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FORMED AT FAST SPREADING RATES 

 
by Christopher E Smith-Duque 

 
Hydrothermal circulation plays a fundamental role in the chemical transfer from deep 
in the Earth’s interior to the ocean crust, the oceans and the atmosphere. It is also on of 
the principal mechanisms for heat transfer from the mantle to the oceans, atmosphere 
and ultimately, outer space. This process fundamentally influences the composition of 
the ocean crust during formation and aging as it spreads away from the ridge axis. 
However, despite much research into hydrothermal alteration of oceanic crust questions 
still remain including: the thermal and chemical evolution of hydrothermal fluids, the 
geometry of hydrothermal fluid flow, and the factors that control the nature and extent 
of hydrothermal alteration of oceanic crust.  
In this study, whole rock and secondary mineral characteristics of drilled-in situ ocean 
crust are used to (i) Characterise hydrothermal alteration for a range of drilled, in-situ 
fast spread ocean crust sites (ii) assess the factors that control hydrothermal alteration 
within fast spread ocean crust and (iii) assess the evolution and architecture of 
hydrothermal fluid. 

Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean 
Drilling Program Sites 504, 896, 843, 1179, 1149, 1224, 1243 and 1256 represent some 
the most significant penetrations into the upper portion of intermediate and fast spread 
crust to date. Analyses of whole rock chemical changes, Sr, O. C and S isotope 
systematics, petrographic observations and analysis of secondary minerals indicate that 
all sites underwent variable degrees of cold seawater dominated hydrothermal 
alteration. All these sites represent variations in the composition of the upper crust, 
basement topography, sedimentation rates, spreading rates, capping rocks, and age.   
Comparisons between these factors and style and intensity of alteration for each site 
indicate that spreading rate and age exherts the strongest influence on hydrothermal 
activity. 

Sites 1256 and 504 are the only sites in which both low temperature and high 
temperature alteration are recovered, both sites now have complete chemical and 
isotopic records which trace the evolution of hydrothermal fluid through the crust. 
Chemical and isotopic analyses of anhydrite within the ocean crust and consideration of 
the sulfur budget at these sites imply that the majority of hydrothermal fluid is heated to 
moderate temperatures (~250oC) and returns to the oceans as warm diffuse fluids at 
unaccounted for venting sites. 
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1. Introduction 
 
1.1. Rationale 
 
 
The formation of the oceanic crust is the result of decompression melting of the upper 

mantle due to the divergence of the oceanic lithosphere on mantle convection cells. 

The heat driving mantle convection and the heat from the cooling of new oceanic 

crust is essentially the driving force behind hydrothermal circulation. Cold seawater 

that enters the crust, heats up, and reacts with the oceanic crust before returning to the 

oceans as a naturally buoyant, hot, hydrothermal fluid.    

 The hydrothermal alteration of the oceanic crust at the ridge axis and the ridge 

flanks has a profound impact on the chemistry of the ocean crust, the oceans, the 

atmosphere, and, indirectly the continental crust and mantle through subduction of 

altered crust. The heat and nutrients carried by hydrothermal fluids provides energy to 

a unique range of biological communities. In addition, hydrothermal systems are 

responsible for the formation of significant base-metal ore deposits, hence active 

systems provide important analogues for ancient volcanic-hosted massive sulfide 

deposits. However, the factors that influence the geometry and extent of hydrothermal 

systems, such as fluid and heat fluxes, the evolving chemical compositions of fluids 

as they circulate through the systems and, the architecture of the flow system remain 

poorly understood. Seismic velocity profiles of ocean crust and mid ocean ridges, 

sampling of ophiolites, and recovery of in-situ samples of modern ocean crust have 

contributed to the current understanding of how the ocean crust forms and its 

structure. In terms of stratigraphy, ocean crust formed at fast spreading rates is 

relatively simple; consisting of seafloor sediment, extrusive lavas, sheeted dykes, 

gabbroic bodies and residual mantle rocks in near-idealised layering. Ocean crust 

formed at fast spreading rates, therefore, offers the best chance of characterising 

hydrothermal alteration. Because oceanic crust formed at fast spreading rates covers 

30% of the Earth's surface, it is one of the most important tectonic regimes on Earth.  

 The aims of this thesis are; 1) characterise alteration of ocean crust formed at 

fast spreading rates, 2) to quantify and assess the variability of hydrothermal 

alteration in fast spread crust, and 3) to elucidate which factors (such as crustal age, 

sediment cover sedimentation rate, lava morphology, cap-rocks or basement 
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topography) most strongly influence the style and intensity of hydrothermal exchange 

with the oceans. 

This will be accomplished through the characterization of cores and regional 

information from various sites drilled into the ocean crust formed at fast spreading 

rates including Site 1256, the first recovery of a complete section of intact upper 

oceanic crust down to gabbros. 

 

 

1.2. Structure and formation of ocean crust 

 

The diverging plates of the oceanic lithosphere create weakness and space which can 

accommodate new intrusions and eruptions on the seafloor. Our current understanding 

of the processes which form oceanic crust, and the nature of its composition, 

structure, and alteration, are based on a combination of remote geophysical surveys, 

in-situ sampling of modern oceanic crust by drilling, and sampling of ophiolites, (e.g. 

Runcorn, 1959; Vine and Matthews, 1963; Gass, 1968; Lister, 1972; Mottl and 

Wheat, 1994; Alt, et al., 1996). Dredging, submersible dives and shallow drilling in 

tectonic windows have also contributed to our current knowledge of crustal formation.  

There are, however, problems when dealing with rocks recovered from tectonic 

windows and ophiolites: 1) Ophiolites such as the Troodos ophiolite are thought to 

have formed in a supra-subduction zone setting (Miyashiro, 1973; Jenner et al., 1987), 

which differs from the setting of mid-ocean ridges in major ocean basins, 2) Post 

obduction processes, such as regional metamorphism, and deformation often obscures 

the original, in-situ alteration and igneous features and 3), The relationships seen 

within tectonic windows, between the different lithologies, their transitions, and their 

geological context are largely lost or very poorly understood because there is no 

complete section of oceanic crust from any one site. Rocks recovered from such sites, 

therefore, must be treated with caution when one draws any interpretation for modern 

ocean crust. The best way to address the problem is by deep drilling of a complete, in-

situ section of modern oceanic crust. However, despite over 30 years of ocean drilling 

there are very few sites where depths greater than 50 m into crustal basement have 

been penetrated. This hampers study of ocean crust in three dimensions.   

 Based on geophysical surveys, the majority of ocean crust is approximately 

6.5 ± 0.7 km thick (White et al., 1992) and it generally contains four seismically 
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distinct layers at most ocean crust sites. These consist of; 1) sediment, 2) a low 

velocity upper layer, 3) a high velocity lower layer, and 4) a deep very high velocity 

layer that makes up the upper mantle (>8 km/s-1) (Runcorn, 1959).  These seismic 

layers have been assigned a lithology according to the association with the Troodos 

succession in Cyprus (Gass 1968) and their similarity with other ophiolites including 

the Oman and the Papua New Guinea. The following assemblage is now adopted as 

typical ocean crust structure, in ascending order of depth (Figure 1.1); 1) pelagic 

sediments (present in most crust), 2) hydrothermal sediments (may or may not be 

present), 3) extrusive volcanic rocks, 4) sheeted dykes, 5) gabbros, which overlie 

gabbro norites and basal mafic cumulates, and 6) residual mantle rocks (Penrose 

Conference Participants, 1972). In truth, the structure of ocean crust is not ubiquitous, 

because the ocean crust is, exhibiting a wide range of tectonic settings, structures and 

lithologies. 

 
Figure 1.1. Idealized crustal section with associated geophysical boundaries after 
Penrose Conference Participants (1972).  
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1.3. Affects of spreading rate 

 

Spreading rate is thought to have a large impact on crustal heterogeneity. Axial melt 

lenses at fast-spreading centres appear to be continuous on the time scales of 

observation with an approximately steady-state of magma intrusion and cooling 

(Sinton and Detrick., 1992). This leads to a higher occurrence of hydrothermal vents 

along the axis than on ridge flanks or abyssal plains, and a crust that more closely fits 

an idealized layered structure, with smooth basement topography and abundant sheet 

flows (Haymon et al., 1991; Macdonald, 1998; Karson, 2002; Carbotte & Scheirer, 

2004;). Ocean crust formed at slower spreading rates (<40 mm/yr full rate) can have 

complex structures, with intermittent magmatism limiting supply at segment ends and 

resulting in thinner crust. This is thought to generate large throw faults that open 

tectonic windows and disrupt the crustal structure; leading to cooling of the crust at 

greater depths (Huang & Solomon., 1988; Mevel & Cannet., 1991; Baker, et al., 

1996). 

 60 % of all ocean crust is formed at fast spreading rates and it forms 

approximately 30 % of the Earth’s surface, hence understanding the nature of this 

type of ocean crust is of profound importance if we are to constrain the role of 

hydrothermal circulation within ocean crust. Despite this, most of our knowledge of 

oceanic crust comes from deep cores of slow or intermediate spreading oceanic crust, 

as this is where the Deep Sea Drilling Project (DSDP), Ocean Drilling Program 

(ODP) and Integrated Ocean Drilling Program (IODP) have been most successful at 

recovering samples (e.g., DSDP/ODP Hole 504B; Alt et al., 1993). Figure 1.2 

illustrates the distribution of penetrations greater than 50 m sub-basement according 

to age and spreading rate. 

 

 Only two ODP and IODP Holes penetrate through the entire volcanic section 

of the upper crust and into the sheeted dyke complex. ODP Hole 504B, located on the 

southern flank of the Costa-Rica Rift is perhaps the best sampled and studied in-situ 

basement site to date, penetrating a 6.9 Ma section of ocean crust to the base of the 

sheeted dyke complex (Alt et al., 1993).  ODP/IODP Hole 1256D represents a greater 

portion 

 5



Introduction  1.3 
 

 
Figure 1.2 A) Basement age vs. depth of basement penetration for holes that penetrate 
>50m sub-basement, and B) depth of penetration in holes with basement with 
spreading rate divisions. (Modified from Wilson et al., 2003; Teagle et al., 2006) 
 
 
of the ocean crust because it has recovered a complete lava and dyke section together 

with (for the first time) gabbro (Wilson et al., 2006, Teagle et al., 2006). Site 1256 

formed at approximately 15 Ma at a superfast spreading rate (220 mm/yr), and, 

through geophysical surveys and observations of the recovered core, it represents 

perhaps the simplest structure that closely fits the idealised ‘Penrose’ crust structure 

(Penrose Conference Participants, 1972). In addition to Sites 504 and 1256, a number 

of other shorter penetrations of ocean crust formed at intermediate to fast spreading 

rates also provide valuable insights into the hydrothermal alteration of volcanic rocks 

in areas with differing ages, spreading rates, lithologies, and sedimentary burial. 

These Sites include 896, 843, 1224, 1243, 1149, and 1179 (Figure 1.6).
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1.4. Hydrothermal alteration 

 

The study of hydrothermal fluids began when Victorian scientists speculated that the 

ore deposits of Trondheim in Norway, Rio Tinto in Spain and the Rammelsberg 

deposit of Germany were formed by exhalation of hot hydrothermal fluids (e.g., Vogt, 

1894, 1899). Similar deposits were found in the Troodos ophiolite, Cyprus, in the 

form of sulphide lenses with underlying stockworks within the host rock. Gass (1968) 

first implied that the Troodos ophiolite actually represents an obducted slice of ocean 

crust, therefore modern ocean crust may be undergoing hydrothermal activity in a 

similar fashion to these deposits.    

 Sedimentary geochemistry led to the first proposal of hydrothermal circulation 

by Boström et al, (1969). They suggested that it provided a mechanism for input of Fe 

and Mn into the oceans and the presence of sediments at the active mid-ocean ridge 

system with low Al/Al + Fe + Mn ratios. In addition, lavas with slowly cooled 

interiors were observed to have depletions in Mn, Fe, and Co, compared to fresh glass 

at the pillow margins, which was similarly interpreted to be the result of element 

leaching by percolating fluids in cooling fractures within the pillow basalts (Corliss, 

1971). 

 Detection of active hydrothermal venting was carried out by measuring 

temperature and turbidity above mid-ocean ridges, using a series of thermistors in 

tow. The sharp temperature anomalies above the Galapagos vent site were 

hypothesised by Williams et al, (1974) to be the result of plumes of hot water rising 

buoyantly from a hydrothermal vent. Other lines of evidence for the presence of 

hydrothermal venting was obtained by experimentation. Before the direct observation 

of hydrothermal venting, reactions between basalt and seawater were performed. 

Natural to artificial seawater with variable temperatures, pressures, water-rock ratios, 

and durations was reacted with basalts with grain sizes that vary from glassy to coarse 

grained. A detailed review of these experiments is given by Mottl (1983). The most 

successful experiments by Mottl and Holland, (1978) and Mottl et al., (1979) were 

able to predict the chemistry of the seafloor hydrothermal vent sites and the chemical 

changes exhibited by basalts during alteration to greenschist-facies assemblages. 

Confirmation of deep sea hydrothermal venting at mid-ocean ridge sites occurred in 

1979 with a diving expedition using the deep sea submersible ‘Alvin’, in which deep 
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sea hydrothermal fluids venting from chimneys on top of sulphide lenses at mid ocean 

ridges were observed (Corliss et al., 1979). Future expeditions revealed that such deep 

sea vents were commonplace along mid-ocean ridges across the world (Edmond, 

1980; Macdonald et al., 1980; Detrick and Honnorez, 1986; Rona et al., 1986; Craig 

et al., 1987; Campbell et al., 1988; Murton and Klinkhammer, 1994; German et al., 

1995). 

 

 

1.4.1. Geometry of hydrothermal systems 

 

Recent understanding of hydrothermal systems in ocean crust comes from numerical 

modelling and analysis of samples recovered at various deep sea drill sites, diving 

expeditions, and ophiolites (e.g., Gass, 1968; Chapman and Spooner, 1977; Corliss et 

al., 1979; Alt  et al., 1996). The heating of cold seawater that percolates through the 

upper ocean crust causes interactions with the host rock, leading to changes in the 

chemistry of the seawater (which evolves to become a hydrothermal fluid) and 

alteration of the host rock. The cooling of the oceanic lithosphere and the mid-ocean 

ridge magma chamber releases heat, which is transferred to the hydrothermal fluids. 

Hot (~350-450oC) buoyant hydrothermal fluids will rise and vent to into the oceans, 

thus completing the hydrothermal convection cell. This process enables transfer of 

heat form the mantle and basement rocks to the oceans. The heat facilitates reactions 

between the wall rock and fluid, allowing chemical transfer to take place. 

 Site 504 was the first recovery of a complete volcanic section from true 

oceanic crust (except ophiolites) and it penetrated over 1km of the underlying sheeted 

dyke complex. Thus, it has become the reference section for the petrology, 

geochemistry, hydrothermal alteration, and magmatic and physical properties of the 

ocean crust (e.g. Becker et al., 1989; Alt et al., 1996). Site 504 penetrated 274.5 m of 

sediment, 571.5 m of volcanic rocks, 209 m transition zone rocks and 1050 m of 

sheeted dyke complex. The volcanic rocks are dominated by low temperature 

alteration, with celadonite, saponite, iron-oxyhydroxides, zeolite and carbonate 

secondary minerals formed by oxidizing seawater circulating through the upper crust. 

The extent of oxidation decreases downhole as a result of restricted fluid flow (Alt et 

al., 1996) towards the lithological transition zone, which is dominated by 

disseminated metal sulphide mineralization. Alteration of the upper dykes includes; 1) 
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early chlorite, actinolite, albite-oligoclase, and titanite, followed by 2) quartz, epidote, 

and sulphides, then 3) anhydrite, and finally 4) zeolite and local calcite. Inferences of 

temperatures within the upper dykes range from 350-380oC (Alt et al., 1996). In 

addition to the alteration observed in the upper sheeted dykes, alteration of the lower 

sheeted dykes includes loss of Al, Mg, Ca, Cu and S, and the formation of hornblende 

and calcic secondary plagioclase in alteration halos and patches at temperatures of 

~300-400oC. Alt et al, (1996) report heterogenous alteration within the sheeted dykes 

and that the geometry of fracturing exerts a strong control over the intensity of 

alteration at Site 504 (Alt et al., (1996). Observations from Site 504, ophiolites, and 

other penetrations of in-situ basement rocks led to the definition of three zones that 

make up a hydrothermal system. These are, the recharge zone, the reaction zone and 

finally the discharge zone (Alt et al., 1995), which are outlined in Figure 1.3.   

 

 
Figure 1.3. Stylised model of a hydrothermal system outlining possible directions of 
fluid flow and their evolution within oceanic basement. The Recharge zone outlines 
the area of regional recharge at which seawater percolates into the ocean crust, slowly 
heating up (~0 to ~150oC) whilst interacting with the ocean crust. The Reaction zone 
is the hypothetical area on or near a large heat source e.g. the mid-ocean ridge magma 
chamber where the fluid intensively reacts with the host rock to form hot (~400oC), 
black smoker-type hydrothermal fluids. After reaction, the hot buoyant fluid rises and 
cools slightly to (~350oC) and discharges at vent sites. Based on Alt et al. (1995). 
Potential off axis hydrothermal fluid flow is also included. 
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Recharge zones may be defined as areas in which cold seawater enters the 

ocean crust and causes variable alteration of volcanic glass and primary igneous 

minerals and precipitation of low temperature phases, such as clay minerals, iron-

oxyhydroxides, carbonates and zeolites. It is thought that most seawater circulates 

within the upper volcanics and that only a minority of seawater actually penetrates 

into higher temperature regimes due to lower porosity deeper in the crust and 

restrictions created from secondary mineral precipitates (Alt, 1995). For this reason, 

the ‘recharge’ zone can be split into open (cold, <40oC, seawater dominated) and 

restricted (warmer 100o to 200oC slightly more evolved) systems. Unlike ‘open’ 

circulation, iron-oxyhydroxides and celadonite are no longer present in restricted 

systems, which implies reducing conditions (Alt 1989a; Alt, 1995; Teagle et al., 1996; 

Alt, 1998). Active alteration within the ‘recharge’ zone may persist for 10’s of 

millions of years during a passive off axis circulation (Parsons and Sclater, 1977) 

within the upper 200-300m of crust (Fisher et al., 1990). At Site 504 both ridge flank 

processes and axial hydrothermal processes overlap (Alt, 1995). Observations of 

higher temperature assemblages, for example chlorite, actinolite, prehnite (greenschist 

facies) occur at depth, under more restricted fluid flow regimes (Alt, 1995). In 

addition, the increased abundance of anhydrite (at temperatures above ~120oC) and 

the increased albitization of plagioclase indicate increased temperature and greater 

interaction with basalt within this regime. Although the change from low temperature 

phases to greenschist phases has only been recorded in-situ in two Sites (Site 1256 

and Site 504), observations of alteration in the upper oceanic crust are well 

documented (e.g. Andrews, 1977; Staudigel et al., 1981; Bohlke et al., 1981; Laverne 

and Vivier, 1983; Alt and Honnorez, 1984; Bohlke et al., 1984; Staudigel and Hart, 

1985; Berndt and Seyfried, 1986; Alt et al., 1986a, 1992; Alt, 1993; Teagle et al., 

1996). 

The reaction zone is the theorised location at which cool hydrothermal fluids 

at depth evolve to become hot hydrothermal fluids by reacting near, or close to, a heat 

source, such as a magma chamber, before they return to the oceans as hot (~350-

400oC) black smoker type fluids at mid-ocean ridges. The mineral phases actinolite, 

prehnite, chlorite, secondary Ca-plagioclase are more abundant. In the lower sheeted 

dykes and gabbroic bodies at Sites 504 and 1256 respectively, secondary 

clinopyroxene, Mg-hornblende, and calcic plagioclase are prevalent with recorded 

temperatures in excess of 425oC (Wilson Teagle Acton et al., 2006; Vanko and 
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Laverne, 1998). Despite much work (e.g. Constantinou, 1980; Richardson et al., 1987; 

Alt, 1994; Alt et al., 1995; Embley et al., 1998; Coggon, 2006; Vanko and Laverne, 

1998), the nature and processes by which fluids acquire black smoker-like fluid 

compositions remains poorly understood. Vanko and Laverne, (1998) suggest that the 

reaction zone can be separated temporally as conditions evolve from initial fluid 

infiltration to steady state and finally waning hydrothermal activity. Because the 

majority of sampled black smoker fluids with seawater chlorinity have depleted Na 

concentrations, it is commonly assumed that this arises from albitization in the 

reaction zone prior to upwelling (Von Damm, 1995). Although albitization is 

observed in rocks at reaction zone temperatures (250oC-400oC) (Gillis and Thompson, 

1993), experimental studies by Berndt and Seyfried, (1993) indicate that the 

conditions for the formation of black smoker type fluids deep in the crust can not be 

explained by the formation of albite and oligoclase in the reaction zone. Vanko and 

Laverne, (1998) report early widespread magmatic plagioclase (An40-90) and 

clinopyroxene replaced by secondary plagioclase (An54-95), hornblende and minor 

secondary clinopyroxene. They imply that these observations of calcic plagioclase at 

Site 504 and within the Oman Ophiolite satisfy the conditions for black smoker fluid 

formation determined by Berndt and Seyfried, (1993) and that hydrothermal 

anorthitization is common in modern ocean crust.  

Hydrothermal upflow occurs where hot buoyant hydrothermal fluids, having 

acquired their black smoker compositions, return to the oceans through narrow 

conduits, ultimately forming hydrothermal vent systems where fluids may mix with 

cold seawater, i.e., the discharge zone shown in Figure 1.3.1. Such feeder zones were 

first found in ophiolites (Constantinou, 1980), and later observed within the ocean 

crust on fault scarps and drill cores (e.g., Embley et al., 1998). This is supported by 

the observation of epidote at the base of the sheeted dykes and gabbros at Site 504 and 

1256 (e.g., Alt, 1995; Teagle et al., 2006). Formation of this mineral requires high 

volumes of water passing through to the rock (e.g., Richardson et al., 1987). Epidote 

at Sites 504 and 1256 is thought to be formed during focussed upflow (Alt, 1995; 

Teagle et al., 2006), although it can be found within the ‘reaction zone’, for example 

in ophiolites (Richardson et al, 1987). The geometry of ridge-flank hydrothermal 

circulation has been further studied by the distribution of microeathquakes at the East 

Pacific Rise, which are interpreted to be the result of hydrothermal cracking. These 

studies have shown that along axes, hydrothermal circulation is strongly aligned to the 
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ridge axes, with a clearly defined recharge zone above an axial discontinuity and a 

band that lies directly above the axial magma chamber (Tolstoy et al., 2008). 

 

 

1.4.2. Modelling of hydrothermal fluid flow  

 

The evolution of hydrothermal fluid through the ocean crust and alteration of the 

ocean crust requires significant heat to drive the system. Early models of heat flow 

were based on the principle that heat flow and bathymetry is highest at mid ocean 

ridges (MOR), because this is the surface expression of the rising limb of a 

convection cell (Holmes, 1931). An alternative model proposed the cooling of a 

ridged plate moving at constant velocity away from the ridge axis, which acts as a hot 

boundary. This model was shown to roughly agree with measured heat flow data 

gathered from various sites around the world (Langseth et al., 1966; Lister, 1972). 

Lister (1972) used measurements of low heatflow and the non-refractive scatter in 

flank areas to infer that hydrothermal circulation was the dominant mechanism for 

heat transfer.  

 Heat flow and bathymetry data shows an empirical relationship between 

heatflow and age, and depth with age, that is similar for all oceans (Sclater and 

Francheteau, 1970; Sclater et al., 1971). This is consistent with the simple model of 

thermal contraction that leads to isostatically compensated density increases 

(McKenzie and Sclater, 1971; Sclater et al., 1971; Davis and Lister, 1974). In 

addition, geophysical evidence implies that plate thickness increases with age (Parker 

and Oldenburg, 1973). Heat flow, however does not vary indefinitely with age, and as 

crust ages (~65-70 Myr) heatflow and bathymetry approaches a constant value 

(Richter, 1973; Richter and Parsons, 1975; Mckenzie and Weiss, 1975; Parsons and 

Sclater, 1977).  
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Figure 1.4. (a) Observed and predicted average conductive heat flow vs age, (b) 
cumulative heat flux vs. age partitioned into observed (conductive) and hydrothermal 
(predicted – observed). The predicted model is based on the lithospheric cooling 
model GDH1 (After Stein and Stein, 1994). 
 

 

Figure 1.5. Heat flow discrepancy thought to be caused by hydrothermal activity 
presented as either a), directly from heat flow data or b), a fraction of the predicted 
heat flow that is observed. Ridge and off axis flow are divided within the discrepancy 
based on age. Sealing age marks the point at which the precipitation of secondary 
minerals by hydrothermal activity ‘seals’ interconnected pore space and fractures 
(From Stein et al., 1994).  
 
Ultimately these relationships culminated in the lithospheric cooling model GDH1 

(Global Depth and Heat flow), which is derived from the joint inversion of variation 

in seafloor depth and heat flow with age, as indicated in Figure 1.4 (Stein and Stein, 

1994). When global heat flow data (Stein et al., 1994) is compared to the GDH1 

model a large discrepancy occurs which can only be reconciled by cooling as a result 

of hydrothermal cooling (Stein and Stein, 1992; Stein et al., 1994) (Figure 1.4).  
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1.4.3. Ridge flank hydrothermal circulation. 

 

The importance of ridge flank hydrothermal alteration is clearly illustrated by the heat 

flow models shown in Figure 1.4. In these models approximately 11±4 x 1012 W of 

the predicted global oceanic heat flux (32 x 1012 W) can be attributed to hydrothermal 

flux, of which only 3.2±0.3 x 1012 W occurs within 1 Myr of ocean crust formation at 

the ridge axis. Therefore, even at the most conservative of estimates, ~70% of all 

hydrothermal heat flux must occur by off axial low temperature alteration (Figure 1.5) 

(Stein et al., 1995). A more recent estimate of mid ocean ridge (MOR) hydrothermal 

heat flow of 1.8 ± 0.3 TW (Mottl., 2003) suggests that only 15 % of this heat flow is 

associated with active MOR systems. Modelling of fluid flow based on basement 

relief, distribution of sediment cover, conductive heat transfer through sediments and 

thermal and geochemical homogenisation of pore fluids at the sediment basement 

imply that passive, off axis hydrothermal circulation takes place and that it is induced 

by topographic variations (Fisher et al., 1990; 1994).  The importance of ridge 

flank hydrothermal circulation is underlined by the oceanic budget of Mg. A review 

of heat and mass budget constraints and the composition of black smoker fluids in 

Mottl and Wheat, (1993) implies that 10-40% of riverine Mg can be taken up by high 

temperature alteration at the ridge axes (Mottl and Wheat, 1994). Most heat loss 

occurs on ridge flanks, where temperatures are lower and seawater flux is higher, 

therefore Mottl and Wheat (1994) suggest that heat loss on flanks, and therefore, 

upwelling must occur over a wide area (5-30% of seafloor up to 65 Ma) and that 

temperatures of ~20oC would mean that a barely detectable loss of Mg <1-2% from 

the seawater would be enough to reconcile Mg mass balance in the oceans. Recent 

swath map, seismic, and seafloor heat flux data from a range of basement outcrops 

covering 14500 km2 of the coccos plate indicate that a high proportion of heat is 

extracted by advection, requiring a fluid discharge rate of 4-80 x 103 litres per second 

of off axis flow within the area (Hutnak et al., 2008). Limits on the extent of ridge 

flank circulation are based on studies of heat flow anomalies, tied to sediment 

thickness, and seismic profiles at Site 504 and 896 (Davis et al., 2004) and extensive 

modelling based on basement relief, sediment cover, heat transfer, and pore fluid 

chemistry by Fisher et al, (1990), and Fisher et al, (1994). These studies suggest that 

significant circulation in ridge flanks only takes place in the upper 100-300 m of 

ocean crust. Recent insights into basement outcrops on ridge flanks indicate that 
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advective extraction and fluid flow may be facilitated by high permeability conduits 

(Fisher et al., 2003a 2003b; Wheat et al., 2004; Hutnak, 2008) and basement outcrops, 

such as seamounts, acting as areas of focussed fluid flow (Wheat and Mottl, 2000; 

Fisher et al., 2003).  

 Hydrothermal evolution of pore fluids and basement geochemistry of the Juan 

de Fuca Ridge have been extensively studied (Davis et al., 1992; Mottl and Wheat, 

1994; Wheat and Mottl, 1994; Thompson et al., 1995; Davis et al., 1997; Wheat and 

Mottl, 2000). Studies of a transect of the eastern flank of the Juan de Fuca Ridge 

reveal that pore fluids deviate increasingly from seawater with increasing crustal age 

(Wheat and Mottl, 1994; Davies et al.,1997; Elderfield et al., 1999; Hunter et al., 

1999; Fisher and Davis, 2000; Marescotti et al., 2000). The dependence of basement 

fluid composition on basement temperature, which in turn is linked to crustal age, 

sediment cover and depth of fluid circulation (Wheat and Mottl, 1994) has been 

outlined by recent analyses of carbonate veins along the eastern flank of the Juan de 

Fuca Ridge (Coggon et al., 2004). These studies indicate that the fluids from which 

the carbonate veins were precipitated had evolution trends that mirror the near-

basement pore fluid compositions and that precipitation occurred for the entire 

duration of low temperature basement alteration. Elemental leaching from basement 

and sediment, and incorporation into secondary minerals has been traced by leeched 

Sr, Ca, Fe, and Mn from basalt and uptake of Mg, Sr, Ca, Fe, and Mn by carbonates, 

and the removal of Mg, Mn and Fe into clays (Coggon et al., 2004). These studies 

support the earlier interpretation that off-axis circulation persists for tens of millions 

of years after crustal formation (e.g., Mottl and Wheat, 1993; Stein et al., 1994; 

Elderfield and Schultz, 1996;).   

 

 

1.4.4. Summary. 

 

Despite the uncertainties and factors that might influence these interpretations 

including sedimentation rates, sample bias, local variations in heat flow and 

bathymetry and rock chemistry (Stein et al., 1995), off-axis fluid flow and diffuse 

venting appears to make up the vast majority of hydrothermal circulation within the 

ocean crust. In addition is plays a critical role in balancing heat flow, fluid fluxes and 

chemical fluxes. Observations of alteration within the oceanic crust show extensive 
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variability in the style and intensity of alteration. Global estimates of the heat, fluid 

and chemical fluxes on mid-ocean ridge axes and flanks (e.g. Palmer and Edmond, 

1989; Bickle and Teagle, 1992; Elderfield and Schultz, 1996; Alt, 2003; Mottl, 2003; 

Mottl and Wheat, 1993; Staudigel, 2003; Teagle et al., 2003; Davis, 2004; Wheat et 

al., 2004; Stein and Fisher, 2003; Gillis et al., 2005; Hutnak et al., 2008) remain 

poorly understood due to the lack of regional high resolution data sets and sampling 

of in-situ basement. The factors that have been implicated to account for this include; 

variations in the structure of the oceanic crust, sedimentation rates, basement 

topography, lithology and the nature of mid ocean ridge magma chambers. Recent 

studies, however, suggest that spreading rate may have a significant role in the style 

and intensity of hydrothermal alteration. (e.g., Haymon et al., 1991; Karson, 2002; Alt 

et al., 1996; Teagle, 2003).  
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1.5 Aims and outline of this thesis 

 

The aim of this thesis is to assess which factors affect the style and intensity of 

hydrothermal alteration of ocean crust formed at fast spreading rates by observations 

and analyses of a range of in-situ basement sites formed at fast to superfast spreading 

rates. The visible manifestation of hydrothermal processes at basement sites are the 

replacement of primary igneous phases and filling of fractures and vesicles with 

secondary minerals. 

 
Figure 1.6. Locations of in-situ basement sections studied in this thesis (red) and Sites 
with potential for further analyses (clear) that formed at intermediate and fast 
spreading rates.  
Chemical analyses of the secondary minerals, together with fresh and altered whole 

rock samples, are used to assess the chemical changes associated with alteration, the 

extent of fluid-rock interaction and the compositions of the fluids from which the 

secondary minerals precipitated. In addition, an assessment of the tectonic settings, 

the architecture, sedimentary history, and basement topography of each site will be 

made. Figure 1.6 shows the location for all basement sections that are covered in this 

study.  

 

Chapter 2 

 

The analytical techniques and methods used, including precision and accuracies are 

described in Chapter 2. Measurements of major elements, trace elements, rare-earth 

 17



Introduction  1.5 
 

elements (REE), 87Sr/86Sr, δ18O, δ13C, and Fe2+/Fe3+ were carried out on whole rock 

specimens, mineral separates, and glass samples. In addition, leaching experiments 

carried out on a selection of least altered whole rock samples and clay minerals are 

also reviewed here.  

 

Chapter 3 

 

The geology, petrography and chemistry of Site 1179 is described here. The first of 

the major sites to be studied, Site 1179 penetrates ~100m of ~129 Ma basement on the 

North West Pacific Ocean on the Pacific-Inzanagi ridge. This Site formed at a fast 

spreading rate, it has undergone relatively little sedimentation, and has a smooth 

basement topography. Petrographic descriptions and analyses of major elements, trace 

elements, REE, 87Sr/86Sr, δ18O, δ13C, and Fe2+/Fe3+ are used to characterise and 

quantify alteration at this Site. In addition, chemical changes were calculated from 

calculated precursor compositions following Gresens (1967) and Grant (1982).  

Precursor compositions were assessed in several different ways in order to determine 

chemical changes that reflect, as close as possible, changes from the primary igneous 

composition. In this chapter, links between Site 1179 basement and nearby Shatsky 

Rise plume are tested by assessing the variations on whole-rock 87Sr/86Sr and the 

influence alteration may have on what may be presumed to be the primary 

compositions of the basalt 

 

Chapter 4 

 

Site 1256 is described and discussed in a similar way to Site 1179. Site 1256 

represents the most complete in-situ section of modern ocean crust recovered to date, 

with penetration encompassing the lavas, transition zone, sheeted dykes, and into the 

gabbros. With perhaps the highest resolution of samples, Site 1256 presents the best 

opportunity characterise hydrothermal alteration for a large section of upper ocean 

crust formed at superfast spreading rates. To this end whole rock samples, glass 

separates, and mineral separates are analysed for major elements, trace elements, rare-

earth elements (REE), 87Sr/86Sr, δ18O, δ13C, Pb-isotopic ratios, and Nd-isotopic ratios. 

Following the methods outlined in Chapter 3 (Site 1179), the chemical changes at Site 

1256 are calculated. A range of glass samples and leached whole rocks constrain 
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primary mineralogy. The nature of low temperature fluid though the analysis of 

carbonate veins is also discussed. Anhydrite at Site 1256 and the nature of high 

temperature fluid evolution at Site 1256 is discussed in Chapter 8. 

  

Chapter 5 

 

In this Chapter the petrology and chemistry of Site 1149 is discussed in detail. At an 

age of 132 Ma with ~130 metres of penetration, Site 1149 is important because it 

represents relatively old ocean crust formed at fast spreading rates. Analyses of 

recovered samples include; major elements, trace elements, rare-earth elements 

(REE), 87Sr/86Sr, δ18O, δ13C, from secondary minerals and whole rock samples. 

Characterisation of alteration at this site is achieved by petrographic observations, 

analysis of the chemical change from the primary igneous protolith, and studies of the 

fluid chemistry from analysis of carbonate. 

 

Chapter 6 

 

Here, brief summaries discuss the geology and petrography of DSDP/ODP Sites 504, 

896, 1243, 1224, and 843. These sites penetrate oceanic basement in a wide rage of 

tectonic and geological settings at different ages. Thus, they are essential for a true 

global appraisal of hydrothermal activity of ocean crust formed at fast spreading rates. 

In order to improve resolution for a more complete assessment of alteration and 

chemical change, additional whole rock and carbonate data was collected for Sites 

843, 1224, and 1243 during this study. These include major elements, trace elements, 

rare-earth elements (REE), 87Sr/86Sr, δ18O, δ13C, which are used to quantify chemical 

change and to assess the nature of the low temperature fluid to which all secondary 

minerals at these sites precipitated. Site 504 penetrates the extrusive section and most 

of the dykes, and because it is currently the best documented sample of modern ocean 

crust, it is the reference section to which all other oceanic basement sites are 

compared.  
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Chapter 7 

 

Chapter 7 forms the synthesis of the petrographic, geochemical, tectonic and 

geological features for all the Sites that this study covers. Sites 1179, 1256, 504, 896, 

1224, 1243, and 843 are a comprehensive suite that span over 170 m.y. of crustal 

accretion at intermediate to fast spreading rates in the Pacific. The differing tectonic 

settings, sedimentary rates, basement topography, igneous stratigraphy, age, and 

spreading rates encountered at each Site are all factors that may act as a control on 

hydrothermal activity in oceanic crust. The influence of these parameters on 

hydrothermal activity in upper oceanic crust is discussed. 

 

Chapter 8 

 

Anhydrite at Site 1256 offers new insights into fluid evolution during mid-ocean ridge 

hydrothermal circulation. In this chapter, anhydrite from both Site 1256 and 504 (the 

only basement sites that are deep enough to recover in-situ anhydrite) is compared. 

Because anhydrite (CaSO4) undergoes retrograde solubility and precipitates at 

temperatures greater than ~120oC, the REE, 87Sr/86Sr, δ18O, Sr/Ca and petrographic 

observations can be used to constrain fluid evolution at warm (100oC) to hot (400oC) 

temperatures; including, the geometry and timing of fluid flow and fluid/rock 

interactions. The distribution and abundance of anhydrite is also used to make 

inferences into the nature of sulfate during hydrothermal circulation.   
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2. Sample preparation and analytical methods 
 

2.1     Introduction 

 

This chapter describes the analytical techniques employed to characterise the 

hydrothermal alteration of ocean crust formed at fast spreading rates. The sample suite 

comprises volcanic and intrusive rocks, secondary mineral separates, and glass samples 

from scientific ocean drilling sites on fast spread ocean crust. 

 The combined dataset produced from these techniques includes: major element 

concentrations, trace element concentrations, rare earth element (REE) concentrations, 

Sr, δ18O and δ13 2+ 3+C isotope ratios, C and S, H O concentrations, and Fe /Fe2  ratios. 

Analytical precision, accuracy and detection limits for all analyses are evaluated in 

here.  

 

 

2.2 Sample selection and preparation. 

 

The method of preparation used for each sample is described in this section. This 

section also highlights any potential uncertainty that is inherently associated with the 

procedures described for each sample suite. Samples include: Whole rock samples, 

whole rock leached residues and leachates, volcanic glass, and mineral separates 

(carbonates, clay minerals, clay mineral leaches, and anhydrite).  

 

 

2.2.1 Whole Rock samples 

 
Whole rock samples consist of core sections and fragments, all of which were chosen to 

best represent the variations in alteration and lithology that occurred at each site. 

Subsamples that represent all the geological features within each sample were prepared 

for polished thin sections for petrographic study. Samples for geochemical analyses 

with distinct zones of alteration were separated, where possible, into sub samples by 

sawing with thin diamond rock saw blades. To obtain a homogenous sample for 

geochemical analyses veins and heterogeneities were avoided. The samples were then 

 22



Analytical methods and techniques  2.1,2.2 

prepared by grinding rough edges on a coarse diamond grinder followed by grinding on 

a lap with a fine (100μm) corundum powder to remove saw 

marks and weathering rinds. To remove remaining mud from sawing and corundum 

powder the samples were scrubbed, washed in tap water, and repeatedly ultra-sonicated 

using 18.2Ω milliQ water until the water remained clear after each ultrasonic step.  

 

 Samples were measured for specific gravity by recording the mass of the sample 

at in air at ~1atm followed by measuring an immersed sample on a submerged gondola 

shown in Figure 2.1.  

 
Figure 2.1. Set up for measuring displacement of rock samples. 

 

Specific gravity was calculated using the following expression:  

)(

)(

watermass

airmass
sg x

x
=ρ

 

 All specific gravity measurements were calibrated by measurements of pure 

quartz and barite samples both of which have known specific gravities. Repetitions of 

the internal standard (quartz) measured at 2.65 with an error of 0.57% (n=32). After 

measurement of specific gravity, whole rock samples were dried overnight at 70oC, 

crushed on a pure iron fly press to coarse mm-sized chips, and ground to fine powder in 

a pure Cr-steel tema. For crushing, samples were bagged and the bag was wrapped with 

a clean sheet of paper to avoid contact between the metal plates on the fly press and the 

sample. Any paper and plastic was removed from the sample after crushing and the fly 

press was cleaned after each use. Grinding continued until the powder was not gritty to 
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the touch. The pure Cr-steel tema was cleaned after each use and periodically ‘flushed’ 

by grinding pure acid washed low iron sand for ~2 minutes. All cleaning and crushing 

work was carried out in a clean sample preparation room using vacuum extractors to 

minimise cross-contamination from airborne whole rock powder. In addition, clean 

nitrile gloves were worn to handle samples. Dissolution of whole rock samples is 

described in Section 2.2.6. 

 

 

2.2.2 Glass samples  

 

Separates of fresh glass recovered from ODP/IODP Hole 1256D were run for their Sr-

isotopic compositions and trace and REE concentrations in order to deduce the primary 

composition of basement at Site 1256. Samples were selected on the basis of least 

alteration and to give a representative distribution through the extrusive section of Site 

1256 basement. Selected samples were highly vitreous with no signs of devitrification, 

discolouration from secondary minerals, oxidation and vesicles. 

 Glass samples were lightly crushed using a pure agate pestle and mortar into 1 

mm sized chips, cleaned in an ultrasonic bath repeatedly until water was clear and 

dried. The glass chips were subsequently hand picked and further washed in an 

ultrasonic bath using 18.2Ω MilliQ water to ensure absolute purity. A subsample of 

glass chippings 10 mg, accurately weighed to 4 significant figures, was taken for 

standard HF dissolution (Section 2.2.6) and made up to a mother solution with a 

dilution factor of 350-450. This mother solution was then further subsampled for trace 

and REE measurements by ICP-MS (Section 2.3). Most samples were also analysed for 

Sr-isotopic composition by TIMS (Section 2.3). 

 

 

2.2.3 Whole rock leachates 

 
87 86In order to ascertain the primary Sr/ Sr value and trace and REE composition for 

ODP/IODP Sites 1179, 1149, 843 and 1256 whole rock samples were selected for 

leaching experiments which are discussed in detail in section 2.5. All leachates 

underwent standard HF dissolution (Section 2.2.6) to be made into mother solutions. 
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The mother solutions are subsampled for analysis of 87Sr/86Sr by TIMS and trace and 

REE by ICP-MS. 

 

2.2.4 Carbonate and anhydrite mineral separates 

 

For this study basalt samples containing carbonate veins or patches were chosen for 

analysis. 25, 19 and 7 carbonate samples were hand picked from ODP Holes 1149D, 

1179D and 843B respectively. Anhydrite from Sites 504B (9 samples) and 1256D (20 

samples) were also sampled.  

 Carbonate and anhydrite vein separates were crushed in an agate mortar and 

pestle, sieved and hand picked. The separates of pure (99% pure by visual observation) 

carbonate were then leached in 3M HNO3 for >24 hr and residue was centrifuged for 2 

minutes to reduce contamination from other secondary minerals, particularly clays. The 

leachate was evaporated and re-dissolved in 2% HCl to form carbonate mother 

solutions. Anhydrite was dissolved by using 18.2Ω MilliQ water (heated to 70oC and 

left overnight) and then centrifuged to remove non-dissolved particulates. The 

remaining solution is carefully removed from the centrifuge tube and accurately 

weighed into 12 mL HDPE vials. Mother solutions for carbonate and anhydrite were 

accurately made with more 18.2Ω MilliQ water and ~2 drops of conc. (sb) HNO3 to 

keep the trace metals in solution. Final mother weight was ~10 mL. An aliquot of this 

mother solution was accurately subsampled and analysed for Trace and REE 

concentrations by ICP-MS following the procedure outlined in Section 2.2. Additional 

subsamples from the mother solution were analysed for Sr isotope measurement by 

TIMS (Section 2.2), major element concentrations by ICP-MS (Section 2.3). A 

subsample of pure carbonate powder was also sampled (~10-30 mg accurately 

weighed) for δ13 18C and δ O measurement. Pure anhydrite powder was also subsampled 

for δ18O measurement (Section 2.3). 

 

2.2.5 Clay mineral separates and leachates 

 

Basement rocks from ODP, IODP Hole 1256C, D and ODP Hole 1149B and D were 

sampled for secondary clay minerals. Pure clay samples were separated by hand 

picking from veins, alteration patches and breccia matrices. Clay separates are 

powdered using a pure agate pestle and mortar and then a 50 to 100 mg sub-sample 
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(accurately weighed) is transferred to a clean Teflon Salivex vial for leaching. Clay 

leaching is done to effectively further purify the sample so that we only measure the Sr 

isotope ratios, trace elements and REE bound into the crystal structure of the clay 

mineral. Interlayer cations may have been introduced at any time after the formation of 

the clay and therefore these will obscure data relating to the original clay.  

 1 mL of 1M NH4Cl solution was added to the sample prior to agitation for 30 

minutes on a laboratory agitator. The sample is left to stand overnight, then it is 

centrifuged to ensure solid material remains at the bottom of the Teflon vial. The 

leachate was removed and discarded, using clean disposable 3 mL pipettes, and then 

fresh 1mL 1N NH4Cl is added to the solid sample in the same Teflon vial. 30 minutes 

of agitation followed by centrifugation was repeated. This process was repeated 4 times 

so overall there are 5 leaches including the first stage that was left overnight.  

Pipettes were cleaned by filling the pipette with ~10% HNO3 prior to immersing the 

full pipette in a beaker of the same acid overnight. After acid cleaning pipettes were 

emptied of the cleaning acid and rinsed with 18.2Ω MilliQ water. The pipettes were 

filled and emptied with 18.2Ω MilliQ water 3 times before drying in a warm lab oven.   

 The residue is dried and reweighed before undergoing standard HF, HNO3, HCl 

digestion identical to the procedure used for whole rock dissolution (section 2.2). A 

subsample of the mother solution is accurately weighed into clean Teflon Salivex vials, 

dried and dissolved in 2% HNO3 (In/Re Spike). The sample is then transferred into 

weighed, clean, labelled scintillation vials and rinsed out the Teflon Salivex vial to 

ensure all the sample has been removed from the Salivex vial. Additional 2% HNO3 

(In/Re Spike) is added to the sample for a total dilution factor of ~1000 fold for 

analyses by ICP-MS (Section 2.3) and accurately weighed. Blanks and standards, as 

described in section 2.3, are also prepared for ICP-MS analyses. An aliquot of mother 

solution sufficient to contain 1μg Sr is taken for Sr isotope analyses (Section 2.3). Trace 

element, REE and Sr-isotopic ratio data for clay mineral analyses is presented in 

Appendix table D, 2. 

 

2.2.6 Sample dissolution 

 

All the following procedures were carried out in a Class 100 clean room and all 

preparation was carried out using appropriate clean suits, synthetic nitrile gloves and 

goggles. Teflon vials are cleaned by an initial rinse with 18.2Ω milliQ water and, if 
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necessary wiped using lint free clean room towels. The Teflon vials are then submerged 

for 24 hours in warm (90oC) commercial grade (ARISTAR) 6M HCl, rinsed using 

18.2Ω milliQ water and submerged for 24 hours in warm (90oC) ARISTAR 8M HNO3. 

The vials are rinsed with 18.2Ω milliQ water three times to ensure all trace of acid is 

removed and they are left to dry in an air-filtered drying rack at room temperature until 

ready for use. Scintillation vials, used to present a sample daughter to ICP-MS and ICP-

AES, are cleaned by filling the vials with a weak ~2M HNO3 acid solution. The vials 

are left to stand overnight after which the vials are emptied of acid and rinsed out 3 

times with pure 18.2Ω milliQ water. The vials are left to dry naturally in a clean air 

filtered cupboard until ready for use. The same procedure is used to clean HDPE bottles 

and centrifuge tubes.  

 Typically ~50 mg of whole rock powder, accurately weighed to 4 significant 

figures, was subsampled for standard HF dissolution and made up to a mother solution 

(~20-30 mL) with a dilution factor of 350-450. Standard HF dissolution is carried out 

by dissolving the rock powder in a ~6 mL mixture (3 mL each) of concentrated sub-

boiled, distilled (sb) HF and concentrated (sb) 16M HNO3 overnight in Teflon Salivex 

vials. The samples are dried down and then dissolved in conc. ~3 mL (sb) HCl 

overnight. Finally the samples are again dried down, re-dissolved in ~3 mL (sb) 6M 

HCl and are left overnight at 130oC to ensure total dissolution. 

 The mother solution is made up by firstly washing out the dissolved sample 

from the Teflon Salivex vials in 6M (sb) HCl and 18.2Ω MilliQ water into clean, 

accurately weighed, labelled HDPE bottles. Approximately 1 mL of 6M (sb) HCl 

followed by ~2mL pure 18.2Ω milliQ water is added to the now empty Teflon Salivex 

vial to rinse out any remaining sample into the HDPE bottle. The solution is then 

diluted to an appropriate dilution factor (350-450) by accurately adding 18.2Ω MilliQ 

water. The mother solution can then be subsampled for Sr isotopic analysis, major and 

trace element analysis by ICP-AES and trace and REE by ICP-MS. Roughly 20 g of 

selected whole rock powder, where possible was subsampled for major and trace 

element analysis by XRF, carbon, and sulphur analyses. 

 For each batch of samples procedural blanks were prepared and analysed by 

ICP-MS and ICP-AES.
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2.3 Analytical techniques  

 

This section describes the analytical techniques and all preparation uniquely associated 

with each technique. Errors, precision, accuracy and uncertainty of each technique are 

discussed. Analytical techniques used in this study include X-ray Fluorescence 

spectrometry (XRF), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), 

Thermal Ionisation Mass Spectrometry (TIMS), Inductively Coupled Plasma 

Adsorption Emission Spectrometry (ICP-AES), Stable isotope analysis (Geo 20-20 

mass spectrometer), C and S analysis (LECO CS 225 CS-analyser), and ferric-ferrous 

ratio determination by titration.  

 

 

2.3.1 X-Ray Fluorescence Spectrometry 

 

Major and trace element oxide analyses were carried out at both the University of 

Leicester and Edinburgh University by X-ray fluorescence spectrometry (XRF). 

Samples for major element analyses were prepared by fusion using a lithium borate 

flux. 

 

 Rock powders were dried at 110oC for over 1 hr and a precisely weighed aliquot 

(~1g) of sample was ignited at 950oC to determine LOI (Loss On Ignition). Volatiles 

including H2O, CO2 and S within the rock are driven off. A slight mass gain caused by 

the oxidation of FeO to Fe O2 3 (Ferrous to Ferric iron) may also occur during this 

process. LOI is determined by weighing the sample prior to ignition of samples at 

950oC for 1 to 1hr 30 minutes. This is followed by cooling in a desiccator and a second 

weighing after ignition. Nearly all LOI in whole rock analyses of basement sites in this 

study can be attributed to water since values for C and S are low for most samples. 

Therefore, we can assume that LOI approximates to H2O. 

 For the major elements Si, Mn, Al, Fe, Ti, Mg, Ca, Na, K, and P fusion beads 

were prepared with a eutectic mixture of lithium metaborate (LiBO2) and lithium14 

tetraborate, Li2B OB4 7 (Johnson – Matthey Spectroflux JM100B). Based in the mass of 

the unignited powder, a sample/flux ratio of 1:5 was used and the sample was fused (in 

a Pt 5 % Au crucible) at 1100 C in a muffle furnace. The crucible was reweighed and 

any weight loss was made up with additional flux. The second stage fusion is carried 

o
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out over a Meker burner and the mixture is swirled to ensure homogeneity. The sample 

is then cast in a graphite mould and flattened to a thin disk using an aluminium plunger. 

The mould and plunger are maintained at 220 C.  o

 Concentrations of Ba, Co, Cr, Cu, Ga, Nb, Ni, Pb, Rb, Sc, Sr, V, Y, Zn and Zr 

were measured by XRF analysis of pressed powder pellets. Six grams of rock powder 

were mixed with four drops of 2% polyvinyl alcohol. The mixture was formed into a 

38-mm disc on a tungsten carbide disc that was backed and surrounded by boric acid. 

The disc was then compressed in a hydraulic press at 0.6 tonnes/cm2 and the resultant 

sample was then analysed.   

 The fused pellets and pressed disc samples were analysed on a Phillips PW2404 

automatic X-Ray Spectrometer at the University of Leicester using a Rh-tube and the 

Compton scattering method (Harvey, 1989). The machine was calibrated for low 

compatible trace element concentrations. The background was positioned as near as 

possible to the peaks and long count times are used. The raw data is corrected for 

matrix effects by using theoretical alpha coefficients calculated on the major-elements 

using the Philips software. The coefficients were calculated to allow for the following 

discrepancies: 1), The amount of extra flux replacing volatile components in the 

sample, so analytical totals are 100% less LOI. 2), the intensities of long-wavelength 

trace-elements (La, Ce, Nd, Cu, Ni, Co, Cr, V, Ba, and Sc) were corrected for matrix 

effects using alpha coefficents based on major-element concentrations measured 

simultaneously on the samples. 3) The shorter trace element lines were corrected for 

matrix effects by using the count rate on the RhKα Compton scatter line as an internal 

standard (Reynolds, 1963). 4) Synthetic standards were used to correct for line overlap.  

 

 

 

 

 

 

 

 

 

 

 

 29



Analytical methods and techniques  2.3 

 
  Reference standard (% error) Mean % 

error     BHVO-1 G2 GSP-1 
Major elements (wt %)         
SiO  0.002 0.09 0.04 0.04 2

TiO  0.37 4.17 1.54 2.02 2

Al O  0.14 1.69 0.07 0.63 2 3

Fe O  7.46 5.93 5.13 6.17 2 3

MnO  1.19 0.001 0.001 0.4 
MgO  0.28 1.33 1.04 0.88 
CaO  0.18 1.02 0.48 0.56 
Na O  0.44 0.49 0.71 0.55 2

K O  3.85 0.22 0.18 1.42 2

P O  1.1 0.001 3.57 1.56 2 5

LOI   n/d n/d n/d n/a 
Trace elements (ppm)          
Sc  8.81 14.29 3.23 8.77 
V  0.95 0.001 3.77 1.57 
Cr  0.35 3.45 7.69 3.83 
Cu  n/d 18.18 9.09 13.64 
Zn  0.76 1.16 0.96 0.96 
Ga  4.76 0.005 0.005 1.59 
Rb  n/d 1.18 2.36 1.77 
Sr  3.47 2.3 0.43 2.07 
Y  1.45 18.18 15.38 11.67 
Zr  0.11 0.03 0.49 0.21 
Nb  5.26 0.003 0.36 1.87 
Ba  7.91 0.21 4.73 4.29 
Pb  23.08 3.33 7.27 11.23 
Th  n/d 1.21 0.94 1.08 
U   n/d 3.38 5.51 4.45 

      
Table 2.1. Percentage error of elemental concentrations based on repeated runs (n=3) of 
international standards BHVO-1, G2, and GSP-1. Percentages are % relative standard 
deviation.  
 
  

 Calibration of the mass-spectrometer was based on the standards from USGS 

and CRPG using values from Jochum et al, (1990) for Nb and Zr, and Govindaraju 

(1994) for all other elements. Typical analytical in this method a number of 

Geochemical Reference Materials are used to construct calibrations for individual 

elements and to evaluate precision and accuracy. For samples analysed at the 

University of Leicester, precision is estimated for each element from multiple analyses 

of USGS reference materials G-2 (granite), GSP-1 (granodiorite), and BHVO-1 

(basalt), and these are shown in Table 2.1. A similar procedure was carried out at the 

University of Edinburgh and this is outlined in Table 2.2 (Fitton et al., 1998). Samples 

were run at two different institutions because of variable budgetary and machine time 

constraints. 
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NAA: JB-1a JB-1a JB-1a JB-1a       

Run no: 33.1.13 34.1.13 35.1.13 36.1.13 Average 1σ JB-1a* 
La (ppm) 37.40 37.20 37.10 36.30 36.98 0.47 38.10 
Ce (ppm) 66.30 61.20 63.50 62.30 63.34 2.18 66.10 
Nd (ppm) 25.30 23.10 25.50 25.40 24.81 1.18 25.50 
Sm (ppm) 5.11 5.11 5.10 4.95 5.07 0.08 5.07 
Eu (ppm) 1.55 1.51 1.48 1.49 1.51 0.03 1.47 
Gd (ppm) n/d n/d n/d 5.80 5.80 n/a 5.54 
Tb (ppm) 0.66 0.59 0.79 0.77 0.70 0.09 0.69 
Yb (ppm) 2.14 2.04 2.08 2.17 2.11 0.06 2.10 
Lu (ppm) 0.27 0.22 0.27 0.35 0.28 0.05 0.32 
Ta (ppm) 1.62 1.56 1.65 1.63 1.62 0.04 2.00 
Th (ppm) 9.69 8.94 9.45 9.40 9.37 0.31 8.80 
Hf (ppm) 3.65 3.50 3.62 3.61 3.60 0.07 3.48 
U (ppm) 1.98 1.98 1.82 1.76 1.89 0.11 1.60 

Table 2.2 Precision and accuracy of major and trace element analysis by XRF based on 
repeated runs of internationally recognised standards BCR-1, BIR-1, BHVO-1, and JB-
1a. After Fitton et al., (1998). All values are in ppm Recommended standard values are 
taken from Govindaraju, (1994).  
 

 

2.3.2 C and S analyses for whole rock samples  

 

Measurements of CO2 and Sulphur content were carried out on a LECO CS 225 CS-

analyser at the University of Leicester. Samples are accurately weighed into crucibles 

containing accelerant chips of iron and tungsten prior to loading into a radio frequency 

induction furnace. Oxygen was initially purged, then allowed to stream for the duration 

of combustion. Combustion continued until all the accelerant chips were molten and 

carbon and sulphur was released as CO2, CO and SO2 gas respectively. The gasses pass 

through a dust filter that prevents silicates, which may cause infra-red wavelength 

overlap, from entering the infrared cells. Combustion gases were passed through a 

drying tube of Magnesium Perchlorate to the SO  infra red cell. Once determined, the 2
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gases passed through a Platinised Silica Gel catalyst to convert any CO to CO2, and any 

SO  was trapped out as SO .        2 3

 CO  content was measured in the CO2 2 infrared cell. The infrared cells have a 

Tungsten filament at the source that is heated to ~850oC.The infrared beam is chopped 

to ~85 Hz and filtered to a monochromatic infrared wavelength that maches the energy 

of the CO  and SO2 2 adsorption wavelengths respectively. Output is monitored at 4 Hz, 

converted to a digital signal and the areas of the peaks are integrated. These values are 

corrected for sample weight, blank value, and calibration factors to return a total C/S 

result. The lower limit of detection for C is 10 ppm, with a precision of ± 5 % and for S 

the lower limit is 10 ppm with a precision of ± 8 %. 

  
 
2.3.3 Inductively Coupled Plasma Mass Spectrometry 

 

All samples in this study has been measured for their trace and rare earth element 

(REE) concentrations (Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, 

Er, Tm, Yb, Lu, Cs, Hf, Ta Th, U,) by inductively coupled plasma mass spectrometry 

(ICP-MS) using a VG Plasmaquad PQ2+ and a Thermo Fisher X-Series mk II mass 

spectrometer located at the National Oceanography Centre (NOC), Southampton.  

 A subsample (accurately weighed) of mother solution was dried down in Teflon 

salivex vials, allowed to cool and then ~2 mL of 0.5M HNO3 solution which is spiked 

with a known concentration of Indium and Rhenium was added to the sample for 

dissolution. The internal spike is used to correct the measurements for drift during a 

sample run, and it can be used as a reference to calibrate the mass spectrometers to the 

appropriate mass for each element that is being measured. The sample was then 

transferred to accurately wighed, clean scintillation vials and accurately made up to ~10 

mL (~1000 to 2000 fold dilution) daughter solution using the same In-Re spiked acid. 

The spike acts as an internal standard during analysis. To retain an appropriate dilution, 

a number of samples including some clay mineral separates, anhydrites and carbonates, 

were only made up to ~1-3 mL  and were presented to the ICP-MS manually during the 

analysis. For each batch of samples two blanks and at least four international rock 

standards where prepared. Standards include BHVO-1, JB-1a, JGB-1, BRR-1, BIR-1, 

and JB-3. 
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 Optimum sensitivity and stability during the run was achieved by running a 

synthetic multi-element tuning solution containing Co, Y, In, La, Re, Bi and U and 

leaving the machine to stabilise for 30 minutes before each run. Samples, standards and 

blanks were run under peak-jumping mode for 4 x 30 seconds per sample. A three 

minute pause between each sample is made in which a wash consisting of an aqueous 

2% HNO3 solution is ran until background levels are achieved. For the low volume 

samples, the peak jumping mode was reduced to 5 x 20 seconds so all the low volume 

sample presented to the machine is analysed. For the low volume samples, the sampling 

tube was shortened and placed manually into the sample immediately after cleaning. 

Anomalous and suspicious results were re-run at the end of the procedure. Raw counts 

per second data was processed in a spreadsheet (2004-2007) or by the Thermo Fisher 

X-2 series ICP-MS software package (2007-2008) to apply a blank, interference, drift, 

and internal matrix corrections. In addition, calibration with external international rock 

standards is applied (Govindaraju, 1994).   

.   
Element Solution Rock  Element Solution Rock 

   ppt ppb      ppt ppb 

85Rb 1.8 2.68  157Gd 0.7 1.13 
86Sr 8.2 12.28  159Tb 0.2 0.29 
89Y 8.6 12.89  163Dy 1.5 2.30 
90Zr 16 251.1  165Ho 0.4 0.60 
93Nb 3.1 4.73  166Er 1.5 2.22 
115In 0.1 0.20  169Tm 0.3 0.41 
133Cs 0.2 0.25  172Yb 1.9 2.85 
135Ba 31 45.9  175Lu 0.3 0.51 
139La 0.6 0.86  178Hf 4.8 7.25 
140Ce 0.8 1.21  181Ta 4.8 7.13 
141Pr 0.2 0.27  185Re 0.1 0.17 
146Nd 1.1 1.70  208Pb 12 18.3 
147Sm 0.1 0.17  232Th 0.5 0.80 
153Eu 0.2 0.24  238U 0.2 0.26 

Table 2.3. Detection limits for ICP-MS. Detection limits for solutions (ppt) is derived 
from the calibrated blank plus 3 x the standard deviation of the blank. Detection limits 
for the rock samples (ppb), are calculated from 3 times the standard deviation of the 
blank  x 1500, the average dilution factor from solid samples. Calibration is sourced 
from six blank solutions. Blank solutions have a variation of ~30% 
 

 

Detection limits of the ICP-MS technique for each element are given in Table 2.3. 

Typical detection limits are in the parts per trillion (ppt) range. The limit of 

determination for any given element at NOC is 3 times the detection limit. This is 

essentially the lowest concentration which has a quantifiable error. At these levels, 
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errors are considered too high to be acceptable; therefore there is a set quantification 

limit of 10 times the detection limit. Since ICP-MS has low detection limits and a high 

degrees of precision and accuracy for REE and some trace elements, its use is favoured 

above XRF analysis since REE and trace elements typically occur in low 

concentrations in basalts and secondary minerals.   

Time Li  Sc Rb Sr Y Zr Nb Cs Ba La 
JB-3 Run 1 7.20 33.9 14.9 403 26.8 96.4 1.98 0.93 233 8.26 
JB-3 Run 2 7.35 35.2 15.4 410 27.4 99.2 2.02 0.97 234 8.48 
JB-3 Run 3 7.19 34.0 14.8 401 26.9 96.9 1.99 0.93 233 8.21 
JB-3 Run 4 7.14 34.0 14.9 400 26.8 96.3 1.97 0.94 234 8.22 
JB-3 Run 5 7.18 33.6 15.0 404 26.7 96.9 1.98 0.94 236 8.29 
JB-3 Run 6 7.19 33.9 14.9 402 26.7 96.0 1.97 0.93 237 8.30 

Average 7.21 34.10 14.96 403 26.87 96.95 1.98 0.94 234 8.29 
ST DEV 0.07 0.57 0.21 3.5 0.27 1.14 0.02 0.01 1.87 0.10 
%RSD 0.99 1.68 1.42 0.9 0.99 1.18 0.89 1.39 0.80 1.18 

           
Time Ce Pr Nd Sm Eu Gd Tb Dy Ho  

JB-3 Run 1 20.8 3.25 15.7 4.21 1.31 4.60 0.73 4.52 0.93  
JB-3 Run 2 21.1 3.32 15.9 4.27 1.34 4.67 0.75 4.57 0.94  
JB-3 Run 3 20.7 3.22 15.6 4.24 1.31 4.60 0.73 4.50 0.92  
JB-3 Run 4 20.8 3.25 15.6 4.21 1.31 4.60 0.73 4.48 0.93  
JB-3 Run 5 21.1 3.26 15.7 4.23 1.31 4.63 0.73 4.53 0.93  
JB-3 Run 6 21.1 3.26 15.6 4.26 1.32 4.64 0.74 4.52 0.93  

Average 20.91 3.26 15.66 4.24 1.32 4.62 0.73 4.52 0.93  
ST DEV 0.18 0.03 0.12 0.03 0.01 0.03 0.01 0.03 0.01  
%RSD 0.87 0.97 0.74 0.60 0.94 0.62 0.86 0.67 0.62  

           
           

Time Er Tm Yb Lu Hf Ta Pb Th U  
JB-3 Run 1 2.63 0.39 2.53 0.38 2.63 0.16 5.57 1.20 0.45  
JB-3 Run 2 2.66 0.39 2.56 0.39 2.67 0.16 5.62 1.22 0.46  
JB-3 Run 3 2.62 0.38 2.51 0.38 2.63 0.12 5.57 1.20 0.46  
JB-3 Run 4 2.61 0.38 2.51 0.38 2.63 0.13 5.58 1.20 0.46  
JB-3 Run 5 2.62 0.39 2.51 0.38 2.61 0.15 5.56 1.20 0.46  
JB-3 Run 6 2.63 0.39 2.52 0.38 2.63 0.15 5.58 1.21 0.46  

Average 2.63 0.39 2.52 0.38 2.64 0.14 5.58 1.21 0.46  
ST DEV 0.02 0.00 0.02 0.00 0.02 0.02 0.02 0.01 0.00  
%RSD 0.71 0.49 0.80 0.64 0.70 12.08 0.40 0.56 0.69  

 
Table 2.4. Internal reproducibility example of the ThermoFisher X-Series MK-2 ICP-
MS from measurement of an internationally recognised standard JB-3. at the National 
Oceanography Centre, Southampton. Concentrations are in ppm.  
 
 
 The precision and accuracy for each element is given in Appendix Tables E,1 

and E,2 and an example is shown in Table 2.4. Variations in precision between 

different elements are directly related to abundance. Low abundance elements will 

yield a low number of counts on the detector; therefore values returned for these 
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elements will have greater uncertainty than that of a high abundance element. Internal 

error is based on repeated runs of rock standards BIR-1, BRR-1, JB-1a, JB-3, JB-2, and 

BHVO2. Internationally accepted reference values are sourced from Terashima et al, 

(1994) and Gladney et al, (1987a. 1987b) 

 
 
2.3.4 Inductively Coupled Plasma Adsorption Emission Spectroscopy 
 

Carbonate and anhydrite mineral separates were measured for major elements Ca, Mg, 

Sr, Fe and Mn. In addition, a number of whole rock samples were measured for major 

elements  Ti, Al, Fe(total), Mn, Mg, Ca, Na, K, and P, and trace elements Sc, V, Cr, 

Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, and Ce due to insufficient sample volume available 

for major and trace analysis by XRF. All elements in each batch were measured 

simultaneously by ICP-AES at the NOC, Southampton, using a Perkin Elmer 4300 DV 

ICPAES analyzer. Carbonates, anhydrites and whole rock samples were run as 

individual batches with synthetic standards prepared from ARISTAR ICP-MS primary 

standards.  

 A subsample of the primary standards were accurately diluted into clean HDPE 

vials to an appropriate range so as to incorporate all possible concentration variability 

within carbonate, anhydrite, and basement rocks. Elemental ratio precision is 0.2 % and 

the concentration errors are 0.5 %. Whole rock major and trace element precision is 

determined by an average of the percentage difference between the accepted major and 

trace element concentrations and measured concentrations of five internationally 

recognised standards. Accuracy was determined from a repeated run of the internal 

standard BAS 206 (Table 2.5. A and B). Detection limits for the Major and trace 

elements for whole rock samples are provided in Table 2.6. Table 2.7 shows detection 

limits for major element analyses of carbonates and anhydrites. 
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Table 2.5 a) Precision and accuracy for ICP-AES major (wt %) and b) trace element 
measurements (ppm). The measurements from five international standards are 
compared to the recommended values taken from Govindaraju (1994). The accuracy is 
measured from repeats of BAS 206 internal standard. 
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Element Solution Rock Element Solution Rock 
  ppb ppm   ppb ppm 

Na 19.81 21.80 Cr 0.47 0.52 
Mg 21.46 23.61 Co 1.59 1.75 
Al 16.28 17.91 Ni 1.14 1.26 
P 112.97 124.27 Cu 0.55 0.61 
K 15.65 17.22 Zn 1.54 1.70 
Ca 18.11 19.93 Sr 0.06 0.07 
Ti 1.03 1.14 Y 0.06 0.07 
Mn 0.94 1.03 Zr 0.77 0.84 
Fe 5.97 6.57 Ba 0.14 0.16 
Sc 0.03 0.03 La 0.18 0.20 
V 3.79 4.17 Ce 2.26 2.48 

Table 2.6. Detection limits for ICP-AES. Detection limits are calculated as the average 
of 12 blanks + three times the standard deviation of the blank for solutions. Sample 
(solid rock) is calculated from the average of the twelve blanks + 3 times the standard 
deviation of the blank times the average dilution factor (~1100).   
 

  Mg Ca Sr Mn Fe 
  ppm ppm ppm ppm ppm 

Solution ppb 0.35 13.14 0.05 0.11 0.22 
Rock ppm 0.12 4.38 0.02 0.04 0.07 

Table 2.7.Detection limits for carbonate and anhydrite major elements Detection limits 
are calculated as the average of 12 blanks + three times the standard deviation of the 
blank for solutions. Sample (solid rock) is calculated from the average of the twelve 
blanks + 3 times the standard deviation of the blank times the average dilution factor 
(~1100).   
 

2.3.4 Reproducibility between XRF, ICP-MS, and ICP-AES. 

 

Trace elements Rb, Sr, Y, Zr, Nb, Ba, La, and Ce were measured by XRF and ICP-MS. 

Reproducibility for Sr, Y, Zr, Nb are below 14%. Given the lower detection limits for 

ICP-MS for Rb, Sr, Y, Zr, Nb, Ba, La and Ce, ICP-MS measurements were used for 

concentrations for these elements.  
 Concentrations in ppm Method Rb Sr Y Zr Nb Ba La Ce 

ICP-
MS n value (BAS206) 24 24 24 24 24 24 24 24 

Average  1.64 89.59 51.30 127.15 3.93 37.31 3.90 12.47 
standard deviation  0.24 7.25 3.47 8.95 0.44 3.42 0.42 0.99 

  % accuracy 14.8 8.1 6.8 7.0 11.2 9.2 10.7 7.9 
          

n value (BAS206) XRF 5 5 5 5 5 5 2 2 
Average  2.35 101.36 50.04 126.94 4.40 46.66 5.17 17.33 

standard deviation  0.95 0.91 0.44 0.60 0.22 3.55 1.65 1.03 
% accuracy   40.55 0.90 0.87 0.47 5.06 7.61 31.97 5.97 

% (ICP-MS vs. XRF)  -43.0 -13.1 2.5 0.2 -11.9 -25.1 -32.5 -39.0 

 
Table 2.8. Comparison of XRF and ICP-MS trace element analyses including 
reproducibility (given as % difference). 
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 Concentration in wt % ICP-AES Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO P2O5

n value(BAS 206) Count 3 3 3 3 3 3 3 3 3 
Average  469.03 14.46 15.38 6.87 9.59 2.72 0.17 2.10 0.25 

standard deviation  1.43 0.11 0.04 0.07 0.04 0.03 0.01 0.01 0.00 
% accuracy  0.30 0.76 0.23 1.03 0.42 1.06 3.46 0.28 0.00 

  ICP-AES Sr Ba La Ce Cu Ni Cr V  
n value (BAS 206) Count 3 3 3 3 3 3 3 3  

Average  100.20 41.13 4.43 10.70 143.73 67.43 52.83 80.43  
standard deviation  0.98 0.32 0.06 1.32 5.10 1.19 0.75 0.59  

% accuracy  0.98 0.78 1.30 12.36 3.55 1.77 1.42 0.73  
           
  XRF Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO P2O5

 Count 4 2 2 2 2 2 2 2 2 
Average  495.08 13.82 14.33 6.78 9.54 2.60 0.17 2.02 0.25 

standard deviation  4.95 0.18 0.16 0.01 0.14 0.16 0.01 0.02 0.01 
% accuracy  1.00 1.28 1.14 0.10 1.48 5.98 4.21 1.23 3.09 

% Difference (XRF vs. 
ICP-AES)  5.26 -4.64 -7.34 -1.45 -0.56 -4.74 0.79 -3.98 0.60 

  XRF Sr Ba La Ce Cu Ni Cr V  
n value (BAS206) Count 5 5 5 5 5 5 2 2  

Average  2.35 101.36 50.04 126.94 4.40 46.66 5.17 17.33  
standard deviation  0.95 0.91 0.44 0.60 0.22 3.55 1.65 1.03  

% accuracy  40.55 0.90 0.87 0.47 5.06 7.61 31.97 5.97  
% Difference (XRF vs. 

ICP-AES)  1.14 11.85 14.22 38.26 -13.14 -2.47 -10.25 3.46  

 
Table 2.9. Comparison of XRF and ICP-AES trace element analyses including 
reproducibility (given as % difference) 
 

Concentrations in ppm   ICP-
MS Sr Ba La Ce 

n value (BAS206) Count 24 24 24 24 
Average  89.59 37.31 3.90 12.47 

standard deviation  7.25 3.42 0.42 0.99 
% accuracy  8.1 9.2 10.7 7.9 

  ICP-
AES Sr Ba La Ce 

n value (BAS 206) Count 3 3 3 3 
Average  100.20 41.13 4.43 10.70 

standard deviation  0.98 0.32 0.06 1.32 
% accuracy  0.98 0.78 1.30 12.36 

% Difference (ICP-MS vs. ICP-
AES)  -11.85 -10.24 -13.66 14.21 

n=18 JGb1 JB-3 JB-1A BIR-1 BHVO2 
Method R2 R2 R2 R2 R2 

All 0.999 0.997 0.998 0.998 0.999 
n=5 R2   R2  
Sr 0.989  Al 0.749  
Ba 0.997  Fe 0.949  
La 0.998  Mg 0.978  
Ce 0.990  Ca 0.982  
Zn 0.937  Na 0.962  
Cu 0.959  K 0.996  
Ni 0.989  Ti 0.989  
Cr 0.982  Mn 0.761  
V 0.990  P 0.998  

Table 2.10. Comparison of ICP-AES and ICP-MS trace element analyses, including 
standards JGb1, JB-3, JB-1A, BIR-1, and BHVO2. R2 is given for the reproducibility of 
each element and for each standard.  
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Comparison between XRF and ICP-AES results (Table 2.9) indicates reproducibility 

better than 8 % on major elements. Trace elements are variable; Sr, Ni and V are better 

than 3.5 %, Ba, La, Cu, and Cr are between 10 and 14.2 %, and Ce is ~40 %. For trace 

elements, the ICP-AES is used because it has better sensitivity for such elements. Major 

elements measured by XRF are preferentially used over ICP-AES due to sensitivity. 

Reproducibility of known standards between ICP-MS (X-Series MK 2) and ICP-AES 

(Table 2.10) for major elements and trace elements is good for most elements (R2 

ranges from 0.93 to 0.99 n=5).  Mn (R2 = 0.76) and Al (R2 =0.75) are poor, however 

good reproducibility between these elements for ICP-MS and ICP-AES in BAS-206 

(Table 2.9) indicate that the major element concentrations run by ICP-AES are 

comparable and reliable.    

 

 

2.3.5 Sr isotope measurement by Thermal Ionisation Mass Spectrometry (TIMS) 

 

Ratios of Sr were determined at NOCS by TIMS on a seven collector VG Sector 54 

mass spectrometer. Prior to separating Sr, measurements of Sr concentration were made 

by ICP-MS for all samples in order that we could subsample sufficient mother solution 

to contain ~ 1 μg of Sr. 

 Sr was isolated by standard ionic Sr Spec resin using 80 μL Sr-Spec columns. 

Resin sufficient to fill the stalk of the column is added followed by cleaning by passing 

through 1.5 mL 18.2Ω MilliQ H O, 1.5 mL (sb)3M HNO , and 1.5 mL Elga H2 3 2O. The 

columns are conditioned with 1.5 mL (sb)3M HNO3. The sample (~1 μg of Sr) in 

mother dried down and dissolved in 200 μL (sb)3M HNO3) is loaded and washed in 

with 200 μL (sb)3M HNO . The columns are eluted with 2.5 mL 3M HNO3 3 and the 

sample is collected by passing 1.5 mL Elga H2O. The sample is dried down and loaded 

onto outgassed Ta filaments using a Ta activator solution.   

 For each sample the Ta filament is slowly warmed to 2.7A in a vacuum (<1*10-

7 mbar). The beam is then detected and raised to ~2V by successive focussing of the 

beam and small increases in the current. Once a stable beam is achieved 150 ratios are 

recorded in multidynamic mode. An average is automatically selected based on a 

maximum of 10% rejection. Samples with high Rb counts, high levels of fractionation, 

and 2σ greater than 25 are repeated. Each turret (20 samples) includes 2 standards 

(NIST SRM-987) which are used to monitor instrumental error. The average 87Sr/86Sr 
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value for NIST SRM-987 measured in dynamic mode, using the stable isotope 

normalization of 86Sr/88Sr = 0.1194 was 0.710260 ± 0.000021 (2sd) over a period from 

June, 2005 – August, 2008 (n = 48). 

 

 

2.3.6 δ13C and δ18O Measurements for carbonate mineral separates  

 

Stable isotope measurements of δ18O and δ13C within the carbonate samples were 

performed at the NOC, Southampton using Europa Scientific Geo 20-20 mass 

spectrometer. Accurately weighed pure carbonate powder samples were mixed with 

100 % orthophosphoric acid and converted into CO2 gas using the CAPS preparation 

system in which the following reaction takes place.  

 

3CaCO  + 2H PO  → Ca3 3 4 3(PO )  + 3H O + 3CO4 2 2 2

 

Orthophosphoric acid converts the carbonate sample into CO2 for measurement. 12 

measurements (6x standard reference and 6x sample) and an average is obtained for 

each sample. Drift is corrected by measuring the difference between the standard and 

reference in each run. The internal laboratory standard is ‘Southampton Carrera 

Marble’ SC1 is calibrated against international standard, NBS1A. 

 All values for δ18O and δ13C are measured against the Vienna Standard Mean 

Ocean Water (VSMOW) and Vienna PeeDee Belemnite (V-PDB) respectively and 

presented using the delta notation of Craig (1961) following Equation 2.4 

 

Equation 2.4. expression used to report δ18O samples relative to VSMOW. 

 
Repeated runs of blind standards over a period from 27/06/2007 and 12/07/2007 

indicates an instrumental error of 0.6 % and 1.3 % for carbon and oxygen respectively 

(Table 2.11). Precision based on analyses of standard NBS SRC is 0.28/1 μL for 

Carbon and 0.54/1 μL for Oxygen. 
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Run date Oxygen Carbon Run date Oxygen Carbon 

27/06/2007 1.946 -2.188 11/07/2007 1.932 -2.195 
 1.958 -2.199  1.942 -2.153 
 1.968 -2.215  1.931 -2.202 

28/06/2007 1.951 -2.202 12/07/2007 1.946 -2.216 
 1.961 -2.202  1.963 -2.169 
 1.976 -2.182  1.961 -2.213 

05/07/2007 1.942 -2.201    
 1.948 -2.216 N 18.00 18.00 
 1.953 -2.242 Average 1.95 -2.20 

08/07/2007 1.968 -2.140 SD 0.01 0.03 
 1.943 -2.265 REFERENCE 1.950 -2.200 
 1.950 -2.222 Int. Precision 0.64 -1.33 

Ext. accuracy  ‰ VSMOW ‰ VPDB -0.11 -0.06 

Table 2.11. Instrumental precision and accuracy of the Geo 20-20 mass spectrometer 
based on repeats of recent blind runs of the NBS SRC standard.   
 

