0 I 0

where £*®, and £*®, denote the evaluation of the column vectors £*® = [Lo(||z—1||) Lo(||z—
sl) -+ Lol — au|))" and L@ = [LLog(|@ — @ [)) LLoG(J@ — @pl) -+ LLoG(| —
x,,,|)]T at the node x1. Here, p is a scalar value related to the constant 3 in Equation (7.12)

and enforces the condition
n
Z w(rq) =0,
i=1

which ensures that the stencil is exact for all constants. The derivation of Equation (7.22)
is very similar to that of the derivation presented in Appendix C.

Once the weights are computed by solving Equation (7.22) for each node, they can be
stored and used to discretise the partial differential equation in a similar manner as in the
compact finite difference schemes.

We now illustrate the higher-order RBF-FD approach for a Poisson problem of the form

Pu
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with Dirichlet boundary condition

u(z,y) = g(z,y), (v,y) €T (7.24)

where I' represents the boundary of the domain €.

We consider a stencil for a node @1 as shown in Figure 7.12, where the function values u(x)
are taken for nodes with single circle and for the double circled nodes both u(x) are Lu(x)
are used. Following the previous notation, n = {2,4,6,8} and the value of any physical

quantity at the node x; is denoted by the subscript 7.

% 6 —® o
4
x
“® o ®*
~ x.Sf"\ o
x, O © O

FIGURE 7.12: Higher order RBF-FD stencil for Poisson Problem

The weights for this stencil are obtained by solving

AgW =b, (7.25)
where
d(lzr —zal]) - o(ller — o)) Lop(ler —@n ) - Lod(ler — @) 1
d(lxz —z1l]) - P(llz2 — o)) Lop(lxz —xn, ) -+ Led(lwz —zn,|) 1
d(lxo —21l]) -+ P(llwe — zol]) Lop(lxo —xn, ) -+ Lod(lwe —zn,|) 1
An = | Lo(|@g, —z1l]) - Lo([[@n, —2oll) LL2¢O(|@ny — @0y |l) -+ LL2(lT0, — Tyll) O
Lo(|zgy —all) -+ LO(ln, —2oll)  LL2b(|ne — i) -+ LL29([[Tn, — Tnul]) O
Lo(|xn, —2all) - LO(|En, —z0ll)  LL2O(|®0y — 0y l) -+ LL29([|[T0y — @null) O
i 1 . 1 0 <o 0 0

- 14x14

T
W = wﬁ’l) wé?g) wﬁ’l) w(ﬁl_"l) m and
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b=[Lo(lz1 —zi) - Lo(|z1 —2oll) LLp(l&r =y )) - LL2G(21 — 20, ) O]

Once the higher-order RBF-FD weights are determined we proceed to the next step, i.e.,
discretisation. The discretisation of the governing equation, Equation (7.23), at node x; is

given by

4
wli jyus + Y @ Ly = fi. (7.26)
Jj=1 =1

M

Note that from the governing equation, (Equation (7.23)), Lu,, at the node x,, is given by

[, which is known. Hence, Equation (7.26) becomes

9 4
Z wéj)uj =h- Z w(ﬁl,l)fm- (7.27)
Jj=1 =1

This procedure is repeated for each of the interior nodes to obtain the discretised form of
the PDE at each of the interior nodes. Substituting the function values u; from boundary
condition, Equation (7.24), whenever the support point x; € I', we obtain a system of

equations which can be written in matrix form as
Au = f, (7.28)

where w is the vector of the unknown function values at all the interior nodes and f is
the source vector including the boundary terms. This equation can be solved to obtain the

unknown vector wu.

7.4.2 Numerical studies

In this section, we present numerical studies conducted on a model Poisson and steady state
convection-diffusion equation using the higher-order RBF-FD method presented in the earlier
subsections.

The source term and exact solution for Poisson equation are given in Equation (5.17) and
Equation (5.18). We consider the 9 noded stencil for the RBF-FD method and the stencil
shown in Figure 7.12 for the higher-order RBF-FD method. The shape parameter obtained
for the RBF-FD stencil using the leave-one-out criterion is used for the higher-order RBF-FD
method.

Figure 7.13 presents the convergence behaviours obtained for the Poisson problem using
both the RBF-FD and higher-order RBF-FD method. It can be clearly seen that the higher-
order RBF-FD method is more accurate than the RBF-FD method for the same number of

nodes or mesh spacing (h).
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F1GURE 7.13: Comparison of convergence behaviours of RBF-FD and higher-order RBF-FD

for a model Poisson equation

The steady convection-diffusion problem that is considered next is

d%u 82_u ou

e a1 (7.29)

in the domain [0, 1] x [0,0.6] with the boundary conditions

u=1 onz=0, u=2 onz=1, (7.30)
g_Z:O on y =0, g_;:o ony = 1. (7.31)

The exact solution for this problem is given by

1 —exp [Pe(m - 1)]
1 —exp(—F) '

(7.32)

Uexact = 2 —

Figure 7.14 presents the convergence plots of the RBF-FD and higher-order RBF-FD for
the convection diffusion problem, Equation (7.29), for two Peclet numbers 1.0 and 10.0. The
operator L is taken as

0? 0? 0
=55t 55 Py

or oy ox

and the higher-order RBF-FD weights are obtained using Equation (7.22). From Figure

L

7.14, it can be seen that the results obtained using the higher-order method is at least two
orders more accurate than that of RBF-FD method. It is also worth mentioning that for
P, = 100.0, with a uniform discretisation of 201 x 201 nodes, the error norm observed for

the computed solution using higher-order RBF-FD was ¢ = O(107%).



