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The stability of ‘‘top-hat’’ and fully developed jet profiles is investigated by an inviscid linear
stability theory for compressible flow. The study covers a wide range of the Mach number and the
temperature ratio. Two types of instabilities are found: vortical and acoustic, each of which can be
subdivided into non-radiating~subsonic! and radiating~supersonic! modes. The vortical mode is the
continuation of the Kelvin-Helmholtz instability from incompressible flow. The acoustic mode is a
compressible flow phenomenon, which becomes important at large Mach numbers.
Temperature-ratio effects can be destabilizing or stabilizing, depending on the Mach number and
mode of instability. A spectrum of unstable acoustic modes, including axisymmetric ones, are found
to exist in the fully developed jet. For this jet, acoustic axisymmetric waves become more unstable
than both vortical and acoustic helical waves at Mach numbers over about 3. Strong evidence of a
resonance mechanism for acoustic modes is seen in the growth rate curves at high Mach numbers,
where a spectrum of local peaks and valleys appears at regularly distributed frequencies. ©1997
American Institute of Physics.@S1070-6631~97!01604-8#
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I. INTRODUCTION

The linear stability of a laminar jet subject to small di
turbances has been studied for many years and is sti
theoretical and practical interest. There has been ample
dence that instability waves are major sources of noise
supersonic jets.1–6 The noise generation is most efficie
when the phase speed of an instability wave is supers
relative to the ambient fluid and intense Mach waves
emitted.7–9 Therefore, determination of stability character
tics of supersonic jets is a vital step for the prediction of
noise, where compressibility often plays an important rol

The flow field of a jet issuing from a circular orifice int
an ambient fluid can be roughly divided into a potential co
region, a transition region and a fully developed region.
the beginning of the core region, the shear layer is very t
and often modeled by a vortex sheet, as in the theore
studies of Gill,10 Zaninetti11,12 and Tam and Hu.4 The ‘‘top-
hat’’ profile also belongs to the potential core region with
thin but finite shear layer. This region can be represented
hyperbolic-tangent functions.13 The fully developed~self-
similar! region can be represented by a Gaussian or a p
bolic profile. The studies of Batchelor and Gill,14 Lessen and
Singh15 and Morris16 all chose the same parabolic profil
The profile is characterized by a thick shear layer w
slowly varying velocity.

Previous studies on jet stability have been focused on
potential core region, partly because the jet is most unst
there and partly because the problem is amenable to theo
cal analysis using the vortex sheet assumption. Two type
instability modes have been found: vortical and acoustic. T
vortical mode, also called ‘‘vorticity mode’’ by Mack,17 is
due to the Kelvin-Helmholtz instability, which is the primar
hydrodynamic instability. The term ‘‘vortical mode’’ is use
to indicate the extension of Kelvin-Helmholtz instability in
the compressible regime. A comprehensive review of fi
ings on vortical mode instability under various jet flow co
ditions has been given by Michalke.13 The acoustic mode
Phys. Fluids 9 (4), April 1997 1070-6631/97/9(4)/1003/11/
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instability was first discovered by Mack18 in compressible
boundary layers and by Gill10 in jets and wakes. The term
‘‘acoustic mode’’ originally referred to neutral sound wav
reflecting back and forth between the wall and the sonic l
where the relative Mach number is equal to unity. Mac17

extended the terminology to include stable, neutral and a
plified waves, which arose when there was an embed
region of local supersonic flow relative to the phase spee
the instability wave. It is noted that Tam and Hu4 used sub-
sonic and supersonic modes to designate the acoustic m
with subsonic and supersonic relative Mach numbers res
tively. The properties of acoustic mode were extensively d
cussed by Mack17 based on linear stability analysis of two
dimensional waves. Tam and Hu4 offered a physical
explanation of the origin of acoustic mode based on the p
sure imbalance across a vortex sheet. For a round jet
finite thickness, no rigorous theory exists to provide a cl
physical interpretation of amplified acoustic modes.

Jet stability in the fully developed region has receiv
relatively little attention in the past. Batchelor and Gill14

proved mathematically that unstable axisymmetric wa
were excluded from the fully developed incompressible
with the parabolic profile, since it has no inflection poin
Numerical calculations of Lessen and Singh15 and Morris16

confirmed the above statement and further established
the first helical mode was the most unstable. Since compr
ibility was not included, these studies ruled out the possi
ity of the existence of unstable acoustic waves. This po
bility is fully explored in the present study, which will show
that unstable axisymmetric waves not only exist for the pa
bolic profile at high Mach numbers but also can beco
more unstable than helical waves.

In the next section, the stability problem is defined a
numerical methods for solving the problem are outlined.
Sec. III, the necessary conditions for instability are revisit
This is followed by presentation of results from a ‘‘top-ha
profile in Sec. IV. The temperature-ratio effects on stabil
are treated in Sec. V. The stability results from a fully d
1003$10.00 © 1997 American Institute of Physics
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veloped profile are given in Sec. VI. Finally, discussions a
conclusions are presented in Secs. VII and VIII.