 

2.3.7 Stable isotope measurements of whole rock samples and anhydrites 

 

Anhydrite mineral separates from ODP Site 504 and IODP Site 1256 and whole rock 

samples from ODP Sites 1256, 1179, and 1149 were measured for oxygen and sulfur 

stable isotopes. Oxygen isotope analyses were carried out at the University of Michigan 

by reacting pure, powdered mineral separates with BrF5 in externally heated nickel 

reaction vessels to release the oxygen from anhydrite (Clayton and Mayeda, 1963). The 

resultant O  is converted to CO2 2 following reaction with heated carbon rods and a 

platinum catalyst. Oxygen isotope ratios were measured using a Finnigan Delta-S mass 

spectrometer. Sample unknowns were measured with an NBS 28 quartz standard which 

returned a mean δ18O value of 9.6‰ ± 0.21. This compares well to the accepted value 

of 9.68 ‰ (IAEA, 2007). In addition NBS 127 BaSO4 standards were run with the 

anhydrite unknowns. Yields of O from anhydrite and barite are ~50 %. Measured δ18O 

values are corrected to the accepted value of 9.34 ‰ for NBS 127 BaSO4 and all 

isotopic compositions are reported using the δ notation, relative to VSMOW (Equation 

2.4., Craig 1961)    

 In addition to analyses carried out at the University of Michigan, whole rock 

δ18O from ODP Sites 1256, 1179, and 1149 were measured at the University of 

Western Ontario following the method of Clayton and Mayeda (1963), as modified by 

Borthwick and Harmon (1982) for use with ClF . Between 8-10 mg of sample was 3
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accurately weighed out and placed under vacuum overnight at 150°C in order to 

remove absorbed water. The samples were then dried under vacuum for 2 hours at 

300°C.  Oxygen was liberated from the silicate mineral structure by reacting the dried 

samples with ClF3 at 550°C in sealed Ni reaction vessels overnight.  The released 

oxygen gas was then quantitatively converted to CO2 over a red-hot carbon rod and 

yields were measured to evaluate whether the conversion had gone to completion.  

Oxygen isotopic ratios were then measured using a dual-inlet DeltaPlus XL mass 

spectrometer.  The δ18O values of ORX (internal laboratory standard quartz), NBS-30 

(biotite) and NBS-28 (quartz) were +11.4 ± 0.2‰, +5.1 ± 0.1‰ and +9.7 ± 0.3‰, 

respectively, which compares well with their accepted δ18O values of +11.5‰, +5.1‰ 

and +9.6‰.  Reproducibility of the δ18O values for standards and samples was 

generally better than ±0.2‰. 

 Sulphur isotope ratios for the whole rock samples and the anhydrites were 

measured at the U.S Geological Survey stable isotope laboratory in Denver. CO. The 

samples were liberated of SO  gas by combustion using an elemental analyzer. The SO2 2 

gas is transferred directly to a Micromass Optima mass spectrometer for analysis by 

continuous flow mode. Sulphur isotope values are reported using the standard delta 

notation relative to the Canyon Diabalo Troillite (CDT) where IAEA-S-1 = 0.30 ‰ and 

IAEA-S-2 = 22.67 ‰ vs.CDT (Coplen and Krouse, 1998). Analytical precision is better 

than ± 0.2 % SE for all samples measured.  

 

 

2.3.8 Ferric/Ferrous ratio measurements 

 

The Ferric/Ferrous ratio of 27 whole rock samples from Site 1179 were measured, 

following the procedure of Kolthoff and Sandall (1950) by titration using potassium 

permanganate and sodium oxalate. 0.5 g of powdered whole rock sample is accurately 

weighed into 60mL HDPE bottles ready for analysis. Before the titration can begin the 

postassium permanganate (KMnO4) was standardized. 

 4 g of KMnO4 crystals are accurately weighed into a dark Winchester bottle 

with 2 L of 18.2 Ω MilliQ water. The bottle shaken and stored in a dark cupboard for 1 

week (Shaken regularly) to equilibrate. Contact with any light source is kept to a 

minimum during this period to prevent oxidation of KMnO4. The solution is then 

passed through a glass wool filter to remove any insoluble residue.  
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 Sodium oxalate crystals (COONa)2 are accurately weighed (~0.1 g) into 250 mL 

conical flasks. 150 mL of 18.2 Ω MilliQ water is added to dissolve the sodium oxalate 

followed by 10 mL of concentrated H SO . This reaction forms H C O  and Na SO2 4 2 2 4 2 4 

(Equation 2.5). 

 

Equation 2.5. Reaction of aqueous sodium oxalate with H2SO . 4

 

(COONa)  + H SO  → H C O  + Na2 2 4 2 2 4 2SO4

 

Repeated titrations of KMnO4 with the prepared sodium oxalate solution is used to 

determine the iron equivalents of 1mL of KMnO4 solution. A graduated burette, 

washed with 18.2 Ω MilliQ water and rinsed with KMnO4 is filled with the prepared 

KMnO . The KMnO4 4 solution is titrated with the sodium oxalate solution (in the 

conical flask) until the first permanent pink colour is observed. The titre reading is 

taken and the titration procedure is repeated until a consistent result is produced. The 

reaction. Between the sodium oxalate and KMnO4 proceeds as for equation 2.6. Iron 

equivalents are calculated from equation 2.7. Table 2.12 shows the results of the 

standardisation. The KMnO  concentration used in this study was 0.0127 mol/L.    4

 

Equation 2.6. Reaction between sodium oxalate and potassium permanganate during 
titration. 
 

+2MnO4  + 5H2C2O4 + H+ 2+→ 2Mn  + 10CO  + 8H O 2 2

 

Equation 2.7. Calculation of the concentration of potassium permanganate (as 
equivalent to iron). 
 

[MnO ] mol/L = 1000/titre x (2/5 x mass (COONa)4 2/M.W. (COONa) ) 2

 

 
Titration - -Mass (COONa) Titre [MnO ] (mL) [MnO ] mol/l 2 4 4

1 (practice) 0.1024 25.0 0.0123 
2 (practice) 0.1016 24.0 0.0126 
3 0.1062 25.0 0.0127 
4 0.1023 24.1 0.0127 
5 0.1046 24.6 0.0127 
6 0.1084 25.5 0.0127 
  Average 0.0127 
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Table 2.12. Standardisation of KMnO4 by titration with sodium oxalate. Two practice 
titrations followed by 4 titrations were undertaken. The average of the 4 working 
titrations was taken as the standard concentration. 
Whole rock powders (in 60 mL HDPE bottles) were dissolved by adding 8 mL 1:1 

H SO2 4 and 5 mL concentrated HF. The bottle is capped, placed in a hot water bath and 

allowed to simmer for 20 minutes for total dissolution. Dissolution time was 

determined by dissolution experiments on a sample taken from the Troodos ophiolite 

(Teagle, 1993). 
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Figure 2.2. Plot of dissolution time period vs. FeO (wt%) indicating optimal dissolution 
time. After Teagle, (1993). 
 

A plot from one sample of decomposition time vs. FeO (wt%) indicates that 20 minutes 

is optimal for decomposition of basalts (Figure 2.2). During simmering the titration 

solution is prepared by adding 10 mL 1:1 H SO2 4 and 10 mL saturated boric acid 

solution to 300 mL of 18.2 Ω MilliQ water. Saturated boric acid is prepared by 

dissolving ~56 g of H BO3 3 crystals in 1 litre of distilled water. During the last few 

minutes of sample dissolution a burette with an accuracy of 0.01 mL is filled with the 

standardised KMnO4 solution (Shaken to maintain homogenous concentration). The 

dissolved sample solution is transferred and washed into a beaker which is then titrated 

immediately via the reaction pathway shown in Equation 2.8. 

 

Equation 2.8. Reaction during titration of the dissolved sample and the potassium 
permanganate 
 

2+KMnO4 + 5Fe  + 8H+ → Mn2+ 3+ + 5Fe  + 4H O 2

 

Equation 2.9 and 2.10 Calculation of the ferrous and ferric iron content. 

 

FeO (wt%) = 100 x (5 x titre/1000 x [MnO ])/mass of solid sample 4
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Fe O  (wt %) = Wt% FeO x 1.1113 2 3

 

The titration is stopped with the first sign of a pale semi-permanent (fades in <1 

minute) pink hue is observed within the solution. The ferric and ferrous content is then 

calculated from the titre following equations 2.9 and 2.10. 

 Analytical precision was determined by multiple repeats of samples. After 

initial 6 fold repetition of each sample this was reduced to 2 fold repletion as technique 

improved. Ferric/ferrous values were screened to obtain the most consistent repeats for 

each sample. Table 2.13 shows the ferric ferrous ratios and internal analytical precision 

for some examples. Internal errors are better than 1.2%. 
 Sample volume Titre Ferrous Ferric 
  (g)   (wt%) (wt%) 

 Sample 191 1179D, 20R1 60-67cm b   
25/09/2006 0.5070 3.25 4.0681 4.5209 
25/09/2006 0.5052 3.25 4.0826 4.5370 
  average 4.0754 4.5289 
  SD 0.0102 0.0114 
    Precision 0.2515 0.2515 
Sample  191 1179D, 19R2 31-36 cm   
01/10/2006 0.5028 5.70 7.1944 7.9952 
01/10/2006 0.5035 5.60 7.0584 7.8440 
01/10/2006 0.5013 5.70 7.2160 8.0191 
01/10/2006 0.5011 5.65 7.1555 7.9519 
  average 7.1561 7.9525 
  SD 0.0698 0.0775 
    Precision 0.9749 0.9749 
Sample  191 1179D ,20R1 60-67 cm   
09/11/2006 0.5136 3.15 3.8923 4.3255 
09/11/2006 0.5066 3.05 3.8208 4.2460 
09/11/2006 0.5080 3.05 3.8102 4.2343 
  average 3.8411 4.2686 
  SD 0.0446 0.0496 
    Precision 1.1618 1.1618 
Sample  191 1179D, 19R2 31-36 cm b   
09/11/2006 0.5075 5.85 7.3154 8.1296 
09/11/2006 0.5046 5.80 7.2945 8.1064 
09/11/2006 0.5042 5.85 7.3633 8.1828 
09/11/2006 0.5003 5.95 7.5475 8.3875 
  average 7.3244 8.1396 
  SD 0.0352 0.0392 
  Precision 0.4811 0.4811 

Table 2.13. Precision of first 4 unknown samples with acceptable ratios.
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2.5. Whole rock leaching experiments 
 
 
2.5.1 Introduction 

 

Basalt recovered from basement at a range of Sites including ODP/IODP Sites 1179, 

1149, 843, and 1256 has been analysed for a range of parameters (Sr isotopic ratios, 

trace elements and REE) to characterise the chemical changes that occur within ocean 

crust during low temperature seawater-basalt exchange (See ‘methods’). 

 A comprehensive assessment of the chemical changes that occur within 

individual sites and subsequently, the levels of fluid rock interaction and true extent of 

alteration can only be achieved if the primary composition of the basement at the time 

of formation is known. Traditionally, this is achieved by analysing fresh basalt and 

glass samples, or by acid leaching of the least altered samples to remove secondary 

mineral assemblages. Acid leaching can only be used to determine the primary isotopic 

signatures, because acid attack will greatly affect major and trace element compositions 

(e.g., Mahoney, 1987 and Mahoney, et al, 1983).  Average regional compositional 

estimates, e.g. ‘Typical MORB’ Sr-isotopic compositions 0.70240-0.70256 (Saunders 

et al., 1988) provide a useful comparison for estimating the influence of alteration 

against a common standard and they provide a benchmark for the range of 

compositions expected. Because individual sites demonstrate variable precursor 

compositions, the regional averages are not able to estimate site-specific primary 

compositions. Only by locating unaltered material, or removal of secondary mineral 

phases by leaching, can insights into primary compositional variation be made, and thus 

provide a baseline from which we can assess the true extent of alteration.  

 In this study leaching experiments are carried out on a range of basalts in order 

to determine the primary ‘precursor’ composition of the basalts across a range of sites 

formed at fast spreading rates. The procedures follow those of Mahoney (1987), and 

Mahoney et al., (1983). For ODP Samples 206-1256D-24R-1, 132-139 cm and 27R-2, 

56-62 cm analysis of the multiple leaching steps were carried out to assess the 

effectiveness of the leaching method.  
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2.5.2 Method 
 
 

87 86In order to ascertain the primary Sr/ Sr value and trace and REE composition for 

ODP/IODP Sites 1256, 1149, 1179, 843 three whole rock samples from each Site were 

selected for leaching experiments. The least altered samples and one fresh and 

alteration halo pair were chosen because; a) least altered samples contain the least 

amount of secondary phases, therefore we are more likely to find the precursor 

compositions, and b) the sample pair will act as a direct comparison between leached 

‘fresh’ basalt and leached ‘altered’ basalt. In three ODP/IODP Site 1256D samples, a 

number of leachate stages were retained and analysed for 87Sr/86Sr (if enough Sr is 

present) and REE. 300 mg of sample powder were leached by adding 10 mL 6M HCl 

into a Teflon beaker and agitated for 30 minutes in an ultrasonic bath. The leachate is 

then carefully removed and stored in a separate Teflon beaker. The residue is repeatedly 

attacked by this method until visible colouration of the leachate no longer occurs even 

after agitation.  

 The leached residue was then dried, accurately weighed, and then underwent 

standard HF dissolution (See chapter 2, methods) to be made into mother solutions. For 

ODP Samples 206-1256D-24R-1, 132-139 cm, 27R-2, 56-62 cm (background) and 

27R-2, 56-62 cm (halo), the leachates were recovered after each stage. These were 

dried and were accurately dissolved into mother solutions in ~3M HCl. The volume of 

the leachates was not measured therefore; concentrations of trace elements and REE 

reflect the concentrations of the mother solution. All the mother solutions were 

subsampled for analysis of 87Sr/86Sr by TIMS and trace and REE by ICP-MS. Due to 

insufficient strontium in the later leachate stages, only stages 1, 3, 5, and 7 (if available) 

were subsampled for  87Sr/86Sr by TIMS.  
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206 206 206 206 206 206 206 
1256 1256 1256 1256 1256 1256 1256 

24R-1 24R-1 24R-1 24R-1 24R-1 24R-1 24R-1 

Expedition, hole, 
core, interval 

(cm) 
132-139 132-139 132-139 132-139 132-139 132-139 132-139 

Depth (mbsf) 420.82 420.82 420.82 420.82 420.82 420.82 420.82 
Lithological unit 5 5 5 5 5 5 5 

Rock type Sheet 
flow 

Sheet 
flow 

Sheet 
flow 

Sheet 
flow 

Sheet 
flow 

Sheet 
flow 

sheet 
flow 

Notes bkd bkd bkd bkd bkd bkd bkd 

leech stage Untreated 1 2 3 4 5 Leached 
residue 

87Sr/86Sr (m) 0.702968 0.704038 0.702864 0.702840 0.702872 0.702816 0.702835 
2 SE 11 10 27 11 11 11 11 

87Sr/86Sr (t) 0.702963 0.704030 0.702861 0.702837 0.702869 0.702814 0.702834 
Rb (ppb)(ppm) 0.69 1.288 0.502 0.138 0.134 0.088 0.07 
Sr (ppb)(ppm) 109.3 120.7 131.2 45.4 38.3 30.1 65.1 
Y (ppb)(ppm) 54.2 269.1 39.8 8.8 7.5 5.7 20.4 
Zr (ppb)(ppm) 114.9 325.1 317.1 65.0 63.6 46.2 31.8 
Nb (ppb)(ppm) 3.81 2.546 12.4 3.323 3.517 3.365 0.53 
Cs (ppb)(ppm) 0.009 0.031 0.003 0.001 0.001 0.001 0.000 
Ba (ppb)(ppm) 14.12 20.37 28.97 8.42 6.54 4.70 8.00 
La (ppb)(ppm) 3.55 29.94 2.42 0.43 0.26 0.18 0.37 
Ce (ppb)(ppm) 10.58 91.74 6.38 1.05 0.66 0.48 1.26 
Pr (ppb)(ppm) 1.85 15.03 1.02 0.17 0.12 0.09 0.27 
Nd (ppb)(ppm) 11.56 84.19 5.68 0.98 0.70 0.52 2.02 
Sm (ppb)(ppm) 3.96 28.24 2.24 0.44 0.33 0.25 1.12 
Eu (ppb)(ppm) 1.41 4.23 1.68 0.50 0.38 0.29 0.78 
Gd (ppb)(ppm) 6.15 31.88 2.86 0.59 0.48 0.35 1.66 
Tb (ppb)(ppm) 1.13 6.28 0.70 0.15 0.13 0.09 0.40 
Dy (ppb)(ppm) 7.43 41.02 5.44 1.21 1.03 0.77 3.03 
Ho (ppb)(ppm) 1.75 8.78 1.34 0.30 0.26 0.19 0.71 
Er (ppb)(ppm) 5.18 23.76 4.23 0.95 0.83 0.62 2.06 
Tm (ppb)(ppm) 0.71 3.19 0.69 0.15 0.14 0.10 0.31 
Yb (ppb)(ppm) 5.13 20.59 5.12 1.15 1.09 0.81 2.18 
Lu (ppb)(ppm) 0.78 3.01 0.81 0.18 0.17 0.13 0.35 
Hf (ppb)(ppm) 2.85 8.42 8.24 1.82 1.70 1.18 1.00 
Ta (ppb)(ppm) 0.28 0.32 0.82 0.15 0.14 0.14 0.13 
Pb (ppb)(ppm) 0.57 3.15 0.81 0.27 0.41 0.16 0.11 
Th (ppb)(ppm) 0.262 1.667 0.327 0.053 0.046 0.031 0.032 
U (ppb)(ppm) 0.081 0.363 0.172 0.033 0.028 0.020 0.019 

 
Table 2.14. Example Sr-isotopic, REE, and trace element data for leached samples at 
Sites 1256. Bold samples are leached and un-leached powder analyses. Complete table 
is located in Appendix Table E, 3. 
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2.5.3 Results 

  

2.5.3.1  Sr Isotopes 

 

Sr-isotopic results for all treated, untreated and leachates are listed in Appendix Table 

E.3 2.16. 87Sr/86Sr for untreated samples range from 0.702816 to 0.708754, whereas 

treated samples range from 0.702435 to 0.705686. Figure 2.3 shows the Sr isotopic 

ratio of treated and untreated samples compared to the expected range of Sr-isotopic 

compositions for fresh MORB, seawater and the range of measured whole rock 
87 86Sr/ Sr at each site. Initial results show that all leached residues produce lower 
87 86Sr/ Sr than the original un-leached whole rock. In the least altered samples, 87 86Sr/ Sr 

was reduced to values that closely resemble the average range for fresh MORB 

(0.70240-0.70256, Saunders et al., 1988). In addition Sr isotopic measurements of 

leached residues from ODP Site 843B in this study are comparable to leached samples 

measured by King et al, (1993). Two acid washed (6N HCl) samples from ODP Site 

1179 (Mahoney, et al, 2005) compare well to the samples leached in this study (Figure 

2.3). The leached residues that exhibit the greatest extent of alteration have elevated 
87 86Sr/ Sr values when compared to other leached samples from the same site (Figure 

2.3). In addition, these samples also exhibit the greatest reduction in radiogenic Sr.  

 Strontium isotopic measurements for leachates from samples ODP Leg 206-

1256D-24R-1, 132-139 cm, 27R-2, 56-62 cm (background) and 27R-2, 56-62 cm (halo) 

are recorded in Table 2.5.1. The difficulty in obtaining precise Sr isotopic 

measurements in solutions that contain 0.1 μg Sr or less has led to incomplete leachate 

data for sample ODP 206-1256D-27R-2, 56-62 cm (halo). For each leachate, Sr 

isotopic compositions are plotted against leachate stage (Figure 2.4). For all samples 

there is a sharp decrease in 87Sr/86Sr followed by a levelling off at compositions close to 

primary MORB. In sample ODP Leg 206-1256D-24R-1, 132-139 cm the last two 

leachates analysed have 87 86Sr/ Sr values that are comparable to the Sr isotopic 

composition of the final leached residue. Slight variation in the Sr-isotopic composition 

of the leachates occurs in leach stage 3 (Figure 2.4) in samples ODP Leg 206-1256D 

27R-2, 56-62 cm ‘background’ and 27R-2, 56-62 cm ‘halo’. Leachates recovered from 

stages 5, 6, and 7 contain more radiogenic Sr than stage 3. 
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Figure 2.3. Sr isotopic composition of treated vs. untreated samples and range of 
measured basement samples for ODP/IODP Sites 1256, 843 (This study and King et al., 
1993), 1179 and 1149. The Sr-isotopic composition of Pacific MORB (Saunders, et al., 
1988), modern seawater and seawater (t) for each site is included (McArthur, et al., 
2001).  Acid washed samples are from (Mahoney. et al, 2005). Basement compositions 
are sourced from the following: Site 1256: this study, Harris and Cooper (unpub. Data) 
and Wilson et al., (2003), Site 843: This study, King et al., (1993), Site 1179: This 
study, Sano and Hayasaka, (2004), Site 1149: This study and Hauff, et al., (2003).  
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Figure 2.4. Strontium isotopic composition vs. leachate stage for ODP/IODP Site 1256 
basalts. Untreated (black filled) and treated samples (red filled)are shown together with 
the Sr isotopic composition of seawater at 15 Ma (dashed) and present day (solid line) 
(McArthur, et al., 2001) and the range Pacific MORB (Saunders, et al., 1988). 
 

  

2.5.3.2  Trace and REE  

 

Trace and REE data for untreated whole rock samples, treated samples, and leachates 

are presented in Table 2.16. Initial plots of chondrite normalised REE for treated vs. 

untreated samples with average MORB are shown for each site in Figure 2.5. Site 843 

also includes additional data from King et al, (1993).  All treated samples have lower 

concentrations compared to average MORB, which exhibits a similar composition to 

the untreated samples.  
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Figure 2.5. Chondrite normalised REE patterns for untreated (black) and leached (blue) 
whole rock samples at Sites 1256, 843, 1179 and 1149 Buff mott = Buff coloured 
mottled halo, Brn = brown, Bkd = background. T = treated, UT = untreated. Grey 
represents the data range of pacific MORB from Janney and Castillo, (1997). Pm is not 
measured. 
 
In all samples across all sites the concentration of REE, especially LREE, is lower in 

the treated samples when compared directly with the untreated sample (Figure 2.5). In 

addition, all the leached samples exhibit positive europium anomalies compared to the 

flat, and commonly slightly negative anomalies seen in the untreated samples (Figure 

2.5). REE in ‘treated’ samples; ODP Leg 206-1256D, 27R-2, 56-62 cm ‘halo’ and 20R-

1, 100-105 cm ‘brn bkd’ have a similar chondrite normalised REE patterns to the 
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treated samples, however, small but significant differences include higher 

concentrations and a weaker Eu anomaly compared to the least altered treated samples. 

 

 
Figure 2.5. Continued. 

 

 Trace and REE data for each individual leachate are shown in Table 2.4 for 

samples 206-1256D-24R-1, 132-139 cm, 27R-2, 56-62 cm (background) and 27R-2, 

56-62 cm (halo). All the samples studied record a steep followed by a gradual decline 

in trace element and REE concentration with each successive leach (Figure 2.6). REE 

concentrations of leachates 7 to 13 from all samples are variable although they exhibit 
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an overall decrease in concentration. The decrease in trace elements and REE in Figure 

2.6 is observed in both labile and high field strength elements.  

 
Figure 2.6. Examples of labile and high field strength trace and rare earth elements and 
sum of all Trace and REE vs. leach stage. 
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Figure 2.7. Chondrite normalised leachate REE patterns for Samples 1256D-27R-2, 56-
62 cm ‘background’ and ‘halo’ and 1256D-24R-1, 132-139 cm ‘background’. Numbers 
1-13 indicate the leachate stage. 
 
With the exception of Ce (0.67 ppb) Er (0.74 ppb) and Yb (0.80 ppb) in sample 1256D-

27R-2, 56-62cm bkd, values for REE in leachates 7 to 13 are less than 0.5 ppb. Some 

REE concentrations are as low as 0.01 ppb. These concentrations are approaching the 
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detection limits (see ‘methods’) of the ICP-MS technique, which may account for the 

variability seen in the latter stages of the leaching process. Although all reasonable 

steps have been taken to ensure a clean experiment, contamination may affect the data 

because REE and trace elements are being recorded at such low concentrations.  

 Chondrite normalised REE patterns for the leachates recovered from each leach 

stage are shown in Figure 2.7. The successive decrease in the effect of leaching is 

reflected by the decrease in concentrations of REE, however, all samples show a 

relative change in the proportions of LREE to HREE and Eu. In all leach stages, LREE 

are relatively depleted compared to HREE, and from stages 1-7 this trend becomes 

more prominent. At stages 7 to 13 the trends remain very similar albeit at very low and 

variable concentrations (Figures 2.7). The chondrite normalised patterns for leachates 7 

to 13 exhibit patterns that are variably elevated above preceding leachates. For example 

sample 1256D-27R-2, 56-62 cm ‘background’ leachate 12 has higher concentrations 

than 9, 10, and 11 (Figure 2.7). Sample 1256D-27R-2, 56-62 cm ‘halo’ shows the same 

trends, albeit not as distinct as the other samples, particularly sample 1256D-27R-2, 56-

62 cm ‘background’. 

A plot of Eu anomaly vs. leachate stage and unleached/leached whole rock Eu is 

shown in Figure 2.8. Eu anomaly switches from neutral (Eu*/Eu of ~1) to positive 

within one leach stage followed by a variable increase and levelling off. Treated 

samples all have a higher Eu*/Eu compared to their untreated whole rock counterparts. 

 
Figure 2.8. Eu*/Eu vs. Leach stage for ODP Leg 206-1256D-24R-1, 132-139 cm ‘bkd’, 
27R-2, 56-62 cm ‘bkd’ and 27R-2, 56-62 cm ‘halo’. Untreated whole rock and leached 
(treated) residues are included for comparison. 
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2.5.4 Discussion  

 

2.5.4.1  Sr-isotopes 

 

The variation in the Sr-isotopic composition of seawater through time has been 

recorded (McArthur, 2001). The Sr-isotopic composition of seawater at the time of 

formation at ODP/IODP Sites 1256, 1149, 1179, and 843B is significantly more 

radiogenic than the Sr-isotopic composition of Pacific MORB. This provides a useful 

scale that we can use to trace the origins of a particular mineral phase, to quantify the 

degree of alteration within a rock, or to determine if any seawater has exchanged with 

original Sr within primary mineral phases, for example Sr in plagioclase.  The wide 

variation in the Sr-isotopic composition of untreated whole rock samples in oceanic 

basement (Figure 2.3) reflects variation in the intensity of alteration in oceanic crust. 

This, however, does not distinguish between high temperature, hydrothermal dominated 

alteration or low temperature seawater dominated alteration. It is well reported that 

seawater Sr will exchange more readily with primary igneous phases (e.g., plagioclase) 

at higher (~350oC) temperatures (Teagle et al, 1998). In cold seawater dominated 

alteration, however, the variation in 87 86Sr/ Sr in basement rocks is primarily due to the 

presence of secondary minerals (saponite, celadonite, carbonate, iron-oxyhydroxides, 

and zeolites) with little or no isotopic exchange with the primary igneous phases. The 

replacement of mesostasis (interstitial glass) by saponite and other secondary phases 

may be one area where Sr-isotopic exchange could readily take place (e.g. Teagle et al, 

1996, Teagle et al, 1998, and this study). Because all/most of the radiogenic Sr in the 

whole rock is present in secondary phases, then leaching of the secondary phases 

should remove the radiogenic seawater derived Sr and return the whole rock back to its 

precursor Sr-isotopic composition.  

 The reduction in radiogenic Sr in the leached residues (Figure 2.3) reflects the 

leaching of secondary minerals from the basaltic groundmass. The elevated 87 86Sr/ Sr in 

the altered and treated samples compared with the less altered and treated samples in 

each site suggests that; either not all the secondary minerals have been removed and 

that partial replacement of primary phases makes them more resilient to leaching, or 

that some radiogenic Sr has exchanged with Sr in the primary mineralogy.   

 The sharp decrease in radiogenic Sr in the leachates from Samples 206-1256D, 

24R-1, 132-139 cm ‘bkd’, 27R-2, 56-60 cm ‘halo’, and 27R-2, 56-62 cm ‘bkd’ (Figure 
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2.4), suggest that the majority of secondary mineral phases are removed within the first 

2-3 leaches. Because we expect cold seawater-derived secondary mineral phases to 

have near seawater 87 86Sr/ Sr, a leach containing only secondary phases would have a 

similarly radiogenic composition. The actual 87 86Sr/ Sr values for the leachates indicate 

that a significant proportion of primary mineral phases are being dissolved. This is 

reflected in the later leaches where the amount of secondary mineral phases present in 

the groundmass is reduced and that a greater proportion of primary phases are present. 

Stages 5 and 7 have Sr-isotopic compositions that are comparable to MORB. Leachate 

3 in samples 206-1256D, 27R-2, 56-60 cm ‘halo’, and 27R-2, 56-62 cm ‘bkd’ have an 

unexpectedly low 87 86Sr/ Sr (Figure 2.4) given that we would expect a steady decrease in 

secondary mineral content after each leach stage. Suspended particles of residue within 

the leachate may be responsible for the low 87Sr/86Sr because additional MORB Sr will 

be present in the leachate.  

 

 

2.5.4.2  Trace and REE 

 

Analysis of trace and REE in leachates indicate that the leaching method used in this 

study removed the vast majority of secondary phases in the rock and a small, but 

significant, proportion of the basaltic groundmass. Evidence for the removal of 

secondary phases from the basaltic sample is based on the following four points; 1) The 

depletion of REE, in particular LREE, reflects removal of mineral phases in which trace 

and REE are more easily partitioned into.  

 Figure 2.9 illustrates the partition coefficients for the major rock forming 

minerals in a basaltic melt. With the exception of plagioclase (LREE enriched) and 

phlogopite (Slight LREE enriched), the major constituents of basalt, clinopyroxene, and 

olivine do not partition into LREE and REE particularly well. LREE have the lowest 

compatibility of all the major basalt-forming minerals particularly clinopyroxene. The 

low REE concentrations and the chondrite normalised REE patterns of the residue 

(Figure 2.5) indicates that it is made up of primary phases, in particular clinopyroxene. 

2) The presence of a positive Eu anomaly in the residue suggests that plagioclase is 

relatively resilient to repeated acid attack because Eu strongly partitions into the 

plagioclase crystal lattice. The strong partitioning occurs because Ca2+ and Eu2+ have a 

similar ionic radii and charge. However, contrary to the depleted LREE patterns seen in 
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Figure 2.7, which implies that plagioclase is being removed in preference to other 

primary phases, the strong Eu anomaly in the residues most likely reflects a 

strengthening plagioclase signal by preferential removal of secondary mineral phases 

over that of plagioclase. 3) Trace elements such as Rb, Y, Ba, like REE, are more 

readily able to substitute with large ions in the crystal lattices of secondary minerals; 

for example, saponite and celadonite. The depletion of Rb is consistent with the 

leaching experiments carried out by Mahoney, (1987) who suggests that plagioclase 

and clinopyroxene cannot accommodate Rb. Carbonates will harbour Sr since it can 

substitute for Ca2+. 4) X-ray diffraction traces of treated samples in Mahoney et al., 

(1983) show strong peaks for well crystallised plagioclase and clinopyroxene and no 

carbonates, clay or zeolite peaks despite their occurrence in the untreated samples.  

 

 
Figure 2.9. Partition coefficients vs. atomic number (REE) in common minerals in 
basaltic melts. Redrawn from Rollinson, (1993). Residues in this leaching experiment 
closely resemble clinopyroxene and plagioclase.  
 
The leaching effects on the more altered sample (1256D-27R-2, 56-62 cm ‘halo’) are 

very similar to its fresh counterpart (1256D-27R-2, 56-62 cm ‘background’) and the 

other leached residues. However, differences include a weaker Eu anomaly in the 

residue and leachates, and a smaller difference between the LREE and HREE 
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concentrations in the leachates and residue. This supports the evidence from the Sr-

isotopic compositions of the ‘altered’ residues that leaching of secondary mineral 

phases in this sample is incomplete. 

  

 The change in Eu and patterns of HREE and LREE in the leachates (Figure 2.7) 

suggest a very sharp increase in the proportion of plagioclase and clinopyroxene to 

secondary phases that are being leached, ultimately leading to leachates that are almost 

exclusively leaching plagioclase and clinopyroxene. Dissolution of primary 

groundmass is the most likely cause for the shift from negative Eu anomaly to positive 

Eu anomalies, because the proportion of plagioclase in the leachate increases. In 

addition, the increased depletion of LREE compared to HREE, and the low but 

relatively consistent levels of trace and REE in the last seven leachates in each sample, 

is consistent with the removal of secondary phases followed by near exclusive 

dissolution of primary mineral phases in the latter leach stages. This is reflected by the 

large drop in concentration of trace elements and overall REE and trace element 

concentration (Figure 2.6) within the first 3 leaches and the minor but variable changes 

in concentration in leaches 7-13.  

 

 

2.5.4.3  Leaching model  

 

 Figure 2.10 demonstrates the process in which each successive leachate 

removes an ever smaller proportion of secondary mineral phases leading to an increase 

in the relative proportion of primary basalt, which is always leached. The result is a 

reduction in overall volume in the residue but it removes most of the secondary phases. 

The effect this would have on the proportion of MORB vs. seawater derived 

compositions is also shown in Figure 2.10, as estimated by the Sr-isotopic composition 

in the leachates and the residue. By combining the effects of leaching on Sr isotopic 

composition and Sr concentration the leaching mechanism can be demonstrated (Figure 

2.11). The predicted leach path for the residue is shown including a cut-off point in 

which the concentration of Sr is too low for measuring  
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Figure 2.10. Illustration of the relative proportions of primary basalt/secondary 
minerals leached in each stage and their effect on the relative proportion of radiogenic 
Sr at each stage. During repetitive leaching a reduction in overall volume of remaining 
residue which is explained by the take up of secondary minerals and a percentage of 
basalt by the acid.   
 

 
Figure 2.11. Model demonstrating the effects of aggressive multi-step leaching on 
basaltic rocks. Here we use Sr as an example becasue it serves as a useful guide to 
estimate the relative proportion of seawater dominated phases (low temperature 
secondary minerals).  
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accurate Sr isotopic compositions.  To accurately define the curves shown in Figure 

2.11 would require leaching of a larger volume of sample (~1g), or smaller volume of 

acid (if sample limited) combined with more frequent acid changes, for example, every 

5 minutes rather than every 30 minutes. 

 

 

2.5.4.4  Primary MORB Sr-isotopic composition 

 

 This study has shown that aggressive leaching of the least altered whole rock 

basaltic samples is able to remove the vast majority of low temperature, seawater-

derived secondary mineral phases. Trace and REE patterns and concentrations for 

treated samples reflect the compositions of primary igneous phases, including 

plagioclase, which harbours primary Sr. Strontium isotopic compositions of the treated 

samples and the final measured leachates reflect primary Sr. Therefore in this study a 

selection of the treated samples is used to estimate the Sr-isotopic composition of 

primary MORB for each site (Table 2.17). Only the least altered ‘treated’ samples are 

used in which the majority of seawater-derived radiogenic Sr has been removed.  

 
 

  1256D 1149D 1179D 843B 

0.702834 0.702400 0.702486 0.702610 
Selected age 
corrected Sr-
isotopic 
compositions 
from least altered 
'treated' samples 

0.702834 0.702416 0.702490 0.702620 
0.702849 0.702418 0.702521 0.702650 
0.702859   0.702659 
0.702901   0.702696 
0.702928   0.702700 

    0.702790 

     
std dev 0.000038 0.000010 0.000019 0.000037 
Average 0.702868 0.702411 0.702499 0.702656 

 

Table 2.17. Average ‘fresh’ MORB 87Sr/76Sr for ODP/IODP Sites 1256, 1149, 1179 
and 843. Age corrected Sr-isotopic compositions for ‘treated’ samples from each site 
were chosen based on samples that contain the least alteration and lowest proportion of 
radiogenic Sr. Given the relatively low standard deviations (10 to 38 x10-5) the range of 
Sr-isotopic compositions in the leeched residues probably reflect primary variability.   
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2.5.5 Conclusions 

 

• Acid Leaching successfully removed most/all secondary minerals from the 

basalt revealing, in all but the most altered sample, Sr-isotopic compositions close to 

primary igneous values. Chondrite normalised REE patterns suggest that the residue is 

composed of primary phases, which is supported by XRD analyses by Mahoney et al., 

(1983) of similar experiments. 

• Multiple leaching steps reveal a rapid leaching phase, which is dominated by the 

dissolution of secondary mineral phases, followed by slow leaching phase in which the 

relative proportion of primary igneous phases being leached is greater than the 

secondary mineral phases and the concentrations are more varied, as indicated by the 

Sr-isotopic composition and chondrite normalised REE patterns of the leachates. 

• Only the most fresh basalts should be leached because more pervasively altered 

samples, such as 1256D-27R-2, 56-62 cm ‘halo’ will contain more secondary minerals, 

requiring a prohibitively large number of leach steps.  

• 7 leaches are required to remove the bulk of secondary minerals from a basalt 

sample because basaltic-like compositions in the leachate, as shown by the observation 

that the 87Sr/86Sr in the last measurable leachate for each sample closely matches the Sr-

isotopic composition of the final residue. 

• Strontium isotopic compositions for primary MORB at ODP/IODP Sites 1256, 

1149, 1179, and 843 have been determined by selection of the least altered treated 

samples. 
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3. Site 1179 
 

3.1. Abstract 

 

ODP Hole 1179D (41o04.8’N, 159o57.8’E) is situated in the north east Pacific and 

penetrates ~100 m into 129 Ma basement that formed at the fast spreading east-

northeast trending Pacific-Izanagi ridge. This site has relatively smooth basement 

topography, and endured only slow (<1 m/m.y.) rates of sedimentation until the 

Miocene. Mineral, chemical and isotopic evidence is presented for hydrothermal 

alteration at this site. 

 The basement rocks of Hole 1179D comprise 79% massive flows, 16% pillow 

lavas, 4% breccia and 1% inter-pillow sediments. They are slightly to strongly (5-80%) 

altered to saponite, calcite, celadonite, and iron-oxyhydroxides. Strong alteration 

predominantly occurs within the pillow lavas and breccias, with intensity increasing 

with depth. The lower portion of the hole is more strongly oxidized with increased 

abundance of iron-oxyhydroxides and less common celadonite. 

 Variable changes in whole rock chemistry include large increases in Fe2O3
T

, 

K2O, CO2, H2O, Rb, Cs, Ba, Ta Th, and U together with decreases in SiO2, MnO, 

MgO, Ni. Most initial (128 Ma) 87Sr/86Sr ratios (0.7024 to 0.7048) are significantly 

higher than reported values for Mesozoic Pacific MORB (0.7024-0.7028) and leac

(0.70249-0.70252). This may be due in part to contamination from the near by Shatsky 

Rise plume, but it also indicates that the rocks have undergone significant (~13 %) Sr-

isotopic exchange with seawater. Carbonate vein δ

hates 

18O and δ13C values range from 26 to 

31 ‰ ± 0.1% (VSMOW) and -0.1 to 2.4 ‰ ± 0.1 ‰ (VPDB) respectively, the latter are 

typical of veins formed from seawater. Temperature estimates based on oxygen isotopic 

measurements of carbonate veins range from 12 to 40 oC. Some carbonate 87Sr/86Sr 

ratios from Hole 1179D are significantly more radiogenic than 129 Ma seawater, 

requiring prolonged periods (40 to 100 M.y.) of seawater alteration of the ocean crust, 

this example clearly illustrates the inherent problems associated with using 87Sr/86Sr 

ratios of basement carbonates to assess the timing of secondary mineral precipitation 

and dating oceanic basement. In addition, comparisons between formation 

temperatures, δ13C, and Sr-isotopic ratios carbonates from other basement sites suggest 

that sedimentary burial rates appear to exert an influence on the nature of alteration in 

upper oceanic crust. 
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3.2. Introduction 

 

Site 1179 (41o04.8′ N, 159o57.8′ E) is located in the northwest Pacific plate 

approximately 1600 km west of Japan on 129 Ma (Mid-Hauterivian) crust, as indicated 

by northeast trending M-series magnetic lineations that young toward the northwest 

(Nakanishi et al., 1999). Site 1179 lies approximately 240 km northwest of the Shatsky 

Rise (Figure 3.2.1). Palaeomagnetic data indicate that the Pacific plate has drifted 

northward ~30o since the Cretaceous, which suggests that the crust at Site 1179 likely 

formed ~10o north of the equator (Sager and Pringle, 1988; Larson, et al., 1992).  

 
Figure 3.2. Location of Site 1179 (Kanazawa et al., 2001) 

 

 The Japanese and Hawaiian magnetic lineations intersect about an axis where 

the trend shifts from west-north west to north-east. The intersection implies that the 

spreading ridges that formed the lithosphere converged at a triple junction which 

formed the north west corner of the Pacific plate (Larson and Chase, 1972; Sager et al., 

1988). The oceanic plateau, Shatsky Rise formed at the triple junction of the Pacific, 

Izanagi, and Farallon plates between 150 and 130 Ma (Nakanishi et al., 1999; Sager et 
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al., 1988, 1999). The timing of Shatsky Rise is similar to that of the Ontong Java 

plateau which corresponds to a period of super plume activity (Larson, 1991). Seismic 

profiles of Site 1179 with apparent reflector displacements suggest that Site 1179 may 

be located within a graben ~1 Km across (Kanazawa et al., 2001). Figure 3.2 illustrates 

the correlation between the stratigraphy based on direct observation of the core and the 

seismic profile of Site 1179. The strong reflector in Figure 3.2 marks the boundary 

between sediment and basement rock, although the actual contact was not recovered.  

 
Figure 3.2. Seismic profile of Site 1179 with the correlated stratigraphy of Hole 1179D 
shown. The thick reflector at ~7.3 seconds marks the oceanic basement. Scaling of the 
lithostratigraphic column was carried out using the velocity-depth relationship of 
Carlson et al. (1986) to calculate the two-way traveltime of unit boundaries derived 
from core observations (Kanazawa et al., 2001). 
 

Hole 1179D penetrates a 375 m-thick sedimentary section followed by 100 m of upper 

oceanic crust to a total depth of 475 mbsf. However, logging in ODP Hole 1179D was 

restricted to a depth of 260 mbsf because a bridge in the hole precluded the transit of 

wireline geophysical tools, therefore core-log integration of basement to determine the 

true distribution of rock types was not possible. 

 The sedimentary section consists of four units. The uppermost Unit 1 comprises 

221.5 m of clay and radiolarian-bearing diatom ooze of late Miocene to Pleistocene age 

with common ash beds. Unit 2 comprises 24.5 m of clay-rich diatom-bearing 
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radiolarian ooze of late Miocene age which overlies a 37.5 m of barren brown pelagic 

clay (Unit 3). The sediments of Unit 4 were not recovered, with only chert nodules and 

porcellanite fragments obtained from this 93.7 m-thick unit. The evolution of sediment 

thickness though time is illustrated in Figure 3.3. A lack of sediment recovered in Unit 

4 means we can only assume a constant sedimentation rate of ~1.3 m/Myr for the 

deposition of Unit 4. The gap in the record extends to the early Miocene (~18 Ma) in 

which the base of Unit 3 records a low sedimentation rate of ~1.3 m/Myr. The very low 

levels of sedimentation persisted until the Mid-Miocene (~14 Ma), when there is a 

dramatic increase in sedimentation rate (~19 to 30 m/Myr). Sediment recovery is 78.5% 

with 100% recovery of the clay and oozes and only 6.75% recovery of Unit 4. 

 
 
Figure 3.3. Plot of sediment cover vs. time at Site 1179. Sedimentation rates are derived 
from a combination of palaeomagnetic (Green line) and biostratigraphic (Red line) 
data. The grey field indicates error margin in biostratigraphy. A lack of palaeomagnetic 
and biostratigraphic data resulting from low core recovery. No fossil evidence for time 
period 123 Ma to 18 Ma leaves a gap in the record. This is filled in by the dashed line 
by extrapolation from the earliest record and the start of the palaeomagnetic data. 
(Modified from Kanazawa et al., 2001) 
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Figure 3.4. Summary lithostratigraphic column for Site 1179, including core recovery, 
lithology and lithostratigraphic unit columns. ODP Holes 1179A (0-10 mbsf), 1179B 
(0-55 mbsf) and 1179C (0-292 mbsf) make up the sedimentary succession. The 
stratigraphy from a depth of 282 to 475 mbsf was interpreted from Hole 1179D 
recovered material. (Kanazawa et al., 2001). 
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Basement rocks recovered from Hole 1179D consist of cryptocrystalline to medium 

grained basalts of which 79% are massive flows, 16% pillow lavas, and 4% breccia. A 

further 1% of the recovered core consists of interpillow sediments. Recovery averages 

43.5 % with low recovery in intervals 0-10 msb (<27 %) and 30-43 msb (<10 %). The 

basement section is divided into 48 igneous units based on lithological differences, flow 

and/or cooling margins (Figure. 3.4). The most distinct petrological change is the 

presence or absence of olivine. Group I basalts (Units 1-8, 0-21 msb) are olivine poor. 

Group II (Units 9-24, 21-64 msb) are olivine free and aphyric and Group III (Units 25-

48, 64-100 msb) are olivine rich with olivine present as phenocrysts and within the 

groundmass. Groups I and II basalts are fine grained with subophitic texture whereas 

Group III basalts tend to be ophitic of medium grain size in the thicker lava flows 

(Kanazawa et al., 2001).          

 Shipboard XRF analysis and petrographic analysis indicate that these basalts are 

primitive tholeiitic MORB with the lavas of Group II being the most fractionated, 

which is closely followed by those of Group II. Group III basalts are chemically 

distinguished from the other groups by high concentrations of MgO, Cr, Ni, and Sr, 

which is consistent with the presence of olivine and Cr-spinel (Kanazawa et al., 2001). 

The difference in olivine content and the secondary mineral assemblages between 

Groups II and III causes a distinct colour change. The upper 24 units are green due to 

secondary mineral precipitation of saponite and celadonite. The lower 24 units are 

brown due to the alteration of olivine to iddingsite and the increased abundance of iron-

oxyhydroxides.  

 

 

3.3. Basement Alteration 

 

Secondary alteration phenomena for a representative suite of basalts have been 

described from hand specimen and thin sections from ODP Hole 1179D (See A. 1, 

Appendix). The extent and characteristics of alteration in ODP Hole 1179D ascertained 

include: 1) mineralogy, its extent, distribution and type 2) alteration halos, their 

relationships and their distribution 3) veins and breccia characteristics. These 

observations of basement alteration provide constraints for interpreting the geochemical 

analyses, because ultimately chemical variations must relate to the mineralogy and 

therefore the style and intensity of alteration. This provides a means to quantify and 
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characterise basement alteration at Site 1179. Various styles of alteration and their 

spatial and temporal characteristics have been identified by the nature of alteration 

halos, their relationship with veins and vesicles and the filling sequences within veins 

and their subsequent temporal relationships. Secondary mineral assemblages can be 

divided into four main types: 

1. Saponite rich halos and patches. Increased abundance of saponite is present causing 

the occurrence of pale green to yellow/green halos. Saponite may have a minor 

abundance of iron-oxyhydroxides.  

2. Saponite + iron-oxyhydroxides. Saponite commonly forms in conjunction with 

iron-oxyhydroxides. Varying levels of Fe(O,OH)x dictate the colour under thin section. 

Observations indicate green-brown to brown-red halos around fractures and vesicles 

filled with saponite + Fe(O,OH)x.  

3. Celadonite. Its presence is not ubiquitous, but it is commonly associated with 

saponite + Fe(O,OH)x. It occurs in veins, within halos and fills vesicles. In halos, 

celadonite is nearly always patchy and it is commonly overprinted by Fe-

oxyhydroxides. In areas where no overprinting has occurred, celadonite forms dark 

grey/green alteration halos 

4.   Complex halos. Contain multiple phases of green, brown and red halos caused by 

overprinting of celadonite by iron oxyhydroxides and later saponite. Additional later 

iron oxyhydroxides and/or celadonite may overprint the previous sequence.  

 

 The distribution of alteration styles is shown in Figure 3.5. All basement rocks 

recovered from ODP Hole 1179D are altered. Alteration intensity remains slight for the 

majority of rocks. However, rare moderate and high levels of alteration are present. The 

distribution of alteration styles remains fairly constant at 0-70 msb. Past 70 msb to the 

base of Hole 1179D brown alteration halos dominate. High volumes of brown halos 

coincide with low abundances of dark grey/green halos. Figures 3.6 shows typical 

secondary minerals observed in ODP Hole 1179D and Figure 3.7 show the typical 

effects of alteration on basement rock within the igneous groups and typical vein 

relationships throughout ODP Hole 1179D. Secondary mineral distribution in ODP 

Hole 1179D is shown on Figure 3.3.4, which utilizes compilation of shipboard and 

shorebased data from thin section, hand specimen and XRD. Distribution of secondary 

minerals throughout ODP Hole 1179D indicate that uniform massive flows contain a 
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higher abundance of Fe-oxyhydroxides, whereas pillow flows are more associated with 

saponite and carbonates. 

 
Figure 3.5. Distribution of alteration styles with depth in Hole 1179D. Styles of 
ateration are grouped depending on the observed secondary mineral. Grey (Saponite 
background), Yellow green (Saponite + Fe-oxyhydroxides), Brown (Fe-oxyhydroxides 
± saponite), Dk Grey/green (Celadonite).  Igneous stratigraphy is shown. Igneous 
groups are subdivided based on olivine presence. Group I basalts (Green) are olivine 
poor, group II basalts (Grey) are olivine free and group III basalts (Dark Green) are 
olivine rich. Percentages are based on direct observation of samples by eye. Results are 
calibrated to account for recovery. 
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Figure 3.6. Photomicrographs showing secondary minerals in basalts from Hole 1179D. 
A. Palagonitized glass in hyaloclastite in plane-polarized light (Sample 191-1179D-
20R-3, 139–142 cm) B. Vein with calcite and celadonite in matrix with smectite in 
plane-polarized light (Sample 191-1179D-12R-4, 83–86 cm). C. Vesicles with calcite 
and zeolite in cross-polarized light (Sample 191-1179D-22R-5, 135–137 cm) D. 
Vesicles with smectite and celadonite in plane-polarized light (Sample 191-1179D-
12R-2, 13–15 cm). (Kanazawa et al., 2001). 
      

 

3.3.1 Secondary minerals and halos 

 

Saponite is the most abundant secondary mineral in Hole 1179D and it is present 

throughout the core in all basement rocks including massive flows and pillow basalts. 

Saponite in ocean crust is a trioctahedral Mg-rich smectite with relatively low Fe, Al 

and K unless saponite is intermixed with celadonite (e.g., Alt and Honnorez, 1984; 

Gillis and Robinson, 1990; Teagle et al., 1996; Alt and Teagle, 2003; Tabli and 

Honnorez, 2003).   
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Figure 3.7. Typical alteration styles in Hole 1179D. A.) Sample 191-1179D-18R-3, 67-
75 cm (53.7 msb) with high degree of oxidation overprinting earlier saponite and 
celadonite, which is only present in discrete areas within veins. B.) Sample 191-1179D-
13R-3, 86-93 cm (19.3 msb)with veins of mixed composition and a halo of saponite 
and iron oxyhydroxide. This sample typifies alteration for the upper two thirds of Hole 
1179D. Saponite + Fe-oxyhydroxides form the bulk of the alteration. Rare celadonite 
occurs on vein margins. C.) Sample 191-1179D-14R-2, 0-6 cm (22.9 msb) with calcite 
vein cross-cutting a saponite vein. 
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Figure 3.8. Plot of minerals vs. depth profile for ODP Hole 1179D basalts. Plot is based 
on macro, micro and shipboard X-ray diffraction analysis. The abundance of each 
mineral, relative to observations of the mineral within the core is indicated by thick/thin 
blocks. Thin blocks = occurs in only a few samples in core, medium sized blocks = 
present in some, but not all samples within the core, thick blocks = present in most/all 
samples within the core (Kanazawa et al., 2001).  
 

 Saponite fills vugs, vesicles and interstices and replaces glass, plagioclase 

(Na,Ca)(Si,Al)4O8 and olivine ((Mg,Fe)2SiO4) which can supply the necessary Mg, 

Ca, Na, Al, and Si to form saponite (½Ca, Na)0.33(Mg, Fe+2)3(Si,Al)4O10(OH)2 · 4H

Other secondary phases may be associated with saponite including celadonite, calcite, 

iron-oxyhydroxides (Fe(O,OH)

2O. 

not 

 

x), and rarely zeolite. Saponite is commonly observed in 

various hues of brown to green although some may be strongly stained red by iron-

oxyhydroxides. Olivine is nearly always replaced by iddingsite (saponite + 

Fe(O,OH)x). Shipboard XRD analysis of mineral separates from veins and whole rock 

(Kanazawa et al., 2001) and petrographic observations indicates that chlorite is 

present.   

 Celadonite (typical formula: K(Mg,Fe2+)(Fe3+,Al)[Si4O10](OH)2) is 

distinguished by colour in thin section and hand specimen. It is bright green with a blue
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hue and it is characteristic in rocks with a high K content. Mg, Fe, Al and Si can all be 

supplied by the groundmass whereas K is sourced from seawater. Celadonite replaces 

mesostasis to form dark grey to green halos in hand specimens. Celadonite occurs 

the margins of veins, fills vesicles and vugs, and is commonly present in discrete 

patches or rims in and around saponite and iron-oxyhydroxide halos. Celadonite in the 

groundmass is patchy and associated with replacement of mesostasis and phenocry

Sample 191-1179D-18R-1, 19-35 cm contains two celadonite veins with saponite 

margins. In addition, there is a celadonite halo. Localized zones in which oxidation and

reduction have taken place is clearly evident from the presence of celadonite and iron-

oxyhydroxides in the same sample (e.g. samples 191-1179D-18R-1, 19-35 cm, 19R-2

105-110 cm, 20R-3, 13-18 cm, and 21R-3, 65-71 cm). Ve

on 

sts. 

 

, 

sicles are commonly filled 

e 

d Teagle, 

verprints celadonite and it is a 

out Site 

vide additional Ca. Rarely 

arbonate is present in groundmass replacing mesostasis.   

.3.2 Veins 

ODP 

141°58.758´W)(Paul, et al., 2006), it is relatively low compared to other basement sites 

with celadonite and collomorphic Fe(O,OH)x / hematite. 

 Iron-oxyhydroxide commonly occurs throughout Site 1179 and it is 

distinguished by deep red to brown red opaque secondary minerals replacing 

mesostasis, clinopyroxene, olivine and occasionally plagioclase. Iron-oxyhydroxide 

typically forms red/red brown halos that are usually associated with iron-oxyhydroxid

bearing veins (e.g. Sample 191-1179D-18R-3, 67-75 cm Figure 3.7). Alt an

(2003) demonstrated that iron-oxyhydroxide alteration occurs by diffusion 

perpendicular to fractures and the oxidizing conditions propagate inwards from the 

outer edge of the halo. Iron oxyhydroxide typically o

common constituent in complex halos (Figure 3.7). 

 Carbonates (CaCO3) typically occur as veins and vesicle fills through

1179, and it can be distinguished by its low to moderate relief and very high 

birefringence (4th order interference colours). Carbonate can be formed from seawater, 

although replacement of feldspar during alteration could pro

c

 

 

3

 

Veins filled with secondary minerals are common throughout ODP Hole 1179D. The 

abundance of veins averages18 veins per metre of core, although this is similar to 

Hole 1224 (18 veins per metre), which is located east of Honolulu (27°53.363´N, 
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e.g. ODP Hole 1256D (27 veins per metre) (Teagle et al., 2006), ODP Hole 801C (24 

veins per metre) and ODP Hole 504B (31 veins per metre) (Alt et al., 1996). 

 The volume percentage of vein minerals exhibits a general increase with depth. 

However, vein intensities are higher in two zones, one at ~20 to 30 msb and a second at 

40-60 msb with 12 vol% and 25 vol% respectively (Figure 3.9). Veins are made up of 

saponite, iron-oxyhydroxides, calcium carbonate, saponite + iron oxyhydroxides, 

saponite + carbonate, celadonite, and saponite with varying amounts of celadonite and 

small amounts of zeolite. Vein widths typically vary from 0.1 to 2 mm, however, there 

are a number of very large, spectacular 8-17 mm carbonate and saponite ± celadonite 

veins (e.g. Samples 191-1179D 14R-2, 0-6 cm; 18R-3, 17-23 cm; 19R-3, 70-75 cm).  

 Saponite veins are abundant throughout ODP Hole 1179D. Saponite veins range 

in thickness from 0.1 mm to very large 10 mm thick veins, although most veins greater 

than 0.3 mm contain other mineral phases. Veins entirely composed of saponite largely 

cut across celadonite, and iron-oxyhydroxide veins although saponite veins which cut 

veins and halos composed of iron oxyhydroxides tend to incorporate some iron 

oxyhydroxides with these veins. Rarely, saponite veins are cross cut by iron 

oxyhydroxide, carbonate, and/or celadonite veins. Saponite textures vary from 

spherulitic/vermicular to fibrous. Saponite appears brown green or reddish in thin 

section depending on the presence of Fe-oxyhydroxides. Saponite veins commonly 

have saponite + Fe-oxyhydroxide halos that range in thickness from 0.1 mm to several 

cm. Such halos also occur on veins containing Fe-oxyhydroxides and veins which are 

composed of more than one mineral.  

 Iron-oxyhydroxide veins are common throughout ODP Hole 1179D (Figure. 

3.9). Veins range in thickness from 0.1 to 10 mm thick although iron-oxyhydroxide 

tends to be only a minor phase in larger veins. Typical vein thicknesses where iron-

oxyhydroxide forms the major component range from 0.1 to 0.5 mm. Iron 

oxyhydroxide veins cross cut celadonite veins and halos, however, saponite and 

carbonate in turn cross cut iron-oxyhydroxide veins. Some samples (e.g. Sample 191-

1179D-18R-4, 24-28 cm) show saponite veins which have been stained by iron 

oxyhydroxide as they pass through iron rich halos (Figure. 3.9).  

 Carbonate veins are abundant throughout most of Hole 1179D and commonly 

form the major constituent in multi-mineralic veins. Carbonate has been identified as 

calcite by XRD and this calcite may exhibit prismatic, blocky or fibrous habits. 

(Kanazawa et al., 2001). Calcite veins range from 0.1 mm to 1mm with rare 10 mm 
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thick veins. Calcite can occur alone, in the middle of saponite and/or celadonite veins, 

on the exterior of saponite and/or celadonite veins or intergrown with saponite, 

celadonite or Fe-oxyhydroxides. Calcite veins appear to post-date saponite veins, with 

carbonate veins cutting across saponite veins. 

 
 
 
Figure 3.9. Vein relationships in ODP Hole 1179D. A) Sample 191-1179D 19R-2, 105-
110 cm. Iron oxyhydroxide vein with subsidiary calcite, saponite and celadonite. B) 
Sample 191-1179D 20R-2, 12-20 cm. Calcite vein that has re-opened. Saponite and 
celadonite are present is minor phases, although celadonite is only present on one side. 
C) Sample 191-1179D 18R-4, 24-28 cm. Iron oxyhydroxide veins and associated halo, 
cross cut by saponite vein. The saponite vein is stained by the iron-oxyhydroxide as it 
passes over the iron-oxyhydroxide halo and vein. D) Sample 191-1179D 14R-3, 16-24 
cm. Celadonite vein, and remnants of celadonite halo which is partially overprinted by 
saponite. 
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 Celadonite veins are less common than carbonate, iron oxyhydroxide or 

saponite veins, however, they occur throughout the core. Typically celadonite is a 

constituent in multiminerallic veins, but, rare thin 0.1 mm veins are entirely composed 

of celadonite. Celadonite is typically fibrous or vermicular and generally forms on the 

vein margins although rarely, celadonite is present in the centre of the vein. Veins of 

celadonite are nearly always cross-cut by all other secondary mineral phases. The low 

abundance of celadonite might be attributed by the overprinting from later secondary 

mineral phases (Figure. 3.9D). Celadonite halos occur round celadonite-bearing veins 

and are commonly cross-cut by later Fe-oxyhydroxides and saponite veins and halos. 

Zeolite is a minor phase in some carbonate veins and rarely occurs, partly filling 

vesicles. Zeolites nearly always post-date other secondary phases. 

 
Figure 3.10. Distribution of veins and breccia in Hole 1179D in terms of volume %. 
Total % records the total volume of minerals in veins only. All data is normalized to 
account for core recovery. 
 

 The vast majority of veins are composed of more than one secondary mineral. 

Veins containing both saponite and calcite contain saponite in the centre with calcite 

along the margins and calcite located in the centre of veins with saponite/celadonite on 

the edges and at the vein tips. In Sample 191-1179D-20R-2, 12-20 cm a vein with a 

blocky carbonate centre is lined, discontinuously with saponite (Figure. 3.9B). This, in 

turn, is lined by fibrous calcite followed by an outer layer of saponite with one side 
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containing discontinuous, fibrous celadonite. Several phases of reopening and infill has 

probably taken place here.  

 

 

3.3.3 Breccia 

 

Hyaloclastite and fragmentation breccias are not common in the cores recovered from 

ODP Hole 1179D, consisting of only 3.3 % of the total recovered core in discrete 

intervals. The majority of breccia recovered was at the middle portion (43 to 50 msb) 

within Group III basalts (Figure 3.10). However, breccia tends to be of the most 

intensely altered samples (for example Figure 3.11). Due to the low to moderate rate of 

core recovery (Figure 3.4) it is highly likely that a large proportion of breccia remains 

unaccounted for, because less competent rocks are less likely to be recovered during 

drilling. A lack of wireline logging measurements unfortunately precludes the 

application of electrofacies to estimate the true lithological composition of Site 1179. 

 Hyaloclastite is primarily composed small angular glass fragments formed by 

quenching and fragmentation of basalt lava upon contact with cold seawater during 

eruption. The hyaloclastites in Hole 1179D are composed of calcite, saponite and 

numerous fragments of glass that are altered to saponite and/or iron-oxyhydroxides. 

Hyaloclastite breccia cement is made up of calcite and comminuted glass fragments 

(Figure 3.11 A). Clasts are ~90% glass, which are highly altered to saponite with 

increasing Fe-oxyhydroxide content towards the edges (based on colour changes). In 

addition, saponite and celadonite are locally present at these edges. A few basaltic 

clasts are present in the hyaloclastite breccias, these are all highly altered to saponite + 

Fe-oxyhydroxides. The matrix is primarily composed of blocky calcite, with some 

quartz.  

 Basaltic clastic or fragmentation breccias (Figure. 3.11 B) are predominantly 

composed of basalt clasts with a matrix of blocky calcite and saponite. Minor 

secondary sulfides including pyrite and chalcopyrite are present in greater abundances 

in breccias than the rest of the recovered core. Clasts are variably altered, some 

containing brown, saponite + Fe-oxyhydroxide halos with fresh cores. Clasts in basaltic 

breccia are rounded to subangular (e.g. Sample 191-1179D 18R-1, 52-58 cm Figure 

3.11 C). 
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Figure 3.11. Examples of breccia types found in ODP Hole 1179D. (A) Sample 191-
1179D 21R-1, 87-92 cm is a hyaloclastite breccia, primarily composed of altered glass 
fragments with a matrix dominated by calcite and minor quartz. (B) Sample 191-1179D 
18R-1, 52-58 cm is a pillow breccia. Basaltic clasts with glassy rims and glass clasts are 
supported by a matrix of saponite and calcite. (C) Sample 191-1179D 22R-2, 50-57 cm 
represents a basalt clastic breccia. Calcite forms the matrix and clasts are basaltic.   
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The basaltic clasts often exhibit partially to completely altered glassy margins, 

some of which have concentric banding and alteration patterns suggesting that the 

clasts are from a pillow lava. The matrix is composed calcite and lesser amounts of 

saponite with minor secondary sulfides.  

 The occurrence of breccia at 5-10, 45-50 and 70–75 msb coincides with an 

overall increase in the abundance of quartz and sulfides when compared to the rest of 

the recovered core (Figure. 3.8). More breccia is likely to be present in basement at Site 

1179 than was recovered due to the crumbly nature of the breccias because recovery 

remains biased towards fresher, more competent rock. 

  

 

3.3.4 Summary 

 

Secondary minerals at Site 1179 record the style and intensity of alteration. Alteration 

is slight and it is formed from high levels of low temperature, oxidizing seawater. 

Direct comparisons between the intensity of alteration, the vein abundance, and number 

of veins is illustrated by the distribution of veins, halos and breccias with depth.  

 
Figure 3.12. Relative timing of secondary mineral paragenisis for Site 1179 basement 
based on petrographic observations. (Fe-ox = Iron-oxyhydroxides; Qtz/Chal = Quartz 
and Chalcedony) Dashed line indicates uncertainty with the timing of quartz and 
chalcedony. 
 

 Site 1179 breccia recovery is almost certainly not representative due to 

preferential recovery of more competent rocks, therefore we have to regard the breccia 

and pillow lava percentage estimates as a minimum. The petrographic observations of 

alteration at Hole 1179D provide insights into the timing of secondary mineral 

formation. The relative paragenisis for secondary minerals for Site 1179 basement is 

given in Figure 3.12. The sequence of alteration follows a very similar trend to that of
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other ODP holes observed in ocean crust e.g. Hole 801C (Alt and Teagle, 2003), Hole 

896A (Teagle et al, 1996) and 504B (Alt et al, 1996), although there is a great degree of 

overlap in the sequence and any combination of alteration phases may be present in a 

particular sample. Celadonite appears to be the first phase, forming halos that propagate 

outwards from celadonite filled veins. Partial to total overprinting of celadonite by iron-

oxyhydroxides make up the second alteration assemblage. celadonite filled veins and 

vesicles may partially fill with iron-oxyhydroxides. A transitional stage from iron-

oxyhydroxides is observed in terms of mixtures of saponite and iron-oxyhydroxides 

with varying degrees of Fe content. Saponite, pervasive throughout all rocks of ODP 

Hole 1179D, overprints iron oxyhydroxide and celadonite, may have been aided by 

later reducing conditions, however, observation of secondary sulfides, which form 

under reducing conditions, is minimal. Lastly, late-stage calcite ± zeolite fill veins and 

to a lesser extent coarse grained portions of groundmass and vesicles.  

 

 

3.4. Basement Geochemistry 

 

An understanding of the magmatic processes at Site 1179 is required before we can 

estimate chemical changes associated with hydrothermal alteration. An analysis of the 

chemical nature of Site 1179 is derived from a suite of eighty-five samples from Hole 

1179D that are analyzed for major and trace elements. Twenty-one of analyses were 

performed aboard ship (Kanazawa et al., 2001) (Table 3.1). The timing and location of 

Site 1179 formation coincides with the eruption of a large oceanic plateau, Shatsky 

Rise which formed during mid Cretaceous super-plume activity at the triple junction of 

the Pacific, Izanagi, and Farallon plates (Nakanishi et al., 1999; Sager et al., 1988, 

1999). Although we would expect the 129 M.yr-old Site 1179 basement to exhibit 

typical MORB signatures, the proximity of Site 1179 to Shatksy Rise may have 

influenced the composition of the Site 1179 lavas.      
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 Representative analyses (all Samples from each group)     

  
GP 1 SD GP 2 SD GP 3 SD ALL 'Grey' SD 

Major elements (wt%)        
SiO2 49.64 0.95 49.71 1.36 46.97 2.54 48.26 1.39 
TiO2 1.30 0.08 1.68 0.24 1.49 0.18 1.47 0.24 
Al2O3 14.67 0.63 14.66 0.99 15.85 1.06 14.72 0.89 
Fe2O3 10.99 1.76 11.28 1.96 10.73 1.17 10.36 1.57 
MnO 0.17 0.03 0.18 0.04 0.22 0.05 0.19 0.05 
MgO 7.15 0.58 6.74 0.93 6.27 0.91 6.81 0.78 
CaO 10.68 1.05 9.98 1.87 11.78 2.14 11.95 1.00 
Na2O 2.82 0.37 3.06 0.39 2.94 0.32 2.75 0.40 
K2O 0.72 0.26 0.71 0.56 0.44 0.24 0.50 0.25 
P2O5 0.11 0.01 0.15 0.04 0.17 0.04 0.14 0.03 
C 0.07 0.07 0.05 0.05 0.34 0.63 0.09 0.07 
S 0.01 0.02 0.01 0.01 0.03 0.04 0.02 0.04 
LOI 1.44 0.48 1.48 1.00 2.85 2.61 2.52 0.87 
Total 99.68 0.37 99.63 0.49 99.71 0.40 99.67 0.54 
Fe3+/Fe(Total) 0.53 0.09 0.44 0.14 0.67 0.11 0.49 0.09 
Mg# 56.4 5.8 54.2 6.5 53.5 5.0 56.8 5.8 
Trace elements (ppm)        
Co 50 5.18 49 4.37 50 5.48 50 4.04 
Cr 274 48.44 187 81.08 370 49.87 265 89.46 
Cu 62 24.44 60 33.26 64 28.51 73 31.90 
Ga 17 0.81 19 1.48 18 1.54 18 1.25 
Ni 75 12.34 71 15.82 124 33.92 92 34.90 
Sc 47 3.63 49 4.52 42 2.90 46 4.00 
V 363 21.53 388 51.73 327 40.65 363 42.16 
Zn 90 6.67 102 22.62 94 12.04 94 12.45 
Rb (ICP) 12 6.16 11 9.02 6 3.68 10 6.26 
Sr (XRF) 93 10.54 104 24.87 162 28.02 111 33.34 
Y (XRF) 29 2.71 39 8.10 31 3.21 33 6.24 
Zr (XRF) 75 7.84 100 16.49 104 16.06 86 19.10 
Nb (ICP) 2.45 0.51 3.04 1.03 4.03 1.23 2.94 1.02 
Cs 0.31 0.23 0.19 0.16 0.21 0.22 0.25 0.21 
Ba 14.31 7.38 16.48 10.31 22.07 13.13 18.96 12.40 
La 2.23 0.51 3.12 0.79 3.57 0.84 2.98 1.04 
Ce 6.59 0.94 9.76 1.75 10.51 1.80 8.49 2.40 
Pr 1.18 0.11 1.71 0.27 1.73 0.27 1.36 0.33 
Nd 7.19 0.63 10.25 1.51 9.98 1.27 8.75 1.85 
Sm 2.72 0.28 3.94 0.63 3.53 0.62 3.32 0.81 
Eu 1.02 0.07 1.40 0.18 1.23 0.14 1.13 0.22 
Gd 3.75 0.40 5.12 0.91 4.29 0.38 4.19 0.77 
Tb 0.72 0.04 1.03 0.17 0.79 0.07 0.81 0.16 
Dy 4.99 0.39 6.76 1.02 5.18 0.70 5.52 1.03 
Ho 1.09 0.06 1.52 0.24 1.14 0.09 1.20 0.24 
Er 3.08 0.18 4.12 0.70 3.05 0.36 3.29 0.64 
Tm 0.44 0.02 0.61 0.09 0.45 0.03 0.48 0.09 
Yb 3.30 0.51 4.39 0.83 3.36 0.58 3.83 0.86 
Lu 0.46 0.03 0.62 0.10 0.46 0.03 0.50 0.09 
Hf 1.80 0.27 2.46 0.50 2.29 0.33 2.00 0.46 
Ta 0.08 0.12 0.15 0.31 0.04 0.01 0.07 0.12 
Pb 0.34 0.34 0.40 0.23 0.41 0.14 0.41 0.34 
Th 0.37 0.93 0.23 0.08 0.22 0.09 0.19 0.10 
U 0.12 0.06 0.25 0.28 0.10 0.03 0.15 0.08 

Table 3.1. Representative whole rock major, trace and rare earth element concentrations 
for samples recovered from ODP Hole 1179D. Major element oxides were measured by 
XRF as were trace elements Co, Cr, Cu, Ga, Ni, Sc, V, Zn, Sr, Y and Zr. All other 
elements are measured by ICP-MS. Mg# is the ratio of magnesium to iron expressed in 
wt% form: Mg2+/(Mg2++ Fe2+). Analyses use data from this study and Kanazawa, 
Sager, Escutia, et al., (2001). 
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3.4.1 Classification of Site 1179 basalts. 

 

Major, trace and REE data may be used to classify the basement at Site 1179. A range 

of different basalt types is compared against Site 1179D basement. In addition a series 

of discrimination diagrams are discussed to define the origins of Site 1179.   

 

Many of the major elements commonly used to classify igneous rocks are mobile 

during fluid rock interaction. Therefore because Site 1179 basement is altered, they 

may not be suitable for classifying precursor compositions, and thus igneous trends are 

drawn with caution. Concentrations of whole rock major element oxides of all 

basement rocks at Site 1179 are similar to MORB (Table 3.2). High K2O at Site 1179 

most likely reflects incorporation of secondary minerals (e.g. celadonite) by low 

temperature hydrothermal alteration. 

 
Table 3.2. Average major element concentrations for a selection of basalt types. N-
MORB from McKenzie and O’Nions (1991), Ontong Java Plateau data from Fitton and 
Godard (2004), Shatsky Rise data from Tatsumi et al., (1998). 
 

A standard AFM plot (Figure 3.13) of Site 1179 basalts suggests that Site 1179 

basement is high-Fe tholeiite basalt however the slightly elevated Fe is more likely to 

be an effect of alteration. Determination of the ferric/ferrous iron ratio (Outlined in 

Chapter 2 ‘methods’) allows a direct assessment of the ferric Fe content. A plot of 

Fe3+/Fe(Total) vs. LOI (Figure 3.14) shows that Fe at Site 1179 is moderately to greatly 

oxidized and that oxidation increases with LOI. In addition Fe3+/Fe(Total) vs. LOI trends 

back towards the expected primary composition for MORB (Fe3+/Fe(Total) = 0.12, LOI = 
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0.2 wt %). These results coincide with the observation of iron-oxyhydroxide veins and 

halos in the whole rock. These observations imply that Site 1179 Fe3+/Fe(Total) are 

influenced by low temperature hydrothermal alteration (e.g. Teagle et al., 1996), which 

precludes the use of Fe concentration analyses to assess primary magmatic conditions 

at Site 1179. 

 
Figure 3.13. Ternary AFM diagram suggests Site 1179 basement (Blue squares) is high 
Fe-tholeiites. Its use however is limited since Al, Fe, and Mg are mobile during 
alteration. Shatsky  Rise, Tatsumi et al, (1998); Ontong Java Plateau, Fitton and Godard 
(2004) and Pacific MORB is from Janney and Castillo, (1997).  

 
Figure 3.14. LOI vs. Fe3+/Fe(Total) for Site 1179 whole rock samples. Alteration styles 
are highlighted. The composition of fresh glass is sourced from Puchett and 
Emmermann, (1983), Alt et al, (1989), and Danyushevsky, (2001). 
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Fractionation trends of Fe2O3 vs. SiO2, SiO2 vs. Mg number and Mg number vs. Sr 

(Figure 3.15 a and g) plot within the MORB field which suggests that Site 1179 basalts 

are typical MORB, because compositions, although scattered, plot within the fields for 

MORB and EPR.  

 
Figure 3.15. Selected major element plots vs. SiO2, Mg number and MgO. Pale green 
squares, Group I; Grey squares, Group II; Dark green diamonds, Group III. Where 
possible Pacific MORB (heavy stippling), Janney and Castillo, (1997); Ontong Java 
Plateau (crosses), Fitton and Godard, (2004) and Shatsky Rise (light stippling), Tatsumi 
et al., (1998) fields are shown for comparison including trend lines.  
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Figure 3.16. Selected trace element plots vs. SiO2, Mg number and MgO and TiO2 vs. 
Zr. Pale green squares, Group I; Grey squares, Group II; Dark green diamonds, Group 
III. Where possible Pacific MORB (heavy stippling), Janney and Castillo, (1997); 
Ontong Java Plateau (crosses), Fitton and Godard, (2004) and Shatsky Rise (light 
stippling), Tatsumi et al., (1998) fields are shown for comparison including trend lines.  
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Figure 3.17. a) Range of chondrite-normalized rare earth element concentrations for 
Site 1179 Basalts. REE patterns for the trace element depleted basement Sites 504* and 
896 (Teagle et al., 1996) are also shown. b) Average chondrite normalized REE 
patterns for igneous groups at Site 1179 in comparison to Shatsky Rise and Pacific 
MORB. Fields for Shatsky Rise and Pacific MORB indicate the standard deviation 
about the average. Chondrite-normalization factors from Taylor & Gorton (1977).* 
Hole 504B data is a compilation of Legs 69, 70 (Cann et al., 1983); 83 (Anderson et al., 
1985), 111 (Becker, Sakai et al., 1989), and 140 (Erzinger et al., 1995). Pm is not 
analyzed.  
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Alteration will likely cause some of the scatter in geochemical plots. MORB-

normalized major and trace element data from Site 1179 and various other sites (Figure 

3.17) are very similar to EPR basalts and do not show a large degree of variation from 

the MORB normalization values. Elevated concentrations in elements K, Rb and Sr are 

likely to be caused by alteration.  

 
Figure 3.18. Classification of igneous rocks at Site 1179. (A) Y (ppm) vs. Cr (ppm). 
(after Pearce, 1982). (B) Plot of Zr/(P2O5 x 104) vs. Nb/Y places Site 1179 within the 
oceanic tholeiite field (after Floyd and Winchester, 1975).  (C) Plot of Zr vs. Ti. Site 
1179 basalt plot within the expected range for basalts (field after Pearce and Cann, 
1973 data from Pearce, 1982). Shatsky Rise data from Tatsumi et al, (1998); Ontong 
Java Plateau data from Mahoney et al, (1993). 
 

