
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Service-Oriented Grids and Problem

Solving Environments

by

Matthew J. Fairman

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Engineering Sciences

Computational Engineering and Design Group

September 2004

mailto:m.j.fairman@soton.ac.uk
http://www.soton.ac.uk/research/academicschools/schoolesm.html
http://www.soton.ac.uk/EngineeringSciences/
http://www.soton.ac.uk/ComputationalEngineeringDesign/

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ENGINEERING SCIENCES

COMPUTATIONAL ENGINEERING AND DESIGN GROUP

Doctor of Philosophy

by Matthew J. Fairman

The Internet’s continued rapid growth is creating an untapped environment containing
a large quantity of highly competent computing resources suitable for exploitation in
existing capacity-constrained and new innovative capability-driven distributed applica-
tions. The Grid is a new computing model that has emerged to harness these resources
in a manner that fits the problem solving process needs of the computational engineering
design community. Their unique requirements have created specific challenges for Grid
technologies to bring interoperability, stability, scalability and flexibility, in addition to,
transparent integration and generic access to disparate computing resources within and
across institutional boundaries.

The emergence of maturing open standards based service-oriented (SO) technologies has
fulfilled the fundamental requirements of interoperability, leaves a flexible framework
onto which sophisticated system architectures may be built, and provides a suitable
base for the development of future Grid technologies. The work presented in this thesis
is motivated by the desire to identify, understand, and resolve important challenges
involved in the construction of Grid-enabled Problem Solving Environments (PSE) using
SO technologies. The work explains why they are appropriate for Grid computing and
successfully demonstrates the application and benefits of applying SO technologies in the
scenarios of Computational Micromagnetics and Grid-enabled Engineering Optimisation
and Design Search (Geodise) systems. Experiences achieved through the work can also
be of referential value to future application of Grid computing in different areas.

http://www.southampton.ac.uk
http://www.soton.ac.uk/research/academicschools/schoolesm.html
http://www.soton.ac.uk/EngineeringSciences/
http://www.soton.ac.uk/ComputationalEngineeringDesign/
mailto:m.j.fairman@soton.ac.uk

Contents

Abstract i

Declaration Of Authorship xi

Acknowledgements xii

1 Introduction 1
1.1 Features of the Grid . 4
1.2 Applying Grid Computing for Problem Solving Environments 5
1.3 Scope of Work . 7

1.3.1 Aims and Contributions of the Research contained in this Thesis . 8
1.4 Thesis Structure . 9

1.4.1 Part 1: Literature Review . 10
1.4.2 Part 2: Problem Statement and Solution Methodologies 10
1.4.3 Part 3: Description of Work and Results 10

2 Literature Review of Distributed Computing 12
2.1 What is Distributed Computing? . 13
2.2 Key Features required in Distributed Computing Systems 14

2.2.1 Transparency . 14
2.2.2 Openness . 15
2.2.3 Scalability . 16

2.3 Architectural Patterns . 17
2.3.1 Component-based Architecture . 17
2.3.2 Interface-based Object-Oriented Architectures 17
2.3.3 Model-View-Controller Architectures 20
2.3.4 Service-Oriented Architecture (SOA) 21

2.4 Successful Distributed Computing Systems 23
2.4.1 Hypermedia Resource Sharing on the World Wide Web 23

2.4.1.1 Universal Resource Identifiers 24
2.4.1.2 The Hypertext Transfer Protocol 25
2.4.1.3 REST-based Architectural Style 27

2.4.2 Enterprise Computing . 30
2.4.3 Clustering . 30

2.5 Grid Computing: Large-scale Coordination, Collaboration and Sharing
of Resources . 32
2.5.1 Key Challenges of Grid Computing 33

ii

CONTENTS iii

2.5.1.1 Heterogeneous Environment and Diverse Application
Models . 33

2.5.1.2 High Unreliability of Internet-Scale Systems 34
2.5.1.3 Coordination of Resource Sharing Operations 34

2.5.2 Desirable Characteristics of Grid Technologies 34
2.5.2.1 Interoperability . 35
2.5.2.2 Scalability and Openness 35
2.5.2.3 Decentralised and Loosely-coupled Architectures 35
2.5.2.4 Low-Effort Deployment and Participation 38
2.5.2.5 Legacy Distributed Computing Technologies in Grid

Computing . 39
2.5.3 Technological Requirements of Grid Computing 40
2.5.4 Key Grid Technologies . 40

2.5.4.1 Extensible Markup Language (XML) 40
2.5.4.2 Simple Object Application Protocol 43

2.6 Service-Oriented Technologies . 43
2.6.1 Web Services . 43

2.6.1.1 Web Service Description Language 44
2.6.1.2 Universal Description, Discovery and Integration 45
2.6.1.3 WS-Inspection and Web Service Integration Language . . 45
2.6.1.4 Security . 45
2.6.1.5 Data Delivery . 46
2.6.1.6 Business/Application Process Orchestration 46
2.6.1.7 Message Routing . 46
2.6.1.8 Reliable Messaging . 46

2.7 Grid Projects and Architectures . 47
2.7.1 Open Grid Service Architecture . 47

2.7.1.1 Fabric . 48
2.7.1.2 Connectivity . 48
2.7.1.3 Resource . 49
2.7.1.4 Collective . 49
2.7.1.5 Application . 50

2.8 Summary . 50

3 Challenges in Problem Solving Environments 53
3.1 Problem Solving Environments (PSEs) . 54

3.1.1 Problem Solving Processes and Motivation for PSE 54
3.1.2 Characteristics of the Environment 56
3.1.3 Existing Problem Solving Environments 57

3.2 Study of the Computational Micromagnetics Problem-Solving Process . . 58
3.2.1 Motivation and Problem of Interest 58
3.2.2 Overview of Problem-solving Process 59
3.2.3 Specific Environmental Requirements 59
3.2.4 Brief Overview of Hard Drive Technology 59

3.2.4.1 New Manufacturing Approaches 61
3.2.5 Computational Research Tools . 62

3.2.5.1 Object-Oriented Micromagnetic Framework (OOMMF) . 64

CONTENTS iv

3.2.5.2 Application of OOMMF for Finite Dimensional analysis
of Patterned Media . 67

3.2.5.3 Application of Magpar for Finite Element/Boundary El-
ement analysis of Patterned Media 68

3.2.6 Performance Challenges . 68
3.2.7 Selection and Usage of Code libraries in OOMMF and Magpar . . 69
3.2.8 Specific Challenges of driving the Workflow 69

3.2.8.1 Understanding, Operation and Extension of OOMMF
and Magpar . 72

3.2.8.2 Meshing of Particles in OOMMF and Magpar 72
3.2.8.3 Data Representations and File Formats in OOMMF and

Magpar . 73
3.2.8.4 Integration of OOMMF and Magpar with Compute Clus-

ters . 73
3.2.9 Summary of Computational Micromagnetics 74

3.3 Geodise: A Service-Oriented Engineering Optimisation and Design Search
PSE . 74
3.3.1 Vision and Design of Geodise . 75

3.3.1.1 The Computation Service 75
3.3.1.2 The Data Service . 75
3.3.1.3 The Application Services 75
3.3.1.4 The Optimisation Service 76
3.3.1.5 The Knowledge Service 76

3.3.2 Implementation of Geodise . 77
3.4 Summary . 78

4 Solution Methodology 79
4.1 General Methodologies . 79

4.1.1 Comprehensive Definition for Grids 79
4.1.2 Transparency, Discovery and Integration 80
4.1.3 Common Operational and Behaviour 80

4.2 Simple Grid Architectures . 80
4.2.1 Modelling of Resources . 81
4.2.2 Modelling of Services as Resources 81

4.2.2.1 Virtualisation of Resources 82
4.2.3 Modelling systems . 82

4.3 Service Interaction . 82
4.3.1 Client-driven Architectures . 82
4.3.2 One-way Asynchronous Event Notification 83
4.3.3 Coupling of Legacy Systems . 83
4.3.4 Dispersed Infrastructure . 84
4.3.5 Context within and across Web Services 85
4.3.6 Common Operation and Behaviour 86

4.4 Summary . 86

5 Service-Oriented Numerical Optimisation 87
5.1 Challenges of Optimisation . 87
5.2 Optimisation Algorithms . 89

CONTENTS v

5.2.1 Nelder-Mead algorithm: Amoeba 90
5.3 Challenges with Current Optimisation Systems and Software 91
5.4 Aims and Methodologies of offering Optimisation as a Service 93

5.4.1 Bootstrapping . 95
5.4.2 Stateful Code and User Sessions 95
5.4.3 Client Access and Service Communication 96
5.4.4 Checkpointing for Robustness, Monitoring and Control 97

5.5 Methodologies used in Optimisation Service 98
5.5.1 Reverse Communication . 98
5.5.2 Checkpointing Strategies for Distributed Optimisation Algorithms 100

5.6 Implementation . 102
5.6.1 Techniques for creating Stateless, Reverse Communication Opti-

misation Algorithms . 103
5.7 Performance Analysis . 105

5.7.1 Highly Stateful Optimisation Algorithms 106
5.7.2 Large Objective Function Results Set 107

5.8 Summary . 107

6 Service-Oriented Computation 109
6.1 Virtualisation of Compute Clusters . 109

6.1.1 Issues with existing virtualised Compute Resource Systems 109
6.1.2 Common Compute Operations . 110
6.1.3 Interoperability and Portable Infrastructure through Common Open

Standards . 110
6.2 Analysis of a Cluster Management System: Condor 111

6.2.1 Large-scale Cycle-stealing . 111
6.2.2 Condor and the Grid . 113
6.2.3 Identification and Modelling of Resource Layers 116

6.3 Resource Sharing Operations through Web Services 119
6.3.1 Computer Discovery . 122
6.3.2 Job Submission . 123
6.3.3 Resource Management and Job Monitoring 123

6.4 Job Management . 124
6.4.1 State Management . 125
6.4.2 File Transfer Management . 126

6.5 Development with Legacy System . 127
6.5.1 Asynchronous Communication: Monitoring and Job Notification . 128
6.5.2 Discovery of Special Resources . 129

6.6 Review of Microsoft .NET based OGSI Implementations 129
6.6.1 Motivation . 129
6.6.2 Demonstration of .NET OGSI Implementations 130
6.6.3 Assessment of OGSI.NET and MS.NETGrid 132

6.6.3.1 OGSI Compliance . 132
6.6.3.2 .NET Integration . 133
6.6.3.3 .NET Framework and Programming Language 133
6.6.3.4 Application of ASP.NET and Web Service Enhancement 134

6.6.4 Grid Service Deployment and Programming 135

CONTENTS vi

6.7 Practical Application of Computation Web Service 136
6.8 Summary . 137

7 Micromagnetics Problem Solving Environment 138
7.1 Motivation . 138

7.1.1 SOAP Intermediaries and Message Exchange Patterns 139
7.1.2 Lightweight Web Services . 140

7.2 Analysis of the Micromagnetic Problem Solving Process 142
7.2.1 Finite Difference based Simulation 142

7.3 Micromagnetic Message-based Web Service PSE 144
7.3.1 Coarse Grained Message-Based Web Services 144
7.3.2 Intermediaries . 145
7.3.3 Message Processing Chain . 145

7.4 Knowledge Capture and Reuse . 146
7.4.1 Collected Information and Historical Records 147

7.5 Computation Web Service in a Message-based Web Service PSE 147
7.6 Practical Application . 148
7.7 Summary . 150

8 Conclusion 152

Bibliography 156

Conference Publications 168

Original C Language Source Code for Amoeba Optimisation 169

Java source code for Amoeba Optimisation Algorithm Session EJB 171

WSDL of the Compute Web Service 177

List of Figures

1.1 Layered diagram showing the features of the Grid 3

2.1 A simple example of a distributed, component-based architecture of e-Mail. 18
2.2 Model-View-Controller (MVC) architectural pattern used within enter-

prise computing. 20
2.3 High Throughput Computing (HTC) network diagram. 31
2.4 The usage of legacy distributed computing technologies in Grid computing. 39
2.5 Web Service usage of XML Technologies. 44
2.6 Shows the relationship between the Grid architecture and the Internet

protocol architecture. 47
2.7 Programmers view of the Grid Architecture. 50

3.1 View of the inside of a hard disk (without cover) showing the read/write
head moving across the spinning platters. 60

3.2 Illustration of the magnetic surface of a hard disk platter showing its
operation. 61

3.3 Interrelationships between packages and tools in micromagnetic mod-
elling, simulation and analysis process. 63

3.4 An example usage of the software tools in a micromagnetic simulation
and visualisation. 64

3.5 Grid Enabled Optimisation and Design Search for Engineering 77

4.1 Example of legacy system wrapping with Web Service technologies. 84

5.1 Example integration of Optimisation service with a compute cluster and
persistence database using a document-oriented message architecture. . . 94

5.2 Example integration of Optimisation service with a compute cluster with
the client acting as the controller of the workflow. 94

5.3 Client driven optimisation. 98
5.4 Flow diagram of optimisation process. 99
5.5 Single and double stage checkpointing schemes for a typical optimisation

routines . 101
5.6 Optimisation Service Layered Technologies 102

6.1 Common submission of Jobs in a HTC management system. 110
6.2 Pool (Cluster) components of the Condor HTC system. 114
6.3 Architecture of a typical HTC clustering system. 116
6.4 Architecture of a typical HTC clustering system. 117
6.5 Open standard protocols stack of the compute resources and Computation

Web Service . 119

vii

LIST OF FIGURES viii

6.6 Architecture of Computation Web Service 120
6.7 The Job Submission Process . 121
6.8 Condor XML Wrapping Process. 128
6.9 Engineering Design Optimisation in OGSI .NET Demonstration 131
6.10 The OGSI .NET Demonstration Client Application 132
6.11 Scalability of Web Service submission node 136
6.12 Visualised Result of a Four Dimensional CFD Parameter Studies 137

7.1 Example showing SOAP messages travelling in one-way and two-way mes-
sage exchange patterns. 141

7.2 Shows an overview of the finite difference micromagnetic simulation process.142
7.3 Message exchange pattern for the micromagnetics PSE 146
7.4 Graph showing a linear increase in compute node disk usage as the number

of job cells stored rises. 148
7.5 Cutplane ray traced visualisation of the systems overall magnetisation at

zero applied field. 149
7.6 Large cone side ray traced visualisation of cones magnetisation at zero

applied field. 149
7.7 Graph demonstrates response of magnetic system to external magnetic

field. 150

List of Tables

2.1 Comparison of Distributed Object Technology features. 19

3.1 Key for micromagnetic process in figure 3.3. 62
3.2 Table describing the Oxs extensions employed in listings 3.2. 65

6.1 Categorisation and description of Condor’s daemon services. 115
6.2 Categorisation and description of commands employed to operate Condor. 115
6.3 User command program interaction within resource layers of Condor. . . . 118
6.4 Comparison of OGSI Implementation - Port Types 133
6.5 Comparison of OGSI Implementation - Other Issues 133
6.6 Comparison of .NET Integration . 134
6.7 Comparison of Grid Service Deployment and Programming Model 135
6.8 Comparison of Grid Service Resource Management 135

ix

Listings

2.1 Example record for a User. 29
2.2 Example XML document showing the status of jobs in a cluster. 40
2.3 Example XML Schema defining data structures for job status. 42
3.1 Example MIF task code to model cone shaped particles. 66
3.2 Example run of MIFMaker script on command line to generate MIF file

in listings 3.1. 67
3.3 Example vector output of Oxs. 67
3.4 Example tabular output of Oxs. 67
5.1 Functional prototype of original C Language Amoeba optimisation. 103
5.2 Example pseudocode for objective function replacing implementation with

remote procedure call to enable execution of code on another machine. . . 104
5.3 Implementation of the state object for the Session EJB downhill simplex

algorithm. 105
6.1 Example Condor Classads for an execution node. 112
6.2 Application Programmer Interface (API) of Computation Web Service . . 122
6.3 Example of a ClassAd job submission request to the Condor. 122
6.4 Example of a XML job submission request to the Compute Service. 123
6.5 Example SOAP message response from a Computation Web Service. . . . 124
7.1 MIF configuration file for a Cone OOMMF simulation 143
1 Original C Language Source Code for Amoeba Optimisation 169
2 Java source code for Amoeba Optimisation Algorithm Session EJB 171
3 WSDL Interface of the Compute Web Service 177

x

Declaration Of Authorship

I, Matthew J. Fairman, declare that the thesis entitled Service-Oriented Grids and Prob-
lem Solving Environments and the work presented in it are my own. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at
this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: journal and conference papers and
posters, and technical documentation listed in appendix A.

Signed: . Date: .

xi

Acknowledgements

All the work contained in this thesis is my own except for the following sections and
contributions. Section 4.3.3 contains shared ideas between Gang Xue and I on legacy
system Web Service wrapping. Gang Xue implemented the communication layer of the
Optimisation Service, see chapter 5. The ClassAds mapping to XML, section 6.5, of the
Computation Web Service, chapter 6, was jointly designed and implemented by myself
and Gang Xue. The Geodise system, section 3.3, is a collaborative project1 between the
Universities of Southampton, Oxford and Manchester with several industrial partners,
lead by Professor Andy Keane, Professor Simon Cox, Professor Mike Giles, Professor
Carole Goble, and Professor Nigel Shadbolt.

1Geodise project home page - http://www.geodise.org/

xii

I dedicate this to my parents for the years of patience and support
that they have given me during my lengthy stay at school.

xiii

Chapter 1

Introduction

The Grid is a global-scale endeavour to make distributed computing resources generi-
cally accessible and easily sharable on the Internet. It distinguishes itself from previous
distributed computing efforts by its intent to provide global-scale, dynamic and trans-
parent access to computer resources such as PCs, servers, compute clusters, data storage
devices, and instrumentation, in a way akin to the consumption of electricity from the
power grid. A great number of research projects have been created to study solutions to
the challenge of building the Grid, ranging from its high-level application in engineering
sciences [1] to Grid architecture and protocols [2, 3]. The Grid will lead to important
changes to the usage of computing in general by both enabling access to previously
unobtainable resources and facilitating their collaboration in sophisticated large-scale
cross-organisational applications.

The concept of the Grid has arisen from the desire to create technologies that improve
exploitation of computing resources on the Internet to service the demands of business
and engineering science for more powerful distributed systems that can perform larger
and further-reaching roles. The continued rapid growth of the Internet is providing a
greater capacity of increasingly capable computing resources. Distributed computing
technologies developed before the arrival of the Grid do offer access and sharing of
Internet computing resources however only the technologies associated with the World
Wide Web (WWW) and e-Mail have scaled to the size of the Internet.

The Internet has grown to become a successful and powerful system that is encouraging
the sharing of information and data. It has brought new opportunities for novel applica-
tions of computer resources and technologies. The WWW and e-Mail are today’s biggest
applications on the Internet. These distributed applications have reached a global scale
and their influences can be seen in almost all corners of human life including education,
commerce, business and entertainment. The WWW and e-Mail have enabled informa-
tion and data to be simply and quickly distributed, exchanged, and accessed despite
geographic boundaries.

1

Chapter 1 Introduction 2

Commoditisation of computing resources such as, Personal Computers (PCs), and op-
erating ease of the WWW and e-Mail have been the main driving factors in growth in
usage of technology and consequent explosion in novel Internet-based applications. This
revolution in the capacity and capability of computing resources would not have been
achievable without creation of an environment in which people may fully exploit available
resources without becoming computer engineering experts in the underlying systems; in
a similar way that most drivers of cars should not need to be expert automotive engi-
neers. For example, modern graphical user interface-based operation systems, such as
Microsoft Windows and Apple’s OS X, have hidden the unnecessary complexity of using
computers whilst allowing people to use their machines for sophisticated tasks such as
accounting, word processing, and on-line banking. People can simply and quickly upload
there pictures from the cameras and share them on the web, e-mail documents to each,
and share their printers or Internet connection amongst their home computers.

The desire to share and integrate information and data across the Internet in not only a
manner similar to the WWW and e-mail but also a wider selection of computer resources
has spawned the research on Grid computing. The Grid will both simplify and ease the
task of using distributed computing resources whilst enabling people to exploit them
for sophisticated tasks without having to be a computer scientist. Figure 1.1 shows a
layered diagram of where the Grid proposes to provide services for applications.

This thesis describes research into the use of service-oriented (SO) based Grid technolo-
gies in the fields of computational engineering and science. The rise of the Grid has
been driven by the needs of these fields for improvements in the ability to easily share
and access a wider variety and greater quantity of computer-based systems, in addition
to, knowledge, information and data. Computational engineering and science presents a
significant challenge for the Grid in that its demands and level of operation far exceeds
the simple-sharing mode of the Internet. Generally, these fields employ computer re-
sources together with software as tools in a wide variety of sophisticated configurations
in order to perform high-level design and problem solving processes.

Service-orientation [4] is a new distributed software architecture that promises to fa-
cilitate Grid computing and provide significant advantages over classical distributed
computing methodologies. The Grid offers features, mainly focused around SO and its
associated technologies, which will benefit computational engineering and science. How-
ever, as we shall now discuss, starting with the features of the Grid, the computing
requirements of these fields requires significant research from many areas of computer
science.

Chapter 1 Introduction 3

� � � � � � � � � � 	
 � � � � � � � � � � � � �

� � � � � �
� � � � � � � � � �
 � �

� �
 � � � �

� � � � � � �
� � � � � � � �

� � !

" � # � � � �
 � � � � �

$ % & ' () *) + % ,
$ % & ' () *) + % ,

$ % & ' () *) + % ,
" � # -
 � �

" �
 � � � � �

. � � � � � � � �

/ � � � � 0 � � � 1 � 2 � � � � � � 0
3 � � � 4 � � �

� � - � � � � � � � � �

5 � � � � � # � � 1 � �
� 1 � � � # � � � 	
 � � � � � 6 / � 6

	
 � � � � �
� 6 " � # # � � 2 �

7 � 8 8 9 � : ; � �
< ; � � �

= � � > ? � @ �
< ; � � �

A B B 9 � @ ; � � > �
< ; � � �

C � � : > � D
< ; � � �

E � F � � #
" � # -
 � � �

� 2 2 � � �

�
 � � � � � 2 � � � �
�
 � � � � � � � � � �

" � # #
 � 2 � � � �
 � � 1 � 2 � �

E � F � � #
� � � �

� 2 2 � � �

� � � 2 � � - � � �
� � � 2 � 1 � � G

H � � � � � � � � � � 2
 � � � G
� � � � � � � � � � G

5 � � � 2 � � �
" � � � � � � � � � � �

I � � � F � � �

Figure 1.1: Layered diagram showing the features of the Grid
The middleware layer contains the Grid technologies that enable generic access and
seamless integration of distributed computer resources for the construction of sophisti-
cated applications.

Chapter 1 Introduction 4

1.1 Features of the Grid

The Grid aims to build on the capabilities of the Internet to provide a global-scale
infrastructure which allows generic access to computer resources and their collaboration
in sophisticated application systems. The Grid is defined by CERN, the largest consumer
of Grid computing in the world, as “a service for sharing computer power and data
storage capacity over the Internet” [5]. However, it is more than this. The Grid is the
next level beyond the Internet. It will commoditise high-level distributed computing by
enabling access and seamless integration of distributed computer resources without need
for users to understanding how it is done.

Service-Orientation and Common Standards Computer resources will play a much
more dynamic service-orientated role, which will allow their collaboration in a mul-
titude of application roles. Standard service-oriented based technologies will pro-
vide simple, uniformly accessible, and interoperable computer resources. The Grid
aims to provide technologies that, in addition to allowing the sharing of resources
in an interoperable manner, also simplify the task of constructing distributed sys-
tems. The Grid has benefited from the emergence of the open standard eXtensible
Markup Language [6] (XML)-based Web Service Architecture (WSA) [7] tech-
nologies. These simple, loosely-coupled Service-Oriented (SO) technologies have
provided the elementary building blocks for constructing scalable, easily main-
tainable and extensible infrastructures for sophisticated distributed environments.
The work presented details the SO approaches for Grid computing that facilitate
and simplify the integration and exploitation of distributed computing resources.

Emphasis on Data, Information and Knowledge At all levels of the Grid data,
information, and knowledge will provide an extremely important role for purposes
from aiding in the discovery and integration of resources to providing feedback to
users on how to better their results. The Grid provides XML-based technologies
that enable definition of common schema essential to providing uniform data access
to computer resources. In addition, XML ability to self-describe facilitates data
to be more easily cross-referenced, combined, and incorporated into sophisticated
information and knowledge-driven applications.

Access and Sharing of Distributed Resources The Grid will allow access and shar-
ing of computer resources across and within institutional and organisational bound-
aries. Grid computing will feature common authentication and authorisation
mechanisms that shall enable resource providers to safely share their computer
resource to users inside and outside their administrative domains. In addition,
Grid computing gives resource providers common control and management tech-
nologies that enable the definition of usage policies, quotas, and qualities of service.

Chapter 1 Introduction 5

End users will benefit from a broader selection and greater quantity of computer
resources.

Dynamic Workflows and Description, Discovery and Integration Finally, the
Grid also features support for high-level computer resource sharing operations
for the description, discovery, and integration of computer resources, and their
collaboration in dynamic workflows. Consequentially, advanced applications will
be able to cater for changing requirements by dynamically selecting resources on
a per usage basis. Consequently, these features will bring about increased avail-
ability through better aggregation and easy location and integration of computer
resources.

These are the key features of Grid computing which make the Grid appealing to tradi-
tional users of distributed computing. In the following section, we look at the problem
solving requirements of the fields of computational science and engineering and how they
match with the features provided by the Grid.

1.2 Applying Grid Computing for Problem Solving Envi-

ronments

The fields of science and engineering have often demanded or benefited from computers.
Typically, these fields require access to a heterogeneous range of distributed computer
resources such as databases, computing clusters, application servers, and instrumenta-
tion. Scientists and engineers often need to couple together a wide range of tools to solve
new problems: hardware and software for setting up and solving problems and tools to
analyse their results and guide future studies. In a typical scenario of, for example, wing
design, an engineer may couple Computer Aided Design (CAD) tools, analysis codes for
Computational Fluid Dynamics (CFD), or Finite Element Analysis (FEA) and tools for
optimisation.

There is a desire for problem solving environments (PSE) that facilitate the solving of
scientific and engineering problems from simulating the effects of folding molecules to
find new drugs, to modelling the flow of air over a wing to produce aircraft that are more
efficient. PSEs may be described by [8] (see section 3.1 for the full definition) who state
“A PSE is a computer system that provides all the computational facilities necessary to
solve a target class of problems.”

Lack of computer resources and the inability to bring available resources together into
effective problem solving environments (PSEs) often limits the depth and complexity of
research. Typically, scientists need to have a good understanding of the inner workings
of the tools they are using in order to effectively use and integrate them with other tools.
Here are some of the difficulties that scientist and engineers face:

Chapter 1 Introduction 6

Proprietary File Formats and Data Models Whilst standards exist they have not
been commonly used across all tools and computing resources. In the case of CAD
tools, typically each package stores information internally in a format that is best
suited for that package. These proprietary formats can only be read by the specific
tool (and version of software), and are virtually useless to other tools. Often this
forces engineers working on the same problem to all use the same CAD tool in order
to exchange files. In addition, in the case of wing design where CAD tools are often
required to create the meshes for CFD tools, the file output by the CAD tool must
be in a format and have a data model, which is understood by the CFD tool. There
is a clear need for common standards and data models across tools to facilitate
the exchange of data amongst people and tools and to allow a greater freedom
in the choice of tools. The Grid meets the requirement by offering technologies
and mechanisms that enable the simple and easy definition of common standards,
in addition to, to the ability to self describe data (metadata) to aid in creating
composite data models. For instance, the Standard for the Exchange of Product
Model Data (STEP) [9] has significantly helped with the exchange of engineering
data. This comprehensive standard (ISO 10303) describes ways to represent and
exchange digital product information. Currently, most major CAD/CAM system
now contain modules to read and write data defined by at least one of the STEP
Application Protocols (AP’s), in particular AP-203 by USA software vendors and
AP-214 in Europe. These protocols are similarly used to exchange data describing
designs represented as solid models and assemblies of solid models.

Ineffective Knowledge Capture and Reuse Engineers will often need specific so-
lution methodologies in order to solve or quickly optimise a problem. For instance,
in the field of micromagnetics where scientists study the shape and arrangement of
particles in magnetic systems to improve areal density of hard drive platters, the
conjugate gradient method (CGM) is the preferred method for optimisation. How-
ever, CGM sometimes does not converge on a solution for certain arrangements
and shapes of particles in the magnetic system in which case the more complex
and computationally intensive Landau-Lifshitz-Gilbert (LLG) [10] equations must
be employed. The wrong selection of solution methodology may result in incorrect,
poor or no results, and inefficient usage of computer resources.

However, knowing which solution methodology is best often comes down to the
experience of the scientist or engineer. Whilst engineering books and the WWW
provide repositories of information and knowledge on solution methodologies how-
ever; they cannot reflect the particular problem the engineer is working or offer
the capability to suggest solution methodologies or suitable computing resources
for specific instances of the problem. In addition, there is a lack of links between
users and PSE. A solution methodology proven in one area often gets lost because
there is no common way to describe or capture the gained knowledge and thus
reuse it.

Chapter 1 Introduction 7

There is a requirement here to more effectively capture gained knowledge, provide
information on solution methodologies specific to the target problem, and offer
means to help decide on solution methodology and aid in their effective usage.
The Grid enables this through its aim of interoperable amongst resources such
that data and information may be more easily described and related allowing
complex work flows to be logged, analysed, and reused.

Lack of Resource Sharing and Accessibility Within the fields of academia and re-
search, the size and complexity of a project sometimes exceeds the capabilities of
single institution, consequently it is not uncommon for work on projects to span
universities and companies. Typically, computer resources such as compute clus-
ters and databases are shared so that people working together on cross-institutional
projects can more easily collaborate and exchange information. However, chal-
lenges exist with ensuring that computer resources are protected from malicious
users, erroneous software, and accidental damage. The challenge is compounded
by the proliferation of different security mechanism and varied types of computer
resource. The Grid offers the interoperability fundamentally necessary to facilitate
large-scale resource sharing, in addition, to common powerful security mechanisms.

However, further research and studies are required to resolve key challenges that prevents
building effective Grid-enabled PSEs. Whilst the Grid provides the building blocks and
enabling technologies, each application field presents its own unique and domain-specific
problems. In order to cater for application diversity, the Grid needs to encompass many
areas of research in computer science. Its development has been inspired by advance-
ments in distributed and parallel computing, software architecture, data management
and transmission, middleware, network protocols, and standards for cross-platform in-
teroperability. The number of challenges imposed through the rationalisation of these
technologies into global systems puts the Grid at the forefront of applied computer
science research.

1.3 Scope of Work

This thesis will study the challenges posed in the creation of effective SO Grid-enabled
PSEs. The focus will be placed on typical scenarios of engineering optimisation and
design search, and computational micromagnetics because these research fields will be
better able to solve their target problems with sophisticated PSEs.

Generally, Grid research can be separated into two categories: the design and develop-
ment of Grid technologies and the study of their application. The work presented in this
thesis serves both purposes. We will explore the application of SO technologies in the

Chapter 1 Introduction 8

field of science and engineering by analysing the domain’s requirements and attempt-
ing to provide SO based solutions for construction of sophisticated Grid-enabled PSEs.
This thesis will draw from the experiences learned from previous efforts on distributed
and parallel computing and study current philosophies prompting Grid research. This
thesis aims to identify key unresolved issues related to the exploitation of Grid technolo-
gies in engineering science and demonstrate the methodologies and work carried out for
their resolution. We validate our work by discussing the successful demonstration of its
concrete implementations in systems for micromagnetics, and engineering optimisation.

Micromagnetics contains various frontier problems which mean they have no analytical
solutions and cannot be solved using trivial computation methods. Typically, the study
of micromagnetics problems requires use of advanced modelling and material meshing
tools, access to data on materials properties, and large amounts of computation time
using parallel and distributed compute clusters for optimisation. Similarly, engineering
design search requires access and integration of many types of application tools for
modelling and simulation, database containing domain specific information and data,
and compute clusters for analysis and optimisations.

It is strongly desired for those who work in both research fields to bring together resources
to solve a particular problem and access tools for searching solution methodologies and
analysing results to further better study. These two fields represent the key challenges
for sophisticated PSE to provide interoperability and generic access for heterogeneous
resources and to enable seamless integration of resources and data.

1.3.1 Aims and Contributions of the Research contained in this Thesis

This chapter began with an introduction to the concept of the Grid and highlighted
its important features. This was followed by a discussion of how problems exist in
the fields of science and engineering thats research would benefit from PSEs which
enable better access and integration of computer resources. Key technological issues
in problem solving where established that where then matched to the features of the
Grid which offered potential solutions. From this we concluded that the Grid provides
technologies and concepts that form the basis for building environments that will reduce
technological burdens and aid inquiry. However, due to the depth and breadth of science
and engineering research and the full range of computing science that it demands, much
investigation still remains. We now enumerate the key aims of the research in this thesis.

1. Define the Grid, discuss the reason behind it and what came before it, specify
its aims and proposed features. This also includes studying existing distributed
technologies to identifying what good practices, architectures and technologies the
Grid should adopt or build upon and the poor practices that it must learn from.

Chapter 1 Introduction 9

2. Expose Web Service technology and its adoption of the concept of loose-coupling
as the current best approach to building Grids that will scale to the size of the
internet and provide features required to build effective distributed computing
environments.

3. Study the problem solving process, identifying its current challenges and solutions
provided by the Grid and remaining unresolved issues.

4. Show how Grid-enabled PSEs offer scientists and engineers with a means to com-
pose complex workflows and loosely couple together resources and tools that allow
them to focus on the problem at hand rather than intricacies of the underlying
technologies.

5. Find methodologies and rules of thumb for how services can and should be built and
aggregated in order to better provide a loosely-coupled environment for problem-
solving.

6. Give examples of how key components within the micromagnetic and engineering
design optimisation problem solving processes can be offered as services and high-
light the significant advantages of a Service-Oriented Architecture. Specifically,
show how new tools maybe be offered to scientists by building a native service
that offers an optimisation algorithm. In addition, show how to leverage, reuse
and add additional functionality to legacy technology of a computational cluster
by wrapping it as a service.

7. Finally, provide an example that brings together the knowledge that has been
gained by integrating the developed services into a Grid-enabled PSE that can aid
solve a real-world micromagnetics problem.

The work contained within this thesis focuses on improving the ability of scientists and
engineers to do their work by identifying computational challenges that face them and
finding the computer science solutions. Specifically this thesis focuses on improving
usability of existing software libraries and distributed resources, demonstrated through
micromagnetics and engineering design and optimisation. However, the breadth of work
required to thoroughly cover Grid-enabled PSE makes this thesis discoveries also ben-
eficial to Grid computing in general. This thesis is foremost a contribution to not to
Grid computing but also a good working example of a practical application of computer
science in science and engineering.

1.4 Thesis Structure

This thesis is structured as follows: Literature Review, Problem Statement and Solution
Methodologies, Description of Work and Results. The first two chapters concentrate on

Chapter 1 Introduction 10

studying the background and purpose of the SO Grid computing and the consequent
requirements placed on it by Grid-Enabled PSE. The following chapters represent the
work we have carried out to solve the challenges exposed, ending with its validation in
the Results.

1.4.1 Part 1: Literature Review

The literature review, chapter 2, explains the ideas behind SO Grid computing. This
chapter will introduce the Grid concepts and technologies that will be drawn upon in
the following chapters. It discusses the background, advantages and unique features of
Grid computing, and goes on to discuss the consequent requirements placed on enabling
technologies. Specifically, analysis will begin with a review of the key technologies
and concepts that have been applied to the Web and traditional distributed computing
systems. The literature review goes on to investigate Web Service technologies and
explains why SO fulfils the key requirements of Grid computing. In addition, we discuss
important alternate SO approaches.

1.4.2 Part 2: Problem Statement and Solution Methodologies

The problem statement, chapter 3, analyses the specific challenges and requirements
placed on SO technologies by Grid-PSEs. We will look at current bespoke and legacy
applications and systems used for modelling, simulation and analysis. In particular, we
will examine the field of computational micromagnetics, and engineering optimisation
and design search. We extract from these the Grid requirements demanded by sophisti-
cated PSEs in addition to computation, such as collaboration and seamless integration
of different types of tools and heterogeneous resources to yield improved operational re-
sults. From these we will identify specific important challenges, rationalising our choice
of these for the basis of our work and subsequent thesis discussion. The chapter will
conclude with solution methodologies that will facilitate the simple and seamless inte-
gration of new and legacy computer resources which, in addition, will enable previously
impossible PSE features, such as knowledge capture, workflows and advanced security.
All work presented in the following chapters has been carried out in the context of
Geodise and computational micromagnetics.

1.4.3 Part 3: Description of Work and Results

The last chapter (6) explores different aspects of SO Grid-enabled PSE: the specific
computer resources typically required for engineering and science work, and their shar-
ing, integration and collaboration. Chapters 5 and 6 respectively look at the application

Chapter 1 Introduction 11

tools and computational components of PSE; two key elements utilised by both compu-
tational micromagnetics, and engineering and design search, specifically in the scenarios
of optimisation and design of experiment.

Work on transforming numerical optimisation algorithms into Web Services demon-
strates the effects of SO in simplifying collaboration and serves as a reference for con-
struction of different types of services for design optimisation. The proceeding chapter
describes work on virtualising and sharing computer resources in a SO manner for Grid
computing. The challenges of state management, legacy system integration and security
will be explored in this chapter through the discussion of the building of a Computational
Web Service. Its design and implementation is illustrated by the successful deployment
and integration of the Condor High Throughput Computing system.

In the final work related chapter (7) of this thesis, we describe message passing technolo-
gies and concepts for the access and integration of computer resources for computational
micromagnetic processes. We discuss the building of a Grid-enabled PSE that adopts
an extremely loosely-coupled style to enable a level of interaction amongst resources in
a way not previously seen in Grid computing. The micromagnetics PSE demonstrates
sophisticated workflow execution possibilities and seamlessly integrates computational
and application services using a document-orientated message exchange paradigm. The
new Grid technology of WS-Addressing and the capabilities of SOAP message exchange
patterns are exploited to route messages through services to implement workflows and to
offer the possibility of knowledge capture and reuse. SO methodologies discussed in the
previous chapters are drawn upon to construct new services suitable for micromagnetics.
The design and approach of the Grid-enabled system is exemplified by the successful
integration of micromagnetics tools with the Condor system, and the production of
real-world results that otherwise would have been too difficult to achieve.

Chapter 2

Literature Review of Distributed

Computing

Service-Oriented Architectures (SOAs) express a perspective of software architecture
that defines the use of loosely-coupled, highly interoperable services to support the
requirements of software users. The Grid is characterised by its attempt to provide
dynamic and coordinated large-scale resource sharing through service-oriented (SO) Web
Service technologies. This chapter rationalises the usage of SOA by showing that its
promotion of reuse and interconnection of resources facilitates cost-effective and quick
adaption of distributed computing environments to changing users requirements. This
is in contrast to the more expensive and time-consuming reinvention often required by
traditional distributed computing architectures.

SOA is an evolution of the Component Based Architecture, Interface Based Design
(Object-Orientation) and Distributed Systems of the 1990s, such as DCOM, CORBA,
J2EE and the Internet in general. It is not a revolution because it attempts to capture
and build upon the best practices of the architectures that came before it. In addition,
the continued rapid growth of Internet has initiated much distributed computing research
that aims to improve the ability to exploit and aggregate the vast amount of computer
resources connected to the Internet. Therefore, this chapter begins with a review of the
most successful technologies and best practices in distributed computing as it provides
valuable information for Grid computing research.

Whilst distributed computing research has produced successes and discovered many best
practices, typically these exist only in specific areas or are tailored to resolve only partic-
ular challenges. The grand ideological goals of Grid computing will require the drawing
upon and bringing together of almost all areas of distributed computing which itself will
likely require changes or development of new approaches and technologies in order to
offer a workable environment. The second section of this chapter will look closely at the
idea of SOA and discuss key challenges including: interoperability, security and reuse,

12

Chapter 2 Literature Review of Distributed Computing 13

and will compare the Simple Object Access Protocol (SOAP) and Representational State
Transfer (REST) based messaging style implementations. In addition, it will study Web
Services which provide a new technology built on SO principles that has been largely
developed and utilised for Grid computing.

Most definitions of SOA identify the use of Web Services using either SOAP or REST
based messaging style in its implementation. However, a SOA distributed environment
may be built using any service-based technology. The last section of this thesis looks at
these alternate SO technologies.

2.1 What is Distributed Computing?

Distributed computing is the study of the coordinated usage of often physically dis-
tributed computers. It refers to the achievement of desired computational functionality
and results through the coordination and collaboration of components of distributed,
networked computers using only message passing. Software of a distributed comput-
ing system can be thought of as the high-level glue that provides the links between
remotely distributed computing resources of which its components unify and coordinate
the remote computer resources into a whole system.

Distributed computing systems serve a variety of purposes from providing low-level net-
work infrastructures to resource sharing, and high-level application services. Andrew S.
Tanenbaum [11] states that, “Distributed systems need radically different software than
centralised systems do”. The software, network topologies, and resource types contained
within distributed system vary greatly depending on their purpose. Consequently, there
are many different types of distributed computing systems and many challenges to over-
come in successfully designing one.

Distributed computing systems offer greater performance, larger capabilities, and more
scope for resource sharing than would be possible with individual computers. They can
be roughly categorised into two forms: clustered systems usually consisting of a group
of computers that share the same software and work closely together, often in parallel,
so that they appear as a single computer; and secondly, distributed systems made up of
stand-alone computers that provide distinct, independent services.

Distributed systems have a broader range of usages including organisational functions
and information distribution. Unlike clustered systems, computer resources within a
distributed system often have no links and are generally independent of each other.
The Grid is unique in computing in that it aspires to be the computing system that
incorporate all other forms of distributed computing systems. It aims to encompass
both distributed and clustered systems, offering simple and transparent access to both.

Chapter 2 Literature Review of Distributed Computing 14

2.2 Key Features required in Distributed Computing Sys-

tems

Distributed systems aim to connect users and computer resources in a transparent, open,
and scalable way, which we shall now look at in turn. Ideally, this organisation should be
considerably more fault tolerant and more powerful than many combinations of stand-
alone computer systems, such as workstations, and PCs. The Grid must embrace these
characteristics in order for it to achieve generic accessibility and resources sharing on a
large-scale.

2.2.1 Transparency

Transparency is the ability of a system to hide its distributed nature from its users so
that it appears and functions as a centralised system. Transparency has many forms:

Access transparency: Regardless of how resource access and representation has to be
performed on each individual computing entity, the users of a distributed system
should always access resources in a single, uniform way.

Location transparency: Users of a distributed system should not have to be aware
of where a resource is physically located.

Migration transparency: Users should not be aware of whether a resource or com-
puting entity possesses the ability to move to a different physical or logical location.

Relocation transparency: Should a resource move while in use, this should not be
noticeable to the end user.

Replication transparency If a resource is replicated among several locations, it should
appear to the user as a single resource.

Concurrency transparency: While multiple users may compete for and share a single
resource, this should not be apparent to any of them.

Failure transparency: Always try to hide any failure and recovery of computing en-
tities and resources.

Persistence transparency: Whether a resource lies in volatile or permanent memory
should make no difference to the user.

Transparent access is an especially important feature desired of the Grid because it
promotes usage by reducing the demands on the users. Transparency enables users to
access resources as if they are local to their computer by hiding its distributed nature.

Chapter 2 Literature Review of Distributed Computing 15

This simplifies the resource’s integration into applications and allows users to concen-
trate on using its functionality. In addition, the Grid is envisioned to contain resources
from many different providers that may contain different underlying implementations.
Therefore, it is desirable to hide this to facilitate interchange of resources from different
providers.

However, the degree to which transparency could or should be achieved may vary widely.
Not every system can or should hide everything from its users. In Grid computing, all
of these properties will be required but not necessarily for every purpose or for every
system built from Grid technologies. For instance, users may actually need to know
where a resource is located because as distances between computer resources increase,
communication latencies worsen and the cost of network transport of data increases. For
user-driven applications such as, Computer Aided Design, which typically requires access
to shared design databases and powerful computation resources through graphical user
interfaces, high latency can seriously decrease system responsiveness and consequently
decrease users’ productivity. In addition, users of resources for critical applications
may wish to know the type of persistence that a resource uses so that they can target
machines that employs robust forms of persistence to reduce the risk of losing data.

2.2.2 Openness

Openness is the property of distributed systems that measures the extensibility and
scalability of its standardised interfaces. A system that easily allows connection of more
computing resources and features has an advantage over an absolutely closed and self-
contained system. Typically, this is achieved by capturing the syntax of the services
offered in a system through an Interface Definition Languages (IDL). Consequently,
open distributed systems are required to meet the following challenges:

Monotonicity: Once something is published in an open distributed system, it cannot
be taken back.

Pluralism: Different subsystems of an open distributed system include heterogeneous,
overlapping and possibly conflicting information. Ideally, there is no central arbiter
of truth in open distributed systems.

Unbounded nondeterminism: Asynchronously, different subsystems can come up
and go down and communication links can come in and go out between subsystems
of an open distributed system. Therefore, the time that it will take to complete
an operation cannot be bounded in advance.

Openness is a characteristic necessary to the ability of a system to grow in scale, func-
tionality, and capability. As will be discussed in section 2.4.1, the Internet’s foremost

Chapter 2 Literature Review of Distributed Computing 16

application, the World Wide Web (WWW), is an extremely open systems by design
which has consequently enabled it to scale to a world-wide system, as its name suggest.
The Internet itself is perhaps the most open distributed system of all and key to this
ability was the standardisation of simple, application-neutral messaging and low-level
data transmission formats and protocols. In addition, by design the Internet’s structure,
largely built and extended from ARPANET (a computer network designed to survive a
nuclear attack), has no centralised resources or single points of failure.

2.2.3 Scalability

A scalable system is one that can easily be altered to accommodate changes in the
number of users, resources, and computing entities attached to it. Scalability is a highly
desirable feature in distributed systems. Scalability can be measured in three different
dimensions:

Load scalability: The quality of a distributed system to easily expand and contract
its resource pool to accommodate heavier or lighter loads.

Geographic scalability: The quality of a distributed system to remain useful and
usable regardless of distances between users or resources.

Administrative scalability: The quality of a distributed system to remain easily
reusable and maintainable regardless of how many different organisations share
it.

Scaling a system vertically, or scaling up, means to add resources to a single node,
such as upgrading a computer with a faster CPU or larger hard drive, whilst horizontal
scaling, or scaling out, means to add more resources to the distributed system, such as
adding extra nodes to a computer cluster. Vertical scaling is often more expensive than
horizontally scaling because the cost of buying, fitting and tuning the upgraded resources
is typically close to the cost of just adding an additional node. The performance returns
from vertical scaling are often higher than from horizontal scaling because the ability of
a system to scale vertically is localised to the node itself where as horizontal scaling is
restricted by the ability of the whole system [12, 13, 14]. Nonetheless, improvements in
individual computer performance can only go so far and are constrained by the ability
of companies to produce faster or better components. Scaling out, whilst the returns
are not as good, remains the only practical means for a system to easily expand its
capacity to a size demanded by today’s enterprise and internet wide applications. In
addition, scaling out a distributed system, especially when nodes are loosely-coupled
(see section 2.5.2.3), can help with overall system reliability by providing additional
redundant resources.

Chapter 2 Literature Review of Distributed Computing 17

2.3 Architectural Patterns

It is good practice in any software endeavour to adopt an architectural pattern that
eases the maintenance and reuse of functionality. Without this, as software grows in
size and purpose it quickly becomes very brittle (i.e difficult to change and fix). The
principle of good architecture becomes especially important in a distributed system
where functional components may exist in different localities consequently amplifying
the challenge. Brittle systems do not scale and are hence not capable of reaching an
enterprise-level. Component- and Interface-based architectures, which we shall now look
at in turn, are common architectures employed in distributed computing which is being
built upon by SOA.

2.3.1 Component-based Architecture

In software design, a component-based architecture divides the functionality of the whole
into smaller functions, each encapsulated as a independent component. A distributed
system may be thought of as an extension of component-based architecture where com-
ponents may exist in different physical locations. Figure 2.1 shows a simple e-Mail
distributed system which employs a component-based architecture. Harry’s and Sally’s
clients, a Domain Name Service (DNS), and e-Mail servers are all interacting components
of the system but are often located in different physical locations.

The main advantage of a component-based architecture is that it facilitates reusability
and repurposing of components and that it makes maintenance easier; all essential fea-
tures of a SOA. If these components are distributed it qualifies it as a SOA. The system,
shown in figure 2.1, is also an example of a SOA because the components are distributed,
loosely-coupled and provide interoperable, independent services. Component reusability
and repurposing are primary business drivers for adopting systems with SOAs.

2.3.2 Interface-based Object-Oriented Architectures

Interface-based Architectures extends an object-oriented programming system by allow-
ing components known as objects to be distributed across a heterogeneous network, so
that each of these distributed object components interoperate as a unified whole. These
objects may be distributed on different computers throughout a network, living outside
of an application, and yet appear as though they were local to an application.

A remote procedure call (RPC) is a protocol that allows a computer program running
on one host to cause code to be executed on another host without the programmer

Chapter 2 Literature Review of Distributed Computing 18Harry Computer
E-mail Server

Laptop Sally
DNS Server

E-mail Server
Web AccessServerWireless RouterLink tonetworkRequest servicesends message Lookup address Request servicegets messages

Web e-mailclient pollsSends e-mail
Find recipient’se-mail server anddeliver messageInternet

Figure 2.1: A simple example of a distributed, component-based architecture of e-
Mail.

Chapter 2 Literature Review of Distributed Computing 19

Distributed Object
Technology

CORBA DCOM Java RMI

Interface Definition CORBA - IDL DCOM - IDL Java Interface Def-
inition

Remoting Protocol Internet Inter-
ORB Protocol
(IIOP)

Object Remote
Procedure Call
(ORPC)

Java Remote
Method Protocol
(JRMP)

Platform Support Any platform with
CORBA ORB im-
plementation

Any platform with
COM Service im-
plementation

Any platform with
Java Virtual ma-
chine implementa-
tion

Object Name-
Implementation
Mapping

System (Windows)
Registry

Implementation
Repository

RMIRegistry

Object Implementa-
tion Locating

Service Control
Manager

Object Request
Broker

Java Virtual Ma-
chine

Table 2.1: Comparison of Distributed Object Technology features.

needing to explicitly code for this. When the code in question is written using object-
oriented principles, RPC is sometimes referred to as remote invocation or remote method
invocation.

