Instability of vortical and acoustic modes in supersonic round jets
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The stability of “top-hat” and fully developed jet profiles is investigated by an inviscid linear
stability theory for compressible flow. The study covers a wide range of the Mach number and the
temperature ratio. Two types of instabilities are found: vortical and acoustic, each of which can be
subdivided into non-radiatin@ggubsoni¢ and radiating supersonicmodes. The vortical mode is the
continuation of the Kelvin-Helmholtz instability from incompressible flow. The acoustic mode is a
compressible flow phenomenon, which becomes important at large Mach numbers.
Temperature-ratio effects can be destabilizing or stabilizing, depending on the Mach number and
mode of instability. A spectrum of unstable acoustic modes, including axisymmetric ones, are found
to exist in the fully developed jet. For this jet, acoustic axisymmetric waves become more unstable
than both vortical and acoustic helical waves at Mach numbers over about 3. Strong evidence of a
resonance mechanism for acoustic modes is seen in the growth rate curves at high Mach numbers,
where a spectrum of local peaks and valleys appears at regularly distributed frequencE297 ©
American Institute of Physic§S1070-663(97)01604-8

I. INTRODUCTION instability was first discovered by Matkin compressible
boundary layers and by Gifl in jets and wakes. The term
The linear stability of a laminar jet subject to small dis- “acoustic mode” originally referred to neutral sound waves
turbances has been studied for many years and is still akflecting back and forth between the wall and the sonic line
theoretical and practical interest. There has been ample evivhere the relative Mach number is equal to unity. Mdck
dence that instability waves are major sources of noise iextended the terminology to include stable, neutral and am-
supersonic jetd=® The noise generation is most efficient plified waves, which arose when there was an embedded
when the phase speed of an instability wave is supersoniggion of local supersonic flow relative to the phase speed of
relative to the ambient fluid and intense Mach waves arehe instability wave. It is noted that Tam and Hused sub-
emitted’~° Therefore, determination of stability characteris- sonic and supersonic modes to designate the acoustic modes
tics of supersonic jets is a vital step for the prediction of jetwith subsonic and supersonic relative Mach numbers respec-
noise, where compressibility often plays an important role. tively. The properties of acoustic mode were extensively dis-
The flow field of a jet issuing from a circular orifice into cussed by MacK based on linear stability analysis of two-
an ambient fluid can be roughly divided into a potential coredimensional waves. Tam and fuoffered a physical
region, a transition region and a fully developed region. Atexplanation of the origin of acoustic mode based on the pres-
the beginning of the core region, the shear layer is very thirsure imbalance across a vortex sheet. For a round jet with
and often modeled by a vortex sheet, as in the theoreticdinite thickness, no rigorous theory exists to provide a clear
studies of Gill}° zaninettt**?and Tam and Hd.The “top-  physical interpretation of amplified acoustic modes.
hat” profile also belongs to the potential core region with a  Jet stability in the fully developed region has received
thin but finite shear layer. This region can be represented byelatively little attention in the past. Batchelor and &ill
hyperbolic-tangent function's. The fully developed(self- proved mathematically that unstable axisymmetric waves
similar) region can be represented by a Gaussian or a paravere excluded from the fully developed incompressible jet
bolic profile. The studies of Batchelor and GiliLessen and  with the parabolic profile, since it has no inflection point.
Singh® and Morrig® all chose the same parabolic profile. Numerical calculations of Lessen and Sifiyand Morris®
The profile is characterized by a thick shear layer withconfirmed the above statement and further established that
slowly varying velocity. the first helical mode was the most unstable. Since compress-
Previous studies on jet stability have been focused on thibility was not included, these studies ruled out the possibil-
potential core region, partly because the jet is most unstabligy of the existence of unstable acoustic waves. This possi-
there and partly because the problem is amenable to theorebility is fully explored in the present study, which will show
cal analysis using the vortex sheet assumption. Two types dhat unstable axisymmetric waves not only exist for the para-
instability modes have been found: vortical and acoustic. Théolic profile at high Mach numbers but also can become
vortical mode, also called “vorticity mode” by MacK,is  more unstable than helical waves.
due to the Kelvin-Helmholtz instability, which is the primary In the next section, the stability problem is defined and
hydrodynamic instability. The term “vortical mode” is used numerical methods for solving the problem are outlined. In
to indicate the extension of Kelvin-Helmholtz instability into Sec. I, the necessary conditions for instability are revisited.
the compressible regime. A comprehensive review of find-This is followed by presentation of results from a “top-hat”
ings on vortical mode instability under various jet flow con- profile in Sec. IV. The temperature-ratio effects on stability
ditions has been given by Michalkg.The acoustic mode are treated in Sec. V. The stability results from a fully de-
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veloped profile are given in Sec. VI. Finally, discussions andnomentum thickness. The first is called a “tepat” pro-

conclusions are presented in Secs. VII and VIII.