 Concentrations of Ti, Cr, Y, Nb and Zr for Site 1179D and where possible, 

Shatsky Rise and the Ontong Java Plateau are plotted on a selection of discrimination 

diagrams which use large pools of data from rock in various tectonic settings to create 

fields (Figure 3.18). All plots for Site 1179 are within tholeiitic basalt fields indicating 

a strong likelihood that rocks from Site 1179 are MORB. 
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3.4.2 Igneous trends 

 

Basement at Site 1179 is subdivided into three igneous groups based on olivine content 

(Kanazawa et al., 2001) and this subdivision is also apparent in whole rock 

geochemical data.  

  wt % ppm 
    TiO2 MnO MgO K2O Cr Cu Ni Sr Y 

Group I Max 1.4 0.24 8.7 0.94 359 71 101 108 34 
 Min 1.2 0.10 6.5 0.17 219 34 67 68 25 
 Average 1.3 0.14 7.5 0.58 294 51 82 93 29 
 Stdev 0.1 0.04 0.7 0.22 54 14 11 12 3 
 n 11 11 11 11 8 8 10 12 12 
    Low Low High Mod Mod Mod Mod Mod Mod 

Group II Max 1.9 0.23 7.4 0.92 209 93 78 103 46 
 Min 1.5 0.15 5.4 0.33 158 26 49 87 38 
 Average 1.8 0.20 6.7 0.59 175 57 63 98 42 
 Stdev 0.1 0.02 0.7 0.25 23 21 11 5 3 
 n 9 9 9 9 5 7 7 8 8 
    High Mod Mod Mod Low Mod Low Mod High 

Group III Max 1.7 0.36 7.0 0.45 393 84 187 181 32 
 Min 1.1 0.21 6.1 0.06 347 61 97 71 25 
 Average 1.5 0.25 6.7 0.21 365 70 142 134 29 
 Stdev 0.2 0.06 0.4 0.15 24 12 45 51 3 

 n 5 5 5 5 3 3 4 5 5 

  Mod High Mod Low High High High High Mod 

  ppm 

    Zr Nb La Ce Nd Dy Er Pb Th 

Group I Max 88 3.3 2.8 6.9 7.9 5.2 3.3 0.41 2.70 
 Min 67 1.4 1.5 4.9 5.6 4.4 2.9 0.09 0.11 
 Average 78 2.4 2.0 6.2 7.1 4.8 3.1 0.22 0.43 
 Stdev 6 0.6 0.4 0.7 0.7 0.3 0.1 0.09 0.85 
 n 10 12 10 10 10 10 10 8 9 
    Low Low Low Low Low Low Low Low High 

Group II Max 116 4.0 4.4 11.5 11.7 7.7 4.4 0.66 0.47 
 Min 107 2.0 2.3 8.4 9.7 6.8 4.1 0.19 0.17 
 Average 107 3.0 3.0 9.7 10.6 7.1 4.3 0.33 0.23 
 Stdev 4 0.5 0.7 1.1 0.7 0.3 0.1 0.17 0.11 
 n 5 8 8 8 8 8 7 6 7 
    High Mod Mod Mod High High High Mod Mod 

Group III Max 112 6.0 4.7 11.7 10.0 5.7 2.8 0.80 0.27 
 Min 99 1.7 1.5 5.2 6.1 4.4 2.5 0.24 0.06 
 Average 107 3.5 3.3 9.7 8.8 5.1 2.7 0.50 0.15 
 Stdev 7 1.7 1.3 3.1 1.8 0.6 0.2 0.28 0.11 

 n 3 5 4 4 4 4 3 3 3 
  High High Mod Mod Mod Mod Low High Low 

Table 3.3. Summary of chemical variation between igneous groups at Site 1179 based 
on selection of least altered samples from each group. Elements which display the 
greatest variation in concentration are shown. A relative ranking for concentration is 
given for each element in each group (High, Moderate, Low). Max: largest value in 
group, Min: Lowest value in group, Average: mean average of all samples within 
group, stdev: standard deviation from the average. 
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Primary igneous variation within the groups is minimal, the characteristic features and 

chemical changes are discussed for each group. Petrographic evidence indicates that 

Group I basalts actually extend into Core 191-1179, 14R-1 and do not terminate at the 

boundary between Cores 191-1179, 13R-3 and 191-1179, 14R-1 as identified by 

(Kanazawa et al., 2001). 

 Figure 3.19 demonstrates the presence of olivine, iron content and a selection of 

major elements vs. TiO2 of the samples which are used for this reclassification. Given 

that Group I and Group II were distinguishable from their low olivine and olivine free 

content respectively (Kanazawa et al., 2001), the samples highlighted in Figure 3.19 

should be re-classified as Group I since there is olivine present in ODP 1179-191-14R-

1. With respect to MnO, Fe2O3, Al2O3, and P2O5 vs. TiO2, these samples share simila

chemistry to the rest of Group I basalts (Figure 3.19). A stand alone Group III sample 

in Figure 3.19 exhibits similar chemistry to Group I samples. This may indicate 

variations in primary chemistry within Group III basalts, however more work is 

required to isolate the igneous origins of this sample, The sample is not marginal within 

Group III and it contains olivine, therefore its original classification remains. 

r 

 Table 3.3 gives the ranges and average concentrations for elements that 

chemically define each igneous group from a selection of the least altered samples 

within each group. Selection of least altered samples is based on low LOI, K2O, C, S 

and similarities with TiO2 (Discussed in ‘chemical changes’). The major element 

oxides variation between the igneous groups (Figure 3.20) and depth are largely 

indistinguishable with the exception of TiO2 and MgO. TiO2 concentrations are lower 

in Group I than Groups II and III. Kanazawa et al., (2001) document the presence of Ti 

–augites, however, this is based on petrographic observation only and would require 

microprobe analysis to confirm. It is most likely that Ti-magnetite is from primary 

magma. 
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Figure. 3.19. Reclassification of Igneous Groups I and II based on the presence of 
olivine, FeO concentration and some example plots of major element oxides vs. TiO2. 
Samples highlighted in red circles, which were classified as Group II by Kanazawa, 
Sager, Escutia, et al, (2001) chemically trend with Group I.  
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Figure 3.20. Major element oxides vs. depth for Site 1179 basalts. Varying x-axis scales are used so variation within each element is clearly 
apparent.
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Figure 3.21. FeO/MgO vs. TiO2 plot for basalts from Site 1179D. Group I basalts (light 
green), Group II basalts (Grey) and Group III basalts (Dark green) are shown. 
Reference data sources from Pacific Ocean are Mariana Basin, Floyd and Castillo 
(1991); Ontong Java Plateau, and East Pacific Rise, Mahoney et al (1993); Shatsky Rise 
(Light brown), Tatsumi et al, (1998). 
 
The concentration MgO is slightly higher in Group I basalts than in Groups II and III. 

The presence of olivine in Groups I and III and Ti in oxides in Group II is borne out in 

a TiO2 vs. FeO*/MgO (Figure 3.21). Although there is overlap between FeO*/MgO, 

Group III basalts have higher TiO2 than Group I. Trace and REE element 

concentrations are more distinctive with Cr, Cu, Ni, Sr, Y, Zr, Nb, La, Ce, Nd, Dy, Er, 

Pb, and Th concentrations indicating the greatest variability across the igneous groups. 

Cr concentrations reflect the presence of Cr – Spinel in Group III (Kanazawa et al., 

2001) which contrasts with Group II (low Cr and no spinel). Group I basalts have 

relatively low concentrations of Zr, Nb, La, Ce, Nd, Dy, Er, Pb and Th compared to 

Groups II and III. Group II has relatively high concentrations of Y, Zr, Nd, Dy, and Er 

and Group III exhibits high concentrations in Cr, Cu, Ni, Sr, Zr, Nb, and Pb. Strontium 

concentrations are markedly elevated in Group III. This may be a manifestation of 

increased alteration intensity causing a greater incorporation of seawater Sr into the 

basalts, elevated CaO (average: 11.86 wt %) in Group III compared to Group 1 

(average: 10.6 wt %) and Group II (average: 10.2 wt %). 
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Figure 3.22. MORB-normalized major and trace element diagrams for all samples in 
Group I, II and II basalts from Hole 1179D. For comparison Pacific MORB (blue), 
Janney and Castillo, (1997); Ontong Java Plateau (Orange), Fitton and Godard, (2004) 
and  Shatsky Rise (brown), Tatsumi et al., (1998) fields are shown. MORB 
normalization for major and REE elements taken from Sun and McDonough (1989) and 
trace elements from Pearce (1983) and Pearce (1982).  
 
 Figure 3.22 displays MORB normalized (Sun and McDonough, 1989; Pearce, 

1982, 1983) average major and trace element compositions for all samples in each 

igneous group, compared to Pacific MORB, and the lavas from the Ontong Java Plateau 

and Shatsky Rise. Overall Site 1179 groups do not deviate greatly from MORB, 

although all groups have elevated K2O, Rb, Ba and Pb compared to MORB. 
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Figure 3.23. Selected trace and REE concentrations vs. depth for Site 1179 basalts. Igneous groups are indicated as; green = Group I, grey = Group 
II, dark green = Group III. Core recovery and lithology is also shown (Concentrations are in ppm).  
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Figure 3.23. Continued ...
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 Elevated K2O and Rb reflect the incorporation of secondary minerals 

(celadonite and saponite) by seawater interaction with basalt. Overall Site 1179 

basement REE does not vary greatly with depth, Figure 3.23 shows selected REE 

concentrations vs. depth. Distinct petrological changes between groups are indicated by 

trend lines. Group I is distinguished by low Zr, Sr, Nb, La, Ce and Lu where as Group 

II is characterised by high concentrations of Sc, V, Y, Yb and Lu and low Cr. Group III 

contains high concentrations of Cr, Sr, Nb, La and Ce and low concentrations of Sc, Y, 

Yb and Lu. 

 Overall Site 1179 basement chondrite normalized REE patterns are homogenous 

with a slight depletion of light REE (Figure 3.17. The average REE patterns for each 

group are similar to average Pacific-MORB (Figure 3.17 but have slightly higher REE 

concentrations compared to other drilled basement sites in the Pacific basement (Figure 

3.17. Group I basalts have the greatest depletion of light REE (La – Nd). Group II 

basalts have a similar pattern to Group I rocks albeit less LREE depleted (Figure 3.17. 

Group II chondrite normalised REE pattern is the most similar to Pacific MORB. 

Group III basalts are the least depleted in LREE, La, Ce and Pr, but have lower HREE 

with a pattern that resembles MORB. 

 Plots of major and trace elements vs. SiO2, MgO and Mg-number (Figure 3.15 

and 3.16) indicate fractionation. Fe, Mg, Sc, Co, Ni and Pb vs Silica (Figures 3.15 and 

3.16) plots exhibit variable trends within the igneous groups at site 1179. Si vs Fe 

(Figure 3.15) Indicates that as Si concentrations are reduced, Fe concentrations 

increase. This may be an alteration affect because an increase in the relative proportion 

of iron will reduce the proportions of the other major elements. MgO vs SiO2 shows an 

overall trend of increasing Mg with Si. Sc and Ni (Group III especially) show increased 

concentrations with silica. No fractionation trend can be detected for Group III Co vs. 

SiO2 although, like Ni they are relatively high in concentration due to the presence of 

olivine. Pb concentrations vary, but they appear largely independent of silica, with 

Group II showing a very slight trend towards increasing silica content.   

 Silica vs. Mg number (Figure 3.15) display a good trend suggesting 

fractionation in all groups. It also compares well with Pacific MORB. Co vs Mg 

number (Figure 3.16) has a slight negative trend with Mg number. Fe2O3 vs. MgO 

(Figure 3.15) also shows a negative trend in all groups, indicating fractionation. Ni vs. 

Mg number shows a positive trend for all igneous groups. Because olivine commonly 

contains Ni, we expect Group III basalts to contain the highest concentrations of Ni. 
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The weak trend between Sr and Mg number (Figure 3.16) in Groups I and II is most 

likely the result of mobility of Sr during low temperature hydrothermal alteration. 

 

 

3.4.3 Shatsky Rise.  

 

By directly comparing Site 1179 chemical data to data available for Shatsky Rise, 

interactions between the Site 1179 and Shatsky rise should be indicated by chemical 

similarities between the two sites. Major element oxides for Site 1179 basement remain 

chemically distinct to that of Shatsky, follow MORB trends (Table 3.2). The chondrite 

normalized REE patterns exhibited in Figure 3.17b illustrates that Shatsky Rise data is 

distinct from Site 1179 with elevated trace elements and depletion of HREE. 

Fractionation trends (Figures 3.15 and 3.16) also indicate no association with Shatsky 

Rise.  

Group III REE patterns hint at perhaps a slight Shatsky plume influence, because this 

group follows a similar trend of relatively low depletion of LREE followed by 

depletion of HREE. 

 Site 1179D basalts appear to show no plume characteristics of the type exhibited 

by Shatsky Rise or the Ontong Java Plateau. Microprobe analysis of phenocrysts, 

combined with leaching experiments to remove alteration effects will be required for a 

more detailed study of the igneous petrogenesis of Site 1179 basalts. However, the 

chemistry thus far suggests Site 1179 is chemically distinct from Shatsky Rise. The 

variation in chemistry within the groups most likely relates to fractionation and 

seawater interaction with Site 1179 basement.                                                                                              

 

 

3.4.4 Whole rock chemical changes 

 

Full assessment of the nature and extent of hydrothermal alteration, necessitates 

calculation of chemical change caused by hydrothermal alteration. This may be 

achieved by comparing the compositions of altered rocks to a fresh ‘protolith’. If 

available, fresh glass from the margins of a pillow lava can be used as a guide to assess 

precursor compositions. However, the lack of phenocrysts in glass precludes their use 

as an absolute measure for precursor compositions and, where alteration is pervasive, 
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fresh glass is frequently not available. An average of a selection of least altered rocks 

may be chosen to represent fresh basement, however, if the rocks are fractionated the 

primary chemistry for each sample will differ from one another, meaning sourcing a 

suitable protolith becomes very difficult. Site 1179 presents a challenge for assessing 

the chemical changes associated with hydrothermal alteration because basement is 

pervasively altered, there is evidence of fractionation (See chapters 4 and 5 

respectively), and there are no fresh glass samples. 

 For comparisons between the fresh and altered state of basement rocks at Site 

1179, immobile elements are extensively used to determine protolith compositions (e.g. 

Teagle and Alt, 2004; Coggon, 2006). A range of techniques developed for this purpose 

(Gresens, 1967; Grant, 1982; Maclean, 1990; Maclean and Barret, 1993) are applied to 

Site 1179 to determine their effectiveness and ultimately to calculate chemical change 

for Site 1179. 

  

 

3.4.4.1  Selection of protoliths   

 

Figure 3.24 is a summary which outlines the process by which the precursor 

composition is found and the chemical changes are calculated. All whole rock samples 

were measured for chemical change according to a calculated precursor composition 

based on Ti, which is assumed immobile/incompatible. Calculation of the precursor 

composition using a Ti-monitor is done using least altered samples, which are selected 

based on a variety of factors outlined in Figure 3.24.  

 In addition to change calculated from a precursor, figure 3.24 summarises the 

process to which chemical change in all altered Site 1179 samples are calculated from 

their least altered host sample or a least altered sample that is in close proximity to the 

altered sample. Samples with no direct host are paired with samples that share similar 

concentrations of Ti, Y and Zr (All of which are assumed to be immobile and 

incompatible).  

 Whilst two different methods for determining sample by sample precursor 

compositions are used, chemical change is calculated using the same method. The 

following section explains this method using an example from the Site 1179 dataset.  
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Figure 3.24. Summary flow diagram indicating the process by which the chemical 
changes for Site 1179 are calculated. 
 

 

3.4.4.2  Calculating chemical changes from host samples 

 

All altered samples from Site 1179 are measured against an appropriate sample pair to 

assess chemical changes, be it from a grey host rock sampled from the same specimen 

or by selection of an appropriate grey rock. For the sample pair, the net gains and losses 
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of each element are calculated on a sample by sample basis following Gresens (1967). 

Gresens (1967) argues that any chemical change from a parent rock to an altered rock 

should take into account volume change. Therefore, any change for a chemical 

component (ΔX) can be calculated as follows:  

 

ΔX = (DA/DP)XA(VA/VP)-XP 

 

Where D and V are density and volume, ‘P’ and ‘A’ are the parent and altered rock 

subsamples for the chemical component ‘X’. The volume ratio (VA/VP or FV) is 

worked out assuming there has been no change in mass during hydrothermal alteration 

(See 3.4.4.3, assumptions). Before ΔX can be deduced the volume ratio for each 

element in each sample pair. The volume ratio needs to be calculated from the 

following expression: 

 

FV = (XP/XA)(DP/DA) 

 

Figure 3.25 shows two examples from Hole 1179D where the FV has been calculated 

for each element based on analyses of halos compared to the least altered ‘background’ 

rock in the sample pair. FV values ~1 suggest little or no change in concentration of 

any given element as a result of alteration, such elements are deemed immobile. In 

addition, groups of elements with similar FV indicate that change has occurred solely as 

a result of volume change and may also be immobile. For each sample, an approximate 

FV is calculated from the average of the immobile elements to represent the volume 

ratio of the altered and parent rocks. With the FV (VA/VP) value chosen, ΔX is 

calculated for each element for each sample and the percentage gains and losses for 

each element are calculated for each sample pair. The sensitivity of this method of 

calculating chemical change is governed by the range of FV values chosen. Selection of 

an appropriate ‘host’ sample for samples which have no ‘fresh’ counterpart is carried 

out based on proximity to the altered sample in the core, colour and similarities in 

incompatible elements, for example Ti, Zr, Y, and Nb. 
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Figure 3.25. Examples of sample pairs from Site 1179 in which major trace and REE 
have been analyzed for both the altered and least altered hosts. Values for FV, 
determined by Gresen’s analysis of halos vs. least altered background indicate 
immobile elements. Elements which are similar in FV (FV~1) are deemed immobile 
and can only change in concentration by a change in volume. 
 

These elements are used because they are the most consistently immobile when FV was 

calculated for the samples compared to hosts. Gresen’s equations are then applied in 

order to calculate ΔX and % change in concentration. Both analysis by host and 

‘selected host’ are combined to form a suite of results derived from ‘paired’ samples. 

 

 

3.4.4.3  Calculating chemical changes from a protolith. 

 

Because all samples at Site 1179 are altered, it is necessary to calculate appropriate 

protoliths for all the samples at Site 1179.  An appropriate protolith for each sample at 

Site 1179D is calculated based upon the use of immobile element concentrations from a 

suite of least altered samples for each igneous Group. The assumptions that are made in 

this calculation and their validity are outlined below: 

 

1.  Incompatible element Ti is immobile, therefore we can use it as a monitor of 

fractionation to estimate the protolith (Coggon, 2006) 

 If an element is to be used as a monitor for chemical change then Immobile and 

incompatible elements should not be affected by alteration. Figure 3.26 plots TiO2 for 

all fresh vs. altered whole rock sample pairs (where the altered subsample is 
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immediately adjacent or to the ‘fresh’ host) for Site 1179. Despite the possibility that 

the least altered samples may not represent totally fresh rocks, they are useful for 

comparison with the more altered subsample. Comparisons indicate good 

reproducibility of TiO2 despite alteration (R2 = 0.94) indicating that it is relatively 

immobile during alteration 
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Figure 3.26. Comparison of TiO2 (wt %) between least altered and altered sample pairs 
at Site 1179. Samples that have undergone significant volume change, and altered 
samples with no pair within the same core are excluded.  
 

2.  No change in mass as a result of alteration, therefore the concentration of Ti is 

unaffected by alteration. 

 This is possibly the least certain assumption and in reality it is included to 

simplify the assessment of chemical change. A plot of LOI vs. specific gravity for Site 

1179 whole rock samples exhibits very little correlation between density and LOI. Only 

a very slight trend towards decreasing density due to the addition of water is present, 

however the uncertainty is too great to use the correlation to predict density changes. 

Two possible end member mechanisms to decrease density are to 1) decrease mass 

without changing volume, for example, replacement of more dense primary igneous 

phases with less dense secondary phases or 2) increase the volume without changing 

the mass, for example opening of cracks during cooling of the oceanic basement. 

Decreases in density at Site 1179 are likely to be the result of the incorporation of veins 

and/or the extensive replacement of primary mineral phases by secondary phases.  

 Because whole rock samples were selected to minimise veins, amygdales and 

vesicles, only breccias at Site 1179 are likely to have experienced significant volume 
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change. Loss of mass and an increase in density at Site 1179 causes an average increase 

in concentration of immobile elements of ~2% given that the average LOI for Site 1179 

whole rocks (1.72) corresponds to a predicted specific gravity of 2.76 compared to 2.82 

for an LOI of 0 wt%. The percentage change is small when compared to the ‘magmatic’ 

error associated with estimates of the precursor compositions, the analytical error and 

the errors associated with the standard deviations for each population of chemical 

changes.  
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Figure 3.27. Specific gravity vs. LOI for Site 1179 whole rock basalts.  

 

3.  The suite of rocks from which the protolith is calculated are the least altered rocks. 

 This assumption forms the basis for selecting appropriate samples from which 

we can determine precursor compositions. A selection of least altered samples is made 

for each igneous group according to colour, percentage of secondary minerals, low 

LOI, K2O, C, S and similarities in TiO2. Each of these filters helps to reduce the effect 

of alteration when calculating the precursor. Grey coloured basalts suggest that most of 

the primary igneous textures remain, extensive alteration usually alters the colour of a 

rock in hand specimen (e.g., brown halos). Secondary mineralogy is largely detected by 

petrographic analysis and the volume percentage of each secondary mineral phase may 

be ascertained by point counting for each sample, the least altered samples should 

contain low volumes of secondary minerals. LOI, as mentioned earlier in this report 

indicates the volume of volatile phases lost during XRF analysis, which, unless large 

amounts of CO3 are present, is predominantly made up of water incorporated due to 

hydration of primary minerals during alteration. All fresh MORB LOI is ~0.2 wt% 

(Danyushevsky, 2001; Dixon et al., 1989; Alt et al., 1989) therefore samples with low 

LOI are selected. In addition to elevated LOI, high K2O, C, and S suggest alteration, 
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because K is present in clay minerals, high C is indicative of carbonates, and secondary 

sulfides lead to increases in S concentration. Based on the filters outlined above, it is 

assumed that the least altered samples for Site 1179 have been selected appropriately.   

 
Figure 3.28. Examples of plots vs. TiO2 for elements from the least altered samples in 
each group. Trends within individual groups and trends across all groups may be 
present. The equations for these trend lines are used to calculate protolith 
concentrations where x is the TiO2 value of the altered sample. 
 

 All the least altered samples are normalized to 100 % total assuming 0.2 wt% 

LOI. This is done to remove (as much as possible) the effect of additional water in the 

rock. Since TiO2 is assumed to be the most immobile element, plots of elements against 

TiO2 should (if the effect of alteration is minimal) indicate fractionation trends either 

within groups or between groups. Figure 3.28 shows a few examples of elements vs. 

TiO2 and their trends (if any). 

Where a trend is seen, the equation of the straight line can be used to calculate the 

protolith composition for any sample within the appropriate igneous group (See 

Appendix C,1) 
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For example given the straight line equation for MnO in a sample from Group I that has 

a TiO2 value of e.g., 1.28 wt% the precursor MnO value would be: 

 

7743.028.14659.0   

=  0.18 (wt %) 

 

Where no trend is seen for a particular element, a precursor composition is selected 

from an average concentration of the least altered samples. For several elements, where 

alteration may have still severely affected their concentration, despite careful selection 

of altered samples, a value from an appropriate MORB is chosen from the literature. 

Table 3.4 summarises these values and their source. Calculating each element either 

from an average, from the trend line and selecting the appropriate concentrations from 

the literature gives a protolith composition (normalized to 100% at 0.2 wt% LOI) from 

which one can calculate the chemical changes in that sample. 

Element Concentration Unit Reference 
    
K2O 0.17 wt % Makenzie and O’Nions, (1991) 
LOI 0.2 wt % Alt, et al, (1989); Danyushevsky, (2001); 

Dixon et al, (1988) 
S 0.1 wt % Alt, et al, (1989) 
CO2 150 ppm Dixon, et al, (1988) 
Sr 100 ppm Pearce, (1983) 
Ba 6.9 ppm Hofmann and White, (1983) 
Rb 0.61 ppm Hofmann and White, (1983) 
U 0.1 ppm Sun and Mcdonough, (1989) 
Th 0.12 ppm Sun and Mcdonough, (1989) 
    

Table 3.4. List of protolith element concentrations derived from sources other than Site 
1179 samples. 
 

Because TiO2 is assumed to be immobile, only TiO2 is used for ‘FV’ or volume factor 

when carrying out Gresen’s analysis. In addition, the variation in density for each 

sample is sufficiently small that it can be ignored, therefore (DP/DA) = 1. The sensitivity 

of comparing altered samples vs. immobile element defined protolith or host rocks is 

dependent on the variation between the immobile elements of the altered rock and 

host/protolith (immobility). Values of change that are within the range of immobility 

are considered too small to represent real chemical change. Figure 3.29 shows an 

example of immobility range for one sample based on the variability of Ti, Y, Zr, and 

Nb. Sensitivity is calculated for each sample and averaged to obtain a sensitivity range 
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for Site 1179. In Figure 3.29 a number of REE appear to be more immobile than that of

Ti, Y, Zr, or Nb. Future study may be required, in which chemical change calculations 

using a variety of immobile elements are compared. Suc

 

h a study may reduce the levels 

 uncertainty associated with this type of calculation.  

  

of

 
Figure 3.29. Range of immobility for sample 191-1179D-18R-3, 17-23 cm based on 

, Zr, Nb between halo and least altered ‘hosvariations Ti, Y
within this rang

t’ rock. Points which fall 
e (grey field) represent no change.  

air 

ch 

lteration style are ultimately used to estimate chemical change for Site 1179.  

.4.4.3  Errors associated with chemical change 

 errors. 

nd with 

  

Multi element plots for major trace and REE show the average mass and percentage 

chemical changes associated with each igneous group, alteration style, and lithology. 

The chemical change associated with igneous groups, alteration styles and lithologies 

shown include both methods of calculating chemical change (least altered sample p

and sample by sample protolith methods). The chemical changes deduced for ea

a

 

 

3

 

All calculations for chemical change are subject to analytical, and assumption

These include 1) Analytical errors, that are the result of detection limits and 

reproducibility of results during analysis (See Chapter 2, Methods), 2) the error 

associated with the range of fresh sample mobile element concentrations that tre

TiO2 or the standard deviation of the average precursor value for each element 

(Discussed in section 3.4.4.1), 3) the standard deviation resulting from the range of 
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chemical between each sample for any given population, 4) Dilution or concentration of 

elements as a result of unaccounted for mass change. Such error will cause errors in the 

magmatic trend calculations and the calculation of chemical change outlined in section 

 

s are 

own 

 appendix C, 1)i. Errors associated with mass changes are assumed to be ~5%.    

.4.4.4  Results: Igneous groups 

om least 

ment 

).  

 

 

ed 

3.4.4.2. 

 For each sample, propagated errors associated with precursor compositions and

chemical change is calculated (shown as error bars in each plot). Analytical error

shown in Chapter 2 (Methods) and errors associated with the primary magmatic 

variation of elements in the least altered samples, and the standard deviations are sh

in

 

 

3

 

Figure 3.28 A and B shows the calculated absolute and percentage chemical change for 

all elements sorted by igneous groups at Site 1179 that have been calculated fr

altered sample pairs.  Figure 3.31 A and B Shows the calculated absolute and 

percentage chemical change for all elements sorted by igneous groups at Site 1179 that 

have been measured against calculated precursor compositions. Almost every ele

measured in Figure 3.30 has errors that greatly exceed the calculated change. In 

addition, the change measured for most elements falls within the range of immobility 

(~10 %) predicted from the range of change observed in Ti, Y, and Zr (Figure 3.29

Elements with change discernable above error and the immobility range include a 

decrease in MgO and S in Group III rocks and an increase in C in Group II rocks. 

Despite the propagated errors and high variability within each group, other notable 

changes include increased Fe, K, Rb, Cs and Pb across all groups and increased C and 

U in Groups II and III, and increased LOI in Groups I and III. Chemical change in Site 

1179 igneous groups, as measured from sample by sample protoliths, in Figure 3.31 A 

and B exhibits similarly large errors associated with the range of changes between each

sample, the error in the straight line trends with TiO2 and the range of the least altered 

samples. Error exceeds the value for chemical change in almost every group, however 

large overall increases in K2O, C, LOI, Rb, Cs and Ba, and decreases in MnO, CaO and 

S are indicated. Even if errors are ignored, most chemical change is within the range of

immobility ~10% of Ti, Y, Zr and Nb. Chemical change in the altered samples within 

each igneous group appears to be greater than the change observed in the least alter
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, CaO, S, Cu, in the altered samples compared to the 

 

 Cs, 

 Pb, 

l change, most elements, particularly REE 

 

 to 

 one 

ed’ 

each group, indicating that igneous group is not exerting a 

reat influence on alteration. 

 

samples. These changes include greater incorporation of Fe2O3, K2O, C, Rb, and a 

greater reduction of MnO, MgO

background rocks at Site 1179. 

 Chemical change within the sample vs. pair plot (Figure 3.30) is lower than the

chemical change calculated from the sample by sample protolith (Figure 3.31). When 

compared to least altered pairs, all groups exhibit increases in Fe2O2, K2O, Rb, Nb,

Ba, Pb and decreased S. Within the igneous groups, Group III exhibits the greatest 

chemical change with the greatest increase in K2O, C, LOI, Sr, REE and decreases in 

SiO2, MgO, MnO, and S. With the exception of Fe2O3, K2O, LOI, Rb, Cs, Ta and

Group I rocks exhibit the least chemica

exhibit no change (below sensitivity).  

 All rocks show chemical change, whilst altered rocks show the greatest degree 

of change with greater increases in Fe, K, C, LOI, Rb and decreases in MgO, S, and Ni 

than the least altered samples. The most extreme changes include MnO (-534 %, Group

III), K2O (+ 237 to 519 %), C (+ 126 to 1167 %), LOI (+647 to 1226 %), Rb (+ 755

2318 %), and Ba (+185 Group III). These changes occur predominantly within the 

‘altered’ sample set, however, change between each group is variable with no

group demonstrating significant change above the others. In agreement with 

petrographic observations of secondary minerals within all Site 1179 rocks, the 

difference in change between rocks calculated from a protolith compared to those 

derived from the host rock strongly implies that all rocks, including the ‘least alter

samples are altered and that the changes measured from sample pairs can only be 

regarded as minimum values. High error reflects the great variability of alteration styles 

and intensities present within 

g
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Figure 3.30 Chemical change (A) and % chemical change (B) for each igneous group at Site 1179D calculated from the least altered ‘host’ or 
sample pair. Bars indicate the propagated error including standard deviation of the range of changes within each igneous group. 
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Figure 3.31 Chemical change (A) and % chemical change (B) for each igneous group at Site 1179D calculated from a calculated sample by 
sample protolith. Fresh and altered rocks are shown separately to highlight chemical change within the least altered rocks at Site 1179. Bars 
indicate propagated error including standard deviation of the range of changes within each igneous group. 
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3.4.4.5  Alteration styles 

 

The chemical changes of the various alteration styles at Site 1179 are recorded in 

Figure 3.32 and 3.33 with the results from both protolith calculations and host rocks, 

respectively. Chemical changes as a result of veins and chemical changes in breccias 

are also included in Figure 3.33. Chemical changes as a result of vein mineral 

precipitates are calculated from a weighted average (according to volume % of core 

recovered for each mineral) of the compositions from mineral separates. Analysis of 

carbonate veins (see later section) from site 1179D are used in conjunction with 

analyses of other vein minerals from a range of basement sites (Table 3.5). A lack of 

data for other secondary minerals at Site 1179 necessitates the use of data from other 

sites, despite the potential for regional variations in mineral compositions. Table D.4 in 

Appendix shows the mineral compositions used.  

Mineral Site source   Reference 

Saponite 504  Bach et al, (1996), Noack et al (1996) 
 896  Laverne et al, (1996), Teagle et al, (1996) 
 1224  Paul et al, (2006)  
 843  Waggoner (1993), Alt (1993) 
 1256  This study   
Celadonite 504  Bach et al, (1996), Noack et al (1996) 
 896  Laverne et al, (1996), Teagle et al, (1996) 
 843  Alt (1993)   

 1256  This Study   
Iron-ox 504  Noack (1993)  
 843  Alt (1993)   
Carbonate 504  Noack (1993)  
 896  Teagle et al, (1996)  
 843  Alt (1993)   
 1179  This study   

Table 3.5 Sources for secondary mineral data from other ODP sites and this study. 
Secondary mineral compositions were calculated as an average of all available 
compositions from basement within the Pacific Ocean. 
 

Chemical changes within breccias in Figure 3.33 are based on the entire breccia, 

including matrix. Calculation of whole breccia is based on a weighted average of 

change associated within the clasts, including an estimate of any clast material in the 

matrix, and the composition of secondary minerals within the matrix. Calculation of the 

secondary mineral composition within the matrix shares the same data outlined in Table 

3.5 and it is weighted according to the proportions of each mineral present within the 

matrix. Because measurement of clasts and matrix was carried out for Sample 1179D, 

18R-1, 52-57 cm, calculating a matrix composition for this sample was not necessary.
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Figure 3.32. Mass (A) and percentage (B) chemical changes associated with alteration styles at Site 1179. Changes are calculated based on least 
altered sample pair (grey). Bars indicate propagated error including the standard deviation of the range of changes within each alteration style. 
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Figure 3.33. Mass (A) and percentage (B) chemical changes associated with alteration styles at Site 1179. Changes are calculated based on 
calculated sample by sample protoliths. Changes as a result of veins and brecciation, are based on a weighting of the calculated/analyzed matrix 
composition and clasts. Veins are based on observed abundances for each vein mineral. Bars indicate propagated error including the standard 
deviation of the range of changes within each alteration style. 
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Overall the results in Figure 3.32 and 3.33 mirror those displayed in Figure 3.31 

because chemical changes as measured from the calculated protoliths are greater than 

those measured from host rocks. This reaffirms the problems associated with 

calculating chemical change from least altered rocks alone, therefore it is more 

appropriate to compare all rocks from calculated protolith compositions.  

 Overall, all alteration styles exhibit increases in Fe2O3
T, K2O, C, LOI, Ni, Rb, 

Cs, Ba, Pr, Ta, and, with the exception of veins and breccia, decreases in SiO2, MnO, 

MgO, S, and U. Within halos and background, Iron, K2O, C and LOI reflect the 

secondary mineralogy of Site 1179, which supports the presence of celadonite, and 

iron-oxyhydroxide. Although carbonate and saponite is present in the groundmass, the 

chemical changes in Table 3.6 actually show a small reduction in CaO and MgO. This 

may be due to the replacement of primary phases such as plagioclase and olivine. Veins 

and breccia demonstrate increases in CaO and MgO, which are consistent with 

abundant saponite and carbonate within veins and matrixes. Very large increases in C 

(+ 118 to >5000 %) reflect carbonate in veins, matrix and groundmass. Rb and Cs 

concentrations undergo massive increases across all groups and alteration styles except 

veins. This can be attributed to their low field strength (ionic potential = valence/ionic 

radius: <2) hence their mobility during hydrothermal alteration (Jenner, 1996). All 

Group I alkali metals appear to undergo some change, implying that they are readily 

substituted. K, Sr, Rb, and Cs readily substitute into crystal lattices of minerals by 

cation substitution and are enriched by hydrothermal processes (Staudigel and Hart, 

1985; Teagle et al., 1996). 

 Table 3.6 summarises the chemical changes associated with each alteration 

style. Brown rocks exhibit the largest increases in P2O5 ( + 20 %), Pr ( + 27 %) and Th 

( + 47 %) and large increases in Fe2O3, K2O, LOI and C. Dark green/ dark grey rock

underwent the largest increase in Fe

s 

2O3 (+ 30 %), K2O (> 400 %), Cr ( + 13 %), Co, (+ 

20 %), Sr ( + 14 %) and Cs (+ 125 %). Dark green halos also exhibit some relatively 

large reductions in Al2O3 (- 6 %), and MgO (- 13 %). In both these halo types, the 

additional K and Fe reflect incorporation of celadonite and iron-oxyhydroxides. Dark 

green halos, in which celadonite is observed in greater abundance, have the greatest 

increase in K. Green rocks do not exhibit great increases in abundance, and there is 

effectively no change in  Fe, reflecting the lack of iron oxyhydroxides that make up this 

alteration style. Complex halos represent overprinting, therefore we would expect the 

chemical changes to reflect all other alteration styles. Changes include decreased SiO2, 
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 MnO, MgO, S and increased Fe2O3, K2O, P2O5, C, LOI, all trace elements, Ta, Th and

U. Within grey background rocks, change is minimal. The relative lack of secondary 

minerals within grey rocks is consistent with the low levels of chemical change
  Grey bkd Brown Dk gy/gn Green Complex breccia 
SiO2 (-) (-) (-) (-) (-) + 
TiO2       
Al2O3       
Fe2O3

T  + + + (+) + 
MnO  -   - + 
MgO  - -  - ++ 
CaO     - ++ 
Na2O      - 
K2O  +++ +++ +++ +++ +++ 
P2O5  +   + ++ 
C  +++ +++ +++ +++ ++++ 
S   - - - - - - -- - - 
LOI +++ ++++ +++ +++ +++ +++ 
Co   +   + 
Cr +  +   - 
Cu  - -   - 
Ga       
Ni  - -  -  
Sc       
V      - 
Zn   +   + 
Rb + - ++ + + +++ 
Sr  + +  + + 
Y    -  + 
Zr  +   +  
Nb   +  +  
Cs +  +++ -  ++ 
Ba + +++ ++ +++ ++  
La     + + 
Ce     +  
Pr  + + + + + 
Nd  + +  + + 
Sm      + 
Eu  + +   + 
Gd      + 
Tb      + 
Dy      + 
Ho      + 
Er      + 
Tm      + 
Yb      + 
Lu      + 
Hf  + + + + + 
Ta    + + + 
Pb + + - +   
Th  + -  +  
U   - -  + 

Table 3.6. Summary table of the chemical changes associated with each alteration type, 
Including veins and whole breccia samples. (+,-) < 10% increase (applied to Fe and Si 
only) +,- = >10% change, ++, - - = > 50 % change,  +++ = > 100 % change, ++++ = > 
1000 % change.
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Figure 3.34. Absolute (A) and percentage (B) chemical changes from calculated sample by sample protoliths at Site 1179 sorted by lithology. 
A= absolute chemical change (g/100g and mg/100g) and B= % change. Bars indicate the propagated error including standard deviation of the 
range of changes within each lithology. 
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The greatest chemical changes are observed in the breccias. The replacement of 

groundmass by breccia matrices and alteration within clasts has resulted in large 

changes across the majority of elements, most notably SiO2 (+ 10 %), Fe2O3 (+ 60 %), 

MgO (+60 %) CaO (+ 60 %), K2O (+ >700 %), C ( + >5000 %), LOI (+ >800 %), and 

Rb (+ 100%). High CaO and C reflect the large amounts of observed carbonates. 

Additional Fe and K is likely to be sourced from iron-oxyhydroxides, celadonite and 

saponite respectively. High LOI and low Si reflect the increased water-rock interaction 

that has formed the breccias and the loss of primary phases during replacement by 

secondary minerals. 

  

 

3.4.4.6  Chemical change associated with lithology 

 

The chemical change associated with lithology is shown in Figure 3.34. Classification 

of each sample, based on work by Kanazawa et al., (2001), allows an assessment of 

potential chemical change associated with lithological variation to be made. Following 

the method outlined earlier, breccias are calculated as whole rocks.  

  Massive  
flows 

Pillow 
lavas 

Whole 
breccia   Massive  

flows 
Pillow 
lavas 

Whole 
breccia 

SiO2 (-) (-) + Y   + 
TiO2    Zr  +  
Al2O3    Nb + ++  
Fe2O3

T  + + Cs  - ++ 
MnO  - + Ba +   
MgO  - ++ La + ++ + 
CaO   ++ Ce + ++  
Na2O   - Pr  + + 
K2O +++ +++ +++ Nd  + + 
P2O5  + ++ Sm  + + 
C +++ ++++ ++++ Eu  + + 
S  -- - - - - Gd   + 
LOI +++ ++++ +++ Tb   + 
    Dy   + 
Co   + Ho   + 
Cr  + - Er   + 
Cu + ++ - Tm   + 
Ga    Yb   + 
Ni    Lu   + 
Sc  -  Hf  + + 
V   - Ta + ++ + 
Zn -  + Pb ++ ++  
Rb +  +++ Th ++ +++  
Sr -  + U + + + 

 
Table 3.7. Summary table of the chemical changes associated with lithology at Site 
1179. (+) = less than 10 % change (applies to SiO2), + = >10 % change, ++ = >50 % 
change, +++ = >100 % change, ++++ = >1000 % change (vice versa for negative 
values). 
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When compared to pillow lavas and massive flows breccias almost always exhibit the 

greatest chemical changes. Pillow lavas exhibit the next greatest level of change 

followed by massive flows (see summary Table 3.7). Chill margins, interpillow 

sediments, and abundant fractures that are present in within the pillow lavas probably 

contribute to higher water/rock ratios, In addition, the increased space available to 

hydrothermal fluids allows for precipitation of secondary minerals. In contrast massive 

flows have relatively few chill margins and fractures, making them relatively 

impermeable and less susceptible to alteration. Given that the majority of Site 1179 is 

made up of massive units (See stratigraphy), alteration at Site 1179 is slight. However, 

because recovery may be biased towards more competent massive flows, and that 

breccias and pillows appear to be much more altered, alteration observed from 

recovered cores must represent a minimum value. 

 

3.4.4.7  Summary 

 

The chemical changes as a result of alteration broadly reflect the observed style and 

intensity of alteration at Site 1179. Measurement of chemical change both by 

calculating a protolith for each sample and by using a least altered host sample has 

shown that even the ‘least altered’ grey rocks have undergone alteration, which means 

chemical changes must be calculated from the protolith. Variation between the 

alteration styles is not easy to detect because there is significant overlap of different 

alteration styles. In addition, the variable intensity of alteration within each style further 

contributes to the high range of values for change observed within each style, igneous 

group and lithology. General trends include greater changes within breccias and pillow 

lavas, which is consistent with petrographic observations, and greater Fe and K in iron-

oxyhydroxide (brown) and celadonite (dark green) rich halos respectively. Complex 

halos represent varying proportions of two or more alteration styles. This has imparted 

relatively high levels of change within the host rock at Site 1179. 

 Veins and breccia demonstrate very high levels of chemical change at Site 1179, 

therefore calculation of a whole Hole 1179 chemical change must include breccia and 

veins together with all the alteration styles observed at Site 1179. Figure 3.35 is a plot 

of chemical change for Site 1179. Figures are calculated from a weighted average of all 

alteration styles observed at Site 1179, including veins and breccias. Weightings are 

based on the proportion of core that is covered with a particular alteration style, and the 

proportion of veins and breccias within the recovered core. 
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Figure 3.35. Chemical changes from calculated sample by sample protoliths at Site 1179. A= absolute chemical change (g/100g and mg/100g) 
and B= % change. Bars indicate the propagated error which includes the standard deviations of the range of changes observed within Site 1179 
basement. Weighted averages are based on volume percentages of veins, breccias, grey background, dark green halos, green halos, brown halos 
and complex halos. 
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Element Change % Element Change % Element Change % Element Change % 

            
SiO2  Sc  Ba ++ Yb  
TiO2  V  La + Lu  

Al2O3  Cr + Cr  Hf  
Fe2O3 + Co  Pr + Ta  
MnO  Ni  Nd + Pb + 
MgO  Cu - Sm  Th ++ 
CaO + Zn  Eu + U + 

Na2O  Rb + Gd    
K2O +++ Sr + Tb    
P2O5 + Y  Dy    

C ++++ Zr + Ho    
S -- Nb + Ef    

LOI +++ Cs + Tm    

Table 3.8. Summary of chemical change at Site 1179.+ = >10 % change, ++ = >50 % 
change, +++ = >100 % change, ++++ = >1000 % change (vice versa for negative 
values).  
 

Chemical change at Site 1179 is low, with most elements exhibiting less than 25% 

change. Many elements demonstrate change of less than 10%, which is below the 

sensitivity (based on immobile elements discussed earlier) range, and therefore can be 

regarded as no change. High error, associated with the range of chemical changes 

within each sample, analytical error and errors in the selection of appropriate protoliths 

overwhelm the apparent changes for many elements in Figure 3.35. However, with the 

exception of V, Ni, Cr, Cu, Cs,Ta, Pb, Th, and U, error associated with selection of 

protolith compositions are relatively small compared to error associated with averaging 

large ranges of chemical change. Although change in all elements are shown in Table 

3.8, one remains cautious of making any interpretations based on the changes 

associated with V, Ni, Cr, Cu, Cs, Ta, Pb, Th, and U because of the uncertain protolith 

compositions. Increases in Fe2O3, CaO, K2O, C and LOI reflect the incorporation of 

iron-oxyhydroxides, carbonates, and celadonite.  

 

 The competence of the massive flows potentially makes them easier to recover 

during drilling, therefore it is likely that sampling is biased towards these rocks and that 

pillow lavas and breccias may be vastly underestimated. Chemical and petrographic 

evidence imply that pillow lavas and breccias at Site 1179 have undergone the most 

chemical change, therefore, until a comprehensive survey of lithostratigraphy is carried 

out for Site any estimate for chemical change at Site 1179 must represent a minimum 

value.  
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3.5.  Whole Rock Isotopic Results 

 

In this study 38 whole rock samples were measured for 87Sr/86Sr ratios and 25 for δ18O 

(Table 3.9). A further 19 samples were measured for 87Sr/86Sr by Sano and Hayasaka, 

(2004). Whole rock samples have subsequently been age corrected to an initial value of 

129 Ma, making the assumption that alteration occurred early in the history of the 

ocean crust, and they are plotted against depth in Figure 3.36. 87Sr/86Sr results range 

from 0.7023 to 0.7048 and are slightly to moderately elevated above the average value 

for Pacific MORB (0.7024-0.70256) (Saunders, et al., 1988). Variation with depth is 

slight, with only a small increase to more radiogenic 87Sr/86Sr ratios with depth. 

Strontium isotopic variation within different styles of alteration is slight with the most 

elevated 87Sr/86Sr ratios located in brown oxidation halos and grey basalt. In sample 

pairs where grey ‘fresh’ basalt is juxtaposed against a zone of more intense alteration 

the Sr isotopic ratio is elevated in the altered zone, reflecting increased seawater 

interaction during alteration. 

 The highest 87Sr/86Sr value measured was from a breccia sample (191-1179D 

22R-2, 50-57 cm) with a value of 0.70483. This value indicates as much as ~ 45 % of 

the strontium is sourced from seawater. A low value of 0.702337 observed in a sample 

of slightly altered brown-grey basalt (191-1179D-11R-2, 37-43 cm) may reflect the 

primary 87Sr/86Sr for Site 1179 basalts, however, this value falls below the expected 

range for MORB basalts. In addition this sample has high Rb (35.4 ppm) which implies 

that considerable Rb enrichment took place after formation, enrichment of Rb may 

preclude accurate age correction. Following leaching experiments discussed in Chapter 

Two of this thesis, primary 87Sr/86Sr values range from 0.70252 to 0.70348. Two 

samples, including one acid washed sample, have values of 0.70250 (191-1179D-14R-

1, 116-123 cm) and 0.70249 (191-1179D-13R3, 26-29 cm, acid washed) respectively. 

These values fall within the range expected for fresh MORB (Figure 3.34). Most 

samples at Site 1179 are elevated above the expected range for MORB. One possibility 

is that a component of Shatsky Rise mantle is present leading to elevated 87Sr/86Sr in 

Site 1179 basalts, as has been suggested by Sano and Hayasaka (2003). Figure 3.37 

indicates most basalt samples plot over the Shatsky Rise field, however, these samples 

are not leached or acid washed therefore these samples alone can not be used deduce 

the primary Sr-isotopic composition of basement at Site 1179. Figure 3.37 also includes 

two acid washed whole rock basalts from Hole 1179.
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Table 3.9. (previous page) Measured and initial strontium isotopic ratios for whole rock 
basalts in ODP Hole 1179D. Initial Sr-isotopic ratios are calculated assuming early 
alteration at Site 1179 i.e. ~129 Ma. Data with * suffix refers to analyses carried out by 
Sano and Hayasaka, (2004). Whole rock δ18O(VSMOW) are also included. Acid washed 
samples analyzed by Mahoney (2005). Leached samples following aggressive multi-
step acid leeching method by Mahoney, (1987) and Mahoney et al., (1983). Gy (Grey 
background), Bn (Brown), Gn (Green), ph (Patch), hlo (Halo), dk (Dark), bgd 
(Background), mot (mottled). MF= massive flow, IS = interpillow sediment. 

 
Figure 3.36. Initial 87Sr/86Sr of whole rocks vs. depth in Hole 1179D. Alteration styles 
are shown. (2003), red circles indicate samples that have been acid washed before 
analysis (Mahoney et al., 2005). Range for fresh MORB (0.70240-0.70256) is given 
(Saunders, et al., 1988). The Sr-isotopic composition of modern seawater and seawater 
at 129 Ma is derived from McArthur et al, (2001). Fsr

SW indicates the seawater Sr 
component within the basalts based on Bach and Humphris, (1999) where 1 = 100% 
seawater Sr and 0 = no seawater Sr. 
 

The effect of acid washing has been to remove ferromanganese phases and any organic 

material that may effect the strontium isotopic measurement (Mahoney et al., 2005). 

These samples have much lower 87Sr/86Sr ratios than the unwashed samples and they 

plot firmly in the EPR/Mesozoic MORB fields. In addition, leached basalts from Site 

1179 (0.70249 – 0.70252 ± 19) in this study (see Chapter 2) indicate primary 87Sr/86Sr 

within the range for MORB which suggests that hydrothermal alteration precipitating  
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Figure 3.37. Strontium isotopic ratio vs. εNd(t) of whole rock samples from Site 1179. 
Blue diamonds (Group I), Squares (Group II), triangles (Group III) (after Sano and 
Hayasaka, 2003). Blue diamonds with red margins are acid washed (Mahoney et al., 
2005). Data sources for MORB and basalts from oceanic plateaus of OJP and Manihiki 
sourced from Tejada et al, (1996); Tejada et al. (2002), and Mahoney and Spencer, 
(1991) for Ontong Java; Mahoney and Spencer (1991) for Manihiki; Janey and Castillo, 
(1997) for Mesozoic MORB; and Castillo et al., (2000) for EPR MORBs. 
 

secondary minerals is the main mechanism for altering the strontium isotopic ratios at 

Site 1179. Figure 3.36 indicates an estimate of seawater Sr component (FSr
SW) based on 

Bach and Humphris (1999) expression: 

 

   protolithSWprotolithWR
SW

Sr SrSrSrSrSrSrSrSrF 8687868786878687 /////   

 

In the case of Site 1179, the protolith is the average of all leached samples 

(0.702499 ± 18) and seawater is set at 129 Ma seawater (0.70745) after McArthur 

(2001). Figure 3.38 is a histogram of FSr
SW for all Site 1179 whole rocks and each 

alteration style. The weighted value for Site 1179 is 0.13 (13% seawater) based on 

weighted average 87Sr/86Sr for each alteration style and the proportion of recovered core 

that exhibits each style of alteration. Grey background predictably incorporates the least 

seawater (0.05, 5% seawater). Dark green (0.075, 7.5% seawater) is the next least 

altered. Brown 
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incorporates ~10% seawater Sr and complex halos and breccias are highly variable and 

these range from 2% seawater to 30% seawater and 7% to 47% seawater respectively. 

Complex halos and breccias are highly variable, and given the variation in alteration 

style and intensity the degree of substitution between seawater and basaltic Sr is also 

likely to vary.   

 
Figure 3.38. FSr

SW for Site 1179 basalts based on Bach and Humphris (1999) 
calculation for seawater Sr component. Each alteration style is included together with 
all samples and an average weighted value for Site 1179. Histogram bins = 0.025. One 
breccia exhibits an FSr

SW of 1.25, above seawater at 129 Ma.  
 

Variations in the δ18O of oxygen of volcanic basement rocks within the ocean 

crust are the result of either oxygen isotopic exchange between the hydrothermal fluid 

and primary minerals, or the dissolution and reprecipitation of secondary minerals.  O-

isotopic exchange depends on fractionation during precipitation of each secondary 

mineral present and temperature therefore the whole rock O-isotopic composition of 

Site 1179 basement can be used to assess the style and intensity of alteration and the 

conditions to which alteration took place. Recent work indicates that fresh MORB 

ranges from, 5.37 to 5.91 ‰(VSMOW) (Garcia et al., 2008; Cooper et al., 2004; Eiler et 

al., 2000). Elevated δ18O in as a result of low temperature alteration of extrusive lava 

sequences has been observed in a number of locations, including the McQaurie island 

ophiolite (Coggon, 2006), Site 504 (Alt et al., 1986), and the Troodos ophiolite 

(Spooner et al., 1974). At these sites values range from 5.8 to 13 ‰(VSMOW) (Coggon, 

2006; Alt et al., 1986; Cocker et al., 1982; Spooner et al., 1974) many of which are well 
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above the fresh MORB δ18O(VSMOW) discussed earlier. Taylor (1974) recognised that 

oxygen isotopic fractionation during the precipitation of clay and carbonate minerals 

increases the δ18O of rock. The abundance of carbonate and clay minerals within rocks 

recovered from the upper oceanic crust at Site 1179 should, therefore, be translated into 

elevated δ18O.

 
Figure 3.39. δ18O vs. depth for Site 1179 whole rock samples. Fresh and altered sample 
pairs are indicated with tie lines. Samples 191-1179D-18R-2, 10-15 cm and 22R-2, 50-
57 cm highlight the difference between matrix, whole breccias and clasts. Whole 
breccia for Sample 191-1179D, 18R-2, 10-15 cm was calculated by mass balance on 
observation of 70% matrix and 30% clasts. Fresh MORB range from Garcia et al, 
(2008), Cooper et al, (2004), and Eiler et al, (2000). 
 

Whole rock δ18O at Site 1179 ranges from 7.7 to 19.7 ‰(VSMOW) with an average value 

of 9.3 ‰ (n=35). Only two Samples (191-1179D-18R-2, 10-15 cm and 22R-2, 50-57, 

cm) have values above 11 ‰. both of which are breccias composed of basaltic clasts 

with a matrix of carbonate. On a plot of δ18O vs. depth for Site 1179 altered whole rock 

samples (Figure 3.39) exhibit elevated δ18O relative to their least altered counterparts 

and they are elevated compared to the expected value for fresh MORB (5.8-6.0 ‰, 

Cocker et al., 1982). Because carbonate δ18O is elevated (20-30 ‰ (VSMOW)) compared 

to seawater (0 ‰ (VSMOW) ) and there are abundant secondary minerals present in Site 

1179 whole rock samples, elevated δ18O is expected. No trend with depth is observed. 

All whole rock samples at Site 1179 are enriched compared to fresh basalt (Figure 3.39) 
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due to the replacement of mesostasis, olivine, plagioclase and clinopyroxene with 

saponite, iron-oxyhydroxides, calcite and zeolite. Elevated δ18O in background samples 

(Figure 3.37) indicate that all rocks at Site 1179 are altered. As a result of their high 

carbonate content, both breccia matrix samples measured in Figure 3.39 have strongly 

enriched 18O 

 
Figure 3.40. δ18O vs. 87Sr/86Sr for Site 1179 whole rock samples. Sample pairs are 
drawn with tie lines. Green = altered, Black/Grey = least altered and clasts respectively. 
The range of fresh MORB is based on Garcia et al, (2008), Cooper et al, (2004), and 
Eiler et al, (2000) for carbonates, and Saunders et al, (1988) for 87Sr/86Sr. Seawater 
δ18O and 87Sr/86Sr are from Vazier et al, (1999) and McArthur et al, (2001) 
respectively. 
 

Figure 3.40 shows whole rock δ18O vs. 87Sr/86Sr for Site 1179 whole rock samples. In 

all sample pairs the Sr-isotopic ratio increases with δ18O moving away from the range 

of δ18O and 87Sr/86Sr associated with pristine MORB as shown in Figure 3.40. Breccias 

indicate the most dramatic changes. The concomitant increase in 87Sr/86Sr with δ18O 

further highlights the affect of alteration at Site 1179 basement. 
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3.6. Carbonate mineral separates 

 

Calcite veins were sampled throughout ODP Hole 1179D and analysed for O, C, and Sr 

isotopic compositions and trace element concentrations. Comparisons of carbonate 

isotopic data from basement penetrations provide insights into the timing and controls 

of hydrothermal alteration in shallow, low temperature regimes. This study indicates 

that estimates made with regards to the timing of alteration are greatly influenced by 

the nature and extent of interaction with the basement, which in turn appears to be 

influenced by the extent of sedimentation. 

 Variation in the calculated temperatures, strontium isotopic data and 

petrographic relationships from carbonate veins are indicative of continued 

hydrothermal activity at Site 1179. In addition insights into the uptake of CO2 into the 

ocean crust are made through Site 1179 carbonates. 

 

 

3.6.1 Results 

 

Table 3.10 shows the carbonate isotopic data for Site 1179. Isotopic data for ODP Hole 

1179D are compared with δ18O, δ13C and 87Sr/86Sr analyses from other basement sites 

(Figure 3.41). δ13C ranges from -0.11 to 2.4 ‰ ± 0.1 (VPDB) with an average δ13C of 

1.9 and there is a general trend towards higher values with depth Site 1179. These are 

typical values for precipitation of carbonate from seawater (Teagle et al., 1996) and 

they are broadly similar to δ13C of carbonates in other basaltic sites (Figure 3.41). 
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Table 3.10. Analyses of Strontium, Carbon, and Oxygen isotopic compositions and 
Major element, Trace element and REE concentrations for ODP Hole 1179D vein 
carbonate mineral separates. Calculated temperatures assume equilibrium with seawater 
where δ18O = 0 (Craig, 1967). Initial Sr values are shown based on 129 Ma seawater.  
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Table 3.10 Continued ... 
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Figure 3.41. Isotopic frequency and variation at various sites in Pacific Ocean crust. 
δ13C, δ18O and 87Sr/86Sr is shown together with age of ocean crust formation and the 
seawater strontium isotopic composition at the time of formation. Sedimentary rates are 
included. JDFR after Coggon et al., (2004); DSDP and ODP Hole 504B (Teagle pers 
comm, 2007); 896 data from Teagle, et al., (1996); ODP Hole 1256D, (Coggon, et al 
2006); Site 1224, (Paul et al., 2006); ODP Hole 801C, (Alt, 2003). Sites 843 and 1149 
carbonate data are from this study. 
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δ13C for MORB is negative (0 to -2.5), and δ13C of marine carbonate from sediment 

ranges from -6 to +6 (Land, 1980) and seawater δ13C ranges from -0.8 to +2.2 

(Kroopnick, 1985) therefore the range for carbonate veins at Site 1179 (-0.11 to 2,4 ‰) 

imply that  δ13C underwent little of no fractionation during precipitation of carbonate 

from HCO3
- in seawater. The δ13C of seawater at 129 Ma is ~1.5 ‰ (Veizer et al., 

1999). Most samples at Site 1179 have δ13C values above ancient seawater ~2 ‰, 

which suggests that a large majority of the carbonates must have formed after formation 

of Site 1179 basement. Sites in which samples of carbonate were recovered from deep 

penetrations, for example ODP Holes 801C, 504B and 896A exhibit δ13C values that 

closely resemble MORB compositions (0 to -2.5) and mantle compositions (~2 to -4) 

(Figure 3.40). Recovery of basalt from deep penetrations has allowed sampling of 

carbonate that has precipitated from a potentially more evolved, warmer fluid that has 

undergone greater interaction with basement rocks, therefore carbonates from deep in 

the crust are likely to have a large component of MORB carbon (Alt et al., 1996).  

Sites with low sedimentation rates, or extended periods of low sedimentation (i.e. 1224, 

843, 1179, and 1149) have relatively high δ13C that closely resembles marine 

carbonate. This suggests that low sedimentation facilitated access of cold seawater into 

basement, and that the carbonates precipitated from seawater. Carbonate δ18O values 

range from 25.5 to 31.3 ‰ ± 0.1 (VSMOW). Trends of  δ18O with depth are not 

discernable. 

 
Figure 3.42. Isotopic variation of carbonates from ODP Hole 1179D with depth. 
Estimates of seawater composition at 129 Ma are based on plots of LMC for the last 
500 Ma (Phanerozoic) by Veizer et al., (1999). Seawater Sr-isotopic composition after 
McArthur, (2001).    
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Temperatures of formation were estimated from δ18O analysis following Friedman and 

O’Neil, (1977). 

 

89.2)10(78.2ln1000 26  Tc
w  

 

The following assumptions are made with the temperature estimates: 1) Exchange 

reactions must reach equilibrium, 2) Isotopic composition has not changed after 

equilibrium is achieved, and thus represents the final composition, and 3) that 129 Ma 

Seawater δw = 0 ‰. δ18O data from LMC shells (Brachiopods, belemnites, oysters, 

foraminifera) for the last 500 Ma (Veizer et al., 1999) were used to obtain an δw for 129 

Ma seawater. Calculated temperatures that range from 12 to 39oC (Appendix D, 3) 

suggest that low temperature seawater dominated alteration is responsible for carbonate 

precipitation. The irregular temperature profile vs. depth (Figure 3.42) may be related 

to channelled fluid flow. 

 

 

3.6.2 Strontium isotopes 

 

Measured strontium isotopic compositions for Site 1179 carbonates range from 

0.707137 to 0.707938. The majority of these values are above the strontium isotopic 

composition of 129 Ma seawater (~0.70745, McArthur et al., 2001) at the time of Site 

1179 basement formation. There is no trend with depth (Figure 3.42).  

The high 87Sr/86Sr at Site 1179 carbonates suggest that seawater interaction with basalts 

is low when compared to some other basement sites for example., Holes 896A (Teagle, 

et al., 1996), 1256D (Coggon, et al 2006) and 504B (Teagle pers comm, 2007). Figure 

3.41 plots the measured carbonate 87Sr/86Sr with the seawater strontium isotopic curve 

through time. Assuming no interaction with basalts, the majority of carbonates must 

have precipitated at least ~40 Myr after the formation of Site 1179. One sample 191-

1179D 21R-3, 65-71 cm has a strontium isotopic composition of 0.707933 therefore 

must have formed at least 100 Myr after basement formation. Four calcite vein samples 

have 87Sr/86Sr values that are lower than seawater at 129 Ma. Three of these values may 

be attributed to formation at times when the strontium isotopic value of seawater was 

lower than at 129 Ma, between 124 and 85 Ma (Figure 3.43). However sample 191-

1179D 18R-1, 52-58 cm has a 87Sr/86Sr ratio of 0.707137, well below the lowest 
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87Sr/86Sr ratio of seawater after formation of Site 1179. This sample requires that the 

formation fluid interacted with basalt before precipitation of that sample.  

 
Figure 3.43. Seawater Sr isotopic composition with time. Carbonate 87Sr/86Sr (blue 
squares) are plotted to intersect the seawater Sr curve. Lines joining samples are where 
the same sample may cross the curve at several points. The later plots indicate that 
episodic carbonate precipitation has occurred for at least 100 Ma. Curve derived from 
McArthur et al, 2001. 
 

Although direct precipitation of calcite from seawater is possible, from the variability 

of the strontium isotopic ratios and previous work on the precipitation of carbonate 

(Teagle et al., 1996; Coggon et al., 2004) it is likely that a component of basaltic Sr is 

present in an unknown proportion of the samples. Therefore, the use of the seawater Sr 

isotopic curve in carbonates as a dating method in oceanic basement (Staudigel et al., 

1981; Staudigel and Hart, 1985) is precluded. 

  

Figure 3.44. Sr-isotopic profiles of carbonates at Site 1179, 1224 and 801 together with 
seawater at the time of formation. 801 carbonates sourced from Alt, (2003)  
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Carbonate 87Sr/86Sr at the most well characterized basement sites tend to have values 

lower than that of seawater at the time of basement formation suggesting the inclusion 

of significant basaltic strontium. At sites where the strontium isotopic composition of 

some carbonates is greater than contemporaneous seawater (e.g. Holes 801C, 1224 and 

1179D, Figure 3.44), the sedimentation rate is low (Figure 3.41). This suggests that 

sediment cover has an influence on the amount of interaction between seawater and 

basalt. In areas with high sedimentation rates (e.g. Juan de Fuca Ridge, 504B, 896A or 

1256D, Figure 3.41) seawater and rocks are heated (due to insulation from the 

sedimentary layer) resulting in greater exchange between the fluids and basement.   

 

 

3.6.3 Major element analysis 

 

Concentrations of Sr, Mg, Fe, Mn and Ca were measured by ICP-AES (Table 3.11). 

Elemental analysis of Site 1179 carbonates have a distinct calcite signature. Sr 

concentrations range from 37 ppm to 266 ppm and Mg concentrations range from ~480 

ppm to ~14000 ppm. Work by Coggon et al., (2004) in which both calcite and aragonite 

were sampled indicate a clear distinction between the Fe and Mn concentrations of each 

mineral type. Aragonite has very low Fe and Mn concentrations, whereas calcite has 

higher concentrations. 

 
Figure 3.45. [Mg/Ca] and [Sr/Ca] concentrations in carbonate samples recovered from 
Site 1179. Error is less than the width of the data points. Data from the eastern flank of 
the Juan de Fuca Ridge (Coggon, 2004) is shown for comparison between aragonite 
and calcite.  
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Similar results occur with Sr and Mg concentrations at Site 1179 (Figure 3.45). 

Carbonate Fe and Mn also point to calcite compositions with average concentrations of 

1950 ppm and 1250 ppm, respectively. 

 

 

3.6.4 Constraints on fluid evolution 

 

Relationships between calculated temperature, Mg, Ca, Mn and 87Sr/86Sr are used to 

describe the evolving composition of low temperature hydrothermal fluid and 

determine the conditions in which carbonate at Site 1179 formed. Evidence for 

fluid/basalt mixing and its effect on fluid chemistry is discussed. 

 The amount of exchange from magnesium in basalt for calcium in seawater is 

directly related to temperature (Coggon et al., 2004), and the Mg/Ca temperature 

dependence is well calibrated for calcite. A plot of temperature vs. Mg/Ca for Site 1179 

calcite samples in Figure 3.46 illustrates this trend it suggests that the fluids are either 

mixtures of seawater or basalt. 

 
Figure 3.46 Plot of [Mg/Ca](CaCO3) vs. calculated temperature from δ18O measurement. 
Increased temperature results in increased exchange of Mg and Ca between seawater 
and basalt. Calcite formed at higher temperature formed from fluid that has lost Mg to 
basalt.  
 

 The evolution of Mn in hydrothermal fluids is represented in Figure 3.47. Site 

1179 carbonates exhibit increasing [Mn/Ca]CaCO3 with temperature. Possible causes for 

the increase in Mn concentration include mixing of upwelling, more evolved fluids 

(unlikely given the very low temperatures of formation) or the extra Mn came from 

interaction with basalts (e.g., Teagle et al., 1996, Coggon et al., 2004). Given the 
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temperature dependence of Mg/Ca, Sr/Ca and strontium isotopic evidence it is the most 

likely explanation for the relationship seen in Figure 3.48. The evolution of fluid from 

which carbonate precipitated from shows no sign of diverging pathways, which 

suggests the carbonates formed from the same evolving fluid, including the very young 

(~29 Ma) sample 1179D-21R-3, 65-71 cm.  

 
Figure 3.47. [Mn/Ca](CaCO3) vs. calculated temperature from δ18O analysis for carbonate 
vein seperates in Hole 1179D.  
 

 Following Coggon et al, (2004), calculation of the fluid Mg/Ca and Sr/Ca ratios 

to which carbonate precipitated from is carried out using the following partition 

coefficients:  

 

fluid

CaCOCaSr
D CaSr

CaSr
K

]/[
]/[

3           and          
fluid

CaCOCaMg
D CaMg

CaMg
K

]/[
]/[

3  

     

KD is determined experimentally by compositional analysis of CaCO3 synthetically 

grown from a known solution or by comparing natural carbonates with known 

formation fluid compositions (e.g., Hartley & Mucci, 1996; Carpenter & Lohmann, 

1992; Oomori et al., 1987). The partitioning of Mg2+ ions into calcite is highly 

dependent on temperature (Oomori et al., 1987), but also on precipitation rate, solution 

composition and concentrations of other trace elements (Hartey and Mucci, 1996; 

Rimstidt et al., 1998). A theoretical temperature dependent Kcc
Mg-Ca has been developed 

(Rimstidt et al., 1998) and the recent review of calcite partition coefficients by Coggon 

et al., (2004) and Coggon (2006) suggest that the Kcc
Mg-Ca developed by Rimstidt et al., 

(1998) is the most appropriate, where: 
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T
T

LogK CaMg
cc 005339.01348436.4   

(where T is in Kelvin) 

 The Sr content of calcite is partially controlled by the concentration of Mg 

(Mucci and Morse, 1983; Hart et al., 1994) and Sr should also be affected by 

temperature. Hence, following the review of partition coefficients by Coggon et al, 

(2004), the equation determined by Rimstidt et al. (1998) is deemed the most 

appropriate expression.   

 

T
T

LogK CaSr
cc 0006248.02.179874.1   

 

 Typical chemical exchange between seawater and basalt include; the leaching of 

basaltic Sr and Ca to the fluid, and the loss of Mg from the fluid to clay minerals and 

chlorite in the basalts. At higher temperatures, the level of interaction increases and 

more Sr and Ca will be removed from basalts. Therefore, calcite precipitated from a 

fluid which has undergone interaction with basalt will have lower [Mg/Ca]fluid and 

[Sr/Ca]fluid ratios than seawater. High temperatures in carbonates correlate with low 

Mg/Ca and Sr/Ca values for fluids (Figure 3.48 a and b respectively) although in 

calcites Sr/Ca is much less sensitive to changes in temperature.   

 
Figure 3.48. The dependence of [Mg/Ca]fluid (A)and [Sr/Ca]fluid (B) on calculated 
temperature based on δ18O measurements in Hole 1179D carbonates. Red point 
indicates 129 Ma seawater values for [Mg/Ca] (based on Mg and Ca concentration time 
curves from marine evaporates in Horita et al., 2002) and [Sr/Ca] (from Sr/Ca time 
curves derived from cretaceous rudist bivalves and belemnites in Steuber and Veizer., 
2002). Red circled samples 191-1179D, 11R-1, 44-50 cm and 18R-1, 52-58 cm indicate 
samples with the highest basaltic component. 
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 The calculated [Sr/Ca]Fluid ratios decrease with increasing temperature (Figure 

3.48 b). The fluid evolution exhibited by carbonates recovered from the Juan de Fuca 

ridge transect obtained by Coggon et al., (2004) are similar to those obtained in this 

study of Site 1179.  The samples highlighted by red circles in Figure 3.48 (191-1179D-

11R-1, 44-50 cm, 18R-1 52-58 cm) have the lowest Mg/Ca, Sr/Ca and 87Sr/86Sr ratios 

and they are relatively high in temperature. This suggests that increased temperature 

causes increased leaching of Ca from basalts. A significant uptake of Sr into fluids from 

basalts should result in higher Sr/Ca ratios in the carbonates together with low 87Sr/86Sr 

however such a trend is not observed when Sr-isotopic composition is compared 

against Sr/Ca figure 3.47 Figure 3.50 illustrates the relationship between age, formation 

temperature and the Sr isotopic ratio of the carbonate samples. A slight trend between 
87Sr/86Sr and temperature is evident but a relationship with age is not clear, although the 

‘younger’ samples (i.e. with high 87Sr/86Sr) tend to have been formed at lower 

temperatures. Samples 191-1179D-21R-3, 65-71 cm (Blue circle in Figure. 3.50), 191-

1179D-11R-1, 44-50 cm (Red circle in Figure 3.51) and 191-1179D-18R-1, 52-58 cm 

(Green circle in Figure 3.50) do not follow the same trend of the other carbonates. The 

outlier Sample 191-1179D-21R-3, 65-71 cm (‘29’ Ma sample), implies that this 

carbonate precipitated from a different fluid, possibly perhaps from renewed fluid flow. 

Samples 191-1179D-11R-1, 44-50 cm 18R-1, 52-58 cm exhibit low strontium isotopic 

ratios and relatively high temperatures compared with the other 1179D carbonates. 

These samples may represent a slightly more evolved localised fluid with a high 

proportion of basaltic Sr.  

 
Figure 3.49. Sr/Ca vs 87Sr/86Sr for carbonate veins at Site 1179D. Red circled samples 
191-1179D, 11R-1, 44-50 cm and 18R-1, 52-58 cm. Blue circled sample is the ‘29’ ma 
sample 191-1179D, 21R-3, 65-71 cm. 
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Figure 3.50. Carbonate 87Sr/86Sr vs. calculated temperature. Red circle indicates the Sr 
isotopic composition of seawater at 129 Ma (McArthur et al., 2001). Tie line indicates 
samples that share a common host (191-1179D, 14R-3, 59-64). Outlier Samples 91-
1179D-21R-3, 65-71 cm (Blue circle), 191-1179D-11R-1, 44-50 cm (Red circle) and 
191-1179D-18R-1, 52-58 cm (Green circle) represent carbonates from a different 
hydrothermal fluid, possibly at different times.  
 

Two veins recovered from sample 191-1179D-14R-3, 59-64 exhibit different Sr-

isotopic ratios and calculated temperatures. One has have high 87Sr/86Sr and 

temperature and the other with a lower 87Sr/86Sr and temperature respectively (Figure 

3.50). This implies that two separate precipitation events took place within this sample. 

No cross cutting relationship was observed, so their relative timing remains unknown.  

It is not known if any of the carbonates formed within the relatively late period 

(Miocene) of rapid sedimentation. Given the 87Sr/86Sr values, it is more likely that 

carbonates formed during the slow sedimentation period, because slow sedimentation 

has persisted over the majority of the time since Site 1179 formation. 

 

 

3.6.5 Carbon uptake in the oceanic crust 

 

The abundances and distribution of secondary carbonates in the 100 m section of upper 

oceanic crust at Site 1179 have been measured to determine the carbon content of 

oceanic crust. Whole rock C contents were measured on a CS-analyser and estimates 

for the bulk CO2 of Site 1179 were made by averaging each alteration type and 

weighted according to the proportion of that alteration type. The CO2 content of veins 

and breccia at Site 1179 were added to whole-rock CO2 to determine bulk CO2 at Site 
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1179. Figure 3.51 shows the downhole variation of carbonate in veins/breccia, 

carbonate veins per metre and whole rock CO2 content. 

 
Figure 3.51. Downhole variation in carbon content for Site 1179. Carbonate veins per 
metre and the volume % plot are normalized to 100% core recovery. Cores 191-1179D-
20R, 21R and 22R veins per metre are calculated from core photos since vein logs for 
these cores were completed by grouping veins into vein nets.  
 

Variation of bulk rock CO2 is minimal throughout ODP Hole 1179D. However, the 

abundance of carbonate veins increases with depth to around 33 veins per metre at 85 

mbsf. The greatest abundance of carbonate occurs between 25 and 45-50 mbsf (Figure 

3.41) which coincides with the recovery of breccias and high alteration at this depth. 

Although the highest number of veins occurs at the bottom of the core, the actual 

volume of carbonate in veins and breccia remains relatively low.  

 Site 504 896 843 417/418 801 1179 

 Age 
6.9 
Ma 

6.9 
Ma 

100 
Ma 

120 
Ma 

170 
Ma 

129 
Ma 

veins per metre upper 2.6 8.2 18.5 - 21.4 17.34 
 lower 0.4   - 20.2  
carbonate in veins 
and breccia upper 0.07 0.45 4.9 

 
3.01 1.76 

 lower 0.03    3.08  

Bulk Crustal CO2 upper 0.21 0.51 2.4 4.9 4.05 2.05 
Wt % lower 0.14   0.8 3.05  

Table 3.11. Carbonate content for various Sites which penetrate ocean crust. 504, 896, 
843, 417/418 and 801data from Alt and Teagle, (1999).  
 

The difference between the normalized veins per metre plot and volume % carbonate at 

~420 mbsf (Core 191-1179, 16-R) demonstrates the effects low recovery has on volume 
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calculations. This core has only 5.8% recovery, yet 4 carbonate veins are recovered in 

18 cm of core, this translates to 22 veins per metre. The veins recovered are, however, 

very thin ~0.1 to 0.2 mm. Therefore, the total volume, even when extrapolated to 

account for recovery is negligible. Cores of low recovery must therefore, be used with 

caution. The calculated total CO2 content of Site 1179 is 3.5%. The distribution and 

volume of carbonates at other sites is summarised in Table 3.11 (Alt and Teagle., 

1999). In general older sites have higher amounts of carbonate (both within the basalt 

and in veins and breccia) than younger basement sites. This is consistent with continued 

precipitation of carbonate as the crust ages. Infill from reopened cracks fissures and 

pre-existing porspace increase carbonate content through time. Indeed, zones which are 

highly brecciated with either present or previously high porosity usually contain the 

highest proportions of carbonate, for example, 35-40 mbsf at Site 843 (Alt, 1993), parts 

of Hole 504B and the brecciated zone at 420 mbsf in Site 1179.  

 
Figure 3.52.Carbonate data for bulk upper crustal sections vs. age from Alt and Teagle, 
(1999) with new data from Site 1179. (A) Indicates greater CO2 contents with 
increasing age and (B) indicates the continued formation of carbonate veins well after 6 
Ma. Sheeted dykes and plutonics have little or no CO2 increase with time. Lower 
volcanics indicate a slight increase in CO2 with time. Site 1179 has a similar 
concentration of CO2 when compared to similarly aged counterparts. Open circles = 
upper crust, solid circles = lower crustal section. The dashed lines indicate possible 
pathways for uppermost crust assuming formation of all carbonate in the crust within 
15 and 40 Ma (Alt and Teagle, 1999). 
 

 The relationship between carbonate content and age as compiled by Alt and 

Teagle, (1999), including Site 1179 is summarized in Figure 3.52. Older oceanic crust 

sites have higher CO2 contents with the greatest incorporation of carbonate taking place 

in the upper volcanic section of the crust. Site 1179 has comparable bulk CO2 to its 

similarly aged counterparts and carbonate veins per metre remain similar.  As 

demonstrated in Table 3.11 and Figure 3.51, ODP Hole 896A has more than double the 

 151



Site 1179   3.6  

 152

amount of carbon in its basement than ODP Hole 504B. This is likely because Sites 896 

and 504 were located on different parts of a ridge flank convection cell in which Site 

504 was subject to horizontal flow and Site 896 was in an upflow zone on a basement 

high resulting in focused fluid flow and greater fluid fluxes (Alt and Teagle., 1999).  

Despite the drawbacks in using the seawater strontium isotopic curve as a tool for 

dating carbonates, Site 1179 carbonates exhibit values that indicate precipitation at least 

40 Myr after formation of Site 1179. And one sample 191-1179D 35R-3, 65-71 cm 

must have formed at least 100 Myr later. Any incorporation of basaltic Sr into the 

formation fluid would mean the carbonates are even younger than what their measured 
87Sr/86Sr values indicate. Interestingly, Sample 191-1179D 35R-3, 65-71 cm is not in an 

area of especially high alteration or brecciation, suggesting that late stage carbonate 

precipitation may have occurred even in areas of less focussed fluid flow. 

 Petrographic, mineralogic and geochemical evidence of multiple stages of 

carbonate precipitation at Site 1179 and other basement sites (Alt and Honnorez, 1984; 

Alt, 1993; Teagle et al., 1996) suggest renewed circulation takes place due to renewed 

fracture permeability created by tectonic activity. If such renewed circulation takes 

place and uptake of carbon is continuous throughout ocean crust over extended periods 

of time then we would expect older crust to have higher carbonate abundance. Table 

3.11 indicates increased carbon content with age, although variation of carbon content 

of crusts at a similar age almost certainly reflect local heterogeneities. For example at 

Sites 504 and 896 (Alt and Teagle., 1999).  

 One possible major effect on carbonate precipitation is the depositional history 

of sediment. Younger sites with high sedimentation rates appear to have carbonates that 

are formed soon after site formation, (e.g. Sites 504, 6.9 Ma; 896, 6.9 Ma; 1256,15 Ma; 

and the JDFR, <3 Ma; Alt and Teagle, 1999) and they appear to be more heavily 

influenced by basalt interaction. Sites with slower rates of sedimentation appear to have 

more late-stage carbonates that are influenced by seawater interaction. A high 

sedimentary rate may have the effect of sealing the crust from seawater, thereby 

reducing carbonate precipitation and insulating fluids giving rise to higher temperatures 

and increased basaltic interaction (Teagle, et al., 1996). It is hard to be certain without 

sites from a variety of ages and sedimentary rates. Thus far data from old basement 

sites only comes from areas with low sedimentation rates and sampling of young sites 

has only taken place in areas of rapid deposition.  
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3.7. Discussion 

 

3.7.1 Alteration in ODP Hole 1179D 

 

Petrographic observation of secondary minerals of basalts from Hole 1179D is an 

indicator of the relative timing of alteration assemblages. The conditions at which 

saponite, iron-oxyhydroxides, celadonite and calcite precipitate change with time 

depends on levels of fluid flow, seawater chemical variations, structure fluid 

composition and temperature.  

 The order of secondary mineral paragenisis varies from that described in 

Section 3.2, saponite formation may precede iron-oxyhydroxide formation. 

