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Direct numerical simulations are conducted to investigate in detail the effect of Mach number on 
vortex pairing in a mixing layer. The pairing process is found to be delayed at higher Mach 
numbers and the paths followed by the vortices change. To investigate the effect of the initial 
shape of the vortices a simple vortex dynamical model of pairing is constructed which accurately 
models pairing at low Mach numbers. Results from the model suggest that a variation in the 
initial shape of the vortices is not sufficient to explain the changes in the pairing process due to 
Mach number. Further simulations are conducted for isolated vortex pairs. There is little 
departure from the expected rotation rate as Mach number is increased, but strong core effects. 
Overall, changes in the pairing process reflect changes in the evolution of the primary instability, 
with vortex trajectories becoming more elongated as the Mach number is increased. 

I. INTRODUCTION 

Compressibility can have strong effects on shear layers, 
the most well known being the reduction in growth rate of 
the mixing layer. At Mach numbers where the mixing layer 
growth rate is less than a half of its incompressible value 
both flow visualizations and numerical simulations show 
turbulent flow with eddying motions. Interpretation of the 
results from such studies in terms of vortex motions is 
difficult since the subject of vortex dynamics is based al- 
most exclusively on incompressible flow (an exception is 
the work of Moore*). It is therefore important to learn as 
much as possible about the effect of compressibility on 
elementary vortex interactions, so that for a given flow, 
where the flow structure or dominant mechanism is known 
from incompressible work, the primary effects of compress- 
ibility can be predicted. 

The reduction in growth rate of the mixing layer as 
Mach number is increased matches the decrease in the 
growth rate of small disturbances, as obtained by linear 
stability theory. Figure 1 shows a typical plot from linear 
stability theory (in this case temporal theory). The maxi- 
mum value of the growth rate for waves of any orientation 
is shown. The most unstable wave is two dimensional up to 
a convective Mach number of 0.6 and thereafter oblique 
with increasing angle. Sandham and ReynoldszY3 carried 
out two- and three-dimensional simulations of the mixing 
layer. These showed that the two-dimensional (2-D) struc- 
tures resulting from the nonlinear evolution of the linear 
eigenfimctions became more elongated as the Mach num- 
ber was increased. Above a convective Mach number of 0.6 
it was confirmed that the organized structure in the mixing 
layer changed from being dominated by spanwise vortices, 
to a much more three-dimensional (3-D) structure. The 
change has also been found in the experiments of Clemens 
and Mungal. In the simulations a double-h structure was 
proposed for the mixing layer at convective Mach numbers 
above unity. 

Although earlier work concentrated on the three- 
dimensional effects at high Mach number, it is clear that 
many of the fundamental effects of compressibility appear 

at much lower Mach numbers and deserve more detailed 
study. From Fig. 1 it can be seen that half the reduction in 
growth rate occurs before a convective Mach number of 
0.6. In some of the earlier work using two-dimensional 
simulations of the compressible NavierStokes equations 
Sandham and Reynolds’ observed changes in the vortex 
pairing process. Three alternative possibilities were then 
offered to explain this: 

(a) That the change in the shape of the original vor- 
tices that formed from the instability of the flow was re- 
sponsible; 

(b) that the rate of rotation of the vortices around 
each other was affected by compressibility; 

(c) that the compressibility effects that led to the re- 
duced linear instability of the mixing layer continued to 
operate during the pairing process. 

In this paper further investigations are made into the 
mechanisms affecting the pairing process as Mach number 
is increased. First, in Sec. II, a series of direct numerical 
simulations are presented, and detailed data concerning the 
pairing process is extracted. In Sec. III, the question of 
vortex shape is addressed. A model of the pairing process 
based on a simple vortex sheet representation of the pairing 
vortices is developed and tested. In Sec. IV simulations of 
isolated corotating vortices are made. Conclusions are then 
drawn as to the most likely causes of the compressibility 
effects. 