II. PRELIMINARIES

We consider the inviscid linear stability problem gov-

file, which represents the initial mean velocity near the jet
exit. It has been investigated by MichalReand Morris'®

among others. The second profile is a similarity solution of a
steady jet emerging from a small circular orifice into an un-
bounded fluidt® Experiments have also confirmed that the

erned by the compressible Euler equations in the cylindricainean velocity profile approaches the form in E@) far

coordinate systemr(#,z). A set of coupled first-order lin-

from the jet exit. It thus has been widely used to represent

earized equations for the six dependent variableshe fully developed jet downstream of the potential coré®

d=u,,uy,U,,p,p,T can be derived using the normal-mode,

The mean temperature was calculated with a

parallel-flow approach. Solutions of disturbances are soughtrocco-Busemann relation for unity Prandtl number:

in the following form:

(Dr(r,G’Z,t):q’\)(r)ei(afrmﬁ*wt)' (1)

where o, m and w are the axial wavenumber, azimuthal

wavenumber and frequency, respectively. With some math-
ematical manipulation, the six linearized equations can be

reduced to a single disturbance equation for pressure:

D?p+ADp+Bp=0, 2
whereD=d/dr and
1 __2aDU, 1 iaDInp
A==-DInp— —+ — —— ,
r aU,—w Fr(aU,— w)?
_ — m?  iapM?
BZpMi(anZ—w)z—az— T
The boundary conditions are
P(r—0)=Cyln(Br), (3)
P(r—)=CoKn(Br), @

wherel,, andK,, are the modified Bessel functions of the
first and second kind of ordem and

iapM?

z_w)2+

©)
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2

T=M? (U(1+Uy)—u2—U,) +
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_U2
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wherey is the ratio of specific heats,/c, and subscripts 1
and 2 indicate the jet centerline and the ambient fluids, re-
spectively. It is noted that the temperature profile depends on
the Mach number in compressible flow. The above profiles
are considered in this study to give typical stability charac-
teristics. Quantitative information about growth rates at very
high Mach numbers could be obtained with experimentally
determined profiles of velocity and temperature.

lll. REVISIT OF NECESSARY CONDITIONS FOR
INSTABILITY

A necessary condition for instability of a velocity profile
was first given by Rayleigh in 189% His theorem states that
the presence of at least one inflection poiot’€0) in the
velocity profile is necessary for instability. Here, the prime
indicates differentiation with respect to the relevant coordi-
nate. Fjortoft' later showed that furthermor&)” must

In the above equations and all the following discussionschange sign around the inflection point. Batchelor and'Gill
all variables are normalized with their jet centerline values derived the above conditions in a cylindrical coordinate sys-
The length is normalized with the jet radius where the axiakem. However, these conditions have been reached for invis-

velocity is equal to the mean of the two free-streaR{s,

cid, incompressible, isothermal flow. Lees and®£inonsid-

where the superscript * indicates a dimensional quantity. Aered the stability conditions for inviscid compressible

bar over a variable denotes its mean vall, is the jet
Mach number.Fr is the Froude number, which is a non-
dimensional gravitational force. When it is neglected
(Fr—o), as is the case in this study, E) reduces to the
form obtained by Michalké?

In the temporal stability analysig is real andw com-
plex. In the spatial analysigy is complex andw real. The

resulting eigenvalue problems for the pressure disturbanc

are solved by a two-domain shooting method, with integra
tion by a variable-step fifth order Runge-Kutta scheme.
Two jet profiles were investigated:

U,=0.5{1+ tanf0.5R,(1—1)]}, (6)
U,=[1+(2-1)r?7? v

where the jet parametd®,= R}/ 6* = 1/0 characterizes jet
profiles at different axial positions#* is the dimensional

1004 Phys. Fluids, Vol. 9, No. 4, April 1997

boundary layers. The general stability criteria obtained were
stated by Le€S as follows: “(1) If the quantity pU')’ van-
ishes for some value df >1-1/M4, then neutral and self-
excited subsonic disturbances exist and the inviscid com-
pressible flow is unstablé2) If the quantity pU’)’ does not
vanish for some value otJ>1—1/M, then all subsonic
%isturbances of finite wavelength are damped and the invis-
cid compressible flow is stable.” Criteriél) and (2) thus

give the sufficient and necessary conditions of instability,
i.e., (0U')"=0 at some interior point. It is noted, however,
that Lees and Liff only proved rigorously the sufficient con-
dition of instability (1). The point where §U’)’ =0 is often
called a “generalized inflection point.” Whether or not the
necessary conditio(®) is valid for compressible flow is still

an open question. Numerical findings in Sec. VI of amplified
subsonic waves in the absence of a generalized inflection
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point are apparently in contradiction (), which suggests For neutral stability p;=0), Eq.(9) has a singularity at
that further analysis of instability conditions for compress-r=r,, where U,=w, /@, unlessDQ(r)=0 at the point.

