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by Tai-Tuck Yu 

 

This thesis initially presents the work carried out on the research hypothesis – 

agent-based simulation is better than traditional discrete-event modelling.  To test 

this assertion, a comparison of these two modelling approaches is made by way of a 

case study.  The scenario, a global repair operation of a fleet of civil jet engines, is a 

real lifecycle costing example which involves logistics and is typical of problems 

commonly modelled using either of these paradigms. 

To carry out the comparison, the method involved building a discrete-event 

model which matched the functions of an existing agent-based model as closely as 

possible.  Rigorous control was applied during its implementation phase by way of 

formal code walkthroughs and model dynamic testing.  Among the internal metrics, 

lines of code provided an estimate for model size while the McCabe Cyclomatic 

Number measured structural complexity.  The external software quality of 

maintainability was derived from these metrics and estimated by modelling experts 

through Delphi sessions.  The dynamic performance of each model was determined 

by the execution times of successfully completed simulation runs over a range of 

engine fleet sizes. 

This research went on to develop a hybrid approach (which is currently the 

subject of a Rolls-Royce patent application) which draws on the strengths of both 

agent and discrete-event paradigms.  In order to combine agent roles and discrete-

event processes, a new model was implemented using a three-layered architecture.  A 

full fleet simulation was developed using this hybrid approach.  Although the code 

size is slightly larger and run times slightly longer than the conventional model, the 

thesis argues that, crucially, it is more maintainable as it reduces the conceptual gap 

between problem and model. 
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Chapter 1 

Introduction 

1 INTRODUCTION 
In an engineering business operating in a free and open market, it is a truism 

that to stay still is to lag behind one’s competitors.  It follows that, if a business  were 

to survive, thrive and remain competitive, it will always need to innovate and move 

forwards by reducing costs, improving its products, and simplifying its processes.  Of 

course, such tasks underpin the customer-facing, non-technical activities like 

marketing, sales, and after-sales service as much as the purely technical ones.  In 

manufacturing, the inescapable and highly desirable goal of making things cheaper, 

better, and faster can often be costly.  This is especially true where a product is 

complex and its initial acquisition cost may be but a minor component of its whole 

lifecycle cost.  Therefore, it is imperative that, after a product’s initial entry into 

service, all subsequent changes must be correctly identified and implemented at the 

first attempt if at all possible. 

A common traditional method of minimising errors and containing start-up 

cost is to make a physical prototype using a pilot process which contains all elements 

of the change required.  This approach may be iterative and it enables decisions to be 

either confirmed or modified before commitment to a programme of full-scale 

production.  Although it can prevent expensive and catastrophic errors from being 

made, but because physical entities are involved, the product time to market can 

seldom be reduced significantly. 

However, the advent of cheap, high-powered computers and user-friendly 

application software have made the mathematical modelling of engineering products 

and processes readily available to enterprises of all sizes.  In contrast to physical 

prototyping, structural changes to the mathematical models, like the addition of 

previously validated objects and subsystems, can be made even ‘on the fly’ as the 
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models are virtual entities.  These software modelling tools enable different solutions 

to be explored relatively cheaply and quickly, thus allowing a good enough, but not 

necessarily the globally optimal, solution to be selected while at the same time 

shortening the product time to market.  It is nevertheless necessary to remember that 

a tool which can bring about such benefits quickly also has the real potential to 

deliver catastrophes just as quickly if it is handled carelessly (Neumann, 1993). 

 

1.1 Simulation and engineering processes 

Although simulation is perceived as similar to, but is in essence different 

from, the real-world, it is nevertheless an appropriate technique for imitating and 

understanding complex systems (Simon, 1998).  Simon further proposes that 

simulation is not only an aid for studying poorly understood systems but can itself be 

a source of new knowledge.  This is because, in practice, knowledge is constructed 

from the roof down, not from the foundation up, and that makes it possible to 

discover incrementally finer details at lower and more fundamental levels.  Robinson 

(2003) puts it succinctly when he describes simulation as the ‘experimentation with a 

simplified imitation (on a computer) of an operations system as it progresses through 

time, for the purpose of better understanding and/or improving that system’.  

Expressed in this way, simulation as a tool for abstraction is no older than the 

electronic computer but, in all its forms, imitation of the real world is very much 

older. 

Although it is possible for some processes commonly encountered in an 

engineering manufacturing environment to be modelled mathematically to yield 

analytical and deterministic solutions, it is often the case that non-trivial, practical 

systems can easily become too complex for such a solution to be attempted (Banks et 

al., 1999; Law and Kelton, 1999).  In practice, these engineering processes are 

stochastic and dynamic, for example, because of uncertainties introduced by human 

participation and the discontinuities brought about by machine unreliability.  To gain 

some understanding of these systems, the usual approach is to construct computer 

simulation models at the appropriate level of detail so that various ‘what if’ scenarios 

can be studied by varying the models’ operating parameters and analysing their 
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outputs.  Once an understanding has been achieved, the models can be used to 

predict system behaviour. 