II. DIRECT NUMERICAL SlMULATlONS OF VORTEX 
PAIRING 

A series of simulations of vortex merging in a mixing 
layer have been made. To complement previous 
simulations* these were made using a fixed computational 
box length and a iixed initial disturbance. This removed 
some of the variables from the earlier simulations, where 
the eigenfunctions from inviscid linear stability theory 
were used and the box length was iixed by twice the wave- 
length of the most unstable wave. In the earlier simulations 
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t FIG. 1. Growth rate q of small disturbances in the mixing layer, as a 

I function of convective Mach number (from temporal inviscid linear sta- 
bility theory). 

it was not always clear whether an effect stemmed from the 
intrinsic compressibility of the flow, or from box length 
effects. 

The simulations were made for a temporally evolving 
m ixing layer with equal and opposite free-stream velocities 
and equal free-stream densities. Lengths are normalized by 
the initial vorticity thickness (the ratio of the velocity dif- 
ference between the two free streams to the maximum gra- 
dient of the average velocity profile) and velocities by the 
magnitude of the free-stream velocity. The nondimension- 
alized initial velocity profile is given by 

E=tanh(2y), (1) 
and the nondimensionalized initial temperature profile by 
the Crocco-Busemann relation 

Y---l T=1+- 2 MZ( l-z& 

where M , is the convective Mach number of the flow. For 
this case M ,= U/a,, where U1 is the free-stream velocity 
and al is the free-stream sound speed. Pressure is assumed 
to be uniform, allowing a nondimensional density to be 
calculated as the inverse of the temperature. 

To force the pairing process, disturbances were added 
to the initial mean velocity profiles. These consisted of a 
fundamental and a subharmonic disturbance added to 
form disturbances U’ and u’ as follows: 

u’= --A, &cos($)exp($) 

-&$cosE)exp($), 

I 
rY=a,sin~)exp($)+R,sin~)exp($). (3) 

This provides a standard divergence-free disturbance to the 
m ixing layer, with a phase of zero between the fundamen- 
tal and subharmonic such that the pairing is excited most 
efficiently. In all the simulations the amplitudes were cho- 

FIG. 2. Variation of vorticity thickness with time for M,=O.2(-), 
0.4(---), 0.6(-- -), and 0.8(----). 

sen to be Ai=0.05 and A2=0.025. The parameter B gov- 
erning the decay of the disturbance in the free stream was 
set equal to 10. The computational box lengths were pre- 
scribed by Lx=20 and L,=20. Thus the wave number of 
the fundamental and its subharmonic are given by 0.628 
and 0.3 14, respectively. Corresponding amplification rates 
Oi are (0.338, 0.228) at M ,=O.2, (0.297, 0.204) at 
M ,=O.4, (0.233, 0.169) at M ,=O.6, and (0.139, 0.126) at 
Mc=0.8. 

The simulations were made for a Reynolds number of 
200 based on the initial vorticity thickness and Ur, a 
Prandtl number of 1, and convective Mach numbers of 0.2, 
0.4, 0.6, and 0.8. The viscosity varied with temperature 
according to a power law with exponent 0.67. Details of 
the numerical method (Fourier in x and Pade in y) can be 
found in Sandham and Reynolds,* along with results from 
earlier simulations. In the simulations presented here 128 
points were used in the x direction and 151 in the y direc- 
tion. This is sufficient to fully resolve the physical phenom- 
ena and further mesh refinement would not affect the re- 
sults. 

An overall picture of the shear layer evolution is 
shown on Figs. 2 and 3. Figure 2 shows the variation of the 
vorticity thickness with time for a range of Mach numbers. 
Compressibility effects are apparent, even in the change 
from M ,=O.2 to M ,=O.4. By M ,=O.8 the shear layer 
growth is (at least in these two-dimensional simulations) 
strongly retarded. These general features are also observed 
when different measures of thickness, such as the momen- 
tum thickness, are used. Also, almost identical results were 
obtained for simulations beginning from a shear layer with 
a uniform mean density, indicating that the profile given by 
(2) is not critical. Selected views of the vorticity field dur- 
ing the pairing process are shown on Fig. 3 for M ,=O.2 
and for M,=O.6. Considering first the sequence for the 
lower Mach number, it is possible to relate the peaks and 
valleys of the vorticity thickness plot to events in the flow. 
The plateau for 14 < t < 17 corresponds to saturation of the 
primary instability. The sharp change at t= 20 corresponds 
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FIG. 3. Tie sequence of the vorticity field in the mixing layer: (a) 
A&=0.2 at times 18, 22.5, 27, and 31.5; (b) M,=O.6 at times 21.67, 
26.67, 31.67, and 36.67. 

