The University of Southampton
University of Southampton Institutional Repository

Three-dimensional simulations of large eddies in the compressible mixing layer

Three-dimensional simulations of large eddies in the compressible mixing layer
Three-dimensional simulations of large eddies in the compressible mixing layer
The effect of Mach number on the evolution of instabilities in the compressible mixing layer is investigated. The full time-dependent compressible Navier–Stokes equations are solved numerically for a temporally evolving mixing layer using a mixed spectral and high-order finite difference method. The convective Mach number Mc (the ratio of the velocity difference to the sum of the free-stream sound speeds) is used as the compressibility parameter. Simulations with random initial conditions confirm the prediction of linear stability theory that at high Mach numbers (Mc > 0.6) oblique waves grow more rapidly than two-dimensional waves. Simulations are then presented of the nonlinear temporal evolution of the most rapidly amplified linear instability waves. A change in the developed large-scale structure is observed as the Mach number is increased, with vortical regions oriented in a more oblique manner at the higher Mach numbers. At convective Mach numbers above unity the two-dimensional instability is found to have little effect on the flow development, which is dominated by the oblique instability waves. The nonlinear structure which develops from a pair of equal and opposite oblique instability waves is found to resemble a pair of inclined A-vortices which are staggered in the streamwise direction. A fully nonlinear computation with a random initial condition shows the development of large-scale structure similar to the simulations with forcing. It is concluded that there are strong compressibility effects on the structure of the mixing layer and that highly three-dimensional structures develop from the primary inflexional instability of the flow at high Mach numbers
0022-1120
133-158
Sandham, N.D.
0024d8cd-c788-4811-a470-57934fbdcf97
Reynolds, W.C.
88dbc442-722d-424c-ac5b-cbd69bd5dacc
Sandham, N.D.
0024d8cd-c788-4811-a470-57934fbdcf97
Reynolds, W.C.
88dbc442-722d-424c-ac5b-cbd69bd5dacc

Sandham, N.D. and Reynolds, W.C. (1991) Three-dimensional simulations of large eddies in the compressible mixing layer. Journal of Fluid Mechanics, 224, 133-158. (doi:10.1017/S0022112091001684).

Record type: Article

Abstract

The effect of Mach number on the evolution of instabilities in the compressible mixing layer is investigated. The full time-dependent compressible Navier–Stokes equations are solved numerically for a temporally evolving mixing layer using a mixed spectral and high-order finite difference method. The convective Mach number Mc (the ratio of the velocity difference to the sum of the free-stream sound speeds) is used as the compressibility parameter. Simulations with random initial conditions confirm the prediction of linear stability theory that at high Mach numbers (Mc > 0.6) oblique waves grow more rapidly than two-dimensional waves. Simulations are then presented of the nonlinear temporal evolution of the most rapidly amplified linear instability waves. A change in the developed large-scale structure is observed as the Mach number is increased, with vortical regions oriented in a more oblique manner at the higher Mach numbers. At convective Mach numbers above unity the two-dimensional instability is found to have little effect on the flow development, which is dominated by the oblique instability waves. The nonlinear structure which develops from a pair of equal and opposite oblique instability waves is found to resemble a pair of inclined A-vortices which are staggered in the streamwise direction. A fully nonlinear computation with a random initial condition shows the development of large-scale structure similar to the simulations with forcing. It is concluded that there are strong compressibility effects on the structure of the mixing layer and that highly three-dimensional structures develop from the primary inflexional instability of the flow at high Mach numbers

This record has no associated files available for download.

More information

Published date: 1991

Identifiers

Local EPrints ID: 72047
URI: http://eprints.soton.ac.uk/id/eprint/72047
ISSN: 0022-1120
PURE UUID: bfe42323-bd1c-4c7b-9ff0-12612ce85038
ORCID for N.D. Sandham: ORCID iD orcid.org/0000-0002-5107-0944

Catalogue record

Date deposited: 18 Jan 2010
Last modified: 14 Mar 2024 02:42

Export record

Altmetrics

Contributors

Author: N.D. Sandham ORCID iD
Author: W.C. Reynolds

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×