ible flow is needed. This gives a necessary condition for the existence of neutral
The disturbance equation for the radial velocity compo-stability, independent of the Mach number.
nent is written in the cylindrical coordinate system as: It is seen that in general the stability of compressible
— flow is dependent on the Mach number. The existence of an
D %G(r,Ml)DA inflection point as a necessary condition for instability can-
M=+ ar not be obtained except for zero Mach number. An implica-
— — _ tion of this is that certain flow profiles without an inflection
B iA erDl.izzG(r’Ml)} B EAZO, (9) point, which do no't show instapility in incompressiple flow,
aU,—o [M+a’r r may be unstable in compressible flow. This applies to the
. profiles of Egs.(7) and (8) for axisymmetric waves
whereA =ru, and (m=0), where there is no interior point at which
M2+ a2r? DQ(r)=0. However, for helical wavegm=+0), ((0)
G(r,M;)= IHGOBE =()()=0, there must be an interior point wheb«) =0,
s regardless of the exact form of the velocity and temperature
F(r,M1)=m2+a2r2—HaU—Z— ©)2r2M2, (10) profiles. The profiles of Eqg6) and (8) satisfy both condi-

tions (A) and(B) for any azimuthal moden.
Assuming a temporal stability problem, necessary con-
ditions for instability can be obtained by the following well-

established proceduré$(a) multiplication of Eq.(9) by the IV INSTABILITIES OF "TOP-HAT" JETS

complex conjugate of\ and then(b) integration by parts The stability characteristics of the “top-hat” jet profile
over the domain (&). By notingA=0 atr=0 andx, the  are presented in this section. Compressibility and three-
imaginary part of the resulting equation gives dimensionality effects are studied by varying the jet Mach
0i(1141,—15)=0 (11) numberM, and the azimuthal mode number. Except oth-
e erwise stated, the spatial stability problem is assumed. The
where jet parameterR, is 10 and the ambient fluid is at rest
B — 2 DU AR (U,=0) with the same mean temperature as the jet fluid
|1:J' OM2II e IDA[2+ a*(DU,)"A| dr, (T,=1). (Without ambiguity, the jet Mach number will be
o TUEUR(r,My)[? laU,— o|? written simply asM whenever the ambient Mach number

M, is zero in the following sectionsThe Froude number is

l— waMZHZ alAl? r’p’DU, }dr assumed to be infinity. The mean velocity profile is given by
N P laU,—w|? [IF(r,Mp[?]" Eqg. (6) and the temperature profile by E®).
As expected, both vortical and acoustic mode instabili-
N alA? ties are found for this profile. Although vortical mode has
3= 0 |aU,— w|? been studied extensively in the past, it is presented here for
L comparison with acoustic modes. Figure 1 shows the spatial
5 2—o o IpDU; growth rate and phase speed of the vortical, first helical
XD{Y = (II*= wi)pr Ml}m dr, (m=1) mode against frequency at various Mach numbers. It

_ should be noted that for all helical modes, the plotted quan-
where IT=aU,—w,, Y=m?+a’r? and |-| denotes the tity w/a, is the projection of the actual phase speed on the
magnitude of a complex variable. In order for instability to z-axis. AsM increases, both the maximum growth rate and
exist (w; # 0), a necessary conditionlig=1;+1,. Ascanbe the unstable frequency range decrease while the location of
seen, satisfaction of this condition depends not only on th@eak growth rate shifts to lower frequency. As frequency
mean velocity and density profiles but also the jet Machincreases at a giveM, the phase speed first decreases and
number and the disturbance wavenumber. This fact highthen increases after reaching a minimum. These general
lights the difficulty of reaching a general instability condition characteristics are also true for the vortical, axisymmetric
for fully compressible flow. However, ifM;—0, then mode ftn=0) and higher helical modesn>1). Figure 2
I;=1,=0 andl3 must be zero for instability. This leads to shows the peak growth rate of different azimuthal modes
the first necessary condition for instabiliffs) There must be  against the Mach number. In all cases, the peak growth rate
an interior point at which O(r)=0, where Q(r)  decreases rapidly with increasimg. However, the axisym-
=rpDU,/(m?+ &?r?). This is the counterpart in the cylin- metric mode has the highest rate of decrease. As a result, the
drical coordinate system of conditid@) of Lee$® but valid  dominance of the axisymmetric mode at low Mach numbers
only in the limit of zero Mach number. Using similar proce- gives way to helical modes & >1. At largeM (>8), the
dure but considering the real part of the resulting equatioriirst helical mode is the only remaining unstable mode. Thus
leads to the second and stricter necessary condition for instéer vortical mode, three-dimensional waves become more
bility: (B) (U,—U,JDQ(r.)<0, where U, is the velocity important asV increases.

at r=r., where conditionA) holds. This condition is again As indicated earlier, the wave phase speed relative to the
valid only in the limit of zero Mach number. free-streams is an important parameter as far as sound gen-
Phys. Fluids, Vol. 9, No. 4, April 1997 K. H. Luo and N. D. Sandham 1005
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FIG. 1. The spatial growth rat@ and the phase speél) of the vortical,
first helical mode in a “top-hat” jet at different Mach numbers.