Chapter 7 RBF-FD Schemes for the Incompressible Navier-Stokes Equations 114

10

10°F

10°F

-e- RBF-FD k! 107}
—e— Higher Order RBF-FD
10°

-~ RBF-FD
S —— Higher Order RBF-FD
. |

79
001 002 003 004 005 006 007 008 009 01 011 10001 002 003 004 005 006 007 008 009 01 01l
h h

a) P. = 1.0 b) P, = 10.0

F1GURE 7.14: Comparison of convergence behaviours of RBF-FD and higher-order RBF-FD

for a model steady state convection-diffusion equation

7.5 Higher order RBF-FD for the incompressible NS equa-

tions

The previous section outlined the idea of using the Hermite interpolation technique to obtain
a higher-order RBF-FD discretisation for each RBF-FD stencil. It can be observed that a
family of higher-order schemes can be derived by defining which operator £ one is using
for the higher-order RBF-FD stencil. In this section, we present one such formulation for
the steady state incompressible NS equations. This formulation has the advantage of easier
implementation of the no-slip boundary conditions. We begin with recalling the governing

equations of steady incompressible flows in streamfunction (1) - vorticity (w) formulation:

V% = —w, (7.33)

Vi = Re <u— + v—> , (7.34)

where Re is the Reynolds number and (u,v) are the Cartesian velocity components of the
flow.

As usual, we begin by discretising the entire domain into a set of interior and boundary
nodes and determine the stencil at each node. Each higher-order RBF-FD stencil contains

n nodes and the vector m of cardinality m < m. The stencil information consists of the
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function values (¢(x) or w(x)) at each of the n nodes and the functional information (L (x)
or Lw(x)) on each of the m nodes. Note that the operator £ is arbitrary.
The higher-order RBF-FD discretisations for the Laplacian of streamfunction at each

interior node x; is given by

n m

V() ~ Y g bla) + D aypy {Vi(a,)}, (7.35)

j=1 =1

where the higher-order RBF-FD weights {w(vl.;)};‘zl and {@(Vij)}ﬁl are obtained using Equa-
tion (7.25) with the operator £ = V2. Similarly the discretisation of Laplacian of vorticity

can be obtained as

n m
Viw(x) =~ Z w(vi;)w(acj) + Z @(Vij) {V2w(acm)} . (7.36)
j=1 =1

For the sake of brevity, we denote the value of any physical quantity at node x; by the
subscript j. In Equation (7.35), the second term (quantity in curly brackets) can be replaced
by the right hand side of Equation (7.33). Similarly, in Equation (7.36), the second term

can be replaced by the right hand side of Equation (7.34). The modified discretisations now

become
" 2 " 72
VA A Y wi gyt Y B (—wn), (7.37)
j=1 =1
and
P o~ S w1t ReS Y (022 7.38
wi m Y wigwitRe) gy (ugs fugn) (7.38)
j=1 =1 it

We now return to the solution of the governing NS equations via a fixed point iteration
scheme. Denoting the iteration number k£ with a superscript k& on the physical variable, the

governing equations at iteration k 4+ 1 for the node x; are given by

7

w1 Ow FH1
U; (8_;)) - F Uj <8—Z> ' ) (7.39)

where @; and ¥; are the current estimates of components of the velocity vector. Substituting

V2'¢f+l — _wk

V2wf+1 = Re

the derived higher-order RBF-FD discretisations for Laplacian of streamfunction (Equation

(7.37)) and vorticity (Equation (7.38)) in to Equation (7.39), we obtain

> wi it (—wf%) = —u, (7.40)
j=1 =1
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and

" 2 _ ow _ ow\*
Z“’(Vz’u w;ﬁl +Rezwzl [um < 33>q7 + Uy, <a_y>77]
1 1

Jj=1
k+1 k+1 _
—Re |u; E w(” + v; E w(m - =0. (7.41)

Note that in Equation (7.41), the vorticity gradients (g—‘;’, g—;) were discretised using the
RBF-FD method.
The velocity components (@,7) in Equation (7.41) are obtained using the higher-order

RBF-FD discretisations given by

_ _ . 81[)
G= ol m D Wi+ ) Wy 5ol (7.42)
ay i = (4,9) — (4,0) 8y .
o 81& S UL
v 83; B Zw(w) it Zw i) Hr ) (7.43)

where 1) is the current estimate of the streamfunction.

The iteration procedure is explained for a problem with no-slip boundary conditions.
Recall that the no-slip boundary condition consists of a Dirichlet and a Neumann condition
for streamfunction at each boundary point, see Equation (7.9). Now, given an initial guess
for streamfunction and vorticity, we solve the system of equations arising from satisfying
Equation (7.40) at all interior nodes along with the Dirichlet boundary conditions for the
streamfunction to obtain the new estimate for streamfunction (). To obtain the new velocity
vector estimate, the system of equations arising from satisfying Equation (7.42)/ Equation
(7.43) at all interior nodes is solved. Note that whenever the support point x,, for a node
is on the boundary, the Neumann condition for streamfunction is used thus facilitating an
easier implementation of no-slip boundary conditions. Next, the new estimate of vorticity
on the boundary is obtained using the ghost node strategy proposed in Section 7.2. Once
the velocity vector estimate is known, the linear system of equations arising from satisfying
Equation (7.41) is solved with the Dirichlet vorticity conditions obtained using the ghost
node strategy. Once the physical quantities are obtained, we advance to the next iteration.

This procedure is repeated until convergence.