II. PRELIMINARIES

We consider the inviscid linear stability problem go
erned by the compressible Euler equations in the cylindr
coordinate system (r ,u,z). A set of coupled first-order lin-
earized equations for the six dependent variab
F5ur ,uu ,uz ,r,p,T can be derived using the normal-mod
parallel-flow approach. Solutions of disturbances are sou
in the following form:

F8~r ,u,z,t !5F̂~r !ei ~az1mu2vt !, ~1!

where a, m and v are the axial wavenumber, azimuth
wavenumber and frequency, respectively. With some m
ematical manipulation, the six linearized equations can
reduced to a single disturbance equation for pressure:

D2p̂1ADp̂1Bp̂50, ~2!

whereD[d/dr and

A5
1

r
2D ln r̄2

2aDŪz

aŪz2v
1

1

Fr

iaD ln r̄

~aŪz2v!2
,

B5 r̄M1
2~aŪz2v!22a22

m2

r 2
2
iar̄M1

2

Fr
.

The boundary conditions are

p̂~r→0!5C1I m~br !, ~3!

p̂~r→`!5C2Km~br !, ~4!

where I m andKm are the modified Bessel functions of th
first and second kind of orderm and

b25a22 r̄M1
2~aŪz2v!21

iar̄M1
2

Fr
. ~5!

In the above equations and all the following discussio
all variables are normalized with their jet centerline valu
The length is normalized with the jet radius where the ax
velocity is equal to the mean of the two free-streamsR1/2*
where the superscript * indicates a dimensional quantity
bar over a variable denotes its mean value.M1 is the jet
Mach number.Fr is the Froude number, which is a non
dimensional gravitational force. When it is neglect
(Fr→`), as is the case in this study, Eq.~2! reduces to the
form obtained by Michalke.13

In the temporal stability analysis,a is real andv com-
plex. In the spatial analysis,a is complex andv real. The
resulting eigenvalue problems for the pressure disturba
are solved by a two-domain shooting method, with integ
tion by a variable-step fifth order Runge-Kutta scheme.

Two jet profiles were investigated:

Ūz50.5$11 tanh@0.5Rz~12r !#%, ~6!

Ūz5@11~A221!r 2#22, ~7!

where the jet parameterRz5R1/2* /u*51/u characterizes je
profiles at different axial positions.u* is the dimensional
1004 Phys. Fluids, Vol. 9, No. 4, April 1997
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momentum thickness. The first is called a ‘‘top2hat’’ pro-
file, which represents the initial mean velocity near the
exit. It has been investigated by Michalke13 and Morris,16

among others. The second profile is a similarity solution o
steady jet emerging from a small circular orifice into an u
bounded fluid.19 Experiments have also confirmed that t
mean velocity profile approaches the form in Eq.~7! far
from the jet exit. It thus has been widely used to repres
the fully developed jet downstream of the potential core.13–16

The mean temperature was calculated with
Crocco2Busemann relation for unity Prandtl number:

T̄5M1
2 ~g21!

2
~u~11Ū2!2u22Ū2!1

T̄2~12u!

~12Ū2!

1
~u2Ū2!

~12Ū2!
, ~8!

whereg is the ratio of specific heatscp /cv and subscripts 1
and 2 indicate the jet centerline and the ambient fluids,
spectively. It is noted that the temperature profile depends
the Mach number in compressible flow. The above profi
are considered in this study to give typical stability chara
teristics. Quantitative information about growth rates at ve
high Mach numbers could be obtained with experimenta
determined profiles of velocity and temperature.

III. REVISIT OF NECESSARY CONDITIONS FOR
INSTABILITY

A necessary condition for instability of a velocity profil
was first given by Rayleigh in 1892.20 His theorem states tha
the presence of at least one inflection point (Ū950) in the
velocity profile is necessary for instability. Here, the prim
indicates differentiation with respect to the relevant coor
nate. Fjørtoft21 later showed that furthermoreŪ9 must
change sign around the inflection point. Batchelor and Gi14

derived the above conditions in a cylindrical coordinate s
tem. However, these conditions have been reached for in
cid, incompressible, isothermal flow. Lees and Lin22 consid-
ered the stability conditions for inviscid compressib
boundary layers. The general stability criteria obtained w
stated by Lees23 as follows: ‘‘~1! If the quantity (r̄Ū8)8 van-
ishes for some value ofŪ.121/M1, then neutral and self-
excited subsonic disturbances exist and the inviscid co
pressible flow is unstable.~2! If the quantity (r̄Ū8)8 does not
vanish for some value ofŪ.121/M1, then all subsonic
disturbances of finite wavelength are damped and the in
cid compressible flow is stable.’’ Criteria~1! and ~2! thus
give the sufficient and necessary conditions of instabil
i.e., (r̄Ū8)850 at some interior point. It is noted, howeve
that Lees and Lin22 only proved rigorously the sufficient con
dition of instability ~1!. The point where (r̄Ū8)850 is often
called a ‘‘generalized inflection point.’’ Whether or not th
necessary condition~2! is valid for compressible flow is still
an open question. Numerical findings in Sec. VI of amplifi
subsonic waves in the absence of a generalized inflec
K. H. Luo and N. D. Sandham
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point are apparently in contradiction of~2!, which suggests
that further analysis of instability conditions for compres
ible flow is needed.

The disturbance equation for the radial velocity comp
nent is written in the cylindrical coordinate system as:

DF r̄r

m21a2r 2
G~r ,M1!DL G

2
aL

aŪz2v
DF r r̄DŪz

m21a2r 2
G~r ,M1!G2

r̄

r
L50, ~9!

whereL5rûr and

G~r ,M1!5
m21a2r 2

F~r ,M1!
,

F~r ,M1!5m21a2r 22 r̄~aŪz2v!2r 2M1
2. ~10!