Oxyhydroxides can clearly be seen to stain earlier saponite in many samples. Multiple 

bands with alternating saponite and oxyhydroxides reflect changes in the chemistry of 

basement fluid particularly with regard to K and Fe contents and redox potential 

(Kanazawa et al., 2001). Other examples include coexisting saponite + carbonates and 

celadonite + carbonates within veins. An increase in abundance of celadonite from 415 

mbsf to 440 mbsf is indicative of relatively high fluid flow, perhaps during open 

seawater circulation. In places where celadonite has not been overprinted by iron-

oxyhydroxides, fluid flow may have become more restricted, possibly due to a 

reduction in permeability. Increased iron-oxyhydroxide formation associated with 

elevated H2O, Sr, Cu, Al and the slight losses in Mg and Ca at depths greater than 440 

mbsf suggests decreasing cold seawater circulation with depth. This is contradictory to 

the increasing amount of Fe(O,OH)x with depth, which should point towards increased 

cold seawater circulation. Zones with locally high permeability may be controlling fluid 

circulation which may explain conflicting evidence. One important observation is that 

Hole 1179D exhibits a distinct lack of secondary sulfides. S2– deficiency within the 

percolating seawater and/or a redox potential that was too high for reducing SO4
2–, yet 

not high enough for more than partial oxidation of Fe2+, may account for the lack of 

secondary sulfides (Kanazawa et al., 2001). It is unknown whether changes in seawater 

chemistry or local variations in fluid flow over time had the greater effect, but it is clear 

that changes in basement fluid chemistry had an impact on the sequence that secondary 

minerals form. 

 Observations from a number of young ocean crust sites suggest that all 

secondary mineral phases may form within 3 million years, although alteration may 
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continue for 100 million years. Comparisons between holes drilled of varying ages 

support this because mineralogy is similar at many sites (e.g. Teagle et al, 1996. 

Andrews, 1977., Böhlke et al., 1981., Alt and Teagle., 2003). Table 3.12 outlines the 

timing of secondary mineral paragenisis based on observations at young sites. Analysis 

of Sites younger than 3 Ma indicate that, at 3 Myr since crustal formation, alteration is 

incomplete, for example, at ODP Hole 648B which is less than 10 ka old, the only 

secondary mineral observed is celadonite. This suggests that celadonite formation in 

ocean crust occurs within the first 10 kyr of formation, although it may continue 

forming throughout the life of the ocean crust (Adamson and Richards, 1990). 

Reference Secondary Minerals observed Age of sample Site(s) 
Adamson and Richards, 1990 Celadonite <10 Ka 648 
Humphris et al., 1980 Celadonite + Fe-oxyhydroxides  <1 Ma   424 
Laverne and Vivier, 1983 Celadonite + Fe-ox + saponite  >2 Ma  506-510 
E.g.,Andrews., 1977 
 

Complete assemblage including 
carbonates and zeolites 

 3.2 Ma   332-335 

Table 3.12. Constraints on secondary mineral paragenisis based on observations of very 
young crust.  
 

Evidence for the potentially long duration for late stage hydrothermal alteration comes 

from strontium isotopic comparisons between the seawater strontium isotope curve and 

carbonates in an effort to constrain the timing of carbonate precipitation. The 

incorporation of basaltic Sr into seawater during seafloor alteration precludes the use of 

the Sr isotopic curve to date carbonate precipitation (Teagle et al., 1996). However, 

even assuming that the strontium isotopic ratio of the carbonates represents the fluid 

from which they precipitated, and that no subsequent exchange has taken place, then 

the majority of carbonates must have formed over a time period of at least 46 Ma after 

formation of Site 1179 ocean crust. One carbonate sample (191-1179D-21R-3, 65-71 

cm), with a very high strontium isotopic ratio of 0.70778 suggests that it has 

precipitated as much as 100 Myr after basement formation at 129 Ma. Temperatures of 

the hydrothermal regime at Site 1179 have only been derived from δ18O analysis of 

carbonates. Thus temperatures of formation of other secondary minerals can only be 

inferred from analysis of secondary minerals from other sites. Pure vein mineral 

separates from other vein minerals; including, saponite, iron-oxyhydroxide, and 

celadonite, will need to be selected and analyzed for δ18O to constrain temperature 

regimes for these secondary minerals. Celadonites may form at temperatures up to 40oC 

based on work on other in-situ celadonite samples by Seyfried et al., (1978) and Böhlke 

et al., (1984), whereas saponites can form at temperatures ranging from 15oC to 170oC 
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(e.g. Teagle et al., 1996). Calculated temperatures from carbonate veins range from 12 

to 39oC, which is typical of low temperature seafloor weathering. Although saponite 

was separated, some carbonate samples were picked from veins which contained 

simultaneous growth of saponite. This suggests that saponite also formed at low 

temperatures. Low temperatures may be explained by the lack of sediment cover 

allowing cold seawater to infiltrate more freely into the basement.  

 

 

3.7.2 Chemical changes 

 

Chemical changes as a result of hydrothermal alteration at Site 1179 measured from a 

calculated protolith and a host, indicate chemical changes associated with the secondary 

mineralogy at Site 1179. Increases in Fe2O3
T, K2O, C, LOI, Rb, Cs, Ba, Ta, Th, U and 

decreases in SiO2, MnO, MgO, Ni, Pr, Tb and Er are present throughout all alteration 

styles. Elements with low ionic field strength readily undergo cation substitution into 

crystal lattices, which may explain the very large chemical changes associated with Rb, 

Cs, Ba, Sr, Pr, Tb and to a lesser extent Th. Breccias have undergone the highest degree 

of chemical change. This includes increases in Fe2O3
T, K2O, LOI, Zn, Zr, Cs, Ta and 

decreases in SiO2, Cr, Ni, Pr, Tb and Er. Breccias are highly permeable rocks which are 

likely to be subject to higher fluid flow and, therefore fluid-rock interaction. 

Distinction of the chemical changes for each alteration style is hampered by 

significant overlap created by sample selection, in which unavoidable portions of the 

sample contained more than one alteration style. In addition, significant overprinting 

from perhaps multiple stages of fluid flow will further obscure chemical changes that 

are distinctive to that style of alteration. Additional error comes from averaging for 

each sample set and the choice of protolith, because we assume TiO2 is the most 

reliable immobile element and we also assume that no volume change has taken place.  

 

 

3.7.3  Isotopic relationships 

 

Whole rock 87Sr/86Sr at Site 1179 record the interaction of seawater with basalt as a 

result of hydrothermal alteration. Previous studies of seawater interaction with basalt 

have shown that altered basalts are enriched in 87Sr by exchange with seawater (e.g., 
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Alt and Teagle, 2003, Teagle, et al., 1996). Whole rock 87Sr/86Sr in Hole 1179D is 

elevated above MORB 87Sr/86Sr yet, not surprisingly, it remains well below 

contemporaneous seawater values. The increased 87Sr/86Sr with depth is a clear 

indicator of increased interaction with seawater; this is underlined by the overall 

increase in alteration with depth (Higher LOI and the increase in alteration halos). A 

suggestion by Sano and Hayasaka (2001) that the elevated 87Sr/86Sr may be related to 

interaction from the eruption of Shatsky Rise seems unlikely given that the evidence 

points to seafloor weathering. In addition, strontium isotopic values for acid washed 

samples from Mahoney et al, (2005) and leached whole rock samples in this study plot 

much closer to MORB values than the unwashed samples analysed by Sano and 

Hayasaka (2001). 

 The whole rock oxygen isotopic profile for Site 1179 basement are variably 

enriched compared to expected fresh glass compositions for upper oceanic crust. These 

enrichments are directly related to the incorporation of clay minerals, iron-

oxyhydroxides and carbonates into the whole rock during low temperature seawater 

alteration. As shown in Figure 3.39, altered samples within sample pairs are further 

enriched in 18O than their least altered ‘fresh’ hosts. No variability with depth or 

alteration style is present, however a small sample size and low depth of penetration 

into basement preclude a detailed study into the variations of whole rock δ18O at Site 

1179.  

 

 

3.7.4 Carbonates 

 

Isotopic results from Site 1179D carbonates are used as an indicator of fluid flow and 

may be indicative of the intensity of hydrothermal alteration. A relationship between 

seawater/basalt interaction, temperature and age is explored through carbonates. 

However, one must acknowledge the large assumptions made in assigning ages to 

strontium isotopic results. 

 The temperature dependence of the extent of hydrothermal alteration is 

indicated by strong trends between the strontium isotopic ratios of carbonate and 

temperature. Plots of carbonate 87Sr/86Sr vs. temperature show a slight negative trend, 

becasue fluids will exchange with basaltic Sr (Figure 3.50). This suggests that even 

small increases in temperature in Hole 1179D will increase alteration intensity. The 
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Mg/Ca and Sr/Ca fluid compositions derived from carbonates vs. temperature plots 

show that high temperatures in carbonates correlate with low Mg/Ca and Sr/Ca values. 

This is strong evidence for seawater basalt interaction  

 To explore the possibility that a relationship between 87Sr/86Sr, temperature and 

age exists at Site 1179, an age hierarchy was devised for each carbonate sample using 

the seawater strontium isotopic curve as a guide (Figure 3.43). Although nearly all 

evidence points towards fluid interaction with basalt, the age hierarchy was devised 

assuming that all carbonates have been formed from fluids that have been subjected to 

the same amount of interaction with basalt. Therefore, the differences in observed 
87Sr/86Sr reflect the change in seawater Sr isotopic composition with time.  

The relationship indicates a weak trend, suggesting that older samples have low 
87Sr/86Sr which correlates with the higher temperatures. One possible cause of this 

relationship is that  

 Older carbonates continued exchanging strontium after formation. Older 

carbonate specimens are expected to have lower 87Sr/86Sr values due to lower 87Sr/86Sr 

in phanerozoic seawater. Fluctuations in seawater 87Sr/86Sr ~40 Myr after the formation 

of Site 1179D basalts means caution must be taken in drawing temporal relationships 

between 87Sr/86Sr of carbonates and seawater 87Sr/86Sr over time. In modern ocean 

crust, where the 87Sr/86Sr of seawater has been steadily increasing at for the last 30 Ma, 

would predict stronger temperature vs. 87Sr/86Sr trends for modern oceanic crust, 

because any basalt interaction with high 87Sr/86Sr seawater should result in sharper 

increases in 87Sr/86Sr.  Calculated temperature from δ18O analysis and 87Sr/86Sr were 

obtained from different sites with different ages and spreading rates (Figure 3.53).  

 
Figure 3.53 Calculated temperature vs. 87Sr/86Sr for ODP Holes 896A (Teagle et al 
1996, 1179D and 801C (Alt and Teagle, 2003). Trend lines indicate the fluid evolution 
as increased temperatures result in more Sr-isotopic exchange.   
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These holes exhibits similar trends to Site 1179D indicating that similar processes are 

occurring despite the variation in spreading rate, sedimentation rate and age. A 

comparison between rates of sedimentation at different sites in ocean crust and their 
87Sr/86Sr show that in areas with low sedimentation rates the 87Sr/86Sr of carbonates 

reflect the 87Sr/86Sr of seawater at the time of ocean crust formation, whereas sites that 

have experienced high sedimentation exhibit strontium isotopic values that are lower 

than seawater. This suggests that sediment cover may be allowing fluids to exchange 

with basaltic Sr, perhaps by warming up the fluids whilst sealing off the majority of 

cold seawater from the basement. Areas of ocean crust which have seen very little or no 

sedimentation, may have 87Sr/86Sr which have had very little to no contamination from 

basalts and therefore may represent the seawater values at the time of formation. 

Carbonates from more sites at differing ages, spreading rates and sedimentation rates 

are required to elucidate which processes have the greatest impact on carbonate 

precipitation. 

 Based on observations of secondary minerals of recovered core, ODP Hole 

1179D contains 0.39 % carbonate. The percentage of CO2 present at Site 1179 is 3.55 

wt % with on average 17 veins per metre carbonate. The relationship between age and 

carbonate content at Site 1179 supports the evidence from other basement sites and 

high 87Sr/86Sr of some carbonate samples that incorporation of carbonate in the crust 

continues long after its formation. The variable CO2 contents at various ODP and 

DSDP sites suggest factors such as hydrothermal upwelling, permeability and porosity 

and structure (Alt and Teagle., 1999) contribute to reduced rates for carbonate 

precipitation at older sites. The permeability of ocean crust which is intrinsically linked 

to structure may in turn be governed by spreading rates.  
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3.8. Conclusions 

 

Hole 1179D penetrated 100 m into the upper volcanic section of ocean crust which has 

been slightly to moderately altered by seafloor weathering. Secondary mineral 

assemblages, whole rock geochemistry, and isotopic analysis of whole rock samples 

and secondary carbonates have helped to characterize the style and intensity of 

hydrothermal alteration at Site 1179D. Variations in TiO2, Al2O3, Ni, Cr, Cu, Sr, V, Zn 

and Y reflect the igneous variation between olivine poor, olivine free and olivine rich 

basalts. Increases in Fe2O3
T, K2O, C, LOI, Rb, Cs, Ba, Ta, Th, U and decreases in 

SiO2, MnO, MgO, Ni, Pr, Tb and Er are present throughout all alteration styles. 

 
Figure 3.55. Generalized sequence of secondary mineral paragenisis during alteration 
of Site 1179 basalts. (A) Fresh basalt. (B) Low temperature celadonite veins and halos 
form from initial seafloor weathering. (C) Circulation of cold seawater resulting in 
oxidation and iron-oxyhydroxide rich alteration halos and veins, saponite may be 
present at this point but oxidation overprints any early saponite. (D) Saponite reflects 
reducing conditions forming veins, halos and the majority of background alteration. (E) 
Late stage carbonate veins fill fractures and re-opened veins. 
 

Complex halos encompass the trends of many or the alteration styles superimposed on 

each other. Gains in nearly all elements are observed, especially S, Ni, Nb, Pb and U. In 

addition, variable losses include MnO, Cu, Rb and Th. Distinctions in the chemical 

changes associated with hydrothermal alteration at Site 1179 are hampered by 
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overprinting of different mineral phases and the difficulty in sampling only one 

alteration phase. 

 

Despite significant overlap, the following sequence of secondary minerals 

occurs: celadonite formation which is followed by saponite + iron-oxyhydroxides and 

then pervasive saponite alteration. Later multiple stages of calcite ± zeolite cross-cut 

the previous stages (Figure 3.54). This sequence is similar to the alteration sequence 

found at Hole 801C (Alt and Teagle, 2003). Variations to this sequence are common, 

and they are primarily related to variations in fluid flow dictating the conditions at 

which minerals can form. The other highly likely cause is changes in the chemistry of 

seawater entering the ocean crust which has resulted in oxidation throughout the section 

and a lack of secondary sulfides. Multiple halos are thought to represent periodic 

changes in basement fluids the most notable chemical change is the increase in S and 

Pb. Significant overlap between alteration assemblages and lack of data from sample 

pairs makes the summary of chemical changes within each assemblage unreliable. 

Indications from carbonate veins suggest that later fluids from renewed fluid flow were 

present which may indicate upwelling of hydrothermal fluids. 
 87Sr/86Sr values of carbonate precipitates and whole rocks and their relationship 

with intensity of hydrothermal alteration, depth and temperature all suggest that whole 

rock Sr isotopic compositions are the result of seafloor weathering with cold seawater 

interacting with basalts. In addition, leaching experiments carried out on Site 1179 

basalt samples (Chapter 2) imply that the primary Sr-isotopic composition is reflects 

that of MORB. This is contrary to Sano and Myrashiro, (2001), who suggest that 

elevated 87Sr/86Sr in basalts are the result of interaction with Shatsky Rise.  

Isotopic evidence from carbonates reveals an alteration history that spans at least 46 

Myr since formation of Site 1179 because 87Sr/86Sr in most carbonate mineral separates 

is higher than 129 Ma seawater. The relationship between age and carbonate content at 

Site 1179 supports the evidence from other basement sites, and high 87Sr/86Sr of some 

carbonate samples that incorporation of carbonate in the crust continues long after its 

formation. The variable CO2 contents at various ODP and DSDP sites suggest factors, 

such as hydrothermal upwelling, permeability and porosity, and structure may all 

influence carbonate uptake in the ocean crust (Alt and Teagle., 1999). More sampling 

of carbonates of different sites is required to elucidate which of these effects has the 

greatest impact on carbonate precipitation. 
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4.1. Site 1256. 
 
 
 
Site 1256 (6°44.2′N, 91°56.1′W) is located in the Guatemala Basin on the Cocos plate 

on the eastern flank of the East Pacific Rise (EPR). The site straddles the magnetic 

anomaly 5Bn-5Br which places the site at ~15 Ma. Site 1256 now currently lies ~1150 

km east of the present spreading centre (crest of the EPR) and ~ 530 km north of the 

Cocos ridge (Figure 4.1). Site 1256 formed on a 400km long ridge segment, ~100 km 

north of the ridge triple junction between the Cocos, Pacific and Nazca plates (Wilson 

et al, 2003). Magnetic anomaly identifications in the central part of the Cocos plate and 

the corresponding part of the Pacific plate indicates that this site formed during a period 

of superfast spreading (220 mm/yr full rate) and has since moved eastward to its current 

location (Wilson, 1996). 

 
Figure 4.1. Location of Site 1256 (Modified from Wilson et al., 2003). 

 

Regional topography at Site 1256 includes a series of seamounts around ~500 m high 

which rise above the sediment (15-20 km NE of Site 1256) and in the south a 

pronounced basement topography is evident with a relief of ~100 m in the form of 

subparralel ridges and narrow troughs. Seismic profiling during the site survey 

estimated the sediment pile to be ~250 m thick. The same profiling of the basement 
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indicates that the velocity of upper layer 2 is between 4.5-5 km/s, and that the Layer 2-3 

transition lies between ~1200 and 1500 m subbasement with a total crustal thickness of 

~5-5.5 km. Layer 2-3 (Figure 4.2). 

 Site 1256 was drilled to: 1) test the prediction, from the correlation of spreading 

rate with decreasing depth to the axial melt lens (Figure 4.2) (Carbotte, et al 1997; 

Purdy et al, 1992), that gabbros (representing the crystal melt lens) will be encountered 

between 900 and 1300 msb (metres sub-basement) (Wilson et al., 2003),  2) To 

determine if the gabbros are cumulate rocks from which the dykes and lavas are 

sourced, or if the gabbros are coarse grained equivalents of the extrusives frozen at the 

base of the sheeted dykes, 3) determine whether crustal accretion occurs at deeper 

levels by intrusion of multiple narrow sills (MacLeod and Yoauancq, 2000; Kelemen et 

al., 1997), or by the ‘gabbro glacier model’ which theorises that as ocean crust spreads 

away from the ridge axes, accumulated crystal residues in melt lenses subside to form 

the lower ocean crust (Henstock et al., 1993; Phipps et al., 1993; Quick et al., 1993), 

and 4) determine the cooling rates of magma chambers.  

 
Figure 4.2. Depth to axial low-velocity zone plotted against spreading rate. Depth vs. 
spreading-rate predictions from two models of Phipps Morgan and Chen (1993) are 
shown, extrapolated subjectively to 200 mm/y (dashed lines). Penetration in Holes 
504B and 1256D are shown by solid vertical lines, including the point at which gabbros 
were penetrated at Site 1256 (red box). Following core descriptions, a thickness of 
~300 m of off axis lavas is shown for Hole 1256D and assumed for Hole 504B. EPR = 
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East Pacific Rise, JdF = Juan de Fuca Ridge, Lau = Valu Fa Ridge in Lau Basin, CRR 
= Costa Rica Rift Figure is modified from Wilson, et al, (2006). 
In 2002 ODP Leg 206 Initiated Hole 1256D and drilled through 250 m of sediment and 

502 m into basement. IDOP Expedition 309 returned to Hole 1256D in July-August 

2005 and extended the hole to 1255 mbsf through the lithological transition zone and 

into the intrusives. IODP Expedition 312 further deepened the hole to 1507.1 mbsf and, 

for the first time, at 1407 mbsf, recovered gabbros from an intact section of ocean crust 

at Site 1256. Site 1256 possibly represents the most comprehensive example of upper 

ocean crust to date because it is one of only two sites to recover the lithological 

transition between the extrusive pillow and lava flows and intrusives, and the only site 

to recover gabbros (Wilson et al., 2006; Teagle et al., 2006). Hole 1256D and 504B are 

also the only penetrations of the ocean crust where the mineralogical transition zone 

between cold seawater derived alteration to hot hydrothermal alteration has been 

recovered (Teagle et al., 2006). Site 1256 provides us with the opportunity to 

characterize hydrothermal alteration for a complete section of oceanic crust, therefore 

allowing us to investigate the evolution of hydrothermal fluid composition from 

seawater to black smoker type fluid, chemical fluxes and heat fluxes at fast spreading 

rates, and their impact on oceanic crust as a whole. To this end, this study presents 

chemical and petrographic analysis of whole rock basement samples and secondary 

minerals at Site 1256. The style and intensity of alteration at Site 1256 is compared 

directly to that of Hole 504B the only other deep penetration of ocean crust.  

 

 

4.1.2. Sedimentary stratigraphy 

 

The sedimentary succession has been subdivided into two lithological units and 

subunits based on their clastic and biogenic components, visual core analysis, colour 

reflectance and physical properties (Figure 4.3) (Wilson et al., 2003).  

 Unit I is clay rich with minor carbonate-rich intervals and extends from 0-2.37 

mbsf in Hole 1256A, 0-40.6 mbsf in Hole 1256B. Subunit IA comprises dark brown to 

yellow brown silty clays of Pleistocene age. The age is based on dating of the 

calcareous nannofossils that form the bulk of the biogenic component in this subunit. 

Subunit IB (Pliocene to late Miocene) is composed of clay rich nannofossil ooze, sandy 

silty clay, and a sandy silty nannofossil ooze (Wilson, et al., 2003). Unit II has no 
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subunit divisions and comprises late Miocene to middle Miocene calcareous 

nannofossil ooze with varying quantities clay and distinct microfossil groups (Wilson et 

al., 2003). Sedimentation rates are calculated based on biostratigraphic age constraints 

and the magnetostratigraphic record of the sedimentary sequence obtained during ODP 

Leg 206 (Figure 4.4). Sedimentation rates vary from ~6 to 36 m/m.y., with initial very 

rapid sedimentation (36.4 m/m.y) during the first ~ 4 Ma followed by relatively 

moderate fluctuating levels of sedimentation (6.3 – 13.6 m/m.y) for the remaining ~11 

Ma of Site 1256 lifetime (Figure 4.4). The high sedimentation rates can be attributed to 

the Site’s palaeolatitude, which placed it near the equator in an area of high 

productivity (Farrell et al., 1995). Later, slower sedimentation rates, which occurred 

later during the mid Miocene to present day, can be correlated with a sharp downturn in 

carbonate content from ~11.2 to 7.5 Ma that is often referred to as the carbonate crash 

(Farrell et al., 1995; Lyle et al., 1995). 
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Figure 4.3. Site 1256 stratigraphy including core recovery, lithology and 
lithostratigraphic units. Modified from Wilson et al, (2003) and Teagle et al, (2006). 
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Figure 4.4. Sediment cover vs. time at Site 1256. Sedimentation rates are deduced from 
a combination of palaeomagnetic (red spots) and biostratigraphic (blue crosses) data. 
For reference the sedimentary stratigraphy is included. (Modified from Wilson et al., 
2003). 
 

 

4.1.3. Basement stratigraphy 

 

Basement stratigraphy at Site 1256 is summarized in Figure 4.3. Recovery includes 

samples from all the lithologies within the upper oceanic crust, including off axis lava 

flows, sheeted and massive flows, massive lavas, sheeted dykes and gabbros.  

The upper crust at Site 1256 comprises a 100m thick lava sequence dominated by a 75 

m thick single flow. Such a thick flow requires basement relief at least as thick as this 

flow. The degree of basement relief normally only develops when the crust is between 

5 and 10 km away from the axis (Macdonald et al., 1996). Immediately below the thick 

lava flow are sheet and massive flows (<3 m thick) with subvertical elongate flow top 

fractures filled with quenched glass and hyaloclastite (Wilson et al., 2003). These 

features are indicative of flow lobe inflation (Wilson et al., 2003), requiring eruption 

into a sub-horizontal surface off axis (Umino et al., 2000). The total thickness of off 
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axis lavas is estimated to be 284 m (Teagle et al., 2006). Below these lavas, a further 

720 m of sheet and massive flows that erupted from the ridge axis make up the 

extrusive section down to 754 msb.  Between 754 and 811 msb is the lithological 

transition zone from extrusive lavas to sheeted dykes. This is marked by mineralized 

(Disseminatred sulfides, chlorite, anhydrite, and quartz) breccia zones and the start of 

sub-vertical intrusive contacts that increase down-hole (Teagle et al., 2006). 811 msb 

marks the start of a ~350 m-thick, sheeted dike complex that is dominated by massive 

basalts. These basalts commonly have doleritic textures and may be cross-cut by 

subvertical dikes that have highly brecciated and mineralized chill margins. Between 

1098 to 1157 msb, the basalts in the lower sheeted dyke complex are partly to 

completely recrystallized to granoblastic textures. This metamorphism is the result of 

gabbroic intrusions which first appear at 1407 mbsf (Koepke et al., 2008; Coggon et al., 

2008). At this contact, two plutonic bodies (the upper being 52 m thick and the lower 

being 24 m thick) separated by a 24 m thick screen of granoblastic dykes was 

recovered. The upper gabbro is composed of gabbros, oxide gabbros, quartz-rich 

diorites and small trondjhemite dikelets. The lower gabbro consists of gabbro, oxide 

gabbro and subordinate orthopyroxene-bearing gabbro and trondjhemite. Both gabbros 

contain stoped dyke clasts that are partially resorbed. Hole 1256C consists of 18 

igneous units whereas 1256D has been classified into 95 igneous units. Units were 

defined based on individual sheet flows, mineralogical similarity in sequences of small 

flows, chilled margins, breccia, dyke cooling margins, phenocryst/textural changes and 

mineralogical variations.  

 

 

4.1.4. Bulk geochemistry 

 

In addition to the samples analysed in this study, the bulk geochemistry of Site 1256 

was determined by whole rock ICP-AES analyses of 16 basalt samples in Hole 1256C 

and 112 samples from Hole 1256D during preliminary studies of shipboard data 

(Teagle et al., 2006). Here a brief summary of the results and interpretations of Teagle 

et al, (2006) and Wilson et al, (2003) is made.  

 Reports by Neo et al, (2009), Teagle et al, (2006), and Wilson et al, (2003), 

indicate that the extrusive portion of Site 1256 has a composition typical of MORB.  
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Figure 4.5. Total alkalis (Na2O + K2O) vs. silica for Site 1256 extrusives, rocks from 
the East Pacific Rise (EPR) (5°–10°N; Langmuir, www.petdb.org, 2001), and Site 504 
rocks (Natland et al., 1983; Emmermann, 1985; Tual et al., 1985). N EPR = northern 
EPR, 504B = Hole 504B. Northern EPR data from C.H. Langmuir (unpubl. data, 
www.petdb.org, 1999). Site 504 data from Autio et al. (1983), Natland et al. (1983), 
Emmermann (1985), and Tual et al. (1985). (Modified from Teagle et al., 2006). 
 
The compositional range of Site 1256 extrusive rocks, as compiled from samples 

analysed in this study, Neo et al, (2009), Teagle et al, (2006), and Wilson et al, (2003 ) 

are: 47–54 wt% SiO2, 9.7–17.0 wt% FeO, 5.6–8.6 wt% MgO, 4.3–12.8 wt% CaO, 1.7–

5.1 wt% Na2O, 50–366 ppm Cr, 52–188 ppm Sr, 34–169 ppm Zr, and 3–106 ppm Ba. 

Mg# ranges 45–65 with an average value of 55. These values correspond to typical 

values for MORB (Su and Langmuir, 2003). In addition, the majority of samples from 

Site 1256 extrusives range from basalt to basaltic andesite on a Silica vs. Total Alkali 

diagram (Figure 4.5, after Teagle et al., 2006). Examples of the primary igneous trends 

at Site 1256 are shown on plots of Zr/Y vs Ti/Y and V/Y (Figure 4.6, Teagle et al., 

2006). Both plots indicate that Site 1256 is less depleted in incompatible elements than 

comparable MORB rocks (North EPR and Site 504). Fractionation in Site 1256 may be 

caused by partial melting or a depleted mantle source. In addition to fractionation, 

considerable scatter in Site 1256 Ti/Y vs. Zr/Y and V/Y vs. Zr/Y compared to N EPR 

and Hole 504B (Figure 4.6), are thought to be caused by variation in the melt supply 

and stability of the magma chamber or off axis magmatism (Teagle et al., 2006). 

Geochemical evidence for off axis magmatism come from high concentrations of 
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 et al., 2003). 

incompatible elements (e.g. Zr, TiO2, Y and V) and the greatest depletion of 

compatible elements (e.g. Cr and Ni) within the lava pond compared to other igneous 

groups at Site 1256 (Wilson

 
Figure 4.6. Incompatible trace element ratios, Zr/Y vs. Ti/Y and V/Y, plotted for Hole 
1256D extrusive rocks and rocks from the northern East Pacific Rise (EPR; 5°–10°N) 
and the Costa Rica Rift (Site 504). Arrows show expected variation of ratios during 
either partial melting or fractional crystallization and variability explicable by source 
heterogeneity N EPR = northern EPR, 504B = Hole 504B near the Costa Rica Rift. 
Northern EPR data from C.H. Langmuir (unpubl. data, www.petdb.org, 1999). Site 504 
data from Autio et al. (1983), Natland et al. (1983), Emmermann (1985), and Tual et al. 
(1985). (Modified from Teagle et al., 2006). 

 
Figure 4.7. East Pacific Rise (EPR) mid-ocean ridge basalt (MORB)–normalized multi-
element plot for averages of different lithological subdivisions from Hole 1256D (Leg 
206 and Expedition 309). LP = lava pond, IF = inflated flow, SMF = sheet and massive 
flows, TZ = transition zone, UD = dikes. Values of Y, Sr, Zr, and TiO2 are taken from 
Su and Langmuir (2003). Other elements are compiled from PetDB (online at 
petdb.org/index.jsp) with MgO >6.0 wt dashed lines represent range of MORB (After 
Teagle et al., 2006).
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4.2. Basement Alteration 
 
  

ODP/IODP Site 1256 is the only Site to penetrate and recover a complete in-situ 

section of the upper oceanic crust and it is only the second site to penetrate the sheeted 

dykes of ocean crust. It is also only the second in-situ basement Site after ODP Site 504 

in which a transition from low temperature alteration to high temperature greenschist 

alteration is observed. Hence characterisation of the alteration at Site 1256 is critical to 

understanding how cold seawater evolves to hydrothermal fluids and the impact of 

seawater circulation on ocean crust formed at fast spreading rates. Here, the effects of 

cold seawater dominated alteration and deep high temperature alteration have been 

described for basement recovered at Site 1256. An assessment is made of the nature and 

extent of secondary mineralogy, which include the nature and distribution of alteration 

halos, veins, breccias, and contacts. 

 The alteration styles and intensity at Site 1256 vary with depth. Most rocks are 

slight (<10% secondary minerals) to moderately altered  (~20-30% secondary 

minerals), however alteration intensity may vary from slight to extreme (>90% 

secondary minerals). Alteration effects include replacement of groundmass minerals, 

phenocrysts, and the filling of vesicles, interstices and fractures by secondary minerals. 

These can manifest themselves as veins, halos, breccias, and patches. Two alteration 

zones are defined at Site 1256. 1) low temperature seawater alteration with saponite, 

celadonite and iron-oxyhydroxides dominating secondary mineral assemblages, and 2) 

hydrothermal alteration, the transition of which is marked by the identification of 

chlorite-smectite in thin section at ~731 msb (in Core 309-1256D-112R), the 

occurrence of a mineralized volcanic breccia (in Core 309-1256D-122R) that defines 

the base of alteration transition, and finally the first appearance of actinolite in veins 

and the change from chlorite-smectite to chlorite dominated secondary mineralogy at 

~777 msb (Core 309-1256D-122R) (Teagle et al, 2006). Figure 4.8 charts the 

occurrence of secondary minerals at Site 1256 vs. depth (Teagle et al, 2006). Due to the 

variation in alteration conditions, it becomes convenient to describe Site 1256 alteration 

in terms of ‘low temperature’ and ‘high temperature’. 
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Figure 4.8, Distribution of secondary minerals vs. depth at ODP/IODP Site 1256. Leg 
206 data from Wilson et al, (2003). Exp 309 and 312 data sourced from Teagle et al, 
(2006) 
 

 

4.2.1 Low temperature alteration 

 

Low temperature seawater-dominated alteration occurs at ODP/IODP Holes C and D to 

a depth of 777 msb. Alteration within the pillow lavas, sheeted flows, massive flows, 

and inflated flows ranges from slight to extreme. Secondary minerals include saponite, 

celadonite, iron-oxyhydroxide, calcite and aragonite, and secondary sulphides. Minor 

zeolite, rare anhydrite and, for the first time in ocean crust, a rare Ti-rich hydrogarnet 

(Laverne, 2005) occurs as a minor phase at Site 1256. Alteration characteristics include 

replacement of the groundmass and olivine phenocrysts to form pseudomorphs, 
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replacement of interstitial mesostasis, and the filling of vesicles and interstices. Veins 

and breccia matrices are filled with saponite, pyrite, silica, celadonite, calcium-

carbonate and iron-oxyhydroxides, many of which are multi-minerallic. Associated 

halos commonly flank veins, of which most are black to dark green and more rarely 

brown. Where brown and back halos are superimposed, mixed halos may occur. A 

small but significant number of dark patches occur throughout Site 1256. These can be 

identified as zones of moderate to intense alteration with no apparent associated vein 

connecting the secondary mineral. They typically mirror the alteration seen within vein 

related halos, except alteration can be more intense.  

 

 

4.2.1.1  Secondary minerals 

 

Saponite at ODP/IODP Site 1256 is pale olive-brown to olive green, non- to slightly 

pleochroic in plane polarized light and exhibits first order interference colours in 

crossed polarized light. This is unlike chlorite, which is green and weakly pleochroic, 

and displays anomalous blue to tan interference colours. Saponite replaces plagioclase 

and clinopyroxene groundmass, pseudomorphically replaces olivine phenocrysts 

(Figure 4.9) and it fills vesicles, interstices, and veins (Figure 4.10A and C). Saponite is 

abundant throughout the extrusives, but becomes less common with depth in the dykes 

with the deepest reported occurrence of saponite at 858.9 msb (Figure 4.8). 

 
Figure 4.9. Olivine pseudomorphically replaced by celadonite (dark green) which is in 
turn replaced by saponite (brown) in Sample 206-1256C-8R-3, 136-140 cm (Wilson et 
al.,2003). 
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Celadonite, bright green to blue in plane-polarised light and in hand specimen, typically 

replaces interstices and fills vesicles and veins. Celadonite is less abundant than 

saponite and it is commonly intergrown with iron-oxyhydroxide and overprinted by 

saponite (Figure 4.10B), which can make identification difficult. It is therefore 

plausible that we may underestimate the presence of celadonite at ODP/IODP Site 

1256. Celadonite occurs in the upper two thirds of the extrusives to a depth of 644.1 

msb (Figure 4.8).  

 
Figure 4.10. Examples of commonly occurring low-temperature secondary minerals at 
ODP/IODP Site 1256. A) Saponite filling vein B) Celadonite, saponite and silica filling 
vein surrounded by an iron oxyhydroxide halo, C) Pyrite vein with narrow pyrite rich 
halo and saponite halo. D) Carbonate filling vesicle Photomicrograph A = cross 
polarised light. Photomicrograph B, C and D = plane polarised light. Image D sourced 
from Teagle et al., (2006).  
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Iron-oxyhydroxides occur as dark brown to red brown patches that typically overprint 

the primary groundmass, fill vesicles, interstices, and veins. Iron-oxyhydroxides tends 

to occur in conjunction with celadonite (Figure 4.10B) and its occurrence with depth 

resembles that of celadonite. No Iron-oxyhydroxide is reported below 676 msb.  

 Carbonate and zeolite tend to form as late stage mineral phases that fill veins 

and vesicles and they rarely replace groundmass. Carbonate occurs as low relief 

anhedral crystals with first order interference (Figure 4.10D) and it is present 

throughout Site 1256. Zeolite (identified as, low relief fibrous crystals with very low 

interference colours) is only observed in discrete intervals within the lower portion of 

the volcanic section. 

 Secondary sulphides pyrite and chalcopyrite are identified in reflected light. 

Chalcopyrite (CuFeS2) is yellow and tarnishes slightly more than pyrite (FeS2), 

therefore commonly it will appear duller. Pyrite occurs throughout Site 1256, whereas 

chalcopyrite only occurs in the lower portion of the dykes and the extrusives. Sulphides 

overprint the groundmass and form disseminated anhedral to subhedral crystals in and 

around saponite, silicate veins and in altered groundmass (Figure 4.10C).  

 Anhydrite (CaSO4) in the low-temperature zone is reported in several locations 

(Figure 4.8) as part of multi-minerallic veins or breccia matrixes within the lavas 

(Figure 4.11A). It may be distinguished by low to moderate relief and perfect cleavage 

at {010}, and good cleavage at {100} and {001}. High birefringence with third order 

colours also makes anhydrite distinctive. In the lower half of the sheet and massive 

flows, secondary albite partially replaces feldspar within the groundmass and some 

phenocrysts, for example in Sample 309-1256D-76R-2, 0-4 cm (Figure 4.11B). Albite 

(NaAlSi3O8) can be distinguished from other feldspars due to its low extinction angle 

~<10o. Unusual Ti-rich hydrogarnets were identified in Sections 206-1256D-59R-2 to 

74R-2 (411.7-499.3 msb) (Laverne, 2006) and 309-1256D-75R-1 to 99R-2 (502-669.1 

msb). The hydrogarnets are very pale brown and they only occur in celadonite-filled 

vesicles and miarolitic voids or replacing olivine micro-crystals (Figure 4.11D). The 

host rock, (where no celadonite is present) is garnet free. Laverne (2006) reports a 

composition of 33-36 wt% SiO2, 23-25 wt% TiO2, 22-24 wt% CaO, and 9-13 wt% 

FeOt, which tentatively identifies the mineral as Hydroschorlomite, a Ca-, Ti-, and Fe-

rich andraditic garnet (Laverne, 2006; Laverne et al, 2006). In Sample 206-1256C-10R-

1, 104-107 cm, biotite mica is reported, replacing an interstitial area within basalt 

(Figure 4.11C). 
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Figure 4.11. Examples of less abundant low-temperature secondary minerals at 
ODP/IODP Site 1256. A) Anhydrite matrix B) Partial replacement of a plagioclase 
phenocryst with albite. C) Discrete biotite mica replacing interstitial areas D) Rare Ti-
rich hydrogarnets within celadonite replacing interstitial areas. Photomicrograph A = 
cross polarised light. Photomicrographs B, C, and D = plane polarised light. Image C 
from Wilson., (2003). Image B sourced from Teagle., (2006). Image D from Laverne, 
2006. 
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4.2.1.2  Veins 

 

Vein minerals related to low temperature alteration at Site 1256 include saponite, 

celadonite, iron oxyhydroxides, chalcedony and minor pyrite. This assemblage is 

present throughout most of the extrusive pillow lavas and sheet and massive flows and 

it is similar to assemblages from other shallow penetrations of ocean crust formed at 

intermediate to fast spreading rates (This study and e.g., Plank., 2000; Kanazawa et al., 

2001; Wilkens et al., 1993; Orcutt et al., 2003; Morberly, 2003; Alt et al., 1996; Teagle 

et al., 1996; Alt et al., 1996; Stephen et al., 2003). Celadonite and iron-oxyhydroxides 

are not present below 644 msb and 676 msb respectively. Figure 4.12, and 4.13 

demonstrate the distribution and abundance of veins at Site 1256.  

 Site 1256 has an average vein density of ~27 veins per metre that occupy ~1% 

by volume of core. The abundance and volume of veins is low compared to Sites 504 

(31 vn/m) and 1149 (34 vn/m, 2.3 vol%), comparable to Site, 801 (24 vn/m), and high 

compared to Sites 1179 (18 vn/m) and 1224 (18 vn/m). At Site 1256, breccia matrixes 

and vein nets make up a further 1.37 % bringing the total volume of vein and breccia 

minerals to 2.37%. Veins/breccia matrices formed within the low temperature alteration 

regime make up ~2.3% of the total volume crust with an average vein density of ~21 

veins per-metre. Saponite makes up the majority of veins that occur at low temperature 

at Site 1256 (78 % of vein minerals) and they range in thickness from <0.1 mm (sinous, 

hairline) to large 15 mm veins. They occur from the top of the basement to a depth of 

850 msb and saponite is typically the major constituent in veins containing pyrite, 

quartz and chalcedony (Figure 4.14B). More rarely, saponite forms an accessory phase 

in calcite, anhydrite, and laumontite veins in which saponite is overprinted (Figure 

4.2.8A). Celadonite occurs as a significant vein forming mineral (8% of veins) phase 

that is present down to a depth of 644.1 msb although it is not present in the inflated 

flows. Most celadonite is present as a minor phase with iron-oxyhydroxide which, in 

many veins, is overprinted by saponite (Sample 309-1256D-91R-1, 67-69 cm, Figure 

4.15A). Most celadonite veins are ~0.2 mm thick although they range from <0.1 mm to 

3mm.  Iron-oxyhydroxides are a major vein forming mineral at Site 1256, being present 

in 11.3 % of veins. Veins range from 0.1 mm to very large 15 mm veins, for example 

309-1256D-85R-2, 65-95 cm (Figure 4.14D). Iron oxyhydroxide veins typically occur 

in conjunction with celadonite, and within brown or black halos. They are not observed 

below ~676 msb (Figures 4.12 and 4.13). Iron-oxyhydroxide may also occur together 
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with carbonate, quartz and chalcedony. A minor but significant proportion of veins 

consist of quartz and chalcedony (8% of veins). They occur throughout the extrusives 

(Figures 4.12 and 4.13) with no real change in volume. Veins containing silica range 

from 0.1 to 10 mm thick. Silica veins form after saponite and iron-oxyhydroxide, 

commonly forming in the cores of veins or discrete by overprinting previous 

mineralogy. Anhydrite and carbonate commonly overprint silica in veins.



Site 1256                               4.2 

 
Figure 4.12. Distribution of secondary mineral veins with depth in Hole 1256D. Numbers of veins are normalized to account for core recovery. 
Leg 206 data from Wilson et al., (2003). Exp 309 and 312 data sourced from Teagle et al., (2006). 
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Figure 4.13. Abundance of secondary mineral veins with depth in Hole 1256D. Volumes are normalized to account for core recovery. Leg 206 
data from Wilson et al., (2003). Exp 309 and 312 data sourced from Teagle et al., (2006).
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 Carbonate in veins (Figure 4.15C) occurs as a minor (0.4 % of veins), late stage 

phase that cross-cuts previous phases, including celadonite, iron-oxyhydroxide and 

saponite. Carbonate veins are most frequent at depths deeper than ~500 msb (Figure 

4.12), yet the volume is comparatively high at shallow depths (Figure 4.13). Despite 

more numerous veins containing carbonate, carbonate forms a much smaller proportion 

of the vein material at depth. Anhydrite in the lower portion typically makes up a major 

constituent of the vein, for example 309-1256D-118R-1, 42-46 cm (Figure 4.15A). In 

terms of overprinting, two groups of anhydrite are observed; 1) anhydrite in veins 

overprints all secondary phases, including silicates, and 2) anhydrite which is cross-cut 

by quartz (e.g. Sample 309-1256D-118R-1, 11-13 cm).  

 Other minor phases present in low temperature veins include late-stage zeolite 

and sulphides (Figure 4.15B), including pyrite and chalcopyrite which increase in 

abundance in the lower half of the extrusives (Figures 4.13 and 4.14).  
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Figure 4.14. Low temperature vein mineral and some halo types present at ODP/IODP 
Site 1256. A) Saponite replacing an earlier celadonite vein in sample 309-1256D-91R-
1, 67-69 cm. B) Saponite and Silica vein flanked by a mixed ‘black’ and brown halo in 
sample 309-1256D, 94R-1, 14-18 cm. C) Celadonite vein partially overprinted by iron-
oxyhydroxides in 309-1256D-75R-1, 46-52 cm. D) Core interval exhibiting typical low 
temperature alteration at ODP/IODP Site 1256. C and D modified from Teagle et al., 
(2006). 
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Figure 4.15. Minor low temperature vein forming minerals at ODP/IODP Site 1256.  A) 
Anhydrite overprinting saponite in a vein in sample 309-1256D-118R-1, 42-46 cm 
(plane polarised light) after Teagle et al., (2006). B) Patchy pyrite, chalcopyrite, 
chalcedony and saponite vein in moderately altered patchy basalt, sample 309-1256D-
87R-2, 108-110 cm. C) Carbonate vein with ‘black’ halo in Sample 206-1256D-2R-1, 
34-54 cm (IODP Janus database http://iodp.tamu.edu/janusweb/imaging).   
 

 

4.2.1.3  Halos 

 

Low temperature alteration halos at Site 1256 are largely governed by zones of 

fracturing and surfaces which are exposed to circulating fluids. Halos typically flank 

veins, brecciated zones, and cooling fractures in a similar fashion to alteration halos 

observed at other basement sites (this study and e.g., Plank., et al, 2000; Kanazawa., et 

al, 2001; Wilkens et al., 1993; Orcutt et al., 2003; Morberly, 2003; Alt et al., 1996; 

Teagle et al, 1996; Alt et al, 1996; Stephen et al., 2003). Initial studies into the nature of 

halos at Site 1256 by Wilson et al., (2003) and   Teagle et al., (2006) identified black, 

brown, light green, light grey, dark green halos, pyrite rich halos and mixed halos and 

recorded their distribution in the extrusive section of Site 1256 (Figure 4.16). Mixed 

halos are the result of overprinting, which can vary from sample to sample. These halos 

are by far the most common, making up ~1% of the total volume of core. 
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Figure 4.16. Abundance of alteration styles, amygdales and glass vs. depth in Hole 1256D. Volumes are normalized to account for core recovery. Leg 
206 data from Wilson et al., (2003). Exp 309 and 312 data sourced from Teagle et al., (2006).
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Brown and black halos make up 0.1% and 0.45% of the core and they occur throughout 

the Lavas to a depth of 754-820 mbsf (Figure 4.17D) (Teagle, et al., 2006). 

 Black halos is a blanket term used to define dark green, dark grey, and black 

halos at Site 1256, that are all characterised by the presence of celadonite together with 

saponite which replaces olivine and interstitial material and fills pore spaces (Figure 

4.17C). Saponite typically overprints celadonite within these halos and is usually more 

abundant than celadonite. Minor later iron-oxyhydroxide can stain celadonite and 

saponite (Figure 4.17B). Halos range in width from 0.1 to 20 mm wide. Brown halos 

are associated with iron-oxyhydroxides and they occur adjacent to veins containing 

iron-oxyhydroxides, celadonite, saponite and silica minerals. The brown-orange-brown 

colouration is due to staining of the primary mineralogy and the filling of voids, 

vesicles, and replacement of olivine by iron oxyhydroxides. Brown halos are much 

narrower than either black or mixed halos, ranging in thickness from 0.1-5 mm.  

 Low temperature mixed halos are the result of brown halos overprinting black 

celadonite-rich halos. Mixed halos coincide with the occurrence of black and brown 

halos (Figure 4.16), with the deepest mixed halo occurs at 667 msb (Sample 309-

1256D-101R-1, 133-134 cm). These halos vary greatly in width and extent of 

overprinting, ranging from 0.3 mm to 50 mm thick which may or may not exhibit 

banding or zoning within the halo. Zoning, for example in Section 309-1256D-85R-2, 

65-95 cm reflects the variation in the intensity of iron-oxyhydroxide, saponite and 

celadonite emplacement. 

 Pyrite rich halos occur at 643 msb through to 807 msb. Dark green to dark grey 

halos in this case may either contain disseminated sulfides or a 0.3-6 mm pyrite front 

(Figure 4.17A). The halos may contain chlorite/smectite, thus they may represent 

slightly higher temperature alteration than the celadonite, saponite, iron-oxyhydroxide 

assemblage that is typical of low temperature seawater alteration. These halos are rare, 

making only 0.06% of the recovered core.   

 The predominant halos below 553.3 mbsf are dark to light green and dark to 

light grey halos (Teagle et al., (2006). These halos are characterised by the presence of 

saponite and the absence of celadonite and iron-oxyhydroxides. These halos can be 

distinguished from the ‘dark green’ halos observed within the celadonitic ‘black halo’ 

group by the lack of any blue hue. These green-grey halos are most common in 

Sections 309-1256D-91R-1 to 128R-1 (Figure 4.18C) and they range from 0.1 to 12 
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mm in width. Saponite partially replaces plagioclase, clinopyroxene, olivine 

phenocrysts and amygdales, and it fills vesicles. 

 

 
Figure 4.17. A) Pyrite rich dark grey saponite halo in Sample 309-1256D-118R-1, 82-
97 cm. B) Example of iron oxyhydroxide overprinting a saponite halo in Sample 309-
1256D-84R-1, 123-127 cm. C) ‘Black’ celadonite halo overprinted by a saponite halo 
in Sample 309-1256D-77R-1, 59-61 cm. Photomicrographs were taken in plane 
polarised light. 
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4.2.1.4  Breccias 

 

Low-temperature breccias at Site 1256 comprise in-situ fragments of basalt or glass 

held together by a saponite and/or celadonite matrix (‘basaltic breccias’) or 

hyaloclastite, which is made up altered glass fragments in a matrix that largely, consists 

of saponite. Low temperature breccias make up ~0.5 % by volume of the recovered 

extrusives.  

 Basaltic breccias span a transition from vein nets, incipient brecciation to 

brecciation and they are composed of moderately to highly altered, angular in-situ 

basaltic clasts and minor glass fragments with a matrix of saponite and celadonite. 

Minor iron-oxyhydroxide, carbonate and silicates may be present. Sample 1256D 

108R-2, 11-28 cm (676 msb) is a good example of a basalt breccia (Figure 4.18C). 

Clasts range in size from 1 mm to 80 mm. The basaltic clasts can have green dark grey 

or black alteration halos and the glass clasts are completely altered to saponite.   

 Hyaloclastite is present in small amounts throughout Site 1256 extrusives. They 

consist of angular to rounded, fresh to highly altered glassy clasts ranging in size from 

2 mm to 50 mm in a matrix composed of saponite, numerous <1 mm completely 

replaced altered glass, and other minor phases. The smaller clasts show the greatest 

degree of alteration (>80 % secondary mineral replacement). 
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Figure 4.18. Examples of low temperature basaltic breccias. A) Example of basaltic 
breccia with saponite, iron-oxyhydroxide and quartz. B) basaltic breccia with relatively 
fresh clasts and a matrix of glassy fragments, saponite and chalcendony. C) Example 
stages of brecciation, including vein nets, and incipient breccia. A and B= Wilson et al., 
(2003). Teagle et al., (2006) for (C). 
 

Alteration is most intense on the edges of the angular clasts, whereas elsewhere 

replacement is incomplete. Some clasts, that were originally angular, have alteration 

rims on the clasts that have ultimately led to rounded kernels with zones relating to 

alteration intensity (Figure 4.19A). Figure 4.19D illustrates how glass fragments can 
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become zoned and rounded. In some larger clasts, rare fresh glass may be preserved for 

example a large clast in Sample 206-1256D-51R-2, 14-16 cm (Figure 4.19B) is 

comprised almost entirely of fresh glass. 

 
 
Figure 4.19. Hyaloclastite breccias. A) Glass breccia with moderate alteration and 
zoned glass clasts, B) Mixed basaltic/hyaloclastite breccia where basalt clasts are 
surrounded by moderately fresh glass fingers that have since brecciated, and in some 
cases altered. C) Hyaloclastite breccia with near total alteration of glass fragments. 
Elongate glass kernels have a preferred orientation and they are all altered to saponite, 
D) Step by step alteration sequence for glass fragments observed at ODP/IODP Site 
1256. Photomicrographs are sourced from Wilson et al., (2003).  
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This sample (206-1256D-51R-2, 14-16 cm) contains numerous cooling fractures filled 

with saponite, which may represent incipient brecciation within the clast. Most glass 

clasts contain cooling fractures that are filled with saponite, chalcedony and/or pyrite 

(Figure 4.19B). The matrix is composed largely of saponite, however a number of 

minor phases can be present. For example, in Sample 309-1256D-90R-1, 5-10 cm 

(Figure 4.19C) the matrix is composed of 60 % saponite, 15 % quartz, 10 % pyrite, 10 

% late-stage calcite and 5 % anhydrite (Teagle et al., 2006). Other intervals, such as 

206-1256D-57R-1, 0-12 cm, and 62-78 cm are cemented by saponite, chalcedony, red 

jasper, large (mm sized) pyrite, and anhydrite (Wilson et al., 2003). 

 

 

4.2.1.5  Intensely altered section 

 

A 41 cm long intensively altered portion of core at 398.06 msb was recovered from 

Hole 1256D (Figure 4.20) Core 206-1256D-57R is 80-90% altered to celadonite and 

iron-oxyhydroxide, which, in hand specimen imparts a variable blue-green to brick red 

colouration (Figure 4.20B). The upper contact between the altered material and less 

altered dark grey basalt (Interval 206-1256D-57R-2, 116-120 cm) is sharp (Figure 

4.20A).  

 In this highly altered zone, olivine is replaced by celadonite and iron-

oxyhydroxide and clinopyroxene is replaced with a colourless smectite ± iron-

oxyhydroxide (Figure 4.20C). Plagioclase is partially replaced by albite and a 

colourless phyllosilicate similar to that which replaces olivine. Rarely replacement is 

complete, leaving behind plagioclase pseudomorphs. Veinlets (<0.01 mm thick) of 

iron-oxyhydroxide and celadonite are numerous throughout the intensely altered section 

(Figure 4.20D). Vugs and patches are present within the ‘red brick’ portion of the 

altered basalt (Figures 4.2.13B and C). These range in size from 0.5 to 3mm and they 

are filled with the colourless phyllosilicate ± celadonite ± iron-oxyhydroxides. Larger 

vugs have rims of iron-oxyhydroxide followed by celadonite and a core of quartz 

and/or carbonate (Figure 4.20 c).  
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Figure 4.20. Intense low temperature alteration in Core 206-1256D-57R. A) Sharp 
transition from dark grey slightly altered basalt to strongly altered, celadonite rich 
alteration which grades to an iron-oxyhydroxide rich ‘red brick’ layer. B) Continuation 
of red brick, C) photomicrograph of vugs and intensely altered groundmass. Inset 
shows vug composed of iron-oxyhydroxides, celadonite and quartz (plane polarised 
light). D) Photomicrograph with primary plagioclase replaced by albite with veinlets of 
iron-oxyhydroxide and celadonite (Plane polarised light). Photomicrograph D is from 
Wilson et al, (2003). Core photos sourced from the ODP/IODP Online core images 
database. 
 

 

4.2.1.6  Summary 

 

Low temperature alteration at ODP/IODP Site 1256 is pervasive and ranges from slight 

to intense. Five secondary minerals assemblages are identified in the upper portion of 

Site 1256. These include 1) Celadonite ± saponite, which comprises dark celadonitic 

halos and patches surrounding celadonite veins, 2) Saponite ± iron oxyhydroxides that 
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form veins, fill vesicles and partially replace the groundmass to form green to brown 

halos and patches. 3) Iron-oxyhydroxide ± saponite, and sulphides form red/brown 

halos and patches, around saponite/iron-oxyhydroxide veins. These minerals also fill 

vesicles. 4) Quartz/Chalcendony/amorphous silica ± iron-oxyhydroxides form late stage 

veins and rarely fill vesicles and interstices. 5) Late stage carbonate, zeolite and 

anhydrite forming veins, filling previous veins filling vesicles and rarely present in 

alteration patches. The variation in alteration intensity throughout the extrusive section 

of Site 1256 suggests that, rather than a monotonous decrease in seawater interaction, 

that alteration intensity is controlled by primary basement variation, including the 

morphology of the lavas, distribution of fracturing, subtle changes in the composition 

and texture of the lavas (Teagle et al., 2006). 

 
Figure 4.21. Timing of low temperature secondary mineral paragenisis at Site 1256. 

 

 An increase in temperature and, as a consequence, evolution in fluid 

composition is reflected in the partial replacement of primary plagioclase with albite 

and saponite below 375 msb (Figure 4.8). The presence of hydroschorlomite (Ti, Ca, Fe 

rich hydrogarnet) at depths of 411 to 669 mbsf further suggests that primary 

titanomagnetite was altered within this region of slightly warmer, more evolved fluids 

(Teagle et al., 2006). Fluid evolution is more apparent towards the base of the extrusive 

rocks with the decreased abundance of iron-oxyhydroxide and celadonite (Figure 4.8). 

Because anhydrite undergoes retrograde solubility at temperatures below ~100oC, the 

presence of anhydrite, reflects an increase in temperature towards the lithological 

transition zone.  
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 Petrographic observations including cross-cutting relationships, overprinting 

and vein geometry made by Wilson et al, (2003); Teagle et al., (2006), and this study 

provide insights into the timing of secondary mineral petrogenesis at ODP/IODP Site 

1256. Figure 4.21 indicates the timing of secondary mineral paragenesis and Figure 

4.22 illustrates the temporal relationships between each assemblage and the variation 

with depth. 

 Celadonite appears to be the earliest mineral phase becasue it is overprinted by 

all other phases. Celadonite initially fills fissures and voids and partially replaces the 

groundmass and fills vesicles within the confines of mm to cm sized halos that flank the 

celadonite veins. It has been suggested that the black halos form under anoxic 

conditions within 1-2  M.y. of lava emplacement (Böhlke et al, 1980; Honnorez, 1981; 

Laverne, 1993; Alt, 2004). Emplacement of saponite and iron-oxyhydroxides occurs 

after celadonite under oxidizing conditions, and commonly these phases overprint or 

replace celadonite. This overprinting is responsible for the variably mixed halos within 

ODP/IODP Site 1256 lavas. From ~600 to 731 mbsf, black and brown halos are absent 

and the initial alteration phase appears to be saponite, together with pyrite. These low 

temperature phases represent a slightly more evolved fluid in which limited wall rock 

interaction took place. Silicates appear to have formed after saponite followed by late 

stage carbonate and anhydrite. One anhydrite sample in the extrusives is overprinted by 

saponite, which suggests that there was a separate, earlier fluid that may be more 

evolved. Overall alteration within the extrusives remains at low temperature with slight 

elevation in temperature and wall rock interaction with depth.    
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Figure 4.22. Summary of low temperature alteration at ODP/IODP Site 1256. Including 
common alteration styles and relative timing of secondary mineral paragenisis. Two 
regimes are suggested, The more shallow low <100oC assemblage consists of 
celadonite, saponite, iron-oxyhydroxides, carbonates and accessory quartz and 
chalcedony, carbonate ± zeolite, and rare anhydrite. The deeper, slightly elevated ~100 
to ~150oC assemblage consists of saponite, pyrite ± chalcopyrite, minor silica, and 
anhydrite ± zeolite. 
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4.2.2 High temperature alteration 

 

High temperature hydrothermal alteration is reported at ODP/IODP Site 1256 from a 

depth of 777 msb to the base of ODP/IODP Hole 1256D (~1250 msb). The start of high 

temperature hydrothermal alteration is marked by the first presence of actinolite, 

prehnite, titanite, and epidote at 777, 782, 801, and 845 msb, respectively (Figure 4.23). 

A high temperature hyaloclastite and a mineralised volcanic breccia in Sections 309-

1256D-123R and 122R respectively, marks the beginning of hydrothermal alteration 

and the end of the transition from saponite to chlorite. The distribution of secondary 

minerals at Site 1256 (Figure 4.8) outline the change from low temperature dominated 

alteration to hydrothermal alteration. High temperature hydrothermal alteration at 

ODP/IODP Site 1256 varies from slight to intense with replacement of the primary 

igneous groundmass forming alteration patches, breccias, veins, and alteration halos.  

Detailed description and discussion of high temperature alteration at Site 1256 can be 

found in Teagle et al, (2006). Because this study will discuss only low temperature, 

seawater dominated alteration across a range of < 200 m sub-basement Sites, this 

section only provides a brief summary of the work by Teagle et al, (2006). 

 

 

4.2.2.1  Lowermost lavas and sheeted dykes 

 

From depths of 767.7 msb to 1060 msb chlorite is the most common secondary mineral 

in the sheeted dykes (Figure 4.8). Colourless to green, with pale green to colourless 

pleochroism in thin section, it pseudomorphically replaces plagioclase and more rarely 

clinopyroxene, fills vesicles, and veins (Teagle et al, 2006). Associated minerals 

include albite, which partially to completely replace plagioclase and forms in alteration 

halos and patches. Pyrite and rare chalcopyrite may form in alteration halos and patches 

and fills numerous multiminerallic veins and breccia matrixes respectively (Figure 

4.23).  

 Actinolite occurs from 777 msb, and it is a major phase at depths greater than 

1060 msb (Figure 4.8). Actinolite + chlorite ± secondary magnetite and titanite replaces 

clinopyroxene in the groundmass and phenocrysts (Figure 4.23). Below ~1098 msb, 

wispy brown pleochroic crystals of hornblende ± actinolite replace clinopyroxene and 

can from veins with associated halos. Quartz is abundant throughout ODP/IODP Site 
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1256, especially at ~1000 to 1150 msb and it is common in multiminerallic veins, 

alteration patches, and discretely replacing plagioclase.  

 Primary titanomagnetite at intervals 1005 to 1064 msb is partially replaced by 

titanite to varying intensities, depending in crystal size with larger crystals being the 

worst affected (Teagle et al., 2006). Late stage minerals that commonly occur in veins, 

or filling minor voids and halos/patches include prehnite, carbonates, anhydrite, and 

laumontite. Prehnite occurs at roughly the same depth as actinolite 782 msb and it can 

be identified as anhedral crystals with moderate relief and brilliant mid second order 

interference colours (Figure 4.23). 

 
Figure 4.23. Examples of high temperature secondary minerals encountered within 
dykes. A) Laumontite and chlorite vein with a narrow chlorite halo (plane polarised 
light), B) complex vein of quartz, prehnite and chlorite with a lining of chalcopyrite and 
unevenly distributed pyrite in the centre. A later calcite fill is shown on the bottom edge 
of the vein, C) An example of a titanite rich chlorite alteration patch and clinopyroxene 
replaced by actinolite needles growing from the centre of the pyroxene (plane polarised 
light), and D) Example of actinolitic hornblende replacing plagioclase. An example 
from the gabbros is shown since hornblende from the sheeted dykes cannot be clearly 
shown in a figure. Photomicrographs are taken from Teagle et al., (2006). 
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Carbonates remain discrete, replacing interstitial areas and partially filling veins and 

vesicles. Anhydrite predominantly occurs in veins and rare breccia matrixes in the 

upper portion of the sheeted dykes. The increased abundance of anhydrite coincides 

with the presence of actinolite, chlorite, prehnite, and hornblende (Figure 4.23). This 

suggests that the increased temperature of the fluid (>120oC) allowed greater 

precipitation of anhydrite.  

 Veins formed at high temperature within the lowermost lavas and sheeted dykes 

are abundant, with an average of ~35 veins per metre. The abundance of veins at 

ODP/IODP Site 1256 increases from ~1075 to 1161 msb (Figure 4.2.5) however this 

may reflect the decrease in core recovery within this interval (Teagle et al., 2006). 

Veins are typically between 0.1, hairline width to 1.5 mm wide and are commonly 

flanked by narrow 1-5 mm wide alteration halos. Chlorite ± quartz, pyrite, actinolite, 

anhydrite, laumontite, rare calcite in veins (Figure 4.24) are ubiquitous from depths of 

845.4 to 1040 msb. At depths of 753.2 to 845.4 msb chlorite occurred alongside 

chlorite/smectite in veins (Figures 4.12 and 4.13). Below 1040 msb, actinolite is the 

most abundant mineral in veins that may contain (e.g. Figure 4.24) quartz, pyrite, 

titanite, and accessory phases prehnite, laumontite, secondary magnetite, anhydrite and 

rare epidote. Sample 309-1256D-149R-1, 73-76 cm is a unique example of an epidote 

rich vein within the sheeted dykes (Figure 4.24).  

 Halos associated with chlorite veins include dark grey, dark green, light gray, 

light green and mixed halos (Figure 4.24). Replacement varies from 10% and 100% 

(average 50%) and halos compare~0.4 vol% of core. Chlorite is the dominant 

secondary mineral in the upper sheeted dykes pseudomorphically replacing plagioclase, 

interstices and filling vesicles. In addition, titanite, actinolite, albite, and pyrite form 

minor phases within these halos. In the lower sheeted dykes (Figure 4.24) alteration in 

the halos is dominated by actinolite ± albite, pyrite, and minor quartz, chalcopyrite, and 

prehnite. 

 Alteration patches with up to 100% recrystallisiation are reported within the 

sheeted dykes to a depth of ~1030 msb. These patches range in intensity from moderate 

to total and they are composed of quartz, pyrite, chlorite, actinolite, anhydrite and 

zeolite from the centre to the rim, and they are surrounded by a less altered patch 

typically containing chlorite, quartz, pyrite, anhydrite ± prehnite, (e.g. Figure 4.25). 

Below 1030 msb patches are dominated by actinolite rather than chlorite, with 

actinolite replacing clinopyroxene.  
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 Hydrothermal breccia at Site 1256 (Interval 309-1256D-122R-2) (Figure 4.26) 

is composed of basaltic clasts with a cement of chlorite-smectite, quartz and pyrite. The 

basaltic clasts are moderately to intensively altered with green chlorite/smectite-rich 

halos and rare pyrite. Hyaloclastites (Sections 309-1256D-123R-1 and 136R-1) are 

composed of glass clasts with a matrix of chlorite-smectite, quartz, anhydrite, and 

disseminated pyrite (Figure 4.26). A mineralised volcanic breccia is present in Sections 

309-1256D-122R-1, 122R-2, and 135R-1 (Figure 4.26). These breccias are composed 

of glass and basaltic clasts with a cement of saponite, anhydrite, pyrite and chalcedony. 

The basaltic clasts contain moderate to intense halos in which clinopyroxene is replaced 

by chlorite-smectite and plagioclase is replaced by albite (Teagle et al., 2006).  

 
Figure 4.24. Examples of high temperature veins and alteration halos. A) Rare thick 
epidote and quartz vein and disseminated pyrite B) Actinolite and prehnite vein with 
secondary clinopyroxene and actinolite forming a light grey alteration halo (plane 
polarised light), C) Quartz and pyrite vein flanked by mixed dark grey and light grey 
halos, D) Chlorite vein with mixed light grey and light green halos, E) Quartz and 
chlorite vein flanked by dark blue and light grey halo. Photos and micrographs after 
Teagle et al., (2006). 
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Figure 4.25. Spectacular examples of high temperature alteration patches. Photos 
sourced from Teagle et al, (2006) 
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4.2.2.3  Granoblastic dykes 

 

The alteration of rocks encountered at 1348 to 1406.6 mbsf is profoundly different to 

the overlying dykes. Large portions (bands, veins or patches) have been partially and 

rarely, totally recrystallised to aggregates of subrounded equant crystals of secondary 

clinopyroxene, orthopyroxene, actinolitic hornblende, plagioclase, and minor magnetite 

and ilmenite (Figure 4.27).  

 
Figure 4.26. Examples of high temperature breccias at ODP/IODP Site 1256. A) 
Hydrothermal breccia with altered basalt lithic clasts in a pyrite, quartz, 
chlorite/smectite, and minor saponite, and carbonate matrix. B) Hyaloclastite breccia 
with rounded altered glass fragments and occasional basaltic clasts in a cement of 
chlorite/smectite, disseminated pyrite, saponite, and minor anhydrite and calcite. C) 
Mineralized volcanic breccia with moderate to highly altered basalt and glass clasts in a 
matrix of chlorite/smectite, disseminated sulfides, and minor anhydrite and calcite. 
Core photos are sourced from Teagle et al., (2006). 
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The most intense development of the granoblastic texture is from 1120 to 1147 msb, 

some ~10 metres above where the dykes overlie the gabbros, which are only partially to 

strongly recrystallized. Titanomagnetite in the lower dykes and the granoblastic dykes 

(1064.5-1156.6 msb) is recrystallized to magnetite ± ilmentite ± accessory titanite and 

possibly hematite and it commonly occurs within actinolite and secondary 

clinopyroxene.   

 Scant evidence is present for the timing of alteration within the granoblastic 

dykes, however rare cross cutting veins tentatively suggest that the granular 

clinopyroxene-orthopyroxene-magnetite-plagioclase assemblage formed earlier than the 

hornblende-actinolitic hornblende-plagioclase-quartz veins and the groundmass 

alteration. An earlier phase of background alteration may have occurred because rare 

secondary granoblastic clinopyroxenes have magnetite intrusions similar to those 

within the actinolite that replaces clinopyroxene in the upper dykes (Teagle et al., 

2006). 

 
Figure 4.27. Example of near total recrystallisation of the primary igneous groundmass 
forming an granoblastic texture. (Teagle et al., 2006). 
  

 

4.2.2.3  Plutonic section 

 

Interval 312-1256D-213R-1, 52 cm to 234R-1, 33 cm (1406.62-1507.1 mbsf) 

comprises gabbroic rocks, leucocratic oxide diorites and trondhjemites, and dyke 
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screens. Depending on grain size, the rocks are all moderately to completely altered, 

with pegmatitc sections exhibiting the most intense alteration. Figure 4.28 shows the 

main rock types and alteration characteristics of the plutonic section at Site 1256. In 

gabbros clinopyroxene is replaced by actinolitic hornblende, and actinolite is observed 

intergrown with secondary pyrite, trace chalcopyrite, and rare pyrrhotite.  

 
Figure 4.28. Examples of plutonic rocks at ODP/IODP Site 1256 and their alteration. 
A) Quartz-rich oxide diorite B) Medium grained gabbro with altered olivine clasts C) 
Altered fine grained basalt with thin trondhjemite dykes D) Gabbro with aphyric basalt 
intrusion E) Quartz, epidote, and actinolitic hornblende vein in gabbro F) Leucogabbro 
intruding into a medium grained gabbro. Photos modified from Teagle et al., (2006). 
 

Alteration of the dyke screen and basaltic rocks below 1244 msb is dominated by 

actinolite ± chlorite, hornblende, secondary plagioclase, epidote, magnetite, pyrite, and 

quartz. Dark grey, grey-green, and green background reflects the variation in the 

replacement of clinopyroxene with actinolitic hornblende, amphibole, minor chlorite 

and rare ortho-amphibole (Figure 4.28). Localised cm-scale ‘clots’ of pyrrhotite + 

chalcopyrite and magnetite, and disseminated pyrrhotite are present in Sections 312-
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1256D-223R-3 and 231R-4 to the base of 1256 respectively and in Sample 312-1256D-

217R-1, 64-69 cm (Figure 4.29). Pumpellyite, previously only recorded in the lower 

sheeted dykes at Site 504, (Alt et al., 1993) was tentatively identified replacing 

plagioclase.  

 Olivine in Section 1256D-223R-2 and 214-R is partially to completely replaced 

by undetermined phyllosilicates, talc, and magnetite with outer rims of pale blue green 

amphibole and minor chlorite (Figure 4.28). Gabbro directly below the granoblastic 

dykes exhibits high to total alteration. Primary clinopyroxene is replaced by actinolitic 

hornblende (Figure 4.29) and plagioclase is altered to secondary feldspar, zeolite and 

clots (5-10 mm) of epidote. The top of gabbro 2 (Section 309-1256D-230R-1, 15 cm) is 

altered in a similar style to gabbro 1, although the contact between the gabbro and dyke 

screen is not recovered here. Throughout the plutonic section, igneous titanomagnetite 

and is partly to highly replaced by titanite and primary igneous sulfide is recrystallised 

to globules of pyrite ± chalcopyrite, and local pyrrhotite. Rare millerite (NiS) inclusions 

occur within plagioclase phenocrysts and in actinolitic hornblende psudomorphs 

(Teagle et al., 2006).  

 Veins in gabbros are sparse (~10 vn/m) compared to the sheeted dykes (~35 

vn/m). Teagle et al., (2006) report diffuse 1-2 mm wide actinolitic hornblende halos 

with no ‘vein’ as such, that are cross cut by discrete 0.5-1mm actinolitic hornblende 

veins with alteration halos. In more intense alteration zones these veins are cross cut by 

epidote, quartz, and prehnite veins, which are, in-turn, cross cut by numerous chlorite 

and even later quartz-chlorite veins with narrow 2-5 mm halos.  
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Figure 4.29. Some examples of high temperature alteration within gabbroic rocks at 
ODP/IODP Site 1256. A).Vein of epidote, titanite, prehnite, and chlorite and gabbro 
altered to titanite and minor chlorite B) Primary plagioclase partially altered to 
actinolitic hornblende C) groundmass altered to prehnite, albite, epidote (Green) and 
possibly pumpellynite. Photomicrographs are from Teagle et al., (2006) 
 

Teagle et al., (2006) report much more diverse alteration below 1244 msb within the 

dyke screen and basaltic rocks.  Alteration is much more intense, with near total 

replacement of the primary groundmass in the dyke screen between gabbro 1 and 

gabbro 2 (1244.9-1257.1 msb). Alteration includes partially recrystallised sub rounded 

Titanomagnetite, replacement of clinopyroxene by dusty secondary clinopyroxene + 

actinolitic hornblende + magnetite, and replacement of orthopyroxene by actinolitic 

hornblende and chlorite. Teagle et al., (2006) observed a smectite rich phyllosilicate 

(unconfirmed) within the basalt immediately overlying the top of Gabbro 2 (Sample 
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312-1256D-230R-1, 49-54 cm) the same authors suggest that the phyllosilitates may be 

remnants from when the plutonic section may have been altered at low temperatures 

(<200oC). 

 Teagle et al., (2006) note extensive alteration within a dike complex that 

consists of basaltic dikes that are, in turn, indruded by thin mafic and felsic dykes, and 

trondhjemite and quartz-rich oxide diorite dykelets. The dyke complex between the 

gabbros and dikelets within gabbros are altered to secondary plagioclase, actinolitic 

hornblende, chlorite, titanite, epidote, prehnite, sulfides and minor calcite (Teagle et al., 

2006). 

 The timing of secondary mineral paragenisis of the plutonic section at 

ODP/IODP Site 1256 is not clear and will require a much more detailed analysis in the 

future. However several generations of veins that have been identified by cross cutting 

relationships led Teagle, (2006) to suggest the following order: 1) thin wispy 

actinolitic-hornblende veins with 1-2mm halos, 2) well defined actinolitic-hornblende 

veins with halos, and 3) Chlorite-actinolite, quartz-chlorite, and 0.5-2mm braided 

quartz veins with 1-2mm chlorite margins.  
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4.3. Alteration Geochemistry 
 
 
In order to fully characterize low temperature hydrothermal alteration at Site 1256, a 

large selection of altered basement whole rock samples, breccias, matrixes and 

secondary minerals in veins were analyzed for their major, trace, and rare-earth element 

concentrations, strontium isotopic ratios, and where possible, sulfur, oxygen and carbon 

isotopic ratios (See Chapter 2 ‘methods’ for analytical details). Insights into the fluid 

evolution during hydrothermal circulation from the chemistry of anhydrite are 

discussed separately in Chapter 8. This together with measurements carried out on 

leached samples, ‘fresh’ samples, and sample pairs allow for a comprehensive 

characterization of low temperature hydrothermal alteration at Site 1256. In this 

section, the chemistry is cross referenced with the petrographic observations described 

earlier. The chemistry and petrography is used to give a quantitative estimate of the 

chemical change that has occurred at Site 1256 as a result of low temperature 

hydrothermal alteration.  

 

 

4.3.1 Whole Rock Geochemistry  

 

A total of 253 whole rock samples were analyzed, where possible, for major elements 

(XRF), trace elements (XRF, ICP-MS and ICP-AES), REE (ICP-MS), and Sr isotopic 

ratios (TIMS). Table 4.1 shows representative analyses from Site 1256 lavas. The full 

data table is located in Section C, 2 of the Appendix. Sample sets include background 

basalts and alteration halos, fresh glass analyses, and whole rock leaches. This sample 

set extends through the ponded lava flow, inflated flow, sheet and massive flows, and 

into the lithological transition zone towards the dykes.  

 Major element oxide, trace and REE concentrations for whole rock samples are 

plotted vs. depth in Figure 4.30 a and b. Analyses are grouped according to their 

alteration style, so that they can be compared directly with the least altered background 

rocks. In addition, Site 1256 stratigraphy and minerals vs. depth are shown for 

comparison. For the most part, however, alteration remains slight (See section 4.2, 

alteration). The ponded lava flow exhibits higher TiO2, Fe2O3, Na2O, P2O5, S, and Y,

and lower SiO

 

2, Al2O3, MgO, and Sc than the rest of the extrusive rocks at Site 1256. 
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Table 4.1. Representative analyses for Site 1256 whole rock basalts from each 
lithological group. Bkd = background, diss = disseminated, sap = saponite, fg = fine 
grained, dk = dark, gr = grey, gls = glass, sulf = sulfide, ux = microcrystalline, haylocl 
= hyaloclastite. 
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Figure 4.30a Selected major element, trace element and REE concentrations in Site 1256 whole rock samples vs. depth. Data points highlight 
alteration styles, in addition Site 1256 stratigraphy, minerals vs. depth and halo percentage vs. depth is included for reference. Stratigraphy, 
minerals vs. depth and halo abundance data are sourced from Wilson et al., (2003) and Teagle et al., (2006). 
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Figure 4.30b. Selected trace element and REE concentrations in Site 1256 whole rock samples vs. depth. Data points highlight alteration styles, 
in addition Site 1256 stratigraphy, minerals vs. depth and halo percentage vs. depth is included for reference. Stratigraphy, minerals vs. depth 
and halo abundance data are sourced from Wilson et al., (2003) and Teagle et al., (2006)
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These differences are thought to reflect variations in source magma for the ponded flow 

(Wilson et al., 2003). Loss on ignition (LOI) at Site 1256 ranges from <0.1 wt% to 

12%, indicating that Site 1256 basalts are significantly hydrated compared to N-MORB 

(0.1 – 0.2 wt%; Michael, 1988, Dixon et al., 1988). However, most whole rock LOI is 

within the range of 0 to 2 wt% and it is only breccias and a few highly altered samples 

that exhibit LOI above this range. Broad increases in Fe2O3 occur between 0 and 150 

msb (Ponded lava flow), 450 and 550 msb and in the lithological transition zone (750 to 

812 msb).  

 At these intervals high levels of oxidative secondary phases (iron-

oxyhydroxides) were observed in the whole rock samples (See Section 4.2 ‘Alteration’ 

and Wilson et al., 2003 and Teagle et al., 2006). Similar, though less intense increases 

in Fe2O3 are observed in the series of complex halos, brown halos, and green halos 

between 200 and 300 msb. This coincides with a zone of relatively high fracturing with 

a high abundance of vein minerals, breccias and iron-oxyhydroxide halos (Section 4.2, 

‘Alteration and Wilson et al, 2003 and Teagle et al., 2006). Increased Fe2O3 at the 

transition zone at Site 1256 coincides with the increase in vein abundance and overall 

alteration intensity. However, in this interval, brown oxidation halos are absent, which 

suggests that the additional Fe2O3 may be due to primary magmatic variation. Section 

206-1256D-57R-2, 117-127 cm and 57R-3, 13-18 cm (green/red brick) is intensely 

altered and has very high Fe2O3 concentration together with increased MgO, LOI, 

K2O, Rb decreases in MnO, and CaO compared to the surrounding material (Figure 

4.30a). This reflects the intensity of oxidation and the emplacement of secondary 

minerals at this interval. Loss of silica and calcium at the green/red brick interval is 

most likely the result extensive replacement of primary igneous phases, including 

plagioclase, olivine, and clinopyroxene, which, despite the presence of calcium and 

silica bearing secondary mineral phases, results in an overall decrease in the volu

percentage of these elements. K

me 

incides 

in 

d 

 

2O follows a similar trend to Fe2O3
T in the lava pond, 

red/green brick, and interval 450-550 msb, reflecting the incorporation of low 

temperature phyllosilicates (e.g. celadonite) into the host rock. The transition zone, is 

noticeably low in K2O with concentrations ranging from 0 to 0.08 wt%. This co

with the absence of celadonite past 650 msb (Figure 4.30a). Large and variable 

apparent losses of SiO2, Al2O3, MnO, MgO, CaO, V, Sc, Sr, and Ni are reported with

the high temperature breccias. These breccias also have high (up to 12 wt%) LOI an

Na2O, and highly variable concentrations in the other major, traces and REE reported
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in Figure 4.30b. The high variability reflects the variable content of these breccias, high

fluid flow, and the loss of large portions of the original igneous assemblage. A selection 

of major, trace and REE are plotted vs. LOI for pairs of halo and adjoining less altered 

rock in Figure 4.31. Almost all sample pairs show distinct variation with LOI. Dark 

green/grey halos and brown halos almost all have lower SiO2, MgO, MnO, Na2O,

Ni, and Zr concentrations compared to their less altered counterparts. Fe2O3
T, K2O, Rb, 

Sr, and Cs concentrations are all elevated in these alteration halos. Less intense 

green/grey halos broadly mirror the trends of the dark green and brown halos howeve

they are more variable. Change in MgO, MnO, Al2O3, and Sr with LOI are not regular,

with variable increases and decreases within all alteration styles. Complex halos 

variably exhibit the most change including increased concentrations of K2O, Rb, and 

Cs, and decreases in SiO2, MgO

 Three subsamples taken from Intervals 206-1256D, 80-R-2, 60-66 cm and 309-

1256D, 28R-1, 0-8 cm which contained enough sample to recover a portion of 

background, green halo, brown halo or complex halo are plotted in Figure 4.31. 