7.5.1 Numerical results

We now present numerical results obtained for the higher-order RBF-FD method for the

steady incompressible NS equations. The formulation outlined in Section 7.5 is used to solve
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the square lid-driven cavity flow. Figure 7.15 presents the streamfunction contours obtained
for the cavity flow at Re = 100 with a uniform distribution of 31 x 31 nodes. The left
subfigure solution is obtained using the RBF-FD method and the right subfigure is obtained
using the higher-order RBF-FD method. From Figure 7.15, it can be clearly seen that the

higher-order method captures the solution more accurately with a small number of 31 x 31

points.
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F1GURE 7.15: Comparison of convergence behaviours of RBF-FD and higher-order RBF-FD

for a model steady state convection-diffusion equation

Figure 7.16 estimates the performance of higher-order RBF-FD and RBF-FD in terms of
accuracy. On the x-axis, the mesh spacing h is plotted on a log scale in the reverse direction.
On the y-axis, the minimum value of streamfunction i, in the whole domain (strength of
the primary vortex) is plotted. The benchmark value obtained by Ghia et al. (1982) is shown
as a horizontal dotted line in the figure. From Figure 7.16, it can clearly be observed that
the higher-order method captures the true solution at considerably less points (h ~ 0.033)
as compared to the original RBF-FD method.

7.6 Concluding remarks

The RBF-FD method is presented for solving incompressible Navier-Stokes equations. This
method approximates the function derivatives at a node in terms of the function values on a

scattered set of points present in support region of the node. The RBF-FD method uses local
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FiGURE 7.16: Convergence of ¥, for higher-order RBF-FD and RBF-FD at Reynolds

number 100

interpolation problems and hence generates sparse and well-conditioned matrices. It also has
the property of decreased sensitivity with respect to shape parameter value in comparison
with the RBF collocation method. A ghost node strategy employed for incorporating no-slip
boundary conditions removes the limitations of having a locally orthogonal grid near the
boundary and thus makes the method more suitable for complete random node discretisa-
tions. Numerical studies conducted on the driven cavity flow problems using the RBF-FD
method show that this method achieves accurate results which are in good agreement with
the benchmark results.

A higher-order RBF-FD method is explored for solving partial differential equations. The
higher-order method is obtained by using Hermite RBF interpolation method to construct
the function approximation at each node in the domain. A higher-order formulation for
steady incompressible Navier-Stokes equations is presented. The accuracy of the higher-
order method is investigated by solving for a model Poisson equation, convection diffusion
equation and square lid-driven cavity flow. Numerical results obtained indicate that this
method indeed is a higher-order method with a higher capability of spatial resolution with
respect to the RBF-FD method.



Chapter 8

Conclusions and Future Areas of

Research

This chapter concludes the thesis with a brief synopsis of the primary conclusions and con-

tributions of the present research work. Some directions for future research are also outlined.

8.1 Research summary and contributions

The main focus of this thesis is to develop meshless methods for fluid dynamics problems
using radial basis function collocation methods. These methods require only a scattered set
of nodes or points in the domain instead of a mesh which is the case for traditional methods
such as FD, FE or FV methods. Two methodologies for solving PDEs have been presented
in this thesis. The first is the collocation and second one is using RBFs in a finite difference
mode. Benchmark flow problems for the incompressible Navier Stokes equations have been
solved using meshless methods developed on the basis of both the methodologies. The main

conclusions and contributions made in this doctoral research are summarised below.

8.1.1 Comparisons of various RBF's for unsteady flow problems

We presented a detailed comparison on the performance of various RBFs when applied to
solve the unsteady convection-diffusion equation. A symmetric RBF collocation method
for time-dependent problems was proposed and comparisons were made with the existing
unsymmetric RBF collocation method. Both global and compactly supported RBFs were

used and the convergence behaviours of each RBF were investigated for three different Peclet

119
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numbers. A residual based optimisation strategy was employed to determine the shape
parameter value in the case of o-tunable RBFs. Numerical results suggest that the presented
meshless methods are capable of generating accurate results for low and medium Peclet
numbers. At very high Peclet numbers, both the unsymmetric as well as the symmetric
schemes are not able to capture the sharp discontinuity in the solution due to worsening of
the condition numbers of the coefficient matrices. The discontinuity may be captured by
adding artificial dissipation or by combining the RBF collocation methodology with the flux

limiter schemes as in computational fluid dynamics literature.

8.1.2 RBFs & Domain decomposition methods

Overlapping Schwarz domain decomposition algorithms using RBFs were proposed for so-
lution of unsteady linear PDEs. The proposed algorithms were compared with an existing
multizone algorithm using RBFs (Wong et al., 1999). It was shown that the proposed algo-
rithms are much more computationally efficient than the multizone method. We also showed
that the Schwarz schemes are much faster than the global RBF collocation method due to
smaller matrices. Further, with increasing number of subdomains the proposed schemes
are much faster with an acceptable loss of accuracy. Finally, these schemes reduce the ill-
conditioning problem associated with the RBF collocation methods. All these features make
the Schwarz overlapping schemes attractive for solving large scale problems. The proposed
Schwarz schemes were also extended to nonlinear elliptic PDEs. The behaviour of the schemes

for nonlinear problems was shown to be similar to that of the unsteady linear problem.

8.1.3 RBPFs in finite difference mode

An alternative strategy to domain decomposition methodology was also pursued in order to
develop meshless methods using RBFs for large scale problems. The basic idea is to generate
function approximations on a cloud of nodes in the local support region/stencil of a node.
This method results in sparse coefficient matrices and hence is suitable for solving large scale
fluid flow problems. A novel shape parameter optimisation strategy was developed using sta-
tistical estimators like the leave-one-out criterion as the objective function to determine the
optimal shape parameter value for each RBF-FD stencil. Numerical studies were conducted
on model unsteady convection-diffusion equation to ascertain the efficiency of the RBF-FD

method.
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8.1.4 Meshless schemes for incompressible NS equations

Meshless methods based on global RBF collocation and RBF-FD were developed for solving
steady and unsteady incompressible Navier-Stokes equations. A novel ghost node strategy
was employed for satisfying the no-slip boundary conditions for both collocation and RBF-
FD methods. For the RBF-FD method, this strategy enables the method to be suitable
for complete random point discretisation in the domain. Benchmark test problems like the
driven cavity flow in a square region, rectangular driven cavity with aspect ratio 2 and a
backward facing step flow were solved using the developed meshless methods. Finally, a
higher-order RBF-FD method was explored for solving the incompressible Navier Stokes
equations. Numerical results suggest a high spatial resolution for the higher-order scheme

for model convection-diffusion and NS equations.

