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Abstract: 1 

The capability to predict in-vivo wear for knee replacements is a very valuable pre-clinical analysis 2 

tool for implant designers. Traditionally, time-consuming experimental tests have been the principal 3 

means of investigating wear. More recently, computational models have offered an alternative. 4 

However, the robustness and applicability of these models has not been demonstrated across a 5 

range of designs and test conditions, and several different formulas are in use for estimating wear 6 

rates. This gave limited confidence in the predictive power of these in-silico models. 7 

In this paper, a new high-speed model for evaluating adhesive/abrasive wear rates is described, and 8 

corroboration of this model with a wide range of different experimental wear tests reported in the 9 

literature for different implant designs and loading conditions on different test platforms is 10 

performed. 11 

The number of different tests we have corroborated gives greater confidence in the performance of 12 

this new wear-assessment tool, and allows us to provide better estimates of the wear ‘constants’ 13 

used in computational models. The high speed of this new model allows us to evaluate a range of 14 

alternative algorithm formulations, and so demonstrate the importance of including terms such as 15 

the influence of cross-shear (CS). We conclude that the CS-based ‘A/A+B’ wear model offers the best 16 

predictive power compared to other existing wear algorithms. Because simulation times are reduced 17 

to only a few minutes, these models are ideally suited to large-volume ‘design of experiment’ or 18 

probabilistic studies (which are essential if pre-clinical assessment tools are to begin addressing the 19 

degree of variation observed clinically and in explanted components). 20 
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Introduction: 1 

An implanted Total Knee Replacement (TKR) is a complex system, and there are many potential 2 

pathways to failure. Nonetheless, amongst these, mechanical wear of the polyethylene components 3 

continues to attract considerable attention from implant designers and clinical professionals. 4 

Unfortunately, wear cannot currently be readily measured in-vivo, so wear assessment must be 5 

performed using simulators. Historically these have been experimental tests (e.g. [1, 2]), as the 6 

causal mechanics of wear have not been quantitatively described. However, performing these tests 7 

involves considerable time and expense, and questions remain as to whether experimental tests are 8 

capturing all the relevant in-vivo conditions, and the influence of variability from knee to knee post-9 

implantation. 10 

The specific need exists for pre-clinical wear prediction tools to avoid these limitations of 11 

experimental simulator testing. Computational platforms can deliver high-speed, low-cost 12 

simulations; designed to either replicate in-vitro experimental mechanical conditions or else directly 13 

simulate in-vivo conditions. However, since these models must explicitly model the physics of wear, 14 

it is essential that they are corroborated with data collected using real-world assessments (either 15 

experimental or clinical). To-date, in-silico wear models have been tuned to and compared with only 16 

small experimental datasets, either by using published pin-on-disc (POD) data, e.g. in [3, 4], or else 17 

by directly comparing against TKR wear simulator results, e.g. [5, 6]. Whilst these studies 18 

demonstrate the value of in-silico methods in individual cases, they cannot robustly corroborate 19 

across a range of test conditions. 20 

Further, there exist a number of different proposals for how wear should be analytically modelled - 21 

each using different mathematical equations to formulate wear algorithms. The original baseline 22 

model proposed by Archard [7] was first applied to UHMWPE wear by Maxian et al [8]. It is designed 23 

purely to model adhesive/abrasive wear damage (neglecting other mechanisms such as 3-body 24 



wear), and uses a very simple proportional relationship to estimate the localised wear depth at any 1 

point on the contacting surfaces: 2 

Wear Depth, H (mm) = wear factor, KW (mm³/N.m)  Contact Pressure, p (N/mm²)   Sliding Distance, S (m) 3 

 However, experimental observations have demonstrated a strong path-dependence for wear rates 4 