eration is concerned. In a quite different context,?timtro-
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FIG. 3. The spatial growth rat@) and the phase spe¢h) of vortical and
acoustic axisymmetric modes in a Mach 3 “top-hat” jet.
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Mach number is a wave Mach number in the direction of the
wave traveling at an angl¢ relative to thez-axis with phase
speect,,. A similar Mach number was defined by Mackn

the Cartesian coordinate system. Whdp>1 (i=1,2), the
wave is said to be supersonic relative to streanwWhen
M, <1 (i=1,2), the wave is said to be subsonic relative to
streami. For axisymmetric waves in a jet with,=0,
T,=1, the relative Mach numbers reduce tM,;
=Mi(1—cpn) andM,=M;Cpp.

According to Mack!’” acoustic modes exist whenever
there is an embedded region of locally supersonic flow rela-
tive to the phase speed of the instability wave. This is
equivalent to the conditioM ;>1 for jets. In Fig. 3, un-
stable modes in a Mach 3 jetU,=0) are shown. The
growth rate and phase speed of axisymmetric waves are plot-
ted against the real part of the axial wavenumhey) (rather
than the frequency to better illustrate the different modes.
For convenience of discussions, each continuous curve in the
plot is designated by an integer paim{n). Thus mode
(m,n) has an azimuthal wavenumbasr defined in Eq.(1)

FIG. 2. Mach-number effects on the spatial growth rate of the vortical mode2Nd @n acoustic mode numhberHere,n is an integer num-

in a “top-hat” jet.

1006 Phys. Fluids, Vol. 9, No. 4, April 1997

ber starting from 0 and increasing by 1 for each curve in the
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a,-direction. Therefore, Fig. 3 contains modes fréd0) to 0.4

(0,4. The largem is, the higher the axial wavenumbeor ~ /{  — rr?'gllg (©)
frequency at which the peak growth rate for that mode oc- 0.2 ]
curs. Since there could be an infinite spectrum of acoustic g, I ]
modest*” n could be very large. However, the growth rate ook -
for modes with largen is very small so that it is sufficient to [
plot only the first few modes. —02L"

As is clearly seen in Fig. 3, mod@,0) is very different 0 5 10 15 20
from other modes. Its phase speed indicates that it is sub- 0.4 r ,
sonic to the jet streamM,,;<<1) and supersonic to the am- L real (b)
bient stream f1,,>1). Hence, by Mack’s criterion, it is not ool T meg- ]
an acoustic mode. To trace the origin of md@¢)), the jet o [
Mach numbeM was systematically reduced and md@e)) 00T
was seen merging with the Kelvin-Helmholtz mode at 1
M=0. Hence, modd0,0) is a continuation of the Kelvin- o2t .
Helmholtz instability into the supersonic regime and thus a 0 5 10 15 20
vortical mode. On the other hand, mod&sl) to (0,4) are r
supersonic to the jet streanM(;>1 for w/a,<2/3) and 0.4 ’ ol (c)
Mack’s criterion for acoustic modes is satisfied. Further- S imag
more, these modes do not continue down to the subsonic 02r i
regime M<1) if M is systematically reduced. They are o E -
thus acoustic modes. By examination of the phase speed, 0.07
each of these modes has two regimes: one supersonic 0 2Z
(M, ,>1 for w/ @,>1/3) and the other subsonit(,<1 for “o 5 10 15 20
ol a,<1/3) to the ambient. In Fig. 4, four types of charac- r
teristic pressure eigenfunctions are shown. Figufes @nd 0.4 " ' (d) |
4(d) are eigenfunctions of the acoustic ma@l) with sub- N irri%'g. ]
sonic (M,,<1) and supersonicM,,>1) phase speed, re- 0.2} ]
spectively. The pressure disturbance of an acoustic subsonic & r
wave is basically confinedithin the jet. This conforms to 0.0 v
the physical picture of an acoustic wave that is trapped i
within the jet reflecting back and forth. In contrast, the pres- “°~20 : s pra 2

sure disturbance of an acoustic supersonic wave oscillates to
the far field and appears to vadiating. Nevertheless, the
part of the elgenfuncthn within ,the_ Jet,ls V,ery similar to t,ha_‘t FIG. 4. Pressure eigenfunctions @ a non-radiating vortical wave at

of an acoustic subsonic wave, indicating its common origin, - o s; (b) a radiating vortical wave a =3.0; () a non-radiating acous-

On the other hand, eigenfunctions of vortical modes showric wave atM =3.0; (d) a radiating acoustic wave & =3.0.