to the point at which two inflection points form in the 
mean velocity profile and the point for calculation of the 
vorticity thickness changes. This occurs at an angle of vor- 
tex rotation of approximately 8=20”. The point of maxi- 
mum vorticity thickness occurs at 8=90”, and thereafter 
the vorticity thickness drops steeply. Comparison with the 
Mc=0.6 case shows how much more elongated the vortices 
are that form from the primary instability. Rotation pro- 
ceeds generally in a similar manner to the lower Mach 
number case, though the details are different. The rate of 
decrease in vorticity thickness following the peak is slower 
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FIG. 4. Definition of d, 0, and 0, for pairing vortices. (Plot taken from 
t=28 at M,=O.4.) 

at the higher Mach number. From the vorticity thickness 
plot it appears that a part of the increase in the time taken 
to reach the maximum thickness (and hence the reduced 
growth rate) can be attributed to the initial time delay in 
forming the first vortex. 

To investigate in detail the pairing process more infor- 
mation is extracted from the time histories of the vorticity 
field. The spacing d and the rotation angle 0 of the vortices 
are readily obtained. Also the angle of inclination of the 
cores of the vortices 8, can be found. During the pairing 
the vortices are quite elongated, even at the lower Mach 
numbers, and so the principal axis is fairly well defined, 
though not as definite as the other two measures. An ex- 
ample of the extraction of information from the vorticity 
field is shown in Fig. 4. The results of this procedure are 
shown in Fig. 5. The normalized spacing of the vortices 
(equal to 1 before the pairing process) is shown in Fig. 
5 (a). The initial s!ope becomes flatter as the Mach number 
increases, reflecting the increased stabilization of the 2-D 
subharmonic secondary instability with increasing Mach 
numbers (Ragab and Wu’). The whole form of the varia- 
tion of vortex spacing changes as the Mach number in- 
creases. A much more oscillatory variation is found at 
M,=O.6, contrasting with the monotonic (up to t=35) 
decrease in vortex spacing at M,=O.2. Spacing can be re- 
lated to rotation by comparison with Fig. 5(b). At 
M,=O.2 an almost linear change in angle with time is 
obtained, while at M,=O.6 the angle shows regions of 
rapid change and regions of very slow movement. The an- 
gle of inclination is shown in Pig. 5 (c) and by comparison 
with the other plots it is evident that the principal axis of 
the vortices rotates by 180” for 360” of vortex rotation. 

Part of the effect of compressibility is the time delay 
due to stabilization of the flow. To isolate pairing effects 
Fig. 6 shows the vortex spacing and inclination plotted 

Phys. Fluids, Vol. 6, No. 2, February 1004 N. D. Sandham 1065 

Downloaded 05 Mar 2010 to 152.78.62.127. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



-u 

(a) 

0.5 

0.4 

0.3 0.2 t 0 M, = 0.4 vi 
CLIP 0;=;.6 ; ; l { 

15 20 25 30 35 40 45 

t 

360 

315 

270 

225 

180 
m 

0 + 
(b? 15 

180 

(4 

A A& = 0.2 
0 MC = 0.4 
0 M, = 0.6 

A MC = 0.2 
•I MC = 0.4 
0 M, = 0.6 

FiIG. 5. Variation during pairing of (a) vortex spacing, (b) angle of 
rotation, and (c) angle of core inclination. 

against 0. This shows much more clearly the change in the 
fqn of the pairing process. The variation of the vortex 
spacing in Fig. 6(a) becomes more oscillatory as Mach 
number increases, with retions where the spacing actually 
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FIG. 6. Plots of the variation of (a) vortex spacing, and (b) angle of core 
inclination with angle of rotation. 