 

1.2 Software metrics 

The demand for greater realism in modelling inevitably leads to large 

program sizes as the scope is widened and model granularity becomes finer.  A 

detailed, high-fidelity simulation model can become unmanageably large and 

complex if its development is not strictly controlled.  Software metrics like size, 

structural complexity, maintainability, reliability as well as many others have been 

subjected to extensive study over the past 35 years.  Although a goal of such metrics 

is to characterise a software program or project, its chief use in a commercial 

environment is to provide an objective and predictive measure so that managers can 

control costs and resources in a software development project.  The often used 

assertion by DeMarco (1982) puts it baldly as – You cannot control what you cannot 

measure.  While DeMarco refers specifically to absolute, quantitative measures, it 

can apply just as well to ordinal, qualitative measures. 

In some respects, depending on an inappropriate metric is worse than having 

no metric at all.  For example, as programming languages have evolved from 

assembly language to object-oriented language, a frequently used metric like lines-

of-code (LOC) becomes invalid when used to compare programmer productivity 

across different languages (Jones, 1994).  When used on its own, the misleading and 

false message it gives is that productivity is higher when a programme is 

implemented in assembly code rather than object-oriented code where, from 

experience, the opposite is true.  Therefore, care must be exercised when selecting 

metrics for comparing programmes implemented in different languages to ensure that 

the metrics are suited to the task. 

 

1.3 Aims of this research 

The research to be undertaken is a case study which compares an agent-based 

simulation model with a functionally identical traditional discrete-event model.  The 

benefits and drawbacks of both modelling paradigms, as exemplified by these two 

models, are to be measured thus giving an objective and quantifiable comparison.  
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Although the comparison will be largely quantitative, the qualitative aspects of these 

modelling paradigms will not be excluded.  When the models have been evaluated, 

an alternative modelling architecture will be considered by combining their 

beneficial characteristics. 

 

1.4 Statement of research 

The statement of hypothesis, including the null hypothesis, is –  

• H1: Agent-based modelling is better than traditional discrete-event 

modelling. 

• H0: Agent-based modelling is not better than traditional discrete-event 

modelling. 

The context of the hypothesis is described as follows –  

• The hypothesis is restricted to the class of problem being modelled, 

which is in the logistics and supply chain area, with particular reference 

to the global repair operation of a fleet of large, modern jet engines for 

civil aircraft. 

• The hypothesis is also restricted to the phase between the requirements 

analysis and the system maintenance activities of the traditional 

‘Waterfall’ systems development lifecycle.  As set out in Figure 6-6, 

the lifecycle activities included in this phase are the following – 

‘Requirements analysis’, ‘Design’, ‘Developent’, ‘Integration and test’, 

‘System implementation’, ‘System operation’, and ‘Maintenance’. 

 

1.5 Methodology for comparing the modelling paradigms 

The steps to be taken so that a comparison can be made between the two 

modelling paradigms are listed below –  

• Construct and validate a discrete-event model which is functionally 

identical to the existing agent-based model implemented by Rolls-

Royce (RR) Strategic Research Centre (SRC). 



 
Chapter 1: Introduction 
 

 
5 

• Select an appropriate set of software metrics so that the internal and 

external software properties of the model can be objectively measured 

or assessed. 

• Analyse the code for both models and extract the selected metrics for 

each software class or module.  Values for sub-models or smaller 

partitions of the model can be calculated using these primitive 

measurements. 

• Measure the time taken by each model to complete a simulation run 

under a range of model inputs. 

• When some understanding of the paradigms’ benefits and drawbacks 

has been reached, an alternative modelling approach may be formed by 

drawing from their better characteristics. 

• Construct a model using the new approach and compare it against the 

previous two models. 

 

1.6 Structure of thesis 

The remainder of the thesis consists of seven further chapters the contents of 

which are as follows –  

• Chapter 2 contains overviews of computer modelling and software 

metrics.  

• Chapter 3 considers the development of traditional discrete-event 

simulation including distributed modelling and the introduction of 

artificial intelligence into this modelling paradigm.   

• Chapter 4 sets out the progress of agent-based simulation up to the 

present time.   

• Chapter 5 examines some software metrics which are likely to be useful 

for this research. 

• Chapter 6 describes the experiment to be carried out on the two 

simulation models, including the case study scenario, the gathering of 

model metrics, and a discussion of the results. 
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• Based on the results of the preceding chapter, Chapter 7 presents a 

modelling architecture which combines the best features of the two 

modelling paradigms. 

• Finally, Chapter 8 sets out the conclusions, the contributions of the 

thesis, and the proposals for future work. 
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Chapter 2 

Overview of Modelling  

and Software Metrics 

2 OVERVIEW OF MODELLING AND SOFTWARE 
METRICS 

2.1 Introduction 

In this chapter, an overview of modelling paradigms and software metrics is 

presented.  First, significant developments in modelling which are relevant to the 

engineering context are considered.  After that, software metrics which may be used 

to characterise simulation models are presented. 