Progressively increased chemical changes, and further disparity between altered sample 

and grey background are observed on moving from the grey background into the halos 

towards the vein/fracture. 

 Overall, the intensity of alteration within each style is variable; however, most 

changes appear to be linked with LOI. It is likely that these changes reflect the 

successive emplacement of secondary minerals (Figures 4.32 to 4.34). Although it is 

possible some secondary phases contain elements originally sourced from the basalt. If 

this is the case, one would expect to see minimal change in elemental concentrations. 

The changes shown in Figure 4.32 to 4.34 imply that, in the case of these samples, the 

complex halo and the brown/red halo (iron-oxyhydroxides/saponite) replace the 

green/grey celadonitic halo. We would expect the concentration of K2O to be at its 

lowest in the grey background of Sample 309-1256D, 80R-2, 60-66 cm (Figure 4.32), 

however in a plot of K2O vs. LOI (Figure 4.34) K2O is high in the background and it 

successively decreases in concentration in the green and complex halos. Given that 

K2O in fresh basalt is ~0.17 wt% (McKenzie and O'Nions.,1991) and that K2O is low 

in the majority of least altered rocks at Site 1256 (Figure 4.31), the grey ‘backgroun

in Sample 309-1256D, 80R-2, 60-66 cm is altered and that the reduction of K2O in th

green and complex halos represent replacement by Fe-oxides (Figure 4.33) of the 

original alteration phase.
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Figure 4.31. Selection of major (wt %), trace (ppm) and RRE (ppm) plots vs. LOI (w t%)of 1256 sample pairs, in which halos directly adjoin 
relatively fresh basalt. Square fills: White = grey background, grey = grey/green background, green = dark green/black halo. Diamond fills: 
Brown = brown halos, purple = complex halos, yellow = alteration patch. 
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Figure 4.32 Plots of Fe2O3, SiO2 Zr, Al2O3, CaO, and K2O normalized to the least
altered background for two samples with a three way split. Sample 206-1256D, 28R-1, 
0-8 cm includes: brown halo (Brown diamond), dark grey halo (Grey square), and grey 
background (White square) subsamples. Sample 309-1256D, 80R-2, 60-66 cm 
includes: complex halo (Purple diamond), dark green (Green square), and grey 
background (White square) subsamples.  

 

 

 
Figure 4.33 Plots of Fe2O3, SiO2 Zr, Al2O3, vs LOI for samples outlined in Figure 4.32
ample 206-1256D, 28R-1, 0-8 cm includes: brown halo (Brown diamond), dark grey 
halo (Grey square), and grey background (White square) subsamples. Sample 309-
1256D, 80R-2, 60-66 cm includes: complex halo (Purple diamond), dark green (Green 
square), and grey background (White square) subsamples.  
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Figure 4.34 Plots of CaO, K2O, Cr/Zr, Rb/Zr, vs LOI for samples outlined in Figure 
4.32 ample 206-1256D, 28R-1, 0-8 cm includes: brown halo (Brown diamond), dark 
grey halo (Grey square), and grey background (White square) subsamples. Sample 309-
1256D, 80R-2, 60-66 cm includes: complex halo (Purple diamond), dark green (Green 
square), and grey background (White square) subsamples.  
 

 

4.3.2 Chemical changes 

 

Chemical changes were calculated for all samples based on a sample by sample 

protolith approach that utilizes the immobility of TiO2 as a monitor of igneous 

fractionation. The presence of Ti hydrogarnets at 411.7-499.3 msb and 502-669.1 msb 

suggest that there is limited mobility of Ti at Site 1256 (Laverne, 2006). However these 

garnets are rare within these intervals therefore Ti is not considered mobile. Potentially, 

a more detailed study, utilizing other ‘immobile’ elements may be carried out to assess 

chemical change. 

 As with the other sites in this study, the least altered samples used for detecting 

igneous fractionation trends were sampled on the basis of low LOI (<1.10) and low 

K2O (<0.2). This is done in an attempt to determine, the true extent of alteration rather 
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than estimates from pairing ‘least altered’ whole rocks with halos. See Chapter 3 for a 

full discussion of chemical change methodology. Within the extrusives at Site 1256 a 

range of rock types were encountered, including a ponded lava flow, inflated flows, 

sheet and massive flows, and a transition zone consisting of intrusive dykes, lavas, 

breccias and sheeted dykes. The likely igneous source for these groups is briefly 

discussed in Section 4.1. A more detailed report of the petrography at Site 1256 can be 

found in Wilson et al, 2003 and Teagle et al., 2006. Because, differing igneous sources 

are likely to produce magmas of different chemical composition with variable 

fractionation trends, Site 1256 samples are grouped according to their igneous sub 

divisions. As with the Site 1179 samples in chapter 3 the protolith composition are 

derived from either: 1) best fit linear regression lines of the element in question vs. 

TiO2, or, when no fractionation trend is observed, 2) average compositions of the least 

altered samples. LOI for fresh basalt is assumed to be 0.20% based on work by Alt et 

al., (1989) and Danyushevsky (2001). 

 All TiO2 regression plots and the selected ‘least altered’ samples are included in 

Section C, 2, (Appendix). The average chemical change for each alteration style is 

calculated and this is weighted according to the volume of core that each style accounts 

for, including additional material added from secondary minerals in veins and breccia 

matrices and cements. The weighted average chemical change for Site 1256 is then 

calculated. The chemical changes associated with high temperature alteration are also 

calculated for the transition zone and upper sheeted dykes. However, the calculation for 

total chemical change in the extrusives of Site 1256 only includes lower temperature 

assemblages because an appraisal of higher temperature alteration requires a similar 

study for the full depth of Site 1256 into the sheeted dykes and gabbros. Following the 

method from Chapter 3, the sensitivity of this calculation is governed by the range of 

immobility observed within immobile elements Ti, Y, Zr and Nb in grey background 

rocks and the assumption that no volume change has taken place. Errors associated with 

analytical precision are discussed in Chapter 2. At Site 1256 a change of less than 10% 

is considered to represent no significant change.  
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4.3.2.1  Results 

 

Multi-element diagrams show the chemical changes for major, trace and REE 

associated with low temperature alteration in the volcanic section and the lithological 

transition zone.  

Mineral Site source   Reference 

Saponite 504  Bach et al, (1996), Noack et al (1996) 
 896  Laverne et al, (1996), Teagle et al, (1996) 
 1224  Paul et al, (2006)  
 843  Waggoner (1993), Alt (1993) 

 1256  This Study   
Celadonite 504  Bach et al, (1996), Noack et al (1996) 
 896  Laverne et al, (1996), Teagle et al, (1996) 
 843  Alt (1993)   
 1256  This Study   
Iron-oxyhydroxides 504  Noack (1993)  
 843  Alt (1993)   
      
Carbonate 504  Noack (1993)  
 896  Teagle et al, (1996)  
 843  Alt (1993)   
      
Chlorite/smectite 504  Noack (1993)  
 896  Teagle et al, (1996)  
      
Chlorite 504  Bach et al, 1996)  
 896  Laverne et al, (1996), Teagle et al, (1996) 
      
Prehnite 504  Bach et al, (1996), Noack et al (1996) 
Talc 504  Bach et al, (1996), Noack et al (1996) 
actinolite 504  Bach et al, (1996), Noack et al (1996) 
Zeolites 504  Bach et al, (1996), Noack et al (1996) 

 

Table 4.2. Sources for secondary mineral data from other ODP sites. Secondary mineral 
compositions were calculated as an average of all available compositions from 
basement within the Pacific Ocean. Outliers and samples with multiple phases were 
excluded prior to calculation. 
 
Because the transition zone encompasses phases associated with higher temperature 

greenschist facies metamorphism, these chemical changes are also plotted. Figure 4.35 

and 4.36 depict chemical changes in g/100g and mg/100g for each alteration style 

observed for both high and low temperature at Site 1256. A comparison chart including 

all alteration styles and vein mineral incorporation is included in Figures 4.37 and 4.38. 

Chemical analysis of vein and breccia minerals at Site 1256 are given in Section D of 

the Appendix. Because there are only a few mineral analyses at Site 1256, the average 

composition for each secondary mineral was sourced from a combination of Site 1256 
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analyses and other basement sites (See Table 4.2). This makes the assumption that 

secondary minerals from other oceanic basement sites are similar to Site 1256. 

 
 
4.3.2.2  Low temperature chemical changes 

 

The chemical changes and percentage changes within each low temperature alteration 

style is shown in Figure 4.35 A and B, respectively. Low temperature alteration across 

all alteration styles at Site 1256 is varied, with most alteration styles displaying 

distinctive features, despite high errors present on the average chemical changes. 

Background rocks (Figure 4.36) show only slight chemical change. Minor increases in 

P2O5, Cr, and Nb are reported. Moderate to high C, Ni, Ta and K2O, S, LOI, and Cs 

respectively are observed. Dark green/black alteration halos by contrast exhibit the 

greatest chemical change of all alteration styles, Major increases include MnO, MgO, 

CaO, K2O, P2O5, C, LOI, most trace elements, and Ta, Pb, Th, and U. Other increases 

include LREE. Decreases observed include Na2O, S, Cr, Y, Zr, and HREE. Such large 

changes, particularly K2O, LOI, C, and MgO reflect the incorporation of clay minerals 

(celadonite, saponite). Changes in trace and REE might be explained by the partial 

replacement of primary igneous phases, for example feldspar, olivine and 

clinopyroxene and perhaps unaccounted for volume change within the dark green/black 

halos.  

 Brown and red halos exhibit the greatest increase in Fe2O3 and moderate to 

high increases in K2O, C, LOI, Cr, Rb,Y, Zr, Cs, Ba, Ta, Pb, and U. Minor increases in 

LOI and decreases in CaO, S, and Th are observed. Increased Fe2O3, K2O, C, and 

reflect the presence of iron-oxyhydroxides, saponite, celadonite and carbonate. The 

green to pale green saponitic alteration halos, that predominantly appear in the lower 

lava portion of Site 1256 exhibit slight increases in C, Sr, Zr, and REE, moderate to 

high increases in Na

LOI 

2O, K2O, P2O5, LOI, Cr, Ni, Rb, Cs, Ba, Ta, Pb, Th, and U. Slight 

decreases in Fe2O3, S, Tm are also observed. With the exception of dark green/black 

halos, complex halos exhibit some of the greatest chemical change including increased 

Fe2O3, MgO, K2O, P2O5, C, LOI, V, Rb, Nb, Cs, Ce, Ta, U, and decreased Na2O, S, 

Cr, Zr, and La. A higher degree of uncertainty is associated with this halo type as 

shown by the range of compositional change in Figure 4.35. This may be attributed to 

either high variability in secondary mineral content of the halos, caused by complex 
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ations alone.  

fluid histories, and/or complex overprinting. The latter is likely in a few cases because

variations in texture and the mineral appearances can be very subtle that are hard to 

distinguish by petrographic observ

 Patches with identical mineral assemblages to that of other halo styles were 

grouped with their respective alteration styles, all other less distinct patches are grouped 

into a separate patch category (Figure 4.35 A and B). Patches represent minor 

alteration, not too dissimilar from background alteration with minor increases in MgO, 

Ni, Rb, Nb, Ta, Th, and U. Moderate and high increases include Cr, Cs and C, LOI 

respectively. The change in chemistry as a result of vein minerals is very low. Only 

major elements, Rb, Zr, and Cs show discernable increases. Relatively high ranges and 

the high levels of exchange exhibited in Figure 4.35 with signatures that are similar to 

all the dominant low temperature alteration styles imply multiple phases of alteration, 

with overprinting and variation of fluid chemistry through time. This supports earlier 

Petrographic observations of multiple overprinting of mineral phases within these halos 

(See Section 4.2 ‘Alteration’ and Wilson et al., 2003 and Teagle et al., 2006).  



 
Site  1256                                                                                                                                                                                                   4.3                                        

 
Figure 4.35. Multi-element diagrams showing the average chemical changes in mass (A) and % changes (B, overleaf) for major element oxides, 
trace elements and REE with regards to low temperature seawater alteration at Site 1256. Bars indicate propagated error. 
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Element Background Dark 
green/Black Red/Brown Green/Grey Complex Patch Veins 

SiO2 (-) (-) (-) (-) (-) (-) (+) 
TiO2        

Al2 O3        
Fe2 O3   + - +   
MnO  +      
MgO  ++   + +  
CaO  + -    (+) 

Na2 O  -  + -   
K2 O ++ ++++ +++ +++ +++  + 
P2 O5 + +++  + + + (+) 

C + +++ +++ + ++ ++  
S +++ --  - --  + 

LOI +++ +++ +++ +++ ++++ +++  
Sc        
V  +   +   
Cr + - +  - +  
Co    +    
Ni + +++  ++ + +  
Cu        
Zn  +      
Rb +++ ++++ +++ +++ ++++ + + 
Sr  ++  +    
Y  - +     
Zr  - + + -  (+) 
Nb + +++   + +  
Cs +++ ++++ +++ +++ +++ ++ (+) 
Ba  +++ ++ +++ +   
La   + + -   
Ce  + + + +   
Pr   + +    
Nd  +  +    
Sm        
Eu        
Gd  -      
Tb  - +     
Dy   +  +   
Ho  - +     
Ef  - +     
Tm  - + -    
Yb  - +     
Lu  - +     
Hf        
Ta + + + ++ ++ +  
Pb  +++ ++ ++    
Th  +++ - ++  +  
U  +++ + ++ + +  

Table 4.3. Summary of low temperature chemical changes of alteration styles at Site 
1256. (+) = change in silica and change as a result of vein minerals (minimum = + 5% 
in veins). ++ = 50 to 99 % increase, +++ = 100 to 999 % increase, ++++ = >1000 % 
increase, vice versa for negative signs.  
 
 
 Only one sample (206-1256D, 20R-1, 42-47 cm) of low temperature breccia 

was analyzed as a whole rock (including clasts and matrix), therefore it may not be 

representative of all low temperature breccias at Site 1256. Nevertheless, chemical 
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mical 

changes include increased Fe2O3, MgO, K2O, LOI, V, Ni, Cu, Zn, Sr, Ba and 

decreased Al2O3 CaO, Na2O, and Cr (Figure 4.35 and 4.36). The increases reflect 

secondary mineral emplacement of saponite, quartz, and iron-oxyhydroxides, whereas 

depletions, such as CaO perhaps reflect the loss of primary mineralogy due to 

replacement of groundmass by secondary minerals within the clasts and loss of 

due to fracturing and infill. For the purposes of calculating the total weighted che

change, as discussed earlier in the section, breccia matrix and cement compositions are 

grouped with ‘veins’. In addition, Low temperature breccia clast alteration mirrors that 

of alteration observed in vein related halos and patches. Therefore, altered clasts that 

have been analyzed separately from their cement are placed in the appropriate alteration 

style.   

 

 

4.3.2.3  High temperature chemical changes 

 

High temperature alteration within the transition zone at Site 1256 is represented by 

grey background, dark green to dark grey halos, and patches (See Section 

4.2‘Alteration’ for petrographic details and mineral assemblages). Overall chemical 

change is relatively minor compared to low temperature alteration. High propagated 

error (Especially the range of changes for each sample) in many elements, especially 

Mn, K, P, Cr, Ni, Cu, Zr, Rb, Cs, and most REE (shown as error bars in Figure 4.36 A 

and B) precludes precise appraisal of the change associated between each alteration 

style.  The high degree or range of changes reflects overprinting and highly variable 

alteration intensities within each alteration style. 

 All alteration types exhibit a reduction in SiO2, and increases in LOI, Th and U 

(Figure 4.37 and 4.38). These reflect partial loss of primary igneous phases during 

secondary mineral replacement, and/or volume loss, and the incorporation of secondary 

mineral phases, perhaps most notably chlorite. Excluding breccias (discussed later), 

alteration patches represent the most highly altered whole rock samples with increased 

Na2O, K2O, LOI, Ni, Zn, Rb, Ba, Hf, Tm, and decreased SiO2, Nb, Cs, La, Ta, Pb, Th 

and U. Veins, however, have minimal impact, with only very minor increases in major 

element oxides and Sr. The overall low chemical change reflects restricted fluid flow 

within the sheeted dykes of Site 1256 which is manifested in thin veins with narrow 

halos and patches. 
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Figure 4.36. Multi-element diagrams showing the average chemical changes in mass (A) and % (B, overleaf) for major element oxides, trace 
elements and REE with regards to high temperature seawater alteration at Site 1256. Bars indicate propagated error. 
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Element Background Green/grey Patch Veins Element Background Green/grey Patch Veins 

SiO2 (-) (-) (-) (+) Zr     
TiO2     Nb   -  

Al2 O3     Cs  - -  
Fe2 O3     Ba  - +  
MnO     La  - -  
MgO     Ce   -  
CaO     Pr     

Na2 O   +  Nd     
K2 O ++ + +++  Sm     
P2 O5     Eu     

C     Gd     
S     Tb     

LOI +++ +++ +++  Dy     
Sc     Ho     
V     Ef   +  
Cr     Tm  (+) +  
Co  +   Yb     
Ni   +  Lu     
Cu     Hf     
Zn   +  Ta  - -  
Rb +  +++  Pb (-) - -  
Sr    (+) Th - - -  
Y     U - - --  

Table 4.4. Summary of high temperature chemical changes of alteration styles at Site 
1256. (+) = change in silica and change as a result of vein minerals (minimum = + 1% 
in veins). ++ = 50 to 99 % increase, +++ = 100 to 999 % increase, ++++ = >1000 % 
increase, vice versa for negative signs.  
 

 

4.3.2.4  Chemical changes associated with lithology 

 

Chemical changes associated with lithology (sheet flows, massive flows, pillow lavas, 

and breccias) are shown in Figure 4.37 A and B. The change in breccias is based on 

whole rock compositions (clasts and matrix). Sheet and massive flows exhibit similar 

changes with increases in K2O, LOI, Rb, and minor increases in C, Ni, Sr, Ba, Ta, Pb, 

Th and U. Pillow lavas appear to be more altered with a greater range of elements 

exhibiting changes, including increased K2O, P2O5, C, LOI, V, most trace elements, 

La, Dy, Er, Tm, Hf, Ta, Pb, Th, and U. Pillow lavas exhibits loss in MnO and CaO. 

These changes likely reflect emplacement of secondary minerals within the numerous 

cooling fractures and chilled margins of the lavas. A reduction of Ca suggests 

replacement of primary igneous phases, such as plagioclase. Volume change may have 

resulted in the apparent change observed in some REE. The greatest change obse

between lithologies is within the breccias. Concentrations of most elements have 

rved 

 225



Site  1256                                                                                                                        4.3                           

 226

lfides observed.  

undergone changes. These include, increased Fe2O3, Na2O, K2O, P2O5, C, S, LOI, Rb, 

Nb, Cs, Ba, Eu, Er, Tm, Hf, Pb, Th, U and decreased Al2O3, MnO, MgO, CaO, Sc, Cr, 

Ni, Cu, and Sr. Changes reflect the intensive replacement of primary phases at high 

water-rock ratios with secondary phases, including saponite, iron-oxyhydroxides, 

chlorite/smectite, anhydrite, and secondary su

 Despite high ranges observed in Figure 4.37, A and B, the variation of chemical 

change in the different litholgies is significant. Pillow lavas appear more altered than 

sheet and massive flows, and breccias are even more altered. These changes imply that 

lithological variation at Site 1256 may play a significant role in the extent of alteration 

at this site. 
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Figure 4.37. Multi-element diagrams showing the average chemical changes in mass (A) and % (B, overleaf) for major element oxides, trace 
elements and REE with regards to lithology  at Site 1256. Bars indicate propagated error. 
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Element Sheet Massive Pillow Breccia Element Sheet Massive Pillow Breccia 
SiO2 (+) (+) (+) (+) Zr   +  
TiO2     Nb +  ++ + 

Al2 O3    - Cs +++ +++ +++ ++ 
Fe2 O3    + Ba + + + ++ 
MnO   - - La  + +  
MgO    - Ce  + +  
CaO   - - Pr     

Na2 O    + Nd     
K2 O +++ ++ +++ ++ Sm     
P2 O5 +  + + Eu    ++ 

C + + +++ +++ Gd     
S  + - + Tb     

LOI +++ +++ +++ ++++ Dy   + + 
Sc    - Ho   + + 
V   +  Ef   + ++ 
Cr +  ++ - Tm    ++ 
Co   +  Yb    + 
Ni ++ +  - Lu     
Cu   + - Hf   + ++ 
Zn   +  Ta + + +  
Rb +++ +++ +++ +++ Pb + + ++ ++++ 
Sr +  + - Th + + + + 
Y     U +  ++ +++ 

Table 4.5. Summary of chemical changes associated with lithology. (+) = change in 
silica + = 10 to 49 % increase. ++ = 50 to 99 % increase, +++ = 100 to 999 % increase, 
++++ = >1000 % increase, vice versa for negative signs. Breccia compositional change 
includes clasts and matrix. 
 

 

4.3.2.5  Summary 

 

At Site 1256 the variation in major elements, trace elements and REE and their changes 

associated with alteration reflect the petrographic observations of alteration mineral 

assemblages and their intensity. Sample pairs, and ‘triples’ show relatively consistent 

trends with LOI, which is consistent with petrographic observations of secondary 

minerals within the groundmass. The overall increasing K2O reflects the emplacement 

of celadonite and later iron-oxyhydroxide phases, these phases are commonly 

associated with oxidizing conditions in which open seawater circulation takes place 

(e.g., Alt, 1993; Alt and Honnorez, 1984).  
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Figure 4.38. Summary of the weighted average chemical changes (A; g/100g and 
mg/100g B; % changes) for the volcanic section of Site 1256 (Low temperature 
alteration).bars indicate propagated error 
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The chemical variation and changes associated with higher temperature alteration 

assemblage within the lowermost lavas and transition zone at Site 1256 indicate much 

more restricted fluid flow, with no oxidation and limited replacement. This is supported 

by the petrographic observations that show much narrower halos, less replacement of 

primary phases and fewer veins.  

 Figure 4.38 indicates the weighted average chemical changes as a result of low 

temperature alteration for the whole of Site 1256. Changes are summarized in Table 

4.6. As discussed earlier in this chapter, the calculated chemical changes for each style 

were weighted according to the proportion of core they occupy. The weighted averages 

plus the weighted average secondary mineral compositions residing in veins, vein nets 

and breccias are combined to give a grand total chemical change for Site 1256. Overall 

chemical change at Site 1256 is small, with gains in K2O, C, LOI, Rb, Cs and minor 

gains in CaO, S, Cr, Ni, Sr, Nb, Ba, Ta, Pb, and U. A slight loss of Na2O and MnO is 

reported. Given the very high propagated error relating to the range of changes in Rb, 

Zr, Cs, and REE (Notably Ta, Pb, Th and U), the change calculated is not meaningful. 

In the case of Ta, Pb, Th and U no trend was detected between these elements and the 

chosen immobile element TiO2 and the chosen precursor composition (based on the 

least altered samples) has a very high error due to the range within the least altered 

samples. The high errors exhibited in elements Mn, K, P2O5, C, S, LOI, Cr, Ni, and Rb 

reflect the range of changes observed rather than imprecise precursors, therefore overall 

change in these elements are better constrained, despite the ranges. 

 The incorporation of large amounts of K2O, and LOI reflect formation of clay 

minerals. Low change in Fe2O3 reflects only minor iron-oxyhydroxide emplacement. 

Leaching of elements from the host rock and their replacement as vein minerals 

potentially reflects the apparent lack of change within Site 1256. This would also help 

to explain the high LOI. In addition, clay minerals in veins and halos may explain the 

increased abundance of Rb, and Cs because these elements are relatively mobile and 

will partition into the interlayer sites within clay mineral structures. The slight 

reduction in MnO, and Na2O reflects the partial replacement of some primary igneous 

phases, such as clinopyroxene and plagioclase at Site 1256. Significant replacement of 

primary igneous phases only occurs within the alteration halos and patches (See 

earlier); therefore the majority of Site 1256 low temperature alteration is associated 

with minor replacement and filling of interstices and partial replacement of olivine.  
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 Despite the changes associated with the incorporation of clay minerals and the 

presence of moderate to highly altered intervals, overall alteration within the lavas at 

Site 1256 remains slight, which supports the petrographic evidence in Section 4.2.  

Element Change % Element Change % Element Change % Element Change % 

SiO2 (+)  Sc   Ba + Yb   

TiO2   V   La  Lu   

Al2O3   Cr + Ce  Hf   

Fe2O3   Co  Pr  Ta + 

MnO   Ni + Nd  Pb + 

MgO (+) Cu  Sm  Th  

CaO + Zn + Eu  U + 

Na2O (-) Rb +++ Gd      

K2O +  + Sr  Tb      

P2O5 + Y  Dy     

C + + + Zr  Ho      

S + Nb + Ef      

LOI + + + Cs + + + Tm      

 
Table 4.6. Summary of the average chemical changes for low temperature alteration at 
Site 1256. Only change that is greater than ~10% is highlighted. 10-50 % gain =  +, 50-
100 % gain = + +, and >100 % = + + +. Losses are recorded as – (10 – 50 % loss). (-) 
and (+) refers to minor variations <10% in SiO2, Na2O, and MgO. 
 

High temperature alteration within the sheeted dykes is summarized in Figure 4.39 and 

Table 4.7. The total chemical change within the hydrothermally altered rocks in the 

transition zone was calculated based on the weighted averages for each alteration style 

(See section C, 2 in Appendix). Both actual changes and percentage changes within the 

high temperature portion of the transition zone and upper sheeted dykes are minimal, 

which implies that majority of rocks recovered in this section are relatively fresh. 

Changes include slight reductions in SiO2 and CaO and increases in MgO, Na2O, K2O, 

LOI, Rb. These changes reflect minor emplacement of secondary minerals e.g. chlorite 

and actinolite. Reduction in CaO and SiO2 reflects minor replacement of the 

groundmass.  

 At Site 1256 changes associated with lithological variation may be important in 

controlling the style and intensity of alteration. Large changes in the pillow lavas and 

breccias highlight the need for an accurate appraisal of Site 1256 stratigraphy. 

Determination of igneous stratigraphy at Site 1256 from core-log integration indicate 

that 18 % of Site 1256 may be composed of breccias (Tominaga et al., 2009). Given 
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current estimates of breccia and the other litholgies at Site 1256 that are based on core 

recovery and the high degree of alteration within breccias, it is likely that the estimate 

of chemical change in this study is an underestimate and therefore must be treated as a 

minimum value for change. 

 
Figure 4.39. Percentage chemical change for transition zone and upper sheeted dyke 
rocks at Site 1256 that have been subjected to high temperature alteration. Bars indicate 
the propagated error, including the range of chemical changes for Site 1256.  
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Element Change % Element Change % Element Change % Element Change % 

SiO2 (-)  Sc   Ba + Yb   

TiO2   V   La  Lu   

Al2O3   Cr  Ce  Hf   

Fe2O3   Co  Pr  Ta  

MnO   Ni  Nd  Pb  

MgO (+) Cu  Sm  Th + 

CaO (-) Zn  Eu  U + 

Na2O (+) Rb + Gd      

K2O +  + Sr  Tb      

P2O5  Y  Dy     

C No data Zr  Ho      

S No data Nb  Ef      

LOI + + + Cs  Tm      

Table 4.7. Summary of the average chemical changes for high temperature alteration at 
Site 1256. Only change that is greater than ~10% is highlighted. 10-50 % gain =  +, 50-
100 % gain = + +, and >100 % = + + +. Losses are recorded as – (10 – 50 % loss). (-) 
and (+) refers to minor variations <10% in SiO2, MgO, CaO, and Na2O. 
 
 
In addition to the analysis and observations relating to alteration in this study and work 

carried out by Wilson et al., (2003) and Teagle et al., (2006), more work needs to be 

done to constrain the chemistry of secondary minerals at Site 1256 and their 

variation/transition with depth. Despite a number of secondary mineral analyses for Site 

1256 in this study (saponite, carbonates, anhydrite, and chlorite). Further sampling and 

analysis of secondary minerals, particularly iron-oxyhydroxides, more chlorite, zeolite, 

and secondary sulfides is necessary to properly constrain Site 1256 secondary 

mineralogy compositions. Errors associated with the selection of protoliths, particularly 

within REE need to be addressed.   
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4.3.3 Whole rock and clay isotopic results 

 

A total of 228 whole rock samples were measured for 87Sr/86Sr at Site 1256 (See 

Chapter 2 for methodology). Of which 156 were sampled from the lavas and transition 

zone (~0 to 815 ms). Data is shown in Section B, 2 and D, 2  of the appendix initial 

(Age corrected to 15 Ma) and measured 87Sr/86Sr are shown . The young age of the 

samples and the low concentrations of Rb has meant that the age corrected 87Sr/86Sr is 

not significantly different to the measured values, because the difference is within the 

size of the data points when plotted.  A number of samples at Site 1256 were leached of 

secondary minerals utilizing an aggressive multi-step acid attack (HCl) procedure 

Mahoney, (1987) and Mahoney et al., (1983). Section 2.5 in Chapter 2 details the 

leaching procedure and the results of whole rock leaching. Six leached sample residues 

were analyzed by TIMS for their Sr-isotopic composition and they yield a range of 

0.702828 to 0.702901 with an average of 0.702868. These values are near the expected 

range for fresh MORB (0.7024-0.7027, Saunders, et al., 1988) and therefore can be 

regarded as the primary Sr isotopic composition for Site 1256. Figure 4.40 is a plot of 
87Sr/86Sr vs. depth for Site 1256 with respect to their different alteration types, 

including leached samples with stratigraphy and alteration style. All samples (except 

for the leached whole rock samples) are elevated above primary Sr at Site 1256 yet, for 

the most part they remain significantly below 15 Ma and modern seawater of 0.70878 

and 0.70917 respectively, (McArthur et al., 2001). Radiogenic Sr decreases very 

slightly with depth from the lava pond to the sheet and massive flows. The low 87Sr/86Sr 

in the massive units is consistent with restricted fluid flow in more competent rocks 

with fewer fractures, which implies minimal Sr-isotopic interaction with the host rock. 

The Sr-isotopic composition within the transition zone is slightly elevated compared to 

the rest of the lavas. A number of breccias recovered in this zone with high 87Sr/86Sr 

(0.7051-0.7061) indicate high Sr-isotopic exchange and a high water rock ratio. The 

paucity of samples between 575 and 650 msb is due to limited sampling.  

 Many of the least altered ‘fresh’ grey background samples deviate only slightly 

from MORB, and variation of 87Sr/86Sr between the different alteration styles is 

minimal, However, the more altered samples exhibit slightly higher values than the 

background samples. A number of samples, most of which are highly altered, are 

strongly elevated in 87Sr/86Sr. These include breccias, both at high and low temperature 

alteration, and samples with intense replacement of primary phases by secondary 
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minerals. For example the ‘red brick’ section (Figure 4.40) where 87Sr/86Sr are strongly 

elevated compared to the surrounding rocks. No obvious trend occurs between the 

extent of alteration (measured as volume % alteration style vs. depth) and the 87Sr/86Sr 

for the whole rock samples (Figure 4.40).  

 
Figure 4.40. Whole-rock strontium (87Sr/86Sr) vs. depth for Site 1256 extrusives. 
Included are leached whole rock samples. Samples are shown in accordance to their 
alteration styles. (seawater composition after McArthur et al., 2001) stratigraphy 
modified from Wilson et al., (2003) and Teagle et al., (2006). 
 

Histograms of Sr-isotopic compositions for low temperature alteration styles (Figure 

4.41) indicate the variability within each alteration style. Background rocks exhibit the 

most MORB-like 87Sr/86Sr values, whereas breccias are variably least MORB-like. All 

alteration styles are variably elevated above the leached samples and background with 

complex halos and dark green/black exhibiting the greatest deviation.  
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 Assuming exchange of Sr with seawater at 15 Ma and that the leached samples 

of  ‘fresh’ basalts represent the primary Sr isotopic composition, the proportion of  Sr in 

each sample that is sourced from seawater can be estimated. The proportion of seawater 

Sr in whole rocks FSrSW is calculated from the simple expression below (Bach and 

Humphries, 1999):  

 
FSrSW = (Rsample – Rfresh basalt)/(Rseawater – Rfresh basalt) 

 

Where Rfresh basalt is initial 87Sr/86Sr, Rseawater is seawater 87Sr/86Sr. An FSrSW values of 0 

and 1 = none and total exchange respectively. Figure 4.41 is a histogram illustrating the 

distribution of FSrSW with respect to alteration styles, all samples and the weighted 

average FSrSW for Site 1256 lavas and transition zone. All basalts at Site 1256 appear to 

have undergone at least minor exchange with seawater Sr. All major alteration styles 

(grey background, brown halos, black/green and complex halos) have a distribution 

centered on 0.075. FSrSW  in alteration halos are slightly elevated compared to 

background. Even the majority of complex halos, where we would expect greater 

seawater exchange exhibit low FSrSW. Breccias range from ~0.075 to ~0.575 the 

majority of which range between 0.4and 0.575. These ranges perhaps reflect the higher 

fluid fluxes that occurred at these intervals imparting a greater seawater component to 

the host rock. The weighted average FSrSW was calculated by taking the average Sr 

isotopic ratio for each sample and weighting these averages according to the volume % 

that each alteration style occupies at Site 1256. The sum total of these weightings gives 

a weighted Sr isotopic value of 0.703482, to which we derive FSrSW. The weighted 

average FSrSW for Site 1256 is 0.107, which implies that ~10% of Sr is derived from 

seawater.  

 Because LOI and exchange of seawater Sr are often used as a proxy for 

alteration intensity, Sr isotopic data is compared to LOI in Figure 4.43. Correlations 

between the extent of hydrothermal alteration and 87Sr/86Sr are weak and variable. In 

general background rocks have lower LOI vs. 87Sr/86Sr than the altered rocks. Highly 

altered samples, however, have high LOI compared with 87Sr/86Sr. 
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Figure 4.41. Histogram of whole rock Sr-isotopic compositions for different low 
temperature alteration types observed at Site 1256. Leeched samples, modern seawater 
and 15 Ma seawater are included for reference (seawater composition after McArthur et 
al., 2001) 
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Figure 4.42. Distribution of FSrSW (Based on Bach and Humphris, (1999) calculation of 
proportion of seawater) in whole rock basalts in the lavas and transition zone at Site 
1256 with respect to alteration styles. Included is the distribution of all samples and the 
average FSrSW weighted according to alteration style volume %. 
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Figure 4.43. 87Sr/86Sr vs. LOI for the extrusives and transition zone at Site 1256. 
Alteration styles are indicated using the same symbols as Figure 4.3.10. The grey arrow 
indicates expected trend with LOI, which is most apparent in the highly altered breccias 
and the ‘brick’ samples. 
 

The lack of a trend suggests either that, at low temperature Sr the relationship between 

LOI and seawater Sr exchange is not linear, or that there is insufficient resolution in the 

isotope data to compare results with alteration styles. Because alteration at Site 1256 is 

only slight, and that even within halos, alteration is not high, it is more likely that the Sr 

has undergone only minor exchange with basement rocks at Site 1256 rather than poor 

sampling.  

 Leaching of pure hand picked clay mineral separates was carried out for 

saponite and chlorite samples using a multi-stage leaching process in which 1N NH4Cl 

solution was applied in an attempt to remove Sr, trace elements and REE interlayer 

cations from the crystal structure, so that only trace, REE and Sr bound to the crystal 

structure were measured (See chapter 2, Methods). The Sr-isotopic composition of 

leached saponite ranges from 0.70416 to 0.70761. Only one leached chlorite mineral 

with an 87Sr/86Sr of 0.70587 was analyzed. When plotted vs. depth (Figure 4.44) 
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leached samples indicate that most samples formed from fluids with a mixture of 

seawater Sr and MORB derived Sr, almost all leached samples exhibit a decrease in Sr 

after leaching. 87Sr/86Sr decreases slightly with depth, indicating greater interaction 

with the wall rock as temperatures increase. The Sr-isotopic composition of unleached 

clay minerals exhibit a more pronounced decrease with depth than the leached samples. 

Two possibilities may account for the trends observed in Figure 4.44. 1) later fluids 

circulating in the ocean crust are undergoing further interaction with basalts at depth 

before depositing interlayer cations into the clay minerals. 2) that, with depth, less fluid 

penetrates the crust during off axis circulation resulting in less interlayer cations and, 

therefore less radiogenic Sr to remove during leaching.  

 
Figure 4.44. Sr-isotopic composition of Saponite and Chlorite unleached and leached 
clay mineral separates vs. depth at Site 1256. Seawater Sr-isotopic composition after 
McArthur et al, (2001) and Stratigraphy modified from Wilson et al., (2003) and Teagle 
et al., (2006). 
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4.3.4 Carbonate veins at Site 1256 and their constraints on low temperature 
 hydrothermal fluid evolution  
 

Throughout the volcanic section of Site 1256 carbonate vein minerals were recovered 

by hand picking, and then analyzed for major elements, C, S, 87Sr/86Sr, and δ18O 

(Coggon, 2006). Much work has been carried out regarding carbonate veins at Site 

1256 by Coggon (2006) and therefore only a summary is outlined here.   

 Carbonate by volume makes up approximately 0.018% of the core and it is 

typically a minor phase in multiminerallic veins that are composed of saponite ± pyrite, 

iron-oxyhydroxides, celadonite, and silicates (see Section 4.3 ‘Alteration’). Rare 

carbonate only veins occurs in cross-cutting all other phases. The relationship of 

Mg/Ca, Fe/Ca and Mn/Ca with Sr/Ca, provide a means of differentiating between 

calcite, aragonite, or mixtures of the two (Coggon et al., 2006). Incorporation of small 

cations (Mg) will preferentially incorporate themselves into the crystal structure of 

calcite, which has a relatively small site (6 fold coordination). Large cations, in this 

case Sr, will preferentially substitute into aragonite, because it has a large site (9 fold 

coordination), (Deer et al., 1992).  

 Carbonate δ13C compositions at Site 1256 range from -3 and 4 ‰VPDB and there 

is an observed decrease in the carbon isotopic composition with depth (Figure 4.45). 

Oxygen isotopes range from 20-32 ‰VSMOW with little relationship with depth of Site 

1256 and a strong relationship with depth between ~190 and 400 msb (Figure 4.45) 

(Coggon, 2006). Formation temperatures following Friedman and O’Neil (1977), 

assuming precipitation from fluids with δ18Owater = 0 ‰ range from ~10 to 75 oC. The 

range of temperatures and their relationship with depth shown in Figure 4.45 was 

interpreted to represent cold (10-35 oC) seawater dominated precipitation for the 

ponded lava flow, which formed ~5km off axis (Wilson et al., 2003) and warmer (60-

75 oC) more restricted fluid flow and precipitation in the sheet and massive flows that 

underlie the massive flow unit. The deeper carbonate veins represent an increase in 

fluid temperature of ~0.075 oC/m (Coggon, 2006). Coggon, 2006 further suggests that 

the decreasing carbon isotopic composition at Site 1256 reflects the increased 

incorporation of magmatic carbon to the veins.  

 242



Site 1256  4.3 

 
Figure 4.45. Site 1256 carbonate plots. A and B: Stable isotopic (C and O) 
compositions of carbonate veins with depth. Errors are less than width of the data 
points. C: Calculated formation temperatures for carbonates vs. depth following 
Friedman and O’Neil (1977), assuming precipitation from fluid with δ18O = O ‰. D: Sr 
isotopic composition of carbonates vs. depth with seawater at 15 Ma shown for 
comparison. E: 87Sr/86Sr vs. calculated temperature of carbonates. For all vs. depth plots 
Site 1256 stratigraphy is shown for comparison. Figures are redrawn from Coggon 
(2006). Stratigraphy modified from Wilson et al., (2003) and Teagle et al., (2006). and 
seawater Sr-isotopic composition from McArthur et al, (2001). 
 

Strontium isotopic compositions for carbonates at Site 1256 range from ~0.7080 to 

~0.70872 with 87Sr/86Sr trending away from seawater compositions at ~15 Ma 

(~0.70875) with depth (Figure 4.45). In addition, the warmer carbonates tend to exhibit 

less seawater like 87Sr/86Sr (Figure 4.45), which suggests that with depth fluids become 

more evolved  in which seawater Sr is undergoes greater exchange with basaltic Sr 

(Coggon, 2006). The proportion of basaltic Sr incorporated into carbonates at Site 1256 

Sr ranges from ~1 to 18 % following the Bach and Humphries (1999) method.  
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4.3.5 Anhydrite at Site 1256 

 

Because the observed anhydrite straddles the boundary between low and high 

temperature alteration, and anhydrite exhibits retrograde solubility, anhydrite is a useful 

tool for recording the evolution of seawater derived fluids during mid-ocean ridge 

circulation. A comprehensive review of anhydrite and the constraints on fluid evolution 

at Site 1256 are discussed in Chapter 8. However, because data, particularly 87Sr/86Sr, 

δ18O, have a bearing on the conditions to which low temperature alteration at Site 1256 

formed, a summary is provided here. 

 

 Anhydrite is observed at ~530 to ~1000 msb within the lowermost lavas, the 

lava dyke transition zone and the sheeted dykes (Figure 4.46). Anhydrite makes up 

0.0062 % of the total volume of Site 1256 and it typically occurs within multi-

minerallic veins, or on its own as thin late-stage veins that cross cut most other phases, 

anhydrite is rarely present within the groundmass. Anhydrite was sampled by hand 

picking of veins and analyzed for their majors, trace elements, REE, Sr-isotope ratios, 

S-isotope ratios, and oxygen isotopes (Table D, 1. Appendix). Formation temperatures 

were calculated following Chiba et al., (1981) range from ~45 to 400oC however most 

anhydrite temperatures range from ~100 to 225oC. Anhydrite formation temperatures 

within the extrusives and transition zone at Site 1256 ranges from ~50 to 400oC. 

Although only 3 samples of anhydrite were recovered in the sheet and massive flows, 

they exhibit relatively low temperatures (~105-140oC) compared to the variably higher 

temperatures in the transition zone (~50 – 400oC) (Figure 4.46). These temperatures 

highlight the change from low temperature seawater dominated alteration to high 

temperature alteration. The Sr isotopic ratios of anhydrite range from 0.7046 to 0.7085 

and, when plotted vs. depth in Figure 4.46, cluster into there are two distinct groups  

One dominated by hydrothermal fluids and another controlled by seawater derived 

fluids, these trends are discussed in Chapter 8. 
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Figure 4.46. Site 1256 Anhydrite 87Sr/86Sr, δ18O (% SMOW) , calculated temperature and 
Sr/Ca vs. depth. Site 1256 stratigraphy, 87Sr/86Sr of whole rock samples, MORB and 
seawater at 0 Ma and 15 Ma are included. Red squares highlight anhydrite with 
significant basaltic Sr. Seawater Sr-isotopic composition after McArthur et al, (2001). 
Stratigraphy modified from Wilson et al., (2003) and Teagle et al., (2006). 
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5.1. Introduction 

 

5.1.1 Site 1149 

 

Site 1149 (1430 22.5′ E, 310 20.0′ N) is located on the northwest Pacific plate within the 

Nedezhda Basin approximately 700 km Southeast of Japan. Site 1149 lies on marine 

magnetic anomaly M11 of the NE trending M-Series magnetic lineations as charted by 

Nakanishi et al, 1992 (Figure 5.1). Correlations between the magnetic lineations and the 

Channel et al, (1995) timescale (based on biostratigrapic and radiometric dating 

techniques) indicates that basement at Site 1149 formed during late Valanginian or 

~132 Ma at a spreading rate of 102 mm/yr (Full). The timing of Site 1149 formation 

coincides with a period of super-plume activity which included the formation of 

Shatsky Rise, Ontong Java Plateau and the East Pacific Rise, which is still active 

(Larson, 1991). Palaeomagnetic data indicates that plate motion was non-uniform and 

that Site 1149 moved from ~100 to 150 South of the equator during the Early 

Cretaceous to its present location (Plank et al., 2000). Site 1149 currently resides on a 

bathymetric high approximately 100 km east of the Izu-Bonin trench. The bathymetric 

high is caused by lithospheric flexure that occurs prior to subduction of the oceanic 

plate. 

 
Figure 5.1. Location of Site 1149. Magnetic lineations from, Nakanishi et al, (1992) 
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Figure 5.2. Seismic profile of Site 1149 including correlated stratigraphy of Hole 1149 
D. The thick reflector at about 8.15 seconds (twt) marks the contact between seafloor 
sediment and oceanic basement. Scaling of the lithostratigraphic column was carried 
out using the velocity-depth relationship of Carlson et al. (1986) to calculate the two-
way traveltime of unit boundaries derived from core observations (Plank et al., 2000) 
 

The interpretations of the seismic stratigraphy at Site 1149 by Plank et al., (2000) is 

largely consistent with the original work by Ewing et al, (1968), which defined the 

acoustic stratigraphy of large sections of the western Pacific. Figure 5.2. shows the 

correlation between lithologic units and the seismic profile. Horizon B begins at 8.1 s 

two-way traveltime (s twt) or 0.28 sbsf. This is interpreted as the contact between 

nannofosil chalk/marl and fractured basalt at 410 mbsf (Plank et al., 2000). Directly 

above Horizon B is the upper opaque layer, which is interpreted to represent a stratified 

pelagic drape at 0.20 to 0.28 sbsf (7.891-7.971 s twt). At 0.16-0.2 sbsf the reflection is 
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interpreted to represent chert/porcelanite with clay interbeds at ~180 mbsf (for Holes 

1149A, B and C) and 155 mbsf (Hole 1149 D). Unit IV (0.28 sbsf is interpreted to be 

high carbonate sediment interbedded with chert. The upper transparent layer (~0.16-0.2 

sbsf) is largely reflection free in the upper section whilst the lower section is 

characterised by low amplitude partially continuous reflections. The transparent layer 

has been correlated to the unlithified siliceous ash bearing clay of litholigical unit IA. 

 

 

5.1.2 Sedimentry stratigraphy 

 

The sedimentary succession at Site 1149 consists of a 408 m thick succession of 

carbonate-free clays with variable mixtures of volcanic ash, siliceous microfossils, 

cherts, porcelanites, and calcareous nannofossil chalks or marls. Figure 5.1.3 shows the 

sedimentary stratigraphy for Site 1149 including lithological units, recovery, cores and 

depth as classified by Plank et al., (2000).  

Unit I is a 118 m-thick carbonate-free clay with common ash particles and 

siliceous microfossils that is dated as late Miocene to late Pleistocene. Unit II 

comprises a 62 m thick dark brown pelagic clay of unkown age with several discrete 

ash layers. Siliceous or calcareous nannofossils are absent in this unit, however, 

ichthyoliths are present. Unit III is a 104 m-thick sequence of radiolarian chert with 

porcelanite and siliceous clay of around the mid-Cretaceous age (A. Bartolini, unpub 

data., 2001). Unit IV is defined by a 125 m thick series of intercalated radiolarian chert, 

porcelanite and siliceous chalks or marls. These have been dated as upper Valanginian 

to upper Hauterivian. Unit V is only present in the upper 2 metres of basement within 

fractures.  
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Figure 5.3. Site 1149 stratigraphy including core recovery, lithology and 
lithostratigraphic unit columns. Interpretation of stratigraphy is sourced from recovered 
material from Holes 1149 A to D. (After Plank et al., 2000). 
 

 

Unit V formed from recrystallized calcareous marlstone and is dated to Upper 

Valaginian. The evolution of sedimentation with time is indicated in Figure 5.4. A lack 

of age control for a large portion of the sedimentary column has left a gap of over 120 

Myr in the record (7 Myr to 125 Ma). Therefore, rates for this time period are not 

known. Early and late sedimentation history suggests high rates of sedimentation ~20-

34 m/m.y., with a large period where the average sedimentation were very low at 

around 1-2 m/m.y.  
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Figure 5.4. Rates of sedimentation through time at Site 1149. Rates are derived from 
palaeomagnetic and biostratigraphic data from Holes 1149 A and 1149 B. The dashed 
interval indicates a region where a lack of fossil evidence and/or low recovery has left a 
gap in the record (from 125 Ma to 8 Ma). Plot is modified from Plank et al., (2000). 
 

 

5.1.3 Basement stratigraphy 

 

Basement was encountered in Holes 1149B (407.77 mbsf), 1149C (398.41 mbsf) and 

1149D (300.46 mbsf). Hole 1149B recovered 37.43 m (185-1149B-29R to 32R) with 

recovery of ~23 %. Hole 1149C recovered 28.29 m of basement from Cores 185-

1149C-9R to 11R at ~14% recovery and Hole 1149D recovered 130.24 m of core (185-

1149 D-5R to 19R) at a recovery rate of 20% (Figure 5.5). Overall recovery is lower 

than that of nearby Site 801. This may be due to the low competency of thin fractures 

flows, pillow basalts and breccia. 
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Figure 5.5. Basement stratigraphy at Site 1149, including core recovery, lithology and 
lithological units. Modifed from Plank et al., (2000).  
 

 Basement rocks are all aphyric basalts with only minor amounts of plagioclase 

and olivine observed as phenocrysts phases. The basalts include a mixture of thin 

(<50cm) pillows and some intermediate thickness (50cm -1m) cooling units that may 

represent either pillows or flows. A few cooling units up to 2.88m thick were present in 
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hole 1149 D, however, these are fractured and not massive. Additional intervals of 

breccia and interpillow sediment were also recovered. 

 Igneous Units at Site 1149 are based on petrographic observations of recovered 

samples, including flow margins, mineral content, and textural relationships. Holes 

1149 B and C contain only 1 Unit, of which Hole 1149 B has 15 subunits that are 

defined by individual cooling units and breccia intervals. Hole 1149 C has 6 subunits 

also defined by breccias and individual cooling units and these are described in detail in 

Plank et al., (2000). The differences between each unit at Site 1149 are outlined in 

Figure 5.5. 

 Most basalts recovered are aphyric with <1% phenocrysts. Pillow rims are 

glassy to cryptocrystalline, where pillow interiors are microcrystalline. The groundmass 

typically consists of skeletal subhedral laths of plagioclase with anhedral pyroxenes. 

Euhedral plagioclase crystals forms the majority of phenocrysts with some rare olivine 

phenocrysts. Pyroxene phenocrysts are only present in 1149 B-29R-2 (Piece 13). These 

occur as glomerocrysts with plagioclase and olivine, have euhedral crystal shapes, and 

range from 0.2 to 0.4mm.  Piece 5 from 185-1149D-5R-1 (0.5 msb) has its own unit 

designation. This piece has ~2% olivine glomerocrysts and lacks alteration halos. 

Olivine phenocryst abundance increases toward the bottom, exceeding 1% at last 30m. 

 

 

5.1.4 Bulk geochemistry 

 

Analysis of whole rock basement samples includes shipboard XRF and shore based 

ICP-AES and ICP-MS analysis. Of the analyzed samples, two are from Hole 1149B, 

and 15 samples from Holes 1149B, 1149C and 1149D. Additional analyses includes 

major and trace element concentrations from 31 whole rock and glass samples by 

Kelley et al., (2003), and 62 whole rock samples from this study.  
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Figure 5.6. Nb-Zr-Y ternary diagram showing the fields for different basalt types. 
Samples taken from Site 1149 mostly all lie in the N-MORB field. Squares = Hole 
1149 D (Unit 6), Open circles = Hole 1149 C, Closed circles = Hole 1149 B (Shipbaord 
data after Plank et al., 2000). Black Circles are a combination of whole rock and glass 
data from this study and Kelley et al., (2003). 
 

First order interpretations of these samples indicate that Site 1149 basalts are MORB 

(Plank et al., 2000). When plotted on the Zr,Y,Nb ternary discrimination diagram 

(Meschede, 1986) most samples plot on the N-MORB field, although some samples 

from Hole 1149D plot on the ‘within plate tholeiite’ field due to their relatively 

enriched Nb and Zr concentrations (Figure 5.6). Samples from Hole 1149D-Unit 6 plot 

on the ‘within-plate’ tholeiite field.  Chondrite normalised REE patterns for all whole 

rock basalt samples at Site 1149 (Figure 5.7) broadly trend with the average values for 

MORB. The average value for Site 1149 plots within the average MORB field. Samples 

185-1149B-31R-1, 93-94 cm, 185-1149D-11R-1, 30-37 cm, both breccias, are depleted 

in REE. Direct comparisons with Hole 801C indicate that Site 1149 is more primitive 

than Site 801. The main line of evidence for this comes from lower Fe2O3 at Site 1149. 

However, Plank et al., (2000) point out that Mg and Fe concentrations are likely to have 

been effected by alteration. For example, Sample 185-1149 B-30R-1, 19-94 cm has the 

highest MgO concentrations and lowest Fe2O3 concentrations. In addition, it contains 

100 ppm Ba which is very high for MORB and it is likely to be the result of alteration.  
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Figure 5.7. Chondrite normalised REE patterns for all whole rock and glass samples at 
Site 1149. Pacific MORB is included for comparison. Chondrite-normalization factors 
from Taylor & Gorton (1977). Site 1149 data is a compilation of Kelley et al, (2003) 
and this study. Pacific MORB data from Jenney and Castillo, (1997). Black line 
indicates average REE pattern for Site 1149. Green lines indicate breccia samples and 
Pm is not analysed. 
 

 
Figure 5.8. A. MgO vs. Fe2O3, and B. Zr vs. Y for Site 1149 and Site 801 tholeiitic 
lavas. Solid (black) circles = Site 1149 basalts; open (blue) circles = Hole 801C 
tholeiites; and crosses = data from modern East Pacific Rise (Langmuir, et al., 1986). 
After, Plank et al., (2000). Black circles are a combination of Site 1149 whole rock 
analyses from this study and Kelley et al., (2003). 
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Therefore, alteration is the most likely reason for scatter in the MgO vs. Fe2O3 plot 

(Figure 5.8) for Site 1149 basement. Two populations of MgO vs. Fe2O3 emerge in 

Figure 5.8 in which shipboard samples have distinctively lower Fe. The most likely 

cause is sampling, since the shipboard samples represent the least altered samples 

(Plank et al., 2000). The shore based samples, including those from this study, are 

variably altered, with saponite, celadonite and iron-oxyhydroxides, all of which may 

serve to increase Fe in the whole rocks. 

 With the exception of basalts from base of Unit 6, the immobile trace elements 

in basalts from Site 1149 are similar to N-MORB and those from Site 801. The basalts 

from Hole 1149D-Unit 6 point to E-MORB with high Zr/Y and Nb which compare well 

to E-MORBS from EPR (Figure 5.6). Work by Talbi and Honnorez, (2003), Kelley et 

al, (2003), indicate emplacement of secondary minerals and chemical exchange with 

the basement at Site 1149. Such observations preclude the use of mobile elements to 

assess the primary chemistry of Site 1149 basement. Variation in Sr-Nd-Pb systematics 

at Site 1149 (Hauff et al., 2003) indicate that extensive isotopic exchange has taken 

place at Site 1149. Some very high 206Pb/204Pb (23.70-26.86) and 207Pb/204Pb (15.73-

15.83) is reflect increases in 238U/204Pb ratios, that indicate input of seawater derived U 

(Hauff et al., 2003). In addition, the same authors indicated that alteration of the ocean 

crust may affect mixing within the Mariana arc. Hydrothermal alteration clearly plays a 

critical role in the evolution of basement at Site 1149, therefore, based on work from 

previous studies and observations made this study, the petrographic, geochemical, and 

isotopic trends with alteration are discussed in this section.  
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5.2. Basement Alteration 

 

Shipboard and shore based studies and additional material from this study is used to 

characterize alteration at Site 1149. Hand specimen descriptions, petrography, 

alteration logs and vein logs are used to assess the extent and distribution of secondary 

mineralogy, the relationships and distribution of alteration halos, and the characteristics 

of veins and breccia. Ultimately, as with Site 1179, these observations will form the 

foundations for insights from geochemical data, because chemical changes as a result of 

seawater alteration are fundamentally tied to the nature and characteristics of the 

secondary mineralogy. 

 The upper basement of Site 1149 is made up of pillow lavas, pillow lavas 

breccias, hyaloclastites and thin flows that are slightly to intensely altered. Plank et al., 

(2000) identified the visible manifestations of alteration at Site 1149 as the replacement 

of groundmass minerals and phenocrysts, the filling of vesicles and interstices, and 

formation and filling of veins and miarolitic zones by secondary minerals. Secondary 

minerals observed at Site 1149 include celadonite, Mg-saponite (Talbi and Honnorez, 

2003), iron-oxyhydroxide and calcite.  

 Bright green/blue celadonite occurs throughout the basement at Site 1149, 

replacing mesostasis and rare plagioclase phenocrysts, filling vugs, vesicles and 

fractures. It is typically overprinted by late stage iron-oxyhydroxides and saponite, 

hence its identification in hand specimen and thin section is difficult.   

 
Figure 5.9. Sample 185-1149D-18R-1, 75-18cm. Olivine phenocryst replaced by 
saponite and iron-oxyhydroxide to form a pseudomorph. Plane Polarized light 200x 
magnification. 
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 Saponite occurs throughout Site 1149 and it fills vugs, vesicles, interstices, and 

replaces glass, plagioclase and olivine. Saponite at ODP Site 1149 occurs as amorphous 

green to brown agglomerations and/or fine needle-like crystals in plane polarized light. 

Identified as Mg-Saponite by Talbi and Honnorez, (2003), Saponite may occur as a 

pseudomorph that results from the replacement of olivine, however more commonly 

such pseudomorphs occur as saponite and iron-oxyhydroxide (185-1149B-29R-2, 27-32 

cm, Figure 5.9). Saponite at Site 1149 commonly occurs with celadonite and iron-

oxyhydroxides and although these associations are largely the result of overprinting, 

saponite may have a varying amount of iron oxhydroxide present within clay lattice 

(possibly the result of mixed interlayers during crystallization of the clays).   

 
Figure 5.10. Example of carbonate vein in hand specimen and thin section (Sample 
185-1149D-19R-1, 18-14 cm). Photomicrograph is taken in cross polarized light at 50x 
magnification. 
 

Iron-oxyhydroxide is characterised by dark red or brown patches replacing plagioclase, 

clinopyroxene, mesostasis and olivine. Typically, iron-oxyhydroxide overprints 

saponite and celadonite but it may also intermix (see earlier) giving rise to translucent 

brown to yellow brown patches. A detailed study of the compositional variation of clay 

minerals by Talbi and Honnorez (2003) established that iron-oxyhydroxides formed 

from a K and Fe rich oxidative solution and that the colour change reflects the varying 

content of celadonite, iron-oxyhydroxide and saponite.   

 Finally, carbonate is bright white in thin section (Figure 5.10) and hand 

specimen and forms veins and fills vugs, vesicles and, rarely replaces interstitial areas 
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within the groundmass carbonate crystals tend to be fine to medium grained and 

anhedral. In vugs and large veins euherdal ‘dog tooth’ calcite may form. 

 Rare phillipsite was identified as open space fillings in hyaloclastites (Talbi and 

Honnorez, 2003). 

 

 

5.2.1 Veins 

 

Throughout Site 1149, veins filled with secondary minerals saponite, celadonite, iron-

oxyhydroxide and calcite occur in varying proportions (Plank et al., 2000). The 

abundance of veins at Site 1149 is high at 34 veins per metre (Plank et al., 2000), 

similar to Sites 504 (31 veins per metre), Site 1256 (27 veins per metre), and Site 801 

(24 veins per metre). Core 185-1149C-7R exhibits an extremely high vein density of 50 

veins per metre. However, the volume percentage of veins at Site 1149 is relatively low 

(2.3%), This partially relates to shipboard logging because the majority of secondary 

minerals at Site 1149 are contained within the breccias (discussed later in this section) 

and vein nets. Some of these sections are composed of as much as 7% by volume of 

vein nets. 

 Vein thickness varies from <0.1 to 20 mm, with a number of large spectacular 

veins of carbonate with subordinate saponite and iron-oxyhydroxides. These veins can 

be vuggy, for example Samples 185-1149B-30R-2, 130-134 cm and 185-1149B, 30R-1 

93-95 cm (Figure 5.2.3). 

 
Figure 5.11. Examples of calcite vugs at ODP Site 1149.  
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 Celadonite occurs in veins as a rare and minor phase in multi-minerallic veins or 

as thin hairline (<0.1mm) veins; for example, Sections 185-1149B-32R-1, 107-111 cm 

and 25-28 cm (Figure 5.12). Celadonite is commonly replaced and/or overprinted by 

iron-oxyhydroxide, saponite, and carbonate. Although no direct evidence is available, it 

is likely that remnant celadonite halos are associated with the celadonite veins. 

Overprinting has nearly obscured all of this mineral phase with <0.5 % by volume of 

veins remaining as celadonite.  

 

 
Figure 5.12, Examples of celadonite veins at ODP-Site 1149. A vesicle with discrete 
celadonite and saponite is shown. The vein in Sample 185-1149B-32R-1, 25-28 cm 
shows discrete celadonite that is overprinted by saponite, followed by iron-
oxyhydroxide and finally, carbonate. Photomicrographs are taken in cross polarised 
light at 50x and 100x magnification respectively.  
 

 Saponite veins comprise 32 vol % of veins and range in thickness from <0.1 

mm to 2.5 mm. Most saponite rich veins are <1 mm. Saponite is present as a minor 

phase in larger carbonate or iron-oxyhydroxide veins and it can either cross cut 

previous celadonite zones, or form as a late fill of celadonite veins; for example, in 

Sample 185-1149B-32R-1, 25-28 cm (Figure 5.13) and 85-1149B-32R-1, 25-28 cm.  

Multiple stages of vein opening and mineral precipitation are indicated by multiple 

overprinting and veins where saponite overprints iron-oxyhydroxide or saponite can be 

overprinted by celadonite. This supports interpretations by Talbi and Honnorez, (2003) 

who imply that alteration occurs as a series of ‘waves’ during which alteration 

conditions, such as solution chemistry, water/rock ratio, and fO2 change. 
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Figure 5.13. Example of Saponite vein cross cutting a celadonite filled vesicle. Sample 
185-1149D-17R-2, 29-32 cm. Photomicrograph is in cross polarised light and taken at 
50x magnification. 
 

 Iron-oxyhydroxide veins are present throughout Site 1149 range in thickness 

from 0.1 mm to 5 mm thick, and it is typically a major component of multi-minerallic 

veins forming ~4.6 vol % of veins. Formation of iron oxyhydroxide veins may be the 

result of oxidation of early secondary Fe sulphides or alteration of igneous Fe oxides 

(Plank et al, 2000). Figure 5.14 A shows an example of a small iron-oxyhydroxide vein 

with an associated halo and examples in which iron-oxyhydroxide occurs prior to 

saponite (B and C).  

 Carbonate veins cross cut all other secondary mineral phases (Figures 5.11 and 

5.15) and often fill re-opened veins. A number of carbonate veins exhibit multiple fill 

stages where crystal growth into a void is followed by a later growth of anhedral calcite 

(Figure 5.15). Carbonate veins make up 61 % of all vein material recovered. Rare 

quartz and pyrite were observed in veins in Hole 1149B. Pervasively  

 The distribution of veins at ODP Site 1149 is shown in Figure 5.16. With the 

exception of quartz and pyrite, all other vein minerals appear throughout ODP Site 

1149. The volume of veins remains fairly consistent with depth. Depths of 70 msb and 

100 msb have the lowest volume of veins. 
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Figure 5.14. A. Iron oxyhydroxide veins and halo within Sample 185-1149D-10R-1, 
92-96 cm. Photomicrograph is taken in plane polarised light (PPL) at 50x 
magnification. B. Iron oxyhydroxide vein with saponite centre in Sample 185-149D-
8R-1, 108-110 cm (100x magnification in crossed polarised light). C. Example of Iron 
oxyhydroxide vein cross-cut by saponite vein in Sample 185-1149D-9R-2, 24-28 cm 
(100x magification in PPL). 
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Figure 5.15. Example of secondary calcite fill within a vug. Sample 185-1149D, 11R-2, 
78-80 cm. Photomicrograph is taken in plane polarised light at 50x magnification. 

 
Figure 5.16. Volume percentage of veins at ODP Site 1149. Volumes are calculated on 
a core by core basis and they are normalised to account for recovery. The presence of 
celadonite within veins in thin section is also recorded.  
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5.2.2 Halos 

 

The occurrence of alteration halos is strongly related to zones of fracturing and surfaces 

that are exposed to circulating fluids. These include veins, brecciated zones, cooling 

fractures and pillow boundaries. The variation in halos observed by Plank et al., (2000) 

and Talbi and Honnorez, (2003) mirror observations made in this study. Complex halos 

vary in colour from brown on the exposed surface, followed by a dark green halo that 

forms the bulk of the halo (cm scale). The dark green halo is commonly fronted by a 

narrow discontinuous red band (~1-2 mm thick) which forms a boundary between the 

host rock and the halo (Figure 5.17 E). Classification of halos are based on relatively 

distinct secondary mineral assemblages, which relate to colour variation including; dark 

green to dark grey, buff to brown / patchy buff to brown, red to dusky red and complex 

mixed halos.  

 Dark green to dark grey halos are characterised by the presence of celadonite 

replacing mesostasis, and vesicles although celadonite is typically overprinted by later 

saponite and iron oxyhydroxide. The extent of dark green to dark grey halos is clearly 

defined due to the relatively sharp halo front (Figure 5.17 C). Beyond this front only 

saponite (brown/pale yellow green/buff coloured) and iron oxyhydroxide (dusky 

red/brown) are identified. Dark green to dark grey halos occur in similar abundances 

throughout Site 1149.  

 Buff to brown coloured halos are ubiquitous throughout Site 1149 and nearly 

always overprint and extend over dark green halos (See Figure 5.2.9A and E). These 

halos are characterised by replacement of mesostasis, olivine, and occasionally 

plagioclase and clinopyroxene by saponite. Vesicles and amygdales are also filled with 

saponite. Buff to brown halos commonly form a mottled/patchy halo front (Figure 5.17 

D and E) that ranges from complete to slightly patchy. Plank et al., (2000) suggest that 

the mottling are zones that are lacking in primary Ti magnetite and they may have 

formed by dissolution of iron oxide. What is also apparent, is that mottling only occurs 

where the brown outer halos are directly associated with the veins, this suggests that the 

mottling is the result of fluid flow. Brown halos cover ~20% of basalts recovered at 

Site 1149, however, the true figure is around 40 to 50% when the effects of 

overprinting are taken into account.  

 Dusky red to red/brown halos are predominantly composed of iron-

oxyhydroxide and mixtures (possibly interlayered) iron-oxyhydroxide and saponite. 
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The halo may be narrow (~1-5mm) or large enough to encompass the whole sample. 

Red/brown halos are typically associated with iron-oxyhydroxide veins. Interstitial 

zones and primary mineral phases, including plagioclase, olivine, and clinopyroxene 

are partially to entirely replaced by saponite and iron-oxyhydroxide. Iron-oxyhydroxide 

halos at Site 1149 produce well defined halo fronts, some of which are lined by 

discontinuous irregular patches of iron-oxyhydroxide where near or total replacement 

has taken place, e.g., Figure 5.2.9D.   

Other styles of halos present include complex overprinting in which the original 

sequence is obscured by further stages of secondary mineral emplacement or where 

there is local variation in halo coverage across all stages, (e.g. Sample 185-1149D-16R-

2, 77-81 cm, Figure 5.17 A). Incomplete halo assemblages, where one or more mineral 

phase is missing, occur throughout ODP Site 1149 and potentially reflect local variation 

in fluid composition.  

 Halos cover approximately 34% by volume of basalt of which 14% is dark 

green and 20% is brown (Plank et al., 2000). All other halo types, including the red 

alteration front represent <1% of total volume. Figure 5.18 shows the variation in 

alteration halo styles vs. depth, The top three fifths of Site 1149 (0-55 msb) is 

dominated by dark green/dark grey halos, whilst the lower two fifths of the hole (55 to 

140 msb) is composed of saponite and iron-oxyhydroxide dominated halos. 

Overprinting by iron-oxyhydroxide halos has obscured the original extent of the dark 

green halos. These halos would have been present at similar volumes throughout ODP 

Hole 1149. 

 Based on the relationships observed between secondary mineral phases within 

the veins and groundmass the relative timing of secondary mineral paragenisis is 

outlined in Figure 5.19.  Multiple stages of overprinting, and locally variable alteration 

conditions make timing hard to assess, particularly between saponite and iron-

oxyhydroxides. Based on element distribution patterns and variations in the octahedral 

atoms in clay minerals at Hole 1149D and 801C, Talbi and Honnorez (2003) indicate 

that celadonite, saponite and iron-oxyhydroxides are evolutionary stages in which 

mixed layered clays form from a phyllosilicate precursor.  
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Figure 5.17. Variation in alteration halos at ODP Site 1149. A: Alteration front of 
saponite which overprints celadonite halo giving distinctive dark colour and late Iron-
oxyhydroxide patches. The sample has extreme local variation B: Narrow Iron 
oxyhydroxide halo around carbonate vein overprinting earlier saponite halo. C: Dark 
grey/green halo (Celadonite) halo and saponite/ iron-oxyhydroxide halo. D: Iron 
oxyhydroxide patch overprinting saponite patch. Patchy texture of saponite in thin 
section gives rise to mottled effect in hand specimen. E: Complex halos demonstrating 
the main alteration phases. Photomicrographs A, B, C, and D are at 25x, 50x, 50x, and 
100x magnification and they are (except ‘C’ which is in cross polarised light) in plane 
polarised light.  
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Figure 5.18. Extent and distribution of alteration styles and breccias vs. depth (msb) at 
ODP Site 1149. Volumes are normalised to account for recovery. 
 

 
Figure 5.19. Relative timing of secondary mineral paragenisis at Site 1149. 

 

 

 

 267



Site 1149   5.2 

5.2.3 Breccias 

 

Breccias are present in ODP Hole 1149B (4 subunits), Hole 1149C (1 subunit) and 

Hole 1149D in sections 185-1149D-11R-1 to 11R-2, 13R-1 and 16R-1 to 16R-2.  The 

distribution and extent of breccias are recorded in Figure 5.2.10. They consist of 

basaltic breccias, hayaloclastite breccias and pillow-rim breccias, and make up 13.5% 

of the recovered basement. The sections in ODP Hole 1149D that contain hyaloclastite 

and pillow-rim breccias are the most intensely altered portions of recovered ODP Site 

1149 basement (Plank et al., 2000).  

 Basaltic breccias (Figure 5.20 B) form the majority of Section 185-1149D-11R-

3. Basalt clasts are subangular to angular and vary in size from 5-20 cm and they 

exhibit alteration similar to that of Sections 185-1149D-11R-1 to 11R-2, 13R-1 and 

16R-1 to 16R-2. The cement is largely composed of calcite with minor saponite and 

rarely, iron-oxyhydroxide on the margins of the clasts. Sample 185-1149D-11R-1, 78-

80 cm exhibits a boundary of euhedral ‘dog tooth’ calcite crystals within the matrix, 

indicating at least two stages of calcite fill (Figure 5.15). Other basalt breccias, 

including sample 185-1149D-16R-2, 77-81 cm (Figure 5.20 C), contain tiny <0.5mm 

basalt fragments within the matrix. A lack of any well rounded clasts and the lack of 

any sorting suggest the basaltic breccias formed in-situ.  

 Hyaloclastite breccias are composed of highly altered, zoned, angular glass 

shards that range in size from <1 mm to 10 mm in a cement of saponite, celadonite and 

minor calcite (Figure 5.20A). Hyaloclastite breccias commonly occur on the boundaries 

of pillow basalts and where this is clearly evident, these are termed pillow-rim breccias. 

Some units (e.g., ODP Hole 1149B, Subnunits 1-12 and 1149D subunits 4-5) contain 

highly altered rounded glassy clasts. Rare bands of interpillow sediment occur at ODP 

Site 1149 (e.g., Section 1149B-29R-1, 134-140 cm, Figure 5.21). 
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Figure 5.20. Examples of breccias at ODP Site 1149. A, Hyaloclastite breccia B, 
Basaltic breccia C, Microbreccia. Photomicrographs are in plane polarised light at 25x 
magnification. 
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Figure 5.2.13, Matrix composed of interpillow sediment, elongate heavily altered glass 
shards, saponite, iron-oxyhydroxide and calcite. Photomicrograph taken in plane 
polarised light at 25x magnification. 
 
 
5.2.4 Summary 

 

 The petrographic observations made in this study, Plank et al., (2000), and Talbi 

and Honnorez (2003) provide insights into the timing of secondary mineral formation at 

ODP Site 1149. Sections 185-1149D-11R-1 to 11R-2, 13R-1 and 16R-1 to 16R-2 are 

the most altered samples at ODP Site 1149. They are intensely altered to a dark brown 

to orange tan colour with no distinct halo present. This is thought to be caused by the 

high degree of fracturing in these sections coupled with a fine grained texture (see 

‘Breccias’) (Plank et al., 2000). Low temperature (< Sub 1000C) alteration at ODP Site 

1149 consists of at least four alteration stages, all of which are sourced from open 

fissures and exposed surfaces.  

 Stage One (Celadonite) is marked by formation of thick dark green/grey 

celadonite alteration halos that propagate from celadonitic veins, filling vesicles, 

interstitial areas and replacing some olivine and mesostasis.  

 Stage Two is defined by overprinting of the dark green/grey halos by saponite 

with variable iron content and a distinctive mottled alteration front. Celadonite 

veins are completely or partially replaced by saponite.  

 Locally variable brown to dusky red iron-oxyhydroxide halos and oxidation 

and/or overprinting of the saponite/celadonite veins marks Stage Three. Stage 

Two and Three are likely to be transitional given the gradation present in some 
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alteration halos and the variable iron content of saponite (as suggested by colour 

variation) in addition, saponite can cross-cut iron veins.  

 Finally, precipitation of multiple late stage carbonate veins fill reopened veins, 

form new veins or can replace the pre-existing vein minerals. Figure 5.22 

summarises the timing of secondary mineral emplacement and alteration at 

ODP Site 1149.  

 
 

 
Figure 5.22. Relative timing of secondary mineral paragenisis and alteration 
assemblages at ODP Site 1149.  
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The change from celadonite to saponite and iron-oxyhydroxide probably reflects 

the transition from an open, oxidizing system, where the relatively young crust has little 

or no sediment cover, to a more restricted regime, where reducing conditions are set up. 

Such a change may occur as secondary mineral precipitation fills up all available 

fissures and pore space. Increased sediment cover over time may also contribute to 

restrictive conditions and a slight rise in temperature at Site 1149. Further study is 

required to determine the thermal regime for each alteration stage. Late stage carbonate 

veins may reflect late reopening, possibly due to earthquakes and/or flexure of the 

ocean crust due to its position near the Izu-Bonin trench (Plank et al., 2000). Flexure of 

the ocean crust may explain overprinting of alteration sequences with earlier phases, 

forming complex halos (Figure 5.17 A).  
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5.3.  Alteration Geochemistry 

 

Following similar methods and analysis carried out for Sites 1256 and 1179, Whole 

rock samples, secondary minerals in veins and breccias have been analysed for their 

concentrations of major elements, trace elements, REE, Sr-isotopic ratios and where 

possible, oxygen, carbon isotopic ratios (See chapter 2 ‘methods’ for analytical details). 

Separation of alteration assemblages, least altered whole rocks, and leachates augment 

the petrographic observations to help characterise low temperature alteration at Site 

1256. Comparisons with the petrographic observations described earlier and sample by 

sample calculation of the protolith composition help to establish a quantitative estimate 

of chemical change that has occurred at Site 1149 because its formation. Vein minerals 

and Sr-isotopic ratios of secondary carbonate and whole rocks help define the 

conditions in which secondary minerals precipitated and the evolution of fluid during 

low temperature hydrothermal alteration. 

 

 

5.3.1 Whole Rock Geochemistry  

 

In order to constrain the isotopic and chemical variation as a result of alteration, 

analysis of 95 whole rock samples and 24 Carbonate vein minerals separates were 

carried out for Site 1149. Analyses include 87Sr/86Sr, δ18O, δ13C, Major elements, trace 

elements and REE. These include pairs of alteration halo/background and leaches (See 

appendix B, 3 for whole rock, D, 3 for carbonate, and Chapter 2 for leachate data 

tables). Samples were selected based on alteration assemblage and their distribution 

down hole at Site 1149. At 65 to 84 msb and 85 to 105 msb low recovery has led to a 

lack of available samples within these intervals, therefore unless further samples can be 

acquired these gaps in sample distribution will remain. 

Selected major element and trace element profiles are plotted vs. depth in 

Figures 5.23 and 5.24 with regard to their alteration styles and basement stratigraphy.  
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Figure 5.23. Selected major and trace concentrations in Site 1149 whole rock samples vs. depth. Alteration styles are highlighted within the data 
points. Site 1149 stratigraphy, recovery and the cumulative total of each alteration style at Site 1149 vs. depth is included for reference. 
White squares = data from Hauf et al, (2003); Kelley et al, (2003); and Rouxel, (2003). Stratigraphy is redrawn from Plank et al., (2000) 
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Figure 5.24. Selected trace and REE concentrations in Site 1149 whole rock samples vs. depth. Alteration styles are highlighted within the data 
points. Site 1149 stratigraphy, recovery and the cumulative total of each alteration style at Site 1149 vs. depth is included for reference.  
White squares = data from Hauf et al, (2003); Kelley et al, (2003); and Rouxel, (2003). Stratigraphy is redrawn from Plank et al., (2000) 
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Variation between major/trace/REE, alteration style, and depth are indistinct. The 

greatest range in alteration styles and intensities occurs within the mixed halos and 

brecciated regions. Buff/grey background exhibits low K2O, Fe2O3, MnO, LOI, Rb, 

Cs, and the highest Mg# compared to the other assemblages. These observations a

consistent with the relatively minor emplacement of secondary minerals observed 

petrographically in buff/grey background rocks. In contrast, Dark green to dark grey 

halos have high K

re 

 

 

, 

2O, Fe2O3, MnO, LOI, Rb, Cs, low Mg# and slightly reduced CaO 

compared to buff/grey background . Incorporation of celadonite, iron-oxyhydroxides 

and saponite and the partial replacement of plagioclase witnessed in these halos (See 

section 5.2 ‘alteration’) is the most likely explanation for these changes. Similarly 

red/brown halos (High Fe2O3, Rb, Cs and low CaO, Mg#) and mixed halos (Elevated 

Fe2O3, K2O, Rb, Cs, LOI and low CaO, Al2O3, MgO, Mg#) reflect the incorporation of

secondary phases into the host rock and the replacement of primary phases. Breccias at 

Site 1149 exhibit the greatest chemical variation with notable increases in Fe2O3, K2O, 

and LOI, and apparent reductions in CaO, Na2O, MgO and Mg#. One sample has 

greatly reduced SiO2 this probably reflects the large proportion of secondary minerals 

within the matrix and clasts resulting in a volumetrically lower proportion of primary 

silica bearing phases. Low CaO and Mg reflects the partial replacement of plagioclase 

and olivine respectively. K and Fe most likely reflect celadonite and iron-oxyhydroxide 

emplacement whereas elevated mobile trace elements such as Sr, Rb and Cs reflect 

their incorporation into clay minerals such as saponite and celadonite. Determination of 

the Fe-oxidation ratio is required to determine the oxidised proportion of Fe hence we 

can make better estimations of the oxidation levels at Site 1149 (e.g. Alt et al., 1993). 