in Figs. 4a) and 4b) are quite different. Figure(®) is for

mode (0,00 at M=3, which has supersonic phase speed

(M ;>1). It is of radiating nature but does not have the  Acoustic modes are also found for helical modes
dominant part inside the jet typical of acoustic modes. Figurdm=0) at Mach 3. Figure 5 shows first helical modes. The
4(a) is for a vortical mode in a subsonic jet 8t=0.8. The distribution of these modes in the wavenumber space is very
eigenfunction decays rapidly to zero just outside of the jetsimilar to that of the axisymmetric modes but there are dif-
Within the jet, the shape of eigenfunction is very differentferences. For axisymmetric waves, the vortical mode is less
from that of an acoustic mode. In the direct numerical simu-unstable than the leading acoustic modes. For helical waves,
lations of Luo and Sandhafi,it was shown that those the vortical mode is more unstable than any acoustic mode.
modes with radiating eigenfunctions, either of vortical orAlso, the relative Mach numbers defined in E¢s2) and
acoustic nature, were far more efficient in sound generationl3) are functions of phase angig or r. It can be seen that
than modes with non-radiating eigenfunctions. The essentiaghe vortical mode can be supersonid (;>1) or subsonic
difference still lies with that of supersonic and subsonic(M,;;<1) to the jet stream. Near the jet axis£0), M,
phase speed. However, it is less ambiguous to use ternisecomes very small. The maximum growth rate and the cor-
“radiating mode” and “non-radiating mode” in the context responding wavenumber and frequency Et=3 for

of jets since “radiating” implies radiation away from the jet m=0,1,2 are shown in Tables | to Ill. The following char-
into the ambient. To use “supersonic mode” and “subsonicacteristics are observeda) for the vortical mode, helical
mode,” one always has to clarify to which free-stream thewaves are more unstable than the axisymmetric wave but the
terms are referring. Based on the above practical reasoningpposite is true for acoustic modedy) the acoustic first

it is useful to classify instability waves into four moddéf)  helical mode is more unstable than acoustic higher helical
non-radiating vortical, (1) radiating vortical, (Ill) non- (m>1) modes;(c) acoustic modes generally have larger
radiating acoustic angV) radiating acoustic. wavenumbers than the vortical modd) peak growth rates
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1.0¢ ' ' (b) ' ' 1 FIG. 6. The spatial growth rate of acoustic md@el) in a “top-hat” jet at
[ 1 different Mach numbers.
0.8 r 7
06 v b crossings in the pressure eigenfunctiaside the jet corre-
st e T sponds uniquely to the mode numbrerHowever, due to the
3 | ’ - . existence of radiating acoustic modes, the total number of
0.4 Phd /_/‘/ " zero-crossings in the pressure eigenfunction is not unique.
[ , Pl R -7 The growth rate of the acoustic, axisymmetric mode
0.2 / g /,»' ] (0,1 at Mach numbers up to 10 is plotted in Fig. 6. The
- /s maximum growth rate of this mode occursMt=3. When
0.0 L L L - M increases, the peak growth rate occurs at a lower fre-
0 2 4 6 8 10 quency. Interestingly, the unstable frequency range changes
[+

r little with M, contrary to the trend for vortical mode insta-
bility (Fig. 1). The peak growth rate at each Mach number
for modes(0,1), (0,2) and(1,1) is plotted in Fig. 7. Acoustic
modes are found for Mach numbers down to just over unity,
but those with significant growth rates are in the range of

of acoustic modes occur at almost equally spaced wavenurr?-< M <10. The most unstable region is arouvd= 3 for all
three modes. Beyonl = 20, the curves flatten out and ap-

bers; (€) peak growth rates of acoustic modes occur in thepear to approach some constant value. Surprisingly, the peak
subsonic regime <1) with relatively constant phase . ' '
speed 9 Ni2<1) y P growth rate of mod€0,1) is less than that of mod@,2) for

The higher acoustic modes 1) have the same physi- 5<M <17 while Mack’ found that the first acoustic mode

cal origin as the first acoustic mode=€ 1) but shorter wave- was always the dominant one.

lengths. Therefore, a larger number of wavelengths can fit

into the edges of the jéP. As a result, there are correspond- V. TEMPERATURE-RATIO EFFECTS

ingly more nodes and antinodes or zero-crossings in their |n the discussions of the previous section, the tempera-
pressure eigenfunctions. Such phenomena have been showjie of the jet(stream 1 and the ambientstream 2 is kept

by Tam and Hbiand MacR" and are not repeated here. Nev- gqual, i.e., the temperature rafig/T,=1. However, as the
ertheless, an example of the second acoustic mode is pPrezrocco-Busemann relation in E¢8) shows, aerodynamic
vided in Fig. 13c) in the context of a fully developed jet 0 neating has an influence on the mean temperature distribu-
be discussed later. It is noted that the number of zerogon and is dependent on the jet Mach number. Therefore,

FIG. 5. The spatial growth rat@) and the phase speéh) of vortical and
acoustic first helical modes in a Mach 3 “top-hat” jet.