RPC is an easy and popular paradigm for implementing the client-server model of dis-
tributed computing. An RPC is initiated by the caller (client) sending a request message
to a remote system (the server) to execute a certain procedure using arguments supplied.
A result message is returned to the caller. There are many variations and subtleties in
various implementations, resulting in a variety of different (often incompatible) RPC
protocols.

Enterprise computing systems make extensive usage of distributed object technology
such as, Distributed Component Object Model (DCOM) [15], Java Remote Method Invo-
cation (Java RMI) [16] and Common Object Request Broker Architecture (CORBA) [17].
Table 2.1 shows a comparison of the various technologies used by each.

Distributed object technology works well in closed environments and on a small scale.
However, poor interoperability caused by a lack of common standards, specific platform
targets, and programming environments amongst their forms prevents interaction and
collaboration between enterprises systems enabled with different types of distributed
object technology.

Adoption of common standards such as, XML and SOAP (covered in section 2.5.4), may
offer a bridge between enterprise systems with different distributed object technologies.
However, little may be done to overcome the inherent poor scalability of Interface-based
Architectures. These demand understanding of an objects interface from all interacting
sides requiring high levels of coordination across the entire system and close monitoring
of each component. Consequently, a change to the interface of an object necessitates
modification and redeployment of all of its interacting objects. Whilst manageable inside

Chapter 2 Literature Review of Distributed Computing 20EventControllerView ViewModel
Passed toChangesUpdateswhen datachanges Getdata

Application
Database

FirewallPerson NetworkedParticipant
Directories <XML/> Documents

Presentation Logic(View)Business Logic(Controller)Servers Domain Logic(Model)
Events

Figure 2.2: Model-View-Controller (MVC) architectural pattern used within enter-
prise computing. Block diagram shows the communication between the layers started

by an external event such as, a stock keeper requesting or updating an inventory.

a closed environment with total control and monitoring of system components, the scale
of the Internet and possible anarchy caused by participants makes close administration
next to impossible. Thus, distributed object technologies do not provide the adaptability,
scalability or openness demanded by Grid computing.

2.3.3 Model-View-Controller Architectures

Enterprise computing has traditionally employed the Model-View-Controller (MVC) ar-
chitecture [18], shown in figure 2.2, in order to be able to reach the scale and sophisti-
cation demanded by today’s business processes.

MVC is such an architecture that, in addition, adopts a common layered pattern that
characterises business process need for presentation (view), domain-specific representa-
tion (model), and controlled access of operations (controller) on information.

Model: The domain-specific representation of the information on which the operations
of the business process occur. Domain logic implemented in this layer adds mean-
ing to raw information, such as working out the totals, taxes and shipping charges
for online-applications shopping cart items.

View: This layer renders the model into a form suitable for interaction by clients of
the system. Which typically is a user interface however it may be for any type of
participant. MVC is often seen in web applications, where the view is the HTML
page and the code which gathers dynamic data for the page.

Chapter 2 Literature Review of Distributed Computing 21

Controller: Responds to events, typically user actions, and invokes changes on the
model and perhaps the view. Many applications use a persistent storage mecha-
nism, such as a database, to store data however MVC does not specifically men-
tion this data access layer because it is understood to be hidden (i.e encapsulated)
within the Model.

Decoupling of business processes into layers allows each to be changed irrespective of the
implementation of the other. For instance, a typical implementation of a web application
will rely on the view component to layout HTML in response to a user’s request. If,
however, an XML response is required, only the view component need be change or
appended (with an XML serialiser) while the model and controller remain the same.

Although MVC has been implemented by vendors using a host of different distributed
object-oriented technologies (see section 2.3.2), control flow generally works as follows:

1. The client interacts with the interface in some way and generates an event, such
as a person adding an item to their online shopping trolley by pressing a button.

2. The controller processes the input event, possible through a handler or callback
registered to a method exposed in a user interface.

3. The controller accesses the model, updating it according to the client’s action (e.g.
the item is added to the person’s shopping trolley). To simplify implementation
of more complex operations, controllers are often structured using a command
pattern that encapsulate actions.

4. The view uses the model to generate a interface representation appropriate to the
client (e.g. a web page listing the shopping trolley’s contents). Whilst the view
layer gets the data from the model, the model should have no direct knowledge of
the view.

5. The controller waits for further events from the interface presented by the view
layer, restarting the whole process.

MVC introduces the idea of a controller object in between the view (the GUI class) and
the model (the object) to communicate between the other two objects. In addition the
actual implementation of the controller object can vary quite a bit, but the idea of an
object to ’transform’ events to changes in data and execution of methods is the essence
of this pattern.

2.3.4 Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) is an architecture that defines the use of distributed
components known as services to support the requirements of software users. Resources

Chapter 2 Literature Review of Distributed Computing 22

are made available to other participants in a distributed system as independent ser-
vices that the participants access in a standardised way. Unlike traditional component-
and interface-based architectures, SOAs comprise loosely coupled, highly interoperable
components. Services interoperate based on formal contracts which are independent
from the underlying platform and programming language such as, Web Services De-
scription Language see section 2.6.1.1. The interface definition encapsulates the vendor
and language-specific implementation. A SOA is independent of development technology
(such as Java and .NET). The software components become very reusable because the
interface is standards-compliant and is independent from the underlying implementation
of the service logic. So, for example, a C# (C Sharp) service could be used by a Java
application and vice versa.

SOA can support integration and consolidation activities within complex enterprise
systems, but SOA does not specify or provide a methodology or framework for doc-
umenting capabilities or services. High-level languages such as the Business Process
and Execution Language for Web Services (BPEL4WS) [19, 20] and specifications such
as WS-Coordination [21] extend the service concept further by providing a method of
defining and supporting orchestration of fine grained services into coarser grained busi-
ness services, which in turn can be incorporated into workflows and business processes
implemented in composite applications or portals.

One area where SOA has been gaining ground is in its power as a mechanism for defining
business services and operating models and thus provide a structure for IT to deliver
against actual business requirements and adapt in a similar way to the business. The
purpose of using SOA as a business mapping tool is to ensure that the services cre-
ated properly represent the business view and are not just what technologists think the
business services should be. Within this area, the first SOA method was announced in
Service-oriented Modeling (sic) and Architecture (SOMA) [22]. Since then, efforts have
been made to move towards greater standardisation, particularly within the OASIS
standards group and specifically the SOA Adoption Blueprints group.

Many e-Commerce companies offer these through web interfaces such as, Amazon and
eBay, however recently they have also begun to offer their services through Web Service
interfaces. Technologies such as, IBM Web Sphere and Microsoft ASP.Net provide the
application platforms to present the interfaces to users, define and control business logics,
and to model and persist data.

Chapter 2 Literature Review of Distributed Computing 23

2.4 Successful Distributed Computing Systems

2.4.1 Hypermedia Resource Sharing on the World Wide Web

The most well known distributed computing system is the World Wide Web (WWW). It
provides “a shared information space through which people and machines could communi-
cate” [23]. It has become the world’s biggest and most influential technological invention
since the printing press. The WWW is a globally reaching systems enabling sharing of
information and data amongst tens of millions of users and heterogeneous computing
systems across institutional and organisational boundaries, and huge distances.

The WWW success can be ascribed to its ability to share multimedia information, such
as pictures, text, and videos, through simply hypermedia means regardless of geographic
location or type of computer system. The WWW’s extreme scalability and openness
have brought about new opportunities for novel applications. Not only should the Grid
build upon the infrastructure of the Internet but also in addition, it must extend and
adopt key approaches and technologies that have made the WWW successful. Important
and influential companies and organisations such as, Microsoft and IBM are applying
the approaches of Internet to Grid computing [24].

For the WWW to offer an expansively wide information space, it must handle a forever
changing, heterogeneous array of information sources, data formats, character encod-
ing schemes, storage mechanisms, and network topologies and infrastructures. On top
of this, the WWW intended role as an Internet-scale distributed information system,
requires it to provide independent deployment of system components in a disordered
system. The inventor of the WWW, Tim Berners-Lee1, itemises the following design
principles for its creation, in [23]:

• An information system must be able to record random associations between any
arbitrary objects, unlike most database systems;

• If two sets of users started to use the system independently, to make a link from
one system to another should be an incremental effort, not requiring unscalable
operations such as the merging of link databases.

• Any attempt to constrain users as a whole to the use of particular languages or
operating systems was always doomed to failure;

• Information must be available on all platforms, including future ones;

• Any attempt to constrain the mental model users have of data into a given pattern
was always doomed to failure;

1http://www.w3.org/People/Berners-Lee/Overview.html

Chapter 2 Literature Review of Distributed Computing 24

• If information within an organisation is to be accurately represented in the system,
entering or correcting it must be trivial for the person directly knowledgeable.

It can be argued that it is these principles that have made the WWW suitable, ex-
tensible, adaptable, and scalable. However, the combination of common standards and
technologies with simply well defined modes of operation, late bound resource refer-
ences, and easily transferable information representations has made the WWW a global
system. We will now look at the key technologies behind the WWW.

2.4.1.1 Universal Resource Identifiers

The Universal Resource Identifier (URI) [25] provides a simple yet comprehensive, uni-
form, and consistent naming and addressing scheme for resources. It is the most impor-
tant technology in not only hypermedia resource sharing but also, Grid and distributed
computing in general. Any designatable resource may be mapped uniquely into the URI
address space, such as computers, web pages, files, telephone numbers, and email ad-
dresses. URI have several schemes and variations in their common syntax components,
examples of which are given below:

ftp://mail.soton.ac.uk/~mjf/thesis.pdf

http://www.soton.ac.uk/

ldap://[2001:db8::7]/c=GB?objectClass?one

mailto:mjf@soton.ac.uk

news:comp.infosystems.www.servers.unix

tel:+44-1234-111-496

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

URI can be further classified as a resource locator, name, or both. Uniform Resource
Locator (URL) refers to the subset of URIs that, in addition to identifying a resource,
provides a means of locating the resource by describing its primary access mechanism.
Within the WWW, URIs are generally used as resource locators or Universal Resource
Locators (URLs). URLs have the format shown below:

http://www.bbc.co.uk/news/today.html

Chapter 2 Literature Review of Distributed Computing 25

URLS are particularly useful as a means to uniquely identify or reference information,
web pages, or files without need to understand the content. Web pages on the WWW
use hyperlinked URLs to reference other web pages or information in any other web
page regardless of its content. The Uniform Resource Name (URN) refer to both URIs
under the “urn” scheme [RFC2141], which are required to remain globally unique and
persistent even when the resource ceases to exist or becomes unavailable, and to any
other URI with the properties of a name.

Importantly, URIs provides late binding and opaqueness by decoupling resources’ iden-
tification from their understanding. A URI may be passed between entities without
need to access the resource itself. Indeed, a URI may be printed on to paper, sent by
postal mail, and scanned back into a computer. URIs’ abilities have been proven on an
Internet scale, with its application in the WWW, and therefore must not be ignored as
a suitable technology for Grid computing.

2.4.1.2 The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) [26] is a technology designed for conveyance
of information formatted in the Hypertext Mark-up Language (HTML) [27]. Its original
purpose was to provide a means to publish and receive Web pages on the WWW. HTTP’s
development has been coordinated by the World Wide Web Consortium and working
groups of the Internet Engineering Task Force, culminating in the publication of a series
of RFCs, most notably [RFC2616], which defines HTTP/1.1, the version of HTTP in
common use today.

HTTP is a request/response protocol between clients and servers. The originating client,
such as a web browser, spider, or other end-user tool, is referred to as the user agent.
The destination server, which stores or creates resources such as HTML files and images,
is called the origin server. In between the user agent and origin server may be several
intermediaries, such as proxies, gateways, and tunnels.

A HTTP client initiates a request, example shown below, by establishing a Transmis-
sion Control Protocol (TCP) connection to a particular port on a remote host (port
80 by default). A HTTP server listening on that port waits for the client to send a
Request Message. Upon receiving the request, the server sends back a status line, such
as “HTTP/1.1 200 OK”, and a message of its own, the body of which is perhaps the
requested file, an error message, or some other information. Resources to be accessed by
HTTP are identified using Uniform Resource Identifiers (URIs) (or, more specifically,
URLs) using the http (or https) URI schemes.

GET http://www.futureflight.org/index.html HTTP/1.1

Accept-Language: en

Chapter 2 Literature Review of Distributed Computing 26

In the first line in the above example HTTP request, the client has requested the
index.html web page from the web site identified as www.futureflight.org using the
HTTP/1.1 transfer protocol. The second line of the request is an optional header di-
rective to inform the Web server that the client prefers that the web page be written in
the English language.

HTTP has a simply interface with a well defined set of eight methods:

GET: Requests a representation of the specified resource. By far the most common
method used on the Web today.

HEAD: Asks for the response identical to the one that would correspond to a GET re-
quest, but without the response body. This is useful for retrieving meta-information
written in response headers, without having to transport the entire content.

POST: Submits user data (e.g. from a HTML form) to the identified resource. The
data is included in the body of the request.

PUT: Uploads a representation of the specified resource.

DELETE: Deletes the specified resource (rarely implemented).

TRACE: Echoes back the received request, so that a client can see what intermediate
servers are adding or changing in the request.

OPTIONS: Returns the HTTP methods that the server supports. This can be used
to check the functionality of a web server.

CONNECT: For use with a proxy that can change to being an SSL tunnel.

Methods GET, HEAD, PUT and DELETE are defined to be idempotent, meaning that
multiple identical requests should have the same effect as a single request. Also, the
methods OPTIONS and TRACE should not have side effects, and so are inherently
idempotent.

The usefulness of the WWW has gained HTTP/HTML wide support on almost every
computing platform and even extends to devices such as, mobile phones, hand-held
devices and Internet-enabled consumer devices. However, it has been argued by [26] and
proponents of REST that the WWW has scaled because of a few key design principles
(see section 2.4.1.3).

In addition to the above features, HTTP also allows close control of its actions on
a Web Server and access via network security systems such as, firewalls, and provides
support for network facilities such as, caching proxy servers that improve communication
performance and reduce network load.

Chapter 2 Literature Review of Distributed Computing 27

However, HTTP employs a request-response mechanism originally designed for retrieval
of short HTML messages that is unsuitable for applications that demand long-lived
connection, high-bandwidth transfers, or asynchronous operation. Whilst, HTTP may
be adapted it would require changes to fundamental network infrastructure, such as
routers and proxies, to support these added capabilities.

2.4.1.3 REST-based Architectural Style

The success of the WWW is best explained by Representational State Transfer (REST) [28,
29]. It is an architectural style, which attempts to describe the software architecture of
the Web and explain the success of the Web as a hypermedia system on the Internet.

REST emphasises scalability of component interactions, generality of interfaces, inde-
pendent deployment of components, and intermediary components to reduce interaction
latency, enforce security, and encapsulate legacy systems. For works on distributed com-
puting systems with similar environment to the Web, REST can be a very good reference
for creating and evaluating architectures and principle technologies.

Whist REST originally referred to a collection of architectural principles, it is now used
in a looser sense to describe any simple web-based interface that uses XML and HTTP
without the extra abstractions of Message Exchange Pattern (MEP)-based approaches
like the web services SOAP protocol. Strictly speaking, it is possible (though not com-
mon) to design web service systems in accordance with Fielding’s REST architectural
style, and it is possible to design simple XML+HTTP interfaces in accordance with
the RPC style, so these two different uses of REST cause some confusion in technical
discussions.

REST’s proponents argue that the web has enjoyed the scalability and growth that it
has as a result of a few key design principles:

• A stateless anonymous client/server protocol: each HTTP message contains all
the information necessary to understand the request. HTTP was designed to ease
software implementation, simplify operation, and expedite processing by removing
the need for continuing communication between user agent and origin server. This
means that immediately after the origin server has initiated a response to the user
agent’s request the server need maintain no record of what the request was or who
sent it. Consequently, as each HTTP request is discrete, the user agent must send
within a request all information necessary for the origin server to process and send
back a response. As a result, neither the client nor the server needs to remember
any communication-state between messages. In practice, however, many logic-
driven HTTP-based applications use cookies and other devices to maintain session
state.

Chapter 2 Literature Review of Distributed Computing 28

• A simple well-defined interface: HTTP itself defines a small set of methods, the
most important of which are POST, GET, PUT and DELETE. People often com-
pare these with the Create, Read, Update, and Delete (CRUD) operations required
for data persistence, though POST does not fit cleanly into the comparison. HTTP
interface has proven to be extremely adapt and flexible on a global-scale. In addi-
tion, to enabling access and sharing of a forever changing and increasing quantity
of information and data, it provides software components of a distributed system
with a means to interoperate through a ready-made contract whilst providing a
comprehensive set of methods that act on all information allowing building of
complex business processes.

• A universal syntax for resource-identification: URI see section 2.4.1.1.

• The use of hypermedia both for application information and application state-
transitions: representations in a REST system are typically HTML or XML files
that contain both information and links to other resources; consequently, it is often
possible to navigate from one REST resource to many others, simply by following
links, without requiring the use of registries or other additional infrastructure.

An important concept in REST is the existence of resources (in this case information
or data), each of which can be referred to using a URI. Control of resources needs
clients to communicate via the HTTP interface to exchange representations of these
resources. Any number of intermediaries such as caches, tunnels can act between the
request however a constraint of REST is that these connectors do not see further than
their own request. In REST terms this is referred to as “layering” and is a common
principle in many other parts of information and networking architecture. Consequently,
an application can interact with a resource by knowing only two things: the resource’s
identifier, and the action upon the resource however it does not need to be concerned
with anything else between it and the server actually holding the information.

A REST web application requires a different design approach than an RPC application.
In RPC, the emphasis is on the diversity of protocol operations, or verbs; for example,
an RPC application might define operations such as the following:

getUser()

addUser()

removeUser()

updateUser()

getLocation()

addLocation()

removeLocation()

updateLocation()

listUsers()

Chapter 2 Literature Review of Distributed Computing 29

1 <?xml version=’ 1 .0 ’ ?>
2 <user>
3 <name>Matthew Fairman</name>
4 <gender>male</ gender>
5 <l o c a t i o n h r e f=” ht tp : //www. bbc . co . uk/ southeas t / soton ”>
6 Southampton , Hampshire , UK, Earth , Sol , Milky Way
7 </ l o c a t i o n>
8 </ user>

Listing 2.1: Example record for a User.

listLocations()

findLocation()

findUser()

With REST, on the other hand, the emphasis is on the diversity of resources, or nouns;
for example, a REST application might define the following two resource types:

User {}

Location {}

Each resource would have its own location, such as:

http://www.bbc.co.uk/southeast/soton.

Clients work with those resources through the standard HTTP operations, such as GET
to download a copy of the resource, PUT to upload a changed copy, or DELETE to
remove all representations of that resource. POST is generally used for actions with
side-effects, such as placing a purchase order, or adding some data to a collection.

For example, the record for a User might look like this:

To update the user’s location, a REST client could first download the above XML record
using HTTP GET. The client would then modify the file to change the location, then
upload it again using HTTP PUT.

Note, however, that the HTTP verbs do not provide any standard method for resource
discovery. Instead, REST data applications work around the problem by treating a
collection or set of search results as another type of resource, requiring application
designers to know additional URLs or URL patterns for listing or searching each type
of resource.

For example, an HTTP GET request on the URL http://www.bbc.co.uk/southeast/soton
might return a list of links to an XML file for each location in Southampton whilst
a HTTP GET request for the URL http://www.example.org/users?surname=Fairman
might return a list of links to all users with the surname “Fairman”.

Chapter 2 Literature Review of Distributed Computing 30

REST provides some guidance on how to perform this kind of action as part of its
“hypermedia as the engine of application state” constraint, which suggests the use of a
forms language (such as HTML forms) for specifying parameterised queries.

2.4.2 Enterprise Computing

Enterprise computing is the term used to refer to the large-scale employment and col-
laboration of distributed computing resources for high-level applications. Enterprise
computing is not limited to business and commerce applications; the term enterprise
refers to the scale of the industrious activity.

Enterprise-wide distributed computing systems are typically found in organisations such
as, universities, businesses and government institutions, with large numbers of staff or
customers who are often geographically distributed. These systems play an essential role
in providing common communication, data and information management. In addition,
many enterprise systems often provide front-line services to customers and business
partners such as order processing, order tracking and delivery, and stock control and
monitoring. These systems will consist of a variety of distributed resources including,
database, clusters, web servers, backup systems, and application servers.

Early enterprise computing system extended only as far as their organisations network
boundaries, necessitating only simple architectures and operational modes. However, it
made business sense to extend enterprise systems to integrate with the systems of their
customers and business partners. However, realistic implementation of large-scale cross-
institution enterprises only became possible with the rise of the Internet and middleware
technologies that allowed support for multiple-participants and information sharing op-
erations. In addition, common standards for communication amongst systems and data
modelling were essential prerequisites for the integration of enterprise systems across
organisational boundaries.

2.4.3 Clustering

The compute issue has become increasingly important, especially in the fields of science
and engineering. Traditional single processor computers often cannot provide the calcu-
lating power nor do they possess the capacity for attached memory which is demanded
by computationally challenging problems. Clustering offers a solution whereby multiple
distributed computers or processors are brought together to work on a problem.

Typically, scientists and engineers demand computing power for tasks, such as simu-
lation, modelling and analysis. However, the most demanding problems types, often
referred to as “Mega-problems” or “Grand Challenge Applications”, typically process
huge amounts of data or perform very time-consuming mathematical calculation; or

Chapter 2 Literature Review of Distributed Computing 31EthernetWorkstation
Workstation Workstation

WorkstationWorkstation
Figure 2.3: High Throughput Computing (HTC) network diagram.

both. For example, detectors at the Large Hadron Collider at CERN2, are currently
producing 15 petabytes of data per year [30, 31]. It is estimated that even rudimen-
tary analysis of this data will probably require the sustained application of some twenty
tera-flops (trillion floating-point operations per second) of computing power. However,
only the fastest supercomputer in the world3, the Earth Simulator Centre [32], at full
capacity could process this much information. Consequently, this is the reason why
CERN is leading the development of Grid computing, which aims to link hundreds of
major computing centres around the world. It is clear that more sophisticated analyses
will need orders of magnitude more power. Other examples of Mega-problems include
crystallographies [33], microtomographic structural problems [34], and virtual materials
and processing [35].

The clustering paradigm revolves around the principle of division of labour where pro-
cessors work on different elements of a problem that requires implementation of parallel
algorithms. This technique, first explored in the early 1980s, is now standard practice
in supercomputer centres, research labs and industry.

Figure 2.3 shows a typical computational clustering system for High Throughput Com-
puting (HTC). It contains the computers that perform the computation that are linked
together physically using networking, such as Ethernet, to enable low-level intercom-
munication. On top of this, each computer runs clustering software that couples them
into a unified system. This software would typically provide management, control and
utilisation of the cluster’s resources. The role of the cluster determines the type, archi-
tecture and level of interaction among systems’ hardware and software components and
technologies.

Other notable forms of clustering environment are High Performance Computing (HPC)
and High Availability Computing. HPC environments aim to solve individual compute
tasks as quickly as possible. They perform concurrent parallel computation across an
array of processors for a large compute task. Unlike HTC tasks, HPC tasks have few or
no independent elements and cannot realistically be solved in a timely fashion on a single

2CERN public home page - http://public.web.cern.ch/public/
3As listed by Top500 SuperComputer Sites - http://www.top500.org/list/2003/11/

Chapter 2 Literature Review of Distributed Computing 32

computer. Rather than processors working on different jobs independently of each other,
they must pass data and control messages amongst each other for correct progression of
a task. HPC tasks are written using low-level message passing systems, such as MPI [36].
This provides the intercommunication and synchronisation mechanisms for algorithms
needed to run tasks across multiple machines.

2.5 Grid Computing: Large-scale Coordination, Collabo-

ration and Sharing of Resources

Grid computing first emerged as an idea proposed by Larry Smarr [37, 38] with its first
definition appearing later on in [39]. The authors describe the Grid as “a hardware
and software infrastructure that provides dependable, consistent, pervasive, and inexpen-
sive access to high-end computational capabilities”. Whilst, this roughly points out the
target role of the Grid, a more pertinent and less obscure definition of the Grid subse-
quently appears in [40]. In which it says the the Grid must provide “coordinated resource
sharing and problem solving in dynamic, multi-institutional virtual organizations (sic)”.
In [41], the author explores potential architectures for the Grid and subsequent enabling
technologies. In the paper there is provide a useful checklist, shown below, that helps
distinguish the Grid from other forms of distributed computing:

• coordinates resources that are not subject to centralised control;

• using standard, open, general-purpose protocols and interfaces;

• deliver nontrivial qualities of service.

Whilst the definition of the Grid may continue to evolve, the fundamental aims and
principles first covered in these ground breaking papers and books will persist. From
them it can be discerned that Grid computing must enable dynamic negotiation and
allocation of all forms of needed resources from a range of resource providers. In turn,
these resources must collaborate as a whole through sharing operations that allow direct
harnessing of their capabilities through more the just file exchanges. This means that
resources should be able to integrate into the system at a more direct level allowing
resources of a system to be organised and integrated together at the level of its hardware,
software and data.

The Grid seeks to overcome the need for local ownership of resources by providing access
and the sharing of resources on the Internet. This new sharing mode and planned scale
for the Grid has created unequalled challenges not matched in other areas of distributed
computing. We now summarise the key challenges in Grid computing.

Chapter 2 Literature Review of Distributed Computing 33

2.5.1 Key Challenges of Grid Computing

Research on Grid computing fits generally into two parts: the establishment of mutual
accessibility amongst wide-ranging computer resources, in addition to common connex-
ions between Grid and its users; and the construction of an interconnected network, or
Grid, of computer resources that are brought together, dynamically located, aggregated,
and allocated. The preponderance of Grid research (and in this thesis) has been focused
on part one; creating platform independent interoperability, and providing data and
security management, such as single sign-on authentication and authorisation, through
the new technologies, toolkits, and architectures. Part one provides the foundation
on which a Grid must be constructed thus progress on part two is much less advanced.
Identified features required for construction of the Grid include a standardised Grid-wide
namespace for all resources involved, mechanisms for resource registration and discovery,
resource scheduling and co-allocation, performance and resource usage monitoring.

Ian Foster et al. wrote that Grid computing should focus on “coordinated resource shar-
ing and problem solving in dynamic, multi-institutional virtual organizations” [40]. This
means that the Grid should provide access and the ability to share resources globally, so
that it would not be necessary to possess all the resources required locally. The unprece-
dented sharing mode and intended system scale have brought unique characteristics to
Grid computing and differentiated it from other distributed computing practises.

2.5.1.1 Heterogeneous Environment and Diverse Application

Models

The Grid, like the WWW, targets geographically distributed resource consumers (users)
and resource providers whom exist on the Internet in a varied state of conditions. They
will want to connect to the Internet through a plethora of devices including, PCs, mobile
phones, servers, kiosks and Internet-enabled televisions (as seen in many hotels). These
will use a multitude of different operating systems (e.g. Windows, Linux, Solaris, Mac
OS-X), file formats (e.g. HTML, XML, and SMTP), and applications (e.g. Web brows-
ing, e-mails, file sharing and news feeds). In addition, these devices will use a variety
of transport protocols and mediums for network connectivity including phone lines (e.g.
Modems and ADSL/SDSL), wireless networking (e.g. WAP, Wi-Fi, G3 and Bluetooth),
and local area networks.

However, the heterogeneity of Grid exceeds that of the WWW. Whilst, the WWW
offers only access and sharing of data and information, in addition to this, the Grid
will attempt to provide access and sharing of all resource types that can be connected
to the Internet. These will range from, for example, traditional computing resource
such as, HPC clusters and databases to application specific devices such as, scientific
instruments, and machining tools or sensors.

Chapter 2 Literature Review of Distributed Computing 34

An expected outcome of this will be extremely diverse and unpredictable resource sharing
operations on the Grid that will vary in their structure, scale, purpose, duration, and
user community. In addition, the Grid will be expected to handle different modes of
usage from single to multi-user, cost to performance sensitive, traditional client-server
architectures to peer-to-peer, and client to resource orientated.

2.5.1.2 High Unreliability of Internet-Scale Systems

By design, the Grid intends to reach an Internet scale, which is a feat currently only
achieved, by the WWW and e-mail. The WWW functions through involvement of
components from a multitude of organisations. Typically, deployment and development
of components such as, Web and DNS servers, network routers, proxies and firewalls
happens independently, with little unified control. The Grid shares this scenario and
thus must be capable, like the WWW, of operating effectively within a highly unreliable
environment. This goal requires that applications and systems built on the Grid be
robust which will require them to be tolerant of system failures, dropped connections,
version incompatibilities, and malformed or malicious data.

2.5.1.3 Coordination of Resource Sharing Operations

Resource sharing operations performed on the Grid require layers of coordination. The
Grid exceeds the scope of enterprise computing by aiming to cater for a far greater range
of heterogeneous resources and their sophisticated applications; and unlike enterprise
computing, provide this in an unreliable, disunified environment. Major functions of
the Grid include enabling access and sharing of computational power, huge quantities
of data, and high-level application processes. However, in an environment of distributed
resource ownership and high unreliability, participating components of systems require
coordination of security mechanisms, quality of service contracts, fine-grained controls,
and clear definitions of component functionality. This need for coordinated sharing
differs greatly from the disorganised WWW.

2.5.2 Desirable Characteristics of Grid Technologies

Achievement of the Grid’s goals requires careful selection and development of capa-
ble enabling technologies. In addition to the characteristics of transparency, openness,
scalability, and loose-coupling, technologies must bring to Grid an interoperable and
decentralised environment. An essential criterion of these technologies is that they must
be easy to deploy and maintain. We covered the latter characteristics in general at the
beginning of this chapter as important to distributed computing however; we now look at
how they specifically apply to Grid technologies in addition to the other characteristics.

Chapter 2 Literature Review of Distributed Computing 35

2.5.2.1 Interoperability

Interoperability is key to the success of the Grid and is a direct requirement of the
highly heterogeneous environment that systems will run in. Importantly, this character-
istic shall make possible interaction amongst differing Grid participants, irrespective, for
example, of resources’ platform, operating system, and runtime software environment.
Interoperability is essential to facilitate dynamic and transparent access of shared re-
sources because of the ad hoc creation and destruction of links between users, resources,
and intermediaries. In addition, interoperability is a prerequisite of transparency, open-
ness, and scalability.

Interoperability is important to all levels of the Grid from low-level message passing to
high-level semantics. Consequently, interactions throughout the Grid must happen in
a consistent manner, which shall require industry-wide agreement on component inter-
faces, communication protocols, and data formats. Furthermore, interfaces for compo-
nents such as, services and intermediaries, require definition through common under-
standing of its types operation and behaviour, which is necessary in order to facilitate
their dynamic discovery and integration. This shared perceived understanding will re-
quire the introduction of semantically enriched interfaces.

2.5.2.2 Scalability and Openness

The Internet’s continued evolution and tremendous growth has increased the quantity
and types of resources connected to it and the scale and variety of their application.
Philanthropic computing such as, SETI and Folding@Home, along with P2P file sharing
are examples of both new and large-scale Internet applications. The Grid’s infrastructure
and systems built on it must be capable of handling this and thus must be scalable in
all directions whilst open to changes and addition to its function.

Due to the high unreliability of resources within the Internet, assumptions cannot be
made about their state or existence because they could alter or disappear at any time
without notice. In addition, the Grid must be capable of keeping pace with the rapid im-
provement and addition of new technologies from underlying communication protocols
to new Internet-enabled resources such as mobile phones and media-centre PCs. Con-
sequently, the ability to quickly change and evolve to meet new demands is an essential
requirement of the Grid.

2.5.2.3 Decentralised and Loosely-coupled Architectures

The scale of the Grid means that no centralised management mechanism is able to pro-
vide the required performance, stability and scalability. Even if it were practical, service

Chapter 2 Literature Review of Distributed Computing 36

providers often wish to maintain control of their own systems for political, economic
and social reasons. The low uptake of systems such as, UDDI and Microsoft Passport,
is attributable to an unwillingness by potential participants to relinquish important as-
pects of their systems to third parties, especially security and user accounts, or register
services with a central authority. To encourage large-scale adoption of the Grid, partici-
pants such as, for example resource providers, must have the freedom to decide on usage
policies, make changes, or even withdraw service. However, this shall only be possible
if the Grid adopts a loosely-coupled structure.

Loose-coupling offers the most suitable architectural style for large-scale systems. It
would be significantly more difficult to build or effectively maintain systems using
tightly-coupled architectures because the high unreliability and distributed ownership
of resources connected on the Grid would make coordination of changes across systems
impractical.

Coupling refers to interrelationships and interdependencies between software compo-
nents of a distributed computing system. Software componentry is a loose term, which
refers to the encapsulation of software functionality though adherence to a written spec-
ification also known as Interface Definition Languages (IDLs). It allows developers to
reuse functionality developed and tested in one program with another. In addition, it
allows software to be broken down into smaller more manageable and easily tested parts.
The type of coupling between components requires careful considerations as this affects
the efficacy and simplicity of their maintenance and reuse. Clemens Szyperski and David
Messerschmitt give the following five criteria for what a software component shall be to
fulfil the definition:

• Multiple-use,

• non-context-specific,

• composable with other components,

• encapsulated i.e., non-investigable through its interfaces, and

• a unit of independent deployment and versioning.

Object-Orientation and Service-Orientation are formal examples of programming paradigms
developed around the idea of software componentry of which the latter is a new con-
cept preferred in Grid computing. Various technologies, including CORBA, DCOM ,
and Java RMI, encapsulate functionality and provide distributed access to components,
known as objects, in an object-oriented manner. On the other hand, technologies, in-
cluding Web Services and the WS-Resource Framework (WS-RF) [42], encapsulate func-
tionality and provide distributed access to components, known as services, in a service-
orientated manner. The abilities and orientation of software componentry technologies

Chapter 2 Literature Review of Distributed Computing 37

have a direct bearing on the transparency, openness and scalability of a distributed
system. Nonetheless, componentisation is not enough on its own to guarantee effective
reuse (i.e. sharing) of software functionality. Components also need:

• to be fully documented,

• more thorough testing,

• robust input validity checking,

• to pass back useful error messages as appropriate, and

• to be built with an awareness that it will be put to unforeseen uses

Two forms of coupling are prevalent in distributed computing: tight-coupling and loose-
coupling. The benefit of loosely-coupled software architectures over tightly-coupled ones
lies in its agility and the ability to survive evolutionary changes in the structure and
implementation of the internals of each component, that make up the whole system. It
foremost relies on componentisation of software and on standardisation of their interfaces
and behaviours. This is such that changes to parts of the system will have known
consequences and promotes flexibility by focusing design effort on interfaces. Loose-
coupling is a concept widely practised in software architecture especially within massively
parallel computing systems.

On the other hand, tight-coupling architectures have interfaces between the different
components of a system that are tightly interrelated in function and form, thus making
them brittle when any form of change is required to parts or the whole of the soft-
ware. Components within a tightly-coupled software often interact, for instance, in a
bespoke way, without standard interfaces, or natively with the hardware. The absence
of software abstractions and intermediaries, such as componentisation and tiered system
design, can have performance benefits but at the expense of easy extension of software
functionality and integration with other software and systems. Tight-coupling makes
components artificially dependent on each other’s specific implementation thus creat-
ing high interdependence and interrelationships among each other which precludes their
easy reuse and maintenance.

Whilst the benefits of loosely-coupled architectures abound, software has remained
tightly-coupled because of the inability of major software vendors to agree on a uni-
versal set of standards to define interfaces across software modules. An example of
this is database vendors whose poor adherence to the SQL specification and proprietary
componentisation models often results in systems becoming dependent on specific ven-
dors implementations. For instance, stored procedures is the term used to refer the
ability of a databases to run at improved performance by encapsulating logic that runs
inside the database engine. However, whilst all modern databases offer the ability to

Chapter 2 Literature Review of Distributed Computing 38

store procedure in some manner no standard has been adopted for transferal amongst
implementations.

Nonetheless, loose-coupling on its own is not enough to guarantee effective reuse of
software. Even when systems employ standardised interfaces and componentisation,
incompatibilities between the communication mechanisms and behaviours of competing
Object-Oriented technologies make large-scale system integration impossible. Not only
must software architectures be loosely-coupled but also components must be accessible
in a standard, open and transparent way.

The loose-coupling principle aims to ease design and component maintainability and
reuse, by exposing real dependencies through simplification of systems to the very mini-
mum but no further to preserve functionality. This means that systems must not contain
components with unnecessary dependencies or relationships. Standardised technolo-
gies and components, such as commodity goods, along with common operational and
behavioural models aid system builders to meet the loosely-coupled principle. These
systems trade efficiency for robustness and scalability that make them especially well
suited for roles in large-scale distributed computing, such as High Availability Comput-
ing (HAC), HTC, and Grid computing. Service-oriented technologies offer high-level
data modelling definition and independent componentisation that make it the ideal
paradigm for achieving loosely-coupled architectures.

2.5.2.4 Low-Effort Deployment and Participation

Low-effort deployment and participation in the Grid will encourage its adoption. Fea-
tures required of the Grid technologies, already mentioned in this chapter, including
loose-coupling, decentralisation, transparency, openness, and interoperability all play a
part in making the Grid more easily adoptable by both users and resource providers.

Users’ applications should not be affected by the adoption of Grid. Details of the ef-
forts that enable operations on the Grid should be transparent from the perspective of
high-level applications. In the case of deployment, Grid technologies must not affect
the integrity of the local system such that no significant changes are necessary to the
underlying workings of the platform. Rather, Grid technologies should work with local
systems’ mechanisms to reduce deployment effort, ease maintenance, and leverage the
skills of system administrators. In addition, side effects, performance overheads, and
significant changes should be kept to a minimum.

Chapter 2 Literature Review of Distributed Computing 39

LegacyCommunicationWeb ServiceGateway Data
Grid Resources

InternetCondor MySql
Apache SOAP/XMLCommunication

Figure 2.4: The usage of legacy distributed computing technologies in Grid comput-
ing.

2.5.2.5 Legacy Distributed Computing Technologies in Grid

Computing

The research and development of Grid computing have been carried out based on the
achievements and experiences from earlier efforts on distributed computing. Although
the distinctive features of Grid computing and the consequent requirements for Grid
technologies make it clear that legacy distributed computing technologies alone cannot
be successful in building the Grid, many of them can still be directly or indirectly applied
in enabling Grid computing operations.

For distributed object technologies, the inherent lack of interoperability and scalability
makes them undesirable choices for enabling interactions among Grid resources. Yet
they are very likely to be applied in constructing Grid resources that are composed of
homogeneous, closely administrated distributed systems, in which interoperability is not
a major concern and performance is of higher priority. Such resources include computer
clusters, High Throughput Computing (HTC) systems and data service providers, as
illustrated in Figure 2.4.

The Web system exists in the same environment of the Grid, and has successfully man-
aged to scale to the level of the Internet. While technologies that enable the Web cannot
provide a direct solution to Grid computing, as resources and operations on the Grid
are far more sophisticated than the sharing of hypermedia resources on the Web, they
have actually provided a well established infrastructure on which further extensions and
modifications can be made to support Grid computing. Standard Web technologies such
as HTTP and URI are deeply involved in the development of standard Grid technologies.

Chapter 2 Literature Review of Distributed Computing 40

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 <Cluste r Name=”Southampton E−Sc i ence ”
3 xmlns=” ht tp : //www. e−s c i e n c e . soton . ac . uk/ computation”
4 xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”>
5 <Job Name=”OOMMF1”>
6 <MachineHost>e−s c i enc e04 . soton . ac . uk</MachineHost>
7 <Status>Running</ Status>
8 </Job>
9 <Job Name=”OOMMF2”>

10 <MachineHost>e−s c i enc e08 . soton . ac . uk</MachineHost>
11 <Status>Evicted</ Status>
12 </Job>
13 </ Clus te r>

Listing 2.2: Example XML document showing the status and host of jobs running
on the Southampton e-Science’s Condor cluster.

The impact of the Web on Grid computing has also been made clear by the introduction
of Web Services to Grid computing.

2.5.3 Technological Requirements of Grid Computing

Grid technologies must provide simple, standardised loosely-coupled methods for de-
scribing, discovering, and integrating distributed resources. Realisation of effective,
capable and powerful large-scale distributed systems necessitates a common structural
paradigm and modes of interaction. Grid technologies should not replace low-level dis-
tributed technologies, such as MPI [43] or Condor [44], but instead provide the high-level
glue that binds resources together.

2.5.4 Key Grid Technologies

The most important part of any distributed system and what defines it is messaging. The
abilities of technologies used to represent, structure, and convey data directly influence
the ability of distributed computing resources to interoperate. The key technology of
the Grid is Extensible Markup Language (XML) which, along with XML Schemas and
SOAP, provide a standardised, powerful and flexible messaging mechanism for the Grid.
In addition, these technologies form the basis for many other Grid technologies.

2.5.4.1 Extensible Markup Language (XML)

The Extensible Markup Language (XML) [6] is an application independent, simple and
flexible text format for data. It is the most important technology in Grid computing
because it defines standard methods for structuring, self-describing and defining for-
mats for information and data that may be read by almost any computer or software
application.

Chapter 2 Literature Review of Distributed Computing 41

XML exclusively utilises plain text for all document markup, including data structures
and data values, an example of XML document is given in Listing 2.2. Summarised
below are features of XML that make it well-suited for data transfer:

• its usage of plain text mark-up make it both human and machine readable,

• Unicode support which allows writing of its documents in any human language,

• the ability to represent fundamental computer science data structures such as,
records, lists and trees,

• self-documenting formatting that describes structure, field names and specific val-
ues, and

• strict syntax and parsing requirements which makes parsing of documents simple,
efficient, and consistent

XML is also heavily used as a format for document storage and processing, both online
and offline, and offers several benefits:

• its robust, logically-verifiable format is based on international standards,

• the hierarchical structure is suitable for most (but not all) types of documents,

• it manifests as plain text files, unencumbered by licenses or restrictions,

• it is platform-independent, thus relatively immune to changes in technology, and

• it and its predecessor, SGML, have been in use since 1986, so there is extensive
experience and software available

However, XML suffers from some of the following weaknesses:

• its syntax’s high verbosity and partially redundancy often lowers human readability
and application efficiency, and increases storage needs. In addition, the larger
size of XML formatted documents makes it unsuitable for bandwidth restricted
networks, such as Mobile phones.

• its strict, descriptive and partially redundant syntax requires that all parsers, even
for the most basic XML usage, recurse arbitrarily nested data structures and per-
form additional checks to detect improperly formatted or differently ordered syntax
or data. Consequently, XML parsers have significant processing and memory de-
mands that limit its usage on devices with restricted resources, such as embedded
devices. In addition, badly or malformed XML documents can cause exhaustion of
resources and stack overflows. Therefore, security considerations arise when XML
input is fed from untrustworthy sources.

Chapter 2 Literature Review of Distributed Computing 42

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 <xsd:schema xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
3 elementFormDefault=” q u a l i f i e d ” attr ibuteFormDefault=” unqua l i f i e d ”
4 targetNamespace=” ht tp : //www. e−s c i e n c e . soton . ac . uk/ computation”
5 xmlns:ca=” ht tp : //www. e−s c i e n c e . soton . ac . uk/ computation”>
6 <xsd :e lement name=” Cluste r ”>
7 <xsd:complexType>
8 <xsd : sequence>
9 <xsd :e lement name=”Job” type=”ca:JobType” maxOccurs=”unbounded”/>

10 </ xsd : sequence>
11 <x sd : a t t r i b u t e name=”Name” type=” x s d : s t r i n g ”/>
12 </xsd:complexType>
13 </ xsd :e l ement>
14 <xsd:complexType name=”JobType”>
15 <xsd : sequence>
16 <xsd :e lement name=”MachineHost” type=” x s d : s t r i n g ” minOccurs=”1”
17 maxOccurs=”1”/>
18 <xsd :e lement name=”Status ” type=” x s d : s t r i n g ” minOccurs=”1”
19 maxOccurs=”1”/>
20 </ xsd : sequence>
21 <x sd : a t t r i b u t e name=”Name” type=” x s d : s t r i n g ”/>
22 </xsd:complexType>
23 </xsd:schema>

Listing 2.3: Example XML Schema that defines data structures for describing the
status of jobs running within a computational cluster. Listing 2.2 shows an XML

document that employs this schema.

• it does not define a wide array of data types, requiring additional parsing in order
to process the desired data from a document. For instance, XML does not specify
whether the value “485.12” is an number or a six-character string. In addition, it
does not come with out-of-the-box support for rich data types; the scientist must
build them.

• Uses the hierarchical model for representation, which is limited compared to the
relational model, since it only gives a fixed view of the actual information.

The XML specification includes a simple type and data structure definition model,
known as Document Type Definitions (DTDs) [45]. These allow sharing of common
document formats and types, and enable document consistency checking. However,
it lacks a way to define complex data structures. To address DTDs’ failings and to
improve XML’s usefulness, the XML Schema Language (XSD) [46] was developed as a
more advanced, feature-rich and flexible alternative.

XML versatility as a tool for distributed computing, is only fully realised when it is
used in conjunction with XML Schemas, see example in Listing 2.3. Standardisation
of data formats, essential to the sharing of data. Many important new distributed
communication protocols and description languages utilise XML-based documents and
the XML Schema Language to specify their data and messaging formats.

XML Schema uses XML itself to define the types and structures of XML data. It
provides rich support for basic data types like integer and string as well as common data
structures available in computer programming languages. It is also possible to construct
user defined data formats, such as postcodes. The flexibility of XML enables the XML
Schema to support the sophisticated data structures necessary to define complex user
types.

Chapter 2 Literature Review of Distributed Computing 43

2.5.4.2 Simple Object Application Protocol

The Simple Object Access Protocol (SOAP) [47] provides a simple and extensible frame-
work that defines how an XML message is structured. SOAP is designed to be a
lightweight protocol for the exchange of information in a decentralised and distributed
environment. In addition, it was designed to be independent of any particular transport
mechanisms, however, to facilitate message passing, careful attention was paid to en-
suring interoperability with commonly supported transfer protocols, such as HTTP [26]
and SMTP [48].

SOAP messages consist of a header and a body. SOAP allows security systems, such as
firewalls, to identify XML messages without needing to understand their contents, thus
it is possible to prevent the blocking of unknown HTTP requests. SOAP also provides
rich semantics for indicating encoding style, array structure, and data types. SOAP
is currently under inspection by the W3C consortium and is a prototype of the future
XML Protocol (XMLP) [49].

Both SMTP and HTTP are valid application layer protocols for SOAP however HTTP
has gained wider acceptance due to its extensive capabilities and Internet infrastructure
support. Importantly, HTTP enables SOAP to work with network firewalls which is a
major advantage over other distributed protocols like GIOP/IIOP or DCOM which are
normally filtered by firewalls. A key issue under discussion is whether or not HTTP is
the right transport given its inherent synchronous nature.

As has been discussed in section 2.5.4.1, XML’s verbose syntax can be both a benefit and
a drawback. Compared with CORBA, GIOP and DCOM (see section 2.3.2) that use
much shorter, binary message formats, SOAP’s XML messages take much longer to pro-
cess making SOAP the slower messaging mechanisms. Nonetheless, hardware appliances
are available to accelerate processing of XML messages. It has been suggested [50, 51]
that Binary XML may offer a solution to improving performance of SOAP messaging, al-
though this creates its own set of problems including the loss of readability and confusing
over little or big endian byte representation.

2.6 Service-Oriented Technologies

2.6.1 Web Services

Web Services [52, 53] define Service-Orientated techniques for the description, discovery
and integration of remote software components, see Figure 2.5. They have many benefi-
cial characteristics suitable to Grid and distributed applications; such as, programming
language and model independence, and platform neutrality. Moreover, Web Services’

Chapter 2 Literature Review of Distributed Computing 44

UDDIRegistry UDDIRegistryUDDIRegistry
Client Web Service Server

Discovery (Find) Description (Publish)Integration (Interaction)
WSDL

WSDLImplementationWire ExtensionsTransportPackaging SOAP FeaturesHTTP, TCP, SMTPMIME,DIME,SOAP
Direct Discovery and Publish With WSIL

WSDLWSDL
WSDLWSDL

Figure 2.5: Web Service usage of XML Technologies.

simplicity are their greatest strength; designed specifically to facilitate creation, deploy-
ment, testing and utilisation within client and server software using widely available
visual development [54] and client proxy generation tools [55].

2.6.1.1 Web Service Description Language

The Web Service Description Language (WSDL) [56] is an XML Document that provides
a standardised means to formally define the interface and the endpoints of a Web Service.
It is the IDL for software components (i.e. services) of SOA environments. Unlike IDLs
in point-to-point architectures (see section 2.3.2), interfaces of Web Services defined in
WSDL are independent from the underlying platform and programming language. This
hiding of services vendor specific implementation facilitates the coupling of service which,
in addition, to WSDL’s standards-compliance makes Web Services very reusable and
interopable. Although originally designed to describe Web Services, WSDL is a flexible
and extensible language that may be used to describe other service based distributed
technologies like Grid Services [57]. WSDL 1.2 is now being adopted by the OGSI
Working Group instead of GWSDL.

Chapter 2 Literature Review of Distributed Computing 45

2.6.1.2 Universal Description, Discovery and Integration

The Universal Description, Discovery and Integration (UDDI) [58] specification defines
a way to publish and discover information about web services. It is a collaboration
between Ariba, IBM, and Microsoft, who each provides UDDI services. The UDDI
project includes a UDDI business registry and a set of operations on it. The UDDI
registry, an XML file, identifies a Web Service and provides information about the
service. Other programs use the registry to get the information about the Web Service
and check compatibility with it. Categorisation of web services in the registry enables
location and discovery. UDDI together with WSDL provides the ability to locate and
programmatically interface to the Web Service. This allows programmatical access to
the Web Service in a similar way that a coder accesses software component, simplifying
service collaboration.

2.6.1.3 WS-Inspection and Web Service Integration Language

WS-Inspection [59] consists of a simple XML language and conventions for locating ser-
vice descriptions published by service providers. The language, Web Service Integration
Language (WSIL), may contain a list of service descriptions and links to other service
descriptions. These are links to WSDL documents through URLs and may reference
an entry within a Universal, Description, Discovery, and Integration (UDDI) registry.
Service providers make there WSIL documents accessible through normal Internet pro-
tocol such as HTTP GET enabling document retrieval and discover of the advertised
providers services.

2.6.1.4 Security

Efforts on ensuring security of Web Services have been focused on the standardisation
of the WS-Security [60] protocol. WS-Security is a message-level security mechanism,
which identifies enhancements to SOAP messaging to provide security through message
integrity, message confidentiality, and single message authentication. WS-Security is
designed to support a wide variety of security tokens, security models and encryption
technologies. The specification has already been accepted as an OASIS standard. In
addition, in order to enable the service to publish its security requirements, the WS-
SecurityPolicy [61] specification is drafted as a supplement to WS-Policy.