8.2 Future areas of research

An outline for some directions for future research is presented below

e Shape parameter tuning for collocation methods:
In this thesis, research conducted on the application of global RBF collocation methods
for fluid flow problems show that these methods have the potential of obtaining very
good accuracies with considerably less number of points as compared to traditional
mesh based methods. However, the high convergence rates are subject to obtaining the
optimal value of shape parameter (o). An optimisation strategy based on residual error
minimisation is proposed in this thesis. However, this strategy may be computationally
expensive especially for unsteady flow problems, if one wants to obtain the optimal
value of o at each time step. Further research is required in this direction to develop

more computationally efficient algorithms for tuning the shape parameter.

e Higher order RBF-FD:
Better spatial resolution techniques using Hermite interpolation methods were explored
for solving the NS equations in this thesis. Further work is required to extend the
technique for unsteady NS equations and for compressible flows. Also, a variety of
higher-order schemes may be developed for NS equations depending on the operator
which is considered during Hermite interpolation. In this thesis, two examples of such

discretisations were investigated. It remains to investigate other type of discretisations
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and establish the computational efficiency of each of the discretisations.

e Domain decomposition for NS
Domain decomposition methods for RBF collocation were developed for linear time-
dependent problems and nonlinear elliptic PDEs. These domain decomposition meth-
ods can be further extended to solve nonlinear time dependent PDEs and the Navier-
Stokes equations. These methods have the potential of high convergence rates provided
the optimal value of shape parameter is used. Further, it would be interesting to apply

these schemes for large-scale problems encountered in 3D fluid flow problems.



Appendix A

Derivatives of multiquadric RBF's

The analytical expressions for the derivatives of the multiquadric radial basis function are

presented. The definition of the basis function used is given by

oz —cll) = V(@ —h)> + (y — k)2 + 02, (A1)

where = (z,y) is the collocation point and ¢ = (h, k) is the centre of the RBF and o is the

shape parameter. The partial derivatives for the multiquadric RBF are presented below.

o0 e
or o=+ —hZ+o? (A.2)
0¢ _ y—k
dy  Sa-hPr(y-kPto? (A.3)
V3¢ = (x —h)?+ (y — k)* + 202 "
[(z = h)2 + (y — k)2 + 0?2
¢ _ =k [2e—h)?—(y—k)?—o’] A
00y (x—h)2+(y— k2 + o (A.5)
P (@R[ —h)? =2y — k)2 + 0% A
oo (@ —h2+@y—k2+022 (4.6)
V2v2¢ _ 15 [(m — h)2 + (y — k:)2 + 202] [(m B h)2 F(y— k:)z]
[z~ B2+ (y — k)2 + 022
C18((@ = h)’ + (y — k)?) + 1207
[(w = h)? + (y — k)2 + 02]2
' : ’ (A7)

(= h)2 + (y — k)2 + 0?2

where V2 and V2V? denote the Laplacian and biharmonic operators respectively.
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Appendix B

Derivation of Leave-One-Out
objective function for RBF-FD

stencil

The leave-one-out cross validation estimator is given by
a 2
E(e)=> (fi-f)", (B.1)
i=1
where {x;, f;})¥, is the observed data and f; is the function value predicted at the i*" data

point using multiquadric basis approximation based on the database that excludes the ‘"

data.
Let
ei = fi — fi- (B.2)
Partition matrix A as
A A1)
A= | _, , (B.3)
A (1) A

where E(,z) is the ™" column of the MQ coefficient matrix without the i*" row and the
superscript 7' denotes the transpose. A denotes the rest of matrix A.

By definition of f;, it can be computed from

fi=A (50, (B.4)
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Rewriting Equation (B.4) and Equation (B.5) as

AN+ A(D) = f

AXA;—0 = fis (B.6)

Equation (B.6) can be expressed in matrix form as

A A N ] A f
A e ®.)
A (50) Ay 0 fi
or )
A f 0
A =" |+ _ . (B.8)
0 fi ] fi— i
Premultiplying both sides of Equation (B.8) by B = A1, we get
A f 0
=B|  |+B| _ . (B.9)
0 fi fi— i

Now the first term on the right hand side of Equation (B.9) is the partitioned MQ ap-

proximation coefficient of the whole data set. Hence,

A A 0
= +B| . (B.10)
Ai Ji—Ji
From the last system of equations we have

E(0) = Z @—)2 (B.11)

=1



Appendix C

Derivation for obtaining RBF-FD
weights for a typical RBF-FD

stencil

The derivation for obtaining the RBF-FD weights for a typical RBF-FD stencil is presented.
We denote the unknown function by u(x). Consider a three noded RBF-FD stencil given in
Figure C.1. The RBF interpolant for the function u(x) on the considered stencil is given by

u(x) = Mo(llz — 21 ]]) + Aoz — z2f) + Aso(llz — a3]) + 5, (C.1)

where ¢(||z — x1]]), ¢(||lx — z2||) and A3¢(||x — x3||) are the multiquadric RBFs centred on
each of the nodes x1, 2 and x3 nodes respectively and [ is an unknown constant. A1, Ao
and A3 are the uknown RBF coefficients.

By satisfying the conditions that the interpolant should pass through the function values

Ficure C.1: Schematic diagram of a three noded RBF-FD stencil
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at the nodes x1, 2 and 3 and \; + Ao + A3 = 0, we obtain the system of equations
(1 o111 P12 P13 1 A1
uz | _ G211 P22 P23 1 A2 7 (2)
u3 ¢31 P32 P33 1 A3
0 1 1 1 0 15}

where ¢;; = ¢(||x; — x|), 7,5 =1,2,3. Let the matrix in Equation (C.2) be denoted by A.