Assuming a temporal stability problem, necessary c
ditions for instability can be obtained by the following we
established procedures:14 ~a! multiplication of Eq.~9! by the
complex conjugate ofL and then~b! integration by parts
over the domain (0,̀). By notingL50 at r50 and`, the
imaginary part of the resulting equation gives

v i~ I 11I 22I 3!50, ~11!

where

I 15E
0

`

2M1
2P

r 3r̄2

uF~r ,M1!u2
F uDLu21

a2~DŪz!
2uLu2

uaŪz2vu2 Gdr,
I 25E

0

`

2M1
2P2

auLu2

uaŪz2vu2
DF r 3r̄2DŪz

uF~r ,M1!u2
Gdr,

I 35E
0

` auLu2

uaŪz2vu2

3DF $Y2~P22v i
2!r̄r 2M1

2%
r r̄DŪz

uF~r ,M1!u2
Gdr,

where P5aŪz2v r , Y5m21a2r 2 and u•u denotes the
magnitude of a complex variable. In order for instability
exist (v i Þ 0), a necessary condition isI 3[I 11I 2. As can be
seen, satisfaction of this condition depends not only on
mean velocity and density profiles but also the jet Ma
number and the disturbance wavenumber. This fact h
lights the difficulty of reaching a general instability conditio
for fully compressible flow. However, ifM1→0, then
I 15I 250 and I 3 must be zero for instability. This leads t
the first necessary condition for instability:(A) There must be
an interior point at which DV(r )50, where V(r )
5r r̄DŪz /(m

21a2r 2). This is the counterpart in the cylin
drical coordinate system of condition~2! of Lees23 but valid
only in the limit of zero Mach number. Using similar proc
dure but considering the real part of the resulting equa
leads to the second and stricter necessary condition for in
bility: (B) (Ūz2Ūzc)DV(r c),0, where Ūzc is the velocity
at r5r c , where condition~A! holds. This condition is again
valid only in the limit of zero Mach number.
Phys. Fluids, Vol. 9, No. 4, April 1997
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For neutral stability (v i50), Eq.~9! has a singularity at
r5r s , where Ūz5v r /a, unlessDV(r )50 at the point.
This gives a necessary condition for the existence of neu
stability, independent of the Mach number.

It is seen that in general the stability of compressib
flow is dependent on the Mach number. The existence o
inflection point as a necessary condition for instability ca
not be obtained except for zero Mach number. An implic
tion of this is that certain flow profiles without an inflectio
point, which do not show instability in incompressible flow
may be unstable in compressible flow. This applies to
profiles of Eqs. ~7! and ~8! for axisymmetric waves
(m50), where there is no interior point at whic
DV(r )50. However, for helical waves~mÞ0!, V(0)
5V(`)50, there must be an interior point whereDV50,
regardless of the exact form of the velocity and temperat
profiles. The profiles of Eqs.~6! and ~8! satisfy both condi-
tions ~A! and ~B! for any azimuthal modem.

IV. INSTABILITIES OF ‘‘TOP-HAT’’ JETS

The stability characteristics of the ‘‘top-hat’’ jet profil
are presented in this section. Compressibility and thr
dimensionality effects are studied by varying the jet Ma
numberM1 and the azimuthal mode numberm. Except oth-
erwise stated, the spatial stability problem is assumed.
jet parameterRz is 10 and the ambient fluid is at res
(Ū250) with the same mean temperature as the jet fl
(T̄251). ~Without ambiguity, the jet Mach number will be
written simply asM whenever the ambient Mach numb
M2 is zero in the following sections.! The Froude number is
assumed to be infinity. The mean velocity profile is given
Eq. ~6! and the temperature profile by Eq.~8!.

As expected, both vortical and acoustic mode instab
ties are found for this profile. Although vortical mode h
been studied extensively in the past, it is presented here
comparison with acoustic modes. Figure 1 shows the spa
growth rate and phase speed of the vortical, first heli
(m51) mode against frequency at various Mach numbers
should be noted that for all helical modes, the plotted qu
tity v/a r is the projection of the actual phase speed on
z-axis. AsM increases, both the maximum growth rate a
the unstable frequency range decrease while the locatio
peak growth rate shifts to lower frequency. As frequen
increases at a givenM , the phase speed first decreases a
then increases after reaching a minimum. These gen
characteristics are also true for the vortical, axisymme
mode (m50) and higher helical modes (m.1). Figure 2
shows the peak growth rate of different azimuthal mod
against the Mach number. In all cases, the peak growth
decreases rapidly with increasingM . However, the axisym-
metric mode has the highest rate of decrease. As a result
dominance of the axisymmetric mode at low Mach numb
gives way to helical modes atM.1. At largeM (.8), the
first helical mode is the only remaining unstable mode. Th
for vortical mode, three-dimensional waves become m
important asM increases.

As indicated earlier, the wave phase speed relative to
free-streams is an important parameter as far as sound
1005K. H. Luo and N. D. Sandham
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eration is concerned. In a quite different context, Lin24 intro-
duced the concept of relative Mach numbers. In the pres
cylindrical coordinate system, the relative Mach numbers
the jet and the ambient streams are defined, respectively

Mr15M1 cosf S Ū12
cph
cosf D , ~12!

FIG. 1. The spatial growth rate~a! and the phase speed~b! of the vortical,
first helical mode in a ‘‘top-hat’’ jet at different Mach numbers.