Chapter 2 Literature Review of Distributed Computing 46

2.6.1.5 Data Delivery

The XML format is not suitable for delivering large sections of data, especially binaries,
due to its redundancy. To facilitate data transfer with Web Services and remain human-
interpretable, an abstract model called SOAP Message Transmission Optimization (sic)
Mechanism (SOAP MTOM) [62] is proposed to define how to encapsulate SOAP mes-
sages and its associated attachments. This model has already been supported in Web
Service tools from major software vendors.

2.6.1.6 Business/Application Process Orchestration

A series of proposals have been made to provide standard methods for composing
multiple Web Services for sophisticated business/application processes. These include
WSFL [63], and BPEL4WS [20]. At the current stage, BPEL4WS has received wide
support from the Web Service community. It defines a model and a grammar for de-
scribing the behaviour of a business process based on interactions between the process
and its partners. It also defines how multiple service interactions are coordinated to
complete an operation, how business exceptions and processing faults should be dealt
with, and how compensation to participants in the process should be made in cases of
exceptions and service cancellation.

2.6.1.7 Message Routing

To support asynchronous delivery of SOAP messages over a variety of transport methods
such as TCP, UDP, and HTTP, the WS-Routing specification is proposed to make it
possible to describe directly in the SOAP header the entire message path for a SOAP
message. It is therefore possible to carry out SOAP messaging in different modes such
as request/response and peer-to-peer conversations over extended period.

2.6.1.8 Reliable Messaging

The WS-ReliableMessaging [64] specification is proposed to ensure quality in service
communications. It defines mechanisms to guarantee the delivery of SOAP messages,
and to make sure that messages are only received once, and are processed in the right
order. WS-ReliableMessaging is extensible to allowing integration of additional func-
tionality such as security. The current specification is used with other Web Services
specifications such as WS-Security and WS-Policy to provide secured and reliable ser-
vice communications.

Chapter 2 Literature Review of Distributed Computing 47

Grid Protocol Architectu
re Application CollectiveResourceConnectivityFabric

ApplicationTransportInternetLink Internet Protocol Archit
ecture

Figure 2.6: Shows the relationship between the Grid architecture and the Internet
protocol architecture. There is a mapping from Grid layers to Internet layers because

the Internet protocol layer extends from network to application.

2.7 Grid Projects and Architectures

There are a number of Grid projects currently running such as those from the UK e-
Science Grid projects including Geodise [65, 66], MyGrid [67], GridPP [68] and the
AstroGrid [69]. These systems have used existing technologies (especially Globus[70]);
however, they have all developed specialised services that provided layers above or in
between standard services like discovery, security, and remote job execution. This has
resulted in a vast spread of varying protocols, non-interoperable standards and imple-
mentation that are difficult to reuse.

2.7.1 Open Grid Service Architecture

Open Grid Service Architecture (OGSA) represents a long overdue initiative to define
Grid architecture and is a milestone in the evolution of the Grid. Before this, Grids
have been defined as a collection of distributed services implemented using a collection
of toolkits, like Globus [39, 71] or through distributed operating systems like Legion [72],
or distributed resource management systems, such as Condor.

Their architecture is one that is essentially a protocol architecture that defines mecha-
nism through protocols for users and resources negotiation, establishment, manageability
and exploitation of sharing relationships. Their primarily concern is with the creation of
an open architectural structure within which are placed solutions to user’s and Virtual
Organisational (VO) requirements.

Shown in figure 2.6 is the representation of the proposed Grid architecture as component
layers, that is common with many distributed protocols and architectures. There is no

Chapter 2 Literature Review of Distributed Computing 48

attempt made to enumerate all the protocols and it was their goal to discuss only
the requirements necessary for general component classes in each layer. Components
within each layer share common characteristic that can build upon the capabilities and
behaviours by the lower layers.

2.7.1.1 Fabric

The Grid Fabric is at the bottom of the protocol stack and contains the resources for
which sharing is mediated by Grid protocols. Resources could typically be computational
resources, storage systems and network resources such as proxies. These resources may
be logical entities such as a computational cluster or a distributed file system; in which
case they may utilise protocols and systems internal to their operation that are not part
of the Grid architecture. It is the Grid systems concern to provide access above this
point. The role of the fabric layer is to offer the ability to support higher-level operation,
for example resource scheduling, that can increase the complexity and therefore the cost
of adding a resource to the Grid. It is required that resources must have a minimum
of an enquiry mechanisms that allow higher level components to ascertain the facilities,
structure and state of a resource, together with resource management mechanism to
guarantee a certain level of quality of service.

2.7.1.2 Connectivity

This layer defines the core authentication and communication protocols required for
Grid-specific network transactions. The communication protocols are essential to the
exchange of data among fabric resources. Built upon these are the authentication proto-
cols, that provide the secure mechanism for the verification of users and resources. For
the communication layer, it is necessary to have transport, routing and naming. The
assumption is that the TCP/IP protocol stack will form the basis for these, that is a
good idea because of the current TCP/IP support by the majority of vendors.

So for instance, the Internet layered protocol architecture [73, 74] defines protocols for
the Internet (IP and ICMP), transport (TCP, UDP) and application (DNS, OSPF, and
RSVP). Due to the complexity of security issues in the Connectivity layer, where possible
it is essential to use existing standard. Authentication solutions for environments should
have the following characteristics [75]:

Single Sign on One log on (authentication) should be all that is necessary for users to
access multiple Grid resources. No further user invention is necessary. An example
of a similar system is Microsoft Passport [76].

Delegation [77] To enable programs to access resources on which the user is autho-
rised, a user must be able to endow a program with the ability to run on the

Chapter 2 Literature Review of Distributed Computing 49

users’ behalf. Services such as Microsoft’s ASP.NET technology provide such a
facility which is part of the Microsoft.NET Framework and importantly provides
a container platform for hosting Web Services on the IIS Web server.

Integration with various local security solutions Interoperation with various lo-
cal security systems is necessary in any Grid solution. It is not feasible to require
replacement of local security systems but instead must allow mapping into the local
environments such as Kerberos [78] or UNIX security. It may be possible to employ
the security models of runtime environments of for instance .Net framework [79]
of Java JRE [80].

User-based trust relationships It is required that for users jointly access multiple
resources from different providers, no interaction or cooperation is necessary among
the security system for the configuration of the security environment.

2.7.1.3 Resource

The Resource layer defines protocols, APIs and SDKs for secure negotiation, initiation,
monitoring, control, accounting, and payment sharing operations. This layer builds upon
the Connectivity layers communication and authentication protocols and calls protocols
from the Fabric layer functions to access and control local resources. The Resource layer
does not address global state and atomic actions as its protocols are only concerned with
individual resources. The main classes of Resource Layer protocols are:

Information protocols allow information retrieval of the structure and state of the
resource. Example protocols include LDAP [81] used by GRIP [82] in Globus.

Management protocols negotiate access to a shared resource e.g. resource require-
ments, and operations to be performed. As the responsibility of management
protocol is to instantiate sharing relationships, they must apply policy of the
underlying shared resource. The GRAM protocol [83] is used for allocation of
computational resources, monitoring, and control of computation.

2.7.1.4 Collective

The Collective layer is primarily concerned with the coordination of multiple resources.
Built upon the Resource layer this layer may implement a wide variety of sharing be-
haviours without the need for new resource requirements, these include, Directory ser-
vices, Co-allocation, scheduling and brokering services, Monitoring and diagnostics, Soft-
ware Discovery services and many more. The Collective layer, unlike the Resource layer,
is not concerned with any single resource but the global state and interactions among
resources.

Chapter 2 Literature Review of Distributed Computing 50Applications Languages and FrameworksCollective APIs and SDKsCollective ServicesResource APIs and SDKsResource ServicesConnectivity APIs Fabric
Collective Service ProtocolsResource Service ProtocolsConnectivity Protocols

API/SDKServiceKey

Figure 2.7: Programmers view of the Grid Architecture.

2.7.1.5 Application

At the top most level of the Grid architecture is the application layer. The user in-
teracts with the system within the application environment. Shown in figure 2.7 is the
programmers view of the Grid Architecture.

We can see in figure 2.7 that the application layer is emphasised and contains Languages
and Frameworks, that themselves may contain many APIs and protocols. At each layer
of the architecture we have APIs and SDKs interfacing with the underlying services.

2.8 Summary

In the first part of this chapter we studied existing distributed technologies and identified
that transparency, openness and scalability where fundamental characteristics which the
Grid should adopt. In addition, we identified which key technologies, architectures and
practices the Grid must build upon to reach an Internet-level. We conclude that because
of the success, power and pervasiveness of technologies present in existing distributed

Chapter 2 Literature Review of Distributed Computing 51

technologies, such as the WWW, the Grid success is dependent upon its ability to
harness these technologies and bring them together with new technologies in order to
enable greater access and integration of resources.

We have characterised the Grid by its attempt to provide dynamic and coordinated
large-scale resource sharing through service-oriented Web Service technologies. The sec-
ond part of the chapter rationalised the usage of SOA by showing that its promotion
of reuse and interconnection of resources facilitates cost-effective and quick adaption of
distributed computing environments to changing users requirements. The challenges of
Grid computing have been explored and the subsequent requirements, of which specifi-
cally, interoperability, encapsulation and loose-coupling have been identified as key de-
sirable characteristics of its technologies. Consequently, justification was given for Web
Service as the best technology for implementing Grids because of its usage of key exist-
ing distributed technologies and its adoption of a highly interoperable loosely-coupled
SOA approach.

Compared with distributed object-based architectures, such as used by Globus (GT2)
which employs RMI/RPC based distributed message passing, SOA has significant advan-
tages because, unlike the latter, the SO concept was specifically crafted from conception
to cater for the needs of distributed systems for interoperability and easy maintenance,
component reuse and integration. In addition, distributed object-based architectures
have been extensively employed for many years and systems which employ this archi-
tecture have failed to reach a scale desired by the Grid. SOA does not intend to replace
existing distributed object-based systems however, it does offer a technological bridge
that will enable them to link together at a higher level into larger systems. This is very
similar to TCP/IP stack which itself was initially developed to bridge and provide inter-
operability between computer networks that employed incompatible or poorly scalable
network technologies. Eventually, as networks were upgraded, TCP/IP became the de-
facto standard employed in nearly all computer networks. Therefore, this work focuses
on employing SOA and Web Service technologies to link together legacy technologies
and as the native architecture to build and integrate new service components.

Nevertheless, the current rapid rate of change and addition of new Web Service standards
presents a challenge for distributed software developers. The newness of the Grid means
that whilst standards exist they have not yet reached a maturity where developers can
be sure how stable they are (i.e how quickly they may be deprecated) or if they will be
widely supported. It is for this reason that the work presented in this concentrates on
the core Web Service standards XML, SOAP, WS-Security and DIME.

The assumption is that the Grid should be built using the principles of SOA and that
Web Services currently provide the most suitable technological platform for constructing
sophisticated Grid applications. However, in the next chapter we examine in depth the
challenges faced when sharing and aggregating computation and other resources types

Chapter 2 Literature Review of Distributed Computing 52

within scientific and engineering Problem Solving Environments. We will demonstrate
the challenges faced using existing distributed technologies and approaches, whilst ex-
posing additional challenges not yet resolved by Grid technologies.

Chapter 3

Challenges in Problem Solving

Environments

The research work on service-oriented (SO) Grid computing presented in this thesis has
been carried out in the context of the Grid Enabled Optimisation and Design Search for
Engineering (Geodise) project. In addition, the research work has lead to the building of
an experimental Grid-Enabled Problem Solving Environment (PSE) for Computational
Micromagnetics.

The first section of this chapter concentrates on the problem solving challenges of com-
putational micromagnetics. It is the field associated with the study of magnetic char-
acteristics of materials at a sub-micron scale. Its research has direct application in
improving the data density of hard drives used in PCs, servers, and data repositories. It
represents a field of computational science that’s problem solving process would benefit
greatly from Grid computing in providing greater access and sharing of resources and
enabling technologies for seamless integration of tools and data. It serves as a suitable
scenario for study as it has a problem solving process often hindered by simulation tools,
which have issues that include non-standard operation, application-centric data formats,
tightly-coupled resource requirements, and poor interoperability with other tools. We
highlight from these specific challenges that Grid Computing must resolve in order to
facilitate the problem solving process. In addition, our discussion serves as an intro-
duction to the work on development of an experimental Computational Micromagnetics
Grid-enabled PSE in chapter 7.

The second section of this chapter looks at Geodise, a current state-of-the-art Grid-
enable PSE. Geodiseis ”a Grid-based generic integration framework for computation
and data intensive multidisciplinary design optimisation tasks while maintaining the
autonomy of each individual domain expert”. Its service-oriented style makes it an ideal
research topic on the application and behaviour of Web Services in Grid computing from

53

Chapter 3 Challenges in Problem Solving Environments 54

the perspective of computation, data management, software applications, intelligent
knowledge repository, and service integration.

In this chapter we will compare the Grid requirements of Computational micromagnetics
with the solutions provided by Geodise’s SO style identifying key unresolved issues and
presenting solution methodologies, which form the premise for work contained in the
rest of the thesis.

3.1 Problem Solving Environments (PSEs)

Describing a problem solving environment (PSE) is difficult because of the relatively wide
diversity of research topics that it covers. Consequently, like other computer science
terms, it has resisted a universally agreed definition. Nonetheless, understanding of
what a PSE is essential before we can begin to think about what it should be and
subsequently its technical requirements: in particular, its capabilities, who the users are
and their needs, fundamental architectures, and resource/component reuse. One of the
best attempts at a high-level definition of the term PSE comes from [8] whom write:

“A PSE is a computer system that provides all the computational facilities necessary
to solve a target class of problems. These features include advanced solution methods,
automatic or semiautomatic selection of solution methods, and ways to easily incorpo-
rate novel solution methods. Moreover, PSEs use the language of the target class of
problems, so users can run them without specialized knowledge of the underlying com-
puter hardware or software. By exploiting modern technologies such as interactive color
graphics, powerful processors, and networks of specialized services, PSEs can track ex-
tended problem-solving tasks and allow users to review them easily. Overall, they create
a framework that is all things to all people: they solve simple or complex problems, sup-
port rapid prototyping or detailed analysis, and can be used in introductory education or
at the frontiers of science.”

Whilst this definition gives an overview of PSEs and what it may offer to improve the
problem solving process, its realisation will require significant effort therefore further
definition is required to fully understand the benefits that PSE can bring. What follows
is an attempt to give a more specific description of what a problem-solving process is,
the motivating factors behind PSE, and the development of the software infrastructure
for the environment.

3.1.1 Problem Solving Processes and Motivation for PSE

A problem solving process is the course of actions taken to discover the answer to
a question. The characteristics of the problem solving process need to be known to

Chapter 3 Challenges in Problem Solving Environments 55

determine what the users wants to do and how the PSE can assist in the course of
actions. Therefore it is important to have a good understanding of the problem solving
process itself. There are many different types of problem-solving of which some common
scenarios are listed below:

Manufacturing A plant manager or technical officer must monitor and adjust some
process to respond to current conditions, e.g., properties of input materials, the
current operating environment. Possible adjustments are evaluated for their pre-
dicted effect on the manufacturing process. The goal is to produce a product in
the most timely, cost-effective manner, while maintaining quality. Speed may be
especially critical in this setting, where shutting down the manufacturing line is
virtually unacceptable. Previous solutions and expert help are extremely valuable.

Research A scientist wants to compare models or algorithms or implementations. A
small number of test cases are used. Accuracy or computational performance are
of primary interest. Comparison with experimental data may be required. The
goal is to model some physical phenomenon more accurately, or to develop a better
solution algorithm.

Design and development An engineer is trying to design a better system of some
kind. The mathematical models and numerical methods used are relatively fixed,
although a few key parameters (e.g., the geometry) may be varied. The goal is
to find a better design, according to some criteria. This optimisation process may
be automatic, but is most likely to involve human-in-the-loop steps. Previous
“nearby” solutions are of considerable help.

The problem solving process is often a multidisciplinary affair and it is in this scenario
that PSE offer the most. Demand exists for PSEs that offer software infrastructures to
support many, geographically located engineers, collaborating on a design. In particular,
multidisciplinary design optimisation (MDO), such as used in aerospace engineering is
a good example of a problem domain that benefit from PSEs. In this scenario of large-
scale MDO, design of aircraft requires input from a combination of fields from fluid
dynamics to controls and structural mechanics. Consequently, design processes can be
extremely heterogeneous involving many models, codes 1, and people and computer
resources possible in different locations. MDO is unfeasible without capable and usable
software environments.

The requirement for a PSE rises with the complexity and heterogeneity of the problem
solving processes i.e. more realistic and larger quantity of models, more people, codes,
resources and paths of investigation. The set of tools available to the computational

1Codes (short for source code) is a commonly used term in the fields of science and engineering
for a purpose- or problem-specific single software program often user-written and typically used in the
processes of design of experiments, optimisations and analysis

Chapter 3 Challenges in Problem Solving Environments 56

scientist and engineer has increased significantly. A few decades ago, choice was lim-
ited to FORTRAN-based codes, calculation on mainframe computers, and output as
tabular data or simple plots. Now scientists may choose to write their codes in visual
programming environments using a variety of languages from the general purpose (e.g.
C++, Matlab, Python, and Java) to the performance-oriented (e.g. C, Fortran) and
problem-oriented; they employ complex and rapidly evolving set of parallel computer
architectures; they use three dimensional visualisation, with animation, and analyse the
output in immersive interactive environments; and they often need to collaborate on
projects with people dispersed across the world. What is needed is a usable software
infrastructure to aid scientists to manage and coordinate all these tools to allow more
effective problem solving.

Work presented in this thesis has been carried out in the context of the field compu-
tational micromagnetics, and engineering optimisation and design search. These two
scenarios where chosen as examples to work on because they share the following key
problem-solving characteristics arising in important areas of manufacturing, engineering
research and development, and the natural sciences:

• They are based on sophisticated mathematical models.

• They require sophisticated numerical solution methods.

• They require large scale high performance computing resources.

• They are often multi-disciplinary.

• They are often solved by groups rather than individuals.

3.1.2 Characteristics of the Environment

Already covered in section 2.5, is a high-level overview of the many challenges faced
in Grid computing that are generally pertinent to the challenges faced in science and
engineering. This is no coincidence as one of the driving forces behind research into the
Grid, other than business, has been in the better allocation and sharing of resources in
environments for problem solving processes. In addition, in the introduction, section 1.2,
we also looked at some of the technical challenges faced by scientists and engineers
and the key areas of Grid computing which aim to provide a solution. The adjectives
below represent a list of characteristics that are desirable, to one degree or another, in
engineering and scientific PSEs:

Problem-oriented The PSE should allow the specialist to concentrate on their disci-
pline without having to become a self-taught computer scientist.

Chapter 3 Challenges in Problem Solving Environments 57

Collaborative It is very common that to see collaborative science and engineering
often with geographically remote participants.

Persistent Problem solving sessions often occur in different locations over a periods of
time. Consequently persistence is necessary for the continuance of these sessions
but more impermanently to maintain a record of the work actions that may be
reused in some form of intelligence.

Powerful Without sufficiently powerful hardware and software resources it will difficult
to solve problems in a timely fashion or perform an serious research.

Integrated Many problems and solution strategies are extremely heterogeneous. One
of the most challenging aspects of good PSE design will be to manage all this
heterogeneity in an integrated way so that the user may operate in the system in
predictable and consistent environment.

Open, flexible, adaptive In many settings it is important that PSE-builders and so-
phisticated users be able to tailor or add to the functionality of a PSE.

Graphical, visual Most large scale applications require visualisation of results; many
rely on graphical input as well.

Intelligent In certain settings it is likely that a PSE could supply some expert “ad-
vice” in choosing among several numerical methods, for example, or in advising a
machine operator on the factory floor about process control.

PSEs must bring together state-of-the-art research and technology from almost all ar-
eas of computer science in order to facilitate the creation of powerful and importantly
easy-to-use computing environments. Emphasis must be paid particularly to the latter
feature because, whilst drawing from computer science, it must not require a computer
scientist to operate or it loses its power and certainly its appeal. It makes sense that
scientists’ productivity would increase if they where able to concentrate on solving their
target problem rather than digress through the challenge of problem solving the tools.
Relevant subdisciplines, which its research will need to be brought into PSE, include arti-
ficial intelligence, collaborative computing, graphics and visualisation, human-computer
interaction, networks and the World Wide Web, numerical analysis, object-oriented
computing, parallel and distributed computing, and software engineering.

3.1.3 Existing Problem Solving Environments

A number of PSE applications have been developed that bring together the neces-
sary hardware and software resources to operate in a particular domain without the
need for specialised knowledge of the underlying infrastructure. Examples of these
include BioSoftLab [84] a scientific laboratory environment, Geodes Elements [85] an

Chapter 3 Challenges in Problem Solving Environments 58

engineering-scientific workspace, and ’Parrallel (//) ELLPACK’ [86] a problem solv-
ing and development environment for partial differential equation based applications.
Whilst powerful, they are neither open, flexible or adaptable because they couple to-
gether resources in a domain-specific manner, often employ tightly-coupled bespoke
enabling technologies and provide only limited distributed infrastructures. This makes
integration and exploitation of computer resources, and collective collaboration at a
global scale an infeasible task. On the other hand, technical computing environments
such as Matlab2 provide more flexible general purpose PSE that enable bringing together
a broader range of scientific libraries and computational resources. However, they do
not provide the underlying distributed infrastructure to enable seamless integration and
sharing of resources. Nonetheless, as will discussed in section 3.3 they do provide a
suitable working environment within which scientists and engineers will be familiar that
can employed as the front-end or “portal” into a distributed PSE environment.

3.2 Study of the Computational Micromagnetics Problem-

Solving Process

Micromagnetics is the field associated with the study of magnetic characteristics of
materials at a sub-micron scale. Its research has direct application in improving the
data density of hard drives used in PCs, servers, and data repositories that store and
retrieve large amounts (Gigabytes to Terabytes) of digital data. It represents a field of
computational science in which the collaborative problem solving process would benefit
greatly from Grid-enable PSE in providing greater access and sharing of resources and
enabling technologies for seamless integration of tools and data. It serves as a suitable
scenario for study as it has a problem solving process often hindered by simulation tools,
which have issues that include non-standard operation, application-centric data formats,
tightly-coupled resource requirements, and poor interoperability with other tools.

3.2.1 Motivation and Problem of Interest

The technology behind high-capacity data storage media used in hard disk drives is
rapidly approaching fundamental physical limits. However, as hard drives capacities
creep up new ways are found to consume ever-greater amounts of space. People are
demanding larger hard drive capacities to store more of their high-quality multimedia
data and games. Businesses demand larger repositories to store more information on
customers and partners. Moreover, hard drive technology, once exclusive to the PC, is
increasingly being found in commodity goods from personal video recorders such as, the
Humax Television Hard Disk Recorder series, to fridge freezers such as LG Electronics’s
Digital Multimedia Fridge Freezers.

2Homepage of MatLab http://www.mathworks.com/

Chapter 3 Challenges in Problem Solving Environments 59

3.2.2 Overview of Problem-solving Process

To overcome the data storage limits of current hard drives, new research is required
to examine methods that improve the areal density (data bits per unit area) of the
magnetic media used to store data on a hard drive. Computational micromagnetic tools
OOMMF [87] and Magpar [88], based on the Finite Difference (FD) method [89] and
the Finite element/Boundary Element (FE/BE) method [90] respectively, have been
developed to accurately simulate the magnetic characteristics of very small particles.
Computational micromagnetics is a frontier problem. Analytical methods are inadequate
for complex geometries, being limited to the most primitive cases; therefore numerical
modelling and simulation using FD and FE/BE methodologies is the only viable solution.

3.2.3 Specific Environmental Requirements

Computational analysis using OOMMF and Magpar requires a significant amount of
resources, such as those provided by cluster computing environments. Most problems
require powerful tools (i.e. OOMMF and Magpar); hundreds of megabytes of RAM
and many gigabytes of data storage to run simulations and persist the results; and
plotting and visualisation tools to analyse the results in three-dimensions. In addition,
the problem solving of micromagnetic simulation is complex even outside the actual core
modelling code.

Within the field of micromagnetics research often involves close collaboration between
experimental and computational scientists. Experimental research in micromagnetics
is generally costly and imprecise because of the sub-micron scale of the particles that
form the basis for hard drive media. On the other hand, computational scientists can
get a greater amount of detailed high-resolution data on the magnetic characteristics
of differently shaped and arranged particles than would otherwise be possible in the
laboratory and at a fraction of the cost. Nonetheless, collaboration of both parties is
necessary in that experimental scientists play an essential role in verifying computational
results and models, in addition, to discovering new avenues of research and vice-a-versa.

3.2.4 Brief Overview of Hard Drive Technology

A hard drive, shown in figure 3.1, consist of a number of platters (disks). Each platter
has a planar magnetic surface to which digital data maybe stored and retrieved. Data is
written to the platter by transmitting an electromagnetic flux through a read-write head
that is very close to a magnetic material, which in turn changes its polarisation due to
the flux. The magnetic fields on the platter cause electrical changes in the read-write
head as it passes over a platter, which allows the reading of data.

Chapter 3 Challenges in Problem Solving Environments 60

Figure 3.1: Image4 of the inside of a hard disk (without cover) showing the read/write
head moving across the spinning platters.

In order to cover the whole platter in data, it is spun at a constant velocity and heads
move backwards and forwards across the platter reading and writing data. High data
transfer rates to and from the hard drive are achieved by spinning the platters faster,
typically from 5,000 to 15,000 revolutions per minute in modern PC hard drives. This
allows data transfer rates in access of 50MB/s. Consequently, the heads must be more
sensitive and accurate so they can read and write data faster.

Several platters may be stacked on top of each other to increase the data storage ca-
pacity of the hard drive. However, the high rotational velocity of the platters puts
large mechanical stresses on the driving motor and housing components, which limits
the number of platters that may be stacked in a single hard drive. On the other hand,
platters can be made with larger radii to increase their storage capacity. However, this is
no longer popular with hard drive manufacturers because it places greater strains on the
mechanical components of a hard drive requiring a reduction in spin speed to maintain
reliability whilst increasing the read/write latency as the head must travel further across
the platter to reach the data. In addition, large platters are unsuitable for small form
factor devices, such as cameras, laptops and hand held music/video players.

The head must float very close to the surface of the platter in order to detect the small
magnetic fields used to represent the data. Consequently, platters must be very smooth

4This image is the unmodified work of Alpha Six (http://www.flickr.com/photos/alphasix/).
It is licensed under the Creative Commons Attribution ShareAlike License version 2.0:
http://creativecommons.org/licenses/by-sa/2.0/

Chapter 3 Challenges in Problem Solving Environments 61

Figure 3.2: Illustration6 of the magnetic surface of a hard disk platter showing its
operation, in the case of, binary data encoding using frequency modulation.

and flat so that it can spin at high velocities without vibrating and allow the head
to move freely without striking the surface and destroying the data. In addition, the
platter must be very rigid so that in does not deform under the high rotational velocities.
Sophisticated manufacturing processes are necessary in order to produce platters that
meet the high data-density and data-transfer requirements of modern hard drives.

3.2.4.1 New Manufacturing Approaches

Traditionally, in order to produce platter shaped magnetic media suitable for high-
speed, high-capacity hard drives, manufacturers use a sputtered non-patterned media
fabrication process. A piece of glass or aluminium that provides the base rigidity of
the platter is cut into a flat round disk, coated with a substrate then ’sputtered’ (i.e.
sprayed) with very small particles (also known as grains, see figure 3.2) of ferromagnetic
material, such as cobalt-chromium-platinum-tantalum. The substrate provides the glue
that bonds the particles to the base platter material. The sputtering process enables
the application of a sub-micron thick layer, which is required for the platter to store a
high magnetic density of data and ensures an even flat layer of the magnetic material
faces the head.

However, the sputtered non-patterned media fabrication process does not, as its name
suggests, control the shape or arrangement of magnetic particles on the platter. First
developed in the 1970s, the process was initially designed to produce hard drive media
with capacities of a few megabytes. In order to squeeze more out of the process, manu-
facturers have developed read-write heads capable of detecting magnetic flux at close to

6This illustration is the unmodified work of Allan Haldane and License under GNU Free Documen-
tation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. Subject to disclaimers.

Chapter 3 Challenges in Problem Solving Environments 62

Acronyms Definitions
gcc Gnu Compiler Collection
g77 GNU Fortran 77 compiler
zlib File compression library
ParMETIS Parallel Graph Partitioning and Fill-reducing Matrix Ordering
SUNDIALS SUite of Nonlinear and DIfferential/ALgebraic equation Solvers
ATLAS Automatically Tuned Linear Algebra Software
Python Programming language
netgen Automatic 3D tetrahedral mesh generator
libpng Image format reference library
MPICH Message-Passing Interface
LAPACK Linear Algebra PACKage
sh Bourne shell scripting language
PETSc Portable, Extensible Toolkit for Scientific Computation
AVS UCD Meshing file format
mpmaker Script to generate material input files
mifmaker Script to generate micromagnetic input files
magpar Parallel Finite Element Micromagnetics Package
TAO Open source implementation of Common Object Request Broker Architecture
OOMMF Object Oriented MicroMagnetic Framework
Tcl/Tk Programming language and graphical user interface toolkit
xmgrace Plotting tool
VTK Visualization ToolKit
MayaVi Scientific data visualiser

Table 3.1: Key for micromagnetic process in figure 3.3.

the fundamental limits of the media created by the sputtered non-patterned media man-
ufacturing process. However, research has shown [91] that this manufacturing process
is rapidly reaching fundamental limits.

It has been conceptually demonstrated [92, 93] that a patterned media manufacturing
process - controlling the shape and arrangement of the particles that cover the hard
drive platters - can increase areal densities by two orders of magnitude; increasing a
single platter’s capacity from a 100 Gigabytes to Terabytes. Research is necessary to
determine what shape and arrangement of particles produce the greatest areal densities
whilst being cost effective to produce.

3.2.5 Computational Research Tools

Computational Micromagnetics makes use of tools such as OOMMF and Magpar to
simulate the magnetic properties of particles that form the media for hard drive platters.
There are two core strategies for simulating the shape and arrangement of small magnetic
particles. The fundamental difference between the FD and the FE/BE methods, in this
case, is that where FD problems have a fixed simulation cell size to describe the physical
geometry of the particle system, FE/BE problems have a variable-sized mesh for the
same.

Chapter 3 Challenges in Problem Solving Environments 63

Python

mifmaker

Post-processing

materials database

mpmakerPETSc

MIF file

sh

OOMMF

Magnetisation vector dataHysteresis data Tcl/Tk

Data store

Compute resource

MayaVi Renderman-compliant raytracer

magpar

xmgrace

gcc

ATLAS

MPICH

ParMetis SUNDIALSzlib

TAO

libpng

VTK

Numerical data Graphical data

magpar options file magpar material parameters

LAPACK

g77

netgen

mesh transformation

AVS UCD format mesh

Figure 3.3: Interrelationships between packages and tools in micromagnetic mod-
elling, simulation and analysis process as used in the research work by Dr. Richard
P. Boardman [94]. Items shaded purple indicate stored data, red and blue indicate

dependent packages. See table 3.1 for the key.

Chapter 3 Challenges in Problem Solving Environments 64

MIF file

OOMMF VTK

xmgrace

magpar options file

magpar

magpar material parameters

AVS UCD format mesh

Figure 3.4: An example usage of the software tools in a micromagnetic simulation and
visualisation. Figure shows the input files in purple and tools in red. Arrows indicate

the flow of data between tools.

Packages, such as OOMMF and Magpar, respectively offer FD and FE/BE numerical
modelling for micromagnetic research. Whilst open source, each package has its own
specific problem setup strategies, execution requirements, and results post-processing
that require a loose framework in order to bring a degree of unification and aid effec-
tive tool usage. Figure 3.3 shows the interrelationships and interdependencies of other
packages and tools with OOMMF and Magpar whilst figure 3.4 shows an example of the
tools being used together to perform a simulation and visualisation.

3.2.5.1 Object-Oriented Micromagnetic Framework (OOMMF)

The Object-Oriented Micromagnetic Framework (OOMMF) is a collection of applica-
tions for solving micromagnetics problems. Its applications are designed to be portable,
flexible, and extensible, with user-friendly graphical interface. The applications are
written in C++ and Tcl/Tk. OOMMF targets a wide range of heterogonous computing
platforms including Linux and Windows NT.

OOMMF version 2.1 includes an application called the OOMMF eXtensible Solver (Oxs).
This is an extensible micromagnetic computation engine capable of solving problems
defined on three-dimensional grids of rectangular cells holding three-dimensional spins.
Oxs provides the ability to simulate and study in three dimensions materials’ magnetic
properties at scales and of geometries not currently possible in the laboratory. Oxs is
particularly useful for scientists who are studying the problem of improving data-density
by altering the shape, size, and arrangement of very small ferromagnetic particles on
patterned media-based hard drives.

Problem definition for Oxs is accomplished using input files in the MIF 2.1 format.
An example of a MIF file is shown in listing 3.1. The MIF file specifies, using the

Chapter 3 Challenges in Problem Solving Environments 65

Extension Lines Definitions
Oxs BoxAtlas 8-11 Specifies the atlas of geometric volume of spaces
Oxs RectangularMesh 14-17 Specifies the rectangular mesh to use
Oxs UniformExchange 19-21 Specifies the exchange coefficient across all spaces
Oxs UZeeman 23-28 Specifies the uniform (homogeneous) applied field energy
Oxs Demag 30-30 The standard demagnetisation energy term
Oxs EulerEvolve 32-35 The evolver responsible for updating the configuration

from one step to the next
Oxs TimeDriver 37-55 The driver for controlling time evolvers
Cone 57-67 Specifies the shape of the magnetic particles

Table 3.2: Table describing the Oxs extensions employed in listings 3.2. See OOMMF
User’s Guide [87] for full description of the extensions.

TCL/TK language, how Oxs should carry out the micromagnetic simulation. Contained
within the MIF file are parameters and algorithms that define the materials magnetic
characteristics, the arrangement of particles, and the shape, size and number of cells
used to represent each particle as a FD mesh. Scientists can adapt the values of these
properties to study, for instance, how changing the shape of a small piece of iron e.g.
from a cube to a cone, affects its magnetic characteristics.

Scientists can also define in the MIF file what solution methodology and how Oxs should
use it to simulate the magnetic particles. This is done through selection of code libraries
and modules that contain solution methodologies necessary to solve the target prob-
lem. Methodologies such as Landau-Lifshitz-Gilbert (LLG) [10], produce more realistic
simulations, whilst others produce less realistic results but converge on a solution more
rapidly. The LLG must be iterated to within a certain stability tolerance to ensure the
correctness of results. The Conjugate Gradient method, whilst suitable for the general
case, with certain system geometries, such as tori, it cannot converge on a solution,
which consequently causes perpetual computation. Therefore, more complex solution
methodologies such as LLG are required to reach a convergence. Typically, depending
on the complexity of the system and solution methodology defined in the MIF problem
statement, the calculation of the systems magnetic characteristics may take from hours
to weeks to produce.

Oxs interprets the information in the MIF and simulates the magnetic system. Oxs
outputs a set of result files containing the magnetic characteristics of the system’s cells
in vector format (OMF) and the overall system in tabular format (ODT), examples of
which are shown in listings 3.3 and 3.4 respectively. Contained within these files are
the sizes and directions of the magnetisation vectors for the cells, and holistic system
attributes. Typically, scientists then take these results and post-process those to produce
hysteresis graphs and three-dimensional visualisations of the particles to aid in their
analysis. The latter of which requires significant computational processing as discussed
in section 3.2.6.

Chapter 3 Challenges in Problem Solving Environments 66

1 # MIF 2 .1
2
3 set pi [expr 4∗atan (1 . 0)]
4 set mu0 [expr 4∗$pi∗1e−7]
5
6 set TIMEDRIVER 0
7
8 Spec i f y Oxs BoxAt las :a t las {
9 xrange { 0 5E−08 }

10 yrange { 0 5E−08 }
11 zrange { 0 8E−08 }
12 }
13
14 Spec i f y Oxs RectangularMesh:mesh {
15 c e l l s i z e { 5e−009 5e−009 5e−009 }
16 a t l a s : a t l a s
17 }
18
19 Spec i f y Oxs UniformExchange {
20 A 1 .3e−011
21 }
22
23 Spec i f y Oxs UZeeman ”
24 mu l t i p l i e r [expr 0 .001 /$mu0]
25 Hrange {
26 { 500 . 0 0 . 0 0 −500.0 0 . 0 0 500 }
27 }
28 ”
29
30 Spec i f y Oxs Demag {}
31
32 Spec i f y Oxs EulerEvolve {
33 alpha 0 . 5
34 start dm 0 .01
35 }
36
37 Spec i f y Oxs TimeDriver {
38 basename 5E−08−8E−08.mif 0008
39 evo lve r Oxs EulerEvolve
40 stopping dm dt 0 .01
41 mesh :mesh
42 s tage count 0
43 s t a g e i t e r a t i o n l i m i t 0
44 t o t a l i t e r a t i o n l i m i t 0
45 Ms { Oxs Sc r ip tSca l a rF i e ld {
46 a t l a s : a t l a s
47 script { Cone 795774 .715459 }
48 }
49 }
50 m0 { Oxs UniformVectorField {
51 norm 1
52 vector { 1 . 0 0 . 0 0}
53 }
54 }
55 }
56
57 proc Cone { Ms x in y in z i n } {
58 set x [expr 2 .∗$x i n − 1 .]
59 set y [expr 2 .∗$y i n − 1 .]
60 set z [expr 2 .∗ $ z i n − 1 .]
61 set l e f t s i d e [expr ($x∗$x) + ($y∗$y)]
62 set r i g h t s i d e [expr (($z+1)/2) ∗ (($z +1)/2)]
63 i f { $ l e f t s i d e <= $ r i g h t s i d e } {
64 return $Ms
65 }
66 return 0
67 }
68
69 # set some ou t pu t s
70
71 Dest inat ion arch ive mmArchive
72
73 Schedule DataTable a rch ive Stage 1
74 Schedule Oxs TimeDriver : :Magnet izat ion arch ive Stage 1

Listing 3.1: Example MIF task code to model cone shaped particles. MIF files are
written in the TCL language. To reduce development time the code was auto-generated
using a Python script which is run from the command line as shown in listing 3.2.

Table 3.2 gives a description of the extensions employed in this MIF example.

Chapter 3 Challenges in Problem Solving Environments 67

1 X: \mm\ s c r i p t s \mifmaker . py −−cone −−x=5E−08 −−y=5E−08 −−z=8E−08 −−high=500
2 −−low=−500 −−name=5E−08−8E−08 . mif −−s t age s=500 −−c e l l=5E−09
3 −−d i r e c t i o n=down −−exchange=1 . 3E−11 −−magnet i sat ion=795774 . 715459

Listing 3.2: MIF code in listing 3.1 was created with a Python script called MIF-
Maker which was written by Richard Boardman and Hans Fangohr at University of
Southampton. It was run from the command line with the above design variable input

arguments.

1 # OOMMF: i r r e g u l a r mesh v0 . 0
2 ## File : sample . ovf
3 ## Boundary−XY: 0 . 0 0 . 0 1 . 0 0 . 0 1 . 0 2 . 0 0 . 0 2 . 0 0 . 0 0 . 0
4 ## Grid step : . 25 . 5 0
5 # x y z m x m y m z
6 0 . 01 0 . 01 0 . 01 −0 . 35537 0 . 93472 −0 . 00000
7 0 . 01 1 . 00 0 . 01 −0 . 18936 0 . 98191 −0 . 00000
8 0 . 01 1 . 99 0 . 01 −0 . 08112 0 . 99670 −0 . 00000
9 0 . 50 0 . 50 0 . 01 −0 . 03302 0 . 99945 −0 . 00001

10 0 . 99 0 . 05 0 . 01 −0 . 08141 0 . 99668 −0 . 00001
11 0 . 75 1 . 50 0 . 01 −0 . 18981 0 . 98182 −0 . 00000
12 0 . 99 1 . 99 0 . 01 −0 . 35652 0 . 93429 −0 . 00000
13 }

Listing 3.3: Example vector output of Oxs.

1 # ODT 1 . 0
2 # Table Start
3 # Ti t l e : This i s a smal l sample ODT f i l e .
4 #
5 ## This i s a sample comment . You can put anything you want
6 ## on comment l i n e s .
7 #
8 # Columns : I t e r a t i o n ”Applied F ie ld ” {Total Energy} Mx
9 # Units : {} ”mT” ”J/mˆ3” ”A/m”

10 103 50 0 . 00636 787840
11 1000 32 0 . 00603 781120
12 10300 −5000 0 . 00640 −800e3
13 # Table End
14 }

Listing 3.4: Example tabular output of Oxs.

3.2.5.2 Application of OOMMF for Finite Dimensional analysis of Pat-

terned Media

The FD problem solving process (the OOMMF path in figure 3.3) starts with problem
initialisation stage where, for example, data and information is drawn from the scientist,
databases and files and collated into the MIF problem specification file.

Once a MIF file has been created OOMMF must be configured for execution on compu-
tational resource such as a cluster of PCs. This will involve the selection of Oxs binary,
which matches the platform of the available computational resources and creation of
scripts to initiate the environment, which involves, for instance, specifying the location
to modules and working directory such that Oxs may execute. Unfortunately, OOMMF
only supports sequential execution on single processor computers and therefore cannot
take advantage of parallel HPC clusters. However, different MIF scripts may be ex-
ecuted concurrently in a batch mode or HTC environment that, for example, ideally
suits simulation of micromagnetic systems of different sizes to explore parameter sets
and identify system trends.

Chapter 3 Challenges in Problem Solving Environments 68

OOMMF produces dataset results in the form of ASCII or binary encoded magnetisation
vector data suitable only for computer consumption. Effective analysis of these results
inevitably requires visualisation however, first OOMMF’s output data must be translated
into formats suitable for three-dimensional rendering packages such as, VTK [95] and
graphing tools such as, Gnuplot [96].

3.2.5.3 Application of Magpar for Finite Element/Boundary Element anal-

ysis of Patterned Media

Modelling and simulation of micromagnetic systems using the FE/BE method involves
a more complex solving process than the FD method. Meshes passed to Magpar must
be in one of two application-specific file formats, see figure 3.4, that it understands. In
addition, Magpar requires a file containing the simulation parameters and another file
containing the material parameters for the target micromagnetic system. The Magpar
software supports simulation of huge micromagnetic systems over parallel HPC clusters.
The datasets that Magpar generates can be combined with the input geometry to gen-
erate a complete data file that can be then translated into an appropriate format for
visualisation.

3.2.6 Performance Challenges

Micromagnetic research into the shape of particles is severely computationally bound.
The Oxs application of OOMMF models geometrically-static systems i.e. where the size,
geometry, and arrangement of particles remains constant throughout the simulation. In
order to do parametric studies or optimisation where, for instance, a scientist is aiming
for high remanence (magnetic “memory”) by varying the height and diameter of cone
shaped particles, Oxs must run once for each step change in the particle’s physical size.

In the case of cuboidal particle geometries, there are three alterable dimensions: width,
height, and depth. So for example, with a edge length range of 100nm to 200nm and a
parameter step change of 5nm then to do a full parameter study Oxs must be run eight
thousand times. If a single simulation takes at best an hour to compute in the example
we have just given, sequentially running eight thousand simulations would take almost
a year to complete. A dedicated compute cluster of reasonable size, for example 100,
working exclusively and uninterrupted would take just over 3 days to complete the task.
However, cuboids are the simplest of the three-dimensional geometries; more complex
geometries, such as particles with curved surfaces, would require greater numbers of
simulation cells to accurately model and would take significantly longer to study.

The only reasonable way to perform these forms of micromagnetic parameter studies or
optimisations is to employ the computational power of massive clusters of computers.

Chapter 3 Challenges in Problem Solving Environments 69

Unfortunately, clusters of these sizes do not exist in large enough quantities. Con-
sequently, micromagnetic research into particle shapes has been held back by lack of
compute resources.

3.2.7 Selection and Usage of Code libraries in OOMMF and Magpar

The greater maturity of OOMMF means there is more extension code contributed by
the computational physics community than for Magpar, and as such OOMMF supports
a larger number of simulation points, for example thermal effect modelling, and its
comparative ease-of-use means it enjoys a wider following.

Specific extensions to individual packages often require specific configuration of the pack-
age and in some cases a complete rebuild. In addition, they often have specific dependen-
cies on other libraries requiring complex build processes to ensure correct functionality.
Semi-automatic tools to aid in the update (to fix bugs or add functionality) and addi-
tion of new code libraries would provide a solution to complex configuration or rebuilds.
However, particular code libraries offer specialised functionality that has its own pe-
culiar mode of operation and behaviour. Knowledge of the abilities of package comes
from experience and study. Knowing what code libraries offer might be missed result-
ing in replication of already well-optimised code or misuse of libraries resulting in poor
performance or incorrect results.

Parameterisable tool types, such as optimisers [97], require the experience and knowledge
of the user to facilitate the production of results. Many class problem types have common
parameters and options that speed up their solution process or produce better results. In
addition, selection of solution methodologies also requires the experience and knowledge
of the user in order to gain the best results. However, the majority of scientists carry out
their work in isolation without the usage of shared knowledge repositories or knowledge
gathering tools. Therefore, anyone inexperienced with particular problem types may
only discover which solution methodologies, parameters or options are optimal through
trial and error. Tools exist, such as OPTIONS7 [98], to aid in the selection of parameters
and options. Unfortunately, these tools are often proprietary, lack common standard
support and modes of operation. Accordingly, these require complex methods, such as
scripting, to enable their interaction with other tools.

3.2.8 Specific Challenges of driving the Workflow

The major challenge with working with bespoke simulation tools such as OOMMF and
Magpar is the complexity involved in the setup process. Data and information necessary

7Software developed by Prof. Andy Keane, University of Southampton -
http://www.soton.ac.uk/ ajk/options/welcome.html

Chapter 3 Challenges in Problem Solving Environments 70

to solve the problem must be collated and represented to the tools in a form understand-
able by OOMMF or Magpar. In a typical scenario of computational micromagnetics, a
research scientist will do the following things:

1. Problem Initialisation,

2. Simulation Execution, then

3. Results Post-processing

All three stages are time consuming and complex exercises for the scientist. This is not
including time taken to compute the simulation. To compound the issue, for parameter
studies, in the case of OOMMF, the three stages must be repeated for each step change
in a particle’s geometry.

Problem Initialisation can broken down further into the following stages:

1. Decide the number, size, arrangement and material of the particles,

2. Select the overall solution methodology (FD or FD/BE),

3. Create or decide on the 3D mesh representation of the particles,

4. Choose the simulation tool (only OOMMF or Magpar),

5. Code or select appropriate solution methodologies for the magnetic system, then

6. Write the simulator specific problem statement file providing links to the location
or explicitly specifying the required particle data, meshes and solution methodolo-
gies.

Difficult choices must be made on a number of points including which modules, solution
methodologies, meshes, and tools should be employed. An error in choice often ends in
poor results and no guides exist to lead the scientist through the problem initialisation.
A portal or front end application could aid scientist through automation of much of the
initialisation process. Many of the tedious error prone setup tasks could be automated
such as the creation of the MIF file and selection of meshing approaches.

In addition, semi-automatic and automatic selection of solution methodologies could
be provided through a portal with knowledge capabilities. A repository of gathered
meta-data built from previous problem initialisations could be utilised by a portal to
make suggestions on which solution methodology and optimisation parameters produced
high quality results for types of micromagnetic systems. This would require gathering
information from the post-processing stage and scientist whom must make the judgement
on the quality of results produced. The knowledge repository must be feed information

Chapter 3 Challenges in Problem Solving Environments 71

from all three stages in the form of meta-data such that the portal can easily cross-
reference problem initialisation, execution configuration, and post-processing results in
order to make possible intelligent suggestions to the scientist.

Simulation execution has a shorter but equally complex process as follows:

1. Select or compile the simulator binary for the target execution platform,

2. Write the script to setup the environment for the simulator on the target execution
platform,

3. Specify the resource requirements to run the simulation job, then

4. Schedule the simulation job and monitor its progress

The choice of execution platform and resource requirements may slow or prevent running
of OOMMF or Magpar. In the case of Magpar, which requires compilation of its core
simulator and its dependent modules for its target execution environment, if an execution
platform is chosen which does not have support for any required software dependency or
solution methodology module, Magpar will fail. For both OOMMF and Magpar, if the
scientist request too low resource requirements then its is possible that the simulation will
run out of memory or hard-disk space before completion and fail. This is a serious issue
because simulation jobs may run for days or weeks before failing and the scientist would
lose valuable time or their computer resource allocation. Again, a portal or similar front-
end application could help select suitable execution platforms that match the simulation
resource requirements, automate the process of creating environment setup scripts, and
schedule the job.

Post-processing of results is a potentially more complex and resource hungry task than
the simulation itself. Effective analysis of simulation results requires their collation,
translation, and rendering in order to produce graphs and visualisation suitable for hu-
man study. The raw data produced by OOMMF and Magpar is only computer readable
because of its format, encoding and often great size. ODT files of OOMMF are easily
convertible to formats suitable for graphing because of their tabular nature and small
data size. However, OMF vector based files require not only translation but also signif-
icant amounts of rendering time using tools such as Povray, to process the Gigabytes
of vector data to produce three dimension representations of parameter studies. Ren-
dering tools such as Povray, have similar complex problem initialisation and execution
requirements as the simulation tool; requiring the problem specification and data to be
built and specified in an application-centric file format. In addition, compute clusters
are often necessary to reduce the processing time for 3D visualisations. Consequently,
in the field of computational micromagnetics 3D visualisation is rare. We now analyse
the specific challenges of the computational micromagnetic problem solving process.

Chapter 3 Challenges in Problem Solving Environments 72

3.2.8.1 Understanding, Operation and Extension of OOMMF and Magpar

OOMMF’s and Magpar’s open object-oriented (OO) extension and application frame-
work is ideal for maintenance, addition of improvements and new code libraries. How-
ever, OO development paradigm and its three-tired API structure tightly-couples the
functionality to the resource requirements. Indeed, its whole architecture as a stan-
dalone executable tool makes impossible the separation of compute from functionality,
which is necessary in order to facilitate efficient resource usage an sharing, and platform
interoperability.