[4, 9]. Simple uni-directional or bi-directional sliding produces minimal wear, whereas a high degree 5 

of variation in the direction of sliding greatly increases the wear rate. The measure of this variation 6 

in direction is termed ‘cross-shear’ (CS). In light of this observation wear models have been proposed 7 

which predict greater wear as the degree of CS is increased [3, 4, 10, 11]. Generally, these involve a 8 

modification of the above formula, to make the wear-factor KW a function of CS. More recently, the 9 

assumption that wear increases uniformly with increasing contact pressures has been challenged; 10 

studies by Mazzucco et al [12], Ernsberger et al [13] and Kang et al [14, 15] have all suggested that 11 

the traditional model (where wear is directly proportional to contact pressure) is not correct; 12 

however, these tests were all performed in the simpler domain of POD tests, where geometry is not 13 

a confounding factor, and contact pressure is (ideally) constant across the articulating surface. How 14 

applicable these conclusions are for more the complex geometries, kinetics and kinematics of TKR 15 

wear is a matter of ongoing debate. A major obstacle in comparing and testing these different 16 

proposals for wear algorithms is that there is often limited experimental data to base the formulae 17 

on, and small numbers of trials (often in the limited domain of POD tests) cannot provide sufficient 18 

grounds to explore the differences between the various algorithms proposed. Therefore, the need 19 

exists to apply these algorithms across a wider range of experimental TKR tests to corroborate their 20 

performance on a larger scale. 21 

 22 

Method: 23 



In-silico wear prediction has previously been demonstrated using finite-element (FE) based 1 

computational methods [5, 10, 16, 17]. For improved computational performance in this new 2 

generation of models, fast rigid-body simulations have been derived from extant FE models [18]. 3 

Within the domain of FE modelling, rigid-body models have been demonstrated to give comparable 4 

results to deformable models at a fraction of the computational cost [19]. These test-cases are based 5 

upon ‘true’ dynamic simulations using multi-body dynamics (MBD) software (MSC.ADAMS, MSC 6 

Software Corporation). Previous studies have demonstrated that rigid-body FE models and MBD-7 

based models give similar results for both deterministic and probabilistic analyses [18, 20].  8 

A discretised spring-bed distributed across the tibial component articulating surface is used to model 9 

tibiofemoral contact conditions, with spring properties tuned to match experimental contact 10 

pressures [21, 22], essentially forming  a ‘bed of springs’ elastic-foundation relating contact force to 11 

interpenetration distance (as reported in other studies [23]). This contact also included a ‘coulomb’ 12 

friction model, with coefficients selected to be generically representative of TKR test conditions [24]. 13 

The initial wear predictions used with this model are based on standard algorithms widely reported 14 

in the literature; the baseline Archard/Lancaster sliding-distance model [7] (without CS), and other 15 

algorithms including CS (e.g. ML/AP [10], A/A+B [4], and * ‘crossing intensity’ [3]). Alongside these 16 

existing formulations, alternative arrangements have been included to explore the effect of 17 

excluding contact pressure (CP) from the wear model [12-14]. 18 

Twenty-two different experimental tests were selected, sourced from the public literature and 19 

proprietary test data, where the polyethylene tested was ‘conventional’, i.e. with minimal or no 20 

cross-linking as part of the manufacture process, to ensure that the tests would be broadly 21 

comparable. Implant geometry was acquired from manufacturers or reverse-engineered. Results for 22 

a range of kinematics under displacement-control for the PFC sigma (fixed and mobile bearing 23 

designs) and LCS were sourced from [1, 25]. These implants were also tested under ISO 14243-1 24 

force-control [26]. Results for the NexGen CR implant were corroborated under force-control [5, 27] 25 



and displacement control [28]. Additional implants included were the Vanguard PS under ISO force-1 

control [29], and Triathlon CR under displacement control [30]. Proprietary unpublished test data 2 

was also used to corroborate semi-constrained & unconstrained design variants of the PFC sigma 3 

under displacement-controlled conditions. Finally, tests of femoral components against ‘flat’ 4 

polyethylene surfaces using displacement control [31] were included to corroborate the wear 5 

algorithms across a wider range of contact pressures & areas in-vitro. The full list of test-cases is 6 

summarised in table 1. Note that because of the number of tests, it is not possible to include the full 7 

set of test-conditions in this paper for every case. In each model, the same procedure was followed; 8 

component positioning, allowed motions, spring constraint (where applicable), input loading 9 

profiles, etc were matched to the reported test conditions in the literature. where these conditions 10 

were not stated, and where the original investigators could not be successfully contacted for further 11 

clarification, ‘generic’ test conditions were imposed (e.g. assuming a 60-40 M-L load split [32], using 12 

a representative friction co-efficient of 0.04 [24], and adjusting the model configuration according to 13 

a typical set-up for the test machine being used; i.e. replicating the standard mechanical 14 

configurations for Instron, ProSim, or AMTI simulator rigs, as available from the manufacturers). 15 