FIG. 2. Mach-number effects on the spatial growth rate of the vortical m
in a ‘‘top-hat’’ jet.
1006 Phys. Fluids, Vol. 9, No. 4, April 1997
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as:

Mr25
M1

T̄2
1/2 cosf S cph

cosf
2Ū2D , ~13!

where cosf5a/(a21m2/r 2)1/2 based on Eq.~1!. A relative
Mach number is a wave Mach number in the direction of
wave traveling at an anglef relative to thez-axis with phase
speedcph. A similar Mach number was defined by Mack17 in
the Cartesian coordinate system. WhenMri.1 (i51,2), the
wave is said to be supersonic relative to streami . When
Mri,1 (i51,2), the wave is said to be subsonic relative
stream i . For axisymmetric waves in a jet withŪ250,
T̄251, the relative Mach numbers reduce toMr1

5M1(12cph) andMr25M1cph.
According to Mack,17 acoustic modes exist wheneve

there is an embedded region of locally supersonic flow re
tive to the phase speed of the instability wave. This
equivalent to the conditionMr1.1 for jets. In Fig. 3, un-
stable modes in a Mach 3 jet (Ū250) are shown. The
growth rate and phase speed of axisymmetric waves are
ted against the real part of the axial wavenumber (a r) rather
than the frequency to better illustrate the different mod
For convenience of discussions, each continuous curve in
plot is designated by an integer pair (m,n). Thus mode
(m,n) has an azimuthal wavenumberm defined in Eq.~1!
and an acoustic mode numbern. Here,n is an integer num-
ber starting from 0 and increasing by 1 for each curve in
e

FIG. 3. The spatial growth rate~a! and the phase speed~b! of vortical and
acoustic axisymmetric modes in a Mach 3 ‘‘top-hat’’ jet.
K. H. Luo and N. D. Sandham
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a r-direction. Therefore, Fig. 3 contains modes from~0,0! to
~0,4!. The largern is, the higher the axial wavenumber~or
frequency! at which the peak growth rate for that mode o
curs. Since there could be an infinite spectrum of acou
modes,4,17 n could be very large. However, the growth ra
for modes with largen is very small so that it is sufficient to
plot only the first few modes.

As is clearly seen in Fig. 3, mode~0,0! is very different
from other modes. Its phase speed indicates that it is s
sonic to the jet stream (Mr1,1) and supersonic to the am
bient stream (Mr2.1). Hence, by Mack’s criterion, it is no
an acoustic mode. To trace the origin of mode~0,0!, the jet
Mach numberM was systematically reduced and mode~0,0!
was seen merging with the Kelvin-Helmholtz mode
M50. Hence, mode~0,0! is a continuation of the Kelvin-
Helmholtz instability into the supersonic regime and thu
vortical mode. On the other hand, modes~0,1! to ~0,4! are
supersonic to the jet stream (Mr1.1 for v/a r,2/3) and
Mack’s criterion for acoustic modes is satisfied. Furth
more, these modes do not continue down to the subs
regime (M,1) if M is systematically reduced. They a
thus acoustic modes. By examination of the phase sp
each of these modes has two regimes: one supers
(Mr2.1 for v/a r.1/3) and the other subsonic (Mr2,1 for
v/a r,1/3) to the ambient. In Fig. 4, four types of chara
teristic pressure eigenfunctions are shown. Figures 4~c! and
4~d! are eigenfunctions of the acoustic mode~0,1! with sub-
sonic (Mr2,1) and supersonic (Mr2.1) phase speed, re
spectively. The pressure disturbance of an acoustic subs
wave is basically confinedwithin the jet. This conforms to
the physical picture of an acoustic wave that is trapp
within the jet reflecting back and forth. In contrast, the pr
sure disturbance of an acoustic supersonic wave oscillate
the far field and appears to beradiating. Nevertheless, the
part of the eigenfunction within the jet is very similar to th
of an acoustic subsonic wave, indicating its common orig
On the other hand, eigenfunctions of vortical modes sho
in Figs. 4~a! and 4~b! are quite different. Figure 4~b! is for
mode ~0,0! at M53, which has supersonic phase spe
(Mr2.1). It is of radiating nature but does not have t
dominant part inside the jet typical of acoustic modes. Fig
4~a! is for a vortical mode in a subsonic jet atM50.8. The
eigenfunction decays rapidly to zero just outside of the
Within the jet, the shape of eigenfunction is very differe
from that of an acoustic mode. In the direct numerical sim
lations of Luo and Sandham,25 it was shown that those
modes with radiating eigenfunctions, either of vortical
acoustic nature, were far more efficient in sound genera
than modes with non-radiating eigenfunctions. The essen
difference still lies with that of supersonic and subso
phase speed. However, it is less ambiguous to use te
‘‘radiating mode’’ and ‘‘non-radiating mode’’ in the contex
of jets since ‘‘radiating’’ implies radiation away from the je
into the ambient. To use ‘‘supersonic mode’’ and ‘‘subson
mode,’’ one always has to clarify to which free-stream t
terms are referring. Based on the above practical reason
it is useful to classify instability waves into four modes:~I!
non-radiating vortical, ~II ! radiating vortical, ~III ! non-
radiating acoustic and~IV ! radiating acoustic.
Phys. Fluids, Vol. 9, No. 4, April 1997
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Acoustic modes are also found for helical mod
~mÞ0! at Mach 3. Figure 5 shows first helical modes. T
distribution of these modes in the wavenumber space is v
similar to that of the axisymmetric modes but there are d
ferences. For axisymmetric waves, the vortical mode is l
unstable than the leading acoustic modes. For helical wa
the vortical mode is more unstable than any acoustic mo
Also, the relative Mach numbers defined in Eqs.~12! and
~13! are functions of phase anglef or r . It can be seen tha
the vortical mode can be supersonic (Mr1.1) or subsonic
(Mr1,1) to the jet stream. Near the jet axis (r→0), Mr1