225 

increases. Figure 6(b) shows that the inclination angle of 
the cores of the v&ices becomes almost constant for 45 
< 8 < 110” at M,=O.6, before increasing rapidly up to 160” 
at 8=180”. 

From Figs. 5 and 6 it is possible to extract a simplified 
picture of the charige in vortex orientation du+ng the pair- 
ing process. This is shown in Fig. 7 for the low Mach 
number situation, with the vortices represented by short 
lines aligned with the principal axes at the inctination angle 
6, to ‘the horizontal. Initially the vortices lie at e,=oO. As 
the pairing process starts the vortices move toward each 
other and rotate in a clockwise sense. The axis of’the vor- 
tices also rotates clockwise reaching 8,= 30” at f3=45” and 
8, = 65” at 8 = 90”. By 8 = 90” the spacing of the vortices is 
about 50% of its original value. The rate of decrease of 
spacing slows as 8 increases to 18V, although 0, continues 
to vary, reaching 155” by 8= 180”. The angular velocity of 
the rotation increases for 8> 180” and 0 reaches 360” in 
another six time units, by which time the spacing has de- 
&eased to about 30% of the origi&l and the angle of 
inclination remains at around 180”. This schematic picture 
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FIG. 7. Tie sequence of the pairing process at low Mach number, 
representing the vortices by lines along the principal axis. Times vary 
from 21 to 34.5 in steps of 1.5. The dashed lines show the trajectories of 
the vortex centers. Distances are normalized by the initial vortex spacing. 

of the pairing forms the basis for the investigation of shape 
effects in the next section. 

III. EFFECT OF VORTEX SHAPE 

The simplest model of the pairing process is to con- 
sider a line of point vortices. The vortices rotate around 
each other up to the point 8=90”, moving closer together 
in the process. However, as the rotation proceeds the vor- 
tices move farther apart and end up at 8= 180” with their 
original separation, having only swapped places with their 
neighboring vortex. The problem with this model is evi- 
dently the symmetry in the arrangement at 8= 90”. Models 
with a fixed axisymmetric core structure would all possess 
the same defect. 

The mechanism for vortices moving and staying closer 
together is suggested by Fig. 7. The vortices become elon- 
gated during the initial stage of rotation. By f=21 the 
vortices have rotated and it can be clearly seen that the 
rotation angle 8 is not equal to the inclination of the prin- 
cipal axis of the vortices 0,. The induced motion includes 
a component that moves the vortices closer together in a 
sliding motion. This effect remains in place during the 
whole of the pairing process and causes the vortices to 

I 7s i -fe : ;- ..--. .-___- r :; 

FIG. 8. Sketch of the arrangement of vortex sheets to compute vortex 
trajectories. 

move together, even when the point vortex model would 
have the vortices moving apart. If this mechanism is ac- 
cepted then one possible explanation of the effect of com- 
pressibility is apparent-that the change in the vortex elon- 
gation affects the pairing process. In particular it would 
seem that the tendency for vortices to merge would be 
enhanced by increasing vortex elongation. In this section 
we investigate this in more detail by conducting vortex 
dynamics simulations with a vortex model chosen to in- 
clude simple shape effects. 

To model the pairing process we consider a more com- 
plex vortex that reflects the motion shown on Fig. 7. The 
model for the vortices consists of a straight vortex sheet 
with circulation y that varies linearly from zero at the ends 
up to yc at the center. Control points are fixed at the quar- 
ter and three-quarter positions along the sheet. This pair of 
coordinates is stored for each vortex allowing the angle of 
inclination to be found. For an isolated vortex of this hind 
the rate of precession is about 5% higher than the preces- 
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FIG. 9. Vortex simulation of pairing (a) separation of the vortices and 
(b) rotation of the vortices. Vortex length c=2(--), 3(---), and 
4(- - -). Also shown is the point vortex result (----) and the simulation 
result for &fC=0.2 (symbols). 
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For the induced motion at some point (x,y) not on the 
sheet we have 
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FIG. 10. Vortex simulation of pafig showing core. effects (a) rotation of 
vortex axis and (b) length of the vortex. Vortex length c=2(--), 
3 (- - -), and 4(- - -) . Also shown is the point vortex result (----) and the 
simulation result for M,=O.2 (symbols). 