Readers are referred to the respective references for more details on individual test cases. 16 

Wear rates reported in mg were converted to mm³ using a density of 0.93mg/mm³. To limit 17 

computational times for this exploratory study, volumetric wear rate for each case was calculated 18 

based on a single-cycle; published experimental and computational long-term studies demonstrate 19 

that whilst linear wear depth rates may vary over time, volumetric wear is reasonably linear [5]. 20 

Once all the necessary experimental configuration data had been obtained for these tests (e.g. 21 

implant geometry, loading input waveforms, spring restraint setup, available degrees of freedom, 22 

etc.) the tests were simulated in-silico using the fast rigid-body model, and predicted wear was 23 

evaluated for each of the proposed wear formulations included in the model. The computationally-24 



derived rates were then compared to the reported experimental wear rate (with error levels, where 1 

available). This allowed the predictive power of different wear algorithms to be compared directly. 2 

 3 

Results: 4 

All of the test-cases were simulated successfully and were post-processed to evaluate predicted 5 

wear using the different algorithms. The volume of data generated is considerable, so wear contour 6 

maps are not compared here; only the baseline volumetric wear rate for each model using each 7 

algorithm is reported. Wear constants were based on values reported in the literature; however this 8 

new larger data-set gives a better basis for selecting a wear constant, and new wear constants are 9 

proposed based on the results of this study for some commonly-used wear models. 10 

Figures 1-5 show correlation plots for a few of the selected models. It is immediately clear from the 11 

results that the baseline Archard model has very limited predictive power to assess TKR wear (Figure 12 

1). By comparison, every variation of wear algorithm which includes some representation of CS has a 13 

much greater predictive power (typically R² of 0.5 – 0.6 – e.g. see A/A+B model in Figure 2). 14 

Considering these CS models, there are several important observations. First, the inclusion or 15 

exclusion of contact pressure as a proportional term within the algorithm does not consistently or 16 

considerably alter the predictive power of the model for this particular set of test-cases. Second, the 17 

precise ‘definition’ (i.e. mathematical formulation) of CS used is of secondary importance compared 18 

to the decision to include or exclude a CS metric – the relative difference between alternative CS-19 

based models is less than the difference between models with and without CS (compare Figures 2 & 20 

3). Again, the treatment of CP within the algorithm also appears to be of secondary importance; 21 

both models with a proportional-CP term, and with no CP term, have similar predictive power for 22 

this set of test cases, provided that a CS metric is included (compare figures 3 & 4); the models 23 

including a proportional CP term appear slightly stronger, however the role of contact-pressure in 24 



wear mechanics remains unclear – a plot of wear rate vs. cycle-averaged CP reveals no noteworthy 1 

correlations (see figure 5). Despite these uncertainties, it is possible to ‘rank’ the performance of the 2 

different CS algorithms for this particular test-case set. Based on this set of test-cases, the A/A+B 3 

wear model proposed by Turell [4] appears to be marginally the strongest predictor of in-vitro wear 4 

(Figure 2). 5 

Previously, the reported empirical wear constants used in mathematical models of wear have been 6 

based on limited data-sets (e.g. a small sample of POD test results [4]). Based on this study, 7 

regression-fitting techniques were used to provide a set of wear constants for the different models, 8 

tuned to this group of test-cases, for use by other researchers to improve their TKR wear predictions 9 

in-future. This has two advantages; the constants are directly based on TKR tests, rather than 10 

derived from POD or THR tests (removing a potential confounding factor) and the values have been 11 

assigned based on this larger ‘training’ data set. The values suggested for the different models are 12 