becomes very small. The maximum growth rate and the c
responding wavenumber and frequency atM53 for
m50,1,2 are shown in Tables I to III. The following cha
acteristics are observed:~a! for the vortical mode, helical
waves are more unstable than the axisymmetric wave bu
opposite is true for acoustic modes;~b! the acoustic first
helical mode is more unstable than acoustic higher hel
(m.1) modes;~c! acoustic modes generally have larg
wavenumbers than the vortical mode;~d! peak growth rates

FIG. 4. Pressure eigenfunctions of~a! a non-radiating vortical wave a
M50.8; ~b! a radiating vortical wave atM53.0; ~c! a non-radiating acous-
tic wave atM53.0; ~d! a radiating acoustic wave atM53.0.
1007K. H. Luo and N. D. Sandham
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of acoustic modes occur at almost equally spaced waven
bers; ~e! peak growth rates of acoustic modes occur in
subsonic regime (Mr2,1) with relatively constant phas
speed.

The higher acoustic modes (n.1) have the same phys
cal origin as the first acoustic mode (n51) but shorter wave-
lengths. Therefore, a larger number of wavelengths can
into the edges of the jet.10 As a result, there are correspon
ingly more nodes and antinodes or zero-crossings in t
pressure eigenfunctions. Such phenomena have been s
by Tam and Hu4 and Mack17 and are not repeated here. Ne
ertheless, an example of the second acoustic mode is
vided in Fig. 13~c! in the context of a fully developed jet t
be discussed later. It is noted that the number of ze

FIG. 5. The spatial growth rate~a! and the phase speed~b! of vortical and
acoustic first helical modes in a Mach 3 ‘‘top-hat’’ jet.

TABLE I. Maximum growth rates of vortical and acoustic instability mod
for m50 at Mach 3.

(m,n) v a r 2a i v/a r

(0,0) 0.34 0.401 0.0204 0.848
(0,1) 0.49 1.645 0.1459 0.298
(0,2) 0.85 3.352 0.0662 0.254
(0,3) 1.125 4.934 0.0326 0.228
(0,4) 1.36 6.463 0.0173 0.210
(0,5) 1.579 7.976 0.0095 0.198
(0,6) 1.798 9.493 0.0053 0.189
1008 Phys. Fluids, Vol. 9, No. 4, April 1997
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crossings in the pressure eigenfunctioninside the jet corre-
sponds uniquely to the mode numbern. However, due to the
existence of radiating acoustic modes, the total numbe
zero-crossings in the pressure eigenfunction is not uniqu

The growth rate of the acoustic, axisymmetric mo
~0,1! at Mach numbers up to 10 is plotted in Fig. 6. Th
maximum growth rate of this mode occurs atM53. When
M increases, the peak growth rate occurs at a lower
quency. Interestingly, the unstable frequency range chan
little with M , contrary to the trend for vortical mode insta
bility ~Fig. 1!. The peak growth rate at each Mach numb
for modes~0,1!, ~0,2! and~1,1! is plotted in Fig. 7. Acoustic
modes are found for Mach numbers down to just over un
but those with significant growth rates are in the range
2,M,10. The most unstable region is aroundM53 for all
three modes. BeyondM520, the curves flatten out and ap
pear to approach some constant value. Surprisingly, the p
growth rate of mode~0,1! is less than that of mode~0,2! for
5,M,17 while Mack17 found that the first acoustic mod
was always the dominant one.

V. TEMPERATURE-RATIO EFFECTS

In the discussions of the previous section, the tempe
ture of the jet~stream 1! and the ambient~stream 2! is kept
equal, i.e., the temperature ratioT̄2 /T̄151. However, as the
Crocco-Busemann relation in Eq.~8! shows, aerodynamic
heating has an influence on the mean temperature distr
tion and is dependent on the jet Mach number. Therefo

FIG. 6. The spatial growth rate of acoustic mode~0,1! in a ‘‘top-hat’’ jet at
different Mach numbers.

TABLE II. Maximum growth rates of vortical and acoustic instabilit
modes form51 at Mach 3.

(m,n) v a r 2a i v/a r

(1,0) 0.27 0.491 0.1760 0.550
(1,1) 0.69 2.488 0.0916 0.277
(1,2) 1.00 4.138 0.0432 0.242
(1,3) 1.25 5.694 0.0226 0.220
(1,4) 1.47 7.210 0.0123 0.204
(1,5) 1.69 8.728 0.0069 0.194
(1,6) 1.91 10.249 0.0039 0.186
K. H. Luo and N. D. Sandham
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results of the previous section have already embodied
temperature effects. In this section, the temperature r
~simply equal toT̄2 after normalization! is varied alone and
other flow conditions are kept the same as described in
previous section. The objective is to clarify the effects
T̄2 on different jet instability modes.