 

 Selected major trace and REE vs. LOI for a range of sample pairs are shown in 

Figure 5.25. Despite some clear changes in the concentrations of SiO2, Fe2O3, K2O,

MgO, Rb, and Cs, trends between sample pairs and LOI are highly variable and 

indistinct. However the concentrations of the same selected major, trace and REE vs. 
87Sr/86Sr (Figure 5.26) and Fe2O3 (Figure 5.27) for Site 1149 sample pairs exhibit clear 

trends between altered ‘halo’ portions and least altered ‘background’ alteration. 

Reductions in SiO2, Al2O3, MgO, Na2O, Ni, Y, U and Increases in Fe2O3, MnO, K2O

Rb, and Cs within the altered ‘halo’ samples supports the petrographic observations that 

a greater proportion secondary minerals replaces groundmass/phenocrysts and fills 

vesicles within the halos.  Variations between the chemical change for different 
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alteration styles within these plots remains indistinct. Mixed and brown halos appear to 

show the most variability which reflects the varying degrees of alteration intensity and 

overprinting these samples have been subjected to. Samples 149-1149D-16R-2, 143-

146 cm; 17R-1, 39-42 cm; 17R-2, 29-32 cm; and 18R-1, 75-80 cm all have elevated Sr, 

Cs, Ba and La/Sm values compared to the other sample pairs. In addition there is little 

change in the concentration of Sr, Cs, and Ba between the background and halo 

subsamples despite comparisons with LOI, 87Sr/86Sr, and Fe2O3. The differences in 

these samples strongly imply primary magmatic variation, and that the interval from 

which these samples were taken (108.35 to 125.39 msb) represents a slightly different 

source to the rest of the basement at Site 1149, This is consistent with the E-MORB 

affinity that has been ascribed to this interval (Plank et al., 2000).  

 

 

5.3.2 Chemical changes 

 

Utilising the same methods employed at Sites 1179 and 1256 (See Chapters 3 and 4 

respectively), chemical change at Site 1149 has been calculated. For consistency and so 

that direct comparisons can be made with the other sites (See later in Chapter 7) in this 

study the immobile element Ti is used as the monitor of fractionation and a protolith is 

calculated for each sample in an attempt to remove as much of the alteration effects 

from the basaltic samples, this includes ‘background’ alteration associated with the 

least altered grey and buff coloured background rocks (full methodology is discussed in 

Chapter 3). As with Sites 1179 and 1256, the protolith composition for each sample is 

derived from, 1) best fit linear regression lines of the element in question vs. TiO2, 2).  

Element Concentration  Unit           Reference                  

SiO2        49.93   wt% Mckenzie and O’Nions (1991) 
Al2O3        15.90   wt% Mckenzie and O’Nions (1991) 
CaO        11.62   wt% Mckenzie and O’Nions (1991) 
MnO          0.171   wt% Mckenzie and O’Nions (1991) 
LOI          0.20   wt% Alt et al, (1989); Danyushevsky (2001) 
 
Table  5.1. List of protolith element concentrations derived from sources other than Site 
1256 whole rock samples. 
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Figure 5.25 A. Selection of major (wt %), trace (ppm) and REE (ppm) plots vs. LOI (wt %) for Site 1149 Sample pairs in which halos directly 
adjoin relatively fresh background. Data point legend shown in Figure 5.24 Grey squares = grey background. White squares = data from Hauf et 
al, (2003); Kelley et al, (2003); and Rouxel, (2003).  
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Figure 5.25 A, continued. 
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Figure 5.25 B, Selection of major (wt %), trace (ppm) and REE (ppm) plots vs. 87Sr/86Sr for Site 1149 Sample pairs. 

 280



Site 1149            5.3 

 
Figure 5.25 B, continued. 
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Figure 5.25 C, Selection of major (wt %), trace (ppm) and REE (ppm) plots vs.Fe2O3 (wt %) for Site 1149 Sample pairs. 
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Figure 5.25 C. Continued.
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Where best fit linear regression is not possible by the average compositions of the least 

altered samples, or 3) average N-MORB or EPR-MORB from the literature. The 

process from which these changes are calculated is outlined in Figure 3.24., in addition 

the values for N-MORB and EPR-MORB used for calculations at this site are outlined 

in Table 5.1.  

 Regression plots for all elements vs. TiO2 and the selected least altered samples 

at Site 1149 are included in the Appendix (Section C, 3). Chemical change for each 

alteration style is calculated and then weighted according to the volume of core that 

each alteration style occupies. The compositions and abundances of vein and breccia 

matrixes are factored to produce an overall weighted average chemical change for Site 

1149. The petrography and chemical changes observed within sample of brown altered 

breccia clasts 185-1149D-11R-3, 44-49 cm, is comparable to that seen in whole rocks 

that exhibit the equivalent alteration style (Table 5.2).  
185 185 185 185 185 185 185 185 185 185 185 185 185 

1149B 1149D 1149D 1149D 1149D 1149D 1149D 1149D 1149D 1149D 1149D 1149D 1149D 
31R-1 11R-1 16R-2 11R-3 11R-1 11R-2 11R-4 11R-2 11R-2 9R-2 17R-1 14R-1 17R-1 

Expedition, 
hole, core, 

interval (cm) 
93-104 30-37 77-81 44-49 30-37 65-68 24-27 78-80 65-68 24-28 39-42 0-4 39-42 

Depth (mbsf) 426.9 358.2 408.2 361.11 358.2 359.9 362.4 425.9 359.9 340.2 415.9 386.6 415.9 

Rock type Hyalo pillow 
breccia 

pillow 
lava 

basaltic 
breccia 

Breccia 
clasts 

Massive 
flow 

Massive 
flow 

Massive 
flow 

Massive 
flow 

Pillow 
lava 

pillow 
lava 

pillow 
lava 

pillow 
lava 

Notes whole 
breccia 

whole 
breccia 

whole 
breccia 

brn 
clasts 

red 
clasts/m

atrix 

brn/gy/rd 
mix 

Brn/red 
mixed 

brn/red 
mixed 
halo 

red/bn 
mixed 
halo 

brn brn red red 
halo 

SiO2 (wt %) 50.12 48.36 34.16 48.53 50.76 46.28 48.21 49.37 49.57 50.51 47.55 49.40 48.15 
Al2 O3 (wt 

%) 10.53 15.99 10.35 15.13 13.65 13.59 14.75 14.74 14.98 15.06 15.25 15.12 15.80 

Fe2 O3  (wt 
%) 

MgO (wt %) 

14.57 11.22 8.22 11.81 13.69 12.44 13.30 11.86 10.15 8.62 12.97 8.76 9.76 

10.39 7.64 5.17 5.89 6.70 6.42 6.59 7.08 7.04 6.90 6.32 7.83 6.96 
CaO (wt %) 1.66 2.32 22.08 9.13 1.26 10.72 8.83 8.71 10.13 11.26 9.97 10.04 10.95 

Na O (wt %) 2

K O (wt %) 
0.99 1.86 2.34 2.98 1.64 2.58 2.80 2.98 2.91 2.79 2.69 2.83 2.73 

2

TiO  (wt %) 
3.31 1.60 0.55 0.74 3.37 0.71 0.90 0.72 0.43 0.29 0.74 0.44 0.55 

2

MnO (wt %) 
1.30 2.25 1.22 1.81 1.71 1.64 1.75 1.78 1.81 1.77 1.80 1.81 1.83 
0.05 0.12 0.18 0.23 0.09 0.21 0.19 0.18 0.19 0.14 0.21 0.16 0.19 

P2 O %) 

F 7.40 10.67 

Ba  (ppm) 53.60 36.52 11.96 11.92 50.09 12.46 14.62 13.38 12.03 9.76 29.99 14.16 33.78 

 
m breccia. The complete dataset for 

ite 1149 can be found in Appendix section B, 3. 
 

5 

LOI 
(wt 0.01 0.04 0.13 0.22 0.02 0.14 0.17 0.25 0.17 0.21 0.20 0.15 0.20 

6.87 6.54 15.24 3.09 6.49 3.46 2.06 1.91 1.79 0.96 1.99 2.35 2.77 
Total 99.80 97.94 99.64 99.56 99.38 98.19 99.55 99.58 99.17 98.51 99.68 98.89 99.89 

eO* (wt %) 
 

13.11 
 

10.10 
 

10.63 12.32 
 

11.19 11.97 
 

9.13 
 

7.76 
 

11.67 
 

7.88 
 

8.78 
     

Co (ppm) 33.6 80.8  34.5  39.9 34.3 32.9 41.3 46.6 33.1 43.6 42.4 
Cr  (ppm) 205.9 227.6 110.3 157.5 167.5 198.0 175.1 269.3 184.0 211.9 344.0 208.5 487.4 
Cu  (ppm) 41.1 91.1 41.1 46.4 107.7 77.4 43.8 68.8 94.9 37.1 38.4 66.7 52.1 
Ni  (ppm) 67.4 77.6 47.7 44.6 89.5 46.5 46.4 53.3 52.7 69.5 55.7 60.4 119.9 
Sc  (ppm) 34.3 56.5 56.2 46.4 53.2 41.5 44.9 55.8 46.3 46.9 41.2 46.6 41.2 
V  (ppm) 80.6 342.2 294.7 355.2 153.5 353.9 364.4 363.4 332.7 311.3 341.9 326.4 327.5 
Zn  (ppm) 72.2 85.0 92.5 126.2 110.5 124.5 129.6 114.7 109.2 85.7 110.4 111.3 94.8 
R (ppm)b   
Sr  (ppm) 

65.2 18.5 8.4 16.4 53.5 17.6 21.3 15.8 6.7 2.5 14.2 4.2 6.7 
52.2 82.9 130.5 132.9 60.6 116.4 117.6 128.4 125.2 121.5 163.8 127.3 169.9 

Y  (ppm) 7.5 19.8 54.5 45.4 12.1 35.0 37.7 43.8 37.8 48.0 38.0 38.8 33.8 
Zr  (ppm) 76.2 151.4 76.1 112.6 111.1 96.3 103.5 110.6 102.1 110.2 127.2 113.2 113.3 
Nb  (ppm) 1.96 4.19 1.92 3.14 2.84 2.59 2.64 2.98 2.47 2.56 6.57 3.13 5.88 
Cs  (ppm) 0.70 0.35 0.20 0.52 1.05 0.55 0.76 0.44 0.16 0.02 0.49 0.07 0.11 

 
Table 5.2 Breccia samples and selected samples of red/brown halos (bold). A 
representative suite of major and trace element data is included for illustration. For 
comparison, whole breccia analyses is included.  Halo = Hyaloclastite, brn = brown, gy
= grey. Samples in bold are clasts sub-sampled fro
S
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As such the analysis of this clast has been included with the other brown halos. Sample 

185-1149D-11R-1, 30-37 cm (clasts) is extensively altered when compared to other 

‘red halo’ samples, with very high LOI, K2O, Fe2O3, Sr, Ba and low CaO, Na2O. As

such this sample represents very high fluid fluxes with intensive replacement of the 

groundmass that is not characteristic of other red/brown halos at Site 1149. In addition 

these clasts are riddled with numerous fractures and veins, therefore the ‘clasts’ 

analysed actually contained a large proportion of matrix material. As such it is not 

classified as a halo, rather a mix of clast and matrix. 

 

 

 

5.3.2.1  Results 

 

Multi-element diagrams show the chemical changes for major, trace elements and REE 

for Site 1149.  Chemical changes (g/100g and mg/100g) are plotted with regards to 

alteration style in Figure 5.26 charts the chemical changes across all alteration styles 

and associated vein and breccia matrixes. Calculations from which these results are 

derived are provided in Section D (Appendix). To compensate for the lack of in-situ 

analyses of secondary minerals at Site 1149, secondary mineral compositions are 

sourced from a range of basement sites (See Table 5.3).  

Mineral Site source   Reference 

Saponite 504  Bach et al, (1996), Noack et al (1996) 
 896  Laverne et al, (1996), Teagle et al, (1996) 
 1224  Paul et al, (2006)  
 843  Waggoner (1993), Alt (1993) 
      
Celadonite 504  Bach et al, (1996), Noack et al (1996) 
 896  Laverne et al, (1996), Teagle et al, (1996) 
 843  Alt (1993)   
      
Iron-
oxyhyroxides 504  Noack (1993)  
 843  Alt (1993)   
      
Carbonate 504  Noack (1993)  
 896  Teagle et al, (1996)  
 843  Alt (1993)   
      
Zeolites 504  Bach et al, (1996), Noack et al (1996)   
      

Table 5.3. Sources of secondary mineral composition data from oceanic basments Sites 
other than that of Site 1149 or those analysed in this study. Secondary mineral 
compositions were calculated as an average of all available compositions from 
basement within the Pacific Ocean. Outliers and samples with multiple mineral phases 
were excluded prior to calculation. 
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By utilizing data for secondary minerals from a variety of sites, potentially a more 

accurate appraisal of the true chemical change can be obtained because this will provide 

compositions for mineral phases where no analysis has been made. The assumption 

however, is that the composition of secondary minerals from these basement sites is the 

same as those of Site 1149, and different hydrothermal regimes may have led to very 

different chemical compositions. In order to minimise potential variation, secondary 

mineral compositions are only sourced from in-situ basement sites within Pacific ocean 

crust. Only secondary minerals from low temperature fluids <100oC are used to 

construct secondary mineral compositions for Site 1149. Chemical analyses of vein 

minerals at Site 1149 and other sources is located in Section D (Appendix)  

 The chemical changes exhibited within the various alteration styles reflect the 

varying levels of alteration intensity and overprinting at Site 1149. ‘Background’ whole 

rocks, defined as ‘grey’ in the centre of rocks, and buff coloured background (Also in 

the centres of rocks), exhibit similar chemical changes, albeit with some minor but 

significant differences. Grey background rocks exhibit increased Fe2O3, K2O, LOI, Cr, 

Sr, Ba, Dy and decreased SiO2, Al2O3, MgO, CaO, Total and Cs. Buff coloured 

background rocks have increased concentrations of MgO, K2O, LOI, Total, Rb, Sr, Ba 

and decreased Si, Al, Fe, Ca, V, Zr and Cs. These changes reflect minor incorporation 

of clay minerals (saponite and celadonite) into the background, paticulary the buff 

coloured rocks and minor replacement of interstitial material and groundmass minerals. 

Buff halos have a marked decrease in Fe2O3 compared to the grey background rocks. 

‘Background’ differs slightly in that it has, in addition to the changes observed in the 

buff whole rock samples, increased Fe2O3, Nd, Gd, Dy, and Hf. The relatively elevated 

Sr, Y, and REE and within these background samples compared to other alteration 

styles (See Figure 5.26) implies that greater interaction between host rock and 

hydrothermal fluids occurred in these rocks, perhaps during initial cooling near the 

ridge axis. Dark green/grey halos exhibit large increases in Fe2O3, K2O, LOI, Rb, Ce, 

Nd and minor increases in Sr, Ba, Dy. Decreases in the concentrations of SiO2, Al2O3, 

CaO, Total, Cs, and Cr are also observed. High Fe and K in these halos reflect the 

incorporation of celadonite and iron-oxyhydroxides. Partial replacement of primary 

phases for example, plagioclase, olivine and clinopyroxene may explain the decrease in 

Al, Ca, and Cr. Brown and red halos similarly record incorporation of iron-

oxyhydroxides and replacement of primary phases. Changes within these halos include 

the highest increases in Fe2O3 and LOI, increases in K2O, Rb, Sr, Ba, Ce, Nd, and Dy,
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Figure 5.26. Chemical changes across all alteration styles and vein minerals for low temperature alteration within the basement section of 1149. 
The addition of elements from vein minerals and breccias is a weighted average abundance based on the volume of core occupied by veins and 
breccia. Bars indicate propagated error.
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and decreases in SiO2, Al2O3, CaO, and Total. The relatively high levels of LOI and Fe 

reflect high fluid flux of cold oxidizing seawater. Decreases in SiO2, Al2O3, CaO 

reflect the partial replacement of groundmass, including plagioclase, olivin

clinopyroxene. Mixed halos at Site 1149 represent perhaps the most variable levels of 

chemical change because they have the highest degree of error associated with the 

changes. Mixed halos record increases in Fe

e, and 

 

 

2O3, K2O, LOI, Rb, Sr, Y, Ba, and REE 

(La, Ce, Nd, Gd, Sm, Dy and Hf). In addition, decreases in SiO2, Al2O3, MgO, CaO, 

K2O, Total,Cr, Ni and Cu are reported. These changes reflect chemical changes in the 

buff halos, grey halos and brown halos. As such these halos probably represent a 

complex history of multiple alteration stages with extensive overprinting.  

  

 

5.3.2.2  Summary of Site 1149 chemical change 

 

The chemical changes at  Site 1149 reflect the petrographic observation of secondary 

mineral assemblages, the replacement of primary phases and its intensity. Although 

trends with LOI were highly variable, sample pairs showed consistent trends when 

compared to the other proxies of alteration (Fe and Sr-isotope ratios). These trends 

reflect the emplacement if iron-oxyhydroxides, celadonite, saponite and carbonate and 

the replacement of primary phases by these secondary minerals. The style of alteration 

is similar to that of the upper volcanic section of Site 1256, 1179, and 504 in which 

open seawater circulation has led to pervasive oxidation (e.g., Alt, 1993, Alt and 

Honnorez, 1984). Figure 5.27 and 5.28 charts the overall weighted average chemical 

change in absolute values ( g/100g and mg/100g) and percentage change respectively 

for Site 1149 (Based on volume % of core each alteration style and vein mineral 

occupies).  Overall changes at Site 1149 include increased in Fe2O3, MgO, CaO, K2O, 

C, LOI, Rb, Sr, Y, Zr, Ba, and LREE and decreased SiO2, Al2O3, Na2O, Total, V, Cr,

Co, Zn, Cs, Er and Yb. The percentage changes shown in Figure 5.28 indicate the 

relative change in concentration compared to the precursor. The greatest changes 

observed include large increases in Fe2O3, MnO, K2O, P2O5, LOI, Rb, Y, Nb, Ba, and

LREE and decreases in Al2O3, Cs, Hf and Tb. These changes reflect the presence of 

Celadonite and Iron-oxyhydroxide within veins, and replacing groundmass minerals. 

The high Rb (>1600%) and LOI (>600%) reflects the large volumes of seawater 

circulation at Site 1149 and the mobility of Rb. 
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Figure 4.27. Summary of the weighted average chemical changes for Site 1149 volcanics. Changes are expressed as mass gains or losses per 
100g of precursor (Major elements = g/100g, Trace and REE = mg/100g). Bars indicate the propagated error. 
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Figure 5.28. Summary of the percentage chemical change for Site 1149. Bars indicate propagated error.
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Element Change % Element Change % Element Change % Element Change % 

SiO2   Sc   Nb + Dy + 
TiO2   V (-) Cs + + + Ho + 

Al2O3 (-) Cr (+) Ba +  + Er   
Fe2O3 (+) Co (-) La + Tm (+) 
MnO + Ni   Ce + Yb   
MgO   Cu   Pr (+) Lu   
CaO (+) Zn (-) Nd ++ Hf - 

Na2O (-) Rb + + + Sm (+) Ta + 
K2O + + + Sr + Eu + + Pb (+) 
P2O5 + Y + + + Gd + Th + 
LOI + + + Zr (+) Tb (-) U + 

Table 5.4. Summary of percentage chemical changes at Site 1149. + indicates increases 
where + = 10-49 %; + + = 50 – 99 %; + + + = over 100 %. – indicates decreases where 
- = 10-49 % decrease (+) or (-) indicates significant elements that have undergone less 
than 10% change. 
 
Within the whole rocks there is a drop of Silica (~3%) however the addition of silicates 

(quartz and chalcedony) as vein minerals and some breccia matrixes effectively reduces 

the deficit of Si to -0.38 %. This implies that most of the silica leached from primary 

phases is re-precipitated as secondary phases.   

 
 
  
5.3.3 Whole rock isotopic results 

 

A total of 50 whole rock samples were measured for their Sr-isotopic compositions by 

TIMS (See Chapter 2 for methodology). An additional 3 samples were leached to 

determine the primary Sr isotopic composition of Site 1149 basement (Discussed in 

Chapter 2 ‘methods’). In addition Sr and Rb concentrations measured by ICP-MS have 

been used to correct the Sr-isotopic data for Rb-decay. A list of all Sr-isotopic results 

can be found in Table B 3 of Appendix for whole rocks and Chapter 2 for leachate). 

Figure 5.29 is a plot of whole rock Sr-isotopic composition vs. depth at Site 1149 with 

respect to the differing alteration styles. The 87Sr/86Sr of seawater (0 and 132 ma) and 

MORB, basement stratigraphy, and abundance of alteration style is included.  

 291



Site 1149   5.3 

 
Figure 5.29. Whole-rock strontium (87Sr/86Sr) vs. depth for Site 1149 basement. 
Leached whole rock samples are included (Red triangles). Seawater at 0 and 132 Ma 
(McArthur, 2001) and Site 1149 stratigraphy (Plank, Ludden, Escutia, et al., 2000) and 
alteration styles are included.  
 

For the most part, samples are elevated with respect to the average MORB value 

(0.7024-0.7027) and they are all elevated compared to the leached samples (red 

triangles). The incorporation of seawater Sr varies slightly with slightly more elevated 

compositions between 60 and 110 msb. This broadly reflects the variation in alteration 

styles with depth. Because at 60 to 110 mbsf the volume percentage of grey 

‘background’ is at its lowest.  

 Variation between alteration styles is minimal however the least radiogenic 

samples tend to be the grey/buff background. Dark green/black halos are slightly more 

radiogenic albeit variable, many of these samples are only slightly radiogenic and they 

appear to contain less seawater Sr than their buff coloured counterparts. Brown/red 

halos and mixed halos are also highly variable, although, overall they have higher 
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87Sr/86Sr than green/black or background halos. Whole breccia samples exhibit the 

greatest incorporation of seawater Sr (0.7045-0.7057). All leached samples have Sr-

isotopic compositions comparable to fresh MORB values, as such they represent the 

best estimate for the primary composition for Site 1149 which is 0.70244 ± 1.03 x 10-5 

(See Chapter 2, ‘methods’ for details).  

 
Figure 5.30. Distribution of FSrSW (following Bach and Humphris, (1999) calculations) 
in whole rock basalts basalts in the lavas and transition zone at Site 1149 with respect 
to alteration styles. Included is the distribution of all samples and the average FSrSW 
weighted according to the proportion of each alteration style present.  
 
Based on value of fresh MORB from leaching experiments and the value of seawater Sr 

at 132 Ma, the proportion of seawater Sr FSrSW has been calculated following Bach and 

Humphris, (1999) (See chapter 4 ‘Site 1256’ for details).  

 Figure 5.30. is a histogram illustrating the distribution of FSrSW with respect to 

alteration styles, all samples, and the weighted average FSrSW for Site 1149. The 

distribution of FSrSW is centred around ~0.075. FSrSW in alteration halos are slightly 

elevated compared to background, although the majority of the dark green/black halos 

share peak distribution with the grey/buff background (~0.05). Complex halos are 

variable (0.025 to 0.2), reflecting the variable alteration styles present within these 

halos. Breccias have FSrSW between 0.425 – 0.675, which is significantly higher than 

that of the other whole rock values. The distribution of FSrSW implies that all samples 

have undergone some exchange with seawater Sr. The incorporation of secondary 
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minerals derived from intense circulation cold seawater sourced fluid perhaps best 

explains such elevated FSrSW in the breccias. Following the method discussed in chapter 

4, (Site 1256), the weighted average FSrSW for Site 1149 is calculated by weighting the 

Sr-isotopic values according to the volume % of alteration styles. The weighted Sr-

isotopic value and FSrSW for Site 1149 is 0.7033 and 0.179 respectively. These imply 

that ~18 % of Sr at Site 1149 is derived from seawater.    

 
Figure 5.31. 87Sr/86Sr vs. LOI for Site 1149 basement. Arrow indicates trend.  
 
 

Sr-isotopic data is compared to LOI in Figure 5.31. Because LOI and 87Sr/86Sr  may be 

used to gauge the intensity of alteration then we would expect a reasonable trend when 

the two are compared. In the case of Site 1149, a slight trend is reported. Despite 

significant overlap, a weak trend between alteration styles is also present, grey 

background/buff show the least alteration, which is closely followed by green, brown 

then mixed halos. Breccias demonstrate the highest LOI and most radiogenic Sr which 

is expected due to the high proportions of secondary minerals observed (See section 5.2 

‘alteration’). One breccia, with an unusually low primary 87Sr/86Sr of 0.7024, has a very 

high Rb concentration (53.49 ppm), which has greatly affected the Rb-decay correction. 

Because Rb appears to be highly mobile and given its high overall increase (+ 1361 %), 

emplacement of Rb may be the result of secondary minerals emplacement from a fluid 

containing ubundant Rb, most likely seawater. The other possibility is that the fluid 
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from which secondary minerals precipitated contained significant basaltic Sr, however 

given the lack of evidence to support this, it seems unlikely that the latter is true. 

Overall, Site 1149 has undergone slight to moderate interaction with cold seawater 

derived fluids. Despite significant overlap trends between alteration styles are visible 

with buff/grey background exhibiting the least chemical change and breccias 

demonstrating the greatest degree of change. 

 

 

5.3.4 Carbonate veins at Site 1149 and their constraints on low temperature 
 hydrothermal fluid evolution.  
 

Carbonate vein mineral separates were sampled throughout Site 1149 and these were 

analysed for Major elements, REE, C, 87Sr/86Sr, and δ18O. Carbonate veins make up 

approximately 7.9 % by volume of the core, it is present in high quantities in breccia 

matrices and often makes up the major component in thick, multi-minerallic veins (see 

Section 5.2 ‘Alteration’). Following Coggon et al., 2006, the relationship between 

Mg/Ca, Fe/Ca and Mn/Ca with Sr/Ca provides a means of differentiating between 

calcite, aragonite or mixtures of the two. Preferential incorporation of small cations 

(Mg) into the calcite crystal structure (Deer et al., 1992) help identify Site 1149 

carbonates sampled as Calcite. Sr concentration ranges from 36 to 247 ppm (average = 

101 ppm) whereas Mg concentration ranges from 737 to 6845 ppm (average = 3740 

ppm).  

 Carbon isotopic compositions for calcite at Site 1149 range from -4.3 to 2.5 

‰VPDB with most samples within the range of 1-3 ‰. No systematic variation is 

observed with depth and only a few samples in the mid to upper portion of the hole 

have δ13C values less than 1 (Figure 5.32 A). Oxygen isotope values range from 26 to 

31 ‰VSMOW and they exhibit similarly little relationship with depth as does the δ13C 

(Figure 5.32 B). Formation temperatures following Friedman and O’Neil (1977), 

assuming precipitation from fluids with δ18Owater = 0 ‰ range from 11 to 39 oC. Once 

again no relationship with depth is observed in Figure 5.32 C. The highest temperature 

(39oC) observed at Site 1149 co-insides with the lowest δ13C value. This implies 

perhaps a minor basaltic input in these samples from slightly more evolved fluids. The 

nature and distribution of Sr-isotopes at Site 1149 is illustrated in a plot of 87Sr/86Sr vs. 
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depth in Figure 5.32 D. Strontium isotopic compositions for carbonates at Site 1149 

range from 0.70711 to 0.70752.  

 
Figure 5.32. Site 1149 carbonate plots. A: δ13CVPDB vs. depth, B: δ18OVSMOW vs. depth, 
C:  ToC vs. depth calculated from oxygen isotopic values in B following Freidman and 
O’Neil, (1977) assuming precipitation from fluid with δ18O = 0 ‰. D: Sr isotpioc 
composition vs.depth including seawater at 132 Ma for comparison (seawater value 
after McArthur, 2001. E: Sr-isotopic composition vs. calculated temperature. Site 1149 
Stratigraphy (Plank et al., 2000) and alteration styles are also shown. 
 
 
These isotopic values are highly radiogenic with values close to and even exceeding 

that of seawater at 132 Ma. No systematic variation with depth or temperature of 

formation (Figure 5.32 E) is observed. Given the similarity between the 87Sr/86Sr of 

seawater and carbonates and the temperatures of 11-39oC, this strongly suggests that 

calcite at Site 1149 precipitated from cold fluids near or at Seawater compositions. 

Following Bach and Humphris (1999) method for calculating the proportion of basaltic 

Sr in the final precipitate (See whole rock equation earlier) the basaltic component 

ranges from 0.2 to 4.6 %, assuming no formation in these samples took place after 132 

Ma. However because some samples demonstrate 87Sr/86Sr above seawater, seawater 

ingress and precipitation of secondary calcite must have continued for several million 
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years after Site 1149 formation. Figure 5.33 plots the high 87Sr/86Sr values on the 

seawater Sr curve (As compiled by McArthur et al., 2001). These points mark the 

possible maximum age at which the sample could have formed, assuming no interaction 

with basement rock took place, One sample suggests that precipitation took place after 

at least 50 m.yr after the formation of Site 1149. If partitioning between basaltic Sr and 

seawater Sr took place then it is possible that this and all the other carbonate veins at 

Site 1149 are much younger. In this respect these samples are similar to those of Site 

1179, which is similar in age (129 Ma). 

 

 
Figure 5.33. Seawater Sr Curve for the period 20 to 140 Ma. Vertical line indicates the 
time of Site 1149 formation. Blue squares indicate carbonate samples with 87Sr/86Sr 
values greater than 132 Ma seawater and their minimum age of formations. Seawater Sr 
cure after McArthur et al, (2001) 
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6.1. Site 504 
 
 
  

DSDP/ODP Site 504 is located at 1o13.6’N, 83o44.0’W in 6.9 m.y. old crust of the 

southern flank of the Costa Rica Rift (Figure 6.1). Site 504 is positioned in the middle 

of an east-west spreading segment bound by the Panama Fracture Zone and the 

Ecuador Fracture Zone. Geophysical data indicates that it is within an area of 

relatively pronounced ridge trough topography with ~100-200 m relief (Cann et al., 

1983). The rate of crustal accretion is moderate at approximately 65 mm/yr (full rate, 

Hey et al., 1977). DSDP/ODP Hole 504B penetrates over 274.5 m of sediment and 

over 1800 m into basement through the entire volcanic sequence, two fault zones 

(525.5 msb and 1836.5 msb), and the majority of the sheeted dike complex (Alt et al., 

1993). This makes it one of only two holes to have successfully recovered a complete 

lava sequence and a near complete dike sequence in modern in-situ ocean crust. 

DSDP/ODP Site 504B has thus formed the reference section for modern oceanic in an 

attempt to characterise the alteration characteristics of ocean crust (e.g. Alt et al 

1996a, 1996b; Alt, 1989; Laverne et al, 1983; Chan et al., 2002) and model 

hydrothermal circulation (e.g., Teagle et al, 1998; Sleep, 1991; Bach et al., 2003). 

Even though Site 504 formed at intermediate, and not, fast spreading rates its 

inclusion is necessary because it allows comparisons to be drawn with Site 1256, the 

only other hole to penetrate into the dikes, and augments study of any relationship 

between alteration and spreading rate. 
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Figure 6.1. Location of Site 504B. 

 

6.1.1. Sea floor sediment, stratigraphy and sedimentation rates 

 

A summary of the sedimentary and igneous stratigraphy for Site 504 is illustrated in 

Figure 6.2. Sediment at Site 504 is comprises a 274.5 m thick sequence of siliceous 

oozes, chert limestone and chalk. At 274.5 m thick, the sediment thickness for such 

young crust is unusual, generally this level of sedimentation is observed at older 

crustal sites (Stein and Stein. 1994) where sediment rates are much lower. The high 

sediment thickness and the low relief of Site 504 effectively seals Site 504 basement 

from direct contact with seawater, thus this may have implications for the fluid flux 

and its geothermal gradient (Alt et al. 1996). Three main sedimentary units are 

defined by Cann et al., (1983). Unit I (0-143.4 mbsf) is composed of siliceous-

nannofossil and nannofossil-radiolarian oozes that have variable proportions of clay. 

Unit II (143.5-227.3 mbsf) is a siliceous nannofossil chalk; and Unit III (227.2-274.5 

mbsf) is comprised of interbedded nannofossil chalk, limestone and chert.  
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Figure 6.2. DSDP/ODP Hole 504B stratigraphy modified from Alt et al., (1993). 
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Figure 6.3. DSDP/ODP Hole 504B sediment accumulation rate with time. Rates are 
established from biostratigraphic and palaeomagnetic constraints. (Redrawn from 
Sancetta et al., 1985). Average accumulation rate is 50 m/m.y. 
 

 

Sedimentary accumulation rates were derived from palaeomagnetic studies and 

stratigraphic correlation of nannofossils (Sancetta et al., 1985; Figure 6.3). Sediment 

has accumulated at Site 504 at a rate of ~50 m/m.y with no significant change in rate 

since its formation. Of all the basement Sites in this study, this represents the fastest 

sediment accumulation rate.  

 

 

6.1.2. Basement at Site 504, Petrography and Igneous geochemistry 

 

Over 1800 m of basement was penetrated at Site 504, spanning the lavas, transition 

zone and the majority of the sheeted dikes. Recovery of basement material is variable 

(29 % for the volcanic section, 25.3 % in the transition section and 13.7 % in the 

sheeted dikes), however, core was recovered from the majority of Hole 504B. The 

rocks recovered range from aphyric to highly phyric tholeiitic basalts and four major 
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groups of basalt are observed throughout Site 504 including: aphyric basalt (most 

abundant), olivine-plagioclase-clinopyroxene phyric basalts, olivine-plagioclase 

phyric basalts, and olivine-plagioclase-clinopyroxene-spinel bearing basalts. Olivine-

plagioclase-clinopyroxene phyric basalts and olivine-plagioclase phyric basalts occur 

deeper in the hole. Within the dikes aphyric rocks, which are present throughout Site 

504, become more common with depth in the dike section. The volcanic section 

occurs from 0 to 571.5 msb and is composed of pillow basalts (57 %), massive flows, 

(22 %) thin flows (17.5 %) and minor dikes (3 %).  

 A Transition Zone occurs from 571.5 to 780.5 msb. Rocks in the transition 

zone consist of a mixture of highly fractured, altered and brecciated pillows and dikes. 

Strong to total recrystallisation prevails in this zone; in some cases almost completely 

obscuring primary mineralogy and textures. The dike section (780.5 msb to ~1807 

msb) is composed of sheeted dikes which have undergone varying degrees of 

crystallization. 

 The rocks at Hole 504B are chemically very similar throughout the extrusive 

and intrusive section. Fifty chemical units were defined, each of which is thought to 

represent subtle variations in the source magma chamber composition. Natland et al, 

(1983) propose that these variations may be the result of periodic injections of new 

magma into a differentiating magma chamber. However, despite these subtle 

variations the relative uniformity of Site 504 implies that the magma chamber beneath 

the rift axis was operating at close to steady state. Mg numbers for Site 504 basement 

range from 0.63-0.74 (Autio and Rhodes, 1983) and Site 504 is depleted in 

incompatible elements such as TiO2 (0.7 – 1.2 %), Nb (<0.5 -1.2 ppm) and Zr (34 – 

60 ppm). Figure 6.4 (redrawn from Kempton et al., 1985) indicates MgO, CaO, 

Al2O3, and FeO*/MgO vs. Zr for ODP Hole 504B. The depletion of Zr compared to 

MORB is clearly evident across most samples, whilst major element oxides fall 

within the expected rang for MORB. In addition, Site 504 has high CaO/Na2O ratios, 

which implies equilibrium with very calcic plagioclase (Alt et al., 1996).  
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Figure 6.4. MgO, CaO, Al2O3, and FeO*/MgO vs. Zr. Circles are data from Legs 69-
70 and Filled circles are data from Leg 83. Basalts from Site 504 are depleted in Zr 
relative to MORB. CaO and Al2O3 are elevated. MgO and FeO*/MgO are typical of 
MORB (Figure after Kempton et al., 1985). 
 

Low incompatible elements and the potential for equilibrium with very calcic 

plagioclase imply that the rock is derived from magmas generated by partially melting 

the source rock (I- type MORB, Bryan et al., 1976). This supports the original 

hypothesis of differentiation within the magma chamber. The chondrite normalised 

REE patterns for Site 504 (Figure 6.5) indicate strong depletion of LREE (La/Sm 

enrichment factor of 0.4). Units 5 and 36 represent near chondritic or LREE enriched 

basalts that might suggest that these units were derived from plume melts (Kempton, 

et al., 1985). The majority of Site 504 basalts, however, are thought to be either highly 

primitive (Emmermann, 1985) or sourced from multi-stage melts of N-MORB basalts 

with additional fractional crystallization (Emmermann et al., 1985). 
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Figure 6.5. Chondrite normalised REE patterns for DSDP/ODP Hole 504B whole 
rocks in the lava and dike section (After Emmerman et al., 1985). Note the similarity 
between the lavas and the dikes. 
 

 

6.1.3. Basement alteration 

 

Alteration at Site 504 is discussed in much greater detail in Noack et al, (1983), 

Honnorez et al, (1983), Alt (1984), Alt et al, (1986a, 1986b) and Laverne (1987) and a 

detailed synthesis of hydrothermal alteration at Site 504 is given by Alt et al., 1996. A 

brief summary of the major alteration features is outlined here for direct comparison 

to other basement sites in this study. 

 Overall, alteration at DSDP/ODP Site 504 is slight to moderate, and it is 

interspersed with intervals of high to intense alteration and brecciation, most notably 

the lava/dike transition zone. At Site 504 low temperature and high temperature 

alteration is reported. These features are best demonstrated by the distribution of 
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secondary minerals vs. depth (Figure 6.6), where observations change from low 

temperature secondary minerals for example celadonite, iron oxyhydroxides, and 

saponite, to high temperature phases, including chlorite, prehnite and actinolite. 

 
Figure 6.6. Distribution of secondary minerals in DSDP/ODP Hole 504B.The 
alteration regime, lithostratigraphy and penetration for each depth is also indicated in 
this figure. ML = mixed layer, chl = chlorite, smect =smectite. (Modified from Alt et 
al., 1996). 
 

In this study we focus on low temperature, seawater dominated alteration, but both 

alteration types are summarised here. The volcanic section is divided into an upper 

and lower alteration zones based on the extent and variability of halo types. Alteration 

in the volcanic section is slight (5 - 15 %) and it is characterised by secondary 
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minerals filling fractures, vesicles and interstitial areas, and partially replacing 

primary igneous phases to form alteration halos. Alteration in the volcanic section is 

expressed in terms of halos and breccias and these are illustrated in Figure 6.7. Halos 

consiste of ; 1) Dark grey (saponite-rich) rocks that occur throughout the volcanic 

section, 2) red, iron oxyhydroxide rich alteration halos, and 3) black 

celadonite/saponite rich alteration halos.  

 
Figure 6.7. Sketch illustrating the main alteration features within the volcanic section 
at Site 504. Breccias types do not necessarily occur together and are shown together 
for illustrative purposes only. In addition, the matrix lists only the major secondary 
minerals. In the lower volcanic zone only dark grey halos are present. A lack of 
available close up photos for the volcanic section precludes demonstration with real 
samples. 
 

The red and black alteration halos are most abundant in the upper portion of the 

volcanic sequence. The dark grey rocks are characterised by saponite which partially 

replaces olivine, fills pores and fractures, cements breccias, and partially replaces 

plagioclase and glass. This alteration assemblage forms the majority of the lower 

volcanics in Hole 504B. Accessory minerals include talc, carbonates, pyrite, and rare 

secondary K- feldspar and albite. Red alteration halos are controlled by veins, and 

contain (in addition to the alteration assemblages reported in the dark grey rocks) 
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iron-oxyhydroxides replacing olivine and staining saponite. The upper volcanic 

section comprises 27% red halos; however, there are no red halos in the lower 

volcanic zones (Alt, 1995). Black alteration halos occur together with red halos, 

usually as thin (5mm) bands around the edge or within the halo. These halos are 

characterised by celadonite that replaces olivine and fills pore spaces and they are not 

present in the lower volcanics. The lack of red and black halos, lower intensity of 

alteration and the absence of iron-oxyhydroxide and celadonite reflect a shift from 

oxidizing seawater dominated alteration to more restrictive alteration, with reducing 

rather than oxidizing conditions (Laverne et al., 1996).  

 Veins within the upper volcanics are multi-minerallic, and they are most 

commonly filled with saponite ± carbonate, phillipsite, and rare celadonite. Anhydrite, 

quartz, pyrite and chalcopyrite are rare but present, and these minerals are more 

common in the lower volcanics. 

 In areas of very high fluid flow brecciation has taken place of pillow rims and 

highly fractured basalts. Brecciation comprises (9.2 % of the recovered core at Hole 

504B). The upper volcanics (0-320 msb) contains 6 % breccia whereas the lower 

section is composed of 19 % breccia (Alt et al., 1996). Breccias were divided into 

three types (Alt et al., 1993) and they are described below 1) pillow rim hyaloclastite 

breccias with glass shards and pillow fragments cemented saponite, carbonate and 

minor zeolites, 2) ‘jigsaw- puzzle’ breccias in which the basaltic clasts are angular 

and in-situ with a saponite and carbonate matrix, and 3) mixed, matrix supported 

breccias with a variety of clasts that exhibit variable alteration. At interval 253.5 to 

288.5 msb, a zeolite-rich zone that is characterised by abundant thick (~20 mm) veins 

of zeolites, zeolite-cemented breccias and 10 mm wide zeolite rich alteration halos are 

reported (Figure 6.8). This zone also includes the alteration assemblage typical of the 

dark grey rocks described above, which is overprinted by the zeolite phase thus is 

thought that this zone represents late, focussed fluid flow of cold seawater-like fluids 

(Honnorez et al., 1983; Alt et al., 1986a). 
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Figure 6.8. Example of zeolite rich zone, basalt clastic breccia with matrix almost 
entirely composed of zeolite (Photo taken from the Janus database). 
 

As summarised by Alt et al., (1996), chemical variation in the upper volcanic section 

as a result of alteration includes increased K, Rb, B, CO2 and H2O contents and 

elevated δ18O, δD, δ11B, 87Sr/86Sr, and lower S and δ34S compared to the least altered 

rocks and glass. The increase in K, Rb and CO2 is likely to be the result of celadonite 

saponite and carbonate emplacement. Water, fixed by clay minerals that fill pore 

space and replace primary phases may explain the increase in H2O. The elevated O, 

D, B, and Sr-isotopic compositions also reflect the ingress of seawater into the 

basement. A reduction of S, and δ34S may be due to the leaching of sulfides from the 

volcanic rocks. The greatest change was observed in the black and red halos (Alt et 

al., 1996). 

 

 Alteration in the transition zone is characterised by highly-fractured, 

hydrothermally-altered, brecciated pillows and dikes, together with intense 

mineralization and mineral stockwork (Figure 6.8). Alteration is very similar to the 

lower volcanic section, with the notable exception that intensity is much greater and 

chlorite/smectite, titanite, laumontite and more abundant anhydrite is present. There is 

an abrupt change in alteration style at 623.5 msb, where hydrothermally altered rocks 
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are reported for the first time. These consist of dark grey to green-grey rocks with 

minor and extensive recrystallization, respectively. Plagioclase (usually cores) is 

recrystallised to albite-oligoclase and other minor phases including chlorite. Olivine is 

replaced by chlorite and quartz or mixed layer smectite/chlorite, whereas pyroxene 

may be partially replaced by actinolite, magnetite, titanomagnetite, and titanite.  

 

 
Figure 6.9. Example of the mineralized stockwork zone. (Photo taken from the Janus 
database) 
 

Glass is typically replaced by chlorite. Veins and breccia matrices are composed of 

chlorite, actinolite, quartz, epidote, laumontite, heulandite (minor), albite, calcite, 

analcite (trace) and pyrite. Veins are typically multiminerallic in which all or some of 

the above minerals are present. 635.5 to 653.5 msb is a mineralised stock work zone 

with quartz and sulfide minerals in highly fractured/brecciated pillow units (Figure 

6.9). Such mineral assemblages are indicative of high temperature (~350oC) alteration 

(Alt et al., 1996). 

 The upper sheeted dikes (780.5 to 1225.5 msb) have light to dark grey halos, 

and recrystallization and assemblages that are very similar to the high temperature 

alteration observed in the transition zone. Figure 6.10 illustrates the main alteration 
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features of the upper dikes. Calcite is not present, heulandite is less common and 

scolecite and prehnite become more common. Localised replacement of olivine by 

talc and magnetite is observed and titanomagnetites are partly altered to titanite. A 

number of alteration patches (30-100% recrystallization) containing chlorite, 

actinolite, and zeolite are reported. These patches represent zones in which the 

primary porosity was higher, allowing greater fluid flow and higher extent of 

alteration. ~17% of the upper dikes are composed of halos and patches. Veins consist 

of the same mineralogy as those in the transition zone, except that they contain no 

calcite and they are less common. The following sequence of veins is reported by Alt 

et al, (1996): Chlorite ± actinolite ± titanite veins cross cut by quartz ± epidote ± 

sulfide veins that are, in turn reopened by zeolite (laumontite and scolecite), prehnite 

and calcite (stockwork zone). Anhydrite occurs in the reopened veins, in one sample 

anhydrite is cross cut by a prehnite vein.   

 
Figure 6.10.  Illustration of alteration styles within the upper sheeted dikes. (Redrawn 
from Alt et al, (1996). Similar alteration characteristics are observed in the lower 
sheeted dikes. However, when petrographically observed recrystallization is more 
intense and secondary phases differ. 
 

The chemical changes, based on comparisons between altered and least 

altered, rocks for the transition zone and upper dikes are described together, due to 

their similarity. They are summarised in detail by Alt et al (1996). Change in 

chemistry within the transition zone and the upper dikes ranges from moderate to 

intense. High chemical changes are thought to reflect the high temperatures and the 
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subsurface mixing zone environment, and the greatest changes are reported within 

alteration halos and patches. Increases in Cu, Zn, Mn, and S, particularly within 

mineralised rocks at 635.5 msb, reflect the increased abundance of metal sulfides, Mn 

bearing chlorite, and the reduction of seawater (by oxidation of ferrous iron at 

shallower levels). Increased H2O and 87Sr/86Sr reflect higher levels of alteration and 

the increased interaction between the hydrothermal fluid and host rock. The reduction 

of K2O, Fe2+/FeT and TiO2 is the result of K leaching from rocks and the mobilization 

of Ti to form titanite within the dikes. The variable formation of secondary calc-

plagioclase and albitization may explain the variable CaO and Na2O, and the 

disappearance of the negative Eu anomaly with depth. Low δ18O in halos may be 

explained by the observed higher intensities of alteration (Alt et al 1996). Alt et al, 

(1996) note an unusual lack of change in MgO. Locally intensive interaction with 

seawater in narrow chlorite rich zones along veins indicate that all the available Mg 

from seawater was taken up. However, these zones are small and most of the rock 

interacted with low volumes of seawater, indicating that reactions within the majority 

of the basement were limited by the amount of seawater flow. Alt et al., (1996) note 

that there may still be a net uptake of Mg via chlorite filling fractures and cementing 

dike margin breccias. The timing of secondary mineral paragenisis at Site 504 is 

summarised as follows: 1) early chlorite, actinolite, albite-oligoclase, and titanite, 2) 

quartz, epidote, and sulfides, 3) anhydrite, and 4) zeolites and local calcite. Alteration 

temperature estimates range from 350oC to 380oC. 

 

The lower sheeted dikes (1225.5 to 1836.5 msb) exhibit alteration that is 

similar to the upper sheeted dikes, albeit with some significant changes. These 

include, increased abundance of secondary calcic-plagioclase, amphibole, ilmenite 

exsolution, and the first appearance of secondary clinopyroxene, 

magnesiohornblende, and anhydrite within the groundmass rather than veins. In 

addition, losses in sulfur/metals and higher levels of recrystallisation are reported 

within the lower sheeted dikes. Variable Mg number, Cr, Ni, Sr, TiO2, SiO2, Y and Zr 

are thought to represent primary igneous variation. Losses of Cu, Zn, and S reflect the 

breakdown of sulfide minerals and titanomagnetite at high temperatures, where the 

solubility of metals and sulfide in hydrothermal fluids increase significantly (Alt et 

al., 1996). Alt et al., (1996) and Vanko et al., (1996) suggest that these effects may be 

evidence that the lower sheeted dikes are part of a subsurface reaction zone that 
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supplies metals and sulfur to hydrothermal fluids that ultimately vent as black 

smokers on the sea floor. In addition, slightly elevated δ34S + local S enrichment 

reflect anhydrite formation within the rocks (Alt et al., 1995). Other chemical changes 

within the lower sheeted dikes are relatively minor. Once again alteration halos and 

patches exhibit greater chemical change than their less altered counterparts (Alt et al., 

1996). Detailed reports and comprehensive summaries of the lower sheeted dikes are 

described and discussed elsewhere (e.g. Alt et al., 1993; Alt et al., 1995; Laverne et 

al., 1995; Vanko et al., 1996: Alt et al., 1996). 
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6.2.  Site 896 

 

 

ODP Site 896 is located at 1o13.006’N, 83o43.392’W ~1 km southeast of Hole 504B. 

Like Site 504, Site 896 is situated on 6.9 Ma-old crust at the eastern equatorial Pacific 

that spread at approximately 68 mm/yr full-rate from the Costa Rica Rift (Figure 

6.11). However, in contrast to Site 504, Site 896 is located on a bathymetric high that 

coincides with the topographic high point of a tilted basement fault block (Langseth et 

al., 1988). Site 896 penetrates through 179 m of sediment and 290 m of basement that 

is composed of pillow lavas, massive flows, breccias, and two subvertical dikes. Site 

896 is located at a local heat flow maximum, which is consistent with the correlation 

between areas of high heat flow and both elevated topography and basement 

topography with basement troughs being zones of lower heat flow (Alt et al., 1993; 

Teagle et al., 1996). Modelling of the heat flow by Fisher et al., 1990, 1994) imply 

significant hydrothermal convection within the area and that convection is controlled 

by basement topography and sediment thickness. In contrast, Hole 504B is in an area, 

of ambient heat flow (Alt et al., 1996), therefore it is potentially useful to compare the 

alteration characteristics for each of these sites. The petrography and geochemistry at 

Site 896 has been extensively characterised, for example by Teagle et al, (1996) and 

Alt, et al., (1996). This section presents a short summary of the geological 

characteristics of Site 896 including sedimentation, igneous petrology, and alteration.   
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Figure 6.11. Location of Site 896. Sites 1256 and 504 are included for comparison. 

 

 

6.2.1 Sea floor sediment, stratigraphy and sedimentation rates 

 

The lithostratigraphy for Site 896 is illustrated in Figure 6.12. ODP Hole 896A 

represents a reoccupation of an earlier Site (ODP Site 678), as such the sedimentary 

stratigraphy is based on sampled recovered from Site 678 during Leg 111 (Becker et 

al., 1988). Spot coring was carried out during Leg 111 to recover a representative 

section of the ~170.8 m thick sediment pile. Four sediment Units were recovered and 

these consist of the following: 1) Radiolarian and diatom ooze (0-100 mbsf), 2) Clay-

like diatom-nannofossil chalk (100 – 169.8 mbsf), 3) Muddy limestone (169.8- 170 

mbsf), and 4) metal rich muds intercalated with basaltic pebbles, conglomerates, and 

white calcic material (170 – 170.8 mbsf). The sediment basement interface was not 

recovered; however the presence of basaltic pebbles in Unit 4 suggests that this unit 

may represent the deepest sediment at Site 896. Sedimentation at Site 896 is 

characterised by a period of rapid sedimentation (~20 m/m.y) for the first 4 Ma 
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followed by 2 Ma of very fast sedimentation (~40 m/m.y). This transition from fast to 

very fast is marked by a change in lithology, in which the content of nannofossils 

increases. These changes mark increased productivity in the region at ~1.9 Ma (Figure 

6.13). 

 
Figure 6.12. Site 896 Stratigraphy including recovery, lithological unit subdivisions 
and igneous lithology. Sedimentary stratigraphic data sourced from Becker et al., 
(1988); Igneous stratigraphic data after Alt et al, (1993). Cores of the sedimentary 
coverare from DSDP Hole 678B (Leg 111). Site 896 represents reoccupation of this 
site. Hole has been renamed 896A.  
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Figure 6.13. Sediment accumulation rate with time for Site 896 (Becker, Sakai, et al., 
1988).  
 
 
6.2.2 Basement at Site 896, Petrography and Igneous geochemistry 

 
 
Hole 896A penetrates 290 m into basement recovering lavas, massive flows, and 

breccias that make up the uppermost extrusive section at Site 896 (Figure 6.12), with 

27.7% recovery. Based on cores recovered from the upper volcanic section at Site 

896, basement comprises Pillow lavas (57%), massive flows (38%), breccias (5%) 

and two subvertical dikes (Alt et al.,1993). The basalts are cryptocrystalline to fine-

grained, sparsely to highly phyric plagioclase-olivine tholeiitic basalts. Below 194 

msb olivine becomes the dominant phenocryst phase and massive flows are more 

common. 51 Units were defined based on variation of mineral abundance and mineral 

type and these are described in detail in Alt et al., (1993). Massive units were defined 

based on the lack of pillow lava textures and the presence of glassy margins and 

curved margins. Most of these massive flows were classified as thin flows; however 

some discontinuous sections may be interiors of large pillows. Two dike contacts at 

Intervals 148-896A-21R-2, pc 9B to C (202.71 msb) and 148-896A-22R-4, pc 3-5 

(216.44 to 216.63 msb) in which coarse grained material forms a steep (78o) contact 

with no glass or variolitic textures.  
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Primary igneous variation and magmatic features are discussed in detail by Brewer et 

al, (1996) and Alt et al., (1993). Assessment of the primary igneous chemistry at Site 

896 is also based on a detailed study of pristine glass by Fisk et al, (1996). Major, 

trace and REE concentrations indicate that Site 896 is strongly depleted, moderately 

evolved MORB (MgO: 6.69-9.74 wt%, Fe2O3: 8.10-10.32 wt %, Mg#: 0.609-0.698, 

Ni: 82-198 ppm, Cr 293-407 ppm, Zr: 32-53 ppm, Nb <3ppm) (Brewer et al., 1996; 

Alt et al., 1993). The chondrite normalised REE pattern for (Site 896) attests to the 

depleted nature of Site 896. 

 
Figure 6.14. Chondrite normalised REE patterns for all samples at Site 896. Pacific 
MORB and Site 504 are included for comparison. Chondrite-normalization factors 
from Taylor & Gorton (1977). Hole 504B data is a compilation of Legs 69, 70 (Cann,  
et al., 1983); 83 (Anderson et al., 1985), 111 (Becker, Sakai et al., 1989), and 140 
(Erzinger et al., 1995) Pacific MORB data from Jenney and Castillo, (1997). Pm is 
not analysed. 
 

In the upper 150 of Site 896 basalts are higher in SiO2, Al2O3, and CaO and 

lower in Fe2O3
*, TiO2, V, Cr, Y, Zr and Zn than those at Site 504. Variability 

between Sites 896 and 504 are minimal and indistinct (Alt et al., 1993) and Brewer et 
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al, (1996) suggest that the slight chemical and plagioclase/olivine phenocryst 

variation between igneous units represents magmatic cyclicity with depth, which is 

the result of crystallisation of magma chambers at varying depths. 

 

 

6.2.3 Basement alteration 

 

Characterisation of the secondary mineralogy and geochemistry at Site 896 is 

discussed in detail by Alt et al., (1993), Teagle et al, (1996) and Alt et al, (1996). 

However, to facilitate discussion and comparisons later in this study a summary of the 

key points is provided here.  

 With the exception of rare fresh vitreous glass fragments all rocks recovered at 

Site 896 have been subjected to slight to moderate alteration. Alteration may include 

the replacement of groundmass minerals by secondary phases, the filling of primary 

vugs and interstices by secondary minerals and the presence of veins and breccias. 

Alteration within the groundmass may manifest itself in terms of alteration halos 

associated with fractures or ‘background’ in which alteration is less intense. Based on 

petrographic observations, four major alteration assemblages are defined for Site 896 

(Alt et al., 1996) and these are summarised in order of their abundance. 1) Saponite 

‘background’ alteration occurs throughout the core. Olivine is partly to totally 

replaced by saponite (Figure 6.15 A) and carbonate, whereas plagioclase may be part 

replaced by saponite and minor albite. Alteration within ‘background’ is slight and the 

rock is grey to dark grey in colour. 2) Saponite + iron-oxyhydroxides is the second 

most abundant assemblage and these manifest themselves as red/yellow/brown 

alteration halos (Figure 6.15 E) that form along veins and fractures. Small pillow 

fragments, olivine and pore spaces may be altered to saponite and iron-

oxyhydroxides. Alteration of olivine to saponite and iron-oxyhydroxides is often 

referred to as iddingsite (Figure 6.15 A). 3) Celadonite + saponite + iron-

oxyhydroxides is essentially the same as ‘2’, but with celadonite. Celadonite may be 

intergrown with iron-oxyhydroxide or it may occur alone. Halos are typically black to 

red. 4) Celadonite + saponite is the least common assemblage, these tend to form mm 

to cm sized dark grey patches or bands in pillows (Figure 6.15 E). Celadonite may 

line veins and vesicles (Alt et al., 1993).  

   

 319



Sites 504, 896, 1224, 1243, and 843  6.2 

 
Figure 6.15. Examples of alteration styles at Site 896. A) Photomicrograph of olivine 
phenocrysts replaced with saponite and minor carbonate. B) Photomicrograph of 
plagioclase partially replaced by saponite. C) Photomicrograph of a plagioclase 
megacryst and saponite + carbonate vein. D) Enhanced core photo displaying various 
oxidation halos, saponite, carbonate and iron-oxyhydroxide veins. E) Enhanced core 
photo of celadonite + saponite assemblage. F) Thick carbonate and saponite vein 
surrounded by pervasive background alteration. A, B, C are after Alt et al., (1993). 
In addition, rare (<0.1 mm) celadonite veins occur that may pre-or-post date saponite.  
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Veins at Site 896 are common and abundant (2018 veins at 27 vn/m) and they 

comprise saponite, saponite + carbonate, saponite + iron-oxyhydroxide, saponite + 

iron-oxyhydroxide + carbonate, carbonate, and fine (<0.5 mm) phillipsite veins. 

Saponite is commonly stained with iron-oxyhydroxide which imparts a yellow-brown 

appearance to many saponite + iron-oxyhydroxide veins. Saponite is by far the most 

common vein mineral, it occurs in 93% of all veins and makes up 1.7% by volume of 

the core. In contrast, Hole 504B has 0.8% saponite. Saponite veins are evenly 

distributed throughout Hole 896A. Carbonates are more common at 0-104 and 195 – 

220 msb and their abundance decreases with depth. 

 
Figure 6.16. Examples of breccia types reported at Site 896. A) Mixed breccia. B) 
Jigsaw puzzle breccia C) Hyaloclastite breccia. 
 

They may consist of calcite or aragonite, typically they are late stage and they can 

form part of multi-minerallic veins ranging from 0.1 mm to 4 mm thick. Carbonate 

veins make up 0.4% of the recovered core, which is an order of magnitude greater 

than that of Site 504 (0.04%). Overall vein abundance at Site 896 is comparable to 

Site 504 (31.6 vn/m), however, Site 896 contains a higher proportion of thick ~2-10 
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mm veins thus by volume Site 896 contains more vein minerals (~2.1%) compared to 

Site 504 (1.2%) based on saponite and carbonate. 

 Approximately 5% of the recovered core at Site 896 is breccia, however, 

studies by Brewer et al (1994) from core-log integration suggest breccia content may 

be as high as 47 %. Three types of breccia were encountered at Site 896, these 

include: 1) pillow rim or hyaloclastite breccia, which consists of altered glassy shards 

and pillow fragments in a saponite + carbonate + zeolite matrix, 2) Jigsaw puzzle 

breccia, which consists of in-situ angular basaltic clasts cemented by saponite + minor 

carbonate, and 3) mixed breccias, that contain a mixture of basaltic and glassy clasts 

that have been subjected to a range of alteration assemblages and they are supported 

by a cement of saponite and minor carbonate. These breccias are very similar to those 

encountered at Site 504 (Figure 6.16). Estimates for the percentage of matrix are 

sourced from Hole 504 which is around 10% of which 94.5 % is saponite 5.2 % is 

zeolite and 0.3 % is carbonate (Alt et al., 1993). Rare pillow and hyaloclastite breccias 

may contain carbonate rich matrixes at Site 896 (Alt et al., 1993).  

 Geochemical analyses for whole rocks and secondary minerals carried out by 

Alt et al., (1996), Alt et al., (1993), Teagle et al., (1996) are used to define the 

secondary mineralogy and to qualitatively define chemical changes associated with 

alteration at Site 896. Analysis of secondary minerals by XRD indicate that saponite 

at Site 896 are Mg-Smectites with Fe/(Fe + Mg) of 0.13-0.24 (Teagle et al., 1996). 

Celadonite ranges from high K and low Al tetrahedral to glauconite. In addition, 

celadonite exhibits divalent rends to high Mg contents that suggests mixing with 

saponite. XRD analyses also confirm the presence of chlorite in coarse grained 

portions basalt. Chlorite replaces interstitial material and fills primary pore-space and 

it may have formed during initial cooling of the massive flows soon after eruption. Sr-

isotopic analyses of carbonate veins at Site 896 range from 0.7079 to 0.7087 with two 

distinct groups that imply an open, cool phase of seawater circulation followed by a 

more restricted warmer period with greater interaction between the fluid and host 

rock. This hypothesis is supported by the δ18O of carbonates which record two 

temperature ranges (26-35oC and 47-67oC) that coincide with Sr and-isotope ranges 

(0.7087 and 0.7079-0.7084) and the concentrations of Mg, Fe, and Mn (Alt et al., 

1996). Most saponite records a 87Sr/86Sr close to seawater ~0.7084 to 0.7092, 

however, one sample with an Sr- isotopic ratio of 0.7044 implies a great deal of 

basaltic interaction, perhaps from  
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Figure 6.17 Whole rock major element concentrations compared with TiO2. Dots = 
fresh glass compositions. Squares = Saponite, Diamonds = Saponite + Iron 
oxyhydroxides, Triangles = Celadonite + saponite + Iron oxyhydroxides, Circles = 
Celadonite + saponite (After Teagle et al., 1996). 
 

upwelling fluid in a zone where cold seawater circulation was restricted (Teagle et al., 

1996). 

 Whole rock major trace and REE, when compared to analyses of fresh glass, 

largely reflect primary igneous variation (see earlier in section and Alt et al., 1996; 
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Alt et al., 1993). However, as illustrated in plots of various elements vs. TiO2 for 

glass and whole rock samples (Teagle et al., 1996), there are a number of chemical 

changes reported that appear to reflect alteration of the host rock. Whole rocks at S

896 exhibit increased H

ite 

ich 2O, CO2 Fe3+/FeT, K, Rb, Cs, U, P, δ18O, and 87Sr/86Sr wh

reflect the incorporation of secondary minerals into the host rock and ingress of cold 

seawater throughout Site 896. Variable loss and gains of S and Ti are reported, 

reflecting perhaps a change in volume as primary phases are replaced. Gains in Mg 

within whole rock are minimal; however the crust appears to have undergone a net 

increase in Mg due to the abundance of saponite veins (Alt et al., 1996). All whole 

rocks have elevated 87Sr/86Sr compared to MORB (Figure 6.18). 

 
Figure 6.18. Sr-isotopic profile vs depth for Site 896. Redrawn based on data from 
Teagle et al, (1996). The average composition of MORB and Seawater at 0 Ma and 
6.9 Ma is illustrated for comparison (McArthur et al., 2001). 
 
87Sr/86Sr decreases with depth. This implies reduced fluid flow, and therefore less 

incorporation of seawater Sr into the basalts. δ18O exhibits trends with Fe3+/FeT and 

LOI (Teagle et al., 1996). The greatest geochemical changes are observed in breccias, 

where extreme enrichments of Mg, alkalis and CO2 are reported. The Sr-isotopic 

composition for Sample 148-896A-23R-1, 24-28 (Breccia) is highly elevated (0.7048) 

relative to MORB. A large proportion of this breccia is composed of secondary 

mineral phases saponite and carbonate, therefore an elevated Sr-isotopic composition 

is expected (Teagle et al., 1996). 
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 Alteration at Site 896 has been summarised based on detailed work by Teagle 

et al., (1996); Alt et al., (1996), and Alt et al., (1996). Overall the alteration at Site 

896 reflects cold (<100oC) oxidising seawater ingress to the ocean crust that is very 

similar to that encountered in the upper portions of Site 504. The only significant 

difference between the two sites is the higher proportion of carbonate forming thick 

veins, and breccias at Site 896. Core log integration by Brewer et al., (1994) imply 

that the estimate for lithostratigraphic estimate from recovered core is highly biased 

towards more competent rocks. Formation Micro Scanner (FMS) and Gamma 

Logging Tool (GLT) log data calibrated to recovered core strongly suggest a much 

greater proportion of breccias than were recorded based on core descriptions alone. At 

Site 896, lithologic variation appears to exert a strong control on oxidation. Figure 

6.19 illustrates the relationship between recovered massive units and oxidation.  

 
Figure 6.19. Percentage of oxidation vs. depth for each piece at Site 896 together with 
stratigraphy and recovery Shard pattern = breccia, Pale yellow = sheet and massive 
flows, orange = pillow lavas (Modified from Alt et al., 1993).  
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On the basis of core-log integration by Brewer et al., (1994), a new stratigraphy 

consisting of 47% breccias, 33% pillows and 34% flows has been recommended. 

Samples at Site 896 ultimately record the integrated affects of six alteration phases. 

These phases are summarised below: 

1). Initial precipitation of chlorite within coarse grained massive units during initial 

cooling and penetration of cold seawater into the rocks 

2). Emplacement of celadonite and iron-oxyhydroxides early (<1 m.y. after crust 

formation) to form thin band-like alteration halos. During this phase deep solutions 

may have supplied the necessary Fe and Si for alkalis and celadonite formation. This 

phase may have contributed to increased H2O, K, Fe3+/FeT, δ18O, 87Sr/86Sr. 

3). Iron-oxyhydroxides that form red halos appear to form after celadonite during 

open circulation of seawater in a young crust. This phase records increases in H2O, 

alkalis, U, P, δ18O, 87Sr/86Sr and local losses in S, Ti, Ca, and Mg. 

4). Emplacement of saponite partially replaces olivine/plagioclase phenocrysts, fills 

fractures and cements breccias. Chemical changes include increased Mg, H2O, δ18O, 

and slight alkali, S, and Ti increases. In addition, the majority of saponite has 87Sr/86Sr 

ratios of 0.70842 to 0.70875 and implies slightly evolved seawater during 

precipitation. Saponite is thought to occur in slightly older crust than ‘3’, reflecting 

restricted circulation at temperatures above 40oC (Teagle et al., 1996). 

5). Late stage carbonate veins that are either formed together with, or post-date 

saponite appear to represent two generations of emplacement. Evidence from 87Sr/86Sr 

and δ18O imply a cold (26-35oC) open seawater emplacement followed by a warmer 

(47-67oC) period with more restricted fluid flow that has undergone greater 

interaction with the host rock. 

6). The final phase consists of zeolites which, by observations of cross-cutting 

relationships, formed during and after carbonate precipitation. Sr-isotopic 

compositions (0.7074-0.7091) reflect variability between localised open and restricted 

zones.  
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6.3. Site 1224 

 

 

Site 1224 is located seawater depth of 4967 m in the north Pacific Ocean between 

Hawaii and San Diego (27o53.37’N, 141o58.75’W) south of the Moonless Mountains 

seamounts (Figure 6.20). Site 1224 was formed ~46 Ma (Eocene) between the 

Farallon and Pacific plates at spreading rate of 142 mm/yr full rate (Stephen et al., 

2003), in a similar mid-ocean ridge setting to the present day EPR (Stephen et al., 

2003). ODP Leg 200 penetrated 28 m of seafloor sediment and 146.8 m of basement 

at a. The primary objective of Leg 200 was to prepare a borehole in basaltic crust for 

the installation of a broadband borehole seismometer. A secondary objective was to 

use this drilling opportunity to recover and describe basement material at the Site. Site 

1224 is useful in this study because it represents a relatively deep penetration of basalt 

formed at fast spreading rates at an age of formation that is not covered by any other 

site in this study. Its position, relatively far from any plume activity, faults and/or 

other unusual geological features makes it a good candidate for assessing 

hydrothermal alteration in the context of fast spreading rates. 

 
Figure 6.20. Location of Site 1224.  
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6.3.1 Sea floor sediment, stratigraphy and sedimentation rates 

 

Sediments at ODP Site 1224 were recovered in Holes 1224 A, C, D and E. Most of 

the sedimentary section is represented with recovery ranging from 5% to 100%. The 

sediments are largely composed of pelagic clay of eolian origin with rare coarser 

horizons that contain radiolarians, sponge spicules, coccoliths and discoasters. A 

summary of ODP Site 1224 Stratigraphy is outlined in Figure 6.21 .Hole 1224A 

recovered a few pebbles, granules and a small amount of clay which contains 

radiolarians and very rare sponge spicules. Hole 1224B recovered 20cm of clay with  

 

 
Figure 6.21. Composite lithostratigraphy for Site 1224. Based on stratigraphic 
observations by Stephen et al., (2003).  
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few radiolarians. Hole 1224C recovered 6.53 m of massive pelagic clay which 

darkens from light brown to very dark brown to the base of the hole.  

The dark portion contains common radiolarians and sponge spicules. ODP 

Hole 1224E recovered 10.52 m of sediment in a 27.1 thick sediment pile. The 

sediment consists of pelagic clay of varying shades of brown and they include 

intervals with infilled burrows and manganese nodules. Radiolarians were recovered 

at the top of the hole whereas coccoliths and discoasters occur below 17.5 mbsf 

(Stephen et al., 2003). The majority of sediment at ODP Site 1224 is of mid to late 

Eocene between 44 and  46 Ma  (Firth, 2003) suggesting rapid sedimentation (4.5 

m/Myr ) followed by ~36 ma of very low or no sedimentation (<1 m/Myr) (Figure 

6.22). A lack of microfossil and palaeomagnetic data precludes a greater resolution in 

the rate of burial at Site 1224. 

 
Figure 6.22. Sediment burial rates at Site 1224.  

 

6.3.2 Basement at Site 1224, Petrography and Igneous geochemistry. 

 

Basement petrography and geochemistry for ODP Site 1224 is discussed in greater 

detail by Stephen et al., (2003), Haraguchi and Ishii (2006), Lustrino (2006), and Paul 

et al., (2006). ODP Leg 200 recovered basalt in Holes 1224A, D, E and F with ~58.14 

cm of core recovered from ~191 m of penetration. Hole 1224F penetrated 146.5 m 

into basement (Figure 6.21). Basement at Site 1224 comprises ~ 54 % pillow lavas 

and  ~ 42 % massive flows. The remaining lithologies consist of breccias, associated 

with the alteration of glassy pillow margins and fracture zones. Basement is 
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composed of aphyric, holocrystalline to hypocrystalline basalt with rare olivine that is 

pseudomorphically replaced by a combination of saponite and iron-oxyhydroxide. 

Site 1224 basement is subdivided into 3 Igneous Units based on geophysical trends 

(including porosity, density), petrographic variation and geochemical trends. Unit 1 

(0-35 msb) consists of two massive basalt flows with rare vesicles. Chill margins and 

degassing structures at the top of the lower flow, relatively high alteration compared 

to the other Units, and the change in density and porosity all define Unit 1. Unit 2 (35-

106 msb) is composed of thin flows and pillow fragments. The abundance of 

fractures, breccias, and pillow lavas are reflected by the low recovery (~15%) of this 

Unit. Lithological Unit 3 (106-135 msb) consists of thick flows with alternating thin 

flows and pillow lavas with slightly higher recovery (~21%) than Unit 2. Alteration 

halos and fractures are present in all units however; the less altered Units 1 and 3 have 

a higher recovery rate.  

 
Figure 6.23. Chondrite normalised REE patterns for Site 1224 basement. Average 
composition is shown with bold black line. The composition of an altered sample 200-
1224F-2R-2, 82-92 cm is shown with a green line. Chondrite-normalization factors 
from Taylor and Gorton (1977). Pacific MORB after Janney and Castillo, (1997). Pm 
is not analysed. 
 
 Geochemical studies of Site 1224 Basement carried out by Lustrino (2006) 

and Haraguchi and Ishii (2006) are based on microprobe analyses of primary mineral 
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phases and XRF analyses on a suite of the least altered whole rock samples. Samples 

were selected on the basis of low LOI and petrographic observation. Within these 

samples, SiO2 ranges from 48-52 wt % and MgO varies from 5-7 wt %, both of which 

are typical N-MORB compositions (Stephen et al., 2003). A plot of chondrite 

normalised REE for Site 1224 basement (Figure 6.23) mirrors that of Pacific MORB, 

albeit slightly LREE elevated compared to average Pacific MORB. One extensively 

altered sample (200-1224F-2R-2, 82-92 cm) is strongly depleted in LREE  implying 

extensive replacement of primary phases by low temperature secondary minerals, for 

example saponite and celadonite. A plot of immobile elements Zr, Nb, and Y on a Zr-

Nb-Y ternary discrimination diagram (Figure 6.24) place Site 1224 basement 

compositions within the N-MORB field.  

 
Figure 6.24. Zr-Nb-Y discrimination diagram for basalts at Site 1224. Whole rock 
data sourced from Stephen et al., (2003), Haraguchi and Ishii (2006), Lustrino (2006). 
Field data are after Meschede (1986). 
 

Plots of Zr vs Ti Al2O3 vs. Fe2O3, and Fe2O3 vs. Mg# (Figure 6.25) indicate that

significant fractionation has occurred at Site 1224, because Zr and Ti are elevated 

above the field for typical MORB. Evidence for fractionation is supported by elevated 

Ti and Zr when compared to Site 896, which is typical of a depleted MORB at the 

Costa Rica Ridge and all igneous groups, especially Group 3 are elevated. Although 

major element plots in figure 6.25 supports evidence for fractionation, the extent of 

low temperature alteration means that the interpretation of primary igneous origins of 

site 1224 basalts from major elements are used with caution. 
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Figure 6.25. Zr vs. Ti, Al2O3 vs. Fe2O3, and Fe2O3 vs. Mg# for Site 1224 basalt. Zr 
vs. Ti plot outside the expected range for basalts. Extensive fractionation within S
1224 basalts has resulted in elevated Zr and Ti. Whole rock data sourced from 
Stephen et al., (2003), Haraguchi and Ishii (2006), Lustrino (2006), and Paul et al., 
(2006). Field data after Pearce and Cann, (1973); Pearce (1982) 

ite 

 
Figure 6.26. TiO2 and Zr vs. Depth for Site 1224 basalts shown with Site 896. 1224 
data after Stephen et al., (2003), 896 Data after Cann et al., (1983); Aderson et al., 
(1985). 
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6.3.3 Alteration 

 

The characteristic alteration features for ODP Site 1224 are described in detail by 

Stephen et al., (2003) and Paul et al. (2006). The basement at Site 1224 is slight to 

moderately altered with a secondary mineral assemblage of celadonite, saponite, Fe-

oxyhydroxides, carbonate, secondary sulphides, quartz and phillipsite. These 

secondary minerals occur throughout Site 1224 and they are concentrated in veins and 

alteration halos. In the groundmass, plagioclase and clinopyroxene are partially 

altered (<1%) to iron-oxyhydroxides, saponite and calcite. Fe-Ti oxides show signs of 

minor oxidation. Olvine is almost always replaced by saponite. Celadonite 

predominantly occurs in the uppermost 15 m of the core filling vesicles, veins and 

interstitial areas within the groundmass. Below 15 m, Celadonite occurs as a mixture 

(overprinted?) with other phases, such as iron-oxyhydroxide and saponite forming 

similar alteration features.  Figure 6.27 shows the typical range of alteration styles 

present at Site 1224. Figure 6.27 A is an example where alteration has not been 

extensive, with only the early celadonite/saponite halo present. Figure 6.27 B is an 

example of more pervasive alteration under oxidizing conditions, with the intense 

red/orange halo overprinting an earlier saponite/celadonite halo. 

 Halos cover ~10% of the recovered core and they range in colour from dark 

grey/green (90% of halos) to brown (10% of halos). In dark grey halos, interstitial 

material is replaced by saponite, celadonite and rare Fe-oxyhydroxides to a low level 

(~5%). Brown halos are more pervasively altered (10-20%) to Fe-oxyhydroxides, 

celadonite and saponite. Most halos at Site 1224 are typically associated with 

multiminerallic veins of saponite, celadonite, calcite, Fe-oxyhydroxides, minor 

secondary sulphides and rare phillipsite. All vein minerals and vein abundances are 

relatively evenly distributed within Units 1 and 3 except for celadonite, saponite, and 

pyrite which decrease in abundance down-hole. Unit 2 has a greater abundance of 

vein material, much of which is bordering on incipient brecciation. Veins make up 

~0.73% by volume of the core and there are approximately 18 veins per metre of 

recovered core. Saponite and celadonite by volume make up the majority of vein 

minerals, each contributing 32% of the total vein material. Iron-oxyhydroxides and 

sulfides contribute 16 % and 15 %, respectively, and carbonate makes up 5% of the 

total vein material.   
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Figure 6.27. Range of alteration styles encountered at Site 1224. A) Relatively grey 
fresh basalt cores with a dark grey/green alteration halo. B) Complex alteration 
assemblage with an intense dark orange/red halo close to the vein (bevelled off during 
coring) with an overprinted dark grey/green halo that extends along 
celadonite/saponite filled veins. Lastly there is a tan-coloured halo, possibly 
saponite/iron-oxyhydroxide. The intensely altered zone appears to have dissolution 
cavities. C) Basalt clastic breccia with highly altered basaltic clasts cemented by 
calcite. D) Fine grained basalt with two generations of fracturing that overprint. 
Complex halos are bound by the earlier iron-oxyhydroxide veins. E) Example of a 
hyaloclastite with zoned, rounded palagonitized glass fragments. Modified from Paul 
et al. (2006) and Stephen et al., (2003). Fe-ox = iron-oxyhydroxides 
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Figure 6.28, Octahedral site occupancy (Fe + Mg + Mn + Ti + Alvi) versus K atoms 
per formula unit (a.p.f.u) content for saponite, celadonite, and saponite-celadonite 
mixtures ± Fe-oxyhydroxides. This plot is used to discriminate between saponite, 
celadonite, and saponite-celadonite data from a range of DSDP and ODP drill sites 
and ophiolite studies. Figure sourced from Paul et al., (2006). 
 

 The presence of celadonite, saponite-celadonite and saponite was confirmed 

by comparing the octahedral site occupancy (Fe + Mg + Mn + Ti + Alvi) with K atoms 

per formula unit (Figure 6.28). Samples of clay minerals from Site 1224 plot on the 

saponite, celadonite-saponite, and celadonite fields (Paul et al., 2006). Vesicles are 

typically filled with saponite, celadonite, calcite and Fe-oxyhydroxides they make up 

<1% of the core (Paul et al 2006). Breccias predominantly consist of hyaloclastites 

and pillow margin fracture breccias. They occur throughout Site 1224 but they are 

most ubundant in Unit 3. The hyaloclastites are composed of numerous sub angular to 

sub rounded glassy shards that vary in size from 0.5 mm to ~3cm (Figure 6.26 E). The 

glass is strongly altered to palagonite with substantial zoning (Figure 6.26 E). 

Fragments of highly altered basaltic groundmass and chilled margins may be present. 

The cement is predominantly made up of calcite ± quartz.  
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6.3.4 Chemical changes and summary 

 

The chemical changes associated with cold seawater hydrothermal alteration have 

been calculated by Paul et al. (2006) using a selection of sample pairs. Their study 

indicates that rocks with halos show enrichments of K2O, FeOT, MnO, CO2, and Rb 

and minor enrichments of SiO2, MgO, CaO and Na2O relative to the non haloed 

sample pair (Figure 6.29).  