TABLE I. Maximum growth rates of vortical and acoustic instability modes TABLE 1. Maximum growth rates of vortical and acoustic instability
for m=0 at Mach 3. modes form=1 at Mach 3.

(m,n) ) a, —a; ol a, (m,n) ® a, —q; wl a,
(0,0) 0.34 0.401 0.0204 0.848 (1,0) 0.27 0.491 0.1760 0.550
(0,1) 0.49 1.645 0.1459 0.298 (1,1) 0.69 2.488 0.0916 0.277
(0,2) 0.85 3.352 0.0662 0.254 (1,2) 1.00 4.138 0.0432 0.242
(0,3) 1.125 4.934 0.0326 0.228 (1,3) 1.25 5.694 0.0226 0.220
(0,4) 1.36 6.463 0.0173 0.210 (1,4) 1.47 7.210 0.0123 0.204
(0,5) 1.579 7.976 0.0095 0.198 (1,5) 1.69 8.728 0.0069 0.194
(0,6) 1.798 9.493 0.0053 0.189 (1,6) 191 10.249 0.0039 0.186
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FIG. 7. Mach-number effects on the spatial growth rate of acoustic modes

(0,7, (0,2 and(1,1) in a “top-hat” jet. 1.0] ! T )
I (b) |
:\__ _-
results of the previous section have already embodied the 0.8 _’\\\\ g
temperature effects. In this section, the temperature ratio CeL T T
(simply equal toT, after normalizatiohis varied alone and {‘ 0.6'_ N \\\ e — e ]
other flow conditions are kept the same as described in the 3 S S - .
previous section. The objective is to clarify the effects of I N ]
T, on different jet instability modes. 0.4 . -
Figure 8 shows the growth rate and phase speed of the [ : ]
vortical mode in a subsonic j& = 0.8 asT, varies from 0.1 o2l '
(hot jet to 10 (cold jet. Compared with theT,=1 case, “o TS 3 %
increasingT, decreases the peak growth rate but broadens 3]

the unstable frequency range. On the other hand, decreasing

T, first increases and then decreases the peak growth ratéG. 8. Temperature-ratio effects ¢a) the spatial growth rate ani@) the
Pp— phase speed of the vortical mo@g0) in a Mach 0.8 “top-hat” jet.
Decreasingl, always narrows the unstable frequency range.
In all cases, the phase speed over the whole frequency range

is increased ad, increases. Quite different trends are ob-

served 'for ilortical mode in a.supe_rsonic Jet W_Nm:‘?’ a_s case, although the frequency range with substantial growth
ﬂoi/vn n Fig. 9. Compared with thiE,=1 case, increasing oo goes narrow with decreasiiig. The most striking fea-
T, first increases and then decreases the peak growth rate F{Hie is that the phase speed of the acoustic mode is almost
the unstable frequency range always broadens. Decreas”iigdependent of,, unlike the trend observed for any vortical
T;, on the other hand, always decreases the peak growth raf§oqe. Also, the phase speed rises monotonically with fre-
and the unstable frequency range. As to the phase speeg,ency, which is a common character for all acoustic modes.
increasingT, not only increases its overall magnitude but According to Eq(13), with constant phase speed, decreasing
also alters its shape dramatically. It becomes clear that thqe_z will increase the relative Mach numbst,,. Since higher
temperature-ratio effects_ are coupled with compressibility. M, will increase the tendency of jets to emit Mach waves,
The_ te_mperature-ratio effects on _a_coustic modes arﬁicreasing the jet temperatur@ecreasingT,) would in-
shown in Fig. 10 for a Mach 3 jet. Surprisingly, the effects of ;o 4gq jet noise. This is in agreement of experimental obser-

varying T, on the growth rate are qualitatively the same as ations by Oertél® that hot jets produce more sound.
on the vortical mode in thé1=0.8 jet. However, the un-

stable frequency range is less sensitive‘l'_goin the present

VI. INSTABILITIES OF FULLY DEVELOPED JETS

TABLE lll. Maximum growth rates of vortical and acoustic instability

modes form=2 at Mach 3. The numerical procedures for solving the stability prob-

lem of the fully developed jet profile are the same as for the

(m,n) o o —a wlay “top-hat” profile. The mean velocity profile is specified by
(2,0) 0317 0.660 01818 0.480 Eq. (7), which has no adjustable parameter. The mean tem-
(2,1) 0.86 3.246 0.0494 0.227 perature is again calculated by the Crocco-Busemann rela-
(2,2) 1.13 4.871 0.0265 0.232 tion in Eq. (8) with T,=1.