Figure 8 shows the growth rate and phase speed of
vortical mode in a subsonic jetM50.8 asT̄2 varies from 0.1
~hot jet! to 10 ~cold jet!. Compared with theT̄251 case,
increasingT̄2 decreases the peak growth rate but broad
the unstable frequency range. On the other hand, decrea
T̄2 first increases and then decreases the peak growth
DecreasingT̄2 always narrows the unstable frequency ran
In all cases, the phase speed over the whole frequency r
is increased asT̄2 increases. Quite different trends are o
served for vortical mode in a supersonic jet withM53 as
shown in Fig. 9. Compared with theT̄251 case, increasing
T̄2 first increases and then decreases the peak growth rat
the unstable frequency range always broadens. Decrea
T̄2, on the other hand, always decreases the peak growth
and the unstable frequency range. As to the phase sp
increasingT̄2 not only increases its overall magnitude b
also alters its shape dramatically. It becomes clear that
temperature-ratio effects are coupled with compressibility

The temperature-ratio effects on acoustic modes
shown in Fig. 10 for a Mach 3 jet. Surprisingly, the effects
varying T̄2 on the growth rate are qualitatively the same
on the vortical mode in theM50.8 jet. However, the un-

FIG. 7. Mach-number effects on the spatial growth rate of acoustic mo
~0,1!, ~0,2! and ~1,1! in a ‘‘top-hat’’ jet.

TABLE III. Maximum growth rates of vortical and acoustic instabilit
modes form52 at Mach 3.

(m,n) v a r 2a i v/a r

(2,0) 0.317 0.660 0.1818 0.480
(2,1) 0.86 3.246 0.0494 0.227
(2,2) 1.13 4.871 0.0265 0.232
(2,3) 1.37 6.429 0.0147 0.213
(2,4) 1.59 7.955 0.0083 0.200
(2,5) 1.81 9.481 0.0048 0.191
(2,6) 2.03 11.007 0.0027 0.184
Phys. Fluids, Vol. 9, No. 4, April 1997
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stable frequency range is less sensitive toT̄2 in the present
case, although the frequency range with substantial gro
rate does narrow with decreasingT̄2. The most striking fea-
ture is that the phase speed of the acoustic mode is alm
independent ofT̄2, unlike the trend observed for any vortica
mode. Also, the phase speed rises monotonically with
quency, which is a common character for all acoustic mod
According to Eq.~13!, with constant phase speed, decreas
T̄2 will increase the relative Mach numberMr2. Since higher
Mr2 will increase the tendency of jets to emit Mach wave
increasing the jet temperature~decreasingT̄2) would in-
crease jet noise. This is in agreement of experimental ob
vations by Oertel7,8 that hot jets produce more sound.

VI. INSTABILITIES OF FULLY DEVELOPED JETS

The numerical procedures for solving the stability pro
lem of the fully developed jet profile are the same as for
‘‘top-hat’’ profile. The mean velocity profile is specified b
Eq. ~7!, which has no adjustable parameter. The mean t
perature is again calculated by the Crocco-Busemann r
tion in Eq. ~8! with T̄251.

The investigation started with search for vortical ins
bility of various azimuthal modesm. As expected, only he-
lical waves were found to be unstable. Figure 11 shows
growth rate and phase speed of the vortical, first heli

es

FIG. 8. Temperature-ratio effects on~a! the spatial growth rate and~b! the
phase speed of the vortical mode~1,0! in a Mach 0.8 ‘‘top-hat’’ jet.
1009K. H. Luo and N. D. Sandham
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mode~1,0! at various Mach numbers. As for the ‘‘top-hat
jet, asM increases, both the growth rate and unstable
quency range decrease while the location of peak growth
shifts to lower frequency. However, the growth rate for t
fully developed jet is much smaller at corresponding Ma
numbers. The growth rate and frequency range of instab
atM52 are already very small and will further decrease
M increases. The phase speed generally decreases wit
creasingM . However, it increases monotonically with fre
quency, which is quite different from the trend observed
the ‘‘top-hat’’ jet.

As discussed earlier, no amplified axisymmetric wav
exist in incompressible jets with the fully developed profi
The situation is quite different in the present compress
jet. Figure 12 shows the growth rate and phase spee
unstable axisymmetric waves in the fully developed jet
three Mach numbers. With the same identifying procedu
as described in Sec. IV, these unstable waves are foun
belong to acoustic mode~0,1!. Unlike the same mode in th
‘‘top-hat’’ jet, the present one becomes more unstable
M increases from 3 to 10, although further increase inM
will result in a slight decrease in the growth rate. A mo
striking feature is that while the growth rate atM53 has a
single peak, more and more local peaks appear with incr
ingM . Notice that a small kink exists at aboutv51.2 in the
M53 growth rate and reappear atv51.9 in theM54
growth rate. Such a kink usually marks the beginning

FIG. 9. Temperature-ratio effects on~a! the spatial growth rate and~b! the
phase speed of the vortical mode~1,0! in a Mach 3 ‘‘top-hat’’ jet.
1010 Phys. Fluids, Vol. 9, No. 4, April 1997
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‘‘mode mixing’’ as described by Michalke.13 Here, ‘‘mode
mixing’’ refers to a merging of irregular modes with regul
or normal unstable modes without passing through a neu
point. No satisfactory physical explanation is available
‘‘mode mixing.’’ The fact that local peaks and valleys in th
growth rate occur at equally-spaced frequencies~e.g., at
M510), suggests a link with acoustic resonance. In
meantime, phase speeds at all Mach numbers are sm
increasing functions of frequency, as shown in Fig. 12~b!. It
is noted that the phase speed of acoustic modes over
whole frequency range increases withM , in opposite trend to
that of the vortical mode. The same phenomena are
observed in higher acoustic modes and in helical modes

It is worth pointing out that oscillations in the growt
rate curves are not caused by point-to-point numerical err
Each curve presented here contains thousands of calcul
points. At places of the kinks, calculations with differe
numerical procedures were conducted to ensure repeata
of the same phenomena.