 
Figure 6.29. Percent flux of major element oxides, CO2, Rb, Sr, Cs, Ba, and U for (a) 
brown and (b) dark gray haloes illustrated in (c) close up photo of sample 200-1224D-
3R-2-122-124 cm. d) halo zones which calculated changes are based on (labelled 
‘brown ‘and ‘dark gray’ in Figure  8d and non-haloed ‘light grey’ areas). After Paul et 
al. (2006). 
 
 Brown halos exhibit the greatest increases in K2O and FeOT. These increases 

broadly reflect the incorporation of secondary minerals; celadonite, Fe-

oxyhydroxides, saponite, and carbonate into the host rock. Paul et al. (2006) consider 

REE and High field strength (HFS) elements to be immobile, suggesting that variation 

in Cu and Ni reflect the distribution of primary sulfide phases. Because these 

calculations are based on a non-haloed counterpart, it is likely that their results 

represent minimum values due to the fact that the non-haloed ‘fresh’ rock have 

undergone minor levels of alteration. Overall, Paul et al. (2006) conclude that the 

chemical changes reflect the formation of celadonite, iron-oxyhydroxide, saponite and 
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carbonate and many elements with low net gains and losses were simply remobilized. 

Gains in K and Fe indicate supply by seawater and other basalts respectively. 

 The relative timing of secondary mineral paragenisis proposed by Paul et al. 

(2006) is based on detailed petrographic studies of mineral assemblages, and cross 

cutting relationships between vein minerals, and halos. The nature and extent of low 

temperature seawater alteration at Site 1224 is very typical of upper ocean crust and it 

is similar to the alteration of other sites in this study.  Initial emplacement of Fe-

oxyhydroxides and celadonite formed veins and dark grey halos under oxidizing 

conditions at low temperatures. This is succeeded by a decrease in the oxidation 

potential of seawater where the system is more rock dominated and reducing. 

(Andrews, 1977 and Seyfried et al., 1978). Here, saponite which cross cuts veins, and 

overprints the earlier assemblages. Uncommonly, saponite can be contemporaneous 

or rarely earlier than the celadonite and iron-oxyhydroxides, suggesting complex fluid 

chemistry, perhaps as the result of reopening stages with increased fluid flow. 

Carbonate forms late stage veins which cross cut earlier veins. In addition earlier 

veins may be re-opened and filled with carbonate and secondary sulphides forming 

multi-minerallic, zoned veins. Paul et al. (2006) point out that the massive flow (Unit 

1) that caps the basement at Site 1224 may have inhibited the ingress of seawater into 

underlying crust, thus inhibiting hydrothermal alteration. A similar lithostratigraphy is 

reported at Site 1256, which shows similarly low extents of alteration. 
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6.4. Site 1243 

 

 

Site 1243 is located in the eastern equatorial Pacific, west of the East Pacific Rise at 

5o18.0541’N, 110o4.5798’W for Hole 1243 A and 5o18.0543’N, 110o4.2544’W for 

Hole 1243 B (Figure 6.30). Site surveys indicate that Site 1243 is on a plateau in close 

proximity to a 100 m deep trough (Figure 6.31). At a water depth of 3882 m, Site 

1243 penetrates 117 m of sediment and 87.1 m of basement (Hole 1243 B). 

An estimated age of 10-12 Ma for Site 1243 formation is based on spreading rate of 

141 mm/yr and an East Pacific Rise subsidence curve (Orcutt et al., 2003). This age is 

consistent with palaeomagnetic studies and microfossil evidence from the near 

basement section of nearby Hole 851, drilled by ODP Leg 138 (Psias et al., 1995; 

Shackleton et al., 1995).  
 

 
Figure 6.30. Location of Site 1243, including its estimated counterpart location and 
Site 1256.  
 
Important differences between these sites need to be considered before any parallels 

can be drawn, Site 1243 differs from Site 1256 in that it has thinner sediment cover, 

and lacks the ponded lava flow and inflated flows of Site 1256. 
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Figure 6.31. Seismic profile for Site 1243. Data is migrated and includes the locations 
of Holes 1243A and 1243B. OSN-2 = Ocean Seismic Network-2. UTC = Universal 
Time Coordinated.  Modified from Orcutt et al., (2003). 
 
However, despite these differences its provenance makes this site an important 

addition to the suite of fast spread sites used in this study to characterise hydrothermal 

alteration formed at fast spreading rates. As with Sites 1224 and 843, a representative 

suite of samples were analysed and described in terms of hydrothermal alteration, 

therefore a brief summary based on previous work by Orcutt, Schultz., Davies., et al, 

(2003) and Moberly, (2003) is provided here.   

 

6.4.1 Sea floor sediment, stratigraphy and sedimentation rates 

 

Approximately 117m of sediment was cored with less than 1 % total recovery. The 

only successfully recovered portion of the sedimentary overburden was Core 203-

1243B-1R. This consists of mud slurry and nannofossil ooze, containing coccoliths 

and a low percentage of planktonic foramanifers, discoasters, radiolarians, iron oxide 

and glass fragments. Sediment recovered from interval 203-1243B-2R-1, 46-49 cm 

include an oblate shaped white limestone with brown clay mineral veins. At interval 

203-1243B-10R-2, 66-71 cm, thin vestiges of a pink to grey limestone containing 

palagonite grains, black specks, relict foramanifers and glassy rinds were observed. 

Units of basalt above and below the Section 203-1243B-2R-1 limestone and the 

presence of glassy rinds in the limestone imply that the limestone is an interpillow 

sediment (Orcutt et al., 2003). The limestone unit at section 203-1243B-2R-1 contains 

abundant prismatic shaped pore spaces and Orcutt et al., (2003) suggest that these 

represent dissolved anhydrite crystals which must have formed in warmer 
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environments during digenesis. Shipboard petrographic analyses suggest that up to 

6% of the limestone fragment may have been composed of anhydrite. However, no 

anhydrite was identified in thin section or by XRD. In addition, no record is made of 

the presence of anhydrite, past or present in the basaltic units.  

Sedimentary stratigraphy for Site 1243 is almost non existent (Figure 6.32), 

with only the lowermost portion of material recovered. This portion does, however, 

provide the sediment/basement contact, and, using preserved microfossils, provides 

the age at which sedimentation began (10-12 Ma) (Orcutt et al., 2003). 

The rate of sedimentation is inferred from the age of initial sedimentation, and 

thickness. The average burial rate is 10.6 m/m.y, however a lack of recovery for a 

large portion of sediment, precludes any detailed investigation of sedimentary rates. 

 
Figure 6.32. Lithostratigraphy of Site 1243.  
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Figure 6.33. Sedimentary burial rate at Site 1243. Burial rate is inferred from a 
biostratigraphic date from sediment/basement contact (Orcutt et al., 2003). Site 1256 
burial rates up to the age of Site 1243 is shown for comparison.  
  

However, when the inferred burial rate at Site 1243 is compared to the burial rate at 

Site 1256 (Figure 6.33), sedimentary rates are broadly comparable. This implies that 

Site 1224 has undergone a similar burial history to Site 1256. 

 

 

6.4.2 Basement at Site 1243, Petrography and Igneous geochemistry. 

 

The sediment/basement interface was recovered in Core 203-1243B-2R at 108.6 

mbsf. Sediment and basalt continued to be recovered to a depth of 117 mbsf, below 

which basalt with only minor inter-pillow sediment was recovered. Drilling continued 

to a total depth of 195.3 mbsf or 77.8 msb. Recovery ranged from 1% to 63% (Figure 

6.31). The basement section consists entirely of pillow lavas that are divided into 8 

units based on petrographic description and shipboard geochemistry. Units 1, 3, 4, 5, 

6, 7, and 8 are basaltic whereas Unit 2 is an interpillow sediment (see limestone, 

Section 203-1243B-2R-1, discussed earlier). Units at Site 1243 are broadly similar, 

only slight textural changes and variability in olivine content distinguishes them. See 

Orcutt, et al., (2003) for detailed descriptions of Site 1243 igneous units.  

Shipboard geochemical analyses (ICP-AES) were carried out for 9 samples of 

pillow interior In addition, shore based analyses of whole rock basalts were carried 

out to obtain major, trace, REE, and Sr-isotopic compositions (Orcutt et al., 2003). 
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Figure 6.33 indicates the chondrite normalised REE pattern for Site 1243 basalts. One 

group exhibits slight REE depletion compared to MORB and a second group, is 

LREE enriched. A discrimination plot that compares immobile elements Ti and Zr 

(Figure 6.35) and a ternary Zn-Nb-Y plot (Figure 6.36) indicate that Site 1243 basalts 

can be split into two groups: one alkalic and the other tholeiitic. 

 
Figure 6.34. Chondrite normalized REE patterns for Site 1243 basalts. Bold lines 
indicate average REE patterns for the two geochemically distinct groups. Data 
sourced from Orcutt et al, (2003). Pacific MORB data sourced from Janney and 
Castillo, (1997). Pm is not analysed. 
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Figure 6.35. Plot of Zr vs. Ti. Site 1243 basement, with most samples plotting within 
the expected range for MORB (field after Pearce and Cann, 1973 data from Pearce, 
1982). Site 1243 data sourced from Orcutt et al., (2003). 

 

 
Figure 6.36. Zr-Nb-Y discrimination diagram for basalts at Site 1243. Site 1243 data 
sourced from Orcutt et al., (2003). Field data are after Meschede (1986). 
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Figure 6.37. Hole 1243B igneous rock composition on the Na2O + K2O vs. SiO2 (in 
weight percent) classification diagram (Le Bas et al., 1986). Alkalic and tholeiitic 
basalt fields are separated by the Macdonald and Katsura (1964) line. Blue triangle = 
Unit 1, black circle = Unit 3, green diamond = Unit 4, green triangle = Unit 5, purple 
square = Unit 7 red square = Unit 8. 
 

On a discrimination plot of SiO2 vs Na2O + K2O (Figure 6.37), Units 1,3,5,7, and 8 

are tholeiitic whereas Unit 4 is alkali. The variable chemistry of Unit 4 is further 

supported by high TiO2, Ba, Zr and Nb. With the exception of Unit 4, Al2O3, Ti/Zr, 

and Ba/Sr do not vary with depth and fractionation trends are minor for Site 1243. 

Units 1,3, and 5 are homogenous whereas Units 7 and 8 are more differentiated 

(Figure 6.23). A high degree of fractionation occurs in Unit 7 as indicated in the Ti/Zr 

vs. Zr/Y and Ba/Sr and Al2O3 vs. Mg# plots (Figure 6.38). Orcutt, Schultz, Davies et 

al, (2003) suggest that alteration at Site 1243 is sufficiently low (See Alteration) that 

the normally mobile elements such as Ba and Sr can be considered in terms of their 

primary igneous compositions, and therefore the high TiO2, Ba, Zr and Nb represent 

the original magmatic features of Unit 4 basalts.  
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Figure 6.38. Al2O3 and Ti/Zr ratios vs. Mg#. These indicate that tholeiitic basalt of 
Units 1, 3, 5, 7, and 8 are probably derived from a similar mantle source, whereas 
alkalic basalt of Unit 4 are derived from an enriched mantle source. In addition 
Abundance ratios of Zr/Y and Ba/Sr vs. Ti/Zr are used to distinguish between 
tholeiitic and alkalic basalt. These ratios are sensitive to the presence of a 
metasomatic component in the basaltic mantle source however Ba and Sr may have 
been affected by hydrothermal alteration. After Orcutt et al., (2003) 
 

Shore-based microprobe analyses of relatively fresh glass chippings by Moberly et al, 

(2003) distinguish 5 groups of glass, all of which are tholeittic N-MORB to enriched 

T-MORB. The glass chippings were recovered from a drill breccia at the base of the 

hole, and the chemistry suggests that the chippings are from the lower units of Site 

1243. 

From the shipboard geochemistry, Orcutt et al., (2003) conclude that Units 1,3,5,7, 

and 8 are sourced from un-evolved magmas and that the thoeiities came from a single 

mantle source. The alkali basalt in Unit 4 suggests that either, 1) that a small degree of 

partial melting occurred from the same depleted mantle source as the other units or 2), 

that Unit 4 represents a partial melt from a distinct enriched mantle source, such as a 

metasomatized mantle.  
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 Moberly et al, (2003) comes to similar conclusions as Orcutt et al., (2003), in 

that the basalts may have come from two separate parental magmas, one of which 

may be the Galapagos plume.  

 

 

6.4.3 Alteration 

 

Typical alteration a Site 1243 is shown in Figure 6.39. Alteration at Site 1243 varies 

from very slight to moderate. The overall alteration at Site 1243 is slight. Alteration 

intensity is concentrated along pillow margins, vesicles and brecciated regions and 

colours vary from light grey to grey in the least altered portions to pale brown, 

yellow/orange /red brown halos in the fine grained pillow lobe margins, veins and 

vesicles. In a few sections, green/black iron-oxyhydroxide halos are common. Halos 

occur throughout the core with little variation with depth. Approximately 48 % by 

volume of the core is made up of the relatively fresh ‘grey’ background, whereas 

black/mixed and brown/red/yellow halos make up 35 % and 17 % by volume of the 

core respectively. Within the groundmass, alteration consists of nontronite and iron-

oxyhydroxide and vesicles are filled with celadonite, saponite, iron-oxyhydroxides, 

zeolites and carbonates. On average there are 11 veins per metre which form 0.74% 

by volume of the core. Veins are filled with nontronite, saponite, iron-oxyhydroxides, 

zeolites and carbonates and they range from <0.1 mm to 2 mm wide. 

 Alteration in Unit 1 is slight with <10% secondary minerals, Alteration in 

Units 3 and 7 are very slightly altered with less than 10% alteration. Units 4, 5 and 6 

are slight to moderately altered with ~10% to 15% alteration.  In Section 203-1243B-

7R-2, olivine microphenocrysts are partially replaced by brown iron-oxyhydroxide 

and rarely, plagioclase is partially altered to sericite. The groundmass is slightly 

altered to nontronite and iron-oxyhydroxide and glass is partly replaced by palagonite 

(Orcutt et al., 2003). Unit 8 is similarly altered, but alteration halos are yellow-orange 

in colour, reflecting variation in the Iron-oxyhydroxide content in the secondary 

mineral assemblages. 

 Brecciation is limited to in-situ fracturing of glassy margins for 0.13 % of the 

recovered core. Because recovery of the core is only ~25% of the total penetration, 

recovery may be bias towards more competent material, therefore a proportion of the 

breccias at Site 1243 may be unaccounted for. In comparison Site 1256 recovered 
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13.5% breccias. However overall recovery is better at Site 1256 suggesting that a 

greater proportion of the breccias were recovered. Relatively comprehensive wire-line 

logs using Triple-combo and formation-micro-scanner tools obtained high quality log 

data (Orcutt et al., 2003), therefore Core log integration may allow a more 

quantitative assessment of downhole lithology.  

 
Figure 6.39. Alteration styles at Site 1243. Photomicrographs after Orcutt et al., 
(2003). 
 

Loss on Ignition (LOI) at Site 1243 is typically less than 0.9 wt% but it ranges from 

0.1 to 2.7 wt% which, as suggested earlier, represents slight to moderate alteration. 

Orcutt et al., (2003) conclude that secondary mineral paragenisis is dominated by 

iron-oxyhydroxide, various brown clay minerals, and late carbonates and zeolites. 

This assemblage is typical for low temperature seawater alteration at less than < 

150oC, including alteration at Site 1256. 
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6.5. Site 843 

 

 

Site 896 was originally drilled to place a seismic observatory, part of the Ocean 

Seismograph Network, on the Hawaiian arch southwest of Hawaii. Site 843 would 

then form part of the OSN, which is used to study the earth’s structure, upper mantle 

dynamics, ocean crust structure and seismic noise. A secondary goal at this Site was 

to determine the physical and chemical composition of basement at this site and its 

relationship with Hawaiian lavas (Wilkens et al., 1993). ODP Site 843 is located on 

the Hawaiian Arch, 225 km southwest of Oahu at 19o20.54’N, 159o5.68’W (Figure 

6.40). At a water depth of 4407.1 m, Site 843 sits directly on top of a NW-SE trending 

abyssal hill and penetrates 313.4 mbsf, of which 242.5 m is sediment and 70.9m is 

basement.  

 
Figure 6.40. Location of Site 843. 

  

A basement age of 94-100 Ma (Late Albian to early Cenomanian) was determined by 

dating nannofossils within the sedimentary succession (Wilkins et al., 1993). 

Palaeomagnetic studies of the basement rocks and the Hawaiian hot spot trace of 
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Pacific plate motion suggest a palaeolatitude of 10oS for Site 843 along the 

Pacific/Fallaron plate boundary (Wilkins et al.,1993). Studies of the magnetic reversal 

patterns indicate that Site 843 formed at a fast spreading rate of ~100 mm/yr (full). 

Site 843 represents fast spread crust at an age that helps to fill a large gap in the 

sample of old oceanic crust used in this study.  

 

 

6.5.1 Sea floor sediment, stratigraphy and sedimentation rates 

 

Much of Site 843 basement was drilled without coring and only spot cores were taken 

at selected intervals. Intermittent sampling and a lack of seismic data preclude a 

detailed lithostratigraphy for Site 843. However, a summary of Site 843 stratigraphy 

is illustrated in Figure 6.41 using all available sample data from Wilkens et al., 

(1993). Sediment was recovered intermittently with no contacts (except for the 

sediment/basement contact), therefore no units are defined.  Zeolitic and brown clays 

and rare ash/chert nodules were recovered from a depth of 0-121.8 mbsf. The interval 

from 121.8 to 228 mbsf consists of occasional red/brown chert and chalk fragments 

that overlie a brown nannofossil limestone. 
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Figure 6.41. Composite stratigraphy of Site 843 showing the sedimentary overburden 
and basaltic basement rocks cored from Hole 843A, 843B and 843C. Data sourced 
from Wilkins et al., (1993). 
 

This limestone forms the sediment/basement interface for ODP Hole 843A. A 

similar sediment/basement interface was recovered in Hole 843B at 242.5 mbsf. 

Tentative identification and stratigraphic correlation of radiolaria, ichthyolith, and 

palaeomagnetic data from the uppermost 40 m and the lowermost 5 m at Sites 843 

and 842 were used to infer a formation age of 94-100 and a mean average 

sedimentation rate of ~3 m/My. A more detailed burial history is inferred in Figure 

6.42 which shows sediment accumulation rates at Sites 842, 843, and nearby DSDP 

Site 164. Sedimentation at Sites 843 and 842 indicate initial fast rate of deposition 

(~10 m/My) to ~83 Ma followed by a period of slow sedimentation (~0.7 m/My) 
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between 83 and 68 Ma. The next 40 Ma is not dated, however sedimentation averages 

at ~2 m/m.y. An apparent slow period of sedimentation for 20 Ma leads to a short and 

rapid accumulation towards present day. This rapid accumulation coincides with the 

formation of the Hawaiian Arch at 4 Ma. (Clague and Dalrymple, 1987). 

 
Figure 6.43. Sediment accumulation rates for Site 843. A more detailed sedimentary 
history is inferred from nearby Site 842 because it retains more comprehensive 
biostratigraphic dates. Data sourced from Winterer, Firth, Bender et al. (1993) and 
Edward, Ewing, Douglas et al. (1973). 
 
 

6.5.2 Basement at Site 843, Petrography and Igneous geochemistry. 

 

A more exhaustive description of the petrography and primary geochemical trends at 

Site 843 is discussed in Dziewonski et al., (1992) and King, et al, (1993), respectively 

This section serves as a summary of work relevant to this study. In addition, 

conclusions based on samples recovered at Site 843 are limited because Site 843 was 

spot cored.  

 Basement recovered at Holes 843A (3 m) and 843B (70m) is highly fractured 

and it had been subjected to slight to moderate alteration. All recovered basalts are 

almost aphyric (<0.1% phenocrysts) with only few vesicles that are largely contained 
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within the pillow margins. The groundmass ranges from microcrystalline to 

cryptocrystalline and it is composed of plagioclase, clinopyroxene, accessory iron 

oxides and rare olivine. Only four igneous units at Site 843 were recovered principally 

due to limited coring and these are defined by textural differences and margins. Unit 1 

is holocrystalline and dark grey whereas Unit 2 is slightly darker grey and finer 

grained. The occurrence of gabbroic xenoliths distinguishes Unit 3 from Unit 2. Unit 

4 also contains xenoliths but it is separated and distinguished from Unit 3 by a glassy 

margin (Dziewonski et al., 1992).  

 
Figure 6.43. Chondrite normalized REE patterns for Site 843 basement rocks. Data 
sourced from this study Dziewonski et al., (1992) and King, et al, (1993). Chondrite-
normalization factors from Taylor & Gorton (1977). 
 

A range of shipboard and shore-based analyses were carried out on a selection 

of the most visibly fresh samples for geochemical classification (Dziewonski et al., 

1992; King, et al. 1992). The least altered samples were selected based on 

macroscopic observation of light grey massive basalt sections (Alt, 1992) and they 

were analysed by XRF on board JOIDES Resolution for major elements, XRF at the 

 352



Sites 504, 896, 1224, 1243, and 843  6.5 

University of Hawaii for trace elements, and ICP-MS at Washington State University 

for trace and REE. Sr, Nd and Pb isotopic ratios and abundances were determined at 

the University of Hawaii and whole rock δ18O were measured at the University of 

Michigan. Chondrite normalised REE patterns for Site 843 broadly overlap with the 

MORB field, with greater variation in LREE (Figure 6.43).  

  
Figure 6.44. Plot of Zr vs. Ti discrimination diagram. Site 843 basalt plot within the 
expected range for basalts a number of basalts have elevated Zr, possibly the result of 
fractionation. Site 843 Data from this study Dziewonski et al., (1992) and King, et al, 
(1993). Field data after Pearce and Cann, (1973); Pearce (1982). 
 

 
Figure 6.45 Zr-Nb-Y discrimination diagram for basalts at Site 843. Data from this 
study Dziewonski et al., (1992) and King, et al, (1993). Field data are after Meschede 
(1986). 

 353



Sites 504, 896, 1224, 1243, and 843  6.5 

Because Zr, Nb and Y are relatively immobile and incompatible they can be 

used on a variety of discrimination plots to characterise Site 843 basalts. On a plot of 

Zr vs. Ti (Figure 6.44) Site 843 basalts cluster into two groups one within the N-

MORB field and another with elevated Zr. The samples with elevated Zr are also 

distinctive on a Zr-Nb-Y ternary plot (Figure 6.45), which indicates a number of 

basalts are evolved. A plot of Zr/Nb vs.Y/Nb (Figure 6.46) indicates that ODP Hole 

843 basement represents both transitional (T)-MORB and N-MORB (King et al, 

1992).  

 
 

 
Figure 6.46. Discrimination plot of Zr/Nb vs Y/Nb with fields for E-MORb, T-MORB 
and N-MORB. After King et al., (1992). 
 

However on a plot of MgO and LOI vs. K2O (Figure 6.5.8) ODP Hole 843B 

basalts have greatly elevated K2O and LOI concentrations compared to concentrations 

compared to N-MORB basalts (King et al, 1992). Two possible explanations for high 

K2O concentration include: 1) Precipitation of clay minerals that are rich in K (e.g. 

celadonite) during low temperature seawater alteration, or 2) The basalts truly 

represent Transitional (T) –MORB (Bass, 1972). Given that the relatively immobile 

and incompatible elements Y/Nb vs Zr/Nb (Figure 6.47) in these samples plot in the 

same field as T-MORB it seems likely that a component the elevated K2O 

concentration within these basalts reflects T-MORB compositions (King et al., 1992). 
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However, the presence of clay minerals at Site 843 (Alt et al, 1993) imply that at least 

some of the K2O must be the result of low temperature seawater alteration. 

 
Figure 6.47. Plot of MgO and LOI vs. K2O with the field for N-MORB shown. After 
King, et al. (1992). 
 

Basalts recovered at ODP Hole 843A are slightly more enriched in Ti, K, P, 

Cr, Sr, Y, Zr, Nb, Ba, Ta, and light and mid REE compared to ODP Hole 843B. 

However, Zr/Nb, Hf/Ta, La/Sm and trace elements indicate that both lavas from 

Holes 843A and B come from a similar source. Chondrite normalised REE patterns 

for Site 843 reported by King, et al. (1992) are slightly elevated compared to N-

MORB but not enough to be E-MORB. In addition, King, et al. (1992) argue, from a 

study of plagioclase phenocrysts, that a strong positive Eu anomaly associated with 

high concentrations of Nd and Zr suggests that the Eu comes from an enriched mantle 

source. Lack of corrosion on plagioclase phenocrysts implies that the high Nd and Zr 

concentrations are not the result of alteration (King et al, 1992). A detailed report of 

the isotopic systematics at Site 843 by King et al. (1993) also imply that the source 

melt for Site 843 basement is evolved. 

 Strontium isotopic composition of leached and unleached splits range from 

and 0.7027-0.7028 and 0.7037-7034 respectively (King et al., 1992). These results 

reflect the removal of secondary phases by leaching revealing primary Sr values. 

These values are similar to the leached values in this study and EPR MORB.  
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Figure 6.48. Combined plot of LOI, K2O, and 87Sr/86Sr, vs. δ18O compiled from King 
et al. (1992). All three chemical parameters, traditionally used as a proxy for 
alteration intensity, increase with δ18O. Red diamonds = LOI, black diamonds = K2O, 
and green diamonds = 87Sr/86Sr. 
 

Oxygen isotope ratios range from + 6.4 ‰ to 8.7 ‰. Considering that this 

value is higher than fresh EPR N-MORB δ18O is + 5.6± 0.1 ‰ (Ito et al., 1987), and 

that there is a trend between δ18O with increased LOI, K2O, and 87Sr/86Sr, (Figure 

6.48) King et al. (1992) deduce that δ18O is greatly affected by alteration and that Site 

896 has been subjected to seafloor weathering. High K2O appears to be the result of 

low temperature alteration and therefore it is not a reliable means to assess the 

primary composition of Site 843 basalts. 

 
 
6.5.3 Alteration 

 

Alteration at ODP Site 843B is discussed in detail by Alt, (1993) and Waggoner 

(1993) and a brief summary is made here. The low temperature alteration assemblage 

of ODP Site 843B is dominated by dark green/grey and brown/red halos and patches 

around fractures and veins, and grey host rocks with slight to moderate background 

alteration. Examples of the alteration of basement rocks at Site 843 are summarised in 

Figure 6.46. The majority of the core contains 1 mm to 3 mm wide dark green/grey 

alteration halos that are associated with veins of celadonite and iron-oxyhydroxides. 

Alteration intensity within these halos is typically 5-15% with pore spaces and 

vesicles filled and olivine replaced by celadonite ± iron-oxyhydroxides respectively. 
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Halos make up 8.5% by volume of which 27% are grey, 11% are brown/red and 62% 

are dark grey/green. Vesicle fill may be zoned, commonly with the following 

sequence: 1) celadonite, 2) iron-oxyhydroxide, 3) saponite. Rarely vesicles may be 

lined with green celadonite, and then in-filled with by blue-green celadonite and 

calcite. Sections 136-843B-1R-3 and 1R-4 are dominated by brown halos and 

uncommon red patches that overprint the dark green/grey alteration halos. These 

zones are also characterised by an increase in vein abundance. Red/brown zones are 

10-15% altered with iron-oxyhydroxide filling pore space and replacing olivine. 

Microprobe analyses carried out by Alt (1993) on these zones indicate high K2O and 

SiO2 which suggests that celadonite is also present. 

 This supports the macroscopic evidence that brown halos have overprinted the 

earlier celadonite rich halos. In the grey background, pore spaces are filled with 

saponite + calcite and plagioclase and clinopyroxene is rarely replaced by saponite + 

calcite. The dark grey background is typically ~15 % altered.   

Veins consists of celadonite, saponite, iron-oxyhydroxides, and calcite and 

they typically make up 1-3% of the core. However, veins and breccias combined 

make up ~9 % of the core, which is significantly more than Sites 1224, 1243, 

and1256. Sections 136-843B-1R-3 and 1R-4 are composed of 2-5% veins and Core 

136-843B-2R is composed of 10% veins. Petrographic analyses of vein minerals and 

cross cutting relationships carried out by Alt (1993) and Dziewonski et al, (1992) 

suggest the following vein filling sequence; 1) green celadonite ± iron-oxyhydroxides 

forming <0.1 to 0.2mm veins, 2) iron-oxyhydroxide and iron-hydroxide overprint 

and/or form new veins of similar thickness, 3) blue-green celadonite + saponite ± 

pyrite, and 4) late calcite + pyrite veins cross cutting all earlier veins. All vein mineral 

assemblages occur throughout the ODP Hole 843 with no distinct variation with 

depth, with the exception of pyrite, which is most abundant near the top of the 

basement. Iron-oxyhydroxide is most abundant in sections 136-843B-1R-3 and 1R-4, 

which coincides with an increase in vein frequency and abundance of brown halos. 

Sections 136-843B-1R-1 and 2R-1 have abundant blue/green celadonite and calcite. 

Brecciation in Core 136-843B-2R consists of moderately altered, angular to sub-

angular basaltic clasts in a calcite ± saponite and iron-oxyhydroxide cement.  

 

 

 357



Sites 504, 896, 1224, 1243, and 843  6.5 

 
Figure 6.49. Examples of the style and intensity of alteration exhibited at Site 843. A) 
Early celadonite veins and halos are overprinted by saponite/Iron-oxyhydroxide halos. 
B) Same arrangement of halos as A, however vertical veins indicate vertical fluid 
flow, in addition late calcite overprints all earlier phases. C) Basalt clastic breccia 
comprising moderate to highly altered subangular basaltic clasts in a matrix composed 
of calcite and iron-oxyhydroxides. 
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Figure 6.50. Alteration trends of basalts from Site 843B compared to N-MORB. After 
Alt, (1993) Fields for N-MORB taken from Natland and Melson (1980) and Sinton et 
al. (1991). 
 

Chemical analyses carried out by Alt (1993) reveal that the dark halos are 

enriched in H2O, CO2, Fe2O3
T, K2O, MnO, and Fe3+/FeT and depleted in SiO2, 

Al2O3, MgO and TiO2 relative to the grey host rocks. Figure 6.50 demonstrat

enrichment in a selection of elements relative to MORB. Brown halos are enriched in 

Fe

es this 

 2O3
T and Fe3+/FeT whereas the grey background has elevated H2O, CO2 and K2O

relative to EPR N-MORB. However, it remains important that the high K2O in the 

altered rocks is not confused with the high K2O in the least altered rocks that is 

indicative of T-MORB primary compositions, where chemical changes for Site 843 

are measured (see later chapter) the T-MORB basalts are treated separately so as not 

to distort the overall chemical change values for Site 843. Stable isotopic 

compositions (δ18O) of carbonates analysed by Alt (1993) suggest that alteration at 
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Site 843 took place under cold seawater conditions ranging from 5o- 40oC, which is 

similar to the alteration encountered in the other sites in this study. 

 

 Alt (1993) outlined the sequence of secondary mineral formation based on the 

cross cutting relationship of veins, vesicle fillings and alteration halos. 1) Celadonite 

and iron-oxyhydroxides form in oxidising conditions at low temperatures, possibly 

within 1Ma of crustal formation. 2) Saponite formed later under more reducing 

conditions, perhaps with a lower seawater/rock ratio. 3) Calcite and pyrite appear to 

form last in veins and vesicles at temperatures of 5o- 40oC. Site 843 exhibits a 

secondary phase of celadonite, formed at the time of calcite that is compositionally 

different from the early celadonite. This may be related to renewed fracturing leading 

to the introduction of less evolved seawater.  Overall this sequence is very similar to 

the low temperature assemblages encountered in the other fast spread sites in this 

study. 
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7.1.  Introduction 

 

One of the major mechanisms for chemical exchange between the lithosphere and 

hydrosphere is the heat driven circulation of seawater through the ocean crust. This 

mechanism has profound influence on the chemistry of the atmosphere, oceans, and 

through subduction and recycling of the ocean crust, the mantle and volcanic arcs 

(Thompson, 1973; Honnorez, 1981; Staudigel et al., 1981). However, the factors that 

influence the geometry and extent of hydrothermal systems, such as fluid and heat 

fluxes, the evolving chemical compositions of fluids as they circulate through the 

systems and, the architecture of the flow system remain poorly understood.  

 

 Models of heat flow by Stein and Stein, (1994) suggest that seawater circulates 

for up to 65 Myr. More recent calculations of heat flow surveys (Von Herzen, 2005) 

imply that ongoing hydrothermal circulation is common, even in >95 Ma crust and that 

off axis circulation accounts for the majority of heat output (Stein et al., 1995; Mottl, 

2003) and fluid output (Hutnak et al., 2008). Studies that compare geophysical 

parameters that are sensitive to alteration, such as density, porosity, and hydration with 

age indicate that the extent of alteration in ocean crust is dependent on age (e.g., Jarrard 

et al, 2003). There is also evidence that hydration, a measure of the extent of alteration 

(Alt et al., 1992), increases with increasing age (Hart, 1970, 1973; Donnelly et al., 

1979; Muehlenbachs, 1979). In addition analyses of CO2 from basement penetrations 

spanning ~170 Myr indicate that the amount of carbon fixed into the ocean crust 

increases with age (Alt and Teagle, 1999). A recent review of fluxes of water, CO2, Cl, 

and K by Jarrard et al., (2003) indicate that lithological variation within the extrusives 

and time have the greatest impact on low temperature alteration. In the same review, 

seafloor topography, sedimentary cover and lithologic permeability are also thought to 

control the extent of hydrothermal alteration.  

 Modelling of heat flow based on basement relief, distribution of sediment cover, 

conductive heat transfer through sediments and thermal and geochemical constraints by 

Fisher et al., (1990, 1994) imply that off axis circulation is induced by topographic 

variations. Studies by Wheat and Mottl, (2000), Fisher et al, (2003a 2003b), Wheat et 

al, (2004) and Hutnak et al., (2008) suggest that selective extraction and fluid flow may 

be facilitated by conduits at basement outcrops for example seamounts. 
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 Work to characterise hydrothermal alteration and chemical change by 

petrographic observations and geochemical observations and comparisons to other 

drilled sites have also been used to suggest that lithology and sedimentation on site has 

a crucial role (Paul et al., 2006). In addition Paul et al, (2006) use Sr-isotopic ratios and 

trace element ratios (Mg/Ca) for carbonates from a variety of Sites (504, 896, 417 and 

418) to suggest Ca-carbonate formed within 20 Ma of crustal formation. These 

observations are in close agreement based on age dating of secondary minerals in the 

ocean crust (Staudigel et al., 1981) and celadonite in the Troodos ophiolite (Booij et al., 

1995). Seismic surveys (Grevemeyer et al., 1999) also imply that the majority of 

alteration ceases early at around <10-15 Ma of crustal formation. 

 

Haymon et al, (1991) demonstrated that hydrothermal features such as vent sites 

are commonplace on fast-spreading mid-ocean ridge axes. In addition a study of Sr and 

O isotopes from a range of end-member hydrothermal fluids at differing sites by Bach 

and Humphris, (1999) imply that the greater exchange between upper ocean crust and 

fluid occurs at slow spread crust due to increased fluid-flow paths and greater depths of 

fluid penetration at slow spreading ridges. Alt and Teagle, (2003) note that alteration at 

fast spread sites is similar with relatively low alteration intensity. However these 

authors suggest that a low abundance of brown alteration halos at Site 801 is the result 

of smooth basement topography and high sedimentation rate that restricted the flow of 

oxygenated seawater.  

Clearly there remains a problem elucidating which are the most important 

factors in controlling the style and intensity of hydrothermal alteration in upper ocean 

crust. As discussed earlier, factors including basement topography, sedimentation rate, 

lithology, age, spreading rate, and the structure of oceanic basement may all have a 

significant role. An understanding of which parameters has the greatest control over the 

nature of hydrothermal alteration in ocean crust may have implications on the 

geochemical and thermal budgets associated with seafloor hydrothermal circulation. To 

address this, a range of sites, where oceanic crust formed at intermediate and fast 

spreading rates has been recovered, have been characterised in terms of their 

hydrothermal alteration. Sites 504, 896, 1243, 1256, 1224, 843, 1179, and 1149 (Figure 

1.5)span ~133 Myr in age and they represent crust of variable lithological 

compositions, differing tectonic histories, topographic variation and spreading rate 

(Table 7.1). In addition these sites have been subjected to a variety of burial histories 
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(Table 7.1). Analysis of major, trace elements, REE, and isotopic analyses have been 

used in conjunction with petrographic observations from basement recovered at Sites 

504, 896, 1243, 1256, 1224, 843, 1179, and 1149 to characterise hydrothermal 

alteration, and to obtain sample by sample precursor compositions and calculate the 

chemical changes associated with low temperature hydrothermal alteration for each 

site. In addition, the contribution to the total chemical change by vein minerals and 

breccia matrixes is included to estimate the total chemical change at each of these sites 

(See Chapter 3 ‘Site 1179’ for method). Comparisons based on the alteration 

characteristics of Sites 504, 896, 1243, 1256, 1224, 843, 1179, and 1149 made in this 

thesis and in other sources are used to assess which factors, including spreading rate, 

age, burial, basement topography, and lithology, have the greatest effect on chemical 

and isotopic exchange. In addition observations of carbonate veins across these sites are 

used to infer the duration of alteration within modern ocean basins.  

 
Table 7.1. Regional data for intermediate and fast spread sites from this study and sites 
with potential for future analysis (grey). P= pillow lavas, M = massive flows, Bx = 
breccias, F = flows, D = dikes. Data represents the range of variables that can be tested.   
 

This study also highlights the limitations associated with attempts to characterise 

hydrothermal alteration of ocean crust on a large scale. Variations in results may reflect 

site specific variations that part-obscure major trends.  

Alternatively, poor recovery, a lack of good estimates of igneous stratigraphy 

and potentially inappropriate precursor compositions, caused by sample bias or 

unaccounted for mobility of TiO2 give rise to errors that serve to obscure real trends.  
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7.2.   Variation in sedimentary rates and basement topography 

 

7.2.1 Sedimentary rates 

 

A potentially important control on the style and intensity of low temperature 

hydrothermal alteration of the ocean crust is the extent and duration of sediment 

deposition onto basement. Models of heat and chemical fluxes at mid-ocean ridge 

flanks indicate that sediment thickness, along with permeability, crustal age, and 

basement topography determines the change in the composition of seawater in the 

basement (Mottl and Wheat, 1994). Thin sediment cover near the ridge axes gives rise 

to relatively open circulation of seawater in the volcanic section at low temperatures 

(<250C) (Mottl and Wheat, 1994; Wheat and Mottl, 1994; Alt, 1995). Thicker sediment 

cover at the ridge flanks, where basement outcrops are less common, restricts seawater 

penetration, thus resulting in less oxidizing conditions and warmer temperatures in the 

basement (Mottl and Wheat, 1994; Wheat and Mottl, 1994; Alt et al., 1986; Alt 1995).  

Analysis of the chemistry of pore fluids across the Juan de Fuca Ridge indicate 

a distinct relationship between the chemistry of pore fluids and sedimentation, 

Observations include increased temperatures caused by the burial of basement by a 

semi-permeable sediment blanket and subsequent decrease in the Sr-isotopic 

composition of the fluids, perhaps a result of increased interaction with basement rocks 

(Coggon, 2004). Sedimentation at Sites 504, 896, 1243, 1256, 1224, 843, 1179 and 

1149 are highly variable (Figure 7.1). Thicknesses vary from ~30 to over 400m and 

accumulation rates range from <1 m/m.y to upwards of 50 m/Myr.  

The range of sedimentary conditions at these sites reflects a number of variables 

that influence sedimentation, including, age, proximity to plate margins, biological 

productivity, and local basement topography. High burial rates in the last ~10 -15  Ma 

at Sites 504, 896, 1256, and 1243 are the result of high biological productivity zones, 

such as the equatorial Pacific zone (Farrel et al., 1995). Proximity to plate margins also 

influences sedimentary conditions. Seismic profiles of the Juan de Fuca Ridge (Davis et 

al., 1997) indicate increasing burial as the crust moves away from the ridge axis (Figure 

7.2). Young basement near the ridge axes has minimal sediment, which progressively 

increases with age and distance from the axes as basement subsides sedimentation in 

the ‘rough basement’ area marked in Figure 7.2 is due to erosion of the North American 

continental plate. Rapid sedimentation may also occur on near continental margins, for 
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example glacial turbidite sediments from the proximal North American continental 

margin (Elderfield et al., 1999; Fisher and Davis, 2000). 

 
Figure 7.1. Sedimentation rates for Sites 896, 504, 1243, 1256, 1224, 843, 1179, and 
1149. With the exception of Site 1224, sedimentation between 0 and ~15 Ma is rapid 
for all sites.   
 

 
Figure 7.2. Schematic cross section of the eastern flank of the Juan de Fuca Ridge 
showing drill sites of Leg 168, basement age sedimentary cover and distance from the 
ridge axes, hydrothermal  transition, buried basement (from proximal continental shelf 
margins), and rough basement topography with variable sediment cover are also 
indicated. After Coggon et al., (2004).  
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7.2.2 Basement topography 

 

Variation in basement topography can lead to sinks for sedimentary deposition, where 

turbidity flows and other sediment will naturally accumulate, whereas topographic 

highs tend to accumulate less sediment. One of the best examples of topographic 

variation is Site 504 and 896 which are located within a trough and on a topographic 

high respectively, see section 7.6.1 for details.  

 
Figure 7.3. Illustration indicating topographic- induced fluid flow caused by the relative 
differences in pressures in crests and troughs. Cartoon is based on model by Fisher et 
al, (1994).  
 

Modelling of off axis circulation at Site 504 suggests that sites with highly 

variable basement topography may result in increased hydrothermal circulation due to 

changes in isobaric pressure and focussing of fluid flow in areas with low 

sedimentation (Fisher et al., 1994). Conversely, areas with even sedimentation would 

have less vigorous hydrothermal circulation (Fisher et al., 1994), which is consistent 

with work by Mottl and Wheat (1994), Wheat and Mottl (1994), Alt et al, (1986), and 

Alt (1995). Like Site 896, Site 1243 is located on a topographic high in close proximity 

to a ~100 m trough. Site 1256 has a basement relief of <10 m (Wilson et al., 2003), 

however, at least 100m of topography is required for the lava pond. Given that the axial 

lava pond formed within ~50 ka (~5 km off axis), (Wilson et al., 2003) any effect on 

alteration that may have been associated with basement relief is probably negligible 

compared to the axial fluid fluxes at the time. Site 1256 basement topography, it 

therefore considered smooth. With the exception of Sites 896, 504 and 1243, all other 

sites in this study have a relatively smooth basement topography (where known) <150 

m over a 10 km square and they are all thought to be well below the Carbonate 

Compensation Depth (CCD). 
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7.3. Alteration trends  

 

Sites 504, 896, 1243, 1256, 1224, 843, 1179, and 1149 have all been subjected to low 

temperature oxidative alteration that is typical in modern ocean crust (This study, 

Andrews, 1977; Staudigel et al., 1981b; Alt and Honnorez, 1984; Alt et al., 1996; 

Laverne et al., 1996; Paul et al., 2006; Teagle et al., 2006; Alt, 2006). Overall alteration 

at these sites ranges from slight to moderate and it is pervasive throughout all 

penetrations with alteration concentrated within halos that surround veins, fractures and 

pillow rims. Low temperature secondary minerals present at all Sites include iron-

oxyhydroxides, saponite, celadonite, carbonates (calcite and aragonite), and zeolites. 

The timing of secondary mineral paragenisis is broadly similar across all sites, and it is 

broadly similar to the timing outlined by Alt, (2006) and in this study. It can be 

summarized as follows: 1) Emplacement of celadonite as veins and forming dark 

green/black halos, 2) emplacement of iron-oxyhydroxide, forms veins and halos and it 

typically replaces/overprints earlier celadonite halos, 3) Saponite occurs usually as a 

later transition from iron-oxyhydroxide, however saponite veins and halos commonly 

cross-cut and overprint iron-oxyhydroxide veins and halos respectively, and finally 4) 

late stage carbonates and zeolites forming veins and filling fractures and vesicles. These 

may occur in multiple phases, in which reopening may occur (such as Sites 1256, 1149, 

1179, and 843).  

 Despite clear similarities between the alteration styles for each site there exists 

significant variation in alteration intensity and distribution between the intermediate 

and fast spread sites. Variation of alteration styles across all sites, including the 

weighted average volume of volcanic section for each alteration style, is illustrated in 

Figure 7.4. Stratigraphy of the recovered core is included for comparison, and, for Site 

1256 the predicted axial lava zone is shown (Tominaga et al., 2009). Halo coverage for 

most sites is slight (2-10%) to moderate (10-50%) with the majority of alteration 

consisting of brown halos that overprint green/black halos. Halo coverage between the 

different sites is highly variable, older sites tend to show a greater degree of alteration 

and a higher proportion of green/black celadonitic halos and red/brown iron-

oxyhydroxide halos.   
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7.3.1 Trends with volcanic morphology 

 

Lithological composition for each site is outlined in Table 7.1 and illustrated in Figure 

7.4. All lithological compositions are based on recovered core . A lack of wire-line 

logging data for the majority of Sites precludes core-log integration, thus comparisons 

between Sites that are ‘corrected’ by such methods to those that are not, would be 

unrealistic. The issue of core recovery is discussed later in this chapter.  

Across Sites 504, 896, 1243, 1256, 1224, 843, 1179, and 1149 a number of trends are 

evident between the style and intensity of alteration and lithology.  

In almost all Sites in this study, abundant alteration halos are associated with 

breccias. At Site 896 the abundance of alteration halos trends with areas that are 

composed of ubundant sheet flows (Alt et al., 1993). The trend between sheet flows and 

halos at Site 896 was first observed by Alt et al, (1993). 

Recent core-log integration at Site 1256 by Tominaga et al, (2009) indicates that 

the relatively high alteration intensity between 750 and 800 msb may relate to an 

isolated pillow lava zone. These pillow lavas thought to represent lavas on the axial 

slope (Tominaga et al, 2009) thus the relatively high alteration in this interval may 

represent relatively open hydrothermal circulation. Sites 1256 and 1224, the least 

altered in the suite of sites in this study, have a massive flow unit at the top of the 

basement section (Figure 7.4). Paul et al., (2006) point out that ingress of seawater into 

the ocean crust may have inhibited by the relatively impermeable massive flow, thus 

reducing alteration. Site 1256 also exhibits similarly low alteration intensity, which 

may also be the result of early emplacement of the ponded lava flow. Despite being 

younger, Sites 504 (6.9 Ma), 896 (6.9 Ma), and 1243 (10-12 Ma) exhibit higher 

alteration intensities than Site 1256 and 1224. Unlike Site 1256, Site 1243, which also 

formed on the East Pacific rise, does not have massive lava flow units at the top of its 

basement section (Figure 7.4). Without an effective cap rock, fluid flow is likely to be 

less restricted. In addition the basement section at Site 1243 is composed of a much 

higher volume of pillow lavas (~50%) compared to Site 1256 (~3%), which may have 

permitted open seawater circulation for longer at Site 1243. Sites 504 and 896 share 

similar lithological features to 1243 in that there is 1) no massive lava flow unit at the 

top of their basements, 2) a greater proportion of pillow lavas than at Site 1256, and 3) 

they are younger than Site 1256. At Site 896 a relationship between the recovered 
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massive units and percentage of oxidation (Figures 6.19 and 7.4) indicates that 

lithology had a strong influence on the style and intensity of alteration at that Site.   

 The relationship between the style and intensity of alteration and lithology 

implies that local litholgical variations may strongly influence the style and intensity of 

alteration in ocean crust. If this is the case then accurate appraisals of the 

volcanostratigraphy of basement sections are critical to determine the true extent of 

alteration within the crust. Table 7.2 outlines the variations between lithological 

estimates based on core recovery alone compared with estimates using core-log 

integration techniques. 
 Site 896   Site 1256 
Interpretation Core 

descriptions 
Core-log 

integration 
Core-log 

integration 
 Core 

descriptions 
Core-Log 
integration 

Reference Alt et al, 
(1993) 

Brewer et 
al, (1994) 

Haggas et 
all, (2002) 

  Wilson et 
al, (2003) 

Tominaga 
et al, 

(2009) 
Breccias 5 % 47 % 16 % Massive 41.2 % 18.8 % 
Pillows 57 % 33 % 35 % fractured 

massive 
- 16.6 % 

Flows 38 % 34 % 49 % Fragmented 
flows 

- 32.1 % 

    Thin flows/thick 
pillows 

- 4.8 % 

    Massive sheet 2.3 % - 
    Sheet 50.9 % - 
    Pillow 2.7 % 1.9 % 
    Breccias 2.5 % 18.6 % 
    Dike contacts 2.3 % 16.6 % 

Table 7.2. Composition of volcanostratigraphy at Sites 896 and 1256. Comparison 
between interpretations based on recovered core and core-log integration highlights 
large differences. 
 

At Site 896 and 1256, profound differences between core-log integration and recovery 

based interpretations of volcanostratigraphy, particularly within breccias, pillows and 

fragmented flows suggest that shipboard core descriptions of recovered core is not an 

adequate means of estimating the lithological composition at basement sites. In 

addition, at both Sites, estimates of lithology based the recovered core alone grossly 

underestimate less competent rocks such as breccias and fragmented flows. The trends 

between lithology and alteration discussed earlier imply that rocks such as breccias and 

fragmented rocks exhibit high alteration intensities. Therefore, because core recovery is 

biased towards more competent lithologies the estimates of alteration in Figure 7.4 

must be treated as a minimum



Variability of alteration in fast spread sites                                                                                                                                                      7.3 

 371

Figure 7.4. proportion of alteration halos vs. 
depth for Sites 504, 896, 1243, 1256, 
1224,843, 1179, and 1149. Stratigraphic 
columns for each site are based on recovered 
core.  
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7.3.3. Correlations with alteration trends 

 

In this study a range of variables with a wide variety of parameters need to be tested, 

therefore the Spearman’s rank coefficient of correlation is used. Spearmans rank of 

correlation allows us to assess the strength of correlations for a range of variables, 

including outliers variables that are not normally distributed. Spearmans rank is 

calculated using the following equation:  
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D is the difference in ranking between values for x and y, and n is the number of pairs. 

In this calculation it is assumed that x and y are continuous random variables which are 

ranked and are independent paired observations. Rank orders that are the same (D = 0) 

then rs = +1 i.e a perfect positive correlation. Reverse order = -1. The significance of 

these correlations can be assessed following Sachs (1984). An rs of 0 indicates no 

relationship between each sample set. The degree of confidence that the correlation 

holds true for the entire population may be taken at varying levels of significance. In 

this study confidence limits are assessed at the 5 % (0.05) and 1 % (0.01) level (95 % 

and 99 % respectively) using tables from Sachs (1984) that are outlined in each 

correlation matrix. Both the 1 sided (ρ > 0 or ρ <0) and 2 sided (ρ ≠ 0) tests are used in 

this study to define the strength of correlation. Because r is an estimate of the 

population coefficient (ρ), i.e. the correlation that exists in the total population of which 

only a sample has been measured, the ρ notation used to determine significance of 

correlations is interchangeable. 

 

The petrographic observations that are used to assess alteration in these matrixes 

include volume of halo cover, weighted average volume of each halo type, weighted 

average of veins and each vein type, and veins per metre. These are compared to 

spreading rate, age, initial sedimentation rate, sediment cover, and the weighted 

percentage of each lithology (defined as pillows, breccia, massive flows and sheet 

flows), based on recovery (Figure 7.5). Correlation coefficients in Figure 7.5 are 

relatively weak. Most are only just above rejection of the null hypothesis in the two 

sided test at 95% confidence (Sachs, 1984).  
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Despite weak correlations, examples of the strongest trends are plotted in Figure 

7.6. The trend between sheet flows and spreading rate, however, may not be real 

because no distinction between massive flows and sheet flows was made at sites other 

than 1256 and 1149, therefore it is not plotted.  Trends between vein and halo 

abundance, and spreading rate, age and lithology (Figure 7.6) indicate that age, initial 

sedimentation and spreading rate all appear to exert an influence on alteration style and 

intensity. The relationship with age is consistent with progressive alteration as a result 

of continued hydrothermal interactions during passive off axis circulation whilst the 

crust is still warm (e.g., Bass, 1976; Andrews, 1977; Bohlke et al., 1980; Alt and 

Honnorez, 1984; Gillis et al., 1992; Alt, 1993; Alt et al., 1986a, 1996a,b; Teagle et al., 

1996; Hunter et al., 1998; Alt and Teagle, 2003). Negative correlations between initial 

sedimentation and vein/halo abundance imply that sediment burial of the ocean crust 

may influence the nature of fluid flow. In Figure 7.5 and 7.6 trends with sediment cover 

indicate that increased sediment cover may inhibit open seawater circulation. Such a 

trend would be consistent with the observation that most alteration takes place within 5-

10 m.y. of crustal formation (Hart and Staudigel, 1978; Richardson et al., 1980; 

Staudigel et al., 1981; Grevemeyer et al., 1999; Teagle et al., 1996; Alt, 2004).
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perameter Spreading 
rate Age Initial 

sed rate 
sediment 

cover Pillows Breccia Massive 
Flows 

Sheet 
flows Veins/m Vol% 

veins Saponite Celad-
onite 

Carbo-
nate Fe-ox Grey 

Bkd 

Tot % 
halo 
cover 

Green/    
black 

Brown/   
Red 

Spreading rate 1.000                           
Age -0.180 1.000              One sided  Two sided  

Initial sed rate 0.099 -0.535 1.000       DF 95% 99% 95% 99% 

sediment cover -0.237 0.669 -0.050 1.000      1 0.997 0.999 0.988 0.999 
Pillows -0.718 -0.003 -0.064 -0.062 1.000     2 0.950 0.990 0.900 0.980 
Breccia 0.116 0.169 0.517 0.698 -0.133 1.000    3 0.878 0.959 0.805 0.934 

Massive Flows 0.139 0.223 -0.358 -0.084 -0.631 -0.481 1.000   4 0.811 0.917 0.729 0.882 
Sheet flows 0.836 -0.274 0.369 0.056 -0.683 0.518 -0.124 1.000  5 0.754 0.875 0.669 0.833 

Veins/m -0.528 0.258 0.366 0.593 0.506 0.685 -0.666 -0.119 1.000 

Degree of significance of the values 
from the Correlation coefficient. 
Confidence limits of 99% and 95% are 
shown. Table of values from Sachs 
(1984) 

6 0.707 0.834 0.621 0.789 
Vol% veins -0.321 0.657 -0.687 0.505 0.083 -0.113 0.172 -0.263 0.171 1.000         

Saponite (vol % vn) -0.465 0.323 -0.304 0.496 -0.165 0.037 0.379 -0.188 0.203 0.691 1.000        

Celadonite (vol % vn) -0.103 0.256 -0.460 0.024 0.469 -0.205 -0.406 -0.150 0.184 0.629 -0.016 1.000       

Carbonate (vol % vn) -0.264 0.754 -0.738 0.524 0.095 -0.116 0.176 -0.283 0.134 0.980 0.568 0.650 1.000      

Iron-oxyhydroxide 0.127 0.468 -0.760 0.020 0.187 -0.403 0.033 -0.195 -0.277 0.582 -0.136 0.773 0.692 1.000     

Grey Background 0.422 -0.760 0.522 -0.651 -0.293 -0.152 -0.050 0.486 -0.244 -0.438 -0.218 -0.085 -0.542 -0.382 1.000    

Total % halo cover -0.430 0.747 -0.528 0.639 0.316 0.140 0.032 -0.496 0.243 0.438 0.207 0.103 0.541 0.395 -0.999 1.000   

Green/black -0.081 0.592 -0.403 0.352 0.383 0.118 -0.225 -0.304 0.129 0.140 -0.361 0.264 0.311 0.579 -0.811 0.818 1.000  

Brown/Red -0.694 0.546 -0.416 0.643 0.183 0.081 0.256 -0.550 0.290 0.545 0.732 -0.119 0.524 -0.007 -0.769 0.764 0.259 1.000 

                   

Figure 7.5. Correlation coefficient matrix for petrographic observations of alteration vs. parameters that potentially affect alteration style and 
intensity. Sites 896, 504, 1243, 1256, 1224, 843, 1179, and 1149 are included. Vol = Volume, Bkd = background, Tot = total, Fe-ox = iron 
oxyhydroxides, sed = sedimentation. 
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Figure 7.6. Plots indicating the strongest trends between petrological observations of 
alteration and factors that may control observation. Plots are selected based on the 
strength of correlation in Figure 7.5. 
 
 

There are a few trends with spreading rates with only weak trends between brown/red 

halos and the proportion of sheet flows occur. This trend may imply that crust which 

moves off the axis at a faster rate may spend less time in the zone of axial hydrothermal 

alteration and as it rapidly moves off the ridge axes, open seawater circulation may be 

inhibited by sedimentation. However, this trend is weak, and no other petrological 

observation shows correlation with spreading rate, therefore such interpretations remain 

speculative. Data regarding basement topography and heatflow is currently not 

available for Sites 1224, 1243, 843 and 1149. As discussed in section 7.3, these 

parameters may be important in terms of hydrothermal alteration thus further work is 

required. 
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7.4.  Isotopic and geochemical variation 

 

All sites in this study have been measured for their Sr-isotopic compositions and their 

major, trace and REE concentrations. The proportion of seawater Sr in whole rocks 
FSrSW is calculated from the simple expression (Bach and Humphris, 1999): 

 
FSrSW = (Rsample – Rfresh basalt)/(Rseawater –Rfresh basalt) 

 

Where Rfresh basalt is initial 87Sr/86Sr, Rseawater  is seawater 87Sr/86Sr at the time of crustal 

formation. Values for FSrSW lie between 0-1, where 0 and 1 represents no (0 %) 

exchange and total (100 %) exchange respectively. Figure 7.7 shows the distribution of 
FSrSW for alteration styles, all rocks, and the weighted average FSrSW for each site 

whereas Figure 7.8 indicates the distribution of FSrSW for each Site in terms of 

lithology.  

All sites in this study have a low seawater Sr component, with grey background 

rocks exhibiting the least exchange (Figure 7.7). A large degree of overlap of FSr
SW 

occurs between each alteration type for all Sites within this study. Such overlapping 

reflects the overprinting of halos that occur at each Site and it is consistent with 

petrographic observation of alteration at in-situ ocean crust (e.g., Bass, 1976; Andrews, 

1977; Bohlke et al., 1980; Alt and Honnorez, 1984; Gillis et al., 1992; Alt, 1993; Alt et 

al., 1986a, 1996a,b; Teagle et al., 1996; Alt and Teagle, 2003; Alt, 2004). Beccias and 

complex halos, in which more than one alteration style has been distinguished, exhibit 

the greatest variation in FSr
SW. Brown halos are typically more seawater Sr-enriched 

than green/black rocks, which have very similar distributions to grey background. 

Breccias at all sites are the most seawater Sr-enriched, with FSr
SW approaching total 

replacement of primary Sr (0.9) at Site 504. Typically FSr
SW for breccias ranges from 

0.3 to 0.6., these values reflect high seawater/rock ratios and therefore high fluxes 

needed to induce widespread replacement of primary mineral phases with secondary 

minerals and to precipitate matrixes to form breccias. The weighted averages for each 

site, calculated from the proportion of core that each alteration style occupies, provide 

the best estimate of the total seawater Sr component for each site. FSr
SW for all sites 

ranges from 0.07 to 0.18 (7% to 18% seawater Sr). Most Sites have weighted average 

FSr
SW that are higher than the distributions of analysed samples would indicate. The 

weighted averages take into account the proportion of halo coverage, thus reducing any 
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sample bias, for example, at Site 1149 most samples measured for 87Sr/86Sr are grey 

background rocks despite ~51 % and ~ 32 % green and brown halo coverage 

respectively. The slightly higher overall FSr
SW in Sites 1179 and 1149 (Weighted 

average FSr
SW  in Figure 7.7) imply late emplacement of secondary minerals in the crust 

by cold seawater circulation formation, which supports the hypothesis that alteration 

can occur for 10’s of millions of years after crustal formation   (e.g., Bass, 1976; 

Andrews, 1977; Bohlke et al., 1980; Alt and Honnorez, 1984; Gillis et al., 1992; Alt, 

1993; Alt et al., 1986a, 1996a,b; Teagle et al., 1996; Hunter et al., 1998; Alt and 

Teagle, 2003; Alt, 2004). Site 896 has a very strong seawater component (FSr
SW 0.16 or 

16%) for its age (6.9 Ma), which contrasts with Hole 504 (0.1 or 10%). The high FSr
SW 

at Site 896 may reflect increased fluid flow associated with the relatively thin layer of 

sediment cover (Alt et al., 1996; Chan et al., 2002).  

 The variation of FSr
SW between each lithology across all sites in this study 

(Figure 7.8) broadly reflects the petrographic relationships with lithology observed in 

Section 7.3. FSr
SW of pillows and massive flows, across all sites, ranges from <0.025 to 

~0.1. Breccias, although not sampled well enough to produce a distribution curve, 

typically exhibit a much greater proportion of seawater Sr (FSr
SW = 0.25 to 0.9). The 

differences indicate that massive flows have undergone the least exchange of Sr with 

seawater. At Site 1256, the distribution of FSr
SW between sheet and massive flows are 

very similar, indicating similar seawater Sr exchange. Alt et al, (1993) demonstrated a 

relationship between massive flows and level of oxidation at Site 896 (See Chapter 5), 

however the distribution of FSr
SW between these lithologies is less distinct (Figure 7.8). 

However, the distribution of FSr
SW between Sites 504 and 896 indicates overall greater 

alteration at Site 896, since a greater proportion of seawater Sr is present in the whole 

rocks (Figure 7.8) which supports earlier petrographic and geochemical observations in 

this study and (Alt et al., 1996; Chan et al., 2002).  

The chemical change as a result of hydrothermal alteration has been deduced 

from calculated sample by sample precursor compositions based on the method 

described in Chapter 3 (Site 1179) for major trace and REE concentrations. Figure 7.9 

charts the chemical change at Sites 504, 896, 1243, 1256, 1224, 843, 1179, and 1149 

for a selection of major, and trace elements that are sensitive to hydrothermal alteration.  
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Figure 7.7. Histograms indicating the distribution of the proportion of seawater Sr in 
basaltic samples for each alteration type, including the weighted average proportion of 
seawater Sr for the entire hole. FSr

SW is calculated based on Humphris and Bach, 
(1999).  
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Figure 7.8. Histograms indicating the distribution of seawater Sr in basaltic samples 
based on lithological groups. FSr

SW (is calculated based on Humphris and Bach, (1999).   
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Changes at these sites reflect the replacement of primary igneous mineral phases with 

secondary precipitates from seawater dominated hydrothermal fluids. Chemical change 

across all sites is variable, and the high error bars reflect the great range of chemical 

changes observed at each Site. Although, in the petrographic observations (Figures 7.4-

7.6) younger sites (504 volcanics, 1243, 1256, and 1224) have undergone less change 

compared to older sites (843, 1179, and 1149), there is very little linear correlation 

between chemical change and Age. Sites 843, 1179 and 1149 however, exhibit 

increases in Fe2O3, CaO, K2O, LOI and decreased SiO2 respectively. The best trend 

(excluding Sites 896 and 1243) exists between LOI and Age (Figure 7.10), which 

exhibits a markedly steady increase with age. If Site 896 is excluded, the decrease in 

SiO2 (Figure 7.10) may reflect progressive replacement of primary phases over time. 

Changes in Site 896 may reflect focussed fluid flow as a result of topographic variation 

(Fisher et al, 1990, 1994; Alt et al., 1996; Chan et al., 2002). Seismic profiling of Site 

1243 (Orcutt et al., 2003) show that it is situated on a plateau at close proximity to a 

~100 m deep trough (Section 6.4). This topographic morphology is similar to that of 

Site 504 and 896, thus, Site 1243 may be undergoing focussed fluid flow. Detailed heat 

flow surveys will be required to investigate any potential anomalies. Another possible 

cause for the relatively high alteration at Site 1243 may be the lack of a thick massive 

flow at the top of the basement to seal the basement section from open circulation.  
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Figure 7.9. Chemical change for selected elements at Sites 504, 896, 1243, 1256, 1224, 
843, 1179, and 1149. Volcanic zone of 504 is defined by (Alt et al., 1996). Bars 
indicate propagated error, including the error associated with the range of changes at 
each Site.   
 

The loss of silica in whole rocks and the concordant increase in silica in vein minerals 

suggests that secondary silicates source silica from primary phases within the volcanics. 

The incorporation of SiO2 in vein minerals is largely responsible for these variations, 

and this indicates that chemical changes within whole rocks only record a bulk loss of 

Silica (Figure 7.11).  
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 Chemical changes exhibited shown in Figure 7.9 indicate that Sites 504, 1243, 

1256, and 1224 exhibit variably lower increases in MgO, CaO, K2O, LOI, CO2, Rb, Sr, 

and U than Sites 896, 843, 1179, and 1149. Cs indicates little or no change for most 

sites, with the exception of 1149 and 1224 which exhibit depletions, whereas Rb and Sr 

are depleted at Site 504. Site 1243 (11 Ma) appears to have undergone a greater degree 

of chemical change than Site 1256 (15 Ma) or Site 1224 (43.7 Ma), in addition 

chemical change at Site 1179 (129 Ma) is greater than Site 1149 (132 Ma).  

 
Figure 7.10. Plots indicating chemical change (g/100g) with age (Myr). Apart from 
Sites 896 and 1243, Greater chemical change occurs in older sites.   
 

 
Figure 7.11. Change in SiO2 (g/100g) within each identified alteration style at Sites 
896, 504, 1243, 1256, 1224, 843, 1179, and 1149. Low T = Low temperature 
alteration. Grey bars highlight uncertainty. Progressively more intense changes occur 
in older sites, in addition, the loss of silica within alteration styles is buffered by a net 
gain in silica by vein mineral precipitate, which suggests that Silica in the fluids is 
sourced locally from the host rock. Variation in alteration types at each site is the 
result of differing levels of identification. 
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Site 896 is variably enriched in MgO, K2O, LOI, CO2, Rb, and Sr and depleted in 

SiO2, CaO (Figure 7.9). These changes are pronounced compared to the other young 

sites of similar age, most notably Site 504 and they reflect the relatively  

high FSr
SW compared with Site 504 discussed earlier. Increased chemical change at 

Site 896 and high seawater-Sr component is consistent with focussed fluid flow at Site 

896 (Teagle et al., 1996; Alt et al, 1996; Chan et al., 2002), which is in line with 

petrographic observations discussed earlier in this chapter. 

 

 

7.5.   Trends with potential controlling factors 

 

7.5.1 General trends 

 

In order to assess the large amount of data for all these sites the variables that may 

affect alteration, including age, spreading rate, lithological variation, sediment cover, 

and initial sediment rates, are directly compared to mineral and carbonate vein 

abundance, halo abundance, FSr
SW, and changes in SiO2, MgO, CaO, K2O, LOI, CO2, 

Rb, Sr, U and Cs by using Spearmans correlation matrix, as outlined in Section 7.3 of 

this chapter. Both correlation coefficient matrixes (Figures 7.12 and 7.13) exhibit 

similar trends, albeit weak, especially in terms of percentage chemical change.  

Strong trends occur between halo/vein coverage and chemical/isotopic (FSr
SW) 

change. Positive trends occur between FSr
SW and changes in Al2O3, MgO, Rb, and C 

(Figure 7.14). Halo coverage also exhibits trends with the percentage of carbonate in 

veins and breccia, Al2O3, K2O and LOI. The trend with K2O is particularly strong  

 

lude 

(r2 = 0.95). Compared with spreading rate, MgO, Na2O and Rb indicate negative 

trends, both matrixes demonstrate strong trends between carbonate veins and halo 

cover. In terms of factors that may control hydrothermal alteration, weak trends occur 

between Age and volume percentages of halos (Figure 7.6). Slightly better trends 

occur between Age and CaO, Fe2O3, SiO2 and LOI (Figure 7.14). A strong trend (R2 

= 0.94) occurs between K2O and halo coverage (Figure 7.14) highlights the 

enrichment of K into basement. In addition the older Sites (1149, 1179, and 1243) 

exhibit greater enrichment of K than the younger Sites (1256, 1224, and 504) Site

896, which is located in an upwelling hydrothermal zone (Alt et al, 1996) is more 

enriched in K compared to 504. Relatively weak trends with spreading rate inc
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er than 

wn halos.  

volume percentage of halos (Figure 7.6) and MgO, Na2O and Rb (Figure 7.14). 

Although the trends observed for spreading rate are weak, correlations are bett

those concerning other potential factors that may influence alteration. Minor trends 

with lithological variation include; MnO, Rb, U (Figure 7.12) and % change in MnO, 

CaO and C (Figure 7.13). Minor trends between sediment cover and sediment rate 

include Al2O3, Fe2O3, CaO, K2O, LOI, Sr and U (Figure 7.12) and breccia 

abundance, percentage halo cover and percentage of red/bro
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Perameter Spread    
rate Age 

Init 
sed 
rate 

Sed 
cover Pillows Breccia Msve 

Flows 
Sheet 
flows 

Fsr 
sw 

total 
% 

halo 
cover 

vol % 
carb in 
veins 

+ 
breccia 

SiO2 Al2O3 Fe2 O3 MnO MgO CaO Na2 O K2O C LOI Rb Sr Cs U 

Spreading rate 1.000                         
Age -0.180 1.000                      

         

  

Initial sed rate 0.099 
-

0.535 1.000              

sediment cover -0.237 0.669 
-

0.050 1.000                      One sided  Two sided   

Pillows -0.718 
-

0.003 
-

0.064 
-

0.062 1.000                DF 95% 99% 95% 99%  

Breccia 0.116 0.169 0.517 0.698 -0.133 1.000          1 0.997 0.999 0.988 0.999  

Massive Flows 0.139 0.223 
-

0.358 
-

0.084 -0.631 -0.481 1.000         2 0.950 0.990 0.900 0.980  

Sheet flows 0.836 
-

0.274 0.369 0.056 -0.683 0.518 
-

0.124 1.000        3 0.878 0.959 0.805 0.934  

Fsr sw -0.478 0.428 0.015 0.616 0.216 0.587 
-

0.240 
-

0.172 1.000       4 0.811 0.917 0.729 0.882  

total % halo cover -0.430 0.747 
-

0.528 0.639 0.316 0.140 0.032 
-

0.496 0.527 1.000      5 0.754 0.875 0.669 0.833  

vol % carb in vn+br -0.285 0.922 
-

0.423 0.767 0.232 0.378 
-

0.114 
-

0.271 0.601 0.857 1.000     6 0.707 0.834 0.621 0.789  

Δ SiO2 (g/100g) -0.300 0.173 0.004 0.074 0.471 -0.176 
-

0.246 
-

0.338 
-

0.384 0.015 0.154 1.000    

Degree of significance of the values 
from the Correlation coefficient. 
Confidence limits of 99% and 95% 
are shown. Table of values from Sachs 
(1984) 

7 0.666 0.798 0.582 0.750  

Δ Al2 O3 (g/100g) 0.510 
-

0.630 0.237 
-

0.654 -0.377 -0.451 0.244 0.359 
-

0.910 
-

0.808 -0.819 0.215 1.000             

Δ Fe2 O3  (g/100g) -0.291 0.636 
-

0.657 0.323 0.320 -0.248 0.004 
-

0.383 
-

0.091 0.429 0.563 0.691 -0.158 1.000            

Δ MnO (g/100g) -0.388 0.224 
-

0.121 0.173 0.841 0.159 
-

0.802 
-

0.322 0.216 0.356 0.478 0.542 -0.419 0.507 1.000           

Δ MgO (g/100g) -0.629 
-

0.018 0.022 0.217 0.412 0.271 
-

0.329 
-

0.287 0.823 0.223 0.177 
-

0.388 -0.657 -0.184 0.223 1.000          

Δ CaO (g/100g) -0.053 0.760 
-

0.657 0.448 -0.017 -0.161 0.256 
-

0.204 
-

0.138 0.484 0.616 0.553 -0.118 0.918 0.239 
-

0.397 1.000         

Δ Na2 O (g/100g) -0.786 0.220 
-

0.227 0.101 0.585 -0.157 
-

0.187 
-

0.596 0.423 0.123 0.235 0.320 -0.363 0.464 0.427 0.632 0.169 1.000        

Δ K2 O (g/100g) -0.303 0.680 
-

0.581 0.570 0.281 0.147 
-

0.026 
-

0.384 0.514 0.974 0.818 
-

0.116 -0.799 0.366 0.364 0.238 0.419 0.035 1.000       

Δ C (g/100g) -0.436 0.558 
-

0.511 0.420 0.599 0.148 
-

0.489 
-

0.325 0.479 0.552 0.714 0.303 -0.644 0.699 0.804 0.427 0.492 0.628 0.570 1.000      

Δ LOI (g/100g) -0.595 0.274 
-

0.605 0.206 0.332 -0.198 0.132 
-

0.573 0.559 0.651 0.361 
-

0.365 -0.650 0.154 0.104 0.671 0.057 0.428 0.682 0.445 1.000     

Δ Rb (mg/100g) -0.657 0.074 0.074 0.313 0.655 0.394 
-

0.602 
-

0.347 0.825 0.399 0.371 
-

0.175 -0.778 -0.075 0.551 0.908 
-

0.316 0.561 0.413 0.587 0.587 1.000    

Δ Sr (mg/100g) -0.130 0.137 
-

0.665 0.044 -0.166 -0.369 0.529 
-

0.267 0.142 0.472 0.091 
-

0.530 -0.243 0.012 
-

0.356 0.220 0.102 
-

0.067 0.540 0.006 0.800 0.047 1.000   

Δ Cs (mg/100g) 0.064 
-

0.485 
-

0.165 
-

0.346 -0.162 -0.479 0.204 0.121 
-

0.592 
-

0.503 -0.609 0.205 0.684 0.190 
-

0.256 
-

0.185 0.107 0.114 
-

0.490 
-

0.180 
-

0.066 
-

0.399 0.174 1.000  

Δ U (mg/100g) 0.138 
-

0.043 
-

0.241 
-

0.704 0.268 -0.670 0.019 
-

0.277 
-

0.549 
-

0.278 -0.185 0.395 0.397 0.280 0.248 
-

0.417 0.154 0.115 
-

0.270 0.052 
-

0.286 
-

0.344 
-

0.286 0.053 1.000 

Figure 7.12. Correlation coefficient matrix for comparison of alteration style and intensity as measured by chemical changes for selected Major 
and trace elements. Sites 896, 504, 1243, 1256, 843, 1179, and 1149 are included. Highlighted values indicate the degree of confidence above 
the null hypothesis based on Sachs (1984) definitions. Units are the same for both sides of the matrix. 
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Perameter Spread    
rate Age 

Init 
sed 
rate 

Sed 
cover Pillows Breccia Msve 

Flows 
Sheet 
flows 

Fsr 
sw 

total 
% 

halo 
cover 

vol % 
carb in 
veins 

+ 
breccia 

Δ 
SiO2

Δ 
Al2O3

Δ 
Fe2 O3

Δ 
MnO 

Δ 
MgO 

Δ 
CaO 

Δ 
Na2 O 

Δ 
K2O 

Δ  
C 

Δ 
LOI Δ Rb Δ Sr Δ Cs U 

Spreading rate 1.000                
Age -0.180 1.000                        

Initial sed rate 0.099 
-

0.535 1.000                       One sided  Two sided   

sediment cover -0.237 0.669 
-

0.050 1.000                 DF 95% 99% 95% 99%  

Pillows -0.718 
-

0.003 
-

0.064 
-

0.062 1.000           1 0.997 0.999 0.988 0.999  
Breccia 0.116 0.169 0.517 0.698 -0.133 1.000          2 0.950 0.990 0.900 0.980  

Massive Flows 0.139 0.223 
-

0.358 
-

0.084 -0.631 -0.481 1.000         3 0.878 0.959 0.805 0.934  

Sheet flows 0.836 
-

0.274 0.369 0.056 -0.683 0.518 
-

0.124 1.000        4 0.811 0.917 0.729 0.882  

Fsr sw -0.478 0.428 0.015 0.616 0.216 0.587 
-

0.240 
-

0.172 1.000       5 0.754 0.875 0.669 0.833  

total % halo cover -0.430 0.747 
-

0.528 0.639 0.316 0.140 0.032 
-

0.496 0.527 1.000      6 0.707 0.834 0.621 0.789  

vol % carb in vn+br -0.285 0.922 
-

0.423 0.767 0.232 0.378 
-

0.114 
-

0.271 0.601 0.857 1.000     

Degree of significance of the values 
from the Correlation coefficient. 
Confidence limits of 99% and 95% 
are shown. Table of values from Sachs 
(1984) 

7 0.666 0.798 0.582 0.750  

Δ SiO2 (%) 0.188 
-

0.170 0.465 
-

0.385 -0.082 -0.225 0.145 
-

0.010 
-

0.582 
-

0.501 -0.348 1.000              

Δ Al2 O3 (%) 0.514 
-

0.588 0.284 
-

0.670 -0.349 -0.413 0.187 0.369 
-

0.870 
-

0.862 -0.786 0.681 1.000           

         

  

Δ Fe2 O3  (%) -0.254 0.585 
-

0.592 0.357 0.317 -0.140 
-

0.113 
-

0.270 
-

0.059 0.359 0.544 
-

0.090 -0.124 1.000   

Δ MnO (%) -0.294 0.198 
-

0.358 0.097 0.775 -0.045 
-

0.663 
-

0.330 0.018 0.421 0.424 
-

0.241 -0.297 0.631 1.000 
-

        

      

  

Δ MgO (%) -0.326 
-

0.445 0.123 
-

0.137 0.051 0.050 
-

0.087 0.000 0.442 
-

0.257 -0.361 
-

0.515 -0.160 -0.369 0.276 1.000    

Δ CaO (%) 0.555 0.424 
-

0.198 0.375 -0.818 0.130 0.664 0.405 
-

0.171 0.192 0.215 0.044 0.053 -0.004 
-

0.470 
-

-
0.466 1.000         

Δ Na2 O (%) -0.455 
-

0.327 
-

0.083 
-

0.198 0.307 -0.087 
-

0.198 
-

0.212 0.477 
-

0.105 -0.212 
-
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Figure 7.13. Correlation coefficient matrix for comparison of alteration style and intensity as measured by % chemical changes for selected 
Major and trace elements. Sites 896, 504, 1243, 1256, 843, 1179, and 1149 are included. Highlighted values indicate the degree of confidence 
above the null hypothesis based on Sachs (1984) definitions. Units are the same for both sides of the matrix.
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Figure 7.14. Trends observed between FSr

SW, halo coverage and spreading rate and 
chemical change, expressed as Δ g/100g for major elements and Δ mg/100g for Rb. 
Volume of C in veins and breccia is also included for comparison. 
 
 

7.5.2 Petrographic trends 

 

Trends between the abundance of halos and chemical and isotopic exchange are 

consistent with the petrographic observations of secondary minerals and the 

replacement of primary phases within the halos (This study and Alt et al., 1996a and b., 

Alt and Teagle, 2003). The trend between vein abundance and halo coverage reflects 

progressively higher water rock ratios at the more intensively altered Sites. The 

progression of alteration intensity in this sample of IODP sites is demonstrated by the 

relatively strong trends between crustal age and total halo cover and carbonate vein 

abundance (Figure 7.6) 

 

 

7.5.3 Trends with Age 

 

The trends observed in Section 7.3, the trends following chemical indicators of 

alteration imply that off axis circulation of cold seawater into the crust continues for 
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10’s of millions of years after crustal formation. This remains consistent with 

observations throughout this study and numerous previous studies (e.g., Bass, 1976; 

Andrews, 1977; Bohlke et al., 1980; Alt and Honnorez, 1984; Gillis et al., 1992; Alt, 

1993; Alt et al., 1986a, 1996a,b; Teagle et al., 1996; Hunter et al., 1998; Alt and 

Teagle, 2003; Alt, 2004). The same trend occurs with carbonate vein abundance, 

implying similar continued circulation. Sr-isotope analysis of carbonates at Sites in this 

study and secondary minerals at other site (Alt and Teagle, 1999; Coggon, 2004; Alt 

and Honnorez, 1984; Burns et al., 1992; Alt, 1993; Teagle et al., 1996) also indicate 

prolonged off axis circulation for 10’s of millions of years. Sr – isotope values for 

carbonates are all elevated above MORB, and, despite the likelihood of basaltic Sr 

present in fluids from which the carbonates precipitated, samples from Sites in this 

study are elevated above seawater at the time of crustal formation. Intersects between 

the seawater Sr-isotopic curve and elevated carbonate samples provide a minimum 

estimate for the duration of alteration at each site (Figure 7.15). 