OOMMF’s and Magpar’s operation and behaviour are domain specific which is not
unreasonable as they are designed as tools that allow FD and FE/BE micromagnetic
simulation studies. However, their operation and behaviour of the simulation tools differs
significantly at runtime. Whilst the Oxs simulation tool of OOMMF is standalone,
Magpar depends on external software packages for its execution. Oxs exhibits features
of SO by being independent of outside dependences allowing it to be execute on a
greater number of computational resources types. However, Magpar’s tight-coupling to
external dependencies means its execution is restricted to only the type of computational
resources supported by all the required software dependencies. In chapter 7 we employ
OOMMF instead of Magpar because not enough computational resources existed with
the required platform or operating system for Magpar for the timely completion of
parametric studies.

3.2.8.2 Meshing of Particles in OOMMF and Magpar

The relatively simpler FD approach employed in OOMMF, as compared to FE/BE
approach employed in Magpar, uniquely enables OOMMF to automate the particle
meshing process for the scientist. This removes one difficult step enabling the scientist
to concentrate on other parts of the problem process solving. Nonetheless, scientists
often use the powerful yet more complex tool Magpar for particle geometries with curved
surfaces. This is because the FD approach relies on fixed sized cells, which is less accurate
then than the variable cell size of the FE/BE approach in describing particle geometries
with curved surfaces such as cones and spheres.

However, because of the potential complexity variable cell size of cells of the FE/BE
approach, Magpar cannot automate the process of meshing. The mesh geometry of a
micromagnetic system must be passed to Magpar. Meshes are usually created graphically
with a computer-aided design program capable of creating FE/BE meshes however; its
level of quality affects the ability to produce correct simulation results. A low quality
mesh of, for example, too few, or badly positioned or arranged cells will adversely affect
the quality of the results from the numerical model. Consequently, scientists often choose
to use OOMMF over Magpar because of the formers automatic mesh generation.

Chapter 3 Challenges in Problem Solving Environments 73

3.2.8.3 Data Representations and File Formats in OOMMF and Magpar

Generally, tools will have no understanding of the interface, operation or behaviour of
any of the other tools. In addition, many of these tools lack support for common data
formats and transferral standards. Typically, the scientist would create custom scripts
or macros to coordinate execution of tools and, if necessary, handle the translation and
transferral of data between tools.

The problem initialisation for OOMMF requires knowledge of a number languages
including Tcl/Tk, and requires detailed knowledge of the operation and interface of
OOMMF in order for its most effective usage. The process of initialisation can be eased
through automation of the MIF’s geometry and description and material through script-
ing languages such as Python or sophisticated operating system shells. However, again
it requires detailed knowledge of the inner working of OOMMF and its MIF file format,
often requiring the user on a need basis to add or modify the scripts to handle new
geometries or platter materials. Whilst effective for simple cases, no such tools exist for
the general case or Magpar, which requires the further step of mesh generation.

3.2.8.4 Integration of OOMMF and Magpar with Compute Clusters

OOMMF is available in either a pre-compiled binary format or as source code that can
be optimised for specific architectures. No out-of-the-box binary executable exists for
Magpar, since its dependent libraries are very heavily optimised for specific computer
architecture and operating system platform.

The overhead in actually getting Magpar to execute is significantly greater than for
OOMMF as high level optimisations within the numerous dependent libraries of Magpar
make production of a generic binary impractical. Consequently, a long difficult build
process must be repeated for each architecture within a heterogeneous cluster; even the
subtle differences between Intel Pentium III and IV processors need a different build of
Magpar.

Scientists unfamiliar with building large software packages would benefit from a cata-
logue of pre-compiled binaries however; they would still be responsible for selecting the
correct version of the package for the target computer. With the multitude of combi-
nations of architectures and platforms possible on a heterogeneous cluster the task of
software deployment and consequent effective resource harnessing becomes unrealistic
as scale of the task increases.

Chapter 3 Challenges in Problem Solving Environments 74

3.2.9 Summary of Computational Micromagnetics

To summarise, scientists aspire to produce results quickly, correctly and of a high quality.
However, the problem-solving environment often gets in the way of this. In the com-
putational micromagnetic problem-solving process, the scientists have to contend with
coupling of heterogeneous hardware and platform specific software, which each have
their own environment requirements, file formats, data models, operation, and APIs.
Moreover, the scientist is often forced to manually select or create the solution method-
ologies, mesh models, and material data. Much of the processes described necessitate
that the researcher combine the necessary hardware and software resource in an ad hoc
manner to achieve a result.

3.3 Geodise: A Service-Oriented Engineering Optimisa-

tion and Design Search PSE

Geodise [99, 100] is a current state-of-the-art Grid-enabled PSE that provides a generic
integration framework for computation and data intensive MDO tasks which maintains
the autonomy of each individual domain expert. Its service-oriented style makes it an
ideal research topic on the application and behaviour of Web Services in Grid com-
puting from the perspective of computation, data management, software applications,
intelligent knowledge repository, and service integration.

Engineering optimisation and design search is a process whereby existing engineering
modelling and analysis capabilities are exploited to yield improved designs. In the next
2-5 years intelligent search tools will become a vital component of all engineering design
systems. Such facilities will steer the user through the process of setting up, executing
and post-processing design search and optimisation activities in a variety of disciplines.
A major driving force in these developments is the need to allow distributed design
teams from multiple enterprises to share design and analysis capabilities over the Inter-
net. Such capabilities may include various specific engineering design and optimisation
applications, reference data or job processing power, with each implemented using dif-
ferent technologies, and deployed in a different computational environment. In a typical
scenario of, for example, wing design, an engineer may couple together Computer Aided
Design (CAD) tools, analysis codes for Computational Fluid Dynamics (CFD), or Finite
Element Analysis (FEA), and tools for optimisation. The resulting sequence of com-
putations may be performed on local or national machines, or on pay-per-use Internet
cluster resources. And the resulting data sets may be stored temporarily or permanently
on a remote storage service.

Chapter 3 Challenges in Problem Solving Environments 75

3.3.1 Vision and Design of Geodise

Geodise holds a service-oriented vision of the Grid, in which all resources are regarded
as services. The following services involved in engineering optimisation and design search
operations are identified by Geodise:

3.3.1.1 The Computation Service

The computation service is concerned with sharing and management of computational re-
sources that are either excessive or not generally available. Complicated business/appli-
cation processing can therefore be outsourced through this service to resource providers.
This allows more reasonable allocations and more efficient usage of resources. The most
important feature that the computation service needs to provide is a generic representa-
tion that is independent of the underlying resource providing mechanisms, so that it can
be deployed over various kinds of computation systems, and be consumed by different
clients. An execution environment in the style of a ’sandbox’ is also valuable as it creates
a generic model for computation jobs and enforces security for the underlying systems.

3.3.1.2 The Data Service

Data in Grid computing can generally be divided into two categories: data resources
located on the often distributed storage devices, and meta-data that is used to describe
the stored data. In Geodise, data service components provided to higher level applica-
tions manage data resources on the Grid through XML based meta-data, which provides
information not only on the location of the data, but also its characteristics [101]. This
can greatly improve the efficiency of data management and data search. Data storage
supported by the data services can be in the form of database, file store, or other storage
mechanisms depending on purpose and performance.

3.3.1.3 The Application Services

Application services in Geodise provide access to design and analysis functionalities
required for engineering design optimisation, including design of experiment, geometry
generation, and response surface modelling. The use of service-orientation makes it
possible to integrate best available technologies from tools such as ProEngineer 8, OP-
TIONS [102], and various CFD analysis codes. Whilst some tools may run adequately
on the local server, the application services often need to make use of the computation
service and the data service to ensure quality of service (QoS) for compute and data
intensive operations.

8Home page of ProEngineer http://www.proengineer.com/.

Chapter 3 Challenges in Problem Solving Environments 76

3.3.1.4 The Optimisation Service

Optimisation technologies such as those provided by OPTIONS are also provided as
services in Geodise. At the start of the optimisation process, the engineer needs to pro-
vide initialisation information- in particular the analysis codes to be coupled together,
the permitted methods by which a design may be modified, and an objective function
by which each design may be evaluated. The Optimisation Service will then be called
to coordinate the maximisation (or minimisation) of the objective function to improve
the design. Many optimisation operations can be divided into several stages, which re-
quire single or multiple evaluations of the objective functions. Our Optimisation Service
therefore provides strong support for state management so that after successful com-
pletion of each transactional stage, the optimisation’s related state and current data is
automatically maintained. When necessary, the data service can also be used to store
and archive the optimisation state information.

3.3.1.5 The Knowledge Service

The knowledge service in Geodise provides intelligence that guides the user through
the process of combining the different components required to perform sophisticated
operations, such as efficient engineering optimisation and design search. The service also
has built-in knowledge repositories based on the operation record data of each service.
For example, by querying the records of past optimisation operations, new heuristics
about optimisation can be deduced and used to improve future design processes. This
may also be achieved using formal knowledge elicitation methods and held in rule bases.
User activities may also create domain specific knowledge that they may wish to archive
and reuse in various ways to enhance their capabilities in the future. Various knowledge
management and re-use tools are therefore called for to underpin this process.

The design of the Geodise system is based on the services described above is shown
in figure 3.5. An important component apart from the resource services is the portal,
which is the point of access to the entire system. The portal provides a problem solving
environment (PSE) to the engineers to locate and combine the resources they require
with Grid-based, secured and seamless access to all the services. Currently, Matlab
is selected as the environment in which the Geodise PSE is built. Matlab package
provides a language for numerical computation, built-in math and graphics functions and
numerous specialised toolboxes for advanced mathematics, signal processing and control
design. It is widely used in academia and industry for algorithm prototyping, and for
data visualisation and analysis. From version 6.5 Matlab also provided a number of Just-
In-Time (JIT) acceleration technologies to improve the performance of native Matlab
code, while since the latest version 7 the performance of native code can even match
that of the compiled code which involves translating Matlab code to C and recompiling
natively.

Chapter 3 Challenges in Problem Solving Environments 77

APPLICATION
SERVICE

PROVIDER
COMPUTATION

PORTAL
Reliability
Security

QoS

OPTIMISATION

Engineer

Parallel machines
Clusters
Internet Resource Providers
Pay-per-use

Optimisation
archive

Intelligent
Application
Manager

Intelligent
Resource
Provider

Licenses
and code

Session
database

Design
archive

CAD System
CADDS
IDEAS
ProE

Analysis
CFD
FEA
FM

OPTIONS
System

Knowledge
repository

Traceability

Legend:
Exemplars

Issues

Visualization

GLOBUS/Condor/OGSA

Ontology and
Language for
Engineering &
Optimisation and
Design Search

Figure 3.5: Grid Enabled Optimisation and Design Search for Engineering

3.3.2 Implementation of Geodise

To make the resources involved in engineering design optimisation appear on the Grid,
a service layer is introduced which contains middleware components that handle the
service communications and interact with the actual resource systems. Middleware
technologies most commonly used in Geodise are based either on the Microsoft .NET
Framework 9, or the J2EE [103] (Java 2 Enterprise Edition) platform, including Web
Service hosting systems such as the Microsoft Internet Information Services 10 (IIS), and
binary compatibility technologies such as JNI [16] (Java Native Interface). As described
before, the portal to the Geodise system is embedded in Matlab. To make services
in Geodise accessible to the Matlab scripting environment, clients for the services are
all built using Java so that they can run natively in Matlab’s own JVM (Java Virtual
Machine) and can therefore be used in the same way as normal Matlab commands. Based
on that, toolkits are made containing customised commands that perform transactional
operations on the services [104, 100]. The service clients can also be used in other
scripting environments that support Java, for example, Jython.

9Home page of Microsoft .Net Framework http://msdn.microsoft.com/netframework/.
10Home page of Microsoft IIS http://www.microsoft.com/WindowsServer2003/iis/default.mspx

Chapter 3 Challenges in Problem Solving Environments 78

3.4 Summary

This chapter has studied the problem solving process, identifying its current challenges,
and presented current solutions. Grid-enabled PSEs offer scientists and engineers with
a means to compose complex workflows and loosely couple together resources and tools
that allow them to focus on the problem at hand rather than intricacies of the underlying
technologies. However lack of standards and poor interoperability and integration of
tools remain as a barrier to creating environments suitable for problem solving.

In order to prove the feasibility of service-oriented Grid computing and to better un-
derstand how Web Services technologies should be applied in practical Grid problems,
the research work introduced by this thesis has been based on the Geodise project,
which aims to apply and develop Grid technologies to solve concrete engineering design
optimisation problems. Chapters 5 and 6 present in detail two of the Geodise services
representative of the work on service-oriented Grid computing, namely, the computa-
tion service and the Optimisation Service. These services where developed outside the
main Geodise project development as proof-of-concept however the Computation Web
Service was later integrated into the computational toolkit to provide remote access to
Condor through Matlab.

Chapter 4

Solution Methodology

Here we discuss various solution methodologies for solving the challenges faced by Grid-
enabled PSEs. We attempt to with the methodologies and rules of thumb described here
to show how services can and should be built and aggregated in order to better provide
a loosely-coupled environment for problem-solving.

4.1 General Methodologies

4.1.1 Comprehensive Definition for Grids

Because of the increased popularity of Grid-related projects and ideas, the need for a
comprehensive definition has arisen. Ian Foster, in his paper “What is the Grid? A Three
Point Checklist” [105], mentions the existence of many “types” of Grid - computational
Grids, biological Grids, knowledge Grids, campus Grids and many more. He makes
three valid points - coordination of resources through decentralisation, open-standards
general purpose protocols and interfaces to address fundamental issues, and quality of
service - and then points out that Web Services with Open Grid Service Architecture
(OGSA) “InterGrid” protocols [106] should be the interoperability standard. However,
we wish to expand on this and not just limit the Grid to Web Service interoperability -
for reasons of performance or legacy a standard mechanism for interoperability requires
implementation in addition to web services. This could be used to provide, for exam-
ple, translation, firewall tunnelling and common description of services through OGSA
wrapping, such as the Condor Web Service. This addresses the important issues of
transparency.

79

Chapter 4 Solution Methodology 80

4.1.2 Transparency, Discovery and Integration

Transparency provides the ability to work with the Grid; it improves usability. The
second point is adaptability - because of user transparency; changes to the system will
not affect existing users. Finally, transparency facilitates scalability - there are no issues
with expanding the Grid as are usually present in opaque systems; the reliance on static
resources is lifted.

Another problem is that of the discovery of resources. The existing model for resource
discovery is the client-server model, which is often neither scalable nor inherently reliable.
We wish to abandon this in favour of a more flexible system, unlike peer-to-peer systems,
making the latter the more preferable candidate as the underlying architectural model
for the Grid. There are two main P2P approaches to this: layered networks, involving
organisation by hardware (nodes are organised by location) or by search layer (nodes
are organised by metadata - services). The second approach could utilise fuzzy heuristic
and returns a true closest match via WSDL-based descriptions. Here we define what we
understand to be the Grid: it is transient and attempts to supply resources transparently
to users (in the broadest sense). Additionally, there should be transparent and seamless
access, through tools for searching, understanding of description and communication.
The Grid should be intrinsically reliable; i.e., no central point of failure.

4.1.3 Common Operational and Behaviour

Sharing and collaboration of multiple different resources in an effective manner demands
a simple, common, flexible, extensive and application-unspecific architecture. Web Ser-
vices, see section 2.6.1, provide technologies that ease achievement of architectures with
these characteristics. However, these technologies only provide the building blocks for
Grid systems and do not address structural and organisational challenges nor the be-
haviour or operation of resources themselves. Although, common ontologies would bene-
fit the later extending interoperability to the service level, the application of Web Service
technologies demands careful examination.

4.2 Simple Grid Architectures

OGSA attempted to create a layered architecture that described the role, behaviour and
interaction of components types in a Grid systems. Each layer of this Grid architecture
provided functionality for the layers above. However, this model of the Grid never got
off the ground as it did not treat all components of a Grid system as resources. Indeed,
the layered model itself mirrors the successful concept of the TCP/IP stack however,
TCP/IP is a message based system whilst OGSA assumed that Grid components would

Chapter 4 Solution Methodology 81

communicate through RPC style interfaces (e.g. Web Methods). The only successful
systems and technologies to reach the scale of the Internet have all been message-based
or had REST architectural-styles.

We believe it is not feasible or flexible to develop Grid-system in a OGSA manner with
layer types only communicating across and directly below the immediate level. This
model creates systems that are overly complex to integrate with other systems as both
its architecture and technologies have to be understood. Grid architectures should be
simple such that the particular organisation and structure of one system does not limit
the organisation and structure of other collaborating systems. Components in a Grid
system should be modelled on whether they are resource consumers or producers and
the structure and organisation of systems should be done at the message-level not at
the service or resource level.

4.2.1 Modelling of Resources

We define a resource as a source of wealth that contains a supply or reserve that can be
drawn upon such as, for example, computational clusters, data repositories, or scientific
instrumentation. In a top down view of the Grid resources sit at the base with services
and applications sitting on top. They provide the raw untapped power for the Grid
offering basic functionality pertaining only to the processing, storage, release and pro-
duction of data. For example, Computational resources both process data and/produce
data while, data repositories store and release data.

Resources typically have properties that identify information about the capability and
type of the resources, such as the processing power and computing architecture of a
computational resource or the amount of storage available in a data repository. In
addition, resources contain knowledge in the form of application logic that drives its
operation and behaviour.

4.2.2 Modelling of Services as Resources

We model services as a particular kind of resource with a standard, well-understood
communication model. Services should be thought of as distributed software components
that may be combined in many different ways to create sophisticated systems. Access to
raw resources should be achieved though service gateways that offer transparent access
to the underlying resource. From the view point of the resource consumer the underlying
raw resource does not exist, only the gateway that for all intents and purposes is treated
as resource provider.

Chapter 4 Solution Methodology 82

4.2.2.1 Virtualisation of Resources

Resources of the same type should be virtualised (abstracted) to provide consistent
behaviour and operation. This particular applies to resources where interaction occurs
at the machine level. Unlike for instance information resources, such as Web Servers, that
offer multimedia data in a human interactive and readable form. These have intrinsic
interoperability with their target consumer, the human user, who understands a picture
no matter what file format it was stored in.

Virtualisation overcomes application level misunderstanding and inoperability. Whilst
open standard technologies, such as Web Services, provide wire and service level inter-
operability, consumption a resource need understanding of its behaviour and operation.
For example, two optimisation service might exist however their solving manner differs:
the first operates a forward communication model whilst the second employ a reverse
communication model. Application of these services requires two different modes of
interaction. Migration between various optimisation system becomes difficult as each
implementations operation and behaviour must be understood.

Virtualisations requires constructing of common, generic interfaces and interaction mod-
els for the target resource, XML Schema and WSDL being a suitable technology. Further
more this may be further refined with the study of common sematic with language on-
tologies.

4.2.3 Modelling systems

Systems contain components that consume and produce data. Data flows from producers
to consumers. Components of systems may both consume and produce data. The flow
of data starts from a particular component, passes through other components and ends
up at an ultimate receiver. These components must be identified and classified and the
dependencies discovered. Once the desired flow of data is understood and the consumer
and producers have been identified the system can then be modelled as a Grid system
with components becoming services, resources or applications.

4.3 Service Interaction

4.3.1 Client-driven Architectures

Client-driven architectures offer a method to avoid artificial interdependence between
services and clients. This concept requires that clients drive the operation of services and
precludes asynchronous calls from services that require a synchronous response. Services

Chapter 4 Solution Methodology 83

should only return information directly back to the client as a synchronous response to
a method call request or as a one-way asynchronous method call.

Client-driven architectures allow for flexible, simple and light-weight clients and reduces
the complexity of services implementation. For instance, a user may effectively access
and operate a service through a Web browser using web forms [107] or a small Java-based
Applets1 [108] if they wish to receive asynchronous calls and have greater functionality.
Stand-alone programs or other services, acting as clients, require only a client-side stub2

of the service they wish to invoke.

4.3.2 One-way Asynchronous Event Notification

Asynchronous notification is a powerful mechanism that allows a service to inform the
client of an event without need for polling to determine when a circumstance occurs.
However, it requires a listening service on the client-side and support for it should not
be a prerequisite to the operation of the service. This precludes service behaviour that
needs a synchronous client response to an asynchronous call otherwise services would be
dependent on their clients.

Another advantage of an asynchronous notification mechanism is that it reduces the
load on the service and client. Along with reducing server CPU load and network
bandwidth caused by polling, client sessions may reside on disk longer rather than in
memory because they are called less frequently. Thus it allows more efficient usage of
server resources and improves scalability.

4.3.3 Coupling of Legacy Systems

SOA-based technologies, see 2.5.4, provide the glue that enables the coupling of oth-
erwise incompatible legacy systems with other legacy systems or resources; extending
their usefulness and interoperability. We propose a process that we call wrapping, that
involves constructing a service that lies between the system and its users, see figure 4.1.

This involves construction of Application Programmer Interfaces (APIs) and a WSDL
document that represent the functionality and data formats of the underlying system.
These would then be implemented with Web Service technologies to replace the standard
methods of interaction. The Web Service would provide transparency from the legacy
system’s particular mode of operation and behaviour.

A simple approach is to construct a service that simple acts as a interpreter by con-
verting protocols and data formats to the internal systems representations. However,

1Sun Microsystem Technology - http://java.sun.com/applets/
2Generated by tools such as WSDL.exe [109]

Chapter 4 Solution Methodology 84Client Application Application FrameworkDynamic BindingUDDILegacy System APILegacy System Web ServiceWeb Service Platform Legacy System

WSILSOAP/XML, HTTP
API/SDKServiceKey

Legacy System Wrapper APISingle sign on, Delegation, Sand-box Security Web Method Stub CallsProcess Calls, XML Translation
XML Schema DefinitionAuthorisation andAuthentication

Web Method calls WSDL
Figure 4.1: Example of legacy system wrapping with Web Service technologies.

this is only suitable for legacy system with no external dependencies. Service wrapping
offers the opportunity to enhance its functionality, removes implementation specific ar-
tificial dependencies and provides a layer of abstraction (e.g. using an ontology) and
encapsulation that eases interoperability. In addition, implementation abstraction en-
ables preservation of the service if the legacy service were to be retired. It would be
able to transparently alter its underlying logic to accommodate another implementation
without affecting its operation or behaviour.

4.3.4 Dispersed Infrastructure

We propose that distribution of independent and vital system components will aid the
usefulness, scalability and flexibility of Grid-based environments. This differs from
monolithic approaches that attempt to provide all resources and functionality from a

Chapter 4 Solution Methodology 85

single provider or service. Alternatively, environments should utilise dispersed infras-
tructures with its key components running as independent services that can then be
more easily replicated or exchanged.

For instance, an infrastructure for HPC may contain a resource management service that
performs computation. However, this ties both users and the computational resource to
a single specific service. Loose-coupling and dispersion of these as independent services
would aid flexibility by allowing the computation element to be employed by other forms
of services or applications. In addition, different service implementations may be more
easily exchanged, for example, where a user may wish to employ Maui [110] instead of
Condor.

4.3.5 Context within and across Web Services

State is typically employed within a service for maintaining consistency across Web
methods calls, providing insulated user sessions and storing global environmental infor-
mation. However, not all types of Web Service roles call for state.

Sharing operations between resources demands proper handling of the context in which
the operations are called. This demands information about the state of the system to
be stored across sharing operations over potentially long periods of time. For example,
users should not be able to execute a job before they have uploaded the files neces-
sary for its execution. A potential loss of this state information could have disastrous
results possible resulting in a malfunction system, damage to files or even a breach in
security. In addition, the service may receive multiple concurrent operation request for
internal resources and multiple users, each with their own state. Consequently, services
must employ state management scheme that are efficient, robust, and tolerant of service
failures.

The simplest type of Web Service applications consists of collections of isolated Web
methods implementations that require no state or lifetime management components.
These services roles do not require shared data. This has the advantage of intrinsically
providing isolated and thread-safe Web methods; enabling dependable multiple client
access to a single service without requiring any additional code or infrastructure.

If we want to add state to this Web Service, things start to become more complicated. In
order to maintain state across methods calls the server must be capable of remembering
the internal state of the service in memory or on disk and be able to associate that state
with the correct service being called.

A Web Service may wish to offer session state for users, such that each user accessing
it has their own service session with associated data and state, that is isolated from
modification by other users by the creation of service instances and service handles.

Chapter 4 Solution Methodology 86

This requires mechanisms for creation, destruction, and lifetime management however
none of the above features is defined in the Web Service Specification requiring the
developer to either create their own mechanisms or work with those provided by the
service’s runtime environment, that could vary greatly across platforms.

4.3.6 Common Operation and Behaviour

Common functionality, such as lifetime management, ideally should be described, de-
ployed, and behave in the same way across all Web Services wishing to offer this. To
draw comparison with object oriented paradigms, an inheritance mechanism is required
for WSDL description. If we now look at Grid Services as defined by the OGSI Specifi-
cation, they have created a mechanism for extending and describing service logic using
the concept of Port Types. Grid service functionality may be extended by the inclusion
of additional Port Types into a WSDL descriptor for each service and the linking of
Port Types in the service logic through either multiple inheritance or attributes. Com-
mon port types are defined by the OGSI specification, such as lifetime management,
and notification mechanisms. Grid services with defined behaviour and mechanism or
interaction and operation are extensions of Web Services.

Grid Services employ the paradigm of persistent and transient services, Traditional
stateless and simply state-full Web Services are a form of persistent Grid Services because
these Web Services allow multiple users simultaneous access to it through a stats address
or URL and exist for as long as the server is up and running. However, Web Services
have no equivalent model for transient services. State-full session based Web Services
are similar to transient services in that a new state instance is required for each new user
however, Grid Services require factories to create transient service to which Web Services
have no similar defined mechanism. Web Service developers are free to implement this
state instance model as they see fit.

Something completely missing for Web Services is the concept of service data of the Grid
Service model. Again Web Service developers can implement such a feature however the
mechanism for accessing, modifying, and querying such data is not defined.

4.4 Summary

We have explored concepts that we believe have attempted to cover many of the chal-
lenges discussed in the previous chapter 3. In particular, we have covered methods
that facilitate the construction of interoperable services and provide means for adding
knowledge into the problem solving process. In the following chapters we put these in
to practice.

Chapter 5

Service-Oriented Numerical

Optimisation

This chapter discusses research into service-oriented based numerical optimisation. The
aim of the work was to find service models that eased its integration with other problem
solving tools and enable better computational resource allocation. In addition, the work
serves as a proof of concept which shows the suitability of offering optimisation facilities
in a service-oriented architecture.

This chapter describes a new technique that de-couples the processing of the objective
function from the optimisation algorithm using a reverse communication model which
allows for the creation of an extremely flexible, robust, loosely-coupled service. To check
the validity of the technique and examine its potential, a reverse communication-based
service was built which uses Grid technologies to provide hill climbing optimisation. We
demonstrate that an Optimisation Service provides not only the possibility of aiding
in the selection of appropriate methodologies but also facilitates integration with other
services and resources employed in problem solving workflows.

This chapter gives examples and rules for how an Optimisation Service should be built
and used. In addition, it will look at the idea of check-pointing and removal of internal
state from within services to enhance their reliability and facilitate their transparent
integration with other services and resources. Whilst this chapter uses optimisation
because of its importance to science and engineering, the ideas expressed in this chapter
have benefits to all types of application services.

5.1 Challenges of Optimisation

Typically, optimisation forms part of an engineering or scientific problem solving work-
flow for research, modelling, iterative adjustment and re-design of ’objects’ which can

87

Chapter 5 Service-Oriented Numerical Optimisation 88

be anything such as, buildings, products, mechanical or electrical components, or man-
ufacturing operations. Optimisation plays a key role in, for example, the process of
bettering ’objects’ characteristics, reducing their manufacturing costs, and finding solu-
tions to meet requirements.

Numerical optimisation is an essential tool required by scientists and engineers for sys-
tems that have extremely difficult or impossible analytical solutions. Typically, opti-
misation is employed to find a combination of system parameters that best meets the
goals of the target environment or desired constraints. A simple example of the usage of
optimisation would be for finding the highest attainable speed for a car on a motorway.
System optimisations become more tricky with two or more parameters. Unlike the car
example, these may have one or more results that meet the target criteria however, find-
ing all or any suitable results quickly and efficiently is not straightforward demanding
particular optimisation algorithms for certain system or mathematical models.

Traditional execution of these workflows typically involves the interaction of software
tools including professional design tools, such as CAD packages, custom written soft-
ware to model the problem, optimisation tools, such as OPTIONS, and analysis tools,
such as, visualisation and graphing software. Effective usage and aggregation of this
software requires high computer science abilities in addition to the computer resource
requirements of the software. Therefore, problem-solving workflows involving optimi-
sation would keenly benefit from implementation into PSEs. However, there are many
challenges to overcome in order for a PSE to ease the process of optimisation.

Numerical optimisation is often a computationally intensive process. Numerical method-
ologies are often employed as a means to converge on optimal solutions to scientific and
engineering challenges that have no possible or trivial analytical solution. Depending
on the size and complexity of the system being optimised, it may take from days to
months to compute, typically requiring the processing power of HPC clusters. There
exist many general purpose optimisation algorithms that have been developed to derive
high quality and fast converging solutions. However, systems with unusually large or
complex numerical models often require specific optimisation algorithms to successfully
or quickly converge on a high quality optimal solution.

Consequently, careful selection of optimisation algorithms is essential to ensure successful
and fast convergence on a solution. Despite its name, optimisation does not necessarily
mean finding the optimum solution to a problem. Often this is not possible, and heuristic
algorithms must be used instead. Two fundamental goals in computer science are finding
algorithms with provably good run times and with provably good or optimal solution
quality. A heuristic is an algorithm that gives up one or both of these goals; for example,
it usually finds pretty good solutions, but there is no proof the solutions could not get
arbitrarily bad; or it usually runs reasonably quickly, but there is no argument that this
will always be the case.

Chapter 5 Service-Oriented Numerical Optimisation 89

The research described here started with the idea that numerical optimisation tools
could be offered using service-orientated principles and technologies. The aim of which
was to create a service model for optimisation that enables flexibility in the choice of
compute resources and provides an architecture to which tools, for example, knowledge
facilities could be easily integrated to aid in the selection of optimisation algorithms in
Grid PSEs.

5.2 Optimisation Algorithms

An optimisation algorithm is a numerical method or algorithm for finding a value x

such that the result of f(x) is as small (minima) or as large (maxima) as possible, for
a given objective function f , possibly with some constraints on x. Here, x can be a
scalar or vector of continuous or discrete values. If x is continuous, then the study of
the algorithm is part of numerical analysis.

Optimisations practical application often involves writing software (codes) that contains
the functional representation (i.e. f(x)) of the problem. This is then linked to the opti-
misation algorithm, often supplied in a software library, to create a executable which is
typically run on a computer or cluster. The optimisation algorithm during its execution
invokes the objective function, often many thousands of times, each time adjusting the
input parameters x which define the problem subject to any constraints placed on them.
Typically, the optimisation algorithm uses the results of prior objective function instan-
tiations to determine if the result is converging or diverging from the optimal, adjusting
the parameters accordingly. In a successful run the optimisation finishes once it finds
a combination of input parameters to the objective function which produces optimal
results to within a specified tolerance. Often optimisations fail because the problem
subject is extremely complex making it difficult to determine appropriate constraints
and tolerances that often results in the algorithm not converging or converging on a less
than optimum result. In numerical optimisation programming terms the mathematical
model is referred to and handled as the objective function because this provides a suit-
able model for development of optimisation algorithm in isolation from the specifics of
the mathematical model.

The aim of optimisation is to find results that best meets a specified criteria. For
example, within the field of wing design, engineers may wish to find the optimal air
flow over a wing that creates the most lift but, with the minimal drag to reduce fuel
consumption. The engineer would select a set of parameters for a particular wing model,
such as the wings geometry, mesh cell size, material weight and air resistance. The
engineer would then produce a mathematical model (objective function) that calculates
the air flow. This takes as input information regarding the placement of the particular
mesh cell and the applied parameters. Then to simulate the whole wing system this

Chapter 5 Service-Oriented Numerical Optimisation 90

object function must be passed to a selected optimisation algorithm along with a set
of optimisation boundary parameters (constraints) that control the ranges of boundary
parameters to try with the optimisation function and the desired tolerances for finding
the minimum or maximum optimal result.

The way in which the optimisation algorithm finds the optimal point depends on its
type and constraints. The selection of all these variables affects the quality of produced
results. Many optimisation algorithms take a non-linear discovery approach whereby it
may need to try several different boundary parameters before it can determine if it is
headed in the desired direction. This is especially true in multidimensional problems
where for instance, in a wing design its geometry and construction material all effect
the flow of air.

Optimisation can be a very computationally challenging process as the algorithm may
have to instantiate the objective function many thousands of times. This is often sped
up by the employment of multiple computers with each machine processing a different
objective function in parallel. In addition, objective function themselves can can often
be parallelised benefitting both non-linear and linear optimisation.

5.2.1 Nelder-Mead algorithm: Amoeba

The description of the Amoeba algorithm contained in this section is an adaption of the
work presented in [111]. Consider the unconstrained optimisation problem of maximising
a nonlinear function f(x) for x ∈ <n. A well-known class of methods for solving this
problem is direct search, which does not rely on derivative information (either explicitly
or implicitly), but employs only function evaluations. One of the most widely used
direct search methods for nonlinear unconstrained optimisation problems is the Nelder-
Mead downhill simplex algorithm [112]. It is extremely economical in the number of
function evaluations per iteration, and is often able to find reasonably good solutions
quickly. On the other hand, the theoretical underpinnings of the algorithm, such as its
convergence properties, are less than satisfactory. Nonetheless, its geometric naturalness,
working simplicity makes it an idea candidate for study. In this chapter, we focus on
one implementation of the Nelder-Mead algorithm as described in the popular handbook
Numerical Recipes [113], where it is called the amoeba algorithm.

The amoeba algorithm maintains at each iteration a non-degenerate simplex, a geometric
figure in n dimensions of non-zero volume that is the convex hull of n + 1 vertices,
x0, x1, . . . , xn, and their respective function values. In each iteration, new points are
computed, along with their function values, to form a new simplex. The algorithm
terminates when the function values at the vertices of the simplex satisfy a predetermined
condition.

One iteration of the amoeba algorithm consists of the following steps:

Chapter 5 Service-Oriented Numerical Optimisation 91

1. Order: Order and re-label the n + 1 vertices as x0, x1, . . . , xn, such that f(xo) ≥
f(x1) ≥ . . . ≥ f(xn). Since we want to maximise, we refer to xo as the best vertex
or point, to xn as the worst point, and to xn−1 as the next-worst point. Let x refer
to the centroid of the n best points in the vertex (i.e., all vertices except for xn):
x = (

∑n−1
i=0 xi)/n

2. Reflect: Compute the reflection point xr,

xr = x + α(x− xn) (5.1)

Evaluate f(xr). If f(xo) ≥ f(xr) > f(xn), accept the reflected point xr and
terminate the iteration.

3. Expand: If f(xr) > f(x0), then compute the expansion point xe,

xe = xr + β(xr − x) (5.2)

If f(xe) > f(xr) accept xe and terminate the iteration; otherwise (i.e., if f(xr) ≥
f(xe)) accept xe and terminate the iteration.

4. Contract: If f(xr) < f(xn−1), perform a contraction between x and xn

xe = x + ς(x− xn) (5.3)

If f(xe) ≥ f(xn) accept xe and terminate the iteration.

5. Shrink Simplex: Evaluate f at the n new vertices for i = 1, . . . , n.

xi = x0 + η(xi − x0) (5.4)

For the four coefficients, the standard values reported in the literature are: α = 1, β =
2, ς = 0.5, η = 0.5.

5.3 Challenges with Current Optimisation Systems and

Software

As has been discussed in more detail in 3.1 and 5.1, problem solving, in this case op-
timisation, often requires the integration of an array heterogeneous resources and tool
within a distributed design environment. There is a desire for easy-to-use optimisation
systems that enable the creation of different solution strategies that may be tailored to
specific design problem. These requirements have prompted research and development
of dedicated systems for design optimisation, such as SPINEware [114], iSIGHT [115],

Chapter 5 Service-Oriented Numerical Optimisation 92

and ModelCenter [116], which attempt to provide an integrated environment for engi-
neering design optimisation. These provide packages of software tools which all share the
common need for users to provide programmatic access to the modelling and analysis
capabilities of the their mathematical models (i.e objective functions).

However, these software tools often differ in implementation and interface technology.
For example, there exist different computer aided design (CAD), finite element analysis
(FEA) and computational fluid dynamics (CFD) codes. It is therefore necessary to
develop wrappers for these packages to be used in integrated environments mentioned
above although a variety of technologies and methods have been developed to help
overcome incompatibilities between the software tools. The most commonly used method
is to communicate via data files, which relies on shared data types and formats, or
specially developed parsers to interpret the input/output files. However, there now
exists Standard for the Exchange of Product Model Data (STEP) [9] which has been
developed to facilitate product data exchanges. Another approach to integration is based
on common object interface technologies, such as CORBA, in which function calls to
the tools are carried out as standard remote procedure calls (RPC). Although the use
of exchange data files can be seen as a generic approach, the lack of standard formats in
native data description and semantic descriptions of the file content means that extra
layers of processing are required almost every time a new component is introduced.

The idea of presenting numerical optimisation technologies as Grid services arose from
our efforts to adopt service-oriented Grid technologies for engineering design optimisa-
tion, see section 3.3. It offers a generic and extensible framework to address the inte-
gration issues by decoupling the optimisation tools from the other software components.
The optimisation codes, regardless of what programming language they are written in
or what the platform they run on, are encapsulated into standard Grid services that are
universally accessible. The tightly-coupled programmatic links between the optimisation
modules and the modelling codes that used to be required for integration are replaced
with loosely-coupled, standards based message level interactions. It therefore becomes
easier to adopt and exploit in one particular engineering design system a number of
different optimisation technologies, or to apply one optimisation method to a variety of
design problems.

A number of technologies have been applied to enable distributed numerical optimi-
sation, foremost amongst these is the NEOS project [117]. However, it requires that
the design problems be formulated in the AMPL languages [118] for submission to the
server for execution. Consequently, it is not suitable in the case where objective function
contain proprietary or commercial sensitive code.

Other technologies such as iSight, ModelCenter and Nimrod/G [119] adopt a different
approach where by optimisation is often an inherent part of an integrated environ-
ment and the modelling and analysis tools are often integrated using CORBA, RMI or

Chapter 5 Service-Oriented Numerical Optimisation 93

other RPC technologies. In these systems the optimisation logic is tightly-coupled to
job submission and scheduling facilities. For instance, the evaluation of the objective
function evaluations is controlled by the optimisers and submitted to distributed com-
puting resources through job submission systems such as Netsolve [120], Globus [70] and
GridRPC [121]. The disadvantage of this approach is that it is difficult to for users to
employ or add new optimisation algorithms from outside the integrated system nor can
they choose their own job submission system.

Users are required to wrap their objective functions in a prescribed format and language
for the optimisation system to submit to computing resources. This type of operation
is can be termed “forward communication” because the optimisers decides when to
run users’ problem codes. It lacks the flexibility that allows accessing optimisation
algorithms from outside the integrated environments, which makes it infeasible to share
optimisation methods among multiple heterogeneous, distributed design environments,
across multiple administrative domains. Moreover, the proprietary interfaces used by
these systems also mean that users will have to develop individual interface for each
package.

Our vision in this aspect is to embrace recent developments on Web Services and Grid
technologies to deliver highly scalable and flexible optimisation services to heteroge-
neous environments using a generic interface, in loosely-coupled manner. This approach
allows various programming languages, PSEs, and middleware technologies to be ap-
plied without delving into implementation details of the Optimisation Service. Figure
35 illustrates the architecture of our proposed system. Users communicate with the
Optimisation Service via SOAP messages using client tools in a design environment of
their own choice such as Matlab [104].

5.4 Aims and Methodologies of offering Optimisation as a

Service

As has been discussed in section 5.1 and 3, challenges of optimisation for the user
include: appropriate selection of optimisation methodology and constraints on the model
and boundary conditions, and integration with other tools and resources. This chapter
focuses primarily on the latter however, the first aim in creating the Optimisation Service
was create a loosely coupled component of a PSE that eases its integration with a range
of heterogenous tools, including knowledge services. Traditional optimisation practises,
as discussed in 3, do not have the openness nor flexibility to easily allow the integration of
heterogenous tools and resources. There are four identifiable stages to the optimisation
process:

1. Selection of optimisation algorithm,

Chapter 5 Service-Oriented Numerical Optimisation 94

OptimisationService Client
1: Request next iteration2: Store new opt. context and OFparams on database3: Calculate next OF iterationon cluster4: return result of OF calculation3: Calculate nextOF iterationComputeNode ComputeNode ComputeNodeComputeCluster Database2: Store new opt. contextand OF params

4: result of OF calculation
Figure 5.1: Example integration of Optimisation service with a compute cluster and

persistence database using a document-oriented message architecture.

OptimisationService Client1: Request ncreturn result of f(nc-1) and c-12: Respond newc and nm 3: Calculate f(nc)4: Retrieved resultof f(nc) ComputeNode ComputeNode ComputeNodeComputeCluster
Figure 5.2: Example integration of Optimisation service with a compute cluster with

the client acting as the controller of the workflow.

2. Linking of objective function to optimisation algorithm,

3. Configuration of input parameters such as boundary conditions, then

4. Execution of optimisation algorithm

The Optimisation Service takes a fundamentally different approach to traditional opti-
misation by loosely-coupling the optimisation algorithm and objective function. Service-
based optimisation differs in that it reverses the roles of the optimisation and objective
function such that the objective function calls the optimisation function. This reverse
communication model simplifies the coupling between the functions and frees the com-
putational aspect of optimisation from its functionality. This is essential if we are to

Chapter 5 Service-Oriented Numerical Optimisation 95

provide a loosely-coupled service that offers flexible integration with other resources, as
shown in figures 5.1 and 5.2.

The Optimisation Service does not perform any calculation of the objective function
component. Instead, it offers functionality pertaining to the state and operation of the
optimisation algorithm: providing bootstrapping (initialisation), stateful management
of the process, issuing of boundary parameters for calculation and multi-client support
for and session management. It operates a pull model architecture that demands that
the client must send commands, containing instructions or results, to the server in order
to control and cause the progression of the optimisation.

Separation of objective function from the optimisation algorithm not only allows pro-
vision of common optimisation functionality, but, as a consequence, enables the user
to concentrate on their objective function. In addition, the adoption of a service-based
paradigm and reverse communication model simplifies the integration of the optimisation
process with other associated PSE tools and computational resources.

5.4.1 Bootstrapping

Bootstrapping allows knowledge and information to be included at the initialisation
stage of the optimisation process. We define this as the procedure that the optimisation
server employs to guide the user through the initiation of an optimisation.

The service contains no knowledge only information about the available optimisation
algorithms and their capabilities. Responsibility for selection of algorithms and bound-
ary parameters is left to the client. This mirrors the traditional optimisation process
whereby the engineer had to decided which optimisation algorithm and boundary pa-
rameters to select. However, this gave the engineer greater flexibility. If the service
provided a knowledge repository it would reduce its flexibility and go against the prin-
ciple of simple services. We just want the service to provide optimisation and nothing
more.

A scenario of this would be at the start of the optimisation process, the client (user)
sends general information to an intermediary optimisation knowledge service, such as the
target-problem and its dimensions. The knowledge service will then access its database
so that it can suggest suitable algorithms. For instance, the service could offer extended
search capabilities to enable refinement of parameter and algorithm selection or allow
manually selection and specific configuration information.

5.4.2 Stateful Code and User Sessions

Stateful code allows optimisation algorithm code to fit into the framework of web ori-
ented application architectures, such as Sun Microsystems’s Java Enterprise Server

Chapter 5 Service-Oriented Numerical Optimisation 96

(J2EE), where each optimisation algorithm is represented by an Enterprise Java Bean
(EJB) [103]. In addition, each step of the optimisation becomes a transactional unit al-
lowing consistency and durability. Both recoding approaches require no changes to the
way in which the objective function is traditionally written. They are also independent
of the operating system and programming language to which the objective function uses.

Upon receiving and accepting a new request from the user, the server initialises a new
optimisation session by generating a unique session identification (ID) and creating a
new associated session EJB. We have created a class structure with different implemen-
tations of EJBs that may be employed by other optimisation algorithms. This allows the
easy addition of more optimisation algorithms. In addition, each contains all state and
initialisation data associated with the optimisations progress, such as parameter values,
previous results and awaiting calculation points.

The service employs dissemination methods described in section 4.3.4 and implements
the EJB using checkpoint strategy mentioned in section 5.5.1. After successfully com-
pletion, the optimisation’s related state and current data could be stored in an external
database, using the EJB created at the bootstrap stage providing robustness.

This strategy makes the service flexible enough to meet the requirements of different
types of client and enables the server to deal with multiple service requests at the
same time. Stateful code allows the possibility of parallel multiple clients calculating
independent points for a single function optimisation.

5.4.3 Client Access and Service Communication

As a means to provide a cross-platform user interface to the Optimisation Service, we
choose to employ the commonly supported Web-based technology, HTTP, as the basis
for the services submission system. Currently, an interface to the HTTP methods are
accessible throw Web page forms that exist as static files on the service-side however,
in the context of our future design objectives, we would like to dynamically generate
these at runtime using optimisation schemas as the template. With the initial aim of
simplifying the process of adding new services but, also enabling the possibility, with
the addition of a knowledge repository, of on-the-fly changes to the user’s interface that
reflects their particular optimisation and environment requirements.

The emerging XForm [122] technology will, in the future, provide an effective dynamic
solution with new features like platform-device independence, XML integration, and
the separation between user interface and data. At the moment we support stand-
alone client application through XML and Web Forms for browsers. We employ Servlet
technology [123] to generate and process XML and Web forms. However, we shall drop
support for Web forms in favour of just XML because providing the later does not fit
into a our philosophy of simple services.

Chapter 5 Service-Oriented Numerical Optimisation 97

5.4.4 Checkpointing for Robustness, Monitoring and Control

We describe here a method, called checkpointing, that not only provides robust service
execution but, in addition, provides users of traditional optimisation practices with a
means to monitor and control (or steer) the progress of an optimisation. Checkpointing is
an interesting side-effect that became apparent from the redevelopment of the Amoeba
algorithm to support loose-coupling. Checkpointing is the ability of an optimisation
algorithm to journal, or in other words, serialise its complete state to disk or database,
allowing it to be resumed from any journalled point that occurred during its execution.
This provides robustness such that in the case of a computer crash it may be restarted
from its latest serialised instance. In addition, this also allows optimisations to be
executed on compute resources in a distributed ownership environment, such as Condor
(see section 6.5), where compute resources availability cannot be guaranteed requiring
that executing jobs support the ability to be migrated from a resource that has become
unavailable to an available resource. To support migration the job must have the ability
to shut itself down and resume from where it left off on a new computer.

Another ability provided by checkpointing is too allow the possibility of steering an
optimisation. Checkpointing in effect allows an optimisation to be paused or rolled
back to a previous checkpoint, modified and then resumed however the optimisation
must offer an interface to support modification. One last application of checkpointing
would be to speed up repetitive workflows where for instance multiple optimisations
are instantiated. The configuration of these optimisations may only differ slightly such
that the initial parts are exactly the same and only diverge at known stages within the
execution of the algorithm. Checkpointing at this stage would allow a short cut such
that this stage need only be executed once and then started from that checkpoint.

A checkpoint may contain workable results however, some algorithms may only sporadi-
cally produce useful data or only upon completion. In which case, time can be saved by
employing resumable algorithms. Saved state within a checkpoint alleviates the service
from recalculation of variables redeemable from stored data. In addition, it allows re-
trieval of irrecoverable variables that would otherwise prevent the algorithm’s continued
execution.

Viewing of checkpoints and resumable programs provide an uncomplicated way to re-
spectively monitor and control an algorithms progression. For example, a user may view
and compare checkpoints to determine if an algorithm was advancing correctly. If not
then they may simple the restart the algorithm from scratch or, if recoverable, alter its
configuration and resume execution from a checkpoint with correct data.

Chapter 5 Service-Oriented Numerical Optimisation 98

Optimization Server:Execute Optimization FunctionClient PC:Execute Objective Function
1: Bootstrap3: Return result of objective function2: Send next value to be calculated4: Return result of optimisation

Figure 5.3: Client driven optimisation.

5.5 Methodologies used in Optimisation Service

We will describe methods that make Optimisation Services suitable for disseminated
infrastructures and reverse communication. In addition, we will propose methods to
add knowledge into the optimisation process and provide automatic checkpointing func-
tionality for the client.

5.5.1 Reverse Communication

Dissemination of objective function calculation from Optimisation Services allows the
client to select alternate means of computation. This frees the service to concentrate
on functionality pertaining to the state and operation of the optimisation algorithm.
In addition, it allows a method to enable client-driven execution of an Optimisation
Service. This involves the application of stateless logic that allows distributed execution
between the optimisation algorithm and the objective function. This method is based
upon dividing the optimisation process into several “stages” using checkpointing.

Once the bootstrap phase has been completed, the client is then in charge of the op-
timisation process that involves retrieving the points x to be evaluated, initiating the
next stage of the optimisation, and retrieving the final results. Figure 5.3 shows how
the optimisation process starts at 1 with the client bootstrapping the server through to
stage 4 with the server returning the result of the optimisation. In order to complete
the optimisation, stages 2 and 3 must be repeated consecutively for the number of times
configured in the bootstrap stage. Depending on the nature of the optimisation algo-
rithm, stage 2 may generate multiple points. These points may be calculated in any
order, however all their results must be returned in stage 3 for any new points to be
generated. Figure 5.4 shows this process as a flow diagram.

Chapter 5 Service-Oriented Numerical Optimisation 99ClientServer
Converged?No(c=end) Local ordistributedcomputation ClientServer ClientControlUser Initialiseoptimisation
Handlecalculation ofnext iteration Process opt.context c

Requestparameterisedinitialisation
Handlecalculation off(nc)Request nextiteration

Opt. type andparam valuesf(nc) param values,Opt. context cResult of f(nc),Opt. context c Clientf(nc) param values,Opt. context cYes(c=c+1) Continue?Processresults EndOpt. resultsand context c YesNoClient TrackingandPersistence
OptimisationWorkflow

SimpleBootstrapWorkflowControl

Figure 5.4: Flow diagram of optimisation process.

Chapter 5 Service-Oriented Numerical Optimisation 100

5.5.2 Checkpointing Strategies for Distributed Optimisation Algorithms

Where machines perform simultaneous computation of a single optimisation, the task of
checkpointing and resuming becomes increasingly complex. However, the optimisation
routine itself may require large amounts of time between processing the results from
the objective function and generating the next optimisation point. Therefore, it seems
sensible to checkpoint before and after the evaluation of the objective function, shown
on the right in Figure 5.5.

Where the objective function is running on a separate machine from the optimisation
function, a two stage check pointing scheme becomes all the more important because
the chance of failure has doubled from having two machines.