(3’2) i:g ?-ggg g-gég; géég The investigation started with search for vortical insta-
52:5; 181 0.481 0.0048 0.101 bility of various azimuthal modem. As expected, only he-
(2,6) 203 11.007 0.0027 0.184 lical waves were found to be unstable. Figure 11 shows the

growth rate and phase speed of the vortical, first helical
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FIG. 9. Temperature-ratio effects da) the spatial growth rate and) the FIG. 10. Temperature-ratio effects @@ the spatial growth rate arth) the
phase speed of the vortical mo¢lg0) in a Mach 3 “top-hat” jet. phase speed of the acoustic mddel) in a Mach 3 “top-hat” jet.

mode(1,0) at various Mach numbers. As for the “top-hat” “mode mixing” as described by Michalk& Here, “mode
jet, asM increases, both the growth rate and unstable fremixing” refers to a merging of irregular modes with regular
guency range decrease while the location of peak growth rater normal unstable modes without passing through a neutral
shifts to lower frequency. However, the growth rate for thepoint. No satisfactory physical explanation is available for
fully developed jet is much smaller at corresponding Mach“mode mixing.” The fact that local peaks and valleys in the
numbers. The growth rate and frequency range of instabilitgrowth rate occur at equally-spaced frequendiesy., at
atM =2 are already very small and will further decrease asM =10), suggests a link with acoustic resonance. In the
M increases. The phase speed generally decreases with imeantime, phase speeds at all Mach numbers are smooth,
creasingM. However, it increases monotonically with fre- increasing functions of frequency, as shown in Fig(bl2lt
guency, which is quite different from the trend observed foris noted that the phase speed of acoustic modes over the
the “top-hat” jet. whole frequency range increases wWith in opposite trend to

As discussed earlier, no amplified axisymmetric waveghat of the vortical mode. The same phenomena are also
exist in incompressible jets with the fully developed profile. observed in higher acoustic modes and in helical modes.
The situation is quite different in the present compressible It is worth pointing out that oscillations in the growth
jet. Figure 12 shows the growth rate and phase speed aéte curves are not caused by point-to-point numerical errors.
unstable axisymmetric waves in the fully developed jet atEach curve presented here contains thousands of calculation
three Mach numbers. With the same identifying procedurepoints. At places of the kinks, calculations with different
as described in Sec. IV, these unstable waves are found twmerical procedures were conducted to ensure repeatability
belong to acoustic mod@®,1). Unlike the same mode in the of the same phenomena.
“top-hat” jet, the present one becomes more unstable as The maximum growth rate of the vortical first helical
M increases from 3 to 10, although further increasevin  mode (1,0) at M=2.0 is —a;=4.776<10 * (see Fig. 11
will result in a slight decrease in the growth rate. A moreand even smaller at1=3.0. On the other hand, the peak
striking feature is that while the growth rate t=3 has a growth rate of the acoustic axisymmetric mode 1) at
single peak, more and more local peaks appear with increasd = 3.0 is — a;=2.423< 102 (Fig. 12). This shows that am-
ing M. Notice that a small kink exists at abaut=1.2 in the  plified axisymmetric modes not only exist in the fully devel-
M =3 growth rate and reappear at=1.9 in the M=4  oped profile but also become dominant at high Mach num-
growth rate. Such a kink usually marks the beginning ofbers.
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FIG. 11. The spatial growth rat@) and the phase spegd) of the vortical ~ F|G. 12. The spatial growth rate) and the phase spe€d) of the axisym-
mode(1,0) in a fully developed jet at different Mach numbers. metric, first acoustic mod€0,1) in a fully developed jet at three Mach
numbers.

As in the case of the “top-hat” jet, there is a spectrum quite different characteristics in terms of their existence con-
of unstable acoustic modes for the fully developed profile gitions, their eigenfunction shapes, their responses to the
Figure 13 shows only the growth rate of the acoustic axisymyg5ch number, temperature ratio and velocity profile
metric mode(0,2). The general trend with increasirlg is changes. However, a clear physical explanation of the
the same as for mod®,1) but the growth rate at a corre- mechanisms behind these modes does not exist, at least for
sponding Mach number is generally lower. Calculations havgets with realistic thickness. For jets with thin shear layers
also found spectra of unstable waves in helical modegynich can be treated as a vortex sheet, several plausible ar-

m=1 and higher acoustic modes=1 at different Mach  gyments do exist such as the wavy-wall theory of Tam and
numbers. The general characteristics are very similar to those

of mode(0,1) and thus not presented. Finally, some typical
pressure eigenfunctions of acoustic modes in the fully devel- 0.008 L L
oped jet are shown in Fig. 14. Again, non-radiating and ra- ' 1

diating modes exist for each acoustic mode and those for 14 —— M=40
mode(0,1) are illustrated in Figs. 14) and 14b). These are 0.006 : —--- M=50 L
quite similar to corresponding eigenfunctions of the ‘top- 1= . _. M=60
hat” jet. Figure 14c) shows the pressure eigenfunction of a : V1o,

- . . . 1
non-radiating higher acoustic mod®,?. As explained be- | 0-004 H
fore, one more zero-crossing exists in the eigenfunction of }
mode(0,2) as compared with that of mod®,1). Neverthe-

less, the main part of the pressure disturbance is similar, 0’002—__:'5'/'}/;”“ ~\‘ R i
indicating their common origin. oy T~ T~