sion rate of an elliptic vortex with uniform vorticity. 
We consider an arrangement of two such vortices 

trapped between two segments of a vortex sheet of strength 
yS, as sketched in Fig. 8. This is a realistic model of the 
corresponding periodic case. For point vortices the mini- 
mum spacing at 8 = 90” as a fraction of the initial spacing is 
0.541 from this model, as compared to 0.561 for a row of 
point vortices. For internal shape effects the differences are 
expected to be even smaller. Numerical computation of the 
time evolution of the vortices is achieved by summing up 
the contributions from all the vortex sheets in the flow. The 
velocities induced can be found by standard panel 
methods.6 For the self-induced motion of a single segment, 
with circulation increasing from zero at one end up to yC, 
and with the control point halfway along the sheet,, we 
have 

u=o, 

v=yJ2lr. 

Yc 
I( 

Y Y u=~ x arctan x--arctan; 
) 

Y --In 
x2+3 

2 ‘G=PT7’ 1 
(5) Yc Y v=- l-y arctan- 1 ( Y 

27Ts x-s - arctan ; 
) 

-If& x2+.3 
2 G-=-zT7’ I 

where s is the length of the sheet. For the induced motion 
at some point (x,y) due to a uniform vortex sheet of 
strength yS extending from -I, to -I we have 

Ys 
( 

Y Y u=z;; arctan xfl-arctan x+l, 
) 

, 

YS (x+02+3 
v=G-ln(x+r,,Z+yz 

(6) 

To get the total velocity q at a control point the velocity 
contributions from the various elements are summed as 
follows: 

q=k(ql+q2)+43+q4+4s++qs-, (7) 

where ql and q2 combined are the self-induced motion of a 
vortex, q3 and q4 are the elements of the other vortex in the 
flow, and a+ and qs- are the induced velocities due to the 
vortex sheet. For a vortex in a strain field one has to dis- 
tinguish between the rotation of material lines in the vortex 
and the precession of the vortex itself. Although a vortex 
may be trapped in a strain field and not precessing, it is 
clear that fluid elements within the vortex are still rotating, 
expanding when the element lines up with one principal 
axis of strain and compressing along the other. Overall the 
shape of the vortex is fixed, but motion takes place. To 
reflect this in the model the constant k is introduced which 
reduces the precession rate of the vortex by a constant 
factor to reflect the strain field. In the current simulations 
k is held fixed at approximately the level required to main- 
tain the initial vortex arrangement as a stable state. A re- 
finement to the current model would be to make k depend 
upon the length s of the vortices, so that it would change 
during the simulation. An approximation inherent in the 
model is that, although the vortex can deform along its 
axis, it cannot become curved in shape. Hence the model 
will be less accurate late in the pairing process when the 
two vortices become wrapped around each other. 

To represent the pairing process in the mixing layer, 
using the same normalization as in the previous section, we 
set y,=2 and the spacing d between the vortices to be 10. 
The length I shown on Fig. 8 is set by the condition of 
initial stability of the arrangement. For point vortices we 
have 
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FIG. 11. Contour plots of vorticity for corotating vortex pair at t=24 for M,=O.l, 0.2,0.3, and 0.4. The vortices are rotating clockwise and started out 
vertically above one another. 

z d(e+l) 
=2(e--1)- (8) 

For the actual case we use the same value of I, but vary k 
in (7). The quantity I, is a large number to represent an 
infinite extent of the constant vortex sheet. 