The flowcharts on the left and right show single and double stage check pointing re-
spectively. Choosing where to place a checkpoint stage and what data to checkpoint
depends on the complexity of optimisation and objective functions. Figure 5.5 show a
very simplified model for check pointing of optimisation functions however; it illustrates
how to split an optimisation function into “stages” shown by the process boxes in the
diagram.

Optimisation functions share common key stages as follows:

1. Processing of the input parameters and data.

2. Generation of optimisation points.

3. Execution of the objective function.

4. Processing of the objective function results.

5. Finalisation of optimisation and returning results.

Stages 1 and 5 happen only once each and are the initialisation and finalisation of the
optimisation function. Stages 2, 3, and 4 repeat depending on the input parameters
and data, the type of optimisation function, and the results returned by the objective
function. In some optimisations functions, stages 2 and 4 combine in to one because
the result of the last objective function effects what the next optimisation point will
be. However, we have chosen to separate out stages 2 and 4 to aid in modelling the
optimisation function for check pointing purposes, as shown in Figure 5.5.

It is possible to subdivide the optimisation function further into additional stages, that
allows for extra checkpoints however, this requires greater code complexity, decreases
performance due to more database accesses, and produces more stage data. Each check
pointing stage must save the optimisation functions current state and data enabling users
to restart the function correctly and from the right place. The state data is possibly

Chapter 5 Service-Oriented Numerical Optimisation 101

Calculateoptimisation pointn
Optimisationcomplete?

Evaluate objectivefunction f(n)
Finish

Checkpoint

Start

Yes

ProcessparametersWith inbounds?
No Process result off(n)

InitialiseoptimisationYes
No

Calculateoptimisation pointn
Optimisationcomplete?

Evaluate objectivefunction f(n)
Finish

Checkpoint

Start

Yes

ProcessparametersWith inbounds?
No

Process result off(n)

InitialiseoptimisationYes
NoCheckpoint

Single Stage Double Stage

Figure 5.5: Single and double stage checkpointing schemes for a typical optimisation
routines

Chapter 5 Service-Oriented Numerical Optimisation 102Client PC Optimization ServerClient ApplicationXML/SOAP J2EEXML/SOAPHTTP HTTP ServletEJBObjective FunctionJRE Optimization FunctionFunction Call Optimization ServiceControlTransferMessages
Figure 5.6: Optimisation Service Layered Technologies

saved to either a file or a database and must contain the user, the current optimisation
name and its internal data, and the current session. Restarting of the optimisation
requires coding the function to support restarts from any check pointed stage without
re-computation of any prior stages.

5.6 Implementation

At the time of the services development it was considered that Sun Microsystems J2EE
platform provided the most suitable service hosting environment. Overall, it was chosen
because it provides a mature and platform-independent development and hosting envi-
ronment based on Java and offers a well-defined yet flexible framework that allowed the
usage of architectural patterns to separate the interface, business logic, and data layers
of the service. The latter was considered most important because it allowed us to both
encapsulate the implementation of the optimisation algorithm within the business logic
layer whilst allowing us to explore different interface approaches. In addition, J2EE
hosting environment as it is based on popular Java language had greater selection of
XML serialisation tools which subsequently aided us develop the XML interface to the
service as show in figure 5.6.

Two of the three components of the J2EE hosting environment were employed to create
the service: Java Servlets to provide the XML, HTTP and Web form interfaces, and

Chapter 5 Service-Oriented Numerical Optimisation 103

1 void amoeba (
2 \∗ The matrix p [1 . . ndim+1] [1 . . ndim] i s input . I t s ndim+1 rows are ndim−dimens ional v e c to r s

which are the v e r t i c e s o f the s t a r t i n g s implex . ∗/
3 f loat ∗∗p ,
4 \∗The matrix vec tor y [1 . . ndim+1] i s input , whose components must be p r e i n i t i a l i s e d to the

va lues o f funk eva luated at the ndim+1 v e r t i c e s (rows) o f p . ∗/
5 f loat y [] ,
6 \∗Matr ices dimensions input . ∗\
7 int ndim ,
8 \∗ f t o l input i s the f r a c t i o n a l convergence t o l e r an c e to be achieved in the func t i on value

(n .b . !) ∗/
9 f loat f t o l ,

10 \∗Function po in t e r input to the ob j e c t i v e func t i on ∗/
11 f loat (∗ funk) (f loat []) ,
12 \∗nfunk output g i v e s the number o f func t i on eva lua t i on s taken∗/
13 int ∗nfunk) ;

Listing 5.1: Functional prototype of original C Language Amoeba optimisation.

Enterprise Java Beans (EJB) to provide the logic for the optimisation algorithm. A key
design decision of the service was that it would be stateless consequently the data access
object layer of the J2EE was unused.

5.6.1 Techniques for creating Stateless, Reverse Communication Op-

timisation Algorithms

The code for the Amoeba optimisation algorithm was written in the C language of which
the function prototype is shown in listing 5.1 and the full listing of the source code is
found in Appendix B.

A function pointer to the objective function must be supplied to the amoeba function
which is then statically linked after compilation into a executable (main entry point not
shown). In order to do this, source code or a library containing an implementation of
the objective function must be available.

If we look at the source code for the Amoeba C source code we see that it synchronously
invokes the objective function (funk) locally (within the helper function amotry) by
passing in input parameters (psum) and waits for its results. Consequently, execution
of the objection function and optimisation algorithm are tightly-coupled to each other.
However we wish to able to perform the execution of the objection function on different
computer to the execution of the optimisation algorithm. A number of solutions where
explored in order to do this.

The simplest solution which requires no recoding of the optimisation function is too
remove the objection function implementation within funk and replace it with a remote
procedure call (RPC) to another machine that has an executable containing the actual
implementation of the objective function, shown in listing 5.2. The usage of RPC is just
an example, it could be replaced in the same manner with a call to a method of a Web
Service.

The main issue with this solution is that the optimisation algorithm must remain in
memory on the computer it is running whilst it synchronously waits for the objective

Chapter 5 Service-Oriented Numerical Optimisation 104

1 f loat funk (f loat [] p)
2 {
3 /∗ example o f how we might c a l l t h e o b j e c t f u n c t i o n on a machine c a l l e d wh i skey ∗/
4 return remotefunk (” rpc :\\whiskey . soton . ac . uk\myfunk” , p)
5 }

Listing 5.2: Example pseudocode for objective function replacing implementation
with remote procedure call to enable execution of code on another machine.

function to complete. If either the remote machine or the local machine running the
optimisation crashes all previous work is lost. In addition, synchronous waiting ties up
valuable resources of the local machine whilst it idles. What is required is that the
optimisation algorithm save its state somehow during these idle times then terminate
itself so it use no resources and resume from where it left off once an objective function
execution completes. As discussed in section 5.5.1, reverse communication gives us an
approach that enables us to achieve this. Implementation of the optimisation algorithm
to support reverse communication approach involved coding the algorithm as a state
machine.

Java-based source code found in Appendix C contains our implementation of the down-
hill simplex algorithm. Its implementation is encapsulated within a stateless Session
EJB which exposes its interface locally to the Servlet layer of the J2EE hosting environ-
ment. There are two methods of interest: bootstrap method, which must be called first,
initialises the optimisation; and the next method, which must be called successively by
the client through the interface exposed by Servlet, which performs the optimisation
itself.

Each client call to the next method represents the completion of the execution of the
objective function by the client. The input parameters to the next method are its state,
shown in listing 5.3 containing the context of the optimisation prior execution and the
results of the optimisation function. The next function returns when it either reaches
a point in the algorithm where it requires that the client compute the result of a new
matrix of input parameters on the objective function, it has found the optimum result
or it exceeds the maximum number of objective function iterations. The next method
returns to the client via the servlet interface (e.g. HTTP response) a representation (e.g.
XML) of the optimisation state data which the client can check the value of the entry
point into the state machine to see which condition has happened. The client extracts
from the state data the input parameters for the objective function (x[]), executes the
objective function, updates the result (res) of the state data, and call next method again
(e.g. with a http request) at the same time passing the updated state data to the service.

Chapter 5 Service-Oriented Numerical Optimisation 105

1 package opt imi sa t i on ;
2
3 import java . i o . S e r i a l i z a b l e ;
4
5 public c lass AmoebaState
6 implements S e r i a l i z a b l e
7 {
8 /∗ i n i t i a l i npu t parameters s u p p l i e d by c l i e n t and b o o t s t r a p ∗/
9 public int ndim ;

10 public f loat p [] [] , y [] , f t o l ;
11
12 /∗ c o n t e x t u a l s t a t e o f o p t im i s a t i o n ∗/
13 public f loat r t o l , summ, swap , ysave , ytry , psum [] ;
14 public int i , i h i , i l o , inh i , j , mpts ;
15
16 /∗ en t r y po i n t i n t o t h e s t a t e machine∗/
17 public int s t a t e ;
18
19 /∗ r e s u l t o f t h e o b j e c t i v e f u n c t i o n ∗/
20 public f loat r e s ;
21
22 /∗ i npu t parameters to t h e o b j e c t i v e f u n c t i o n ∗/
23 public f loat x [] ;
24
25 /∗number o f o b j e c t i v e f u n c t i o n i t e r a t i o n s ∗/
26 public int nfunk ;
27
28 public Amotry amotry ; /∗ a d d i t i o n a l s t a t e o f amotry h e l p e r f u n c t i o n ∗/
29
30 public AmoebaState () {
31 super () ;
32 /∗ p u b l i c p a r ame t e r l e s s c on s t r u c t o r r e q u i r e d by Java s e r i a l i s e r ∗/
33 }
34
35 public Object c lone () throws CloneNotSupportedException
36 {
37 /∗ h e l p e r f u n c t i o n to make a copy o f t h e s t a t e ∗/
38 /∗ imp l ementa t ion not shown f o r c on c i s e n e s s ∗/
39 }
40 }

Listing 5.3: Implementation of the state object for the Session EJB downhill simplex
algorithm.

5.7 Performance Analysis

As has been covered in section 2.5.4.1 in more detail, whilst the advantages of XML
abound, it is not well suited to applications which are latency sensitive, require lengthy
message exchanges or have large data sets. Here we analyse the potential performance
issues of using XML-based messaging for the Optimisation Service and present required
solution methodologies.

The Optimisation Service can operate and be used successfully within a very high latency
network because the reverse communication protocols are time independent and service
control interaction are infrequent. High latency caused by overheads of XML parsing
and transfer do not impact on the period of execution of the objective function. This is
because the reverse communication protocol is designed to have coarse-grained message
exchanges that occur only at the beginning and end of an objective functions execution.
The reverse communication protocol assumes encapsulation of the execution details of
the objective function therefore clients can choose to implement there own message
schemes most appropriate to speedy execution.

The period of execution of an objective function will typically be minutes or greater.
Anything substantially less and other more traditional methods should be explored as
being more appropriate as the service is aimed at long running optimisations. The

Chapter 5 Service-Oriented Numerical Optimisation 106

average measured message passing time, including parsing and transfer, for the messages
on the Amoeba optimisation function was in the region of 100ms. As will be discussed
in section 5.7.1 this time will increase for optimisation functions that require more state
data. A simple test of the downhill simplex based Optimisation Service was carried out
to optimise De Jong’s function 1 [124], which is defined as follows:

f(x) =
n∑

i=1

x2
i (5.5)

where
− 5.12 ≤ xi < 5.12 (5.6)

and
n = 2 (5.7)

An optimisation will possible require 100s to 10,000s of message exchanges between client
and server. In addition, the Optimisation Service supports multiple concurrent users.
Therefore, as latency is not an issue, the performance goal of the Optimisation Service
should be to maximise message throughput. To partly achieve this goal, the schema of
the XML message should be concise and simple to promote scalability by reducing the
resource requirements on both the client and the server. In the following sections we
discuss methodologies to achieve this.

5.7.1 Highly Stateful Optimisation Algorithms

The Optimisation service is designed such that all state data required for it to continue
an optimisation process must be carried within the request/response message passed to
and from the client and server. The data structures and consequently the size of the
message are dependent on the amount and type of state data required by each optimisa-
tion algorithm. A highly stateful optimisation algorithm may require more complex and
larger XML message which will require extra CPU, memory, and network bandwidth
resources. For the client this will result in greater messaging overheads from longer
parsing and transfer times thus increasing the optimisation period. For the server the
extra resource overheads will reduce the maximum number of messages that can be con-
currently processed. Consequently, message schemas must be concise and simple, and
only essential optimisation state data should be conveyed in the message. Information,
such as debugging, friendly messages, and logging must be included only during devel-
opment and testing stages of the problem-solving process and must be strictly optional.
Furthermore, during the run of an optimisations, intermediate stages within the process
will not always require the full set of state data e.g. if a variable is no longer needed
or not required until later on. These variables can defined in the state data schema as

Chapter 5 Service-Oriented Numerical Optimisation 107

optional and then may be left out of message until required thus further reducing the
size of the message.

5.7.2 Large Objective Function Results Set

Similar to the above section, larger result sets returned from the completion of a ob-
jective function will have bigger message sizes and thus greater resource requirements.
In addition, the data structure, format and encoding of these results sets will differ ac-
cording to the objective function prototype. However, unlike state data in which the
Optimisation Service understands which data is required, as the implementation of the
optimisation algorithm is encapsulated, the client must supply the complete result set to
the server. Furthermore, only a partial result set may be needed at a particular time by
the optimisation algorithm thus wasting valuable resources. The issue is worsened with
large data sets, complex or multiple file result sets, and binary formatted data which are
costly to include in XML messages. These issues can be overcome by usage of a data/file
server that both sides share accessibility and which supports partial file/data transfers.
Upon completion of the objective function the client can arrange for the results to be
made available on the shared file/data server to the optimisation server and then instead
supply it with an URI reference to the data. The optimisation server upon receiving
the message may then read as much or as little of the results set as it requires. It is
important to note that results sets supplied to the Optimisation Service in this fashion
must be in a non-relationsional and non-hierarchical format in order for the optimisation
server to partially read yet fully understand the data. This unfortunately rules out using
XML however this is an advantage because data formats such as flat files, arrays, and
lists are significantly quicker and easier to generate and parse, and are generally much
more concise.

5.8 Summary

The Optimisation Service demonstrates the successful usage of key technologies that we
discussed in section 2.5.4, including XML and HTTP, and has shown how it is possible
to create stateless loosely-coupled numerical Optimisation Service. In addition, we have
implemented the concepts described in chapter 4, and can show, although they have only
been utilised in a functionally simple example, that the analysis described therein is valid
and has great potential in future projects. This chapter has given an example of how a
key component of the problem solving process can be offered as services and highlight the
significant advantages of a Service-Oriented Architecture. We now summarise important
conclusions from work in this chapter:

Chapter 5 Service-Oriented Numerical Optimisation 108

1. The new technique of decoupling the objective function from the optimisation
algorithm using a reverse communication model has allowed us to build an ex-
tremely flexible, loosely-coupled service. Its adoption was a vital design decision
which gives much greater flexibility in the choice of services which may be coupled
together with it in to environments for problem solving; specifically computation,
persistence and knowledge services of which it is independent of any specific im-
plementation.

2. Reverse communications provides users with a programming style to build robust-
ness, monitoring and control into their codes.

3. Adoption of a stateless service model was another key design decision that reduced
the complexity of service’s implementation, allowed the service to better scale and
in combination with reverse communication provides additional reliability through
checkpointing. In addition, reverse communication made it possible to easily create
a stateless service.

4. The numerical Optimisation Service is an example of how a purely message-
driven service provides flexibility by allowing its integration with resources such
as databases and compute cluster.

5. Encapsulation of optimisation algorithm within the service removed the implemen-
tation details of the optimisation algorithm from the client which further promotes
interoperability.

However, whilst we have shown that its is feasible to use some of the basic Grid tech-
nologies in a single service it is apparent that in order to make sophisticated PSE it
requires examination of the newer Grid concepts of Web Services. The following chapter
will examine Web Service technology in detail.

Chapter 6

Service-Oriented Computation

This chapter discusses the sharing and management of high throughput cluster resources
using service-oriented methodologies discussed in chapter 4. We demonstrate the usage
of Web Service technologies to provide meta-based computing system that virtualises
standard cluster operations; including submission, management, monitoring of compute
jobs and the discovery of compute resources and their matchmaking with job require-
ments.

We will show how a legacy system, the Condor High Throughput Computing (HTC)
system, may be modelled as a Grid Resource and consequently adapted and virtualised
to provide the necessary interoperability for inclusion in Grid-enabled Problem Solving
Environments (PSEs). We will demonstrate the success of our work by showing the
deployment of the Service-Oriented HTC resource, the Computation Web Service, by
discussing its deployment in the Geodise project for engineering design simulations. In
addition, in the next chapter 7 we will demonstrate its employment in a micromagnetics
PSE. The work presented in this chapter has been published in [66, 65, 125, 126].

6.1 Virtualisation of Compute Clusters

Resource virtualisation of compute clusters provides a common operation and behaviour
abstraction that allows easy migration between particular implementations and improves
application level interoperability.

6.1.1 Issues with existing virtualised Compute Resource Systems

The Gateway system [127] and the Globus Resource Allocation Manager (GRAM) [128]
attempted to provide virtualised access to computation resources. However, whilst they

109

Chapter 6 Service-Oriented Computation 110

ComputeResourceIDL, ClassAdsResourceManager ExecutionJobRequirementsResourceConsumerNegotiation
SchedulingSystem CallsMigration &CheckpointingMatchingHTC ManagmentSystem Application

Figure 6.1: Common submission of Jobs in a HTC management system.

intended to provide a generic representation, their success has been limited by their em-
ployment of proprietary interaction and resource description methods. With Gateway
employing CORBA for its middleware component model and GRAM defining its own
resource description language (RDL) [83]. In addition, these systems bind to a lim-
ited number of resource management system and software platforms, all said, making
migration to alternative resource providers difficult.

6.1.2 Common Compute Operations

HTC systems base their mode of operation around jobs and matchmaking of their re-
quirements with machine capabilities, see section 2.4.3. They all share common facilities
for the submission, control and monitoring of jobs, and the discovery and description or
compute resources. This forms the basis for the virtualised interface to our Computation
Web Service.

6.1.3 Interoperability and Portable Infrastructure through Common

Open Standards

We have identified a common set of attributes and behaviours used for job submission
in a variety of HTC systems; describing and classifying them as service properties and
operations using XML Schema and WSDL. The Computation Web Service provides an
open standards based, and portable infrastructure for representing compute resources.
All interaction with it can only be carried out via SOAP encapsulated XML messages
therefor, hiding details of the underlying system, in this case Condor.

Chapter 6 Service-Oriented Computation 111

6.2 Analysis of a Cluster Management System: Condor

The Cluster Resource Management Web Service exploits the capabilities of a well estab-
lished HTC computing system called Condor [44]. Condor provides a HTC environment
by detecting and harnessing idle computers in a distributed ownership context. Our
selection of Condor was motivated by the desire to take a powerful yet closed system,
with limited interoperability and make it suitable for Grid computing.

6.2.1 Large-scale Cycle-stealing

The opportunity represented by idle computers has been recognised for some time [129].
Condor was proposed as a system to harness idle cycles for useful work. It exploits the
multitasking possibilities of popular Unix operating system and the connectivity pro-
vided by the Internet. The Condor system is now used extensively within academia to
harness idle processors in workgroups or departments. It is used regularly for routine
data analysis as well as for solving open problems in mathematics. At the University
of Wisconsin, for example, Condor regularly delivers 400 CPU days per day of essen-
tially free computing to academics at the university and elsewhere: more than many
supercomputer centres.

Condor is a freely available software system that creates a High-Throughput Comput-
ing environment by harnessing the power of computer clusters and workstations. It
is capable of managing dedicated clusters however, Condor’s most appealing feature is
its ability to use non-dedicated, pre-existing computational resources in a distributed
ownership context and highly heterogenous environment.

Condor employs the concept of organisational pools each consisting of a network of com-
putational resources controlled by a central manager, shown in Figure 6.2. It supports a
wide range of computing platforms, including Linux and Windows NT. Different types
of supported platform may coexist within a pool as a computational. Condor enables
submission, remote execution checkpointing of users’ programs (jobs) on computational
resources within a pool. Pools may be flocked together allowing jobs submitted from
within a pool to be executed on another pool. Computational resources may take the
form of dedicated or non-dedicated pre-existing computers, of which the latter would
typically be an office-based PC or shared workstation that intermittently perform short
tasks.

Condor’s power comes from its ability to effectively harness unutilised processing power.
It is capable of detecting when a resource should be considered idle by evaluating a
user configurable algorithmic expression based on discernable factors (e.g. keyboard
and processor activity) and user specified constraints (e.g. period of idleness before
availability). Jobs may run only run on an idle computer but, Condor has the ability to

Chapter 6 Service-Oriented Computation 112

1 MyType = ”Machine”
2 TargetType = ”Job”
3 Name = ”node01 . condor . soton . ac . uk”
4 StartdIpAddr = ”<1 . 2 . 3 . 4 : 32780>”
5 Arch = ”INTEL”
6 OpSys = ”WINNT51”
7 UidDomain = ” condor . soton . ac . uk”
8 FileSystemDomain = ” condor . soton . ac . uk”
9 State = ”Unclaimed”

10 EnteredCurrentState = 8987459837
11 Act iv i ty = ” I d l e ”
12 EnteredCurrentAct iv i ty = 8987459836
13 VirtualMemory = 256000
14 Disk = 80192
15 KFlops = 24034
16 Mips = 2403
17 LoadAvg = 0 . 0234233
18 CondorLoadAvg = 0 . 0000000
19 KeyboardIdle = 1987
20 Conso l e Id l e = 123232
21 Cpus = 2
22 Memory = 2048
23 Start = LoadAvg − CondorLoadAvg <= 0 . 300000 && KeyboardIdel > 15 ∗ 60
24 Requirements = TRUE
25 Rank = Owner == ”mrsmith” | | Ownre == ”mrssmith”
26 CurrentRank = −1 . 0000000
27 LastHeardFrom = 8987459837

Listing 6.1: Example Condor Classads for an execution node. Sample output re-
turned from “condor status -l node01” command.

checkpoint and migrate a job to another idle computer if the owner wishes to use their
computer for another task.

Condor simplifies job submission by acting as a matchmaker [130] between job require-
ments and machine attributes. To facilitate this, Condor employs a powerful framework
founded on an extremely flexible expressive text-based language called Classads [130] of
which an example is shown in listings 6.1. This language enables computer resources of
any type to advertise their complex attributes. In addition, Classads flexibility allows
users to both easily run jobs with complex needs and define sophisticated job execution
instructions, such as number of runs, arguments, and redirection of standard input and
output streams. Each pooled computational resource advertises its own attributes in the
form of a Classads. This contains specific information regarding the machine’s platform
type, available hardware resources and its runtime environment capabilities. In turn,
users must submit their jobs to Condor in the form of Classad-based job submission files
that contains their job’s requirements, desires and file location information.

Condor has the following strengths that are desirable in Grid computing:

• its computational nodes (i.e. computers) are loosely-coupled: they may be added,
removed or crash without effecting the overall operation of the system. In addition,
adding of nodes to it requires no changes to the configuration of central manager.

• its adopt a efficient point-to-point file transfer mechanism where by files required to
run jobs are transferred directly from the submission node to the execution node.
Consequently, it avoids bandwidth bottlenecks. In addition, this mechanism takes
advantage of the extra bandwidth brought by nodes as they are added to the
system and effectively distributes overall transfer loads across the network making
Condor very scalable.

Chapter 6 Service-Oriented Computation 113

• it provides dynamic discovery, aggregation and allocation of resources. All ex-
ecution nodes advertise (offer to sell) their own capabilities. And likewise all
submission nodes advertise (offer to buy) nodes that fit their jobs requirements.
Condor acts as a simple broker by periodically reading all nodes’ advertisements,
matching and ranking job classads with machine classads. This approach requires
no centralised repository, information across the system is kept up to date and is
dynamically updated as and when machines and jobs are added and removed from
the pool.

• it provides sharing and access of a heterogenous network of machines which is made
possible by the adoption of a simple common language (Classads) for expressing
all information.

Nonetheless, Condor suffers from the following weakness:

• access to it requires heavy-weight bespoke client software. Submission nodes (i.e.
the computer from which users wish to access Condor’s resources) must run a set
of Condor daemon services in order to submit, run and monitor jobs, as shown
in Figure 6.3. The remote interfaces of the daemons services are unpublished and
closed consequently making it impossible to natively access Condor from computer
platforms not supported by its software. Consequently, integration of Condor with
other systems is difficult although specific support for Globus access has been
added in recent revisions of the software.

• enabling access across network boundaries poses significant security risks. Its
daemon services communicate via remote procedure call mechanism and a large
number of incoming and outgoing TCP/IP sockets that due to Condor’s architec-
ture can originate from any Condor node to any other Condor node. Consequently,
large ranges of ports must be opened up between network firewalls from any ma-
chine to any machine.

6.2.2 Condor and the Grid

There exists fundamental differences between Condor and the Grid. As a project, it be-
gan development before the concept of the Grid came into existence. Whilst its powerful
architecture, communication and data model suit a closed network and environment, its
monolithic closed nature and employment of proprietary technologies and single sharing
mode precludes easy integration within PSEs and Grid systems.

Figure 6.2 shows the interacting components of the Condor System within a pool. Con-
dor refers to the cluster of condor-capable submission and execution computers in its

Chapter 6 Service-Oriented Computation 114Central ManagerCondor_CollectorCondor_Negotiator
Submit MachineControlling DaemonsCondor_Shadow Process

Execution MachineControlling DaemonsUser's JobUser's CodeCondor_Syscall_LibraryCheckpoint File
Figure 6.2: Pool (Cluster) components of the Condor HTC system.

central manager domain as a Pool. Condor’s component model employs daemon oper-
ating system processes, such as condor collector, to service the operation of the Condor
system. Table 6.1 shows the role of these daemons in the Condor system.

Communication amongst daemon processes happens exclusively as remote procedure
calls. However, except for the the recent provision for Globus resources, Condor’s ar-
chitecture and lack of an open API makes direct integration with other resources at
the network and middleware level practically impossible. Interaction with the Condor
system takes place at the application level through a set of command line programs,
shown in table 6.2.

Compute resources within Condor’s pool advertise their capabilities via a simple to
use yet powerful, expressive proprietary data format called Classads [131]. They are
used exclusively throughout the system for all data collection, resource and requirement

Chapter 6 Service-Oriented Computation 115

System Role Condor Daemons Description
System Management Condor_master Launching, monitor and control of all other daemon

processes.
Resource

Representation and
Access

Condor_startd Represents the resource, such as, execution computer,
advertises its capabilities and controls access to
resource.

Job Creation and
Monitoring

Condor_starter Creates a jobs execution environment, launches it and
monitoring the job’s running progress.

Resource Scheduling Condor_schedd Represents resource request; maintains a queue of
jobs waiting and claims resources for job execution.

Job Management Condor_shadow Shadows the execution of a job, handling file transfers
and providing remote control of allocated resource.

System Information
Collection

Condor_collector Collects information about all resources in Condor’s
pool. All daemons periodically send ClassAds to the
collector.

Resource
Matchmaking

Condor_negotiator Matches jobs’ requirements with resource capabilities.
Periodically polls schedulers for jobs awaiting
resource allocation.

Job Checkpointing Condor_ckpt_server Stores and retrieves checkpointed job information for
their reliable operation.

Table 6.1: Categorisation and description of Condor’s daemon services.

Type Command Name Description

condor_status Returns status of machines as ClassAds Resource
Identification,

Monitoring and
Discovery

condor_stats View historical info about Condor pool

condor_findhost
Find a machine in Condor’s pool that’s removal
has minimal impact on running jobs Resource

Management
condor_glidein

Temporarily add Globus resource to Condor’s
pool

condor_rm Remove job from the queue

condor_hold Place job in suspended execution status

condor_release Release job suspended status
Job Management

condor_checkpoint
Force a job to checkpoint to a file (standard
universe only)

condor_history
View log of the state of completed or removed
jobs

Job Identification,
Monitoring and

Discovery condor_q View job’s status in queue

condor_submit Submit jobs to queue

condor_run Submit shell jobs to queue

condor_prio Change execution priority of job
Job Scheduling

condor_qedit Change submitted job requirements

User Monitoring condor_userlog View job statistics from users log

User Management condor_userprio Manage a user’s priority

Table 6.2: Categorisation and description of commands employed to operate Condor.

Chapter 6 Service-Oriented Computation 116

Condor_masterPool Domain and DaemonControl ManagementCondor_startdExecution Computer Condor_ckpt_srvrFile StorageCondor_shadowResource Control Condor_collectorInformation serviceCondor_scheddSchedulling Condor_negotiatorCollaborationCondor_starterMonitoring and HostingClassAdsUnified DataModel
NetworkResourceMiddleware

CondorSubmissionComputer CondorViewApplication IP SecurityAuthenticationAuthorisation
Figure 6.3: Architecture of a typical HTC clustering system.

description and monitoring purposes. Whilst their consistent employment throughout
the system gives the appearance of a single system image and simplifies interaction,
Classads remain a proprietary format for Condor.

6.2.3 Identification and Modelling of Resource Layers

Condor may be viewed as purely a resource provider at the lowest level of the Grid.
However, it has component that fit into each of the higher levels of the Grid, shown in
figure 6.3.

If we view the Grid model from the bottom up, at the network level we have RPC
communication over TCP with the condor master performing network operations that
manage and monitor the other daemons of the system. At the resource level we have the
execution computers in Condor’s pool thats’ access is controlled by the condor startd
daemon. Control, management and monitoring of the execution machines is provided by
the daemons in the middleware level. Within the middleware level itself daemons col-
laborate with each other to provide sophisticated system functionality that is presented
to the user at the application layer through contrib modules, such as the CondorView

Chapter 6 Service-Oriented Computation 117ComputationalResource(Workstation, PC)Private ResourceManagement(Local Operating System)Access Control Global Resource AllocationCollection(Machine capabilities and runningjob statuses)Negotiation(Matchmaking of job requirementswith machine capabilities) Logging and Monitoring(Historical database of collectedcluster status information)Accountant(Management of users’ accessrights and jobs’ runtime priorities) Access Control ListsSystem Adminstrator
Scheduler Scheduler

StatusInformation
Resourceutilisation Job QueueJob Queue

ComputationalResource(Workstation, PC)Private ResourceManagement(Local Operating System)Access Control
Job requirements

Application ResourceManagement
Start, pause,resume andkill jobs

Application ResourceManagementApplicationResource ManagementLibrary ApplicationResource ManagementLibraryRuntime requestsResourcerequests/assignment
UserApplicationInter-TaskResourceManagement
Inter-JobResourceManagement
Inter-UserResourceManagement

Owner ResourceManagement

Figure 6.4: Architecture of a typical HTC clustering system.

module for Web viewing of the state of the Condor Pool, and Condor commands, shown
in table 6.2.

Identification and separation of components into layers in a user-oriented manner is
an important step in providing a virtualised interface to the Grid. However, it does
not take into account the collective and resource sharing operations apparent in multi-
user, multi-job clustering software systems. A clearer picture can be derived using a
resource-centric view.

Chapter 6 Service-Oriented Computation 118

Resource Sharing Operation Condor Commands
Inter-job Scheduling Condor q, Condor qedit

and Condor history
Inter-user Discovery and information Condor status,

and Condor stats
Inter-task Request and management Condor submit,

Condor hold, Condor resume, Condor rm

Table 6.3: User command program interaction within resource layers of Condor.

Figure 6.4 shows a generic clustering software stack for HTC cluster management system.
It delineates the software into inter-user, inter-job and inter-task resource layers, whilst
showing the interactions amongst features of each layer. Each layer represents a par-
ticular resource of the compute software system that that may form sharing operations
with other resources in a larger distributed system. The layer provides:

inter-user a cluster information discovery resource for users of the cluster; providing,
for instance, information about the clusters capabilities and historical usage records

inter-job a cluster scheduling resource for jobs spanning multiple users that provides,
for instance, analysis, monitoring and historical information of the status of jobs
in the execution queue.

inter-task a computer management resource for task with multiple jobs that provides,
for instance, acquisition and control of computers

In, for example, the scenario of a engineering and design optimisation search PSE,
engineers may have tasks, such as a wing design simulations, where software can only
be run a particular computer platform. The PSE provides search tools to find suitable
computers to run the simulation software and performs load-balancing between clusters
to ensure that users’ job requests are serviced quickly. The PSE could use the inter-
user resource to discovery suitable computers and the inter-task resource to manage
submission of jobs across a selection of clusters to ensure no cluster has too many
jobs waiting for execution. The PSE could employ the inter-job layer to monitor the
progression of jobs to check that they are being serviced in a timely fashion and if not
reassign them to cluster that has a higher throughput of jobs.

This example shows a sophisticated sharing operation with interaction between resources
in clusters and PSE, including resource discovery, load-balancing and monitor across
multiple clusters to ensure desired qualities of service. We studied the Condor HTC
system from a resource-centric perspective to find resources that fit into the generic
model shown in figure 6.4. Table 6.3 identifies resource sharing operations that Condor
offers and the commands that Condor provides to access the resources.

Chapter 6 Service-Oriented Computation 119Client Application Application FrameworkDynamic BindingUDDICompute Service APILegacy System Web ServiceWeb Service Platform Legacy System

WSILSOAP/XML, HTTP
API/SDKServiceKey

Legacy System Wrapper APISingle sign on, Delegation, Sand-box Security Web Method Stub CallsProcess Calls, XML Translation
XML Schema DefinitionAuthorisation andAuthentication

Program Function calls WSDL
Figure 6.5: Open standard protocols stack of the compute resources and Computation
Web Service. This shows the interfaces exposed by each layer of the Web Service

implementation

6.3 Resource Sharing Operations through Web Services

We now describe methods to expose the resources in cluster management system for so-
phisticated sharing operations using service-oriented technologies and programmatically
means. Using Microsoft’s .NET framework [132] and ASP.NET, we have successfully
wrapped a cluster management system, Condor, as a Web Service providing a generic
interface that enables its seamless integration into the Grid. In addition, we show how
the employment of open-standard technologies enable the interoperability, security and
standard file transfer mechanisms needed in sophisticated Grid-enabled PSE, shown in
figure 6.5.

Figure 6.6 shows an overview of a cluster management system exposed as a service.
Access and sharing of compute and cluster management system resources is controlled

Chapter 6 Service-Oriented Computation 120

Web ServerConsumer
Description andIntegrationXML MessageProcessing

Service ResourceWS-Inspection ServiceManagementJobManagementState ControlCachingFile Transfer
WSDL Security JobResourceComputerResource

ClusterResource
Resource Operation and Resource Data P

rocessing
Cluster Managem
ent System Inter-UserDiscoveryInformationInter-JobSchedulesMonitoringInter-TaskSubmissionManagment

Figure 6.6: Architecture of Computation Web Service

through the service layer. The service adds file caching and management, security, and
user and task management on top of the sharing operations of the cluster management
system. The sharing operations of the particular underlying system are often com-
bined and separated within the service layer in order to provide generic operation and
behaviour to clients of the Web Service.

WSDL provides the standard mechanism to define the sharing operations of a virtualised
clustering management system, listed in Appendix D. Clients perform interaction with
the Web Service through operations represented by Web Methods defined in the WSDL
document that are transferred via HTTP in the form of SOAP addressed XML messages.
All interaction types including, instructions, queries and data transfers to the underlying
resources happens through the service layer. From the outside, the service appears as a
generic cluster management system rather than just an interface. This is important as
it isolates clients from the details of the underlying implementation.

The service supports the following fundamental operations: submission of jobs, removal
of jobs, querying of jobs status and querying of machine status, in addition to file transfer
methods. Listings 6.2 shows the API of the services which is exposed via a WSDL
interface listed in Appendix D. The following sections look at each of these operations.

Figure 6.7 shows the orchestration of a complete job submission process based on the
service operations described above.

Chapter 6 Service-Oriented Computation 121

Figure 6.7: The Job Submission Process

Chapter 6 Service-Oriented Computation 122

1 //SUBMIT
2 [WebMethod(Desc r ip t i on=”Submits a job to the Condor job queue and re tu rns job ID . ”)]
3 public JobID Submit (SubmissionClassAd desc) ;
4
5 //Machine STATUS
6
7 [WebMethod(Desc r ip t i on=”Returns MachineClassAds f o r machines . ”)]
8 public MachineClassAd [] GetMachineStatuses (s t r i n g [] machineNames , MachineStatusQuery query) ;
9

10 [WebMethod(Desc r ip t i on=”Returns MachineClassAds f o r machines . ”)]
11 public MachineClassAd [] GetAllMachineStatuses (MachineStatusQuery query) ;
12
13 // Job STATUS
14
15 [WebMethod(Desc r ip t i on=”Returns JobClassAd f o r user ’ s j obs . ”)]
16 public JobClassAd GetJob (JobStatusQuery query , JobID id) ;
17
18 [WebMethod(Desc r ip t i on=”Returns JobClassAds f o r a l l user ’ s j obs . ”)]
19 public JobClassAd [] GetAllJobs (JobStatusQuery query) ;
20
21 [WebMethod(Desc r ip t i on=”Returns JobClassAds f o r user ’ s j obs . ”)]
22 public JobClassAd [] GetJobs (JobStatusQuery query , JobID [] i d s) ;
23
24 //REMOVE
25
26 [WebMethod(Desc r ip t i on=”Removes user ’ s job and re tu rns a bool to determine i f operat ion was

s u c c e s f u l ”)]
27 public JobRemoveStatus RemoveJob (JobID id) ;
28
29 [WebMethod(Desc r ip t i on=”Removes user ’ s j obs and re tu rns a bool array to determine i f operat ion

was s u c c e s f u l ”)]
30 public JobRemoveStatus [] RemoveJobs (JobID [] i d s) ;

Listing 6.2: Application Programmer Interface (API) of Computation Web Service

1 . . .
2 Requirements = (
3 (Arch== INTEL && OpSys==WINNT50&&
4 Memory>=128 && Disk>=100) | |
5 (Arch== INTEL && OpSys==WINNT51&&
6 Memory>=256 && Disk>=100)) &&
7 (HasMatlab==t rue) &&
8 (MatlabVersion== 6 . 1)
9 . . .

Listing 6.3: Example of a ClassAd job submission request to the Condor

6.3.1 Computer Discovery

As with Web Services, resources should provide description, discovery and integration
operations to enable their dynamic discovery and allocation. In heterogenous HTC com-
pute clusters they share a common need to describe the capabilities of their computers
to ensure that jobs with particular runtime requirements are matched with an appropri-
ate computer for their correct execution. As well as runtime specific requirements, such
as the operating system, machine architecture and disk and memory space, jobs need
to specify environmental, file and execution specific details, such as job arguments and
standard input, output and error streams. In addition, sophisticated compute clusters
may also support instructions that tell the cluster system how it should transfer files,
the number of executions of the job and the arguments to pass to each run of the job.
The Condor system, for instance, employs Classads to describe resources (shown in list-
ings 6.3), whilst GRAM employs RSL. The service exposes this operation through the
GetMachineStatuses method.

Chapter 6 Service-Oriented Computation 123

1 . . .
2 <JobRequirements>
3 <Pla t f o rmSpec i f i c a t i on>
4 <OperatingSystem>WINNT50</OperatingSystem>
5 <MemoryRequirement>128</MemoryRequirement>
6 <DiskRequirement>100</DiskRequirement>
7 <Arch i t e c tu re>INTEL</ Arch i t e c ture>
8 </ P l a t f o rmSpec i f i c a t i on>
9 <Pla t f o rmSpec i f i c a t i on>

10 <OperatingSystem>WINNT51</OperatingSystem>
11 <MemoryRequirement>256</MemoryRequirement>
12 <DiskRequirement>100</DiskRequirement>
13 <Arch i t e c tu re>INTEL</ Arch i t e c ture>
14 </ P l a t f o rmSpec i f i c a t i on>
15 <Runtime>
16 <Vers ion>6 . 1</Vers ion>
17 <Name>Matlab</Name>
18 </Runtime>
19 </JobRequirements>
20 . . .

Listing 6.4: Example of a XML job submission request to the Compute Service.

6.3.2 Job Submission

Job submission is the operation to request and acquire a compute resource. The sub-
mission process happens as follows:

1. a job description is sent to the service, which provides job details and specify
resource requirements

2. when accepted, all related job files are transferred to the service using file transfer
service operations

3. the user requests to start the job

The format of the job descriptions is defined in the form of an XML Schema based on
common resource specification languages, such as the Condor ClassAd and RSL. Every
job description is validated against the schema to ensure data integrity and correctness.
Listings 6.4 show an example of XML-based request to the compute service for job
submission request. The Submit method of the service provide submission of jobs.

6.3.3 Resource Management and Job Monitoring

Job monitoring operations allow users to query the status of their jobs. The Optimisation
Service WSDL, Shown in listings 6.5, is the response In Condor, jobs are often stopped
and started by the system as and when the state of the machine is detected to be idle. A
job can be monitored to see if it has completed, held, or idle waiting for a resource. Users
may control the resource that job is executing on by suspending, resuming, removing,
or restarting their job execution. Listings 6.5 show an example of XML-based response
from the compute service to the client who requested the GetJob method to query the
status of their jobs.

Chapter 6 Service-Oriented Computation 124

1 <soap : Envelope
2 xmlns : soap=”http : // schemas . xmlsoap . org / soap/ enve lope /”>
3 <soap : Header>
4 <user>mjf</ user>
5 <messageID>UUID : 67125375−3268763−36486−034872646</messageID>
6 <r e l a t e sTo>UUID : 7264876324−3284265−23874686−4673</ re l a t e sTo>
7 <from>
8 http : // ph i l i p . s e sne t . soton . ac . uk/ComputationService−NiceUser /Gateway . asmx
9 </ from>

10 </ soap : Header>
11 <soap :Body>
12 <ca : JobStatusResponse
13 xmlns : ca=”http : //www. e−s c i e n c e . soton . ac . uk/ webse rv i ce s / computation”>
14 <Cluste r Name=”Southampton E−Sc i ence ”>
15 <Job Name=”OOMMF1”>
16 <MachineHost>e−s c i enc e04 . soton . ac . uk</MachineHost>
17 <Status>Running</ Status>
18 </Job>
19 <Job Name=”OOMMF2”>
20 <MachineHost>e−s c i enc e08 . soton . ac . uk</MachineHost>
21 <Status>Evicted</ Status>
22 </Job>
23 </ Clus te r>
24 </ca : JobStatusResponse>
25 </ soap :Body>
26 </ soap : Envelope>

Listing 6.5: Example SOAP message from a Compute Service. The body contains
the response message from a job status request sent to the server. The header con-
tains information about the requestor (<user>), a unique identifier (<messageID>),
its relationship to the request message (<relatesTo>) and the origin of the message

(<from>).

6.4 Job Management

The Computation Web Service offers resource sharing to support multiple users with
task containing multiple job. An essential requirement for a multi-user environment is
security that in addition to providing access control to the service, it protects users files
and data from unintended damage by other users or jobs and denies other users access
to each others files. We have employed WS-Security [133] for message level security that
provides encryption and signing of messages, and authentication and authorisation of
users; enabling user access rights and roles to be configured in the service. WS-security
has scalability advantages of traditional transport security, such as SSL, as messages can
be verified on a trust basis negating the need to repeatable gain authentication from the
original sender for any service that it may pass through.

In addition, the service provides systematic and robust job management to cater for jobs
that may run from days to months offering recovery from computer failure. The compute
jobs files are assigned a unique directory that stores its files locally before submission to
a compute resources. Upon completion of a job’s execution files will be transferred back
in this directory. This directory is assured to be unique by its path and name that are
generated respectively from the owner’s unique username from their X509 Certificate
and Universal Unique Identifier (UUID) job identifier generated by the service. Jobs
from the same user will consequently sit in the same directory hierarchy. This provides
a useful way to ensure security amongst users and provides a way to manage and insulate
jobs from accidently writing over each others’ files.

Chapter 6 Service-Oriented Computation 125

The service provides robustness and secure caching by using the same directory structure
to hold information that links the jobs submission with its directory and holds a unique
cache of files for the user that only he has access to. The stored submission information
enables the service to reestablish which job is associate with which directory in the event
of its failure.

6.4.1 State Management

As we discussed in section 4.3.5, a service must be able to contend with interactions and
internal operations spanning multiple users and jobs. A cluster managements system
contains many sharing operations, in particular Job Submission and execution, that
demand state management.

Pure Web Services technologies do not address state management issues nor provide
protocols defining the lifetime of the span of shared operation essential to preserving the
integrity of a system. In order to provide state and lifetime management, a developer
may either create their own new state management mechanisms from scratch or based
on existing Web Server technologies, or employ extension technologies to the stateless
Web Service model. We have implemented two versions of the Computation Web Service
that explores both ideas.

The first version of our Web Service employed session and application state management
functionality provided by the underlying Web Server hosting environment, IIS [134]
and ASP.NET [135]. This method of implementation has distinct performance and
reliability advantages with support for persistent long term state storage on a SQL
database server. However, it also has many disadvantage stemming from its design as
a mechanism for maintaining state across Web pages and HTTP/Web security model.
Importantly support for long term session state requires HTTP cookies [136] on the
client-side; a known security problem. In addition, a damaged or lost cookie would
mean that the user would not be able to recover their session. Whilst the issue can be
overcome by mapping session state onto application state it is then not possible to use
cookies’ lifetime management mechanism for creation, management and destruction of
sessions.

A revision of the Web Service performed its own lifetime and persistent state manage-
ment mechanism by recording state information using the directory structure mechanism
discussed in the last section. Upon creation of a session, for instance on a successful
request for job submission, a new unique directory would be created, with its name
returned to the user as its unique session handle. All subsequent operations within the
context of the resource management must pass this handle back to the Web Service en-
abling multiple session to be maintained concurrently. Each of these operations checks

Chapter 6 Service-Oriented Computation 126

the certificate of the user to ensure that they are allowed to access that session. Subse-
quent operations will store or check for state information, such as the job ID returned
by Condor or a record of the file requirements, to control and maintain the integrity of
the job submission and resource management process. The lifetime of the session in this
instance represents the life of the job. Only after the job has completed and result files
have been uploaded can the session be allowed to timeout and be destroyed. Care must
be taken to not destroy the session after the job has been assigned a compute resource,
otherwise data may be lost. Consequently, simply timeout mechanism for cleaning up
sessions are not possible because the length of the jobs’ execution is an unknown factor.

A completely new Web Service was create using the transient Web Service model pro-
posed in the OGSI [57]. OGSI supports dynamic creation and lifetime management
of Web Service instances that’s operation and data are tied to the specific context in
which it was created. We employed this mechanism, to represent the submission and
management of a resource for a job as a Web Service instance. There is a one-to-one
relationship between the job, resource it was assigned and the Web Service instance.
Therefore operations on it only act on the job and compute resource to which they were
assigned. A stateless Web Service factory is responsible for the creation of the instances.
It performs all the checks previously carried out by the request of submission operation
before creating and return a unique Grid Service Handlers (GSH) [57] of the new Web
Service instances. This allows the implementation of the Web instance to operate un-
der the assumption that initial context is valid. This approach simplifies the way state
information is stored and managed, removing the need for arbitrary measures, such as,
storage of Condor Job IDs’.

6.4.2 File Transfer Management

Jobs in a HTC environment may need to transfer huge amounts of data to and from the
compute resource. Whilst this overhead is insignificant compared to the length of time
the job runs, a Web Service handling multiple jobs could be swamped and effectively
suffer a form of denial of service attack if too many large file transfer operations occur
concurrently. Therefore, it is important that file transfer operations are as fast and as
efficient as possible.

Within the Condor system this problem does not exist because file transfers are dis-
tributed across the system with each submission machine transferring a job’s files di-
rectly to the compute resource. However, our Web Service must receive and transfer
all jobs’ files causing a potential bottleneck. To overcome this architectural deficiency,
we improved the data transfer mechanism of Web Services by employing DIME [137]
implementation of the WS-Attachments standard [138]. In addition, file transfer control
and caching schemes were employed to make our Web Service’s file transfer operation
more efficient.

Chapter 6 Service-Oriented Computation 127

Jobs generally need to transfer binary formatted files, such as the compiled executable.
Unfortunately, due to text markup nature of the SOAP and XML standards they do not
handle binary encode data and files efficiently. The only means to transfer binary files
using SOAP is too encode them into arrays of bytes (Base64 encoding) and pass that as
a fragment of an XML document. Consequently, these documents are often much larger
then the original file. Transfer of huge files is unreliable as SOAP documents cannot be
split and must be sent in one large chunk to the Web Service. DIME offers a more efficient
means of transfer with files as binary attachments to the SOAP document. DIME has
recently lost favour with the Grid Community because its functionality is not sufficient
for supporting all the file sharing operations envisioned by the Grid. Alternatives such
as SOAP MTOM.

6.5 Development with Legacy System

Cluster management system often have native data formats, modes of operation and
protocols that differ in standard to not only Grid computing technologies but, the pro-
gramming and development environment for the Web Service. Abstraction of the re-
source representation in addition to its sharing operations is needed aid developers build
services on top of legacy system in a way common to the architecture of programming
environment of their chosen Web Service hosting system. Within our Web Service we
have employed a resource abstraction layer that bridges the native data, communication
and operational model of the cluster management system into a common object-oriented
model suitable for Web Service development.

The two most important Condor programs are condor submit and condor status. The
first provides the user with the ability to monitor and query the machine pool. Submis-
sion of jobs performed by the condor submit command requires a submit-description file.
Other commands provide control, monitoring and querying of submitted jobs, shown in
Table 6.2.

It is possible to launch any command line executable as a process from another program.
Input to the command line executable is through the standard input, read files, pipes,
and process start properties. Output retrieval requires reading from the standard output,
standard error, written files, and pipes. The underlying API software thus communicates
using standard IO and process function calls.

The development version of Condor 6.3.x provides an SDK however; this is for non-
Microsoft Windows operating system. At a later stage, there are plans to replace the
Condor wrapper API with the SDK upon the release of the release version of Condor 6.4.
Code wrapped around Condor by modelling each of its programs as a process, facilitates
the creation of an API. It then becomes possible to make use of these APIs in the Web
Service code to expose a programmatic interface to Condor on the Internet. ClassAds

Chapter 6 Service-Oriented Computation 128

XML Document Extractaction
Condor Translation
SOAP Document

Submission Description File
SubmitDescription ClassMapping

ClassAd Files
XML TranslationClassAd Class Mapping
SOAP DocumentXML Document Wrapping

Figure 6.8: Condor XML Wrapping Process.

and Submission Description files (Job Requirement descriptors) are flat files, that are
translatable to and from XML documents, see Figure 6.8, and have structures that are
directly describable as XML Schema documents, as shown in Figure 6.5.