0.000 !
VIl. DISCUSSION 0 2 4 6

Vortical and acoustic mode instabilities have been found

in b_0th a “top-hat” and a fU”Y_ developed jet PrOﬁIeS- NU- FG, 13. The spatial growth rate of the axisymmetric, second acoustic mode
merical results show that vortical and acoustic modes havé®,?2) in a fully developed jet at four Mach numbers.
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0.16 is high enough so that,, is supersonic to the ambient fluid,
(a) for certain wavelengths a pressure imbalance in phase with
real . . .
0.11  imog - the vortex-sheet displacement is possible and unstable
“‘acoustic” supersonic waves can exist. The attraction of the
o 0.064 | theory is that it offers a unified description of the vortical and
’ acoustic instabilities. A drawback is that it excludes co-
existence of the three modes at the same Mach number,
0.011 \ i which is disproved by our numerical results. Mack’s physical
picture of an acoustic mode is a sound wave trapped in a jet
—-0.04 . . reflecting back and forth inside the jet boundaries. This of-
0 10 15 20 fers a mechanism for a neutral wave but not an unstable
! wave. The theory of Miles and Gill is very similar to that of
0.16 L
(b) Mack but they speculate that sound waves impinging on the

15

0.11

2 0.06

0.014|

(c)

-0.04

vortex sheet at certain angles cause a resonance that releases
large amount of energy to support the back and forth move-
ment of the neutral waves.

The above theories have provided some useful physical
insight into the vortical and acoustic modes but none of them
can fully explain the numerical results in previous sections.
In an earlier paper by Kosanay?’ three modes of distur-
bance fields are identified in compressible viscous flow: vor-
ticity mode, sound-wave mode and entropy mode. The first
two modes of disturbances would lead to the vortical and
acoustic instability modes described in this study. The en-
tropy mode, which is caused by density changes due to heat
conduction, is missing from the present inviscid analysis.
According to Kovaznay?’ the three modes are independent
when the fluctuations are weak but they interact under stron-
ger fluctuations. In the present linear context, the vortical and
acoustic modes are expected to act independently and thus
can co-exist at the same Mach number. Since vorticity dis-
turbances are present regardless of the Mach number, it is

not surprising that vortical instability exists in incompress-
r ible and compressible flow. On the other hand, sound-wave

disturbances are only a compressible flow phenomenon so
FIG. 14. Pressure eigenfunctions of unstable axisymmetric modes in a fulljhat acoustic instability exists in compressible flow only.
developed jet ab = 10. (a) A non-radiating wave of the first acoustic mode Furthermore, when acoustic waves impinge on a vortex sheet
(0.1); (b) a radiating wave of the first acoustic mod@1); (c) a non- o 5 wayy wall as in Tam and Hu's theory, they act directly
radiating wave of the second acoustic md@e). . B S

as “imposed” pressure distributions along the sheet. Clearly,

in a time-space transformation, these pressure distributions

only depend on the frequency of the impinging waves at a
Hu.* the wave reflection theory of Matkand the resonance given Mach number. At certain frequencies, the pressure dis-
theory of Mile€® and Gill1° Tam and Hu’s theory is based tributions may cause a pressure imbalance across the vortex
on Ackeret’s explanation of the Kelvin-Helmholtz instability sheet that is in phase with the vortex-sheet displacement.
but they extend it to supersonic flow. It is assumed that arhis is whenresonanceoccurs and instability arises. For a
vortex sheet separating the jet flow and the ambient fluid izortex sheet or a thin shear layer, a peak growth rate corre-
initially deformed by a Kelvin-Helmholtz wave with a phase sponds to a frequency at which the pressure imbalance is
speedc,,. The vortex sheet is then regarded as a wavy walperfectly in phase with the vortex-sheet displacement. When
in a reference frame traveling with speeg,. Analytical there is a partial in-phase at other frequencies, a lower
solutions of the pressure distributions on both sides of thgrowth rate is obtained. In the above physical picture, the
wavy wall can be obtained. It is shown that in a subsonic jetgxistence of an inflection point is irrelevant since acoustic
the pressure imbalance across the jet is in phase with th@aves act directly as a pressure imbalance that only depends
vortex-sheet displacement and the initial displacement wouldn the wave frequency. And since complete out-of-phase be-
be augmented leading to the Kelvin-Helmholtz instability. Intween the pressure imbalance and the vortex sheet is so rare,
a supersonic jet wherey, is still subsonic to the ambient it is not surprising that acoustic modes are unstable over a
fluid, the pressure imbalance is 180° out of phase with thenuch larger frequency range compared with the vortical
displacement and only neutrally stable waves may efBstt ~ mode.
they point out that in a finite-thickness jet, unstable “acous-  The above discussions can be extended to the peak-and-
tic” subsonic waves can exigtWhen the jet Mach number valley pattern of the growth rate curves of the fully devel-
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