The pairing is triggered by giving a small perturbation 
to the initial position of the vortices, Sx=Sy =O. 1. The 
parameter controlling the length of the vortices is c, equal 
to the distance between the control points on the vortex 
sheet, or one-half the initial sheet length. Simulations are 
made for values of c equal to 2, 3, and 4. For these cases 
the value of k was selected to be 0.043 22, 0.099 80, and 
0.185 05, respectively, chosen so that in each case the vor- 
tex went though 8,=25” at 8=45”. Results for the rotation 
and separation of the vortices are shown in Fig. 9, and 
compared with data from the direct simulation at M,=O.2. 
Since the time axis is somewhat arbitrary, determined by 
the magnitude of the initial perturbation, it has been ad- 
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justed so that the curves pass through 0=45” at the same 
time. Also shown is the result for the rotation of two point 
vortices, which do not get beyond an angle of f3= 180”. It 
can be seen that the rotation angle 0 is well predicted for 

c=4 for a complete revolution of the vortices. The spacing 
shows the correct trend up to t= 28 for all the choices of c. 
Behavior beyond t=28 is best modeled with c=4, which 
captures the plateau in the variation of spacing for 90” < 8 
< 180” and the renewed reduction in spacing for 6> 180”. 
The effect of increasing c is to reduce the spacing at 8= 90”. 
This was expected as a result of the longer vortex generat- 
ing more of a sliding motion, bringing the vortices closer 
together. 

Figure 10(a) shows the variation in inclination of the 
principal axis of the pairing vortices 6,, compared with 
simulation data. This measure is well modeled, with the 
constant value of e,=: 180“ for 180 < 8 < 360” correctly pre- 
dicted. Variation in the length c of the vortices is shown on 
Fig. 10(b). This shows that the vortices contract up to 
k45” and then stretch rapidly up to a maximum length at 
ez2w. 

Overall this simple “stick” model of vortices captures 
the main events of pairing quite well. However, taking c as 
the parameter that models the initial shape of the vortices 
we see that the effect of changes in c is not the same as the 
effect of increases in the Mach number. This can be seen by 
comparing the effect of c shown in Figs. 9 and 10, with the 
effect of Mach number shown in Fig. 5. With increased MC 
we find a more oscillatory behavior of vortex spacing. With 
increased c the main effect is the reduced spacing at 8=90” 
and the stronger reduction in spacing achieved during 180” 
< 19 < 270”. The conclusion is that the effects of increased 
Mach number cannot be explained by changes in the initial 
vortex shape alone. 

IV. EVOLUTION OF AN ISOLATED VORTEX PAIR 

In this section a corotating pair of vortices with equal 
circulations is considered. We deline a vortex Mach num- 
ber as follows: 

Mu= IY/2?rda, (9) 

where I’ is the circulation, d is the vortex spacing, and a is 
the speed of sound. 

Direct simulations of corotating vortices were made 
with a two-dimensional code with the same numerical 
method applied in each direction (Pade) and with charac- 
teristic boundary conditions. The size of the computational 
domain was 40 in each direction and 150 points were used 
on a stretched mesh. Vortices were added at (x,y> equal to 
(0,3) and (0, -3). The vortices consisted of a Gaussian 
distribution of vorticity leading to the following form for 
the circumferential velocity: 

(10) 

where r is the distance from the center of the vortex, and I 
is the circulation. The circulation I’=2.4~ was chosen, 
which leads to iW,=O.2/a for the above vortex contigura- 
tion. Variation in M, is obtained by changing the sound 
speed in the simulation. Approximate distributions of the 
pressure and density perturbations in the vortex are also 
specified, to reduce the size of the initial transient, 
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FIG. 14. Contour plots of vorticity for corotating vortex pair at t=80 for M,=O.l, 0.2, 0.3, and 0.4. 