We have harnessed the Classads tools they have create and utilised them to create an
abstract job submission request system for the Computation Web Service.

Web Services by nature transfer messages in XML format however Condor does not. So
initially we constructed a set of C# class files that mapped the structures of Condor
submission file. These classes where marked up with XML attributes such that they
could be automatically serialised by the Web Service framework. We use these classes
to contain the information about the job submission. The client constructs these classes
and passes them to the Web Service via the submit method that takes these class
instances and translates them to a format compatible with Condor using Classads.

6.5.1 Asynchronous Communication: Monitoring and Job Notification

After a job has terminated through either successful completion or failure, Condor no-
tifies the owner of the job via email. While this is a useful feature and allows users to
be quickly notified, Condor does not provide any other notification facilities other than
polling the job queue until the job disappears.

Chapter 6 Service-Oriented Computation 129

Instead of polling, within the client’s code for instance, call back routines are assigned
to certain events generated by the Web Service. These events might be such things as
job completion or failure, upon which the Web Service notifies the client of the event
to which it performs the appropriate action, such as collecting the generated data or
restarting the job with different parameters.

6.5.2 Discovery of Special Resources

Resource sharing operations extend to the Cluster Management System and the compute
resources including memory, processor, disk capacities, database/archive facilities, and
also specialist software environment or licensed applications. However, these specialist
applications are often standalone desktop applications offering no common means for
their description and discovery.

The Condor Classad mechanism system provides a convenient method for the discovery
of resources with special capabilities in the Condor pool. Each machine within the
Condor pool advertises its capabilities from attributes specified in its Condor system
configuration file. These attributes will then be reflected in the information generated
by the resource status query performed by Condor, which is passed on to the Web
Service. The service will therefore be able to make the discovery by identifying the
target attributes.

6.6 Review of Microsoft .NET based OGSI Implementa-

tions

The Open Grid Service Infrastructure (OGSI) defines a collection of standards for Grid
service hosting environment. So far there have been a number of attempts to implement
OGSI based on various software platforms. Here we presents a comprehensive review
of two implementations of OGSI on the Microsoft .NET platform - OGSI.NET and
MS.NETGrid. Through demonstrating the same Grid problem on both versions, we
intend to reveal features presented in the implementations and highlight the differences,
so as to provide first-hand experience and information for potential users, as well as
suggestions for future improvement.

6.6.1 Motivation

The Open Grids Services Infrastructure (OGSI) [57] is an initiative by the Global Grid
Forum. It builds upon both Grid and Web Services technologies to define standard
mechanisms for creating, managing, and exchanging information among entities called
Grid services.

Chapter 6 Service-Oriented Computation 130

Grid services are Web Services that follow a set of conventions which use interfaces
and behaviours to describe how clients interact with these services. Combined with
the OGSI mechanisms for creation and discovery of Grid Services, these conventions
provide control, fault-resilience, and secure management of long-lived distributed state
often required in advanced distributed applications. The OGSI specification proposes
how Grid service instances are named and referenced; the base, common interfaces and
behaviours that all Grid services implement; and the optional interfaces and behaviours
associated with factories and service groups. However, the OGSI specification does not
address how Grid services instances are created, managed, and destroyed within any
particular hosting environment. While clients can invoke any Grid service instances on
any platform that follows the conventions, service implementations are not necessarily
portable among various hosting environments. The OGSI working group foresees that
various Web Service platforms, such as J2EE [103], Microsoft .NET [79], and Windows
or UNIX processes shall be used to implement the OGSI hosting environments.

Current OGSI hosting environments where created on the Java platforms, such as J2EE
and Tomcat/Axis, and on operating systems, such as UNIX/Linux systems. Until now
work on on implementing OGSI have not utilised the Microsoft’s .NET framework.
Whilst relatively new in comparison with the Java platform, it nevertheless offers compa-
rable capabilities. In fact, the OGSA/OGSI standardisation process will benefit greatly
from the creation of hosting environments on additional platforms. Therefore, there are
now two attempts on OGSI implementation that harness the power of the .NET plat-
form: the OGSI.NET project from the University of Virginia [139] and the MS.NETGrid
project from EPCC [140].

Both OGSI.NET and MS.NETGrid provide platforms for the development and deploy-
ment of Grid services. Profoundly influenced by the Web Service model of Microsoft
.NET, these two implementations have similar approaches to their Grid service infras-
tructures. However, many differences exist between them, such as container architecture,
security model, and programming model. Here we presents a detailed review of the two
.NET based OGSI hosting environments. In order to achieve a comprehensive under-
standing of how they work and what differences exist between them, we have constructed
two functionally identical versions of part of an engineering design optimisation system
on both platforms. The work also demonstrates that OGSI.NET and MS.NETGrid are
both viable and powerful hosting environments for advanced distributed applications on
the Grid.

6.6.2 Demonstration of .NET OGSI Implementations

To best leverage the capabilities of the .NET OGSI environments, a part of an existing
Grid-enabled engineering design optimisation system was selected as the test scenario.
Through the migration of the application to OGSI.NET and MS.NETGrid, we have

Chapter 6 Service-Oriented Computation 131InitialSettingsDoEProEngineer ProEngineer ... ProEngineergeometry geometry geometry...Analysis andOptimisation Client Get Design PointsCreate Instance
Job Submission

DoE ServiceDoE ServiceInstance JobManagementService1N2Job Instances
Figure 6.9: Engineering Design Optimisation in OGSI .NET Demonstration

been able to explore all aspects of the two platforms. The system demonstrated gen-
erates initial geometries for the optimisation of jet engine nacelle design. There are
two Grid services involved in this application. The first one is a design of experiment
(DoE) service, which provides starting points used for geometry generation based on the
restrictions and design methods specified by the user. Being computationally intensive,
geometry generation jobs are submitted to a Computation Web Service, which provides
computational power and required engineering software. The process is illustrated in
figure 6.9.

Both services in the demonstration need to be stateful, and are therefore suitable to
exploit the OGSI transient Grid service model:

• The DoE service uses an engineering design system to create initial designs based
on the requirements set by the user. As it is computationally expensive to run the
design system, the service usually runs it only once, when the service instance is
created. Therefore the DoE service needs to keep record of all results generated.
In addition, the service also needs to keeps record of designs already retrieved by
the user so that if more designs are required, no duplicate ones will be provided.

• The Computation Web Service enables execution of jobs on remote compute re-
sources. The service provides functionalities for job submission, file transmission,
and job management. As a Grid service, it utilises a factory service to create
a unique transient service instance for every newly submitted job. The service
instance handles the entire job submission procedure and maintains all its infor-
mation, including job location, execution requirements, and job state. Grid service
features such as Service Data and asynchronous notification model have also been
exploited in the Computation Web Service to enable management functionalities,
for example job status monitoring.

Chapter 6 Service-Oriented Computation 132

Figure 6.10: The OGSI .NET Demonstration Client Application

The operations demonstrated are controlled by the client application, which implements
OGSI client protocols including transient services creation and management, security,
and service notification. Figure 6.10 shows the client in operation.

6.6.3 Assessment of OGSI.NET and MS.NETGrid

In this section we evaluate the two .NET implementations of OGSI based on experiences
from building the demonstration application. The assessment is done on the following
aspects: specification compliance, platform integration, usability, and performance.

6.6.3.1 OGSI Compliance

The OGSI specification defines a set of Grid service port types that provides essential
Grid service features. The following table compares implementations of these port types
from OGSI.NET and MS.NETGrid in order to study their compliance with the OGSI
specification.

As shown in table 6.4, OGSI.NET provides a complete implementation of the OGSI
specification. While, MS.NETGrid only implements the GridService port type (although

Chapter 6 Service-Oriented Computation 133

OGSI Port Types OGSI.NET MS.NETGrid

GridService Implemented Implemented

Handle-Resolver Implemented Not implemented

Notification-Source Implemented Not implemented

Notification-Subscription Implemented Not implemented
Notification-Sink Implemented Not implemented

Factory Implemented Implemented

ServiceGroup/
ServiceGroup-Registration/

ServiceGroup-Entry
Implemented Not implemented

Table 6.4: Comparison of OGSI Implementation - Port Types

OGSI
Compliance OGSI.NET MS.NETGrid

Grid Service
Description

Some pre-defined Grid service description
elements included in the WSDL and XML
files provided.

Pure WSDL 1.1 without service data and
service data description.

Service Naming Arbitrary service naming supported Arbitrary service naming not supported

Unspecified
Features

.NET remoting used in RPC styled service
invocation.

None

Table 6.5: Comparison of OGSI Implementation - Other Issues

some ServiceData and operation message XML does not match the specification exactly)
and FactoryService port types. Apart from the port type implementation, the two
versions of .NET Grid service environment also differ in several issues listed in table 6.5.

6.6.3.2 .NET Integration

OGSI.NET and MS.NETGrid both build their system based on the MS .NET platform.
However, due to the differences in design and implementation, they do not have the
same level of .NET integration. Here the two versions are compared on a number of
subjects concerning the .NET platform.

6.6.3.3 .NET Framework and Programming Language

The two versions are both implemented with MS Visual C#. Due to the multiple
language support of .NET, it is possible to write Grid services using other languages
supported by .NET, such as VB.NET, C++ and J#. Nevertheless, it should be noticed
that OGSI.NET is built on .NET framework 1.1 and therefore not compatible with
the older version of the framework. Although, the differences between version 1.0 and
1.1 of the .NET framework that may effect Grid service development are concerned
with changes to the .NET security and ASP.NET security (affects only MS.NETGrid).

Chapter 6 Service-Oriented Computation 134

.NET Integration OGSI.NET MS.NETGrid

.NET Version
Supported

MS .NET Framework 1.1 MS .NET Framework 1.0, 1.1

Implementing
Language C# C#

ASP .NET
Application Server

Container process does not run within the
ASP.NET Web process.

Used as the environment for the Grid
service container

Web Service
Enhancements

Features

Plug-ins supporting features such as DIME
and WS-Routing provided by the package
cannot be used in Grid services.

WSE features can be fully exploited.

System Security
Restriction

Unlimited – GS container running as normal
Windows service process.

Limited – GS container running in an
application domain of the ASP.NET
process

Container Security

Each GS instances run in a separate
application domain, which provides isolation,
unloading, and security boundaries for
executing managed code.

No explicit security mechanism. All GS
instances run within the same
application domain.

Tools Support

Visual Studio .NET 2003 required;
Automatic generation of proxy classes using
“Add Grid Reference” plug in, Automatic
generation of WSDL from Grid Service
library via WSDLGenerator tool, GWSDL
flattener for conversion of GWSDL to WSDL
documents, XML and WSDL document
handling programming libraries.

Visual Studio .NET 2002/2003

System
Requirements

Windows 2000/XP/Server 2003; .NET
framework 1.1; IIS 5.0.

Windows 2000/XP/Server 2003; .NET
framework 1.0 or 1.1; IIS 5.0.

Table 6.6: Comparison of .NET Integration

The .NET framework supports backwards compatibility, such that the majority of code
written for version 1.0 should work with 1.1. It is important to note that because
the .NET framework also supports forwards compatibility, as newer versions become
available developers will not be restricted to using the version of .NET utilised by the
relative Grid containers, although care must be taken such that the application runs as
expected on differing versions of the .NET Framework.

6.6.3.4 Application of ASP.NET and Web Service Enhancement

MS.NETGrid runs its Grid service container as an ASP.NET Web Application under the
Microsoft Internet Information Server (IIS), and is therefore able to take advantage of
ASP.NET features for Web service deployment and management. In addition, the Web
Service Enhancement package that supports upcoming open standards for Web services
such as WS-Security, WS-Routing and WS-Attachments can be used directly within
its Grid service programming model without changes to the Grid service container. For
OGSI.NET, on the other hand, the Grid service container runs as a stand alone Windows
service process that provides similar service hosting functionalities similar to ASP.NET.

Chapter 6 Service-Oriented Computation 135

 OGSI.NET MS.NETGrid

Factory
Various types of transient GS may utilise the
same type of factory service.

For each Grid service, there must be a
unique persistent factory service deployed.

Grid Service
Configuration

XML based configuration format. Standard ASP.NET Web configuration

Grid Service
Deployment

All service library files are stored in the same
folder; services need to be specified in the
configuration; separate WSDL documents
are required for each Grid service which
must be placed in schema directory of the IIS
root folder for automatic proxy generation;
restart of the container process is required.

All service library files are stored in the
same folder; services need to be specified
in the configuration; the WSDL files do
not exist in the file system; restart of IIS is
required.

Grid Service
Programming

No separation between service interface and
service implementation logic.

Service interface and implementation are
separated into the service proxy (interface)
and service implementation (application
logics).

Pre-defined and
custom OGSI Port

Types

Ports types are reusable among services and
custom port types may be created. OGSI port
types are implemented in separate classes
and are linked into the Grid service classes
through .NET attributes.

OGSI port types are implemented in the
base GS proxy classes, which are inherited
by the proxy class of each Grid service.

SDE definition
and handling

SDEs are defined and configured using
attributes. Class level SDEs may have
custom handlers defined by marking up static
‘set’ and ‘get’ methods using attributes.
Instance level SDEs handlers are assigned
programmatically, where each SDE may be
assigned multiple ‘set’ call backs and a
single ‘get’ call back handlers.

SDEs are defined and configured
programmatically. Instance level SDEs
handlers are assigned programmatically,
where each SDE may be assigned multiple
‘set’ call backs and a single ‘get’ call back
handlers.

Table 6.7: Comparison of Grid Service Deployment and Programming Model

 OGSI.NET MS.NETGrid

Resource
Management

The container process is always running.
Persistent services are only loaded fully into
an application domain when they are
invoked and stay in memory until the
container process is stopped. Transient
service instances are removed when they are
destroyed or become invalid.

The container process is not loaded until the
first GS is invoked. All persistent services are
loaded when the container initialises and stay
in memory until the ASP.NET web process is
stopped. Transient service instances are
marked for removal when they are destroyed
or become invalid. However, there is no clean-
up mechanism implemented.

Resource Usage High and less scalable. Moderate and scalable.

Table 6.8: Comparison of Grid Service Resource Management

It is, however, not obvious how new features supplied by platform and development tool
vendors can be deployed without updating the container itself.

6.6.4 Grid Service Deployment and Programming

The most important aspect of an OGSI implementation is its support for the construction
and deployment of Grid services. The two versions of .NET Grid service environment
have both provided an effective service deployment and programming model. While
similar in many ways, there remain some differences, which are listed in table 6.7.

Chapter 6 Service-Oriented Computation 136

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Number of Jobs
Time (Seconds)

Total execution time of Computation Service Total processing time of job submission requests

Figure 6.11: Scalability of Web Service submission node

6.7 Practical Application of Computation Web Service

Here we give a demonstration of the Computation Web Service for a parameter study
of fluid dynamics in a 2-dimensional geometry of a nacelle for an aircraft engine, shown
in 6.12. Four design variables that describe curves on the upper and lower edge of the
nacelle are calculated across its surface. Parameter studies such as this enable engineers
to more easily determine the impact of different wing geometries upon the quality of
a design. Each simulation of the parameter study runs as job submitted to the Web
Service from design environment in Matlab using a Java based client toolkit.

The job’s files exceeds ten megabytes in size and include the executable for the simulation
compiled from Matlab code, and supporting Matlab libraries for it to run. The cache
mechanism of the Web Service reduces the network load and number of file transfers by
only uploading new or changed files. After the initial job’s files were uploaded subsequent
jobs submission were significantly faster. A total number of six hundred and forty eight
simulations jobs were successfully run over a cluster of twelve Windows NT nodes. The
success of this shows that the Web Service is both robust and reliable, and provides
seamless access to the Condor system from environments such as Matlab.

Chapter 6 Service-Oriented Computation 137

Figure 6.12: Visualised Result of a Four Dimensional CFD Parameter Studies

6.8 Summary

The efforts to implement OGSI on the Microsoft .Net Framework are examples that
emphasise the importance of Web Service standards to aid interoperability. The ability
to use a wider variety of platforms and hosting environments gives users and developers
greater access to more software tools and resources. The Computation Web Service was
successfully ported to the OGSI platform and was able to take advantage of the it’s mes-
sage events and lifetime management capabilities. Nonetheless, due to the success of its
predecessor Globus, it is unlikely that OGSI platform will be widely supported because
it will require significant software redevelopment to port existing Globus-based applica-
tions yet offering little added benefits. It provides a welcomed alternative to existing
Web Service deployment platforms, however, it is unlikely that it will receive wide sup-
port in this scenario either, because platforms, such as Apache/Axis and ASP.Net, offers
greater flexibility and do not constrain developers to conform to the OGSA architecture.

The Computation Web Service intends to provide a complete virtualisation of the com-
putation resources that are essential to solving engineering design optimisation prob-
lems. The virtualisation allows the service to be generic to both the client environment
and the target computation environment. This chapter introduces the design of the
computation service that supports all operations throughout the entire job submission
process. We have shown how to wrap a legacy service using Web Service technologies
and demonstrated how it provides interoperability and integration with other compo-
nents of a Grid-enabled PSE. In addition, within the Computation Web Service we
have successfully implemented the strategies and approaches discussed in the previous
chapter 4.

Chapter 7

Micromagnetics Problem Solving

Environment

This chapter describes the work carried out developing a micromagnetic Web Service-
based Problem Solving Environment (PSE), published in [141]. We explore the idea
of orchestrating “Lightweight” message-based services intermediaries as transparent re-
sources in the modelling, simulation and analysis micromagnetic problem solving process.
In addition, we examine the viability of the TCP [142] transport protocol as a means to
enable lightweight services that require no Web Server hosting environment.

Using a simple workflow protocol based on scripting principles, we show the power of
Lightweight services to be quickly and effectively orchestrated into sophisticated dis-
tributed system; enabling transparent access to computational resources, seamless inte-
gration of legacy tools and applications, and knowledge capture and reuse. In addition,
we show how the WS-Addressing [143] technology can be employed to implement work-
flows. As proof of concept, in section 7.6 we give the successful results [144] produced
by our Grid-enable micromagnetic PSE.

The micromagnetic PSE demonstrates the power of the Computation Web Service, see
chapter 6, using it as gateway through organisational network boundaries; specifically,
firewalled subnets, enabling access to a large Condor cluster1.

7.1 Motivation

Currently Web Service technologies are generally perceived and applied as RPC-style
distributed objects, with interactions between services achieved through WSDL defined
application programmer interfaces (APIs) and Web methods calls. Distributed object

1Which was the University of Southampton’s E-Science test Condor cluster that contains nearly 1000
shared undergraduate PCs and dedicated computational machines situated across its campuses.

138

Chapter 7 Micromagnetics Problem Solving Environment 139

technology is an extension to the object-orientated design principles first developed for
application programming. Whilst software engineers may have familiarity with this form
of programming, they must realise that large-scale distributed systems cannot realisti-
cally be developed in the same manner as desktop applications. Distributed object tech-
nologies whilst, suitable for closed environments and controllable small-scale distributed
systems, RPC-style architectures cannot feasible be applied to the Grid that inevitable
will have to contend with many unknown factors and anarchical relationships amongst
participants and resources. Therefore, it is vital that Grid system developers move away
from the so called first generation RPC-style Web Services and start harnessing their
message-passing and intermediary message exchange pattern capabilities.

Difficulties exist with the employment of HTTP as a transport protocol for Web Method
and message style interactions between services. Its request-response mechanism and
original target application, the transfer of small hypertext documents, affects HTTP’s
ability to effectively provide desired communication characteristics for services, in par-
ticular extreme high speeds, low latencies, asynchronous calls or long term connections.
Another issue with its effective employment relates to its requirement for heavyweight
HTTP capable Web Service hosting environments, such as ASP.NET and Tomcat. These
provide necessary XML message processing, security controls and manageability nec-
essary for handling of sophisticated and dynamic Web Service operation. However,
whilst a suitable environment for services, it prevents lightweight clients from receiving
asynchronous operations, such as notification. This is exemplified by the impossibil-
ity of using the OGSI notification system with desktop client applications that employ
lightweight communication means, such as WSDL proxies.

7.1.1 SOAP Intermediaries and Message Exchange Patterns

Web Services employ the Simple Object Application Protocol (SOAP) for the address-
ing, description and encapsulation of XML documents, see section 2.5.4. SOAP can
be thought of as a postal envelope used to carry a text-based payloads between Web
Services. Its protocol defines a header, representing the outside of the envelope, that
may have on it, amongst other things, an address and a body, representing the inside
of the envelope, for carry any valid XML formatted data. SOAP’s simple structure is
extremely flexible and extensible, with well defined semantics for extension protocols,
such as WS-Security [7] that enables the sending of signed and encrypted messages using
SOAP.

Unfortunately, SOAP capabilities are currently under utilised. The majority of Grid
system that employ it with Web Service use SOAP’s HTTP transport support to receive
and send Web Methods calls. Something that HTTP’s post command would be able to
carry out on it own. This superficial usage of SOAP negates its purpose and gives the
impression that SOAP is an unnecessary overhead.

Chapter 7 Micromagnetics Problem Solving Environment 140

The true power of SOAP stems from its support for intermediaries [47] and their intended
usage for complex message exchange patterns (MEPs). An intermediary is defined as “a
SOAP receiver and a SOAP sender and is targetable from within a SOAP message. It
processes the SOAP header blocks targeted at it and acts to forward a SOAP message
towards an ultimate SOAP receiver” [47]. The ultimate receiver being the intended
destination for the carried message. Intermediaries are derived from the concept of dis-
tributed message processing, where a message passes from sender to destination through
a number distributed message processors or “intermediaries”.

The message’s defined path through the intermediaries is called the message exchange
pattern (MEP) [47], shown in figure 7.1. How or what defines or implements the MEP
is not specified in the SOAP specification, giving great flexibility but, opening up the
possible emergence of different incompatible mechanisms. The SOAP distributed pro-
cessing model can support many MEPs including but not limited to one-way messages,
request/response interactions, and peer-to-peer conversations.

SOAP intermediaries perform processing on messages that they receive. Each type of
intermediary has a specific role that must be defined according to the SOAP specification.
Contained within the header of the SOAP envelope will be instructions that may or may
not be targeted at a specific role. Intermediaries must process the headers and act upon
the instructions that are meant for its role, removing it before passing the SOAP message
on to the next intermediary.

SOAP intermediaries are either active or passive; with the former performing actions on
the XML message contained in the SOAP body. Passive intermediaries only process the
header information.

7.1.2 Lightweight Web Services

We define Lightweight Services as message-based distributed services or application
components with common coarse-grained interfaces that only use the TCP protocol
for transmission of SOAP messages and perform all the XML-message processing task
themselves. By dropping HTTP we gain two things: first there is no perquisite for
heavyweight Web Server hosting environment, such as ASP.NET or Tomcat, and sec-
ond we gain the freedom from the performance, timeout and request/response issues of
HTTP; enabling one-way transmission of SOAP messages.

By employing messages as the basis of communication and enforcing a simple common
interface we ease the integration of lightweight services and make it far easier to formulate
a workflow mechanism. This is similar to concept of a REST-style of architecture except
that we allow intermediaries so the representation (e.g. the data values and structure of
the XML message) may not be the sender’s but the sum of the possible changes made
by the intermediaries from the sender to ultimate receiver.

Chapter 7 Micromagnetics Problem Solving Environment 141

One-Way MEP

Two-Way MEP with differentreturn path
SOAPSender SoapUltimateReceiverIntermediaryAIntermediaryB IntermediaryC

Two-Way MEP
SOAPSender SoapUltimateReceiverIntermediaryA IntermediaryB
SOAPSender SoapUltimateReceiverIntermediaryA IntermediaryB
Start
Finish

Start
Finish

Figure 7.1: Example showing SOAP messages travelling in one-way and two-way
message exchange patterns for SOAP sender and receiver, such as a Web Services,

through intermediaries.

Chapter 7 Micromagnetics Problem Solving Environment 142

MIF file

OOMMF VTK

xmgrace

magpar options file

magpar

magpar material parameters

AVS UCD format mesh

Figure 7.2: Shows an overview of the finite difference micromagnetic simulation pro-
cess.

7.2 Analysis of the Micromagnetic Problem Solving Pro-

cess

Effective research and resolution of micromagnetics problems requires the employment
of applications such as, OOMMF and Magpar, for its simulation, modelling and visu-
alisation respectively. In section 3.2 we gave an outline of a micromagnetic problem
solving process, highlighting the application collaboration challenges faced by scientists.
We will now look at a specific problem solving process in micromagnetics, Finite Differ-
ence method simulation, examining the typical application operational procedures and
their interactions.

7.2.1 Finite Difference based Simulation

Scientists often employ the OOMMF numerical modelling package to perform Finite
Difference (FD) based simulations. Effective usage of the OOMMF package requires
pre- and post-processing of data flowing in and out of the application, see figure 7.2.

Preprocessing is primarily concerned with initialisation of the simulation. OOMMF
requires parameters about the target systems such as, its geometry, material properties
and simulation constraints. These may come from sources such as, the scientist themself,
a database or a file, that must be passed to OOMMF in the form of a micromagnetic
Input File (MIF), shown in listing 7.1.

The MIF format provides a powerful yet time consuming means to configure and initialise
OOMMF that allows scientists fine-grained control over the behaviour and operation of
sophisticated and long running simulations. The MIF format may only contain informa-
tion for a single micromagnetic system requiring a new MIF file for each unique system.

Chapter 7 Micromagnetics Problem Solving Environment 143

1 4∗atan (1 . 0)] s e t mu0 [expr 4∗$ pi ∗1e−7]
2
3 s e t TIMEDRIVER 0
4
5 Spec i f y Oxs BoxAtlas : a t l a s {
6 xrange { 0 5E−08 }
7 yrange { 0 5E−08 }
8 zrange { 0 8E−08 }
9 }

10
11 Spec i f y Oxs RectangularMesh :mesh {
12 c e l l s i z e { 5e−009 5e−009 5e−009 }
13 a t l a s : a t l a s
14 }
15
16 Spec i f y Oxs UniformExchange {
17 A 1 . 3e−011
18 }
19
20 Spec i f y Oxs UZeeman ”
21 mu l t i p l i e r [expr 0 . 001/$mu0]
22 Hrange {
23 { 500 . 0 0 . 0 0 −500 . 0 0 . 0 0 500 }
24 }
25 ”
26
27 Spec i f y Oxs Demag {}
28
29 Spec i f y Oxs EulerEvolve {
30 alpha 0 . 5
31 s t a r t dm 0 . 01
32 }
33
34 Spec i f y Oxs TimeDriver {
35 basename 5E−08−8E−08 . mif 0008
36 evo lve r Oxs EulerEvolve
37 stopping dm dt 0 . 01
38 mesh :mesh
39 stage count 0
40 s tage i t e r a t i o n l im i t 0
41 t o t a l i t e r a t i o n l im i t 0
42 Ms { Oxs S c r i p t S c a l a rF i e l d {
43 a t l a s : a t l a s
44 s c r i p t { Cone 795774 . 715459 }
45 }
46 }
47 m0 { Oxs UniformVectorFie ld {
48 norm 1
49 vector { 1 . 0 0 . 0 0}
50 }
51 }
52 }
53
54 proc Cone { Ms x in y in z in} {
55 s e t x [expr 2 . ∗$x in − 1 .]
56 s e t y [expr 2 . ∗$y in − 1 .]
57 s e t z [expr 2 . ∗$z in − 1 .]
58 s e t l e f t s i d e [expr ($x∗$x) + ($y∗$y)]
59 s e t r i gh t s i d e [expr (($ z+1)/2) ∗ (($ z+1)/2)]
60 i f { $ l e f t s i d e <= $ r i gh t s i d e } {
61 return $Ms
62 }
63 return 0
64 }
65
66 Dest inat ion arch ive mmArchive
67
68 Schedule DataTable a rch ive Stage 1 Schedule
69 Oxs TimeDriver : : Magnetizat ion arch ive Stage 1

Listing 7.1: MIF configuration file for a Cone OOMMF simulation

Chapter 7 Micromagnetics Problem Solving Environment 144

Effective handling of large numbers of micromagnetic simulations requires tools such as,
Mifmaker, that automate the production of MIF files.

Mifmaker is a sophisticated Python script written by Richard Boardman whilst studying
micromagnetics at the University of Southampton [94]. It is a proprietary tool that aids
the user piece together their collected knowledge of micromagnetics whilst easing the
task of generating the complex MIF format OOMMF input files. It works by taking
a set of command line arguments pertaining to the parameters of the micromagnetic
system. From these it generates a MIF file by validating the arguments values against
the target system and creates default entries and values for any unspecified system
parameters and OOMMF configuration. To do this, Mifmaker contains a database
containing the magnetic properties of a small set of materials. Some of the data is
the intellectual property of third parties and was lent to the author for the purpose of
simulation for these persons. For security reasons and the highly focused target purpose
of the tool, sharing and integration of Mifmaker is difficult. For instance, Mifmaker
offers functionality that would benefit Magpar however its has incompatible operation
and output format. Mifmaker would require a complete rewrite to fit in with Magpar
and its additional preprocessing stages.

Visualisation of output data is essential for the effective analysis of the simulations.
OOMMF returns results of simulations in a bespoke text and binary format that must
be converted to a suitable for input into visualisation packages such as VTK.

7.3 Micromagnetic Message-based Web Service PSE

We encapsulate the pre- and post-processing stages of the micromagnetic using Lightweight
Web Services that provide common behaviour, operation and data representation. The
Web Services perform the translation to and from the applications’ native data repre-
sentation.

7.3.1 Coarse Grained Message-Based Web Services

The micromagnetic solving process flows data along a linear path passing output from
the micromagnetic applications to the input of the next (e.g. from Materials database
to Mifmaker to OOMMF). Operation of all applications in the micromagnetic process
are limited to querying, input of data, execution and results retrieval.

Each Web Service offers operations pertaining to the applications functionality. However,
where these do not fit in with common operational or behavioural characteristics the Web
Service provides this while reusing as much existing logic as possible. This is achieved
by either spreading or combining application functionality across or within Web Method
operations respectively.

Chapter 7 Micromagnetics Problem Solving Environment 145

7.3.2 Intermediaries

Intermediaries provide the glue for binding Web Services together. We employ them in
the micromagnetic PSE to perform the pre- and postprocessing of data for input and
output of the OOMMF Web Service. The intermediaries are lightweight Web Services
receiving, processing and forwarding SOAP messages.

7.3.3 Message Processing Chain

The Portal is the point of entry to the system and represents the start point for sending
SOAP messages, see figure 7.3. The user of the system is presented with a browser
interface to the Portal that contains a step by step guide that helps the user through
the parameter selection for the micromagnetic simulation. Once the user has selected all
the parameters he wants the browser posts this information to the Portal Web Service
that generates a SOAP message containing this information.

The materials intermediary is the first step of the micromagnetics process. It takes as
input a SOAP message containing the material name and its desired attributes along
with other information sent by the micromagnetic PSE portal. The materials interme-
diary processes the message, removes the part of the SOAP message aimed at it, looks
up requested information in its database and adds to the SOAP message the attribute
values. It then sends this to the Mifmaker intermediary which processes the SOAP
message performing the same process again. It extracts the message from the materi-
als intermediary and parameters for generating the MIF file. It then sends the SOAP
message to the OOMMF intermediary along with generated MIF files as attachments.
The OOMMF intermediary file extracts the MIF files and generates the submission re-
quest and sends it along with MIF files to the Computation Web Service. The OOMMF
service then sends a new SOAP message to the portal telling it that the job has started.

The user of the portal may then through the browser interface monitor and control the
resource to which the OOMMF job was assigned. When the OOMMF intermediary
receives messages from the Computation Web Service about change of status of the job
it relays these to the portal which updates the browser with the information.

Once the job has completed the OOMMF intermediary downloads the results files from
the Computation Web Service, informs the portal of the completion of the simulation,
and forwards the results files as attachments to the visualisation intermediary. The
visualisation intermediary translates the results files into a format specified by the portal
user, sending this off to the selected Graphing intermediary that generates a rough plot
of the data and returns this to the portal. The user can then decide if the plotted
data looks ok or not and sends back possible instructions to the Gnuplot with modified
visualisation parameters. The cycle repeats until the user is happy with the graph upon

Chapter 7 Micromagnetics Problem Solving Environment 146

Micromagnetics Input FileWeb ServiceMaterialsWeb Service
University of SouthamptonCondor Pool (1000 Nodes)

OOMMFWeb Service Job ManagementWeb Service
UserBrowser

OOMMFResultsOOMMFRuntimeFiles
Micromagnetics PortalWeb Service VisualisationWeb Service

VTKWeb ServiceGraphingWeb ServiceControlPicturesResults

MaterialsDatabase
Material,Model &SimulationParameters GraphicsdataVisualisationFiles

MIFFilesMaterialData Monitoring andResource Control

Figure 7.3: Message exchange pattern for the micromagnetics PSE

which the portal sends a command to the Graphing Tool to send the results off for full
rendering on the VTK intermediary. Upon completion of rending all the results are
sent to a location specified by the user in the initial stages, completing the process of
modelling, simulation and analysis.

7.4 Knowledge Capture and Reuse

The micromagnetic PSE captures and reuses historical data to aid in the selection of
computational resource with appropriate capabilities and provides estimates of calcula-
tion runtime for the detection of malfunctioning or endless jobs. In addition, this data
helps scientists to gain a feeling for the reasonable size and complexity of tasks that may
be run on available computational resources.

Chapter 7 Micromagnetics Problem Solving Environment 147

The system we have developed captures information from important stages of the mi-
cromagnetic solving process; collating and organising it by job into a database. This
information is employed by micromagnetic PSE to suggest likely computational require-
ments to the user such as, minimum memory and disk size, for particular micromagnetic
simulation, geometric and material parameter values. Upon user resolution of these val-
ues the PSE offers estimated runtimes for each job.

7.4.1 Collected Information and Historical Records

The micromagnetic PSE collects information from key stages of the solving process relat-
ing to the parameterisations of simulation, modelling and material, resource requirement
specification and job runtime data. The historical Web Service contains unique records
for each job, built on the fly as it receives input from the other Web Services.

A record is of the form of a simply XML data structure that may contain any number
or type of information in XML format. The record has a unique identifier that relates
it to the job; generated from the unique message identifier of the initial parametrisation
message sent by the user.

Messages posted to the historical Web Service from a particular job pass the same initial
message identifier along with their specific historical information. This may include the
WS-Addressing headers of the intended messages that the historical information was
derived from. The benefit of this means of knowledge capture and collation is that a
Historical Web Service needs no knowledge of the micromagnetic process, Web Services
or data types. All information relating to the origin, path and order of data produced
by the Micromagnetic process is encapsulated in the message identifiers and the WS-
Addressing headers within the records. Figure 7.4 shows a graph of the collected data
about disk usage collected from the modelling of ferromagnetic cones, see section 7.6.

7.5 Computation Web Service in a Message-based Web

Service PSE

Whilst the Computation Web Service was a good fit within the Geodise system, it
posed several challenges within the micromagnetic system which contains services with
message passing interfaces. Two important points of contention were established: how
do we combine services with fundamentally different architectural styles (RPC and Mes-
sage Passing) and how does the system handle application state fit within a primarily
stateless REST-style architecture? Our solution was to create a bridge, the OOMMF
intermediary, between the two architectural styles of services that performed the transla-
tion and state management between the messaging passing services and the Computation

Chapter 7 Micromagnetics Problem Solving Environment 148

Figure 7.4: Graph showing a linear increase in compute node disk usage as the number
of cells stored by micromagnetic simulation jobs rises. This is an example of the useful
collected information by the PSE that could be used to precalculate the approximate

amount of disk space required by a job.

Web Service. However, we believe this solution whilst effective does not fully address
the issues of loosely coupling of stateful services nor does it offer a realistic solution for
their seamless integration. Proposed further work would be to adapt a stateful RPC-
style Web Service, such as the Computation Web Service, to a message based scheme to
uncover the solution methodologies that would enable its seamless integration into the
workflow of a Grid system.

7.6 Practical Application

The micromagnetic PSE has been employed in a parameter study of ferromagnetic cones
that varied the height and diameter geometry of soft conical particles, shown visualised
in Figures 7.5, 7.7 and 7.6.

Three studies were carried out with four, fifty and one hundred simulations jobs respec-
tively. Each study represented a unique session of the portal. The user was able to
successfully specify the parameters for each study using a few mouse clicks in a browser.
The portal then generated the SOAP messages for all the jobs, linking them to the

Chapter 7 Micromagnetics Problem Solving Environment 149

Figure 7.5: Cutplane ray traced visualisation of the systems magnetisation at zero
applied field. Left most diagram shows that the system has a overall direction of
magnetisation. Middle diagram is a cut plane in the y (up) and x (right) dimensions

and the right diagram is a cutplane in the z (up) and x (right) dimensions.

Figure 7.6: Large cone side ray traced visualisation of cones vortex core magnetisation
at zero applied field. Tubes in visualisation shows the paths around the direction of

magnetisation.

session and task via their unique MessageIDs. All jobs were successfully created on
the Condor cluster and the user was able to monitor and control the progress of the
tasks concurrently. All results files were successfully return to user which were used to
generate the figures in this section.

Chapter 7 Micromagnetics Problem Solving Environment 150

-100 -50 0 50 100
applied field Bx (mT)

-1

-0.5

0

0.5

1
m

ag
ne

tis
at

io
n

M
x

Figure 7.7: Graph demonstrates response of magnetic system to external magnetic
field. The dashed black line shows the effect on the magnetisation of the particles as the
applied field changes from negative to positive. The solid green and black line shows
the effect on the magnetisation of the particles as the applied field is changed from

positive to negative.

7.7 Summary

The Micromagnetics Grid-enabled PSE adopts an extremely loosely-coupled style to
enable a level of interaction amongst resources in a way not previously seen in Grid
computing. It demonstrates sophisticated workflow execution possibilities and seam-
lessly integrates computational and application services using a document-orientated
message exchange paradigm through exploitation of the capabilities of WS-Addressing
and SOAP message exchange patterns. That in addition allow the implementation of
complex workflows and out-of-the-box knowledge capture and reuse. The design and
approach of the Grid-enabled system is exemplified by the successful integration of mi-
cromagnetics tools with the Condor system, and the production of real-world results
that otherwise would have been too difficult to achieve.

For the user, it offers a PSE that automates and removes much of the error-prone and
repetitive computer science tasks scientists should not have to worry about. Access to
resources is give in a uniform way using open Web Service standards that overcomes
the difficulties users normally face when trying to integrate a plethora of heterogenous
software and hardware resources. The user is instead presented with a set of distributed

Chapter 7 Micromagnetics Problem Solving Environment 151

resources that appear as a unified collection of tools designed to work with each other.
In addition, the added interoperability eases the ability for the user to construct sophis-
ticated workflows that require minimal work to implement, maintain and resuse.

We have also demonstrated how message-driven services enable rapid development of
sophisticated interoperable Grids. We conclude that message-driven services offer a
more appropriate architecture for Grid computing than current first generation Web
Method-based Web Services. In addition, we extol the concept of SOAP intermediaries
as transparent resources that will enable the Grid to scale to the size of the Internet.

In the distributed micromagnetic system we demonstrate that TCP in conjunction with
message-style Web Services provides a rapid, flexible and lightweight solution for Grid
computing. In addition to enabling asynchronous interaction with clients, it opens the
option of using Web Services as internal lightweight components of desktop applica-
tions and other Web Services. We offer as proof the successful results produced by the
micromagnetic distributed system that provides a sophisticated virtual organisation of
powerful lightweight Service components.

Chapter 8

Conclusion

The adoption of Service-Oriented Architectures (SOAs) in key aspects of distributed
computing is the most important step towards the Grids emergence as a powerful and
multifaceted global-scale system. Since the turn of the millennium, realisation of such a
system has been furthered by the emergence of key enabling technologies, specifically the
Web Service technologies of XML Schema, SOAP and WSDL, that have served to verify
SOA as an extremely capable and suitable component model for Grid computing. These
technologies provide the key ingredients of generality, simplicity and flexibility, essen-
tial for handling of and adaption to complicated, heterogeneous distributed computing
environments, such as massive-scale high throughput computing (HTC) clusters.

Our early adoption of XML-based Web Service technologies, in experimental Grid sys-
tems and Problem Solving Environments (PSE), has been ratified by the technologies
acceptance and application by the Grid communities for important Grid computing
problems. This thesis helps to explain why Web Services technologies provide the ap-
propriate means for implementation of Grid systems, and explores their application as
a suitable SOA technology for Grid computing problems.

The motivations for Grid systems and specific challenges of Grid-enabled PSE were
studied, in chapters 2 and 3, to establish the essential requirements for Grid technologies.
We conclude from this that Web Service technologies offer Grid computing capacities
not matched by existing distributed object and remote procedure call (RPC) based
architectures, such as CORBA and DCOM.

This thesis has described our work carried out in not only engineering design optimisation
systems (Geodise) but in the modelling, simulation and analysis of micromagnetic
systems. These provide typical Grid computing scenarios requiring access, and dynamic
and flexible collaboration of copious quantities of wide-ranging computational resources.
We have demonstrated the successful results produced through concrete application of
SOA technologies in both distributed environments. In our work on the Computation

152

Chapter 8 Conclusion 153

Web Service we have selected an important resource in science and engineering problem
solving, the compute cluster, and provided generic access and seamless integration of it
into both PSEs. This illustrates how service-orientation should be applied to provide a
complete virtualisation of resources on the Grid.

Virtualisation of resource types on the Grid provides an important step towards enabling
resource consumers choice and easy dynamic migration between service implementations.
Experiences with the design, development, management and application of the Compu-
tation Web Service has demonstrated how service-orientation should be applied to Grid
computing. In addition, we have shown that bespoke systems, specifically the Condor
HTC system, can be virtualised and offered as a generic compute services. This illus-
trates the ability of SOA to both enable reuse of legacy systems, preserving years of
effort, and provide the high-level glue for seamless integration with other legacy systems
and new resources.

The mode of operation and behaviour of heterogenous distributed resources can rep-
resent a real hurdle to creation of loosely-coupled Grids and the consequent creation
of dynamic virtual organisations. In our work on numerical optimisation we identified
operation and behaviour that would restrict a distributed systems to a tightly-coupled
style undesirable in Grid computing. It was argued that optimisations operating in a
forward-communication style did not allow separation of compute operations prevent-
ing choice of computing resource and generic control, monitoring and checkpointing
of optimisations. We proposed an alternative operational mode for optimisation, the
reverse-communication style, that enables loose-coupling of systems and addresses the
deficiencies of the other style. In addition, we have implemented this style in a sample
distributed Optimisation Service that demonstrates how operations can be adapted to
enable seamless integration and creation of virtual organisations. As proof of this con-
cept, this work has since been carried on by Gang Xue whom has successfully applied the
principle to real engineering design optimisation problems within the Geodise project.

Whilst Web Services have received wide acceptance by the Grid community, there re-
mains questions over which SOA-style should be applied and the role of application state
within Web Services. This has led to the proposal of different Grid service infrastruc-
tures, such as WS-GAF and WS-Resource Framework, along with a series of proposed
Web Service specifications.

We explored the SOAP protocols currently overlooked transport neutrality and under
used messaging abilities in a real world scenario of micromagnetic modelling, simulation
and analysis. We demonstrated that the message-style of SOA has potential advan-
tages over Web method-style architectures for intermediaries and sophisticated message
exchange patterns. In particular, we found that as well as offering quality-of-service
performance and reliability benefits for caching of data and routing of messages, in-
termediaries have a much broader role providing transparent access to services through

Chapter 8 Conclusion 154

gateways, translators and bridges. Their importance cannot be understated as clear par-
allels must be drawn with the Internet that’s ability to effectively operate and perform
on a global scale could not have been achieved without its vast network of intermediaries.

However, the role of intermediaries and message-style architectures in Grid computing
extends further than this. In particular, we employed intermediaries in the distributed
Micromagnetic PSE to enable transparent information capture, a task not easily achieved
with Web Method-style of SOA.

In the distributed Micromagnetic PSE we demonstrate that TCP in conjunction with
message-style Web Services provides a rapid, flexible and lightweight solution for Grid
computing. In addition to enabling asynchronous interaction with clients, it opens the
option of using Web Services as internal lightweight components of desktop applications
and other Web Services. We offer as proof the successful results produced by the Micro-
magnetic PSE that provides a sophisticated virtual organisation of powerful lightweight
Web Service components.

Users experience of the Micromagnetic PSE and Computation Web Service were positive.
Both systems aided the users to concentrate on the problem that they where studying by
removing the repetitive error-prone tasks of gaining access and integration of resources.
Whilst perhaps not as flexible as scripting approaches they have both have aided produce
work published in [141, 100].

One failing identified in our work was highlighted by the inelegant method required
for enabling seamless integrating of the Computation Web Service into the distributed
Micromagnetic PSE. The two SOA-styles simply do not mesh well and the role of appli-
cation state in message-style architectures remains unclear. Further work on this topic
will aid resolve the appropriate means for handling application state and distributed
system state in general.

Agreement on the SOA-style for Grid computing must be made to avoid marked inte-
gration of services appearing across and within distributed systems. This will only be
resolvable through investigation and experiences in adopting SOA technologies in both
academic and commercial areas. Grid computing is a vast topic with many important
areas left to research, including application state, workflow and intermediaries. Whilst
we have implemented a system to define workflow in terms of redirection of message
streams that has been successful in distributed Micromagnetic PSE, its suitability for
general usage has yet to be answered. This is a key point as effective orchestration of
Web Services must be done in a generic manner if we are to achieve sophisticated in-
teraction patterns between disparate resources and Web Services. Whilst our adaption
of the principles of scripting languages offer flexibility and robustness for workflows of
service-oriented operations, it may prove with later work to be restrictive and not easily
transferable to other workflow mechanisms.

Chapter 8 Conclusion 155

BPEL4WS is a technological framework, supported by major software vendors, such
as IBM and Microsoft, that is set to enable generic service orchestration. Further re-
search into its ability to effective define workflows for scientific, engineering and business
distributed systems is essential for the establishment of the Grid.

Service oriented architectures enable seamless integration and interoperability between
the tools, technologies and platforms required to make the process of scientific and
engineering discovery easier and more efficient. It is this integration leveraging open
standards which will enable scientists and engineers to tackle the next generation of
complex problems they face.

Bibliography

[1] Alistair Mills and David Boyd. Building an e-Science Grid for the UK. Annual
report, UK Grid Engineering Task Force (ETF), July 2003. For period September
2002 to April 2003. http://esc.dl.ac.uk/ETF/public/l2g final report.pdf.

[2] Global Grid Forum. GGF: Area/Group overview. World Wide Web, 2006.
http://www.ggf.org/ggf areasgrps overview.htm.

[3] Hugo Haas. W3C: Web Services Activity Statement. World Wide Web, 2005.
http://www.w3.org/2002/ws/Activity.

[4] Steve Burbeck. The Tao of e-business services: The evolution of Web applications
into service-oriented components with Web services. Technical report, IBM, Octo-
ber 2000. http://www-128.ibm.com/developerworks/library/ws-tao/index.html.

[5] CERN GirdCafe. What is the Grid? Definition, CERN, 2006.
http://gridcafe.web.cern.ch/gridcafe/whatisgrid/whatis.html.

[6] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau.
Extensible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation,
W3C, February 2004. http://www.w3.org/TR/REC-xml/.

[7] B. Atkinson. Global XML Web Services Specifications. web Services Security
(WS-Security). MSDN Library Article, July 2003.

[8] Stratis Gallopoulos, Elias Houstis, and John Rice. Computer as Thinker/-
Doer: Problem-Solving Environments for Computational Science. IEEE Computa-
tional Science and Engineering, Summer 1994. http://www-cgi.cs.purdue.edu/cgi-
bin/acc/pses.cgi.

[9] ISO International Standard. Iso 10303-1:1994 industrial automation systems and
integration product data representation and exchange - overview and fundamental
principles. TC184/SC4, 1994.

[10] Yoshinobu Nakatani, Yasutaro Uesaka, and Nobuo Hayashi. Direct solution of the
landau-lifshitz-gilbert equation for micromagnetics. Japanese Journal of Applied
Physics, 28(12):2485–2507, December 1989.

156

BIBLIOGRAPHY 157

[11] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall, 2002.

[12] G.M. Amdahl. Validity of the single-processor approach to achieving large scale
computing capabilities. In AFIPS, volume 30, pages 483–485, Atlantic City, N.I.,
April 1967. AFIPS Press, Reston, Va.

[13] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533,
1988.

[14] R.E. Benner, J.L. Gustafson, and R.E. Montry. Development and analysis of
scientific application programs on a 1024 processor hypercube. In SAND 88-0317,
Sandia National Laboratories, Albuquerque, N.M., Febuary 1988.

[15] M. Horstmann and M. Kirtland. Dcom architecture. In MSDN Library. Microsoft,
July 1997.

[16] Sun Microsystems. Java remote method invocation - distributed computing for
java. In Sun Developer Network. Sun Microsystems, 2004.

[17] L. Heaton. CORBA/IIOP Specification. In Object Management Group Specifica-
tion Catalog. Object Management Group, Object Management Group, Inc., 250
First Ave. Suite 100, Needham, MA 02494, U.S.A., March 2004.

[18] F. Buschmann, R. Meunier, Hans. Rohnert, P. Sommerlad, M. Stal, P. Sommerlad,
and M Stal. Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns, volume 1. John Wiley & Sons, 1 edition, August 1996.

[19] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web services.
In WWW ’04: Proceedings of the 13th international conference on World Wide
Web, pages 621–630, New York, NY, USA, 2004. ACM Press.

[20] Petia Wohed, Wil Aalst, Marlon Dumas, and Arthur Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS, volume 2813. October
2003.

[21] Copeland-G. Freund T. Klein J. Langworthy D. Orchard D. Shewchuk J. Cabrera,
F. and T. Web Services Coordination Storey. Ws-coordination. Technical report,
W3C Web Services Description Working Group, www.w3.org/TR/wsdl12/, 2002.

[22] Ali Arsanjani. Service-oriented modeling (sic) and architecture. Technical report,
SOA and Web Services Center of Excellence in IBM Global Services, November
2004.

[23] T. Berners-Lee. The World Wide Web: Past, Present and Future. Draft response
to an invitation to publish in IEEE Computer special issue of October 1996. The
special addition was later abandoned., August 1996.

BIBLIOGRAPHY 158

[24] Web Services Roadmap. Web services protocols summary. Web Site, July 2006.
http://roadmap.cbdiforum.com/reports/protocols/summary.php.

[25] T. Berners-Lee and et al. Uniform Resource Identifiers (URI): Generic Syntax.
IETF RFC 2396, August 1998.

[26] R. Fielding, U. C. Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and Berners-Lee T. Hypertext transfer protocol – http/1.1. Online W3C RFC,
June 1999.