 
Figure 7.15. Seawater Sr-isotopic composition through time (McArthur, 2001) 
including seawater composition at the time of formation for Sites 504, 896, 1243, 843, 
1179, 1149, and 801 (Stars). The minimum duration for carbonate precipitation is 
indicated by the intersect from the most radiogenic carbonate sample. Shaded boxes 
indicate the range of Sr-isotopic ratios for carbonates at each site.  
 
Based on the trends in Figures 7.12 and 7.13 and the elevated Sr-isotopic compositions 

of carbonates, age appears to play a critical role in the development of low temperature 

alteration in ocean crust. Investigations into the rates at which crust is altered as it 

spreads away from the ridge axes are hampered by a lack of sampling. Carlson et al., 

(1986) suggests that a layer of high permeability may be persistent in the ocean crust 
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due to localised crustal heterogeneities and/or new tectonic activity. It has been implied 

that late stage alteration at Site 1149 is a consequence of pre-subduction processes 

(Jarrard et al., 2003). In such circumstances crustal extension and normal faulting 

occurs at the lithosphere flexes, which may provide vertical permeability in addition to 

the already existing horizontal permeability (Fisher and Becker, 2000). 

Based on numerical modelling and heat flow data, convection in the ocean crust 

on average continues to 65 Ma (Stein and Stein, 1994). In addition, heat flow evidence 

from Cretaceous crust by Noel and Hounslow, (1988) and Von Herzen, (2005) showed 

that localised convection in the ocean crust may continue at least to 100 Ma. Based on 

observations of carbonates in this study and analysis carbonate veins by Alt and Teagle 

(1999) imply that the vast majority of alteration is complete within 10 to 40 Ma and 

that carbonate and other secondary minerals may form as a result of minor secondary 

fractures from localised conditions upwards of 165 m.y. 

 
Figure 7.16.Chemical change (g/100g) and petrographic trends vs. age. Field indicates 
the potential changes that may occur. Site 896 represents zone of focussed fluid flow, 
and therefore has higher alteration compared to other basement Sites. Site 1243 may 
also represent a similar alteration regime to Site 896.   
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Plots of selected chemical changes, carbonate veins, halo cover, and FSr
SW vs. age for 

sites in this study (Figure 7.16) are used to imply a general progression of alteration 

with age. K2O, CaO, Al2O3, LOI, Carbonate in veins, halo coverage and FSr
SW increase 

with age. Although the trend is less clear at Site 1224, Sites 896 and 1224 may be more 

influenced by local variations in topography, where focussing of fluid flow has led to 

increased alteration. Carbon in veins indicate uptake of carbon through time and that C 

uptake may continue for 10’s of Myr after crustal formation (Alt and Teagle., 1999). 

Outliers such as Site 1243 and 896 indicate that variation is too great to simply imply 

that age alone controls the style and intensity of alteration in modern ocean crust.   

 

 

7.5.4 Spreading rates 

 

Fast spreading centres are subject to steady state volcanism, leading to higher frequency 

of hydrothermal vents, a simple crust with smooth basement topography and abundant 

sheet flows (Macdonald, 1998; Haymon et al., 1991; Karson, 2002; Carbotte and 

Scheirer 2004). White et al, (2002) suggested that spatial correlations of morphologic, 

structural, seismic and petrological data on the East Pacific Rise indicate that 

hydrothermal activity on fast spread ridges is relatively evenly distributed and that it 

will endure for as long as the ridge segment remains stable. Slow spread crust is formed 

from intermittent magmatism, large throw faults leading to a more complex crustal 

structure and more common pillow lavas (Huang and Solomon, 1988; Mevel and 

Cannet, 1991; Baker et al., 1996). Despite the problems associated with trying to 

estimate the lithological composition of in-situ penetrations of ocean crust (Discussed 

in parenthesis), a negative trend between percentage of pillow lavas and spreading rate 

together with a strong positive trend between sheet flows and spreading rate implies 

that lithological composition is affected by spreading rate. The relative weakness of the 

pillow lava correlation coefficient (-0.699, Figure 7.13) compared with that of sheeted 

flows (+0.857) may be related to preferential recovery of rheologically stronger sheet 

flows and limited effective core-log integration. As indicated in Figure 7.14 trends 

between chemical change and alteration styles with spreading rate are relatively weak. 

The negative trends in elements MgO, Na2O, and Rb (Figure 7.14) may indicate that 

chemical change decreases with increased spreading rate, which is consistent with 

petrographic observations of slower spread crust. 
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7.5.5 Sedimentary burial 

 

The variability of sedimentation rates across Sites 896, 504, 1243, 1224, 843, 1179, and 

1149 discussed earlier in this chapter is great. Sites spanning ~150 m.y. have endured 

sedimentation that ranges from almost zero over millions of years to upwards of ~50 

m/Myr. Since sedimentation may inhibit open circulation (Alt et al., 1996; Coggon et 

al., 2004), its effect on the style and intensity of alteration in the upper ocean crust 

might be considerable. Correlation coefficients between various petrographic alteration 

parameters and sedimentary rate and cover described in section 7.3 are weak. Positive 

trends between sediment cover and FSr
SW, carbonate in veins, Cs and U, and trends 

between sediment rate and CaO, C, and LOI indicate that sedimentary burial may have 

a minor effect on the overall alteration of the upper oceanic crust. In both correlation 

coefficient matrixes using chemical alteration indicators (Figures 7.5 and 7.12) 

sediment cover shows a weak trend with crustal age, consistent with progressive 

sediment burial of basement as the crust ages. Al2O3
 decreases with decreasing 

sedimentation, hinting at less replacement of primary phases. Slight trends between 

sedimentation and the change in MgO, K2O, halo coverage, % C in veins, FSr
Sw and Rb 

are outlined in Figure 7.17. These trends indicate that sedimentation may have a minor 

role in controlling the style and intensity of alteration in ocean crust. No clear trends are 

present between Sites 1224, 843, 1179, or 1149. The age, spreading rate, locations, and 

tectonic histories of Sites 1224, 843, 1179, and 1149 are highly variable. Such disparity 

across these Sites may be sufficient to obscure the detection of chemical changes that 

may be caused by sedimentation.  

 The location of Site 896,  is thought to give rise to the relatively high levels of 

alteration at 896 compared to Site 504 (This study and Teagle et al., 1996; Alt et al., 

1996; Chan et al., 2002). Site 1243 (11 Ma), which is at an almost contemporaneous 

position to Site 1256 (15 Ma) was formed at fast spreading rates (142 mm/m.y) and 

endured ~117 m of sediment burial (Orcutt et al., 2003). In contrast Site 1256 (15 Ma, 

220 mm/m.y full spreading rate) endured ~250 m of sedimentation (Wilson et al., 

2003). Comparisons between the sedimentation and alteration intensity, including tie 

lines, which highlight the difference between Sites 896 and 504, and 1243 and 1256 in 

Figure 7.17 indicate that lower sedimentation increases open circulation, hydrothermal 

activity and chemical change. Sites 1243 and 896 exhibit increased halo coverage, C in 

veins, K2O, and Rb when compared to the more deeply buried Site 1256 and 504 
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respectively. A decrease in Al2O3 within Sites 896 and 1243 indicate increased 

replacement of primary phases compared to Sites 504 and 1256 respectively. In 

addition to sedimentation at Site 1256 the presence of a ~100 m thick lava pond may 

contribute to the lack of alteration relative to Site 1243 since it forms a relatively thick 

‘cap’ above the volcanics that erupted at the ridge axes (Wilson, et al., 2003). 

 
Figure 7.17. Halo coverage and selected elements indicative of low temperature 
hydrothermal alteration vs. sediment cover. Sites 504, 896, 1243 and 1256 are 
highlighted with tie lines to indicate the potential link between hydrothermal activity 
and sediment cover.  
 
Stronger correlations coefficients between Age and spreading rate indicate that their 

influence on low temperature hydrothermal alteration is much greater than sedimentary 

rates. Potentially, sampling of basement rock at sites along transects, for example the 

eastern flank of the Juan de Fuca Ridge, in crust that have formed under 

similar spreading rates with similar crustal morphology may help resolve the potential 

influence on sedimentation, and provide a reference transect for the different stages of 

alteration that occur during low temperature ridge flank and off axis hydrothermal 

circulation. Because Site 1243 may represent a similar alteration setting to that of Site 

504, heat flow surveys of the area may be a useful test to determine if Site 1243 is 

being altered under upwelling conditions, and if so, how common topographically 

controlled focussing of fluid flow is in the ocean crust.   
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7.6. Trends between Holes 504B, 896A and 1256D 

 

7.6.1  Holes 504B and 896A 

 

Basement recovered at Sites 504 and 896 are the same age (6.9 Ma), same spreading 

rate, 65 mm/yr full (full rate, Hey et al., 1977) and both are thought to have been 

formed under similar tectonic conditions along the Costa Rica rift (See Sections 6.1 and 

6.2 and references therein respectively). Sites 504 and 896 are in an area of pronounced 

topographic variation (Cann et al., 1983). Site 504 was sampled in a topographic low, 

with a 274.5 m thick sediment pile, whereas and Site 896 is situated on a Site 896 is 

located near the crest of an abyssal hill near the centre of a 4 km wide trough where 

sedimentation totals 179 m. The majority of indicators used in this study point towards 

greater alteration at Site 896 than at Site 504. These include; 1) Increased abundance of 

halos at Site 896 than Site 504 (Figure 7.4) with ~31 % brown halos compared to 19 % 

brown halos respectively. Alt et al., (1993) also observed a higher abundance of 

breccias and carbonates at Site 896 compared to 504B. 2) A greater proportion of 

seawater Sr incorporated into whole rock basalts (Figure 7.7 and 7.8), FSr
SW = 0.16 for 

Hole 896A compared to 0.1 for Hole 504B, 3) a greater degree of chemical change at 

Hole 896A, with greater changes observed in SiO2, MgO, CaO, K2O, LOI, CO2 Rb, Sr, 

U and Cs than 504B (Figure 7.9).  

Given that Site 896 resides on basement formed at the same time and spreading 

rate at Site 504 the variation in alteration between these sites cannot be a function of 

age or spreading rate, thus it plots as an outlier when all the Sites in this study are 

compared against age and spreading rate (Figures 7.10, and 7.16) 

 The age of sediments is comparable at both Site 896 and 504 (Becker et al., 

1988), however, sediment on the basement high is thin (~171-179 m) at Site 896 when 

compared to sedimentation in the surrounding basin within Site 504 (274.5 m) and Site 

677 (306 m). Figure 7.18 indicates basement topography and heat flow in a cross 

section and heat flow contour map.  
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Figure 7.18. Heat flow contour map and cross section (Line A and Ai) for Site 
surrounding Hoe 896A and Hole 504B. Relative basement topography is indicated on 
the cross section. Redrawn from Teagle et al, (1996). 
 

Heat flow anomalies at Site 896 and 504 (Langseth et al., 1988) that run sub-

parrallel to the Costa Rica Rift are strongly correlated with highs in basement 

topography. Modelling of basement topography and heat flow by Fisher et al., (1990, 

1994) indicate that fluid flow and convection takes place as a result of the variable 

hydrostatic pressures the change in topography provides (see earlier). This supports 

earlier work by Mottl, (1989) who observed bottom seawater being drawn into the crust 

in areas of low heat flow. The observed increase in alteration with decreased sediment 

cover at Site 896 (Figure 7.17) implies that topographic variation at Site 896 and 504 

has a greater control on the style and intensity of alteration than sedimentation.   

 

 

7.6.2 Sites 504/896 and 1256. 

 

DSDP/ODP Hole 504B and ODP/IODP Hole 1256D represent the most complete 

sections of ocean crust recovered to date. Hole 504B penetrates the volcanic sequence 

and vast majority of the sheeted dike complex, whereas Hole 1256D penetrates the 

volcanic sequence, sheeted dikes and into gabbroic bodies. Although comparable in 

terms of their penetration and sedimentation rate, Site 1256 formed earlier (~15 Ma) 

from crust at a much faster spreading rate (220 mm/yr, full rate), with smooth basement 

topography. In addition there are distinct lithological differences between Site 1256 and 

Site 504/896. The volcanic section at Site 504 is composed of 57 % pillow basalt, 22 % 

massive flows, 17.5 % thin flows, and 3 % minor dikes (Alt et al. 1996), whereas Site 
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1256 volcanics are predominantly composed of 51 % sheet flows, 41 % massive flows, 

and 2.7 % pillow lavas (Wilson et al., 2003). Site 1256 is also capped by a ~100 m 

thick ponded lava flow (Wilson et al., 2003). Site 896 is composed of 57 % Pillow 

lavas, 38 % massive flows, and 5 % breccias (Alt et al., 1993). These petrographic 

variations between Site 504, 896 and 1256 are directly compared (including alteration 

styles) in Figure 7.19.   

 
Figure 7.19. Summary of stratigraphy (Based on shipboard observations) and alteration 
style at Sites 504/896 and 1256, including the suggested ‘on axis’ depth inferred from 
core log integration studies (Tominaga et al., 2009).  
 

The percentage of alteration halos at Site 504 and 896 is greater than that of Site 1256. 

Brown iron-oxyhydroxide/saponite halos comprise 19.4 % and 31 % of the core at Sites 

504 and 896 respectively. Whereas Site 1256, which is an older site, only contains 3 % 
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green celadonitic halos and 0.1 % brown halos. The most intensively altered sections of 

Site 1256 correspond to zones of brecciation and pillow lavas. Lava flows, and the lava 

pond, exhibit the least alteration (Figure 7.19). At Site 896 The most intensively altered 

sections correspond to sheet flows (Alt et al., 1993). 

Histograms of whole rock FSr
SW that have been subdivided into lithology 

(Figure 7.8) indicate that breccias have the greatest proportion of seawater Sr (up to 80 

%), followed by pillow lavas (0 to 45 %) and lastly, sheet and massive flows (0 to ~20 

%). At Site 1256 FSr
SW for the majority of whole rock samples range from 0 to 10 %. 

This is in contrast to Site 896, in which whole rock samples contain between 2.5 and 45 

% seawater Sr. Site 504 contains 0 to ~20 % seawater Sr in whole rocks. These 

observations are consistent with restricted seawater circulation and low halo content at 

Site 1256 and focused fluid flow at Site 896 as predicted by Fisher et al., (1990, 1994) 

and Teagle et al, (1996). In addition, within Sites 896 and 1256 lithological variation 

appears to exert some control over the style and intensity of alteration, correlations 

between lithology and alteration in Figures 7.5, 7.12 and 7.13 are very weak when all 

sites are compared, however, as discussed earlier trends between massive flows and 

pillow lavas and alteration styles are evident when directly compared to downhole 

stratigraphy (Figure 7.19). The major controlling feature of alteration at Site 1256 may 

be that the ponded lava flow is acting as a cap rock inhibiting fluid flow. As discussed 

in section 7.3.1, Site 1224 also exhibits low alteration (Figure 7.4) and it has a thick 

massive lava flow unit at the top of the basement.  

 Chemical changes at Sites 1256, 896 and 504 are summarised in Figure 7.9.  

Site 896 exhibits the greatest changes with increases in MgO, K2O, LOI, CO2, Rb, Sr, 

U and Cs, and decreases in SiO2 and CaO. Chemical change at Site 504 and 1256 are 

similar albeit with a slight decrease in SiO2 and MgO at Site 1256. Trends between the 

proportion of alteration halos that make up the volume of recovered core and chemical 

changes in Figure 7.14 demonstrate increased chemical change with increased 

alteration halos. However, despite the large difference between halo coverage at Site 

504 and Site 1256 (Figure 7.4), chemical change at Site 504 is only slightly greater than 

Site 1256. This may be because cold seawater circulation at Site 504 caused little 

chemical exchange with basaltic rock or that the error associated with calculating 

precursor composition is too great. 
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7.7. Summary 

 

Cross comparisons between petrological and geochemical observations for multiple 

penetrations into upper oceanic crust imply that the style and intensity of alteration in 

fast and intermediate spread crust is governed by several factors. Despite the limitations 

associated with this kind of study, which are discussed in parentheses; age, spreading 

rate, initial sedimentation, total sediment cover, and lithological variation all appear to 

exert influences on alteration. Local variations at each site appear to set precedence 

over which factor the greatest influence on alteration. For example, Site 896 is 

considerably more altered than 504B, despite being of very similar age and 

stratigraphy. Since Site 896 is located on an abyssal hill the difference in basement 

topography compared to Site 504 has led to focused fluid flow and increased circulation 

of cold seawater derived fluids (Alt et al; 1996; Chan et al., 2002). As discussed earlier, 

a similar scenario may occur at Site 1243.   

 The greater abundance of significant trends associated with age and spreading 

rate imply that these may be the overriding factors that control the style and intensity of 

alteration, however, the importance of sedimentation may be obscured by our sample of 

oceanic crust which attempts to characterise alteration from samples over great age 

ranges (0-132 Ma), spreading rates (65-220 mm/yr Full rate), lithological variety, and 

topography. Trends between Site 1243 and 1256, and 504 and 896 indicate that 

sedimentation inhibits alteration.  

 Analysis of carbonate veins and the observed increase in alteration intensity 

with age right up to 132 Ma crust, implies that off axis circulation may continue in 

excess of 100 m.y. after formation, albeit at slower rates. Re-opening of fractures and 

the creation of new fractures (interconnected porosity) by localised tectonic events 

and/or lithospheric flexure prior to subduction may be responsible for minor renewed 

circulation.  

  

 

7.6.1 Limitations 

 

A number of limitations arise from attempting to characterise hydrothermal alteration in 

modern oceanic crust, and until such limitations can be addressed, they will continue to 
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hamper any attempt at understanding hydrothermal systems on a regional and global 

level. 

 1) There still exists a profound lack of penetrations of modern in-situ oceanic 

crust greater than 50 metres sub basement. Oceanic crust can form at a wide range of 

spreading rates in a variety of tectonic settings. In addition crust may endure variable 

levels of sedimentation, off axis volcanism, and variable, often localised structural 

changes (formation of graben etc).  

 2) Local variations at Sites within this study may set precedence over regional 

trends in controlling the style and intensity of alteration, thus hampering attempts to 

quantify and understand which factors control hydrothermal alteration. 

 3) Detailed study of local topographic variations and heat flow data is 

incomplete. Both heat flow and basement relief are potential factors that may affect 

hydrothermal alteration. Since basement topography is linked to spreading rate 

(Carbotte and Scheirer, 2004; Karson, 2002: Haymon et al., 1991; Macdonald, 1998) 

and heat flow forms the basis for many of our models of crustal cooling and 

hydrothermal fluid and chemical flux (e.g. Sclater and Francheteau, 1970; Sclater et al., 

1971; Richter, 1973; Richter and Parsons, 1975; Stein et al., 1994; Stein and Stein, 

1992; Mottl., 2003; Fisher et al, 1990; 1994) acquiring complete heat flow and 

basement topographic data set for all sites may prove critical if we are to understand 

what controls hydrothermal alteration.  

 4) Sites 896, 504, 1243, 1256, 1224, 843, 1179, and 1149 all suffer from 

incomplete recovery due to the obliteration of variably weak horizons during drilling 

operations. Apart from the obvious reduction in sample, incomplete recovery is likely 

to assert a strong bias towards more competent lithologies e.g. massive flows, whereas 

less competent (and more altered rocks), such as pillow lavas and breccias remain 

unaccounted for. Recent comprehensive core-log integration suggest profound 

differences between observations of recovered material and electrofacies compositions, 

clearly illustrate the problem with recovery. Since more altered rocks are less likely to 

be recovered, estimations of chemical change and alteration intensity remain a 

minimum. The best expression of this is at Site 1256. If chemical change, and alteration 

intensity is calculated on the basis of the recent electrofacies interpretations by 

Tominaga et al., (2009) the proportion of Site 1256 that is composed of breccias and 

fractured lithologies is much greater.  
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Figure 7.20. Comparison between the calculated chemical changes at Site 1256 for 
selected elements based on shipboard observations alone and electrofacies 
observations. 
 
So that direct comparisons can be made between the changes measured based on 

shipboard observations of stratigraphy and electrofacies reconstrauctions, the fractured 

flows and fragmented flows described in Tominaga et al., (2008) are grouped as 

breccias in the same way such lithologies were grouped during shipboard analysis (See 

appendices C, 2) vii ). The overall chemical changes are recalculated with the higher 

proportion of breccia factored in. Where changes associated with lithology are 

considered, the electrofacies are factored in. Overall chemical change within the 

volcanic section at Site 1256 is much higher when compared to overall change 

calculated based on the stratigraphy from visual core descriptions alone (Figure 7.20). 
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Despite the large difference in alteration observed in Figure 7.20, these changes must 

represent a conservative estimate, since electrofacies cannot make up for any 

potentially unaccounted for alteration in terms of halos and veins. Such large difference 

in chemical changes measured at Site 1256 must bring into question the validity of any 

chemical changes of basement made using recovered core observations alone. 

 5) One factor that is not well represented well in this study is the 3D 

architecture of the ocean crust and the role that faulting might have in channelizing 

hydrothermal fluids through the crust. Better recovery, core log integration (point 4) 

and detailed seismic surveys are required if any relationship between fluid flow and 

faulting are to be found and what the overall impact faulting has on hydrothermal 

alteration of the oceanic crust. 
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8. Constraints on the Fluid Evolution during Mid-Ocean 
 Ridge Hydrothermal circulation From Anhydrite
 Sampled by ODP Hole 1256D. 
 
8.1. Abstract 

 
Key words: Anhydrite, Fluid Evolution, Site 1256 
 
 
Understanding the evolution of the seawater-derived fluids in active mid-ocean ridge 

hydrothermal systems (which act as the major heat and chemical transport device) is 

critical to gaining insights into many aspects of hydrothermal systems in the ocean 

crust. These include the geometry of recharge and discharge pathways, the relative 

importance of ridge axis and ridge flank circulation, and the nature of chemical and 

thermal fluxes. Anhydrite (CaSO4) is a potentially useful mineral for recording the 

evolution of seawater-derived fluids during mid-ocean ridge hydrothermal circulation 

because it exhibits retrograde solubility and precipitates from seawater at 

temperatures greater than >120oC Anhydrite can precipitate due to the simple heating 

of seawater, and reaction with basalt, or through mixing of seawater-derived recharge 

fluids with upwelling, hot black smoker fluids.  

  

New insights into the chemical and thermal evolution of seawater during 

hydrothermal circulation through analyses of anhydrite recovered from ODP Hole 

1256D are based on measurements of 87Sr/86Sr, major element ratios, REE and δ18O. 

These data suggest that the vast majority of sulfate is returned to the oceans as warm 

(as yet undetected) diffuse fluids near the axis. The presence of two chemically and 

petrographically distinct anhydrite groups, and anhydrite forming at temperatures in 

excess of 400oC suggest rapid mixing of low Sr, SO4-bearing, seawater with high Sr, 

no SO , hydrothermal fluid.   4
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8.2. Introduction 
 

Hydrothermal circulation of seawater through the oceanic crust profoundly influences 

the composition of the oceans, oceanic crust, and, through subdution of altered crust, 

the mantle and island arcs. In addition it provides an effective method of heat transfer 

from the Earth’s interior to the oceans (Edmond, et al, 1979; Palmer and Edmond, 

1989; Stein and Stein, 1994;). Since confirmation of deep sea vents at the Galapagos in 

the late 70’s (Corliss et al., 1979), our understanding of deep sea hydrothermal systems 

and their abundance has greatly advanced with the discovery and sampling of many 

more vent sites. Much work has also been carried out to constrain the physical and 

thermal structure of ocean crust and its implications on the geometry of fluid flow in 

the ocean crust (e.g. Morton et al., 1987; Rohr et al., 1988; Sleep, 1991; Teagle, et al., 

1998a; 1998b).  

However, there remains  many fundamental aspects of hydrothermal circulation 

that are not well understood, including the geometry of recharge and discharge 

pathways, the relative importance of ridge axis and ridge flank circulation, and the 

nature of chemical and thermal fluxes (Teagle, et al., 1998). Pivotal to gaining insights 

into these aspects of hydrothermal circulation is the chemical evolution of seawater-

derived fluids that are the principal agents of heat and mass transfer. One of the major 

steps towards constraining the geometry of hydrothermal fluid flow is to understand 

sulfur cycling at mid-ocean ridges and in particular to reconcile the large disparity 

between the sulfate content observed in seawater with that observed at mid-ocean ridge 

vent sites. Cold seawater that enters the ocean crust is abundant in sulfate (~ 27.9 

mmol/kg) yet at black smoker sites HS- ranges from 0.25-1 mmol  (Seyfried and 

Ding, 1995). 

−2
4SO

 To account for the loss of sulfur observed at vent sites, the sulfate must either 

precipitate as secondary mineral phases, such as anhydrite or other sulfides or be 

reduced to sulphide and exit at black smokers. Estimates of high temperature fluid flux 

(e.g. 5-9 x106 kg m2; Sleep, 1991) that are based on heat flow models, indicate that 

hydrothermal circulation has the capacity to deliver a much greater amount of sulfur to 

axial discharge zones than observed in the ocean crust (Sleep et al 1991). Anhydrite 

(CaSO ) precipitates when seawater reaches temperatures in excess of ~120o
4 C 

(Bischoff and Seyfried, 1978). This retrograde solubility of anhydrite coupled with the 

fact that a large proportion of ocean crust resides at temperatures over ~120oC 
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implicates anhydrite as the main sulfur precipitate. In addition, since there is 

insufficient Ca within seawater to precipitate all the available sulfate as anhydrite, 

formation of anhydrite in any significant volume relies on either the leaching of Ca 

from the basalts, for example Ca-rich phases such as plagioclase or volcanic glass 

(Mottl, 1983), or by mixing with Ca- rich upwelling hydrothermal fluids similar to that 

of black smokers (Alt et al., 1985).  

 Anhydrite is a useful mineral because Sr readily partitions with Ca. 

Measurement of Sr concentration and 87 86Sr/ Sr from anhydrite allow insights into the 

compostion of hydrothermal fluids and their evolution with depth in the ocean crust 

(e.g., Teagle et al., 1998a, 1998b; Teagle, 2003). In addition S and O isotope ratios 

from anhydrite can be similarly used to assess how hydrothermal fluid has interacted 

with the host rock and the thermal regime at the time of anhydrite precipitation (e.g., 

Chibu et al., 1981; Teagle et al., 1998; Alt et al., 1996). 

 Other possible secondary minerals with significant S include pyrite, 

chalcopyrite and magnesium hydroxysulfate hydrate (MHSH) (Mottl, 1983). Secondary 

pyrite and chalcopyrite have been documented at most basement sites with significant 

penetration, for example, Hole 504B (Alt et al., 1986; Vanko, et al., 1996; Alt et al., 

1996) Hole 1256 (This study and Teagle et al., 2006). However, the quantities of these 

minerals remain accessory (Teagle et al., 1998) and MHSH has only been documented 

as discrete intergrowths with anhydrite at hydrothermal vent sites (Mottl, 1983). In this 

Chapter, petrographic observations and chemical analysis of anhydrite recovered at Site 

1256 and Site 504 will be used to: 1) Assess the chemical and isotopic evolution of 

seawater-derived fluids during hydrothermal recharge; 2) infer the architecture of fluid 

flow including timing and fluid mixing; and 3) discuss how the distribution and 

abundance of anhydrite at Sites 1256 and 504 tie in with current geochemical and 

theoretical models of hydrothermal interaction and fluid flow.  

 404



Constraints on fluid evolution from anhydrite 8.3 

8.3. Geological Setting of Sites 1256 and 504.  

 

 ODP/IODP Site 1256 is located within the Guatemala Basin on the Cocos plate 

which resides on the eastern flank of the East Pacific Rise (EPR). The crust fromed at a 

super fast spreading rate (220 mm/yr full rate) ~15 M.yr ago on a 400 km-long ridge 

segment, ~100 km north of the ridge triple junction between the Cocos, Pacific and 

Nazca plate. Site 1256 is currently the second deepest hole drilled into intact ocean 

crust and it penetrates sediments, extrusives, dykes, and for the first time gabbros to a 

depth 1507.1 mbsf. Previous to the drilling of Hole 1256D, Hole 504B was the only site 

to sample anhydrite in-situ (Teagle et al., 1998). Figure 8.1 illustrates the stratigraphy 

of Hole 1256D and Hole 504B together with the distribution of anhydrite at these holes. 

Hole1256D comprises 250 m of sediment, 54 m of ponded lava flow, 176 m of inflated 

flow, and 474 m of sheet and massive flows down to 756 msb (meters sub basement) 

that has been slightly (<10 %) altered to low temperature (<100oC) mineral 

assemblages with few brecciated intervals. A transition zone of extrusives and 

intrusives is reported between 756 and 813 msb. This coincides with the occurrence of 

mineralised breccia zones that mark the start of high temperature alteration at Site 

1256. This transition zone is followed by 345 m of sheeted dykes to 1156 msb, that 

exhibit doleritic textures and massive basalts cross-cut by subvertical dyke margins that 

commonly have highly brecciated and mineralized chill margins. Between 1098 to 

1156 mbsf the basalts in the lower sheeted dyke complex are partly to completely 

recrystallized to granoblastic textures. Below this a ~100 m dyke-plutonic transition 

zone of gabbros intruded into contact metamorphosed dykes was recovered to a total 

depth of 1257 msb (Teagle et al., 2006). 
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Figure 8.1. Selected secondary mineral occurrence at Sites 1256 and 504. Anhydrite is 
highlighted in red. Thick lines at Site 1256 depict relative abundance (Data sourced 
from Teagle et al., (2006) and Alt et al., (1996)) 
 
 
DSDP/ODP Hole 504B is located ~259 km south of the intermediate spreading rate 

Costa Rica Rift in the eastern equatorial Pacific. Basement at IODP/ODP Hole 504B is 

6.9 Ma and it remains the deepest penetration of upper oceanic crust to date (over 1800 

m of basement), with recovery of rocks from the entire volcanic sequence and most of 

the sheeted dyke complex. Despite the recent success of Site 1256, Site 504B remains 

the reference section of ocean crust to which all other sites are compared to and it has 

contributed much to our understanding of hydrothermal systems (Alt et al., 1986; Alt et 

al, 1996). Hole 504B penetrates 274.5 m of sediments, 571.5 m of volcanics, 209 m of 

a dyke and lava screen transition zone, and 1056 m of sheeted dykes.  

 Like Site 1256 alteration at Site 504 can be divided into upper and lower 

alteration zones that exhibit only slight (5-15 % secondary minerals) alteration. A 

number of highly altered, strongly recrystallised sections are reported, such as breccias 

and, in the case of site 504B, a mineralised stock work zone at 635.5-653.5 msb
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The volcanic section was subjected to low temperature alteration with secondary 

phases, including saponite, celadonite, iron-oxyhydroxides. Oxidizing conditions in the 

upper lavas give way to more restricted fluid flow and reducing conditions at the base 

of the lavas. Within the lithological transition zone, alteration shifts from low 

temperature (<100oC) to high temperature sub-greenschist facies assemblages (250-

350oC) that include actinolite, prehnite, and chlorite. Alt et al, (1996) and Vanko et al, 

(1996) note that depletions in Cu, Zn and sulfur contents in halos and secondary 

minerals assemblages, and the abundance of metal sulfides and Mn bearing chlorite in 

the transition zone in Hole 504B may relate to the ‘reaction zone’ in which 

hydrothermal fluids acquire their black-smoker compositions.  

 

 

8.4. Distribution of anhydrite at Sites 1256 and 504. 

 

Logging of veins and alteration phases were carried out for the entire sections of 

ODP/IODP Holes 1256D and DSDP/ODP 504B (Alt et al, 1996; Teagle et al., 1998; 

Teagle., 2006). To calculate the abundance of sulfate in the ocean crust as shown in 

Figure 8.2, volume percentages of SO4 in veins and breccia in the recovered core are 

recorded. At Site 504 whole rock SO4 is also included in Figure 8.2. Anhydrite at Site 

1256 occurs from a depth of ~530 to ~1000 msb, and it is concentrated in the lava-dyke 

transition zone and uppermost sheeted dykes (754 to 811 msb). Anhydrite most 

commonly occurs as a minor, late stage component in multi-minerallic veins, or it may 

be present within breccia matrixes and vesicles. In only rare cases anhydrite is present 

in the groundmass, filling interstitial areas and replacing plagioclase (Teagle et al., 

2006). In the low temperature assemblages anhydrite is rare and when present it cross-

cuts iron-oxyhydroxide, saponite, and celadonite. Cross cutting relationships between 

anhydrite and late-stage carbonates and zeolite are not observed.  
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Figure 8.2. Distribution and abundance of sulfate as anhydrite filling veins and 
porespaces and SO 2-

4  concentration in whole rock powders for Site 504 (Teagle et al., 
1998) and Site 1256 at 100m depth incraments per m2, Note there is no whole rock SO4 
data present and the different scales of SO 2-

4 . This data is compared to the amount of 
anhydrite required to reconcile the fluid flux models of Sleep (1991), Teagle, pers 
comm.  
 

In the lowermost lavas and lithological transition zone, anhydrite is more common. 

Despite the relatively low temperatures of the lava section at Site 1256, no evidence of 

dissolution or pseudomorphing is present. Anhydrite in the mid to upper section of the 

sheeted dykes typically postdates the the greenschist facies minerals chlorite, epidote, 

prehnite and laumontite. Within the mid to lower sheeted dykes the abundance of 

anhydrite drops markedly, with only discrete anhydrite crystals within the groundmass 

remaining. Again, there is no evidence of subsequent dissolution which may have 

otherwise explained the lack of anhydrite at this depth. 

 The distribution of anhydrite at Site 504 is more widespread. It has been 

reported from 300 msb to the base of DSDP/ODP Hole 504B (~1700 msb). Anhydrite 

straddles both temperature regimes, with similar mineralogical associations as those 

observed for Site 1256. However, the greatest abundance of anhydrite, like Site 1256, is 
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in the lowermost lavas, the transition zone and the uppermost dykes. Alt et al, (1985) 

report rare minor replacement of anhydrite by prehnite in the shallower portions of the 

dykes, but evidence for widespread dissolution is lacking. Anhydrite observed in the 

lower dyke portion is minor and present within the groundmass rather than as veins. 

Measurements of the whole rock sulfate contents at Site 504 by Alt, (1995) indicate that 

most rocks have <100 ppm sulfate. Some have elevated concentrations of between 200-

1000 ppm, and rarely up to 4860 ppm in samples that have visible anhydrite. Whole 

rock sulfate at Site 1256 typically ranges from 63 ppm to 2000 ppm, and rarely upto 

6090 ppm. 

 Estimates on the total amount of sulfate present are in the order of 17 x 103 mol 

per square metre of ocean floor for Hole 504B. Most sulfate observed at Site 504 is 

within the whole rock, while the rest (1/3) is present at veins, cavity fillings and breccia 

matrixes. Since no whole rock sulfate measurements have been made for Site 1256, we 

can only assume that the amount of SO4 reported from veins and breccia matrixes at 

Site 1256 is a minimum, and that the real value is likely to be higher thus approaching a 

similar SO  composition to Hole 504B 4

 

 

8.5. Results   

     

8.5.1 Petrographic observations  

 

Twelve samples of Site 1256 anhydrite that were hand separated from veins and breccia 

matrixes, were sectioned for petrographic analysis. Due to the use of cold water during 

the cutting and polishing process, some samples of anhydrite underwent dissolution 

leaving behind skeletal remnants or gaps in the section. Where possible, interpretations 

are made where anhydrite is clearly preserved. 

All anhydrite sampled here is sourced from vein material and breccia matrixes. 

Anhydrite has a moderate relief, which is higher than most surrounding minerals, for 

example, calcite and quartz. On good crystal surfaces cleavage at {010} (perfect), 

{100} and {001} (good) is visible. In addition birefringence is high with third order 

colours and extinction is straight on all cleavages. These features, coupled with partial 

dissolution during the sectioning process, are diagnostic of anhydrite (Gribble and Hall, 
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1992). Crystal structure variation includes large to small patches of anhydrite that range 

from euhedral prismatic, to numerous, fine needle-like crystals. 

 Anhydrite occurs as a late-stage assemblage, replacing/overprinting all previous 

mineral assemblages including quartz, saponite, celadonite, chlorite, and iron 

oxyhydroxides. Cross cutting relationships between anhydrite and carbonate and zeolite 

are not defined, however it is suspected that these late stage minerals precipitated 

within a similar time frame. Unlike the majority of anhydrite samples at Site 1256 

Samples 309-1256D-118R-1, 11-13 cm; 135R-1, 104-106 cm; 144R-1, 111-114; and 

156R-2, 86-91 cm (Figure 8.3) appear to predate quartz, and uncommonly chlorite or 

chlorite/smectite. Notably these samples occur in the transition zone and the upper 

dykes (Figure 8.3). One sample of anhydrite (Sample 309-1256D-140R-1, 29-33 cm) 

occurs within an intrusive margin breccia that consists of a chlorite, quartz, pyrite and 

chalcopyrite cement with host rock and intrusive clasts (Figure 8.4). The breccia 

represents a complex interplay between host rock, intrusives and hydrothermal fluid 

that appears to have come in direct contact with the intrusive body. Anhydrite in this 

sample is anhedral and surrounds euhedral quartz crystals.    
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Figure 8.3. Locations of samples analysed and their petrographic distinctions. Group I 
anhydrites are highlighted in yellow (overprints Quartz and Saponite). Group II anhydrites are 
overprinted by quartz and saponite. The orange square is a superheated dyke contact breccia. In 
this sample anhydrite is late stage and it surrounds euhedral quartz crystals.   
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 412

 
Overleaf: Table 8.1. Sr-isotope, δ

 
Figure 8.4. Sample 309-1256D-140R-1, 27-39 cm. Dyke contact breccia, clasts consist 
of an intrusive body, containing flow textures and chill margins, matrix is composed of 
anhydrite, quartz, pyrite and chalcopyrite. Interval 34 to 39 cm is the host basalt, 
probably an earlier dyke (Image sourced from the Janus database).  
 

 

8.5.2. Sr isotopic composition of anhydrite 

 

The Sr-composition of 19 pure hand picked anhydrite samples for Hole 1256D was 

measured by TIMS (Table 8.1) following the methodology outlined in Chapter 2. 

Whole rock 87Sr/86Sr of the lavas trends from elevated compositions (0.7040) towards 

primary MORB compositions mid way through the volcanic section. In the lower 

volcanics to upper dyke section at Site 1256 87Sr/86Sr is once again elevated above 

MORB, these enriched compositions remain throughout the dykes and into the gabbros. 

Moderate to highly elevated Sr-isotopic ratios in whole rock samples generally reflect 

the intensity of alteration, with the most intense alteration (and highest 87Sr/86Sr) 

present in breccias. The lithological transition zones represent the most intense 

alteration, at both Sites this zone marks the transition between low and high 

temperature alteration. Detailed descriptions of the whole rock Sr isotopic profile and 

alteration assemblages for Sites 1256 and 504 are reported in Chapter 4 of this thesis 

(Site 1256); Teagle et al, (2006). 

18O, major trace and REE concentrations of Site 1256 
anhydrite.
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81R-1, 84R-1, 114R-1, 118R-1, 122R-2, 122R-2, 123R-1, 128R-1, 130R-1, 131R-1, 135R-1, 140R-1, 144R-1, 145R-1, 145R-2, 151R-1, 156R-2, 157R-1, 170R-1, 

Expedition, hole, core, 
interval (cm) 

58-60 72-79 113-116 11-13 71-73 73-78 31-34 47-51 85-89 11-14 104-108 29-33 111-114 85-91 83-89 111-114 86-91 142-146 66-70 
Depth (mbsf) 789.4 802.5 989.9 1008.1 1029.5 1029.5 1032.4 1056.6 1066.6 1070.6 1090.7 1114.0 1133.6 1137.9 1139.8 1166.4 1191.7 1195.6 1252.5 
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  Group I I I II I I I I I I II II II I I I II I I 

 87Sr/86Sr 0.70802
7 0.708513 0.707739 0.705229 0.708486 0.70815

9 0.707908 0.707960 0.70809
1 0.708201 0.704843 0.704750 0.704621 0.708113 0.708394 0.70707

9 0.705153 0.708436 0.708181 

Error 2σ 13 14 10 17 11 11 10 14 11 11 14 17 17 14 11 13 13 13 10 
Present 17.3 10.0 21.6 59.1 10.4 15.3 19.0 18.3 16.3 14.7 64.9 66.3 68.2 16.0 11.8 31.5 60.3 11.1 15.0 X MORB 
15 Ma 12.1 4.4 16.7 56.6 4.8 10.0 14.0 13.2 11.1 9.3 62.7 64.2 66.3 10.7 6.3 27.2 57.8 5.6 9.7 

δ18O (‰ vs. 
SMOW) 14.5 n.d 17.7 14.1 14.9 14.5 13.1 10.9 11.3 n.d 16.3 2.2 n.d n.d 9.0 29.0 11.0 9.7 9.8 

Tc (oC) 135.9 n.d 105.4 140.3 131.5 136.0 151.4 180.4 174.2 n.d 117.3 408.2 n.d n.d 211.4 35.5 178.9 198.8 196.8 

Sr/Ca (mmol/mol
) 1.36 1.21 0.82 0.56 1.10 1.08 0.84 1.68 1.27 2.53 0.42 0.09 0.35 1.78 2.88 0.04 0.43 3.15 1.10 

Mg (ppm) 107 221 211 167 194 267 166 124 213 309 262 n.d n.d 344 475 n.d n.d n.d 670 
Mn (ppm) 1.8 0.0 3.3 6.6 4.0 12.7 46.8 3.6 4.9 7.4 12.7 n.d n.d 5.6 5.8 n.d n.d n.d 14.7 
Fe (ppm) 242 712 496 348 298 236 430 226 531 735 629 n.d n.d 323 731 n.d n.d n.d 1104 
Rb (ppm) 1.46 1.11 0.78 0.03 0.93 0.73 1.14 1.65 1.08 1.92 1.90 0.00 0.02 1.20 0.53 0.03 0.03 0.01 1.62 
Sr (ppm) 876 776 528 363 711 697 541 1079 815 1627 273 56 223 1145 1851 24 274 2025 705 
Y (ppm) 0.47 0.73 0.38 0.39 0.77 0.61 2.45 0.78 0.34 2.17 0.05 9.64 0.03 0.79 1.03 0.12 0.11 1.14 1.03 
Zr (ppm) 0.05 0.05 -0.01 0.08 0.06 0.05 0.03 0.05 0.02 0.11 0.03 0.03 0.03 0.02 0.03 0.01 0.03 0.04 0.03 
Nb (ppm) 0.003 0.009 0.007 0.010 0.005 0.002 0.005 0.005 0.004 0.025 0.007 0.006 0.003 0.006 0.006 0.005 0.001 0.002 0.006 
Cs (ppm) 0.008 0.001 0.002 0.001 0.000 0.001 0.002 0.002 0.001 0.004 0.069 0.000 0.001 0.001 0.000 0.002 0.001 0.000 0.001 
Ba (ppm) 4.10 2.81 5.37 0.87 4.05 4.63 2.54 8.80 7.14 40.72 5.42 0.66 2.85 7.21 4.18 1.95 1.47 5.49 14.16 
La (ppm) 0.24 0.07 0.04 0.08 0.15 0.13 0.51 0.14 0.05 0.21 0.01 1.21 0.01 0.18 0.21 0.10 0.02 0.17 0.39 
Ce (ppm) 0.42 0.12 0.10 0.13 0.38 0.36 1.16 0.45 0.09 0.56 0.02 2.32 0.02 0.32 0.36 0.09 0.03 0.39 0.88 
Pr (ppm) 0.05 0.02 0.02 0.02 0.06 0.06 0.22 0.09 0.02 0.14 0.00 0.35 0.00 0.06 0.07 0.01 0.00 0.06 0.17 
Nd (ppm) 0.26 0.13 0.14 0.09 0.36 0.35 1.22 0.58 0.11 0.95 0.01 1.99 0.01 0.32 0.42 0.04 0.02 0.33 0.91 
Sm (ppm) 0.07 0.04 0.05 0.03 0.11 0.10 0.33 0.17 0.05 0.39 0.01 0.58 0.003 0.10 0.15 0.01 0.01 0.11 0.24 
Eu (ppm) 0.02 0.01 0.02 0.01 0.02 0.02 0.12 0.05 0.03 0.20 0.01 0.47 0.001 0.05 0.06 0.01 0.01 0.05 0.30 
Gd (ppm) 0.08 0.07 0.06 0.04 0.15 0.14 0.44 0.20 0.07 0.48 0.02 0.93 0.005 0.15 0.23 0.01 0.01 0.14 0.28 
Tb (ppm) 0.01 0.01 0.01 0.01 0.02 0.02 0.06 0.02 0.01 0.07 0.00 0.15 0.001 0.02 0.03 0.00 0.00 0.02 0.04 
Dy (ppm) 0.07 0.09 0.06 0.04 0.11 0.09 0.35 0.11 0.05 0.36 0.02 0.95 0.003 0.11 0.17 0.01 0.01 0.14 0.19 
Ho (ppm) 0.01 0.02 0.01 0.01 0.02 0.02 0.07 0.02 0.01 0.06 0.00 0.21 0.001 0.02 0.03 0.00 0.00 0.03 0.04 
Er (ppm) 0.04 0.05 0.02 0.03 0.04 0.03 0.16 0.04 0.02 0.14 0.01 0.52 0.003 0.05 0.07 0.01 0.01 0.07 0.08 
Tm (ppm) 0.004 0.006 0.002 0.003 0.003 0.003 0.017 0.005 0.007 0.016 0.002 0.071 0.001 0.005 0.007 0.001 0.001 0.009 0.010 
Yb (ppm) 0.015 0.026 0.009 0.066 0.014 0.011 0.098 0.022 0.010 0.071 0.008 0.471 0.004 0.023 0.037 0.006 0.008 0.049 0.049 
Lu (ppm) 0.0024 0.0033 0.0013 0.0027 0.0019 0.0011 0.0154 0.0028 0.0017 0.0090 0.0014 0.0638 0.0003 0.0036 0.0048 0.0019 0.0010 0.0082 0.0074 
Hf (ppm) 0.0045 0.0036 0.0025 0.0020 0.0009 0.0019 0.0076 0.0051 0.0023 0.0077 0.0016 0.0053 0.0001 0.0020 0.0010 n.d 0.0006 0.0009 0.0031 
Ta (ppm) 0.0402 0.0022 0.0016 0.0106 0.0021 0.0059 0.0103 0.4242 0.0030 0.0031 0.0013 0.0009 n.d 0.0015 0.0011 0.0005 n.d n.d 0.0017 
Pb (ppm) 0.15 1.63 0.41 0.12 0.23 0.10 0.16 0.05 0.16 0.14 0.61 0.18 0.22 0.08 0.09 0.09 0.21 0.06 0.05 
Th (ppb) 1.64 1.38 1.81 0.43 0.36 0.19 2.07 1.01 3.99 2.50 2.56 -0.13 0.40 0.45 0.33 0.21 0.52 1.45 0.47 
U (ppb) 1.94 3.20 2.98 0.19 0.60 1.25 2.34 5.66 1.65 3.85 2.71 -0.07 -0.05 0.95 0.85 -0.23 3.91 -0.08 1.22 
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Figure 8.5. Distribution of Sr-isotopic ratio for anhydrite vs depth for Sites 1256 and 
504B.δ18O and Sr/Ca vs. depth are also displayed. For reference average EPR MORB 
(Saunders et al., 1988), whole rock 87Sr/86Sr for Sites 504 (Erzinger et al., 1995; Teagle 
et al., 2006) and 1256 (This study, Harris, Cooper, Unpub. data) The hydrothermal 
estimate for Site 1256 (Harris et al., 2008), and seawater 87 86Sr/ Sr for modern oceans 
and oceans at the time of formation for Sites 1256 and 504 (McArthur et al., 2001) are 
included. Site 504 anhydrite measurements are from Teagle et al., (1998). 
 

Hole 1256D Epidote have measured 87Sr/86Sr of  ~0.705 (Harris et al., 2008), these 

estimates may reflect the composition of ancient ‘black smoker’ type fluids for Site 

1256  following Teagle et al., (1998).  

 The Sr-isotopic composition of anhydrite at Site 1256 ranges from 0.70462 to 

0.70851 (Table 8.1 and Figure 8.5) and they broadly fall into two groups that exhibit 
87 86Sr/ Sr that ranges from 70708 to 0.70851 (Group I) and 0.70462 to 0.70523 (Group 

II). Group II anhydrites exhibit Sr-isotopic compositions that are close to that of 

Epidote (~0.705). The anhydrites with ‘hydrothermal’ Sr-isotopic compositions only 

occur in the transition zone and sheeted dykes, the region in which high temperature 

alteration is recorded (Chapter 4, and Teagle et al., 2006) whereas Group I anhydrites 

extend into the higher temperature sheeted dykes (Figure 8.5). Anhydrite recovered 

from Sample 309-1256D-140R-1, 29-33 cm is sourced from a dyke contact and it 

exhibits hydrothermal 87Sr/86Sr (0.70475).  
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 Observations of Site 1256 are in stark contrast to Site 504, in which anhydrite 

records, with increasing wall rock exchange, a gradual shift from a cold, ( >150oC) 

seawater-dominated fluid (0.70883-0.7084) to an intermediate source (0.70766-

0.70561), towards hydrothermal compositions (0.70497-0.70292) (Teagle et al., 1998). 

One sample, with a 87Sr/86Sr of 0.7038 within the mineralized stockwork zone at Site 

504 mirrors that of coexisting epidote (0.7038) and like Site 1256 may represent the 

composition of upwelling black smoker type hydrothermal fluids (Teagel et al., 1998). 

A sample from 381 msb with intermediate 87Sr/86Sr (~0.7065) contains intergrowths of 

gyrolite (Figure 8.5), therefore represents a complex hydrothermal history, in addition 

this sample has an unusual δ34S (+36‰) which is well above δ34S observed from the 

other anhydrites at Site 504 (~21‰) (Teagle et al., 1998).  

 

 

8.5.3. Sr/Ca ratios 

 

The Sr/Ca ratio of anhydrite at Site 1256 and Site 504 provide insights into the Sr/Ca 

ratio of the fluid from which anhydrite precipitated. A range of experimental Sr 

partition coefficients have been determined from the following expression (Shikazono 

and Holland, 1983) which are similar to the empirically derived partition coefficient for 

TAG anhydrite (Teagle et al., 1999). 
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Calculations for Site 1256 are carried out following Teagle et al, (1998) so that they 

may be directly compared to Site 504. Following from Teagle et al, (1998), a plot of 
87 86Sr/ Sr vs. Sr/Ca, for Site 1256 and 504 is shown (Figure 8.6). Anhydrite from Hole 

504B shows major decreases in Sr/Ca with only minor change in 87Sr/86Sr, which is 

followed by a reduction in 87 86Sr/ Sr with no real change in Sr/Ca.   

 415



Constraints on fluid evolution from anhydrite 8.5 

 
Figure 8.6. Sr-isotopic ratio vs. Measured Sr/Ca ratios for Sites 1256 and 504B 
anhydrites. Group I anhydrites (yellow) Group II anhydrites (red). Hole 504B 
anhydrites are grey diamonds. Blue diamonds represent leached samples. TAG and 
21oN EPR are included for reference. Figure is updated from Teagle et al, (1998). 
 

Two samples from Site 504 have high Sr/Ca implying precipitation from 

seawater or seawater derived fluid (Teagle et al., 1998). These high Sr/Ca values may 

indicate the lack of Ca available for anhydrite due to precipitation of carbonates. One 

504B sample within the stock work zone exhibits high Sr/Ca (Figure 8.5) as well as low 
87 86Sr/ Sr (Discussed earlier). Teagle et al, (1998) suggest that this anhydrite represents 

mixing between black smoker fluids and sulphate bearing hydrothermal fluids. Other 

samples have very low Sr/Ca ratios which are lower than fluids predicted for black 

smoker fluids. Site 1256 Sr/Ca ratios vs. 87 86Sr/ Sr exhibit a similar pattern as Hole 

504B, however, Site 1256 has no intermediate Sr isotopic compositions which once 

again highlights the distinction between Group I and II anhydrites. (Figure 8.5) 

 

 

8.5.4 δ18O of anhydrite 

 

The δ18O for 15 anhydrite samples from Site 1256D were measured and results, 

normalised to VSMOW are shown in Table D, 1 (Appendices). Low sample volume 

precluded O-isotope measurement in Samples 309-1256D-84R-1, 72-79 cm, 131R-1, 
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11-14 cm, 144R-1, 111-114 cm and 145R-1, 85-91 cm. Sample 309-1256D-151R-1, 

111-114 cm returned an anomalously high δ18O value (+29.0 ‰(VSMOW)) even after two 

repeat runs. δ18O measurements for anhydrite at Site 1256 range from +29 ‰ to 

+2.2‰, Most samples, however, range from +8 ‰ to +16 ‰. δ18O values are both 

higher and lower than seawater sulfate (δ18O ~ + 9.6 ‰) implying that isotopic 

exchange has taken place. δ18O decreases with depth, although the shallowest recorded 

anhydrite is not the highest value (Figure 8.6). Anhydrite recovered between the 

transition zone and the upper sheeted dykes variably exhibit a greater decrease that 

ranges from + 16 ‰ to 10 ‰ for the deepest sample.  

 

The δ18O of anhydrite has been used to determine the temperature of the fluid 

during precipitation, following a temperature-dependant oxygen isotope fractionation 

factor which has been determined for temperatures between 100o and 550oC (Chibu et 

al., 1981): 

 

( ) 72.4/1021.310 233 −×=− TIn wateranhydriteα  

 

Calculated temperatures all make the assumption that the anhydrite was in 

equilibrium with heated seawater that had a δ18O of 0 ‰ during precipitation. In 

Hole1256D calculated formation temperatures range from 35o oC to 407 C, although 

most calculated temperatures range from 100-220oC. With the exception of Sample 

309-1256D-151R-1, 111-114 cm, anhydrites at Site 1256 record an increase in 

formation temperature with depth (Figure 8.5). Anhydrites from both Group I and 

Group II are not distinct in terms of δ18O (Figure 8.6). Sample 309-1256D-151R-1, 

111-114 cm, with a δ18O of + 30 ‰ (35oC) indicates great exchange and very low 

temperatures at depth. Sample 309-1256D-140R-1, 29-33 cm, which formed as part of 

a dyke contact breccia has an ultra-low δ18O of + 2.2 ‰ which indicates a temperature 

of ~407oC. In this sample, such a high temperature supports the hypothesis that the 

fluid came in direct contact with the intrusive body. In addition, despite the absence of 

anhydrite in the lower sheeted dykes and the gabbro section, Sample 309-1256D-140R-

1, 29-33 cm clearly demonstrates that anhydrite can precipitate at very high 

temperatures at depth.  
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 By contrast, Site 504B exhibits a relatively monotonous decrease in δ18O from 

+28 ‰ in the lavas to +7 ‰ in the lowermost sheeted dykes. This represents an 

increase in temperature from 50o 0C.   C to 250

 

 

8.5.5 REE of Site 1256 Anhydrites. 

 

The Rare Earth Element (REE) concentrations of Site 1256 anhydrite were measured 

by ICP-MS (See Chapter 2 ‘Methods’). Table D,1 (Appendix) displays the results of 

REE analysis for anhydrite and REE patterns are shown in Figure 8.7 All anhydrite 

samples at Site 1256 have low concentrations of REE compared to the average Site 

1256 whole rock values and MORB. All anhydrites are, however, enriched compared to 

seawater and hydrothermal fluid. Concentrations vary by up to three orders of 

magnitude. In most anhydrite samples HREE are slightly depleted compared to LREE. 

Group II anhydrite REE patterns exhibit overall lower concentrations than Group I 

anhydrites, in addition the Group II patterns are more variable. Eu anomalies (Eu*), 

defined as the relative difference in concentrations between chondrite normalised 

neighbouring elements (Sm NN GdSmEu ×) and (Gd ) where: Eu* =N N , range from 

0.59 to 3.59. Comparatively high Thulium in Sample 309-130R-1, 85-89 cm and high 

ytterbium in Sample 309-118R-1, 1-13 cm are also observed in Figure 8.7. 
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Figure 8.7. Chondrite normalised REE patterns for Site 1256 anhydrite, hydrothermal 
fluid (TAG) and average seawater (Seawater and TAG from Mitra et al., 1994). The 
Average Site 1256 whole rock pattern and average MORB (Bevins et al., 1984; Sun 
and McDonough, 1989) are shown. 
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8.6. Discussion  

 

The trends between Group I and Group II anhydrites reflect the incorporation of 

basaltic Sr into the fluid (Figure 8.6). Basalt-fluid Sr exchange, temperature, and fluid 

fluxes have profound effects on the Sr-isotopic composition of the secondary minerals 

which can precipitate from a hydrothermal fluid. Group I anhydrites reflect 

precipitation from a fluid with near seawater Sr-isotopic compositions that has endured 

only limited wall rock reaction. In contrast, Group II anhydrites are indicative of 

anhydrite that formed in hydrothermal fluids that have undergone much greater 

interaction with the wall rock, probably at high temperatures. The overprinting of 

Group II anhydrite by quartz and other secondary phases compared with the late Group 

I anhydrite, which overprints quartz and saponite (Figure 8.3), suggests that Group II 

anhydrites formed early in Site 1256 basement. Intriguingly Group I anhydrites extend 

well into the sheeted dykes, overlapping Group II anhydrites (Figure 8.3). These 

observations imply two separate fluid histories for Site 1256.  
87 Neither Site 504 nor 1256 have Sr/Ca vs. Sr/86Sr that come close to the 

composition of venting ‘black smoker’ fluids. In addition, no black smoker fluid to date 

has a low enough Sr/Ca to suggest that the fluids deep in Sites 504 and 1256 represent 

black smoker fluids. The evolution of fluid for both Sites 504 and 1256 in this study 

and Teagle et al, (1998) suggest that: 1) Precipitation of carbonates leads to evolved 

Sr/Ca ratios in the fluids since carbonates, being Sr-poor compared to seawater, take Ca 

out of the fluid. Most carbonate. 2) That the low Sr/Ca ratios at the lower portion of 

Site 504 and Group II anhydrites at Site 1256 represent the reduction of Sr rather than 

concomitant increase in Ca strongly affects the Sr/Ca ratio of a fluid (Seyfried and 

Mottl, 1982). The petrographic evidence for the timing of carbonate precipitation at 

Site 1256 and 504 (This study; Teagle et al., 2006; Alt et al., 1993) appears to be late 

stage therefore a reduction of Sr/Ca in the fluid via carbonate precipitation would have 

to take place off axis. 

 One possible mechanism, outlined by Teagle et al, (1998), to reduce the Sr 

concentration is to form albite. Both Sites 504 and 1256 contain secondary albite to 

which Sr is more strongly partitioned into than Ca. This partitioning would further 

lower the Sr/Ca ratio by releasing Ca into the fluid as it partitions with Sr (Teagle et al., 

1998). Klinkhammer et al., (1994) suggest that the formation of secondary calcic 

plagioclase (adsorbing the Ca in the fluid) could raise the Sr/Ca ratio to black smoker 
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fluid compositions. Group II anhydrite at Site 1256 may have been formed by mixing 

of sulfate bearing recharge fluids with upwelling black smoker fluids. This mixing with 

recharge fluids may provide the necessary Sr to increase Sr/Ca to hydrothermal fluid 

compositions. Teagle et al, (1998) also suggest that mixing can explain the high Sr/Ca 

and low 87 86Sr/ Sr anhydrite sample within the mineralized stockwork zone at Site 504B. 

 An adapted figure from Berndt et al., (1988) based on experimental and 

theoretical constraints of Ca and Sr exchange reactions indicates a series of 

hypothetical fluid pathways that could result in black smoker-type fluids seen at EPR 

21oN or TAG, together with data from 1256 and 504 anhydrite (Figure 8.8) A: 

dissolution of Sr from basalts (Thereby increasing the Sr concentration in the fluid 

towards MORB like compositions) followed by removal of Sr by later reaction and 

precipitation (bringing Sr concentration back towards vent fluid compositions). B: 

Initial precipitation of seawater Sr in mineral phases followed by reaction with the host 

rocks the black smoker fluids. C: Dissolution and precipitation occur simultaneously. 

D: where precipitation of secondary phases with little wall rock reaction takes place 

followed by a second phase of greater fluid rock interaction in which basaltic Sr is 

taken up by the recharge fluid. Mixing lines are calculated assuming a closed system 

with the following expressions: 

 

( ) ( )( )SWMORBSWSWMix XSrSrXSr −×+×= 1][][][  
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Where 87 86 87Sr/ Sr Sr/86SrSW and MORB   = seawater and MORB Sr-isotopic composition 

end members respectively, [Sr] is concentration XSW is the proportion of seawater in the 

mixture 87 86Sr/ SrMIX and [Sr]MIX  is the Sr-isotopic composition and Sr concentration of 

the mixtures respectively. The model, as discussed in Teagle et al., (1998) is 

summarised as follows: 1) lower Sr/Ca caused by the precipitation of carbonates and 

anhydrite with minimal interaction with basaltic Sr, 2) Fluid rock interaction increases 

resulting in an increased basaltic Sr component (lower 87Sr/86Sr) and very low Sr/Ca 

ratios in anhydrite in addition increased wall rock interaction lowers fluid  87 86Sr/ Sr to 

near MORB compositions, however, no net gain in Sr means Sr/Ca remains low, and 
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87Figure 8.8 Hypothetical fluid pathways for Sr concentration and Sr/86Sr for fluid 

evolution to black smoker-like compositions. Redrawn and updated from Berndt et al, 
(1988) with Sites 504 and 1256 data included. 
 

3) potentially, the formation of secondary calcic plagioclase can take up Ca raising the 

Sr/Ca ratios to hydrothermal compositions before discharge takes place (Klinkhammer 

et al., 1994; Blundy and Wood, 1991). The anhydrites recovered from Site 1256 favour 

an extreme version of Path B, which is similar to Teagle et al, (1998) estimate from Site 

504 anhydrite. The only other possibilities are that black smoker fluids at Site 504 had a 

lower 87Sr/86Sr than modern fluids, Or that fluids at Site 504 and 1256 do not contribute 

to black smoker type venting (Teagle et al., 1998). 

The Sr-isotopic composition of the hydrothermal epidote (~0.705, Harris et al, 

2008) indicate that hydrothermal fluids that existed at the time Site 1256 formed are 

comparable to modern fluids, therefore, is seems highly unlikely that the Sr-isotopic 

composition of black smoker fluid changed significantly with time. Unlike Site 504, no 

Site 1256 anhydrite was recovered with MORB 87Sr/86Sr compositions. This may imply 

that; 1) that the fluids that produced the hydrothermal Sr isotope values represent 

upwelling fluids that have yet to gain Sr or loose calcium (Would require sulfate within 

the hydrothermal fluid), 2) that anhydrite with MORB 87 86Sr/ Sr compositions was not 

available in great enough quantities to sample, or that it is deeper in the crust where 
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2-sampling has yet to take place, or 3) that SO4  bearing fluid with very low Sr mixes 

with high temperature hydrothermal fluid that has high Sr and low SO 2-
4  . 

 

Since we know that the wall rock Sr can exchange with Sr from hydrothermal 

fluids, we might expect a similar leaching of REE from whole rock basalts into 

hydrothermal fluid, and ultimately into secondary minerals that precipitate from the 

fluid, including anhydrite. However, the chemical change calculated for Hole 1256D 

whole rock samples (Chapter 4) indicates slight depletion of HREE and a slight gain in 

LREE thus this cannot fully explain the REE patterns observed in the anhydrites. A 

weak trend between Sr/Ca ratio and ∑REE concentration is present (Figure 8.9), which 

implies that a proportion of the REE present in Site 1256 anhydrites must be sourced 

from basement rocks or that the partitioning of REE from basalt into fluids is not 

related to Sr exchange.  

 
Figure 8.9. Sr/Ca ratio and calculated temperature vs. sum of REE for Site 1256 
anhydrites. 
 

The anhydrite sampled from contact breccia 309-1256D-140R-1, 29-33 cm has 

the highest concentration of REE, close to MORB amounts and the highest calculated 

temperature (Figure 8.5). In addition this sample has low 87 86Sr/ Sr, this demonstrates 

that it might be possible to impart a significant proportion of MORB REE at high 

temperatures. Given that the anhydrites at Site 1256 have generally low REE 

concentrations (much lower than MORB), any transfer of REE from the host rock is 

likely to impart a strong influence on the REE pattern in the fluid. The lower total 

concentration of REE in Group II anhydrites (Figure 8.9) and the variable chondrite 

normalised REE patterns in Figure 8.7 imply a complex fluid history. Since seawater 

has a low REE concentration, the lower REE concentrations suggest that the fluids that 
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the Group II anhydrites precipitated from may have mixed with cool, seawater derived 

fluids. The high thulium and ytterbium in some samples (Figure 8.7) cannot be simply 

explained by fluid mixing alone, implying complex fluid histories.  

A plot of Total REE vs. calculated temperature in Figure 8.9 tentatively 

suggests a trend of increasing Total REE with temperature, although only the high 

temperature dyke contact has a convincing MORB-like signature. A rank depth plot of 

REE patterns for Group I anhydrites indicates a weak trend towards hydrothermal fluid 

compositions (Figure 8.10). Group II anhydrites do not show any trend with depth, 

however their fluid history is likely to be separate from Group I. For Group I 

anhydrites, Eu anomalies are more positive with depth and HREE becomes more 

depleted relative to LREE with depth. The deepest sample (309-1256D-170R-1, 66-70 

cm exhibits an REE pattern very similar to black smoker fluids that have been observed 

at the TAG hydrothermal mound (Humphris, 1998), yet this sample exhibits an Sr-

isotopic composition similar to that of seawater (0.70818). The superheated dyke 

contact (Sample 309-1256D-140R-1, 29-33 cm) exhibits an REE pattern close to that of 

TAG, and a hydrothermal 87Sr/86Sr of 0.70475, which is similar to the hydrothermal 

estimate of ~0.705 (Harris et al., 2008). Caution must be used when basing any 

interpretation of the trends shown in Figures 8.9 and 8.10.  

Although there are indications that REE may indicate fluid evolution, the 

anhydrite to fluid distribution coefficients for REE are not known for the fluid 

compositions, redox conditions, pressures, and temperatures that are relevant when 

dealing with warm to hot hydrothermal activity deep in the oceanic crust (Bach et al., 

2003). REE partitioning between anhydrite and solutions of CaSO4 have been 

determined for temperatures up to 70oC (Kagi et al. 1993), however, as Bach et al, 

(2003) demonstrate that the apparent distribution coefficients of anhydrite recovered 

from Pacmanus (determined by using the seawater:hydrothermal fluid mixing 

proportions from Sr-isotopes to calculate hypothetical REE contents of fluids from 

which anhydrite precipitated, and dividing measured REE by these values) are in orders 

of magnitude higher than the ones reported by Kagi et al., (1993). 
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Figure 8.10. Rank order plot of Site 1256 anhydrite REE pattern with regards to depth. 
Eu-anomalies are highlighted. Patterns variably trend towards patterns that mimic black 
smoker fluid compositions. The absolute concentrations are not depicted in this figure, 
black smoker fluid and seawater REE compositions have much lower concentrations. In 
addition REE are for anhydrites and not fluid. Black smoker fluid and seawater REE 
sourced from Humphris, (1998). 
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8.7. The anhydrite conundrum 

 

The magnitude of hydrothermal fluid flux and the path that fluids take to achieve 

hydrothermal circulation remain poorly understood, and there are many discrepancies 

that occur between the theoretical models of fluid/chemical flux and the observed 

chemical/fluid flux. The current model of hydrothermal fluid flow implies that cold 

seawater percolates through the upper ocean crust which causes interactions with the 

host rock leading to changes in the chemistry of the water (which evolves to become a 

hydrothermal fluid) and alteration of the host rock (Figure 8.11). Ultimately, due to 

continued heating from a number of sources (cooling of the ocean crust, mid-ocean 

ridge magma chamber) the hydrothermal fluid rises and vents into the oceans, thus 

completing the convection cell and transferring a multiplicity of elements and 

compounds sourced from the basement rocks and the mantle to the oceans. Alt et al., 

(1995) defined three zones that might make up a hydrothermal system. These are the 

recharge zone, the reaction zone and finally the discharge zone, which are outlined in 

Figure 8.11. 

 
Figure 8.11. Stylised model of a hydrothermal system outlining possible directions of 
fluid flow and their evolution within oceanic basement. The Recharge zone outlines the 
area at which seawater percolates into the ocean crust, slowly heating up (~0 to 
~150oC) with only minor interaction with the ocean crust. The Reaction zone is the 
hypothetical area where on or near a large heat source e.g. the mid-ocean ridge magma 
chamber, the fluid intensively reacts with the host rock to form hot (~450oC) 
hydrothermal fluids. After reaction, the hot buoyant fluid rises and cools slightly to 
(~350oC) and discharges out at vent sites. Based on Alt et al. (1995).  
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Modelling of the hydrothermal system imply that the entire system is operational within 

only 1-3 km of the spreading centre (Brikowski and Norton, 1989; Sleep, 1991;).The 

major problem is that modelled hydrothermal fluxes are far removed from estimates 

based on global geochemical budgets. Despite these differences all models predict that 

large volumes of seawater should heat to temperatures (>150oC) that induce 

precipitation of anhydrite (Sleep, 1991; Mottl and Wheat, 1994).   

 To balance the predicted heat flow with the observed heat flow with age, it is 

now widely recognised that off axis hydrothermal fluid flow must transfer 

approximately 80% of the advective heat loss from the crust (Stein and Stein, 1994; 

Mottl and Wheat, 1994; Mottl., 2003). Teagle et al., (1998) compared the axial high 

temperature fluid flux by Mottl and Wheat (1994), with fluid flux models by Sleep, 

(1991), and Morton and Sleep, (1985) (5.5 to 9.0 x 106 kg/m2) with their own estimate 

(1.36 x 106 kg/m2). Because very little to no sulfate has been detected at mid-ocean 

ridge vent sites, the vast majority of sulfate in seawater must either precipitate as 

anhydrite or be reduced to sulfide. Alt et al., (1989) and Alt, (1995) calculated a global 

axial fluid flux of 4.7 x 1012 kg/yr based the minimum volume of seawater entering the 

crust based on the amount of anhydrite in veins and pore filling and the amount of 

seawater sulfate reduced to sulphide (from S concentrations and S-isotopic 

compositions). This implies that axial hydrothermal fluid flux is between 4 and 25 

times lower than estimates based on chemical budgets or heat flow models (Teagle et 

al., 1998). Sleep, (1991) suggested that very large volumes of anhydrite may be 

precipitated deep in the sheeted dykes. Figure 8.2 indicates the volume of sulfate 

observed in the ocean crust for both Site 1256 and Site 504 next to the volume of 

sulfate required down hole to balance the models of Sleep, (1991). The time-integrated 

fluid flux, based on the Sr-isotopic composition of anhydrite and whole rocks at ODP 

Hole 504B, of 1.7 ± 0.2 x 106 kg m-2 is in close agreement with the fluid flux (1.4 x 106 

kg m-2  , Teagle et al., 1998) estimated from the mass of water sulfur in Hole 504B 

(Teagle et al., 2003). The fluid flux calculated by Teagle et al., (2003) is much lower 

than that of Morton and Sleep, (1985) (5.5 to 9.0 x 106 kg/m2), which is based on 

thermal models that assume all magma is intruded into a high level magma chamber at 

the base of the sheeted dykes (Teagle et al., 2003). If the thermal models are correct 

then much more fluid flow is required to cool the magma chambers, therefore much 

more anhydrite should be preserved. Clearly there is a very large deficit.  
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Similar to the hypothesis of  Teagle et al., (1998), three possible escapes from the 

deficit of sulfide observed compared to the large amounts predicted are presented. 1) 

That the recovered core at Sites 504 and 1256 do not reflect the true composition of the 

ocean crust or that anhydrite may exist deeper within the crust, 2) That subsequent 

dissolution of anhydrite at shallow levels in the crust took place allowing the sulfate to 

return to seawater, or 3) that a large proportion of seawater sulfate does not precipitate 

as anhydrite during hydrothermal circulation and that large volumes of sulfate bearing 

fluids return to the oceans as warm, but diffuse fluids. 

 

 

8.7.1 Does anhydrite recovered in the ocean crust represent the true extent of sulfate 

in the basement?   

 

Both Sites 504 and 1256 experienced very low recovery, as such they are susceptible to 

recovery bearing an influence on the composition on the crust within these areas. 

Recent electrofacies interpretations at Site 1256 point to a larger percentage of breccias 

and pillow flows than estimated based on recovered cores alone ~13.5% rather than 7 

% (Tominaga et al., 2009), however in breccias recovered, only a minor fraction of the 

matrix was composed of anhydrite, therefore the relative increase in the amount of 

anhydrite at Site 1256 as a result of this interpretation still falls far short of the amount 

of sulfate required. In Hole 504B no significant sulfur anomaly in the wire line logs 

were detected and it is presumed that areas with high volumes of anhydrite should still 

show up in cores containing increased abundances of anhydrite veins, such as those 

found at TAG (Humpris et al., 1996). Site 1256 and 504 may contain large volumes of 

anhydrite deeper in the ocean crust, however this would be deeper than numerical 

models suggest (Teagle et al., 1998).  

  

  

8.7.2 Early dissolution of anhydrite at shallow depths? 

 

If one concentrates cold seawater recharge to within 500m of the axis and in the 

extrusive section, it can be modelled that anhydrite will precipitate in this warm region 

by mixing with upwelling fluids where it can later be leached back into the oceans 

(Sleep, 1991). This potentially resolves the problem of missing anhydrite within the 
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crust and it allows for a sufficient quantity of water to balance fluid flow models.  

However there are two major drawbacks to this model, 1) There are now two examples 

DSDP/ODP Hole 504B and ODP/IODP Hole 1256 in which such potential mixing 

zones are recovered and neither preserve sufficient quantities of anhydrite, in addition 

there is no evidence that these portions of crust have ever been cooler. Although the 

volcanic section have been in direct contact with cold seawater during eruption, 

subsequent burial and heating will reheat the volcanics to ~100 -150oC to within 5000 

years (Sleep, 1991). Only in the uppermost 200 to 300 meters of volcanics could such 

precipitation and dissolution take place. Site 1243B recovered a white interpillow 

limestone with pseudomorphs that indicate up to 6% of the rock speculated to be 

composed of anhydrite (Orcutt et al., 2003), however no evidence of anhydrite or 

pseudomorphs of anhydrite were recovered in either the basalts above or below the 

sediment which suggests that that sample represents unique conditions of formation and 

that it is not representative of past anhydrite content for Site 1243 basement. 

 

 

8.7.3 Is sulfate returned to the oceans as warm diffuse fluids? 

 

Since it seems unlikely that Sites 504 and 1256 drastically underestimate the amount of 

sulfate present in oceanic basement and that dissolution at shallow depths remains 

equally unlikely we are left with the proposition that sulfate may return to the oceans 

without ever having precipitated as anhydrite. There are several key features of the 

anhydrite sampled at Sites 504 and 1256 that suggest that seawater sulfate returns to the 

oceans as warm diffuse fluid: 

 1) Sulfate is present throughout the volcanics with very little change   in the Sr 

or S-isotopic compositions in the downwelling fluid whereas below the volcanics fluids 

undergo greater reaction with the wall rock. This implies that sulfate bearing recharge 

fluids do penetrate most of the sheeted dykes. This allows the fluid to heat to moderate 

temperatures ~100 to 250oC. 

 2) Anhydrite can form at temperatures in excess of 400oC and sulfate can 

remain in solution even at ‘reaction’ zone temperatures. The high temperature of 

formation implies rapid heating. Hence we expect to see some limited precipitation of 

anhydrite and potentially sulfate in black smoker fluids. This is supported by the 
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observation of small amounts of sulfate (0.25-1 mmol ) in black smoker fluids 

(Seyfried et al., 1995) that are too low to account for the sulfate deficit within the crust 

3)  The low flux derived from the amount of seawater sulfur (Teagle et al 1998), is 

comparable to the observed thermal structure as recorded by secondary minerals at Site 

504. This suggests that either high temperature fluid fluxes are much smaller than 

previously predicted or that most seawater sulfate does not precipitate out and remains 

in solution.  

−2
4SO

 4) Site 1256 exhibits similar, low volumes of sulfate to that of Site 504, this 

draws parallels with Teagle et al., (1998) prediction that the majority of off axis 

recharge fluids are only heated to 200-250oC before escaping as diffuse flows.  

 5) Heating the majority of hydrothermal fluids to only moderate temperatures 

and allowing diffuse flow would balance the models of hydrothermal fluxes based on 

heat flow and global geochemical budgets (Teagle et al., 1998). 

 

Although there are some models that take into account circulation of large volumes of 

seawater at 200-250oC at diffuse vent sites (Brikowski and Norton, 1989; Rosenburg et 

al., 1993), the majority of research into fluid modelling and indeed sampling has been 

carried out with regard only to high temperature mid-ocean ridge vent sites. Diffuse 

venting at ridge flanks may be difficult to detect (Hess et al., 1991) since the fluid is 

likely to be much more dilute than that of black smoker fluids. Teagle et al, (1998) 

suggest that because diffuse fluids would have a chemical composition in between 

seawater and hydrothermal fluids, they might be distinguishable from hydrothermal 

fluids by their elevated sulfate contents and low Mg concentrations. One might begin to 

look for sites in which diffuse flow may be focussed, such as upthrown fault blocks, 

seamounts, or areas with thin sedimentation rates near, but not on, the ridge axes.  
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8.8. Conclusions 

 

The distribution and abundance of anhydrite at Sites 504 and 1256, together with the 
87 86Sr/ Sr, Sr/Ca, and δ18O imply that seawater sulfate enters the crust and circulates 

deep within the lavas and the majority of the sheeted dykes. Site 1256 anhydrite 

supports the hypothesis by Teagle et al., (1998) that given the lack of sulfate within 

vent fluids, and the amount of flux required to cool the ocean crust, it seems likely that 

the vast majority of sulfate must remain in solution and return to the ocean at warm 

temperatures by diffuse venting off axis (Figure 8.12).  

 

 
Figure 8.12. Hypothesised hydrothermal flow model for axial and off axial 
hydrothermal fluid flow depicting fluid evolution and the fate of seawater sulfate. 
 

The petrographic and Sr isotopic distinctions between Group I and group II  

anhydrites at Site 1256 point towards two phases of anhydrite precipitation, one with 

early mixing of recharge fluids with upwelling hydrothermal fluids followed by later 

seawater dominated anhydrite precipitation during recharge. The 87 86Sr/ Sr ratios of the 

anhydrites formed though mixing of recharge fluids with hydrothermal fluids suggests 

that evolved recharge fluids have very low Sr concentrations. 

 

The Sr/Ca and 87 86Sr/ Sr of Site 1256 anhydrites point to a similar fluid evolution 

pathway to that of Site 504 (Teagle et al., 1998). This suggests that Sr/Ca ratios reduced 
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during recharge before significant Sr exchange with the host basalts and that mixing of 

seawater, which has low Sr and high SO4 with hydrothermal fluid, which has high Sr 

concentrations and only very low SO  took place.  4

 

The presence of anhydrite with a ~400oC formation temperature at a dyke 

contact breccia implies that sulfate can still precipitate at extremely high temperatures 

within the ocean crust. In addition, the MORB-like REE pattern and low Sr-isotopic 

composition suggest at very high temperatures the host rock readily exchanges Sr and 

will transfer REE, to the fluid.  
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