The Reynolds number was set to 200. 
Simulations were made for corotating vortex pairs with 

values of M, equal to 0.1, 0.2, 0.3, and 0.4. Contour plots 
of vorticity at t= 24 are shown in Fig. 11 for each Mach 
number. It can be seen that at the higher Mach numbers 
the vortices spread out faster and the vorticity at the center 
of the vortices reduces. This is consistent with theoretical 
studies7P8 which show radial velocities for compressible 
vortices and would tend to smear the vortices out. The 
maximum value of the local Mach number during the sim- 
ulations is shown in Fig. 12. There are strong initial tran- 
sients at the higher Mach numbers. However, in each case 
the peak Mach number reduces to order unity quite 
quickly. This supports the sonic eddy model of 
Breidenthal,’ which assumes that eddies in a shear layer 
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with Mach numbers above unity do not play a role in 
entrainment. We find here that vortices with large values of 
local Mach number spread out quickly so that the actual 
Mach number reduces. 

Figure 13 (a) shows the variation of vortex separation 
with time and Fig. 13(b) shows the vortex angle. The 
figures show that there is an initial increase in the separa- 
tion of the vortices, which increases as the Mach number 
increases. This increase in the separation leads to a de- 
crease in the angular velocity of rotation which explains 
the slower rotation shown on Fig. 13 (b). After the initial 
transient we find almost no variation of vortex spacing 
with Mach number, up to t=32. On Fig. 13 (c) the prod- 
uct of separation and vortex angle is plotted against time 
and compared with the theoretical result for point vortices 
with the same circulation, The result is a straight line up 
until vortex merging and little evidence for a strong effect 
of Mach number on the induced motions of the vortices. 
The decrease in the separation observed at longer times is 
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FIG. 15. Vortex trajectories during pairing at convective Mach numbers 
of 0.2(--), 0.4(----), and 0.6(- --). Distances are normalized by the 
initial vortex spacing. 

attributed to merging of the vortex cores, shown in Fig. 14 
at time t = 80. 

V. DISCUSSION 

To return to the problem of vortex pairing, we can now 
make some conclusions as to the likely causes of the 
changes that have taken place. The changes in the details 
of the pairing can probably not be attributed to either the 
vortex dynamics of differently shaped vortices, or to any 
change in the motion of corotating vortices. The most 
likely explanation is that compressibility. effects, similar to 
those that caused the decrease in the lin&r?nstability of 
the mixing layer, continue to play a role in the vortex 
pairing process. One feature of the linear instability is that 
it produces more elongated vortices at higher Mach 
numbers.2~‘0 The subharmonic wave that is associated with 
the pairing might also be assumed to produce an elongated 
region of rotation, initially containing the two vortices 
from the roll-up of the fundamental mode of instability. If 
the paths of these vortices become more elongated, then 
during the phase of rotation 90” < 0 < 180” and 270” < 0 
< 360” the vortices would tend to move apart and during 
the stages 0”~ 8~90” and 180”~ 8~ 270” the vortices 
would tend to move together. In fact this is borne out by 

the variation in separation during the pairing process [Fig. 
5 (a)], which follows a more oscillatory path as the Mach 
number increases. The changes are shown in Fig. 15, where 
the actual vortex trajectories are plotted for the three dif- 
ferent Mach numbers of the direct simulations. 

VI. CONCLUSIONS 

An investigation has been made of the effects of com- 
pressibility on vortex pairing and isolated vortex pairs. Di- 
rect numerical simulations were used to extract data for 
the position and evolution of the vortices and to pinpoint 
the trends due to increasing Mach number. Vortex dynam- 
ics simulations, based on a vortex sheet model, were shown 
to do a good job of predicting the motion and orientation 
of the pairing vortices at low Mach number. However, 
changing the shape of the vortices in the model did not 
lead to the same effects as compressibility and so the initial 
shape of the vortices in the mixing layer was ruled out as 
the main cause of the compressibility elIects. Direct simu- 
lations of simple corotating vortices showed that a change 
in Mach number led to only small changes in the expected 
rate of rotation of the vortices as a function of vortex sep- 
aration. Strong core effects were, however, observed at the 
higher Mach numbers considered. Elongated vortex trajec- 
tories were found during pairing, indicating a continuation 
of the phenomena associated with the nonlinear evolution 
of the primary instability. 
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