listed in table 2. 13 

 14 

Discussion: 15 

It is not possible to speak of an empirically-defined model as being ‘correct’, since it has no direct 16 

analytic derivation. Therefore, the relevant question is: which model appears to offer the greatest 17 

predictive power? Previously, published studies have only corroborated with individual experimental 18 

tests, and so the performance of these models is not well-understood. Undertaking a more 19 

comprehensive corroboration requires multiple simulations from different sources, which 20 

necessitates a much faster modelling platform than intricate deformable-FE models; the rigid-body 21 

models demonstrated in this study require much lower simulation times (on the order of minutes, 22 

rather than hours). The combination of in-vitro & in-silico wear prediction methods corroborated 23 

together provides the fullest, most powerful toolset for pre-clinical analysis of TKR wear. In-silico 24 



studies in isolation are subject to suspicion as long as there is no consensus on the precise causal 1 

mechanics of wear. But in-vitro studies alone cannot provide the same range and volume of 2 

information as can be quickly and efficiently evaluated computationally. 3 

Of course, there are important limitations to these studies; the simulation can only perform well if 4 

the underlying behaviours are modelled correctly, so the actual mechanical conditions must be 5 

accurately captured to set a ‘benchmark’ for corroboration. A pertinent observation from the 6 

multiple test-case corroboration is that there is considerable variability in the experimental results 7 

reported in the literature (both within, and especially between, different research centres). This 8 

could be due to variations in standard experimental procedure (e.g. whether wear is reported for 9 

the counter-face or not, whether secondary axes such as M-L translation or V-V rotation are fixed or 10 

free, etc) or simply due to unintentional errors (component mal-positioning, measurement 11 

tolerances, etc). This is a serious confounding factor in attempting to provide a more exhaustive 12 

corroboration; the ‘noise’ due to experimental variability masks the finer influence of the choice of 13 

wear algorithm. This can be mitigated to some extent if all the particulars of the experimental 14 

procedure are fully reported (and so can be recreated in the computational model), and if tolerances 15 

on in-vitro uncertainty are reduced to a minimum. Only by corroborating with a ‘tighter’ set of 16 

experimental test results will it be possible to determine with greater confidence which is the most 17 

appropriate empirical algorithm for wear prediction (i.e. the best formulation for CS, the true 18 

influence of contact pressure & area, etc).  19 

Nonetheless, this study has clearly demonstrated that CS of some form must be an integral part of 20 

any wear algorithm if it is to have useful predictive power. The simple Archard/Lancaster sliding 21 

distance models have clearly been shown to be limited in their applicability – whilst it is possible to 22 

‘tune’ an empirical Archard wear constant to match for a limited range of kinematic conditions, this 23 

model clearly breaks down when a wide range of kinematics and different designs are considered, as 24 

in the present investigation.  25 



The present study compared models with and without a proportional term for contact pressure, in 1 

light of current debates about the role of CP in polyethylene wear. The results are not conclusive; 2 

both families of models had comparable predictive power; with neither showing a clear advantage. 3 

This may indicate that the range of contact pressures encountered in standard TKR wear tests does 4 

not vary sufficiently for the influence to become apparent, or that there are antagonistic factors 5 

which have a confounding influence (e.g. increased articular conformity will reduce CP, but may also 6 

be influencing debris transport, lubrication, etc). Again, ultimately the best way to resolve this issue 7 

is with a greater number of well-defined, targeted corroborations between in-vitro and in-silico wear 8 

analysis platforms. 9 

There are many possible improvements and extensions to the models presented here; besides the 10 

challenge of accurately capturing experimental conditions, adaptive models could be used to 11 

investigate long-term wear for each test case(as in [5]). Probabilistic methods could be used to 12 

attempt to capture the experimental uncertainty in-silico. As understanding of wear mechanics 13 

improves, the wear algorithms could be customised to different combinations of articulating 14 

materials (e.g. different UHMWPE grades). All these tests are for gait-simulation (mostly based on a 15 

derivative of the ISO standard) it would be beneficial and informative to extend this to include a 16 

much wider range of activities with more varied loading; however this would of course require 17 

extensive corresponding experimental test data. Corroborating within a single framework for a wider 18 

range of implant designs, simulator configurations, lubrication conditions, materials and loading 19 

regimes will all ultimately play a part in augmenting our holistic understanding of TKR wear.  20 