[27] A. Le Hors and I. Jacobs. (html) 4.01 specification. W3C Recommendation,
December 1999.

[28] R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[29] R. Fielding. Principle Design of the Modern Web Architecture. ACM Transactions
on Internet Technology, 2(2):115–150, May 2002.

[30] S. Bethke, M. Calvetti, H.F. Hoffmann, D. Jacobs, M. Kasemann, and D. Linglin.
Report of the steering group of the lhc computing review. Technical report, CERN
European Organisation for Nuclear Research, February 2001.

[31] LHC@Home. What is lhc@home? Web Page, July 2006.

[32] S. Tetsuya. Annual Report of the Earth Simulator Center. Technical report,
The Earth Simulator Center, Japan Marine Science and Technology Center, The
Earth Simulator Center, Japan Marine Science and Technology Center, 3173-25
Showa-machi, Kanazawa-ku, Yokohama, 236-0001 JAPAN, March 2003.

[33] C. Qian, L. Lagacé, M. Massariol, C. Chabot, C. Yoakim, R. Déziel, and L. Tong.
A rational approach towards successful crystallization and crystal treatment of
human cytomegalovirus protease and its inhibitor complex. Acta Crystallographica
Section D, 56(2):175–180, Feb 2000.

[34] S. Torquato. Modeling of physical properties of composite materials. International
Journal of Solids and Structures, 37:411–422, 2000.

[35] O. J. Santollani, R. K. Agarwal, Y. Li, and M. A. Satyro. CAPE-OPEN Spe-
cialty Property Packages - New Thermodynamic Models and Software Integration
Paradigm. In Hyprotech User’s Conference, 2000.

[36] Jack Dongarra and et. al. MPI: A Message-Passing Interface Standard. Specifica-
tion published in Message Passing Interface Forum, June 1995.

[37] L. Smarr. The coming of the grid. Talk given in a workshop on Building a
Computational Grid Workshop, Argonne National Laboratory., September 1997.

BIBLIOGRAPHY 159

[38] L. Smarr. The emerging national technology grid. Talk given at the 1998 Annual
University of Kansas Center for Advanced Scientific Computing Distinguished Lec-
ture, September 1998.

[39] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure, chapter Computational Grids. Morgan-Kaufman, 1999.

[40] . I. Foste, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organisations. Internation Journal of Supercomputer Applications,
2001.

[41] I. Foster. What is the Grid? a Three Point Checklist. Grid Today, July 2002.

[42] David Snelling, Ian Robinson, and Tim Banks. Web services resource frame-
work (wsrf) tc: Defining an open framework for modeling and accessing state-
ful resources using web services. Web Site, March 2004. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrf.

[43] Marc Snir, Steve W. Otto, David W. Walker, Jack Dongarr, and Steven Huss-
Lederman. MPI: The Complete Reference. MIT Press, 1995.

[44] J. Basney and M. Livny. Deploying a High Throughput Computing Cluster, in
High Performance Cluster Computing. Prentice Hall Professional Technical Ref-
erence, 1(5), May 1999.

[45] J. Bosak, T. Bray, Connolly D., E. Maler, G. Nicol, C. M. Sperberg-McQueen,
L. Wood, and J. Clark. Guide to the W3C XML Specification (”XMLspec”) DTD
version 2.1. Guide, W3C, 1998.

[46] D. C Fallside. Xml schema part 0: Primer. Online W3C Recommendation, October
2001.

[47] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. F. Nielsen. SOAP
Version 1.2 Part 1: Messaging Framework. Online W3C Recommendation, June
2003.

[48] J. B. Postel. Simple Mail Transfer Protocol. Online W3C RFC, August 1982.

[49] Vidur Apparao, Alex Ceponkus, Paul Cotton, Alex Ceponkus, Paul Cotton,
David Ezell, David Fallside, Martin Gudgin, Oisin Hurley, John Ibbotson,
R. Alexander Milowski, Kevin Mitchell, Jean-Jacques Moreau, Eric Newcomer,
Henrik Frystyk Nielsen, Bob Lojek, Mark Nottingham, Waqar Sadiq, Stuart
Williams, and Amr Yassin. Xml protocol (xmlp) requirements. Web Site, June
2002. http://www.w3.org/TR/2002/WD-xmlp-reqs-20020626.

[50] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki. An evaluation of binary
xml encoding optimizations for fast stream based xml processing. In WWW ’04:

BIBLIOGRAPHY 160

Proceedings of the 13th international conference on World Wide Web, pages 345–
354, New York, NY, USA, 2004. ACM Press.

[51] D. Geer. Will binary xml speed network traffic? Computer, 38(4):16–18, 2005.

[52] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi,
and Sanjiva Weerawarana. Unraveling the web services web: An introduction to
soap, wsdl, and uddi. IEEE Internet Computing, 6(2):86–93, 2002.

[53] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web Services Architecture. W3C Working Group
Note, W3C, February 2004. http://www.w3.org/TR/ws-arch/.

[54] MSDN. Visual Basic and Visual C# Concepts: Creating Web Applications and
Services. Msdn library article, Microsoft, 2004.

[55] MSDN. .NET Framework Tools: Web Services Description Language Tool
(Wsdl.exe). Micorosoft, 2004.

[56] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. Online W3C Note, March 2001.

[57] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire,
T. Sandholm, P. Vanderbilt, and D. Snelling. Open grid services infrastructure
(ogsi) version 1.0. Global Grid Forum Draft Recommendation, June 2003.

[58] T. Bellwood, L. Clment, and C. von Riegen. UDDI Version 3.0.1. Online Oasis
Technical Committee Specification, October 2003.

[59] K. Ballinger, P. Brittenham, A. Malhotra, W. A. Nagy, and Pharies S. Web
Services Inspection Language (WS-Inspection) 1.0. Online IBM DeveloperWorks
Specification, November 2001.

[60] Kelvin Lawrence, Chris Kaler, and Don Flinn. Oasis web services
security (wss) tc. Web Site, Feburary 2006. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wss.

[61] IBM, Microsoft, RSA Security, and VeriSign. Web services se-
curity policy language. Web Site, December 2002. http://www-
128.ibm.com/developerworks/library/specification/ws-secpol/.

[62] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and Herv Ruellan.
Soap message transmission optimization mechanism. Web Site, January 2005.
http://www.w3.org/TR/soap12-mtom/.

[63] Steve Ross-Talbot and Tony Fletcher. Web services choreography
description language: Primer. W3C Working Draft, June 2006.
http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/.

BIBLIOGRAPHY 161

[64] Tom Rutt, Jacques Durand, and Kazunori Iwasa. Oasis web services re-
liable messaging (wsrm) tc. OASIS, November 2004. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrm.

[65] Cox S.J., R.P Boardman, L. Chen, M. Duta, M.H. Eres, M.J. Fairman, Z. Jiao,
M. Giles, C.A. Goble, G.E. Pound, A.J. Keane, C.M. Scott, N.R. Shadbolt, F. Tao,
J.L. Wason, and G. Xue. Grid Services in Action: Grid Enabled Optimisation
and Design Search. In 11th IEEE International Symposium on High Performance
Distributed Computing HPDC-11, page 413, 2002.

[66] Cox S.J., M.J. Fairman, G. Xue, J.L. Wason, and A.J. Keane. The Grid: Com-
putational and Data Resource Sharing in Engineering Optimisation and Design
Search. In 2001 ICPP Workshops, pages 207–212, 2001.

[67] R. Stevens, K. Glover, C. Greenhalgh, C. Jennings, S. Pearce, P. Li, and et al.
Performing in silico experiments on the Grid: a users perspective. In Cox S. J.,
editor, UK e-Science All Hands Meeting, pages 43–50. EPSRC, 2003.

[68] Lloyd S. L. GridPP - From Web to Grid. Frontiers, 16, Summer 2003.

[69] N. A. Walton. Astrogrid: Powering the virtual universe. Astronomy & Geophysics,
43(1):30, 2002.

[70] I. Foster and C. Kesselman. The globus project: A status report. In Heterogeneous
Computing Workshop, pages 4–18, 1998.

[71] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information
Services for Distributed Resource Sharing. In Proceedings of the Tenth IEEE
International Symposium on High-Performance Distributed Computing (HPDC-
10). IEEE Press, August 2001.

[72] A. S. Grimshaw, Wm. A Wulf, and Legion Team. Legion - The next logical step
toward the world-wide virtual computer. Communications of the ACM, 40(1),
January 1997.

[73] F. Baker. Requirements for IP Version 4 Routers. Internet Engineering Task Force
(IETF), RFC 1812, 1995.

[74] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new gen-
eration of protocols. In ACM symposium on Communications architectures &
protocols, volume 20 of 4. ACM SIGCOMM Computer Communication Review,
August 1990.

[75] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch.
Design and deployment of a national-scale authentication infrastructure. IEEE
Computer, 30(12):60–66, 2000.

BIBLIOGRAPHY 162

[76] T. Zhou. .NET Passport Simplifies E-Commerce User Management. Windows IT
Pro, April 2002.

[77] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for
Computational Grids. In ACM Conference on Computers and Security, pages
83–91, 1998.

[78] B. C. Neuman and T. Ts’o. Kerberos: An Authentication Service for Computer
Networks. IEEE Communications, 32(9):33–38, September 1994.

[79] Borland Software Corporation. Make the microsoft .net framework real enterprise
solutions for today! Webcast, December 2003.

[80] Inc. Sun Microsystems. Java 2 Platform, Standard Edition (J2SE platform), Ver-
sion 1.4.2. Performance white paper, Sun Microsystems, Inc., 2004.

[81] T. A. Howes. An X.500 and LDAP database: Design and Implementation. Tech-
nical report, University of Michigan, 1995.

[82] R. Menday and P. Wieder. GRIP: The evolution of UNICORE towards a Service-
Oriented Grid. In Cracow Grid Workshop, 2003.

[83] The Globus Project. The Globus Resource Specification Language RSL v1.0.
Globus specification, May 2000.

[84] A.C. Catlin, M.G. Gaitatzes, E.N. Houstis, Z. Ma S. Markus, J.R. Rice, Nien-
Hwa Wang, and S. Weerawarana. Softlab: A virtual laboratory framework for
computational science.

[85] EleSoft Research. Elements engineering-scientific workspace, 2006.

[86] E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin, P. Papachiou, K.-Y.
Wang, and M. Gaitatzes. PELLPACK: A problem solving environment for PDE
based applications on multicomputer platforms. ACM Transactions on Mathemat-
ical Software, 24(1):30–73, 1998.

[87] M. J. Donahue and D. G. Porter. OOMMF User’s Guide, Version 1.0. Interagency
Report NISTIR 6376, National Institute of Standards and Technology, Gaithers-
burg, MD, September 1999.

[88] Werner ScholzCorresponding, Josef Fidler, Thomas Schrefl, Dieter Suess, Rok
Dittrich, Hermann Forster, and Vassilios Tsiantos. Scalable parallel micromagnetic
solvers for magnetic nanostructures. In Symposium on Software Development for
Process and Materials Design, volume 28, pages 366–383, Institute of Solid State
Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/138, A-
1040, Vienna, Austria, October 2003.

BIBLIOGRAPHY 163

[89] Gordon D Smith. Numerical Solution of Partial Differential Equations: Finite
Difference Methods. Oxford University Press, January 1986.

[90] K. Ho-Le. Finite element mesh generation methods: a review and classification.
Comput. Aided Des., 20(1):27–38, 1988.

[91] D. A. Thompson and J. S. Best. The future of magnetic data storage technology.
Research and Development (IBM), 44(3):311–322, May 2000.

[92] CA Ross. Patterned magnetic recording media. Annual Review of Materials Re-
search, 31(1):203–235, 2001.

[93] Robert Edward; Hsiao Richard; Marinero Ernesto Esteban; Santini Hugo Alberto
Emilio; Terris Bruce David Fontana, Jr. Patterned magnetic media and method
of making the same using selective oxidation, January 2001.

[94] Richard P. Boardman. Computer simulation studies of magnetic nanostructures.
PhD thesis, Engineering Sciences, 2005.

[95] W. Schroeder, K. Martin, and B. Lorenson. The Visualization Toolkit, An Object-
Oriented Approach To 3D Graphics. Kitware, 2 edition, 1999.

[96] T. Williams and C. Kelley. GNUPLOT : An Interactive Plotting Program. Manual,
Gnuplot, 1998.

[97] M. K. H. Fan, L.-S. Wang, J. Koninckx, and A. L. Tits. Software package for
optimization-based design with user-supplied simulators. IEEE Control Systems,
1(9):66–71, 1989.

[98] A. J. Keane. The OPTIONS Design Exploration System . Reference Manual and
User Guide. Version B3.1. University of Southampton, Department of Mechani-
cal Engineering, University of Southampton, Highfield, Southampton, SO17 1BJ,
U.K., b3.1 edition, June 2003.

[99] Cox S.J, M.J. Fairman, G. Xue, J.L. Wason, and A.J. Keane. The grid: Compu-
tational and data resource sharing in engineering optimisation and design search.
In ICPP Workshops, pages 207–212, 2001.

[100] G. Xue, M. Fairman, G.E Pound, and S.J Cox. Implementation of a grid com-
putation toolkit for design optimisation with matlab and condor. In Euro-Par
2003 Parallel Processing, Lecture Notes in Computer Science, number 2790, pages
357–365, 2003.

[101] S.J. Cox, Z. Jiao, and J.L Wason. Data management services for engineering. In
UK e-Science All Hands, Sheffield, September 2002.

[102] A. J. Keane. OPTIONS design exploration system. Technical report, School of
Engineering Sciences, University of Southampton, 2004.

BIBLIOGRAPHY 164

[103] Sun Microsystems. Enterprise JavaBeans Technology Downloads & Specifications.
Sun Microsystems, 2003.

[104] M.H. Eres, G.E. Pound, Z. Jiao, J. Wason, F. Xu, A.J. Keane, and S.J. Cox.
Implementation of a grid-enabled problem solving environment in matlab. In In-
ternational Conference on Computer Science (ICCS), Lecture Notes in Computer
Science, volume Part IV, pages 420–429, 2003.

[105] I. Foster. What is the grid: A three point checklist. Grid Today, July 2002.

[106] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An
Open Grid Services Architecture for Distributed Systems Integration. Open Grid
Service Infrastructure WG, Global Grid Forum, June 2002.

[107] Ian Hickson. Web forms 2.0. Online Opera Working Draft, March 2004.

[108] P. Bartholo. Applets Power the Client. Article, Sun Microsystem, Sun Microsys-
tems, Inc., 4150 Network Circle, Santa Clara, CA 95054, 1998.

[109] MSDN Library. Web Services Description Language Tool (Wsdl.exe). Microsoft
Corporation, Microsoft Corporation, One Microsoft Way, Redmond, Washington
98052-6399 U.S.A., 2004.

[110] superclusters.org. Maui Users Manual. CLUSTER RESOURCES INC. - Center
for HPC Cluster Resource Management and Scheduling, CLUSTER RESOURCES
INC. 11116 Conestoga Drive Covered Bridge Canyon, UT 84660, 2004.

[111] Jeffrey O. Kephart, Rajarshi Das, and Jeffrey K. MacKie-Mason. Two-sided learn-
ing in an agent economy for information bundles. In Agent-mediated Electronic
Commerce workshop at IJCAI ’99, 1999.

[112] Nelder and Mead. Downhill simplex method. Computer Journal, 7:308–313, 1965.

[113] Numerical Recipes in C: The Art of Scientific Computing, chapter 10.4 Downhill
Simplex Method in Multidimensions, pages 408–412. Cambridge University Press,
2nd edition, 1992.

[114] E.H. Baalbergen and H. van der Ven. Spineware - a framework for user-oriented
and tailorable metacomputers. National Aerospace Laboratory, page 16, September
1998.

[115] S. L. Padula, J. J. Korte, H. J. Dunn, and A. O. Salas. Multidisciplinary Opti-
mization Branch Experience Using iSIGHT Software. Langley Research Center,
1999.

[116] Phoenix Intergration. Modelcenter 7.0. Web Site, 2006. http://www.phoenix-
int.com/modelcenter.htm.

BIBLIOGRAPHY 165

[117] J. Czyzyk, M.P. Mesnier, and J.J. More. The neos server. Computational Science
and Engineering, IEEE, 5:68–75, 1998.

[118] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling
Language for Mathematical Programming. 2nd edition, 2003.

[119] Rajkumar Buyya, David Abramson, and Jonathan Giddy. Nimrod/g: An architec-
ture for a resource management and scheduling system in a global computational
grid. In The Fourth International Conference on High-Performance Computing in
the Asia-Pacific Region, volume 1, pages 283–283, 2000.

[120] Henri Casanova and Jack Dongarra. NetSolve: A network-enabled server for solv-
ing computational science problems. The International Journal of Supercomputer
Applications and High Performance Computing, 11(3):212–223, Fall 1997.

[121] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Dongarra, Craig Lee,
and Henri Casanova. Overview of GridRPC: A Remote Procedure Call API for
Grid Computing, volume 2536. January 2002.

[122] R. Khare. Can xform transform the web? transcending the web as gui (graphical
user interface). Technical Report Part II, 4K Associates, 2000.

[123] Sun Microsystems. Servlets API and Documentation. Sun Microsystems, May
2002.

[124] GEATbx: Genetic and Evolutionary Algorithm Toolbox for use with Matlab. Ex-
ample functions (single and multi-objective functions) 2 parametric optimization:
De jong’s function 1. Web Site, 2005. http://www.geatbx.com/ver 3 7/fcnindex-
01.html#P85 2637.

[125] G. Xue, M. J. Fairman, and S. J Cox. Exploiting Web Technologies for Grid
Architecture. In CCGrid, pages 272–273, 2002.

[126] G. Xue, M. J. Fairman, G. Pound, and S. J. Cox. Implementation of a Grid
Computation Toolkit for Design Optimisation with Matlab and Condor. In Euro-
Par Conference, 2003.

[127] G. Fox, T. Haupt, E. Akarsu, A. Kalinichenko, K. Kim, P. Sheethalmath, and
C. Youn. The Gateway System: Uniform Web Based Access to Remote Resources.
In ACM Java Grande Conference, 1999.

[128] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
Tuecke. S. A resource management architecture for metacomputing systems. In
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing,
pages 62–82, 1998.

BIBLIOGRAPHY 166

[129] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In
Proceedings of the 8th International Conference of Distributed Computing Systems,
June 1988.

[130] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource Man-
agement for High Throughput Computing. In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing (HPDC7),
Chicago, IL, July 1998.

[131] R. Raman, L. Miron, and M. Solomon. Policy Driven Heterogeneous Resource
Co-Allocation with Gangmatching. In Twelfth IEEE International Symposium on
High-Performance Distributed Computing, June 2003.

[132] D. Watkins. Handling language interoperability with the microsoft .net framework.
Msdn library article, Monash University, October 2000.

[133] B. Atkinson and et. al. Web Services Security (WS-Security). IBM and Microsoft
Corporation Specification Proposal, April 2002.

[134] Microsoft Corporation. Internet Information Services 6.0 Product Documentation.
Technical report, Microsoft Corporation, 2004.

[135] A. Eide and et. al. Professional ASP.NET Web Services. Wrox Press, 1 edition,
November 2001.

[136] Anonymous. Http cookie. Wikipedia, 2004.

[137] J. H. Gailey. Sending files, attachments, and SOAP messages via direct internet
message encapsulation. MSDN Magazie, 2003.

[138] M. Powell. Understanding dime and ws-attachments. Msdn library article, Mi-
crosoft Corporation, July 2003.

[139] University of Virginia Grid Computing Group. Ogsi.net. Web Site, 2003.
http://www.cs.virginia.edu/ gsw2c/ogsi.net.html.

[140] EPCC. The ms.netgrid project. Web Site, 2003.
http://www.epcc.ed.ac.uk/ ogsanet/.

[141] M. J. Fairman, P. B. Boardman, J. Zimmerman, and H. Fanghor. Application of
Lightweight Web Services for Micromagnetic Modelling, Simulation and Analysis.
Currently under review for the Journal of Grid Computing.

[142] Information Sciences Institute. TRANSMISSION CONTROL PROTOCOL. In-
ternet protocol, DARPA Internet Program, Defense Advanced Research Projects
Agency, Information Processing Techniques Office, 1400 Wilson Boulevard, Ar-
lington, Virginia 22209, September 1981.

BIBLIOGRAPHY 167

[143] D. Box and et al. Web Services Addressing (WS-Addressing). Technical report,
Global XML Web Service, 2004.

[144] R. P. Boardman, M. J. Fairman, J. Zimmerman, and H. Fanghor. Micromag-
netic modelling of ferromagnetic cones. Under review for the Journal of Material
Sciences.

Conference Publications

1. Cox, S. J., Fairman, M. J., Xue, G., Wason, J. L., and Keane, A. J. 2001. The
Grid: Computational and Data Resource Sharing in Engineering Optimisation and
Design Search. Proceedings of the 2001 ICPP Workshops p.207-212.

2. Xue, G., Fairman, M. J., and Cox, S. J. 2002. Exploiting Web Technologies for
Grid Architecture. Proceedings of the 2002 CCGrid p. 272-273.

3. Cox S.J, Boardman, R.P, Chen, L, Duta, M, Eres, M.H, Fairman, M.J, Jiao, Z,
Giles, M, Goble, C.A, Pound, G.E, Keane, A.J, Scott, C.M, Shadbolt, N.R, Tao, F,
Wason, J.L, Xue, G. (2002) Grid Services in Action: Grid Enabled Optimisation
and Design Search. Proceedings of the 11th IEEE International Symposium on
High Performance Distributed Computing HPDC-11 2002, p 413

4. Xue, G., Fairman, M. J., Pound, G., and Cox, S. J. 2003. Implementation of
a Grid Computation Toolkit for Design Optimisation with Matlab and Condor.
Proceedings of the 2003 Euro-Par Conference.

5. Pound, G.E, Eres, M. H, Fairman, M.J, Xue, G, Keane, A.J, and Cox, S.J. Grid
middleware for engineering design search and optimisation. Proceedings of UK
e-Science All Hands Meeting 2003, pp. 736-743

Technical Reports

1. Cox, S. J., Takeda, K., Xue, G. and Fairman, M.J., 2001. Microsoft .NET and the
Grid. Report for the Dept of Trade and Industry. 3rd August 2001.

168

Original C Language Source Code

for Amoeba Optimisation

1 #i n c lude ” s tda fx .h”

2 #i n c lude <math .h>

3 #i n c lude ” n r u t i l .h”

4 #de f i n e TINY 1 . 0e−10 /∗A sma l l number . ∗/

5 #de f i n e NMAX 5000 /∗Maximum a l l owed number o f f u n c t i o n eva lua−∗/

6 #de f i n e GET PSUM \ /∗ t i o n s . ∗/

7 for (j=1 ; j<=ndim ; j++) {\
8 for (sum=0 . 0 , i=1 ; i<=mpts ; i++)\
9 sum += p [i] [j] ; \

10 psum [j]=sum ; \
11 }
12 #de f i n e SWAP(a , b) {swap=(a) ; (a)=(b) ; (b)=swap ;}
13

14 void amoeba (f loat ∗∗p , f loat y [] , int ndim , f loat f t o l ,

15 f loat (∗ funk) (f loat []) , int ∗nfunk)

16 /∗Mul t i d imens i ona l min imi za t i on o f t h e f un c t i o n funk (x) where x [1 . . ndim] i s a v e c t o r in

ndim

17 dimensions , by t h e d ownh i l l s imp l e x method o f Ne lder and Mead . The matr ix p [1 . . ndim+1]

18 [1 . . ndim] i s i npu t . I t s ndim+1 rows are ndim−d imens iona l v e c t o r s which are t h e v e r t i c e s o f

19 t h e s t a r t i n g s imp l e x . Also inpu t i s t h e v e c t o r y [1 . . ndim+1] , whose components must be

p r e i n i t i a l i z e d

20 t o t h e v a l u e s o f funk e v a l u a t e d a t t h e ndim+1 v e r t i c e s (rows) o f p ; and f t o l t h e

21 f r a c t i o n a l convergence t o l e r a n c e to be a ch i e v ed in t h e f un c t i o n va l u e (n . b . !) . On output ,

p and

22 y w i l l have been r e s e t to ndim+1 new po i n t s a l l w i t h i n f t o l o f a minimum fun c t i o n va lue ,

and

23 nfunk g i v e s t h e number o f f u n c t i o n e v a l u a t i o n s taken . ∗/

24 {
25 f loat amotry (f loat ∗∗p , f loat y [] , f loat psum [] , int ndim ,

26 f loat (∗ funk) (f loat []) , int i h i , f loat f a c) ;

27 int i , i h i , i l o , inh i , j , mpts=ndim+1 ;

28 f loat r t o l , sum , swap , ysave , ytry ,∗psum ;

29 psum=vector (1 , ndim) ;

30 ∗nfunk=0 ;

31 GET PSUM

32 for (; ;) {
33 i l o=1 ;

34 /∗ F i r s t we must de termine which po i n t i s t h e h i g h e s t (wors t) , next−h i g h e s t , and l ow e s t

35 (b e s t) , by l o o p i n g over t h e p o i n t s in t h e s imp l e x . ∗/

36 i h i = y [1]>y [2] ? (i nh i=2 ,1) : (i nh i=1 ,2) ;

37 for (i=1 ; i<=mpts ; i++) {
38 i f (y [i] <= y [i l o]) i l o=i ;

39 i f (y [i] > y [i h i]) {
40 i nh i=i h i ;

41 i h i=i ;

42 } else i f (y [i] > y [i nh i] && i != i h i) i nh i=i ;

43 }
44 r t o l=2 . 0∗ f abs (y [i h i]−y [i l o]) /(fabs (y [i h i])+fabs (y [i l o])+TINY) ;

45 /∗Compute t h e f r a c t i o n a l range from h i g h e s t t o l ow e s t and r e t u rn i f s a t i s f a c t o r y . ∗/

46 i f (r t o l < f t o l) { /∗ I f r e tu rn ing , put b e s t p o i n t and va l u e in s l o t 1 . ∗/

47 SWAP(y [1] , y [i l o])

48 for (i=1 ; i<=ndim ; i++) SWAP(p [1] [i] , p [i l o] [i])

49 break ;

50 }
51 i f (∗ nfunk >= NMAX) nr e r r o r (”NMAX exceeded ”) ;

52 ∗nfunk += 2 ;

53 /∗Begin a new i t e r a t i o n . F i r s t e x t r a p o l a t e by a f a c t o r −1 through th e f a c e o f t h e

s imp l e x

169

Appendix Original C Language Source Code for Amoeba Optimisation 170

54 ac ro s s from the h i gh po in t , i . e . , r e f l e c t t h e s imp l e x from the h i gh po i n t . ∗/

55 ytry=amotry (p , y , psum , ndim , funk , ih i ,−1 . 0) ;

56 i f (ytry <= y [i l o])

57 /∗Gives a r e s u l t b e t t e r than the b e s t po in t , so t r y an a d d i t i o n a l e x t r a p o l a t i o n by

a

58 f a c t o r 2 . ∗/

59 ytry=amotry (p , y , psum , ndim , funk , ih i , 2 . 0) ;

60 else i f (ytry >= y [i nh i]) {
61 /∗The r e f l e c t e d po i n t i s worse than the second−h i g h e s t , so l o o k f o r an

i n t e rmed i a t e

62 l ower po in t , i . e . , do a one−d imens iona l c on t r a c t i o n . ∗/

63 ysave=y [i h i] ;

64 ytry=amotry (p , y , psum , ndim , funk , ih i , 0 . 5) ;

65 i f (ytry >= ysave) { /∗ Can t seem to g e t r i d o f t h a t h i gh po i n t . Be t t e r ∗/

66 for (i=1 ; i<=mpts ; i++) { /∗ c on t r a c t around the l ow e s t (b e s t) p o i n t . ∗/

67 i f (i != i l o) {
68 for (j=1 ; j<=ndim ; j++)

69 p [i] [j]=psum [j]=0 . 5∗(p [i] [j]+p [i l o] [j]) ;

70 y [i]=(∗ funk) (psum) ;

71 }
72 }
73 ∗nfunk += ndim ; /∗Keep t r a c k o f f u n c t i o n e v a l u a t i o n s . ∗/

74 GET PSUM /∗Recompute psum . ∗/

75 }
76 } else −−(∗nfunk) ; /∗Correc t t h e e v a l u a t i o n count . ∗/

77 } /∗Go back f o r t h e t e s t o f doneness and the nex t ∗/

78 f r e e vec tor (psum ,1 , ndim) ; /∗ i t e r a t i o n . ∗/

79 }
80

81 #i n c lude ” n r u t i l .h”

82 f loat amotry (f loat ∗∗p , f loat y [] , f loat psum [] , int ndim ,

83 f loat (∗ funk) (f loat []) , int i h i , f loat f a c)

84 /∗ Ex t r a p o l a t e s by a f a c t o r f a c th rough the f a c e o f t h e s imp l e x a c ro s s from the h i gh po in t

,

85 t r i e s i t , and r e p l a c e s t h e h i gh po i n t i f t h e new po in t i s b e t t e r . ∗/

86 {
87 int j ;

88 f loat fac1 , fac2 , ytry ,∗ ptry ;

89 ptry=vector (1 , ndim) ;

90 fac1=(1 .0− f a c) /ndim ;

91 fac2=fac1−f a c ;

92 for (j=1 ; j<=ndim ; j++) ptry [j]=psum [j] ∗ fac1−p [i h i] [j] ∗ f ac2 ;

93 ytry=(∗ funk) (ptry) ; /∗Eva lua t e t h e f un c t i o n a t t h e t r i a l p o i n t . ∗/

94 i f (ytry < y [i h i]) { /∗ I f i t s b e t t e r than the h i g h e s t , then r e p l a c e t h e h i g h e s t . ∗/

95 y [i h i]=ytry ;

96 for (j=1 ; j<=ndim ; j++) {
97 psum [j] += ptry [j]−p [i h i] [j] ;

98 p [i h i] [j]=ptry [j] ;

99 }
100 }
101 f r e e vec tor (ptry , 1 , ndim) ;

102 return ytry ;

103 }

Listing 1: Original C Language Source Code for Amoeba Optimisation

Java source code for Amoeba

Optimisation Algorithm Session

EJB

1 package opt imi sa t i on ;

2

3 import java . rmi . RemoteException ;

4

5 import javax . e jb . EJBException ;

6 import javax . e jb . SessionBean ;

7 import javax . e jb . Sess ionContext ;

8

9 import javax . e jb . CreateException ;

10

11 import opt imi sa t i on . AmoebaState ;

12

13 /∗∗
14 ∗ @ejb . bean name=”Ameoba”

15 ∗ d i s p l a y−name=”Name f o r Ameoba”

16 ∗ d e s c r i p t i o n=” De s c r i p t i o n f o r Ameoba”

17 ∗ j nd i−name=” e j b /Ameoba”

18 ∗ t ype=” S t a t e l e s s ”

19 ∗ view−t ype=” remote ”

20 ∗/

21 public c lass Ameoba implements SessionBean {
22

23 //ALGORITHM MAXIMUMS

24

25 private stat ic f ina l int NMAX = 5000 ; //Maximum fun c t i o n e v a l u a t i o n s

26

27 //AMOEBA STATES

28

29 public stat ic f ina l int START LOOP = 0 ;

30 public stat ic f ina l int INITIALISATION = −1 ;

31 public stat ic f ina l int FINISHED = −2 ;

32 public stat ic f ina l int NMAX ERROR = −100 ;

33 public stat ic f ina l int AMOTRY ERROR = −101 ;

34

35 public Ameoba () {
36 super () ;

37 // TODO Auto−g ene ra t ed c on s t r u c t o r s t u b

38 }
39

40 public void s e tSes s ionContext (Sess ionContext ctx)

41 throws EJBException ,

42 RemoteException {
43 // TODO Auto−g ene ra t ed method s t u b

44

45 }
46

47 public void ejbRemove () throws EJBException , RemoteException {
48 // TODO Auto−g ene ra t ed method s t u b

49

50 }
51

52 public void e jbAct ivate () throws EJBException , RemoteException {
53 // TODO Auto−g ene ra t ed method s t u b

54

171

Appendix Java source code for Amoeba Optimisation Algorithm Session EJB 172

55 }
56

57 public void e jbPas s i va t e () throws EJBException , RemoteException {
58 // TODO Auto−g ene ra t ed method s t u b

59

60 }
61

62 /∗∗
63 ∗ De f au l t c r e a t e method

64 ∗
65 ∗ @throws Crea t eExcep t i on

66 ∗ @ejb . c rea t e−method

67 ∗/

68 public void e jbCreate () throws CreateException {
69 // TODO Auto−g ene ra t ed method s t u b

70 }
71

72 /∗∗
73 ∗ Bus ines s method

74 ∗ @ejb . i n t e r f a c e−method view−t ype = ” remote ”

75 ∗/

76 public AmoebaState bootst rap (int ndim , f loat f t o l)

77 {
78 // s e t up th e s t a t e data f o r t h e o p t im i s a t i o n

79 // f i r s t e l ement o f array s t a r t from 1

80

81 AmoebaState r e s u l t = new AmoebaState () ;

82

83 int i=0 , i h i=0 , i l o=0 , i nh i=0 , j=0 , mpts=0 , nfunk=0 , s t a t e=INITIALISATION ;

84 f loat r t o l=0 . 0 f , summ=0 . 0 f , swap=0 . 0 f , ysave=0 . 0 f , ytry=0 . 0 f , psum [] , x [] ;

85 Amotry amotry ;

86 f loat p [] [] , y [] ;

87

88 // x [] i s arguments f o r func f (x)

89 x = new float [ndim+1] ;

90

91 //p ’ s ndim+1 rows are ndim−d imens iona l v e c t o r s which are t h e v e r t i c e s o f

92 // the s t a r t i n g s imp l e x . Also inpu t i s t h e v e c t o r y [1 . . ndim+1] ,

93 //whose components must be p r e i n i t i a l i z e d to t h e v a l u e s o f f (x) e v a l u a t e d

94 // a t t h e ndim+1 v e r t i c e s (rows) o f p

95 p = new float [ndim+2] [ndim+1] ;

96 y = new float [ndim+2] ;

97

98 // f i r s t i t e r a t i o n o f r e v e r s e commuincation l oop to p r e i n i t i a l i s e p

99 // see i n i t i a l i s a t i o n case o f nex t () f o r con t inuance o f p r e i n i t i l i s a t i o n

100 // i s t a r t s a t 1 and i s incremented by 1 t i l l i t r eache s ndim+1

101 i=1 ;

102 i f (i <= (ndim+1)) {
103 for (j=1 ; j<=ndim ; j++)

104 x [j]=p [i] [j]=(i == (j +1) ? 1 . 0 f : 0 . 0 f) ;

105

106 // c a l l t o f (x) would have gone here

107 // i n s t e a d we r e tu rn x [] t o c l i e n t which must c a l c u l a t e r e s u l t o f f (x) and pass too

nex t

108 }
109

110 mpts = ndim+1 ;

111 psum = new float [ndim+1] ;

112 nfunk = 0 ;

113

114 amotry = new Amotry (p , y , psum , ndim , ih i ,−1 . 0 f) ;

115

116 // save s t a t e

117 r e s u l t . i = i ;

118 r e s u l t . i h i = i h i ;

119 r e s u l t . i l o = i l o ;

120 r e s u l t . i nh i = i nh i ;

121 r e s u l t . j = j ;

122 r e s u l t . mpts = mpts ;

123 r e s u l t . nfunk = nfunk ;

124 r e s u l t . ndim = ndim ;

125 r e s u l t . s t a t e = s t a t e ;

126

127 r e s u l t . r t o l = r t o l ;

128 r e s u l t .summ = summ ;

129 r e s u l t . swap = swap ;

130 r e s u l t . ysave = ysave ;

131 r e s u l t . ytry = ytry ;

132 r e s u l t .psum = psum ;

133 r e s u l t .p = p ;

Appendix Java source code for Amoeba Optimisation Algorithm Session EJB 173

134 r e s u l t . y = y ;

135 r e s u l t . f t o l = f t o l ;

136 r e s u l t . x = x ;

137

138 r e s u l t . amotry = amotry ;

139

140 // r e t u rn o p t im i s t a i o n i d

141 return r e s u l t ;

142 }
143 /∗∗
144 ∗ Bus ines s method

145 ∗ @ejb . i n t e r f a c e−method view−t ype = ” remote ”

146 ∗/

147 public AmoebaState next (AmoebaState s t a t e)

148 throws opt imi sa t i on . Funct ionEvaluat ionExcept ion

149 {
150 AmoebaState ns = null ;

151 try

152 {
153 //make a copy o f t h e s t a t e which w i l l then be updated and

154 // r e tu rned to t h e c l i e n t each t ime f (x) need c a l c u l a t i o n on new x v a l u e s

155 ns = (AmoebaState) s t a t e . c lone () ;

156 }
157 catch (Exception ex)

158 {
159 // t h i s s h ou l dn t happen as c l one i s implemented bu t a l l ow s program to compi l e

160 throw new opt imi sa t i on . Funct ionEvaluat ionExcept ion (ex) ;

161 }
162

163 while (true)

164 {
165 switch (ns . s t a t e)

166 {
167 case INITIALISATION :

168

169 // con t inue p r e i n i t i a l i s e o f p (see b o o t s t r a p)

170 // keep r e t u r n i n g x to c l i e n t f o r c a l c o f r e s u l t o f f (x) u n t i l i r ea che s

ndim+1

171 ns . y [ns . i++] = ns . r e s ; // s t o r e r e s u l t s o f f (x i) f o r o r d e r i n g

172 i f (ns . i <= (ns . ndim+1)) {
173 for (ns . j=1 ; ns . j<=ns . ndim ; ns . j++)

174 ns . x [ns . j] = ns .p [ns . i] [ns . j] = (ns . i == (ns . j +1) ? 1 . 0 f : 0 . 0 f) ;

175 ns . s t a t e = INITIALISATION ;

176 return ns ;

177 }
178

179 //do f i n a l p r e i n i t i l i a s t i o n by g e t t i n g psum and then s t a r t t h e

o p t im i s a t i o n

180 //psum g i v e us t h e summation f o r c a l c u l a t i n g o f t h e c e n t r o i d in o rd e r i n g

181 // t h i s on l y need happen once hence i s in t h e i n i t i a l i a s t i o n a f t e r p [] []

has f i n i s h e d l o o p i n g

182 for (ns . j=1 ; ns . j<=ns . ndim ; ns . j++) {
183 for (ns .summ=0 . 0 f , ns . i=1 ; ns . i<=ns . mpts ; ns . i++)

184 ns .summ += ns .p [ns . i] [ns . j] ;

185 ns .psum [ns . j] = ns .summ ;

186 }
187

188 ns . s t a t e = START LOOP;

189 break ;

190

191 case START LOOP:

192

193 ns . i l o=1 ;

194 //∗∗∗∗
195 //Order

196 //∗∗∗∗
197 // F i r s t we must de termine which po i n t i s t h e h i g h e s t (wors t) , next−h i g h e s t

, and l ow e s t

198 // (b e s t) , by l o o p i n g over t h e p o i n t s in t h e s imp l e x .

199 i f (ns . y [1] > ns . y [2]) {
200 ns . i h i = 1 ; ns . i nh i = 2 ;

201 } else {
202 ns . i h i = 2 ; ns . i nh i = 1 ;

203 }
204

205 for (ns . i=1 ; ns . i<=ns . mpts ; ns . i++) {
206 i f (ns . y [ns . i] <= ns . y [ns . i l o])

207 ns . i l o=ns . i ;

208 i f (ns . y [ns . i] > ns . y [ns . i h i]) {
209 ns . i nh i=ns . i h i ;

Appendix Java source code for Amoeba Optimisation Algorithm Session EJB 174

210 ns . i h i=ns . i ;

211 } else i f (ns . y [ns . i] > ns . y [ns . i nh i] && ns . i != ns . i h i)

212 ns . i nh i=ns . i ;

213 }
214

215 ns . r t o l=(f loat) (2 . 0 f ∗Math . abs (ns . y [ns . i h i]−ns . y [ns . i l o]) /

216 (Math . abs (ns . y [ns . i h i])+Math . abs (ns . y [ns . i l o]))) ;

217

218

219 //Compute t h e f r a c t i o n a l range from h i g h e s t t o l ow e s t and r e tu rn i f

s a t i s f a c t o r y .

220 i f (ns . r t o l < ns . f t o l) { // I f r e tu rn ing , put b e s t p o i n t and va l u e in s l o t

1 .

221 ns . swap=ns . y [1] ;

222 ns . y [1]=ns . y [ns . i l o] ;

223 ns . y [ns . i l o]=ns . swap ;

224 for (ns . i=1 ; ns . i<=ns . ndim ; ns . i++) {
225 ns . swap=ns .p [1] [ns . i] ;

226 ns .p [1] [ns . i]=ns .p [ns . i l o] [ns . i] ;

227 ns .p [ns . i l o] [ns . i]=ns . swap ;

228 }
229 ns . s t a t e = FINISHED ; // comple ted o p t im i s a t i o n

230 return ns ;

231 }
232

233 // check we have not exceed our number o f maximum number o f i t e r a t i o n s

234 i f (ns . nfunk >= NMAX) {
235 ns . s t a t e = NMAX ERROR;

236 throw new Funct ionEvaluat ionExcept ion (”next : maximum func t i on

eva lua t i on s exceed ”) ;

237 }
238 ns . nfunk += 2 ;

239

240 //∗∗∗∗
241 // S t a r t R e f l e c t

242 //∗∗∗∗
243

244 //Begin a new i t e r a t i o n . F i r s t e x t r a p o l a t e by a f a c t o r ?1 through the f a c e

o f t h e s imp l e x

245 // ac ro s s from the h i gh po in t , i . e . , r e f l e c t t h e s imp l e x from the h i gh

po i n t .

246 // s e t up amotry and wa i t f o r nex t r e s

247 ns . amotry . r e s e t (ns .p , ns . y , ns .psum , ns . ndim , ns . i h i ,−1 . 0 f) ;

248 ns . x = ns . amotry . getEvaluat ionPoint () ;

249 ns . s t a t e = 1 ;

250 return ns ;

251

252 case 1 :

253

254

255 //we have go t back t h e r e s u l t from amotry so con t inue w i th r e v e s r e

communication l oop

256 ns . amotry . s t a t e = ns . amotry . next (ns . res , ns .p , ns . y , ns .psum) ;

257 i f (ns . amotry . s t a t e == S ta t e f u l lOp t im i s e r .FINISHED) { // amotry has

comp le ted

258 // g e t r e s u l t o f amotry and go to nex t s t a t e

259 ns . ytry = ns . amotry . getResu l t () ; // save r e f l e c t i o n po i n t f r

260 i f (ns . ytry <= ns . y [ns . i l o])

261 {
262

263 // s e t up amotry and wa i t f o r nex t r e s

264 ns . amotry . r e s e t (ns .p , ns . y , ns .psum , ns . ndim , ns . i h i , 2 . 0 f) ;

265 ns . point = ns . amotry . getEvaluat ionPoint () ;

266 ns . s t a t e = 2 ; // go to expand

267 return ns ;

268 }
269 else i f (ns . ytry >= ns . y [ns . i nh i])

270 {
271 ns . ysave=ns . y [ns . i h i] ;

272

273 // s e t up amotry and wa i t f o r nex t r e s

274 ns . amotry . r e s e t (ns .p , ns . y , ns .psum , ns . ndim , ns . i h i , 0 . 5 f) ;

275 ns . point = ns . amotry . getEvaluat ionPoint () ;

276 ns . s t a t e = 3 ;

277 return ns ;

278 }
279 else

280 {
281 −−ns . nfunk ;

282

Appendix Java source code for Amoeba Optimisation Algorithm Session EJB 175

283 // go to s t a r t o f l oop

284 ns . s t a t e = START LOOP;

285 break ;

286 }
287 } else i f (ns . amotry . s t a t e != S ta t e f u l lOp t im i s e r .ERROR) { // keep l o o p i n g

u n t i l amotry f i n i s h e s

288 // wa i t f o r nex t r e s

289 ns . point = ns . amotry . getEvaluat ionPoint () ;

290 ns . s t a t e = 1 ;

291 return ns ;

292 } else { // someth ing has gone t e r r i b l e wrong

293 ns . s t a t e = AMOTRY ERROR;

294 throw new EJBException (”next : ”+ns . amotry . getErrorMessage ()) ;

295 }
296

297 case 2 :

298 ns . amotry . s t a t e = ns . amotry . next (ns . res , ns .p , ns . y , ns .psum) ;

299 i f (ns . amotry . s t a t e == Amotry .FINISHED) {
300 // g e t r e s u l t o f amotry and go to nex t s t a t e

301 ns . ytry = ns . amotry . getResu l t () ;

302 ns . s t a t e = START LOOP;

303 break ;

304 } else i f (ns . amotry . s t a t e != S ta t e f u l lOp t im i s e r .ERROR) {
305 // wa i t f o r nex t r e s

306 ns . point = ns . amotry . getEvaluat ionPoint () ;

307 ns . s t a t e = 2 ;

308 return ns ;

309 } else {
310 ns . s t a t e = AMOTRY ERROR;

311 throw new EJBException (”next : ”+ns . amotry . getErrorMessage ()) ;

312 }
313

314 case 3 :

315 ns . amotry . s t a t e = ns . amotry . next (ns . res , ns .p , ns . y , ns .psum) ;

316 i f (ns . amotry . s t a t e == S ta t e f u l lOp t im i s e r .FINISHED) {
317 // g e t r e s u l t o f amotry and go to nex t s t a t e

318 ns . ytry = ns . amotry . getResu l t () ;

319 i f (ns . ytry >= ns . ysave) {
320 ns . i=1 ;

321 while (ns . i <= ns . mpts) {
322 i f (ns . i != ns . i l o) {
323 for (ns . j=1 ; ns . j<=ns . ndim ; ns . j++)

324 ns .p [ns . i] [ns . j]=ns .psum [ns . j]=0 . 5 f ∗(ns .p [ns . i] [ns . j]+

ns .p [ns . i l o] [ns . j]) ;

325 // wa i t f o r r e s ;

326 ns . point = ns .psum ;

327 ns . s t a t e = 4 ;

328 return ns ;

329 }
330 ns . i++;

331 }
332 ns . nfunk += ns . ndim ;

333 for (ns . j=ns . i ; ns . j<=ns . ndim ; ns . j++) {
334 for (ns .summ=0 . 0 f , ns . i=1 ; ns . i<=ns . mpts ; ns . i++)

335 ns .summ += ns .p [ns . i] [ns . j] ;

336 ns .psum [ns . j] = ns .summ ;

337 }
338 }
339 ns . s t a t e = START LOOP;

340 break ;

341 } else i f (ns . amotry . s t a t e != S ta t e f u l lOp t im i s e r .ERROR) {
342 // wa i t f o r nex t r e s

343 ns . s t a t e = 3 ;

344 return ns ;

345 } else {
346 ns . s t a t e = AMOTRY ERROR;

347 throw new EJBException (”next : ”+ns . amotry . getErrorMessage ()) ;

348 }
349

350 case 4 :

351 ns . y [ns . i++] = ns . r e s ;

352 while (ns . i <= ns . mpts) {
353 i f (ns . i != ns . i l o) {
354 for (ns . j=1 ; ns . j<=ns . ndim ; ns . j++)

355 ns .p [ns . i] [ns . j]=ns .psum [ns . j]=0 . 5 f ∗(ns .p [ns . i] [ns . j]+ns .p [ns .

i l o] [ns . j]) ;

356 // wa i t f o r r e s ;

357 ns . point = ns .psum ;

358 ns . s t a t e = 4 ;

359 return ns ;

Appendix Java source code for Amoeba Optimisation Algorithm Session EJB 176

360 }
361 ns . i++;

362 }
363

364 ns . nfunk += ns . ndim ;

365 for (ns . j=ns . i ; ns . j<=ns . ndim ; ns . j++) {
366 for (ns .summ=0 . 0 f , ns . i=1 ; ns . i<=ns . mpts ; ns . i++) ns .summ += ns .p [ns . i]

[ns . j] ;

367 ns .psum [ns . j] = ns .summ ;

368 }
369

370 // go to s t a r t

371 ns . s t a t e = START LOOP;

372 break ;

373

374 default :

375 i f (ns . s t a t e == FINISHED) {
376 return ns ;

377 } else i f (ns . s t a t e == NMAX ERROR) {
378 throw new Funct ionEvaluat ionExcept ion (”next : maximum func t i on eva lua t i on s

exceeded ”) ;

379 } else i f (ns . s t a t e == AMOTRY ERROR) {
380 throw new EJBException (”next : ”+ns . amotry . getErrorMessage ()) ;

381 } else {
382 throw new EJBException (”next : an i nv a l i d s t a t e has been entered . ”) ;

383 }
384

385 } // sw i t c h

386 } // l oop

387 }
388 }

Listing 2: Java source code for Amoeba Optimisation Algorithm Session EJB

WSDL of the Compute Web

Service

1 <?xml version=”1 . 0” encoding=”utf−8”?>

2 <wsdl : d e f i n i t i o n s xmlns : soap=”http : // schemas . xmlsoap . org /wsdl / soap/” xmlns : tm=”http : //

mic ro so f t . com/wsdl /mime/ textMatching /” xmlns : soapenc=”http : // schemas . xmlsoap . org / soap/

encoding /” xmlns :mime=”http : // schemas . xmlsoap . org /wsdl /mime/” xmlns : tns=”http : //www.

geod i s e . org /CompWS/” xmlns : s=”http : //www.w3 . org /2001/XMLSchema” xmlns : soap12=”http : //

schemas . xmlsoap . org /wsdl / soap12/” xmlns : http=”http : // schemas . xmlsoap . org /wsdl / http /”

targetNamespace=”http : //www. geod i s e . org /CompWS/” xmlns : wsdl=”http : // schemas . xmlsoap . org /

wsdl /”>

3 <wsdl : types>

4 <s : schema elementFormDefault=” q u a l i f i e d ” targetNamespace=”http : //www. geod i s e . org /CompWS/”>

5 <s : element name=” GetFi l e s ”>

6 <s : complexType>

7 <s : sequence>

8 <s : element minOccurs=”0” maxOccurs=”1” name=” id ” type=” tns : JobID” />

9 <s : element minOccurs=”1” maxOccurs=”1” name=” timeout ” type=” s : i n t ” />

10 <s : element minOccurs=”1” maxOccurs=”1” name=” r e t r i e v e ” type=” tns : Re t r i e v eF i l e s ” />

11

12 </ s : sequence>

13 </ s : complexType>

14 </ s : element>

15 <s : complexType name=”JobID”>

16 <s : sequence>

17 <s : element minOccurs=”1” maxOccurs=”1” name=” Clus te r ” type=” s : uns ignedInt ” />