The unknown coefficients are given by

A1 Y11 P12 P13 P14 uy
A2 21 P22 P23 P24 U2
A3 P31 P32 P33 P34 u3
Bl |en pa2 @3 paa | | 0
where ¢;; denotes the ij™ element of A7
The goal of RBF-FD method is to express
Lu(x1) = wiug + waug + waus, (C.4)

where wq, wy and wsz are the RBF-FD weights. Applying the operator £ on the interpolant

(Equation (C.1)), we obtain
Lu(z1) = Lu(x) = MLY([|1 — 21|]) + A2 Lo([|1 — @) + AsLo([|1 — s]]).  (C.5)

Substituting the values of A;, Ay and A3 from Equation (C.3) in Equation (C.5) and

rearranging in the form of Equation (C.4), we obtain

Equation (C.6) can be rewritten as

w | P11 P12 P13 P14 1T Lo([|z1 — x1]]) ]
wa | | w2 922 ¢ P Lo([|lz1 — 22|) (C.6)
w3 P31 P32 P33 P34 L[|l — @3])

| w [ pa a2 P43 pas || 0 |

Note that p is a dummy constant which enforces that the stencil is exact for all constants.

d11 12 P13 1 w1 Lo(|lz1 — 1))
21 G2 @23 1 we | _ Lo(|lz1 — z2l]) (.7)
31 ¢32 ¢33 1 w3 Lo(|lx1 — z3]])

11 1 o] e | 0 |



References

ABGRALL, R. (1994). On essentially non-oscillatory schemes on unstructured meshes: anal-

ysis and implementation. Journal of Computational Physics, 114, 45-58.

AtLurl, T. & Zuu, T. (1998). A new meshless local Petrov-Galerkin (MLPG) approach in

computational mechanics. Computational Mechanics, 22, 117-127.

BARRAGY, E. (1993). Parallel Finite Element Methods and Iterative Solution Techniques for

Viscous Incompressible Flows. Ph.D. thesis, University of Texas at Austin.

BATCHELOR, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press,
Cambridge, UK.

BaTiNa, J.T. (1993). A gridless Euler/Navier-Stokes solution algorithm for complex-aircraft
applications. Tech. Rep. ATAA-1993-333, ATAA.

BAXTER, B. (1992). The asymptotic cardinal function of the multiquadric ¢(r) = (r? + 02)%

as ¢ — oo. Computers and Mathematics with Applications, 24, 1-6.

BeaTsoN, R.K., CHERRIE, J.B. & Mouatr, C.T. (1999). Fast fitting of radial basis func-
tions: methods based on preconditioned GMRES iteration. Advances in Computers and

Mathematics, 11, 253-270.

Beatson, R.K., LicaT, W.A. & BILLINGS, S. (2000). Fast solution of the radial basis func-
tion interpolation equations: domain decomposition methods. SIAM Journal on Scientific

Computing, 22, 1717-1740.

BeELyTscHkO, T., Lu, Y. & Gu, L. (1994). Element free Galerkin methods. International
Journal for Numerical Methods in Engineering, 37, 229-256.

128



REFERENCES 129

BELYTSCHKO, T., KRONGAUZ, Y., ORGAN, D., FLEMING, M. & P.KRyYSL (1996). Meshless

methods: An overview and recent developments. Computer Methods in Applied Mechanics

and Engineering, 139, 49-74.

BozTosun, I. & CHARAFI, A. (2001). RBF-based meshless schemes for advection-diffusion

problems. Advances in Boundary Elements Technical Series, 11, 573—.

BozTosun, I. & CHARAFI, A. (2002). An analysis of the linear advection-diffusion equa-
tion using mesh-free and mesh-dependent methods. Engineering Analysis with Boundary

FElements, 26, 889-895.

BozTOSUN, 1., CHARAFI, A., ZERROUKAT, M. & DumnJeLI, K. (2002). Thin-plate spline

radial basis function scheme for advection-diffusion problems. Electronic J. Bound. Elem.,

BETEQ, 267-282.

BreEBBIA, C.A. (1978). The Boundary Element Method for Engineers. Pentech Press, Lon-

don.

BrenT, R.P. (1973). Algorithms for Minimization without Derivatives. Prentice Hall, En-
glewood Cliffs, NJ.

BRUNEAU, C.H. & JOURON, C. (1990). An efficient scheme for solving steady incompressible

Navier-Stokes equations. Journal of Computational Physics, 89, 389-413.

BuHMANN, M.D. (1990). Mutivariate interpolation in odd dimensional Euclidean spaces

using multiquadrics. Constructive Approximation, 6, 21-34.

BuHMANN, M.D. (2000). A new class of radial basis functions with compact support. Math-

ematics of Computation, 70, 307-318.

BuHMANN, M.D. & MiccHELLL, C.A. (1992). Multiquadric interpolation improved. Com-

puters and Mathematics with Applications, 24, 21-25.

CARLSON, R.E. & FoLey, T.A. (1991). The Parameter R? in multiquadric interpolation.

Computers and Mathematics with Applications, 21, 29-42.

CARR, J.C., FriGHT, W.R. & BEATsON, R.K. (1997). Surface interpolation with radial

basis functions for medical imaging. IEEE Transactions on Medical Imaging, 16, 96-107.



REFERENCES 130

CeciL, T., QiaN, J. & OSHER, S. (2004). Numerical methods for high dimensional
Hamilton-Jacobi equations using radial basis functions. Journal of Computational Physics,

196, 327-347.

CHEN, C.S., BREBBIA, C.A. & POWER, H. (1998). Dual Reciprocity method for Helmholtz-

type operators. Boundary Elements, 20, 495-504.

CHENG, A.H.D., GOLBERG, M.A., KansaA, E.J. & ZammiTo, G. (2003). Exponential
convergence and H-c multiquadric collocation method for partial differential equations.