This study has aimed to illustrate the valuable role in-silico models can play in better exploring and 21 

refining fundamental concepts regarding the causes of polyethylene wear in TKR. It demonstrates 22 

that the current generation of CS-based empirical wear models have useful predictive power when 23 

corroborated with in-vitro experiments and are able to qualitatively rank the wear performance of 24 

different designs under different loading regimes, but there is room for further refinement in our 25 



current understanding of wear, and hence also in the modelling of wear. Most importantly, it is 1 

apparent that the only way to refine and improve our understanding of wear is through more and 2 

better corroboration between both computational and experimental approaches, to exploit the 3 

unique strengths of both domains. By doing so, the pre-clinical analysis tools used for wear 4 

prediction in the future will offer designers a richer, faster, more powerful, and more accurate 5 

insight into the causes of wear in TKR. 6 
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 1 

Source(s) Implant(s)  

(PE derivative) 

Inputs (forces & kinematics) 

McEwen et al [1] Sigma FB & RP; LCS 

(GUR1020 & 1050) 

Displacement (various kinematics) 

& ISO 14243-1 (Force) Gait 

Galvin et al [31] Sigma femoral on  

flat PE (GUR1020) 

Displacement-driven Gait (various 

levels of kinematics) 

Knight et al [5] NexGen CR 

(GUR1050) 

ISO-derivative Gait 

Cottrell et al [27] NexGen CR 

(GUR1050) 

ISO 14243-1 (Force) Gait 

Muratoglu et al [28] NexGen CR 

(GUR1050) 

ISO-derivative Gait 

Williams et al [30] Triathlon 

(GUR1020) 

ISO-derivative Gait 

Haider et al [26] Sigma FB & RP 

(GUR1020) 

ISO 14243-1 (Force) Gait 

Haider et al [29] Vanguard PS 

(GUR1050) 

ISO 14243-1 (Force) Gait 

Proprietary 

unpublished data 

Sigma FB CVD/PLI 

(GUR1020) 

Displacement-driven ISO-derivative 

& high-kinematics gait 

Proprietary 

unpublished data 

Sigma femoral on 

flat PE (GUR1020) 

ISO-derivative; High & low levels of 

axial load & IE rotation 

Table 1: Listing of test-cases used for corroboration, with references where applicable  2 

3 



 1 

Wear Depth 
Formulation 

Historical (Legacy) 
Constant, KW 

Revised Constant, KW 
(based on test-cases) 

Model predictive power 
with new constant (R²) 

Archard 
H = KW.p.S 

2.6410-7 mm³/N.m  2.010-7 mm³/N.m .12 

Sliding distance  
H = KW.S 

-  110-6 mm/m .04 

ML/ML+AP 
H = KW.CS.p.S 

310-6 mm³/N.m  2.710-6 mm³/N.m .58 

A/A+B 
H = KW.CS.p.S 

310-6 mm³/N.m  3.310-6 mm³/N.m .60 

* 

H = KW. (*)² 
-  1.110-5 mm³/N.m .29 

ML/ML+AP (no CP) 
H = KW.CS.S 

-  1.4310-5 mm/m .54 

A/A+B (no CP) 
H = KW.CS.S 

-  1.810-5 mm/m .49 

Table 2: Summary of current and suggested wear constants for different algorithm formulations. 2 
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Figure 1. Experimental wear vs. wear predicted using ‘Archard’ algorithm. 2 
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   NexGen CR 
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   Vanguard PS 
   Sigma on 'Flat'  
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Figure 2. Experimental wear vs. wear predicted using ‘A/A+B’ algorithm. 2 
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Figure 3. Experimental wear vs. wear predicted using ‘ML/ML+AP’ algorithm. 2 
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Figure 4. Experimental wear vs. wear predicted using ‘ML/ML+AP’ algorithm (without CP). 2 
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Figure 5. in-vitro wear vs. cycle-averaged contact pressure, showing no strong correlations. 2 
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