18 <s : element minOccurs=”1” maxOccurs=”1” name=”Proc” type=” s : uns ignedInt ” />

19 </ s : sequence>

20 </ s : complexType>

21

22 <s : simpleType name=” Re t r i e v eF i l e s ”>

23 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

24 <s : enumeration value=” Al l ” />

25 <s : enumeration value=”New” />

26 </ s : r e s t r i c t i o n>

27 </ s : simpleType>

28 <s : element name=”GetFi lesResponse ”>

29 <s : complexType>

30 <s : sequence>

31

32 <s : element minOccurs=”1” maxOccurs=”1” name=” GetF i l e sResu l t ” type=” s : boolean ” />

33 <s : element minOccurs=”0” maxOccurs=”1” name=” f i l e s ” type=” tns : ArrayOfJobFile ” />

34 <s : element minOccurs=”0” maxOccurs=”1” name=” i n f o ” type=” tns : TerminationClassAd” /

>

35 </ s : sequence>

36 </ s : complexType>

37 </ s : element>

38 <s : complexType name=”ArrayOfJobFile ”>

39 <s : sequence>

40 <s : element minOccurs=”0” maxOccurs=”unbounded” name=” JobFi le ” n i l l a b l e=” true ” type=”

tns : JobFi le ” />

41

42 </ s : sequence>

43 </ s : complexType>

44 <s : complexType name=” JobFi le ”>

45 <s : sequence>

46 <s : element minOccurs=”0” maxOccurs=”1” name=”Data” type=” s : base64Binary ” />

47 <s : element minOccurs=”0” maxOccurs=”1” name=”Filename” type=” s : s t r i n g ” />

48 </ s : sequence>

49 </ s : complexType>

50 <s : complexType name=”TerminationClassAd”>

177

Appendix WSDL of the Compute Web Service 178

51

52 <s : sequence>

53 <s : element minOccurs=”0” maxOccurs=”1” name=”Machine” type=” s : s t r i n g ” />

54 <s : element minOccurs=”0” maxOccurs=”1” name=”JobID” type=” tns : JobID” />

55 <s : element minOccurs=”0” maxOccurs=”1” name=”Executable ” type=” s : s t r i n g ” />

56 <s : element minOccurs=”1” maxOccurs=”1” name=”Terminated” type=” tns : Terminated” />

57 <s : element minOccurs=”1” maxOccurs=”1” name=”StatusCode” type=” s : i n t ” />

58 <s : element minOccurs=”1” maxOccurs=”1” name=”SubmittedTime” type=” s : dateTime” />

59 <s : element minOccurs=”1” maxOccurs=”1” name=”CompletedTime” type=” s : dateTime” />

60 <s : element minOccurs=”1” maxOccurs=”1” name=”RealTime” type=” s : long ” />

61

62 <s : element minOccurs=”1” maxOccurs=”1” name=” ImageSize ” type=” s : unsignedLong” />

63 <s : element minOccurs=”1” maxOccurs=”1” name=”UserCPUTime” type=” s : long ” />

64 <s : element minOccurs=”1” maxOccurs=”1” name=”SystemCPUTime” type=” s : long ” />

65 <s : element minOccurs=”1” maxOccurs=”1” name=”RemoteCPUTime” type=” s : long ” />

66 <s : element minOccurs=”1” maxOccurs=”1” name=”AllRunTimes” type=” s : long ” />

67 <s : element minOccurs=”0” maxOccurs=”1” name=”Administrator ” type=” s : s t r i n g ” />

68 <s : element minOccurs=”0” maxOccurs=”1” name=”WSUser” type=” s : s t r i n g ” />

69 </ s : sequence>

70 </ s : complexType>

71

72 <s : simpleType name=”Terminated”>

73 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

74 <s : enumeration value=”normally ” />

75 <s : enumeration value=”abnormally ” />

76 <s : enumeration value=” checkpointed ” />

77 </ s : r e s t r i c t i o n>

78 </ s : simpleType>

79 <s : element name=”Wait”>

80 <s : complexType>

81

82 <s : sequence>

83 <s : element minOccurs=”0” maxOccurs=”1” name=” id ” type=” tns : JobID” />

84 <s : element minOccurs=”1” maxOccurs=”1” name=” timeout ” type=” s : i n t ” />

85 </ s : sequence>

86 </ s : complexType>

87 </ s : element>

88 <s : element name=”WaitResponse”>

89 <s : complexType>

90 <s : sequence>

91

92 <s : element minOccurs=”1” maxOccurs=”1” name=”WaitResult ” type=” s : boolean ” />

93 <s : element minOccurs=”0” maxOccurs=”1” name=” i n f o ” type=” tns : TerminationClassAd” /

>

94 </ s : sequence>

95 </ s : complexType>

96 </ s : element>

97 <s : element name=”Submit”>

98 <s : complexType>

99 <s : sequence>

100 <s : element minOccurs=”0” maxOccurs=”1” name=” desc ” type=” tns : SubmissionClassAd” />

101

102 </ s : sequence>

103 </ s : complexType>

104 </ s : element>

105 <s : complexType name=”SubmissionClassAd”>

106 <s : sequence>

107 <s : element minOccurs=”0” maxOccurs=”1” name=”Executable ” type=” tns : JobFi le ” />

108 <s : element minOccurs=”1” maxOccurs=”1” name=”Requirements ” n i l l a b l e=” true ” type=” tns

: Log i ca lExpre s s i on ” />

109 <s : element minOccurs=”1” maxOccurs=”1” name=”Rank” n i l l a b l e=” true ” type=” tns :

ComparisonExpression” />

110 <s : element minOccurs=”1” maxOccurs=”1” name=” Ema i lNot i f i c a t i on ” type=” tns :

Emai lNot i f i c a t i on ” />

111

112 <s : element minOccurs=”1” maxOccurs=”1” name=”EmailAddr” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

113 <s : element minOccurs=”1” maxOccurs=”1” name=”Environment” n i l l a b l e=” true ” type=” tns :

Environment” />

114 <s : element minOccurs=”1” maxOccurs=”1” name=”Log” n i l l a b l e=” true ” type=” s : s t r i n g ” />

115 <s : element minOccurs=”1” maxOccurs=”1” name=”Universe ” type=” tns : Universe ” />

116 <s : element minOccurs=”0” maxOccurs=”unbounded” name=”SubmissionJobGroupClassAd” type

=” tns : SubmissionJobGroupClassAd” />

117 <s : element minOccurs=”0” maxOccurs=”unbounded” name=” SharedDataFi les ” n i l l a b l e=” true

” type=” tns : JobFi le ” />

118 </ s : sequence>

119 </ s : complexType>

120 <s : complexType name=” Log i ca lExpre s s i on ”>

121

122 <s : sequence>

Appendix WSDL of the Compute Web Service 179

123 <s : element minOccurs=”0” maxOccurs=”1” name=”Express ion ”>

124 <s : complexType>

125 <s : sequence>

126 <s : any />

127 </ s : sequence>

128 </ s : complexType>

129 </ s : element>

130 </ s : sequence>

131

132 </ s : complexType>

133 <s : complexType name=”ComparisonExpression”>

134 <s : complexContent mixed=” f a l s e ”>

135 <s : extens ion base=” tns : Log i ca lExpre s s i on ” />

136 </ s : complexContent>

137 </ s : complexType>

138 <s : simpleType name=” Ema i lNot i f i c a t i on ”>

139 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

140 <s : enumeration value=”ERROR” />

141

142 <s : enumeration value=”UNDEFINED” />

143 <s : enumeration value=”Never” />

144 <s : enumeration value=”Always” />

145 <s : enumeration value=”Complete” />

146 <s : enumeration value=”Error ” />

147 </ s : r e s t r i c t i o n>

148 </ s : simpleType>

149 <s : complexType name=”Environment”>

150 <s : sequence>

151

152 <s : element minOccurs=”0” maxOccurs=”1” name=” environment”>

153 <s : complexType>

154 <s : sequence>

155 <s : any />

156 </ s : sequence>

157 </ s : complexType>

158 </ s : element>

159 </ s : sequence>

160 </ s : complexType>

161

162 <s : simpleType name=”Universe ”>

163 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

164 <s : enumeration value=”ERROR” />

165 <s : enumeration value=”UNDEFINED” />

166 <s : enumeration value=” v an i l l a ” />

167 <s : enumeration value=” standard ” />

168 <s : enumeration value=”pvm” />

169 <s : enumeration value=” schedu l e r ” />

170 <s : enumeration value=” globus ” />

171

172 <s : enumeration value=”mpi” />

173 </ s : r e s t r i c t i o n>

174 </ s : simpleType>

175 <s : complexType name=”SubmissionJobGroupClassAd”>

176 <s : sequence>

177 <s : element minOccurs=”1” maxOccurs=”1” name=” Input ” n i l l a b l e=” true ” type=” tns :

JobFi le ” />

178 <s : element minOccurs=”1” maxOccurs=”1” name=”Output” n i l l a b l e=” true ” type=” s : s t r i n g ”

/>

179 <s : element minOccurs=”1” maxOccurs=”1” name=”Error ” n i l l a b l e=” true ” type=” s : s t r i n g ”

/>

180 <s : element minOccurs=”1” maxOccurs=”1” name=”Arguments” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

181

182 <s : element minOccurs=”0” maxOccurs=”1” name=” P r i o r i t y ” type=” tns : Pr i o r i t y ” />

183 <s : element minOccurs=”1” maxOccurs=”1” name=”Queue” type=” s : unsignedLong” />

184 <s : element minOccurs=”0” maxOccurs=”unbounded” name=”Data” n i l l a b l e=” true ” type=” tns

: JobFi le ” />

185 </ s : sequence>

186 </ s : complexType>

187 <s : complexType name=” P r i o r i t y ”>

188 <s : a t t r i bu t e name=” p r i o r i t y ” type=” s : shor t ” use=” requ i r ed ” />

189 </ s : complexType>

190 <s : element name=”SubmitResponse”>

191

192 <s : complexType>

193 <s : sequence>

194 <s : element minOccurs=”0” maxOccurs=”1” name=”SubmitResult ” type=” tns : JobID” />

195 </ s : sequence>

196 </ s : complexType>

197 </ s : element>

Appendix WSDL of the Compute Web Service 180

198 <s : element name=”GetMachineStatuses ”>

199 <s : complexType>

200 <s : sequence>

201

202 <s : element minOccurs=”0” maxOccurs=”1” name=”machineNames” type=” tns : ArrayOfString

” />

203 <s : element minOccurs=”1” maxOccurs=”1” name=”query” type=” tns : MachineStatusQuery”

/>

204 </ s : sequence>

205 </ s : complexType>

206 </ s : element>

207 <s : complexType name=”ArrayOfStr ing ”>

208 <s : sequence>

209 <s : element minOccurs=”0” maxOccurs=”unbounded” name=” s t r i n g ” n i l l a b l e=” true ” type=” s

: s t r i n g ” />

210 </ s : sequence>

211

212 </ s : complexType>

213 <s : simpleType name=”MachineStatusQuery”>

214 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

215 <s : enumeration value=” Ava i l ab l e ” />

216 <s : enumeration value=”Claimed” />

217 <s : enumeration value=” Al l ” />

218 </ s : r e s t r i c t i o n>

219 </ s : simpleType>

220 <s : element name=”GetMachineStatusesResponse ”>

221

222 <s : complexType>

223 <s : sequence>

224 <s : element minOccurs=”0” maxOccurs=”1” name=”GetMachineStatusesResult ” type=” tns :

ArrayOfMachineClassAd” />

225 </ s : sequence>

226 </ s : complexType>

227 </ s : element>

228 <s : complexType name=”ArrayOfMachineClassAd”>

229 <s : sequence>

230 <s : element minOccurs=”0” maxOccurs=”unbounded” name=”MachineClassAd” n i l l a b l e=” true ”

type=” tns : MachineClassAd” />

231

232 </ s : sequence>

233 </ s : complexType>

234 <s : complexType name=”MachineClassAd”>

235 <s : sequence>

236 <s : element minOccurs=”1” maxOccurs=”1” name=”MyType” type=” tns :MyType” />

237 <s : element minOccurs=”1” maxOccurs=”1” name=”TargetType” type=” tns : TargetType” />

238 <s : element minOccurs=”0” maxOccurs=”1” name=”Name” type=” s : s t r i n g ” />

239 <s : element minOccurs=”0” maxOccurs=”1” name=”Machine” type=” s : s t r i n g ” />

240 <s : element minOccurs=”1” maxOccurs=”1” name=”Rank” type=” s : f l o a t ” />

241

242 <s : element minOccurs=”0” maxOccurs=”1” name=”CpuBusy” type=” s : s t r i n g ” />

243 <s : element minOccurs=”0” maxOccurs=”1” name=”CondorVersion” type=” s : s t r i n g ” />

244 <s : element minOccurs=”0” maxOccurs=”1” name=”CondorPlatform” type=” s : s t r i n g ” />

245 <s : element minOccurs=”1” maxOccurs=”1” name=”VirtualMachineID” type=” s : i n t ” />

246 <s : element minOccurs=”1” maxOccurs=”1” name=” ImageSize ” type=” s : i n t ” />

247 <s : element minOccurs=”1” maxOccurs=”1” name=” JobUniverse ” type=” tns : Universe ” />

248 <s : element minOccurs=”1” maxOccurs=”1” name=”VirtualMemory” type=” s : uns ignedInt ” />

249 <s : element minOccurs=”1” maxOccurs=”1” name=”Disk” type=” s : uns ignedInt ” />

250 <s : element minOccurs=”1” maxOccurs=”1” name=”CondorLoadAvg” type=” s : f l o a t ” />

251

252 <s : element minOccurs=”1” maxOccurs=”1” name=”LoadAvg” type=” s : f l o a t ” />

253 <s : element minOccurs=”1” maxOccurs=”1” name=”KeyboardIdle ” type=” s : long ” />

254 <s : element minOccurs=”1” maxOccurs=”1” name=” Conso l e Id l e ” type=” s : long ” />

255 <s : element minOccurs=”1” maxOccurs=”1” name=”Memory” type=” s : uns ignedInt ” />

256 <s : element minOccurs=”1” maxOccurs=”1” name=”Cpus” type=” s : uns ignedInt ” />

257 <s : element minOccurs=”0” maxOccurs=”1” name=”StartdIpAddr ” type=” s : s t r i n g ” />

258 <s : element minOccurs=”1” maxOccurs=”1” name=”Arch” type=” tns : Arch” />

259 <s : element minOccurs=”1” maxOccurs=”1” name=”OpSys” type=” tns :OpSys” />

260 <s : element minOccurs=”0” maxOccurs=”1” name=”UidDomain” type=” s : s t r i n g ” />

261

262 <s : element minOccurs=”0” maxOccurs=”1” name=”FileSystemDomain” type=” s : s t r i n g ” />

263 <s : element minOccurs=”0” maxOccurs=”1” name=”Subnet” type=” s : s t r i n g ” />

264 <s : element minOccurs=”1” maxOccurs=”1” name=”TotalVirtualMemory” type=” s : uns ignedInt

” />

265 <s : element minOccurs=”1” maxOccurs=”1” name=”TotalDisk ” type=” s : uns ignedInt ” />

266 <s : element minOccurs=”1” maxOccurs=”1” name=”KFlops” type=” s : uns ignedInt ” />

267 <s : element minOccurs=”1” maxOccurs=”1” name=”Mips” type=” s : uns ignedInt ” />

268 <s : element minOccurs=”1” maxOccurs=”1” name=”LastBenchmark” type=” s : dateTime” />

269 <s : element minOccurs=”1” maxOccurs=”1” name=”TotalLoadAvg” type=” s : f l o a t ” />

270 <s : element minOccurs=”1” maxOccurs=”1” name=”TotalCondorLoadAvg” type=” s : f l o a t ” />

271

Appendix WSDL of the Compute Web Service 181

272 <s : element minOccurs=”1” maxOccurs=”1” name=”ClockMin” type=” s : long ” />

273 <s : element minOccurs=”1” maxOccurs=”1” name=”ClockDay” type=” tns : ClockDay” />

274 <s : element minOccurs=”1” maxOccurs=”1” name=”TotalVirtualMachines ” type=” s :

uns ignedInt ” />

275 <s : element minOccurs=”1” maxOccurs=”1” name=”CpuBusyTime” type=” s : long ” />

276 <s : element minOccurs=”1” maxOccurs=”1” name=”CpuIsBusy” type=” s : boolean ” />

277 <s : element minOccurs=”1” maxOccurs=”1” name=” State ” type=” tns : State ” />

278 <s : element minOccurs=”1” maxOccurs=”1” name=”EnteredCurrentState ” type=” s : dateTime”

/>

279 <s : element minOccurs=”1” maxOccurs=”1” name=” Act iv i ty ” type=” tns : Act iv i ty ” />

280 <s : element minOccurs=”1” maxOccurs=”1” name=”EnteredCurrentAct iv i ty ” type=” s :

dateTime” />

281

282 <s : element minOccurs=”0” maxOccurs=”1” name=” Star t ” type=” s : s t r i n g ” />

283 <s : element minOccurs=”0” maxOccurs=”1” name=”Requirements ” type=” s : s t r i n g ” />

284 <s : element minOccurs=”1” maxOccurs=”1” name=”CurrentRank” type=” s : f l o a t ” />

285 <s : element minOccurs=”1” maxOccurs=”1” name=”RemoteUser” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

286 <s : element minOccurs=”1” maxOccurs=”1” name=”RemoteOwner” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

287 <s : element minOccurs=”1” maxOccurs=”1” name=”ClientMachine ” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

288 <s : element minOccurs=”1” maxOccurs=”1” name=”JobID” n i l l a b l e=” true ” type=” tns : JobID”

/>

289 <s : element minOccurs=”1” maxOccurs=”1” name=” JobStart ” type=” s : dateTime” />

290 <s : element minOccurs=”1” maxOccurs=”1” name=” LastPer iod icCheckpoint ” type=” s :

dateTime” />

291

292 <s : element minOccurs=”1” maxOccurs=”1” name=”LastHeardFrom” type=” s : dateTime” />

293 </ s : sequence>

294 </ s : complexType>

295 <s : simpleType name=”MyType”>

296 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

297 <s : enumeration value=”ERROR” />

298 <s : enumeration value=”UNDEFINED” />

299 <s : enumeration value=”Job” />

300 <s : enumeration value=”Machine” />

301

302 </ s : r e s t r i c t i o n>

303 </ s : simpleType>

304 <s : simpleType name=”TargetType”>

305 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

306 <s : enumeration value=”ERROR” />

307 <s : enumeration value=”UNDEFINED” />

308 <s : enumeration value=”Job” />

309 <s : enumeration value=”Machine” />

310 </ s : r e s t r i c t i o n>

311

312 </ s : simpleType>

313 <s : simpleType name=”Arch”>

314 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

315 <s : enumeration value=”ERROR” />

316 <s : enumeration value=”UNDEFINED” />

317 <s : enumeration value=”INTEL” />

318 <s : enumeration value=”ALPHA” />

319 <s : enumeration value=”SGI” />

320 <s : enumeration value=”SUN4u” />

321

322 <s : enumeration value=”SUN4x” />

323 <s : enumeration value=”HPPA1” />

324 <s : enumeration value=”HPPA2” />

325 </ s : r e s t r i c t i o n>

326 </ s : simpleType>

327 <s : simpleType name=”OpSys”>

328 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

329 <s : enumeration value=”ERROR” />

330 <s : enumeration value=”UNDEFINED” />

331

332 <s : enumeration value=”HPUX10” />

333 <s : enumeration value=”IRIX6” />

334 <s : enumeration value=”LINUX” />

335 <s : enumeration value=”OSF1” />

336 <s : enumeration value=”SOLARIS251” />

337 <s : enumeration value=”SOLARIS26” />

338 <s : enumeration value=”SOLARIS27” />

339 <s : enumeration value=”SOLARIS28” />

340 <s : enumeration value=”WINNT40” />

341

342 <s : enumeration value=”WINNT50” />

343 <s : enumeration value=”WINNT51” />

Appendix WSDL of the Compute Web Service 182

344 </ s : r e s t r i c t i o n>

345 </ s : simpleType>

346 <s : simpleType name=”ClockDay”>

347 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

348 <s : enumeration value=”ERROR” />

349 <s : enumeration value=”UNDEFINED” />

350 <s : enumeration value=”Sunday” />

351

352 <s : enumeration value=”Monday” />

353 <s : enumeration value=”Tuesday” />

354 <s : enumeration value=”Wednesday” />

355 <s : enumeration value=”Thursday” />

356 <s : enumeration value=”Friday” />

357 <s : enumeration value=”Saturday” />

358 </ s : r e s t r i c t i o n>

359 </ s : simpleType>

360 <s : simpleType name=” State ”>

361

362 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

363 <s : enumeration value=”ERROR” />

364 <s : enumeration value=”UNDEFINED” />

365 <s : enumeration value=”Owner” />

366 <s : enumeration value=”Unclaimed” />

367 <s : enumeration value=”Matched” />

368 <s : enumeration value=”Claimed” />

369 <s : enumeration value=”Preempting” />

370 </ s : r e s t r i c t i o n>

371

372 </ s : simpleType>

373 <s : simpleType name=” Act iv i ty ”>

374 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

375 <s : enumeration value=”ERROR” />

376 <s : enumeration value=”UNDEFINED” />

377 <s : enumeration value=” I d l e ” />

378 <s : enumeration value=”Busy” />

379 <s : enumeration value=”Suspended” />

380 <s : enumeration value=”Vacating ” />

381

382 <s : enumeration value=” K i l l i n g ” />

383 <s : enumeration value=”Benchmarking” />

384 </ s : r e s t r i c t i o n>

385 </ s : simpleType>

386 <s : element name=”GetAllMachineStatuses ”>

387 <s : complexType>

388 <s : sequence>

389 <s : element minOccurs=”1” maxOccurs=”1” name=”query” type=” tns : MachineStatusQuery”

/>

390 </ s : sequence>

391

392 </ s : complexType>

393 </ s : element>

394 <s : element name=”GetAllMachineStatusesResponse ”>

395 <s : complexType>

396 <s : sequence>

397 <s : element minOccurs=”0” maxOccurs=”1” name=”GetAl lMachineStatusesResult ” type=”

tns : ArrayOfMachineClassAd” />

398 </ s : sequence>

399 </ s : complexType>

400 </ s : element>

401

402 <s : element name=”GetJob”>

403 <s : complexType>

404 <s : sequence>

405 <s : element minOccurs=”1” maxOccurs=”1” name=”query” type=” tns : JobStatusQuery” />

406 <s : element minOccurs=”0” maxOccurs=”1” name=” id ” type=” tns : JobID” />

407 </ s : sequence>

408 </ s : complexType>

409 </ s : element>

410 <s : simpleType name=”JobStatusQuery”>

411

412 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

413 <s : enumeration value=”Running” />

414 <s : enumeration value=” Al l ” />

415 </ s : r e s t r i c t i o n>

416 </ s : simpleType>

417 <s : element name=”GetJobResponse”>

418 <s : complexType>

419 <s : sequence>

420 <s : element minOccurs=”0” maxOccurs=”1” name=”GetJobResult ” type=” tns : JobClassAd” /

>

Appendix WSDL of the Compute Web Service 183

421

422 </ s : sequence>

423 </ s : complexType>

424 </ s : element>

425 <s : complexType name=”JobClassAd”>

426 <s : sequence>

427 <s : element minOccurs=”1” maxOccurs=”1” name=”MyType” type=” tns :MyType” />

428 <s : element minOccurs=”1” maxOccurs=”1” name=”TargetType” type=” tns : TargetType” />

429 <s : element minOccurs=”0” maxOccurs=”1” name=”ID” type=” tns : JobID” />

430 <s : element minOccurs=”1” maxOccurs=”1” name=”QDate” type=” s : dateTime” />

431

432 <s : element minOccurs=”1” maxOccurs=”1” name=”CompletionDate” type=” s : dateTime” />

433 <s : element minOccurs=”1” maxOccurs=”1” name=”Owner” n i l l a b l e=” true ” type=” s : s t r i n g ”

/>

434 <s : element minOccurs=”1” maxOccurs=”1” name=”NTDomain” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

435 <s : element minOccurs=”1” maxOccurs=”1” name=”LocalUserCpu” type=” s : f l o a t ” />

436 <s : element minOccurs=”1” maxOccurs=”1” name=”LocalSysCpu” type=” s : f l o a t ” />

437 <s : element minOccurs=”1” maxOccurs=”1” name=”RemoteUserCpu” type=” s : f l o a t ” />

438 <s : element minOccurs=”1” maxOccurs=”1” name=”RemoteSysCpu” type=” s : f l o a t ” />

439 <s : element minOccurs=”1” maxOccurs=”1” name=” ExitStatus ” type=” s : i n t ” />

440 <s : element minOccurs=”1” maxOccurs=”1” name=”NumCkpts” type=” s : uns ignedInt ” />

441

442 <s : element minOccurs=”1” maxOccurs=”1” name=”NumRestarts” type=” s : uns ignedInt ” />

443 <s : element minOccurs=”1” maxOccurs=”1” name=”CommittedTime” type=” s : dateTime” />

444 <s : element minOccurs=”1” maxOccurs=”1” name=”CondorVersion” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

445 <s : element minOccurs=”1” maxOccurs=”1” name=”CondorPlatform” n i l l a b l e=” true ” type=” s

: s t r i n g ” />

446 <s : element minOccurs=”1” maxOccurs=”1” name=”Iwd” n i l l a b l e=” true ” type=” s : s t r i n g ” />

447 <s : element minOccurs=”1” maxOccurs=”1” name=”Universe ” type=” tns : Universe ” />

448 <s : element minOccurs=”1” maxOccurs=”1” name=”Cmd” n i l l a b l e=” true ” type=” s : s t r i n g ” />

449 <s : element minOccurs=”1” maxOccurs=”1” name=”MinHosts” type=” s : uns ignedInt ” />

450 <s : element minOccurs=”1” maxOccurs=”1” name=”MaxHosts” type=” s : uns ignedInt ” />

451

452 <s : element minOccurs=”1” maxOccurs=”1” name=”WantRemoteSyscalls ” type=” s : boolean ” />

453 <s : element minOccurs=”1” maxOccurs=”1” name=”WantCheckpoint” type=” s : boolean ” />

454 <s : element minOccurs=”1” maxOccurs=”1” name=”JobPrio ” n i l l a b l e=” true ” type=” tns :

Pr i o r i t y ” />

455 <s : element minOccurs=”1” maxOccurs=”1” name=”NiceUser ” type=” s : boolean ” />

456 <s : element minOccurs=”1” maxOccurs=”1” name=”Env” n i l l a b l e=” true ” type=” tns :

Environment” />

457 <s : element minOccurs=”1” maxOccurs=”1” name=” Ema i lNot i f i c a t i on ” type=” tns :

Emai lNot i f i c a t i on ” />

458 <s : element minOccurs=”1” maxOccurs=”1” name=”UserLog” n i l l a b l e=” true ” type=” s : s t r i n g

” />

459 <s : element minOccurs=”1” maxOccurs=”1” name=”CoreSize ” type=” s : uns ignedInt ” />

460 <s : element minOccurs=”1” maxOccurs=”1” name=”Rank” n i l l a b l e=” true ” type=” s : s t r i n g ” /

>

461

462 <s : element minOccurs=”1” maxOccurs=”1” name=” In” n i l l a b l e=” true ” type=” s : s t r i n g ” />

463 <s : element minOccurs=”1” maxOccurs=”1” name=”Out” n i l l a b l e=” true ” type=” s : s t r i n g ” />

464 <s : element minOccurs=”1” maxOccurs=”1” name=”Err” n i l l a b l e=” true ” type=” s : s t r i n g ” />

465 <s : element minOccurs=”1” maxOccurs=”1” name=” Bu f f e rS i z e ” type=” s : uns ignedInt ” />

466 <s : element minOccurs=”1” maxOccurs=”1” name=” Buf f e rB lockS i z e ” type=” s : uns ignedInt ” /

>

467 <s : element minOccurs=”1” maxOccurs=”1” name=” Tran s f e rF i l e s ” type=” tns : Tran s f e rF i l e s ”

/>

468 <s : element minOccurs=”1” maxOccurs=”1” name=” ImageSize ” type=” s : uns ignedInt ” />

469 <s : element minOccurs=”1” maxOccurs=”1” name=” Executab leS ize ” type=” s : uns ignedInt ” />

470 <s : element minOccurs=”1” maxOccurs=”1” name=”DiskUsage” type=” s : uns ignedInt ” />

471

472 <s : element minOccurs=”1” maxOccurs=”1” name=”Requirements ” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

473 <s : element minOccurs=”1” maxOccurs=”1” name=”Args” n i l l a b l e=” true ” type=” s : s t r i n g ” /

>

474 <s : element minOccurs=”1” maxOccurs=”1” name=”ProcId” type=” s : i n t ” />

475 <s : element minOccurs=”1” maxOccurs=”1” name=”User” n i l l a b l e=” true ” type=” s : s t r i n g ” /

>

476 <s : element minOccurs=”1” maxOccurs=”1” name=”OrigMaxHosts” type=” s : uns ignedInt ” />

477 <s : element minOccurs=”1” maxOccurs=”1” name=” Status ” type=” tns : Status ” />

478 <s : element minOccurs=”1” maxOccurs=”1” name=”CurrentHosts ” type=” s : uns ignedInt ” />

479 <s : element minOccurs=”1” maxOccurs=”1” name=”RemoteHost” n i l l a b l e=” true ” type=” s :

s t r i n g ” />

480 <s : element minOccurs=”1” maxOccurs=”1” name=”ShadowBday” type=” s : dateTime” />

481

482 <s : element minOccurs=”1” maxOccurs=”1” name=”JobStartDate ” type=” s : dateTime” />

483 <s : element minOccurs=”1” maxOccurs=”1” name=”ServerTime” type=” s : dateTime” />

484 </ s : sequence>

485 </ s : complexType>

Appendix WSDL of the Compute Web Service 184

486 <s : simpleType name=” Tran s f e rF i l e s ”>

487 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

488 <s : enumeration value=”ERROR” />

489 <s : enumeration value=”UNDEFINED” />

490 <s : enumeration value=”ONEXIT” />

491

492 <s : enumeration value=”ALWAYS” />

493 </ s : r e s t r i c t i o n>

494 </ s : simpleType>

495 <s : simpleType name=” Status ”>

496 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

497 <s : enumeration value=”ERROR” />

498 <s : enumeration value=”UNDEFINED” />

499 <s : enumeration value=” i d l e ” />

500 <s : enumeration value=” running ” />

501

502 <s : enumeration value=”removed” />

503 <s : enumeration value=” completed” />

504 <s : enumeration value=” held ” />

505 </ s : r e s t r i c t i o n>

506 </ s : simpleType>

507 <s : element name=”GetAllJobs ”>

508 <s : complexType>

509 <s : sequence>

510 <s : element minOccurs=”1” maxOccurs=”1” name=”query” type=” tns : JobStatusQuery” />

511

512 </ s : sequence>

513 </ s : complexType>

514 </ s : element>

515 <s : element name=”GetAllJobsResponse ”>

516 <s : complexType>

517 <s : sequence>

518 <s : element minOccurs=”0” maxOccurs=”1” name=”GetAl lJobsResult ” type=” tns :

ArrayOfJobClassAd” />

519 </ s : sequence>

520 </ s : complexType>

521

522 </ s : element>

523 <s : complexType name=”ArrayOfJobClassAd”>

524 <s : sequence>

525 <s : element minOccurs=”0” maxOccurs=”unbounded” name=”JobClassAd” n i l l a b l e=” true ”

type=” tns : JobClassAd” />

526 </ s : sequence>

527 </ s : complexType>

528 <s : element name=”GetJobs”>

529 <s : complexType>

530 <s : sequence>

531

532 <s : element minOccurs=”1” maxOccurs=”1” name=”query” type=” tns : JobStatusQuery” />

533 <s : element minOccurs=”0” maxOccurs=”1” name=” id s ” type=” tns : ArrayOfJobID” />

534 </ s : sequence>

535 </ s : complexType>

536 </ s : element>

537 <s : complexType name=”ArrayOfJobID”>

538 <s : sequence>

539 <s : element minOccurs=”0” maxOccurs=”unbounded” name=”JobID” n i l l a b l e=” true ” type=”

tns : JobID” />

540 </ s : sequence>

541

542 </ s : complexType>

543 <s : element name=”GetJobsResponse”>

544 <s : complexType>

545 <s : sequence>

546 <s : element minOccurs=”0” maxOccurs=”1” name=”GetJobsResult ” type=” tns :

ArrayOfJobClassAd” />

547 </ s : sequence>

548 </ s : complexType>

549 </ s : element>

550 <s : element name=”RemoveJob”>

551

552 <s : complexType>

553 <s : sequence>

554 <s : element minOccurs=”0” maxOccurs=”1” name=” id ” type=” tns : JobID” />

555 </ s : sequence>

556 </ s : complexType>

557 </ s : element>

558 <s : element name=”RemoveJobResponse”>

559 <s : complexType>

560 <s : sequence>

561

Appendix WSDL of the Compute Web Service 185

562 <s : element minOccurs=”1” maxOccurs=”1” name=”RemoveJobResult” type=” tns :

JobRemoveStatus” />

563 </ s : sequence>

564 </ s : complexType>

565 </ s : element>

566 <s : simpleType name=”JobRemoveStatus”>

567 <s : r e s t r i c t i o n base=” s : s t r i n g ”>

568 <s : enumeration value=”MarkedForRemoval” />

569 <s : enumeration value=”JobAlreadyTerminated” />

570 <s : enumeration value=”DoesNotExist ” />

571

572 <s : enumeration value=”CondorFai lure ” />

573 </ s : r e s t r i c t i o n>

574 </ s : simpleType>

575 <s : element name=”RemoveJobs”>

576 <s : complexType>

577 <s : sequence>

578 <s : element minOccurs=”0” maxOccurs=”1” name=” id s ” type=” tns : ArrayOfJobID” />

579 </ s : sequence>

580 </ s : complexType>

581

582 </ s : element>

583 <s : element name=”RemoveJobsResponse”>

584 <s : complexType>

585 <s : sequence>

586 <s : element minOccurs=”0” maxOccurs=”1” name=”RemoveJobsResult” type=” tns :

ArrayOfJobRemoveStatus” />

587 </ s : sequence>

588 </ s : complexType>

589 </ s : element>

590 <s : complexType name=”ArrayOfJobRemoveStatus”>

591

592 <s : sequence>

593 <s : element minOccurs=”0” maxOccurs=”unbounded” name=”JobRemoveStatus” type=” tns :

JobRemoveStatus” />

594 </ s : sequence>

595 </ s : complexType>

596 </ s : schema>

597 </wsdl : types>

598 <wsdl : message name=”GetFi lesSoapIn ”>

599 <wsdl : part name=”parameters ” element=” tns : GetFi l e s ” />

600 </wsdl : message>

601

602 <wsdl : message name=”GetFilesSoapOut”>

603 <wsdl : part name=”parameters ” element=” tns : GetFi lesResponse ” />

604 </wsdl : message>

605 <wsdl : message name=”WaitSoapIn”>

606 <wsdl : part name=”parameters ” element=” tns : Wait” />

607 </wsdl : message>

608 <wsdl : message name=”WaitSoapOut”>

609 <wsdl : part name=”parameters ” element=” tns : WaitResponse” />

610 </wsdl : message>

611

612 <wsdl : message name=”SubmitSoapIn”>

613 <wsdl : part name=”parameters ” element=” tns : Submit” />

614 </wsdl : message>

615 <wsdl : message name=”SubmitSoapOut”>

616 <wsdl : part name=”parameters ” element=” tns : SubmitResponse” />

617 </wsdl : message>

618 <wsdl : message name=”GetMachineStatusesSoapIn”>

619 <wsdl : part name=”parameters ” element=” tns : GetMachineStatuses ” />

620 </wsdl : message>

621

622 <wsdl : message name=”GetMachineStatusesSoapOut”>

623 <wsdl : part name=”parameters ” element=” tns : GetMachineStatusesResponse ” />

624 </wsdl : message>

625 <wsdl : message name=”GetAllMachineStatusesSoapIn ”>

626 <wsdl : part name=”parameters ” element=” tns : GetAllMachineStatuses ” />

627 </wsdl : message>

628 <wsdl : message name=”GetAllMachineStatusesSoapOut”>

629 <wsdl : part name=”parameters ” element=” tns : GetAllMachineStatusesResponse ” />

630 </wsdl : message>

631

632 <wsdl : message name=”GetJobSoapIn”>

633 <wsdl : part name=”parameters ” element=” tns : GetJob” />

634 </wsdl : message>

635 <wsdl : message name=”GetJobSoapOut”>

636 <wsdl : part name=”parameters ” element=” tns : GetJobResponse” />

637 </wsdl : message>

638 <wsdl : message name=”GetAllJobsSoapIn”>

Appendix WSDL of the Compute Web Service 186

639 <wsdl : part name=”parameters ” element=” tns : GetAllJobs ” />

640 </wsdl : message>

641

642 <wsdl : message name=”GetAllJobsSoapOut”>

643 <wsdl : part name=”parameters ” element=” tns : GetAllJobsResponse ” />

644 </wsdl : message>

645 <wsdl : message name=”GetJobsSoapIn”>

646 <wsdl : part name=”parameters ” element=” tns : GetJobs” />

647 </wsdl : message>

648 <wsdl : message name=”GetJobsSoapOut”>

649 <wsdl : part name=”parameters ” element=” tns : GetJobsResponse” />

650 </wsdl : message>

651

652 <wsdl : message name=”RemoveJobSoapIn”>

653 <wsdl : part name=”parameters ” element=” tns :RemoveJob” />

654 </wsdl : message>

655 <wsdl : message name=”RemoveJobSoapOut”>

656 <wsdl : part name=”parameters ” element=” tns : RemoveJobResponse” />

657 </wsdl : message>

658 <wsdl : message name=”RemoveJobsSoapIn”>

659 <wsdl : part name=”parameters ” element=” tns : RemoveJobs” />

660 </wsdl : message>

661

662 <wsdl : message name=”RemoveJobsSoapOut”>

663 <wsdl : part name=”parameters ” element=” tns : RemoveJobsResponse” />

664 </wsdl : message>

665 <wsdl : portType name=”CompWSSoap”>

666 <wsdl : operat ion name=” GetFi l e s ”>

667 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl /”>Gets f i l e s from

completed jobs . Blocks i f job not f i n i s h e d .</wsdl : documentation>

668 <wsdl : input message=” tns : GetFi lesSoapIn ” />

669 <wsdl : output message=” tns : GetFilesSoapOut” />

670

671 </wsdl : operat ion>

672 <wsdl : operat ion name=”Wait”>

673 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl /”>Waits un t i l s e l e c t e d

user job has completed and re tu rns t rue i f i t completes .</wsdl : documentation>

674 <wsdl : input message=” tns : WaitSoapIn” />

675 <wsdl : output message=” tns : WaitSoapOut” />

676 </wsdl : operat ion>

677 <wsdl : operat ion name=”Submit”>

678 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl /”>Submits a job to the

Condor job queue and re tu rns job ID .</wsdl : documentation>

679

680 <wsdl : input message=” tns : SubmitSoapIn” />

681 <wsdl : output message=” tns : SubmitSoapOut” />

682 </wsdl : operat ion>

683 <wsdl : operat ion name=”GetMachineStatuses ”>

684 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl /”>Returns

MachineClassAds f o r machines .</wsdl : documentation>

685 <wsdl : input message=” tns : GetMachineStatusesSoapIn” />

686 <wsdl : output message=” tns : GetMachineStatusesSoapOut” />

687 </wsdl : operat ion>

688

689 <wsdl : operat ion name=”GetAllMachineStatuses ”>

690 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl /”>Returns

MachineClassAds f o r machines .</wsdl : documentation>

691 <wsdl : input message=” tns : GetAllMachineStatusesSoapIn ” />

692 <wsdl : output message=” tns : GetAllMachineStatusesSoapOut” />

693 </wsdl : operat ion>

694 <wsdl : operat ion name=”GetJob”>

695 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl /”>Returns JobClassAd f o r

user ’ s j obs .</wsdl : documentation>

696 <wsdl : input message=” tns : GetJobSoapIn” />

697

698 <wsdl : output message=” tns : GetJobSoapOut” />

699 </wsdl : operat ion>

700 <wsdl : operat ion name=”GetAllJobs”>

701 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl/”>Returns JobClassAds

f o r a l l user ’ s j obs .</wsdl : documentation>

702 <wsdl : input message=” tns : GetAllJobsSoapIn” />

703 <wsdl : output message=” tns : GetAllJobsSoapOut” />

704 </wsdl : operat ion>

705 <wsdl : operat ion name=”GetJobs”>

706

707 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl /”>Returns JobClassAds

f o r user ’ s j obs .</wsdl : documentation>

708 <wsdl : input message=” tns : GetJobsSoapIn” />

709 <wsdl : output message=” tns : GetJobsSoapOut” />

710 </wsdl : operat ion>

Appendix WSDL of the Compute Web Service 187

711 <wsdl : operat ion name=”RemoveJob”>

712 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl/”>Removes user ’ s job and

re tu rns a bool to determine i f operat ion was s u c c e s f u l</wsdl : documentation>

713 <wsdl : input message=” tns : RemoveJobSoapIn” />

714 <wsdl : output message=” tns : RemoveJobSoapOut” />

715

716 </wsdl : operat ion>

717 <wsdl : operat ion name=”RemoveJobs”>

718 <wsdl : documentation xmlns : wsdl=”http : // schemas . xmlsoap . org /wsdl /”>Removes user ’ s jobs

and re tu rns a bool array to determine i f operat ion was suc c e s f u l </wsdl : documentation>

719 <wsdl : input message=” tns : RemoveJobsSoapIn” />

720 <wsdl : output message=” tns : RemoveJobsSoapOut” />

721 </wsdl : operat ion>

722 </wsdl : portType>

723 <wsdl : binding name=”CompWSSoap” type=” tns :CompWSSoap”>

724

725 <soap : binding t ranspor t=”http : // schemas . xmlsoap . org / soap/http ” />

726 <wsdl : operat ion name=” GetFi l e s”>

727 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/ GetFi l e s ” s t y l e=”document” />

728 <wsdl : input>

729 <soap : body use=” l i t e r a l ” />

730 </wsdl : input>

731 <wsdl : output>

732 <soap : body use=” l i t e r a l ” />

733 </wsdl : output>

734

735 </wsdl : operat ion>

736 <wsdl : operat ion name=”Wait”>

737 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/Wait” s t y l e=”document” />

738 <wsdl : input>

739 <soap : body use=” l i t e r a l ” />

740 </wsdl : input>

741 <wsdl : output>

742 <soap : body use=” l i t e r a l ” />

743 </wsdl : output>

744

745 </wsdl : operat ion>

746 <wsdl : operat ion name=”Submit”>

747 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/Submit” s t y l e=”document” />

748 <wsdl : input>

749 <soap : body use=” l i t e r a l ” />

750 </wsdl : input>

751 <wsdl : output>

752 <soap : body use=” l i t e r a l ” />

753 </wsdl : output>

754

755 </wsdl : operat ion>

756 <wsdl : operat ion name=”GetMachineStatuses”>

757 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetMachineStatuses ” s t y l e=”

document” />

758 <wsdl : input>

759 <soap : body use=” l i t e r a l ” />

760 </wsdl : input>

761 <wsdl : output>

762 <soap : body use=” l i t e r a l ” />

763 </wsdl : output>

764

765 </wsdl : operat ion>

766 <wsdl : operat ion name=”GetAllMachineStatuses”>

767 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetAllMachineStatuses ” s t y l e=”

document” />

768 <wsdl : input>

769 <soap : body use=” l i t e r a l ” />

770 </wsdl : input>

771 <wsdl : output>

772 <soap : body use=” l i t e r a l ” />

773 </wsdl : output>

774

775 </wsdl : operat ion>

776 <wsdl : operat ion name=”GetJob”>

777 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetJob” s t y l e=”document” />

778 <wsdl : input>

779 <soap : body use=” l i t e r a l ” />

780 </wsdl : input>

781 <wsdl : output>

782 <soap : body use=” l i t e r a l ” />

783 </wsdl : output>

784

785 </wsdl : operat ion>

786 <wsdl : operat ion name=”GetAllJobs”>

Appendix WSDL of the Compute Web Service 188

787 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetAllJobs ” s t y l e=”document”

/>

788 <wsdl : input>

789 <soap : body use=” l i t e r a l ” />

790 </wsdl : input>

791 <wsdl : output>

792 <soap : body use=” l i t e r a l ” />

793 </wsdl : output>

794

795 </wsdl : operat ion>

796 <wsdl : operat ion name=”GetJobs”>

797 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetJobs” s t y l e=”document” />

798 <wsdl : input>

799 <soap : body use=” l i t e r a l ” />

800 </wsdl : input>

801 <wsdl : output>

802 <soap : body use=” l i t e r a l ” />

803 </wsdl : output>

804

805 </wsdl : operat ion>

806 <wsdl : operat ion name=”RemoveJob”>

807 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/RemoveJob” s t y l e=”document” />

808 <wsdl : input>

809 <soap : body use=” l i t e r a l ” />

810 </wsdl : input>

811 <wsdl : output>

812 <soap : body use=” l i t e r a l ” />

813 </wsdl : output>

814

815 </wsdl : operat ion>

816 <wsdl : operat ion name=”RemoveJobs”>

817 <soap : operat ion soapAction=”http : //www. geod i s e . org /CompWS/RemoveJobs” s t y l e=”document”

/>

818 <wsdl : input>

819 <soap : body use=” l i t e r a l ” />

820 </wsdl : input>

821 <wsdl : output>

822 <soap : body use=” l i t e r a l ” />

823 </wsdl : output>

824

825 </wsdl : operat ion>

826 </wsdl : binding>

827 <wsdl : binding name=”CompWSSoap12” type=” tns :CompWSSoap”>

828 <soap12 : binding t ranspor t=”http : // schemas . xmlsoap . org / soap/http ” />

829 <wsdl : operat ion name=” GetFi l e s”>

830 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/ GetFi l e s ” s t y l e=”document”

/>

831 <wsdl : input>

832 <soap12 : body use=” l i t e r a l ” />

833 </wsdl : input>

834

835 <wsdl : output>

836 <soap12 : body use=” l i t e r a l ” />

837 </wsdl : output>

838 </wsdl : operat ion>

839 <wsdl : operat ion name=”Wait”>

840 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/Wait” s t y l e=”document” />

841 <wsdl : input>

842 <soap12 : body use=” l i t e r a l ” />

843 </wsdl : input>

844

845 <wsdl : output>

846 <soap12 : body use=” l i t e r a l ” />

847 </wsdl : output>

848 </wsdl : operat ion>

849 <wsdl : operat ion name=”Submit”>

850 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/Submit” s t y l e=”document” />

851 <wsdl : input>

852 <soap12 : body use=” l i t e r a l ” />

853 </wsdl : input>

854

855 <wsdl : output>

856 <soap12 : body use=” l i t e r a l ” />

857 </wsdl : output>

858 </wsdl : operat ion>

859 <wsdl : operat ion name=”GetMachineStatuses”>

860 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetMachineStatuses ” s t y l e=”

document” />

861 <wsdl : input>

862 <soap12 : body use=” l i t e r a l ” />

Appendix WSDL of the Compute Web Service 189

863 </wsdl : input>

864

865 <wsdl : output>

866 <soap12 : body use=” l i t e r a l ” />

867 </wsdl : output>

868 </wsdl : operat ion>

869 <wsdl : operat ion name=”GetAllMachineStatuses”>

870 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetAllMachineStatuses ” s t y l e

=”document” />

871 <wsdl : input>

872 <soap12 : body use=” l i t e r a l ” />

873 </wsdl : input>

874

875 <wsdl : output>

876 <soap12 : body use=” l i t e r a l ” />

877 </wsdl : output>

878 </wsdl : operat ion>

879 <wsdl : operat ion name=”GetJob”>

880 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetJob” s t y l e=”document” />

881 <wsdl : input>

882 <soap12 : body use=” l i t e r a l ” />

883 </wsdl : input>

884

885 <wsdl : output>

886 <soap12 : body use=” l i t e r a l ” />

887 </wsdl : output>

888 </wsdl : operat ion>

889 <wsdl : operat ion name=”GetAllJobs”>

890 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetAllJobs ” s t y l e=”document”

/>

891 <wsdl : input>

892 <soap12 : body use=” l i t e r a l ” />

893 </wsdl : input>

894

895 <wsdl : output>

896 <soap12 : body use=” l i t e r a l ” />

897 </wsdl : output>

898 </wsdl : operat ion>

899 <wsdl : operat ion name=”GetJobs”>

900 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/GetJobs” s t y l e=”document” />

901 <wsdl : input>

902 <soap12 : body use=” l i t e r a l ” />

903 </wsdl : input>

904

905 <wsdl : output>

906 <soap12 : body use=” l i t e r a l ” />

907 </wsdl : output>

908 </wsdl : operat ion>

909 <wsdl : operat ion name=”RemoveJob”>

910 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/RemoveJob” s t y l e=”document”

/>

911 <wsdl : input>

912 <soap12 : body use=” l i t e r a l ” />

913 </wsdl : input>

914

915 <wsdl : output>

916 <soap12 : body use=” l i t e r a l ” />

917 </wsdl : output>

918 </wsdl : operat ion>

919 <wsdl : operat ion name=”RemoveJobs”>

920 <soap12 : operat ion soapAction=”http : //www. geod i s e . org /CompWS/RemoveJobs” s t y l e=”document”

/>

921 <wsdl : input>

922 <soap12 : body use=” l i t e r a l ” />

923 </wsdl : input>

924

925 <wsdl : output>

926 <soap12 : body use=” l i t e r a l ” />

927 </wsdl : output>

928 </wsdl : operat ion>

929 </wsdl : binding>

930 <wsdl : s e r v i c e name=”CompWS”>

931 <wsdl : port name=”CompWSSoap” binding=” tns :CompWSSoap”>

932 <soap : address l o c a t i o n=”http : // l o c a l h o s t /ComputationService /CompWS. asmx” />

933 </wsdl : port>

934

935 <wsdl : port name=”CompWSSoap12” binding=” tns :CompWSSoap12”>

936 <soap12 : address l o c a t i o n=”http : // l o c a l h o s t /ComputationService /CompWS. asmx” />

937 </wsdl : port>

938 </wsdl : s e rv i c e >

Appendix WSDL of the Compute Web Service 190

939 </wsdl : d e f i n i t i o n s >

Listing 3: WSDL Interface of the Compute Web Service