Numerical Methods for Partial Differential Equations, 19, 571-594.

CHINCHAPATNAM, P.P., DiipJELl, K. & NAIR, P.B. (2005). Meshless domain decompo-
sition schemes for nonlinear elliptic PDEs. In K.J. Bathe, ed., Third MIT Conference on
Computational Fluid and Solid Mechanics, 1082—1086.

CHINCHAPATNAM, P.P., DipJeLI, K. & NaIr, P.B. (2006a). Domain decomposition for
time-dependent problems using radial based meshless methods. Numerical Methods for

Partial Differential Equations, Published Online: 25* May, 2006.

CHINCHAPATNAM, P.P., DJipJELIL, K. & NAIR, P.B. (2006b). Unsymmetric and symmetric
meshless schemes for the unsteady convection-diffusion equation. Computer Methods in

Applied Mechanics and Engineering, 195, 2432-2453.

CoLEMAN, T.F. & L1, Y. (1994). On the convergence of reflective newton methods for large

scale nonlinear minimization subject to bounds. Mathematical Programming, 67, 189-224.

CoLEMAN, T.F. & L1, Y. (1996). An interior trust region approach for nonlinear minimiza-

tion subject to bounds. SIAM Journal on Optimization, 6, 418-445.
CorraTz, L. (1960). The Numerical Treatment of Differential Equations. Springer, Berlin.

DinG, H., Suu, C. & Tang, D.B. (2005). Error estimates of local multiquadric-based
differential quadrature (LMQDQ) method through numerical experiments. International

Journal for Numerical Methods in Engineering, 63, 1513-1529.

Ding, H.Q., Turk, G. & SLABAUGH, G. (2002). Reconstruction surfaces by volumetric
regularization using radial basis functions. IEEE Transactions on Pattern analysis and

Machine Intelligence, 24, 1358-1371.



REFERENCES 131

DuimpJeLi, K., CHINCHAPATNAM, P.P., NaIr, P.B. & Price, W.G. (2004). Global and
compact meshless schemes for the unsteady convection-diffusion equation. In Proceedings

of the International Symposium on Health Care and Biomedical Research Interaction, 8

pages on CDROM.

DriscorLL, T.A. & FORNBERG, B. (2002). Interpolation in the limit of increasingly flat

radial basis functions. Computers and Mathematics with Applications, 43, 413-422.

DUARTE, C.A. (1995). A review of some meshless methods to solve partial differential equa-
tions. Tech. rep., Texas institute for Computational and Applied Mathematics, University

of Texas at Austin.

DuBAL, M.R. (1994). Domain decomposition and local refinement for multiquadric approx-

imations. Applied Scientific Computing, 1, 146-171.

FASSHAUER, G.E. (1996). Solving partial differential equations by collocation with radial ba-

sis functions. In A.L. Méchauté, ed., Proceedings of Chamoniz, 1-8, Vanderbilt university

press, Nashville TN.

FASSHAUER, G.E. (2005). Meshfree methods. In Handbook of Theoretical and Computational

Nanotechnology, American Scientific publishers.

FERZIGER, J.H. & PERIC, M. (1999). Computational Methods for Fluid Dynamics. Springer

Verlag.

FORNBERG, B. (1996). A Practical Guide to Pseudospectral Methods. Cambridge University
Press, Cambridge.

FORNBERG, B. (1998). Calculation of weights in finite difference formulas. SIAM Reviews,

40, 685-691.

FRANKE, C. & SCHABACK, R. (1998). Convergence order estimates of meshless collocation

methods using radial basis functions. Advances in Computational Mathematics, 8, 381—

399.

FRANKE, R. (1982). Scattered data interpolation: Tests of some methods. Mathematics of
Computation, 38, 181-200.



REFERENCES 132

Fries, T.P. & MarrTHiES, H.G. (2003). Classification and overview of meshfree meth-
ods. Tech. Rep. 03, Institute of Scientific Computing, Technical University Braunschweig,

Brunswick, Germany.

GARTLING, D.K. (1990). A test problem for outflow boundary conditions-flow over a

backward-facing step. International Journal for Numerical Methods in Fluids, 11, 953—
967.

GHiA, U., GHiAa, K.N. & SHIN, C.T. (1982). High-re solutions for incompressible flow using
the Navier-Stokes equations and a multigrid method. Journal of Computational Physics,

48, 387-411.

GINGOLD, R.A. & MORAGHAN, J.J. (1997). Smooth particle hydrodynamics: theory and
application to non-spherical stars. Monthly Notices of the Royal Astronomical Society,

181, 375-389.

GOLBERG, M.A., CHEN, C.S. & BowMAN, H. (1999). Some recent results and proposals
for the use of radial basis functions in the BEM. Engineering Analysis with Boundary

Elements, 23, 285—-296.

GRIEBEL, M. & SCHWEITZER, M.A. (2000). A particle-partition of unity method for the so-
lution of elliptic, parabolic and hyperbolic PDEs. SIAM Journal on Scientific Computing,
22, 853-890.

GupTA, M.M. & KarLiTa, J.C. (2005). A new paradigm for solving Navier-Stokes equations:

streamfunction-velocity formulation. Journal of Computational Physics, 207, 52—68.

HArDY, R.L. (1971). Multiquadric equations of topography and other irregular surfaces.
Journal of Geophysical Research, 176, 1905-1915.

HArDY, R.L. (1990). Theory and application of the multiquadric-biharmonic method. Com-
puters and Mathematics with Applications, 19, 163-208.

HirscH, C. (1991). Numerical Computation of Internal and External Flows. John Wiley,
New York.

Hon, Y.C. & Mao, X.Z. (1997). A multiquadric interpolation method for solving initial

value problems. Scientific Computing, 12, 51-55.



REFERENCES 133

Hon, Y.C. & Mao, X.Z. (1998). An efficient numerical scheme for Burger’s equation.
Applied Mathematics and Computation, 95, 37-50.