The maximum growth rate of the vortical first helic
mode ~1,0! at M52.0 is 2a i54.77631024 ~see Fig. 11!
and even smaller atM53.0. On the other hand, the pea
growth rate of the acoustic axisymmetric mode~0,1! at
M53.0 is2a i52.42331023 ~Fig. 12!. This shows that am-
plified axisymmetric modes not only exist in the fully deve
oped profile but also become dominant at high Mach nu
bers.

FIG. 10. Temperature-ratio effects on~a! the spatial growth rate and~b! the
phase speed of the acoustic mode~1,1! in a Mach 3 ‘‘top-hat’’ jet.
K. H. Luo and N. D. Sandham
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As in the case of the ‘‘top-hat’’ jet, there is a spectru
of unstable acoustic modes for the fully developed profi
Figure 13 shows only the growth rate of the acoustic axisy
metric mode~0,2!. The general trend with increasingM is
the same as for mode~0,1! but the growth rate at a corre
sponding Mach number is generally lower. Calculations h
also found spectra of unstable waves in helical mo
m>1 and higher acoustic modesn>1 at different Mach
numbers. The general characteristics are very similar to th
of mode~0,1! and thus not presented. Finally, some typic
pressure eigenfunctions of acoustic modes in the fully de
oped jet are shown in Fig. 14. Again, non-radiating and
diating modes exist for each acoustic mode and those
mode~0,1! are illustrated in Figs. 14~a! and 14~b!. These are
quite similar to corresponding eigenfunctions of the ‘to
hat’’ jet. Figure 14~c! shows the pressure eigenfunction of
non-radiating higher acoustic mode~0,2!. As explained be-
fore, one more zero-crossing exists in the eigenfunction
mode~0,2! as compared with that of mode~0,1!. Neverthe-
less, the main part of the pressure disturbance is sim
indicating their common origin.

VII. DISCUSSION

Vortical and acoustic mode instabilities have been fou
in both a ‘‘top-hat’’ and a fully developed jet profiles. Nu
merical results show that vortical and acoustic modes h

FIG. 11. The spatial growth rate~a! and the phase speed~b! of the vortical
mode~1,0! in a fully developed jet at different Mach numbers.
Phys. Fluids, Vol. 9, No. 4, April 1997
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quite different characteristics in terms of their existence co
ditions, their eigenfunction shapes, their responses to t
Mach number, temperature ratio and velocity profil
changes. However, a clear physical explanation of th
mechanisms behind these modes does not exist, at least
jets with realistic thickness. For jets with thin shear layer
which can be treated as a vortex sheet, several plausible
guments do exist such as the wavy-wall theory of Tam an

FIG. 12. The spatial growth rate~a! and the phase speed~b! of the axisym-
metric, first acoustic mode~0,1! in a fully developed jet at three Mach
numbers.

FIG. 13. The spatial growth rate of the axisymmetric, second acoustic mo
~0,2! in a fully developed jet at four Mach numbers.
1011K. H. Luo and N. D. Sandham
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Hu,4 the wave reflection theory of Mack17 and the resonance
theory of Miles26 and Gill.10 Tam and Hu’s theory is based
on Ackeret’s explanation of the Kelvin-Helmholtz instabilit
but they extend it to supersonic flow. It is assumed tha
vortex sheet separating the jet flow and the ambient fluid
initially deformed by a Kelvin-Helmholtz wave with a phas
speedcph. The vortex sheet is then regarded as a wavy w
in a reference frame traveling with speedcph. Analytical
solutions of the pressure distributions on both sides of
wavy wall can be obtained. It is shown that in a subsonic j
the pressure imbalance across the jet is in phase with
vortex-sheet displacement and the initial displacement wo
be augmented leading to the Kelvin-Helmholtz instability.
a supersonic jet wherecph is still subsonic to the ambien
fluid, the pressure imbalance is 180° out of phase with
displacement and only neutrally stable waves may exist.~But
they point out that in a finite-thickness jet, unstable ‘‘acou
tic’’ subsonic waves can exist.! When the jet Mach number

FIG. 14. Pressure eigenfunctions of unstable axisymmetric modes in a f
developed jet atM510. ~a! A non-radiating wave of the first acoustic mod
~0,1!; ~b! a radiating wave of the first acoustic mode~0,1!; ~c! a non-
radiating wave of the second acoustic mode~0,2!.
1012 Phys. Fluids, Vol. 9, No. 4, April 1997
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is high enough so thatcph is supersonic to the ambient fluid
for certain wavelengths a pressure imbalance in phase
the vortex-sheet displacement is possible and unst
‘‘acoustic’’ supersonic waves can exist. The attraction of t
theory is that it offers a unified description of the vortical a
acoustic instabilities. A drawback is that it excludes c
existence of the three modes at the same Mach num
which is disproved by our numerical results. Mack’s physic
picture of an acoustic mode is a sound wave trapped in a
reflecting back and forth inside the jet boundaries. This
fers a mechanism for a neutral wave but not an unsta
wave. The theory of Miles and Gill is very similar to that o
Mack but they speculate that sound waves impinging on
vortex sheet at certain angles cause a resonance that rel
large amount of energy to support the back and forth mo
ment of the neutral waves.