Hon, Y.C. & Mao, X.Z. (1999). A radial basis function method for solving options pricing

model. Financial Engineering, 8, 31-50.

HoNn, Y.C. & ScHABACK, R. (2001). On unsymmetric collocation by radial basis functions.

Applied Mathematics and Computation, 119, 177-186.

Hon, Y.C., Lu, M.W., Xug, W. & Znu, Y. (1997). Multiquadric method for the numerical

solution of a biphasic mixture model. Applied Mathematics and Computation, 88, 153-175.

JENSEN, V.G. (1959). Viscous flow round a sphere at low reynolds number (< 40). Proceed-

ings of Royal Society London: Series A, 249, 346—366.

Kansa, E.J. (1990a). Multiquadrics—a scattered data approximation scheme with appli-
cations to computation fluid dynamics-I. Surface approximations and partial derivatives

estimates. Computers and Mathematics with Applications, 19(8/9), 127-145.

Kansa, E.J. (1990b). Multiquadrics—a scattered data approximation scheme with appli-
cations to computation fluid dynamics-II. Solution to parabolic, hyperbolic and elliptic
partial differential equations. Computers and Mathematics with Applications, 19(8/9),
147-161.

Kansa, E.J. (1999). Motivation for using radial basis functions to solve PDEs. Tech. rep.,

Lawrence Livermore Laboratory.

Kansa, E.J. & CARLSON, R.E. (1992). Improved accuracy of multiquadric interpolation

using variable shape parameters. Computers and Mathematics with Applications, 24, 99—

120.

Kansa, E.J. & Hon, Y.C. (2000). Circumventing the ill-conditioning problem with mul-
tiquadric radial basis functions. Computers and Mathematics with Applications, 39, 123—

137.

KEANE, A.J. & NAIRr, P.B. (2005). Computational Approaches for Aerospace Design. John
Wiley.



REFERENCES 134

KULASEGARAM, S., BoNET, J., Lok, T.S. & RODRIGUEZ-PAz, M. (2000). Corrected

smooth particle hydrodynamics - a meshless method for computational mechanics. Tech.

rep., ECCOMAS.

LArssoN, E. & FORNBERG, B. (2003). A numerical study of some radial basis functions

based solution methods for elliptic PDEs. Computers and Mathematics with Applications,
46, 891-902.

LELE, S.K. (1992). Compact finite difference schemes with spectral-like resolution. Journal

of Computational Physics, 103, 16-42.

L1, J. & CHEN, C.S. (2003). Some observations on unsymmetric radial basis function col-
location methods for convection-diffusion problems. International Journal for Numerical

Methods in Engineering, 57, 1085-1094.

L1, J. & Hon, Y.C. (2004). Domain decomposition for radial basis meshless methods.
Numerical Methods for Partial Differential Equations, 20, 450—462.

LiszkA, T. & ORKIsz, J. (1984). The finite difference method at arbitrary irregular grids

and its application in applied mechanics. Computers and Structures, 20, 1594-1612.

Liu, W.K., Jun, S. & BELYTSCHKO, T. (1995). Reproducing Kernel Particle methods.
International Journal for Numerical Methods in Fluids, 20, 1081-1106.

Lu, Y., BELyTsCcHKO, T. & Gu, L. (1994). A new implementation of the element free
Galerkin method. Computer Methods in Applied Mechanics and Engineering, 113, 397
414.

MabpycH, W.A. & NELSON, S.A. (1989). Error bounds for multiquadric interpolation. In
C.K. Chui, L.L. Schumaker & J.D. Ward, eds., Approximation Theory VI, vol. 2, 413-416.

MapycH, W.R. (1992). Miscellaneous error bounds for multiquadric and related interpola-

tors. Computers and Mathematics with Applications, 24, 121-138.

Mal-Duy, N. & TANNER, R.I. (2005). Solving high-order partial differential equations with
indirect radial basis function networks. International Journal for Numerical Methods in

Engineering, 63, 1636-1654.



REFERENCES 135

Mal-Duy, N. & TrAN-CoNG, T. (2001). Numerical solution of Navier-Stokes equations

using multiquadric radial basis function networks. International Journal for Numerical

Methods in Fluids, 37, 65-86.

MELENK, J.M. & BABUSKA, 1. (1996). The partition of unity finite element method:Basic
theory and applications. Tech. Rep. 96-01, Texas institute for Computational and Applied

Mathematics, University of Texas at Austin.

MiccHELLI, C.A. (1986). Interpolation of scattered data: distance matrices and condition-

ally positive definite functions. Constructive Approximation, 2, 11-22.

MORAGHAN, J.J. (1982). Why particle methods work. SIAM Journal on Scientific and
Statistical Computing, 3, 422-433.

MORAGHAN, J.J. (1988). An introduction to SPH. Computer Physics Communications, 48,
89-96.

MortoN, K.W. (1995). Numerical Solution of Convection-Diffusion Equation. Chapman
and Hall.

NAYROLES, B., TouzaTr, G. & VILLON, P. (1992). Generalizing the FEM: diffuse approx-

imation and diffuse elements. Computational Mechanics, 10, 307-318.

ONATE, E., IDELSOHN, S., ZIENKIEWICZ, O.C., R.L.TAYLOR & Sacco, C. (1996). A
stabilized finite point method for analysis of fluid mechanics problems. Computer Methods

in Applied Mechanics and Engineering, 139, 315-346.

PARK, J. & SANDBERG, I.W. (1991). Universal approximation using radial-basis-function

networks. Neural Computation, 3, 246-257.

PERRONE, N. & Kao0, R. (1975). A general finite difference method for arbitrary meshes.

Computers and Structures, 5, 45-47.

PoweLL, M.J.D. (1992). The theory of radial basis function approximation in 1990. In
W. Light, ed., Advances in numerical analysis, II: wavelets, subdivision algorithms and

radial basis functions, 105—210, Clarendon Press.

Powgr, H. & BARRACO, V. (2002). A comparison analysis between unsymmetric and
symmetric radial basis function collocation methods for the numerical solution of partial

differential equations. Computers and Mathematics with Applications, 43, 551-583.



REFERENCES 136

QUARTERONI, A. & VALLI, A. (1999). Domain Decomposition Methods for Partial Differ-

ential FEquations. Oxford University Press.

RippA, S. (1999). An algorithm for selecting a good value for the parameter ¢ in radial basis

function interpolation. Advances in Computational Mathematics, 11, 193-210.

Roos, H.G., STYNES, M. & ToBIskA, L. (1996). Numerical Methods for Singularly Per-
turbed Differential Equations (Convection-Diffusion and Flow Problems). Springer Verlag,

Berlin.

SCHABACK, R. (1995). Error estimates and condition numbers for radial basis interpolation.

Advances in Computational Mathematics, 3, 251-264.

SCHABACK, R. (1999). Improved error bounds for scattered data interpolation by radial

basis functions. Mathematics of Computation, 68, 201-206.

SCHONAUER, W. & AporpH, T. (2001). How we solve PDEs. Journal of Computational

and Applied Mathematics, 131, 473-492.

SHARAN, M., Kansa, E.J. & Guprta, S. (1997). Applications of the multiquadric method
for the solution of elliptic partial differential equations. Applied Mathematics and Compu-

tation, 84, 275-302.

SHu, C., DiNng, H. & YEeo, K.S. (2003). Local radial basis function-based differential
quadrature method and its application to solve two-dimensional incompressible Navier-
Stokes equations. Computer Methods in Applied Mechanics and Engineering, 192, 941—
954.

SMiTH, B.F., BJorsTAD, P.E. & Groprp, W.D. (1996). Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press.

SoBoL, I.M. (1979). On the systematic search in a hypercube. STAM Journal on Numerical
Analysis, 16, 790-793.

Spotz, W.F. (1995). High-order compact finite difference schemes for computational me-

chanics. Ph.D. thesis, University of Texas at Austin.

SUN, X. (1994). Cardinal Hermite interpolation using positive definite functions. Numerical

Algorithms, 7, 253-268.



REFERENCES 137

TANAKA, N. (1999). Development of a highly accurate interpolation method for mesh-free
flow simulations I. integration of a gridless particle and CIP methods. International Journal

for Numerical Methods in Fluids, 30, 957-976.

THOM, A. (1928). An investigation of fluid flow in two dimensions. Tech. rep., Aerospace

Research Center, United Kingdom.

ToLsTYKH, A.I. & SHIROBOKOV, D.A. (2003). On using radial basis functions in a finite-

difference mode with applications to elasticity problems. Computational Mechanics, 33,

68-79.

WaNG, B.P. (2004). Parameter optimization in multiquadric response surface approxi-

amtions. Structures in Multidisciplinary Optimisation, 26, 219-223.

Wang, J.G. & Liu, G.R. (2002). A point interpolation method based on radial basis

functions. International Journal for Numerical Methods in Engineering, 54, 1623-1648.

WENDLAND, H. (1995). Piecewise polynomial, positive definite and compactly supported

radial functions of minimal degree. Advances in Computational Mathematics, 4, 389-396.

WENDLAND, H. (1997). Sobolev-type error estimates for interpolation by radial basis func-
tions. In A. Lemehaute, C. Rabut & L.L. Schumaker, eds., Surface Fitting and Multireso-
lution Methods, 337-344, Vanderbilt University Press, Nashville, TN.

WonNaG, A.S.M., Hon, Y.C., L1, T.S., CHENG, S.L. & Kansa, E.J. (1999). Multizone
decomposition for simulation of time-dependent problems using the multiquadric scheme.

Computers and Mathematics with Applications, 37, 23-43.

Woobs, L.C. (1954). A note on the numerical solution of fourth order differential equations.

Aeronautical Quarterly, 5, 176.

WRrIGHT, G.B. & FORNBERG, B. (2006). Scattered node compact finite difference-type
formulas generated from radial basis functions. Journal of Computational Physics, 212,

99-123.

Wu, Z. (1995). Compactly supported positive definite radial functions. Advances in Com-
putational Mathematics, 4, 283-292.



REFERENCES 138

Wu, Z. (1998). Solving PDE with radial basis function and the error estimation. In Z. Chen,
Y. Li, C.A. Micchelli & Y. Xu, eds., Advances in Computational Mathematics, Lecture

Notes on Pure and Applied Mathematics, vol. 202, Guang Zhou.

Wu, Z. & SCHABACK, R. (1993). Local error estimates for radial basis function interpolation

of scattered data. IMA Journal of Numerical Analysis, 13, 13-27.

Young, D.L., JANE, S.C., LiN, C.Y., CHiu, C.L. & CHEN, K.C. (2004). Solutions of
2D and 3D Stokes laws using multiquadrics method. Engineering Analysis with Boundary

FElements, 28, 1233-1243.

ZERROUKAT, M., POWER, H. & CHEN, C.S. (1998). A numerical method for heat transfer
problems using collocation and radial basis functions. International Journal for Numerical

Methods in Engineering, 42, 1263.

ZERROUKAT, M., DiipJeLl, K. & CHARAFI, A. (2000). Explicit and implicit meshless
methods for linear advection-diffusion type partial differential equations. International

Journal for Numerical Methods in Engineering, 48, 19-35.

Zuou, X., Hon, Y.C. & L1, J. (2003). Overlapping domain decomposition method by
radial basis functions. Applied Numerical Mathematics, 44, 241-255.

Z1IENKIEWICZ, O.C. & TAYLOR, R.L. (2000). Finite Element Method (5th edition) volume

3 - Flutd Dynamics. Elsevier.