The above theories have provided some useful phys
insight into the vortical and acoustic modes but none of th
can fully explain the numerical results in previous sectio
In an earlier paper by Kova´sznay,27 three modes of distur-
bance fields are identified in compressible viscous flow: v
ticity mode, sound-wave mode and entropy mode. The fi
two modes of disturbances would lead to the vortical a
acoustic instability modes described in this study. The
tropy mode, which is caused by density changes due to
conduction, is missing from the present inviscid analys
According to Kovásznay,27 the three modes are independe
when the fluctuations are weak but they interact under str
ger fluctuations. In the present linear context, the vortical a
acoustic modes are expected to act independently and
can co-exist at the same Mach number. Since vorticity d
turbances are present regardless of the Mach number,
not surprising that vortical instability exists in incompres
ible and compressible flow. On the other hand, sound-w
disturbances are only a compressible flow phenomenon
that acoustic instability exists in compressible flow on
Furthermore, when acoustic waves impinge on a vortex sh
or a wavy wall as in Tam and Hu’s theory, they act direc
as ‘‘imposed’’ pressure distributions along the sheet. Clea
in a time-space transformation, these pressure distribut
only depend on the frequency of the impinging waves a
given Mach number. At certain frequencies, the pressure
tributions may cause a pressure imbalance across the vo
sheet that is in phase with the vortex-sheet displacem
This is whenresonanceoccurs and instability arises. For
vortex sheet or a thin shear layer, a peak growth rate co
sponds to a frequency at which the pressure imbalanc
perfectly in phase with the vortex-sheet displacement. W
there is a partial in-phase at other frequencies, a lo
growth rate is obtained. In the above physical picture,
existence of an inflection point is irrelevant since acous
waves act directly as a pressure imbalance that only dep
on the wave frequency. And since complete out-of-phase
tween the pressure imbalance and the vortex sheet is so
it is not surprising that acoustic modes are unstable ove
much larger frequency range compared with the vorti
mode.

The above discussions can be extended to the peak-
valley pattern of the growth rate curves of the fully deve

lly
K. H. Luo and N. D. Sandham
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oped jet. As explained above, for a thin shear layer o
vortex sheet, one peak growth rate is expected when
pressure imbalance across the layer is perfectly in phase
the layer displacement at a resonance frequency. A th
shear layer such as the fully developed jet profile may
viewed as an ensemble of such thin shear layers with cas
ing properties, each having an intrinsic resonance freque
and each giving a local peak growth rate. The result is
ensemble of local peaks with diminishing magnitudes at
most equally-spaced frequencies. As the Mach numbe
increased, the acoustic wavelength becomes smaller c
pared with the layer thickness so that progressively m
peaks and valleys appear in the growth rate curves. As
amples, the frequency differences (Dv) between the loca
peaks or valleys~excluding the first two at low frequencies!
are calculated, which show extraordinary regularity for
given mode and a Mach number. For mode~0,1! at
M510, Dv50.37. For mode~0,2! at M510, Dv50.40.
For mode~0,1! atM525,Dv50.30. The data actually show
that asM increases from 10 to 25,Dv decreases, which
should be expected following the above discussions.

VIII. CONCLUSIONS

A linear stability theory for compressible flow has be
formulated to study the stability properties of a ‘‘top-ha
and a fully developed jet profile at various Mach numb
and temperature ratios. Two types of instabilities have b
found: vortical and acoustic. They have different existen
conditions, different eigenfunction shapes and different
sponses to changes in the Mach number, temperature
and velocity profile. These differences are attributed to
different mechanisms behind the two instabilities. The vo
cal mode is due to the Kelvin-Helmholtz instability, whic
exists in compressible as well as incompressible flow. T
acoustic mode is due to the direct action of acoustic wa
on the shear layer through resonance, which exists onl
compressible flow.

Numerical results in the ‘‘top-hat’’ jet have revealed
spectrum of acoustic modes for Mach numbers over un
Both acoustic and vortical modes can be radiating or n
radiating, depending on a relative Mach number. While
vortical mode dominates at low Mach numbers, it is t
acoustic modes that dominate at high Mach numbers. In
tween the two modes co-exist and have growth rates of
same order of magnitude. It has been observed that the
ond acoustic mode can be more unstable than the first ac
tic mode in some Mach number range. Temperature-r
effects, which can be stabilizing or destabilizing, are stron
linked with the Mach number and mode of instability.

Unstable vortical and acoustic modes in the fully dev
oped profile have been presented. In agreement with pr
ous studies, no axisymmetric vortical waves are unsta
However, unstable axisymmetric acoustic waves do exist
become dominant over both vortical and acoustic hel
waves at Mach numbers over about 3. Strong evidence
resonance mechanism for acoustic modes is seen in
growth rate curves at high Mach numbers, where a spect
of local peaks and valleys appear at regularly-distributed
quencies.
Phys. Fluids, Vol. 9, No. 4, April 1997
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