The extensive use of computer simulation is seen not only in engineering 

applications but also in medicine, healthcare, economics, business, management 

science, public administration, the traditional sciences, and computer games.  In the 

social sciences, models have been constructed to study group dynamics (Hoffmann et 

al., 2007) as well as the psychosocial behaviour of human individuals and groups, for 

instance Thoyer et al. (2001) and Izquierdo et al. (2008).  Modelling is a relatively 

cheap and convenient investigative tool for imitating the real world.  Its expanding 

use in such diverse fields marks it out as an important tool for research and decision 

support.  Furthermore, it is often the only tool available for exploring and 

understanding how complex engineering systems work. 

A historical overview of simulation over the past 50 years is given in Nance 

and Sargent (2002).  The overview focused on the evolution of discrete-event 

modelling as the dominant technique for system analysis especially in operations 

research and the management sciences.  In observing the development of simulation 

generally, they noted the symbiotic relationship between simulation and computer 
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science.  In both disciplines, contemporaneous needs drove developments which 

brought about mutual benefits. 

They pointed out in particular that ‘the external influences on simulation are 

dominated by those associated with digital computer technology’.  Primarily, these 

are the advances in computer hardware, programming languages, graphics, networks, 

and the World Wide Web all of which can be employed to make models more 

realistic, responsive, and accessible. 

In contrast to the external influences, the internal factors includes the 

significant development of –  

• Modelling methodology.  This encompasses event-list management, 

automated and semi-automated modelling techniques, time-flow 

mechanisms, and validation and verification. 

• Analysis methodology.  Conway (1963) identified simulation as more 

than just model building.  His paper initiated a large area of research 

which has since expanded to include simulation experiment design and 

comparison of alternatives, variance-reduction techniques, output 

analysis, metamodels, and optimization, and the application of artificial 

intelligence in simulation. 

Both modelling and analysis methodology are relevant to this review.  Those 

aspects which are immediately applicable to the context of this thesis will be 

considered in greater detail in Chapter 3, on Traditional Discrete-Event Modelling, 

and in Chapter 4, on Agent-Based Modelling. 

 

2.2 Categorisation of simulation 

Nance and Sargent (2002) categorise simulation in two ways and they are 

based on –  

• The objective of the simulation study which may be system analysis, 

education and training, acquisition and system acceptance, research, 

and entertainment.  It may be noted here that where the objective is the 

analysis of complex engineering systems, the intent is invariably to 

mimic behaviour so as to understand and then improve the performance 

of those engineering systems.  
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• The representation of time and state in the simulation model which is 

to say whether continuous modelling, discrete-event modelling, or a 

hybrid of continuous and discrete-event modelling is involved.  It 

should be stressed that in these modelling paradigms, both time and 

state are explicitly represented.  Strictly, modelling using the Monte 

Carlo method may not be included in this categorization scheme for the 

reason that while state sequencing is present, time is not explicitly 

represented. 

It is the second category which is better known and is the one used in most 

journal papers, conference proceedings (for example, Maria (1997) and Carson 

(2004)), and standard textbooks on simulation (for example, Banks et al (1999), Law 

and Kelton (1999), and Robinson (2003)).  Although the first category is useful, this 

thesis will consider the second not only because it is overwhelmingly used in the 

engineering sciences but also to be in keeping with by far the larger body of 

published literature.  A further reason for doing so is that this method of 

classification has a relatively long history (Shannon, 1977) and is clearly set out in 

Figure 2-1 as a part of Shannon’s taxonomy of simulation languages. 

Today, Shannon’s classification of ‘continuous change’ and ‘discrete change’ 

are commonly referred to as ‘time-driven’ and ‘event-driven’ modelling respectively.  

This naming convention of the two branches of modelling is in current use and can 

be found quite frequently in the more recent conference and journal papers, for 

instance, those from the Winter Simulation Conference and the ACM Transactions 

on Modeling and Computer Simulation. 

Four major modelling paradigms emanate from these two branches and they 

are traditional discrete-event, agent-based, system dynamics, and dynamical systems 

(see Figure 2-2).  Of these four approaches, the dynamic systems approach is not 

encountered as frequently as the other three in the modelling of complex engineering 

systems such as those for logistics and supply chains.  This may be because the 

dynamic systems approach involves well-understood physical systems with 

behaviour which evolves over time according to a system of differential equations.  It 

does not lend itself well to the discontinuous, event-driven nature of logistics and 

supply chain problems where large numbers of items with diverse, individual 

properties may have to be modelled. 
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Figure 2-1: Simulation techniques and languages (Shannon, 1977)
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Figure 2-2: Current classification of modelling paradigms 

The categorization of modelling approaches set out by Borshchev and 

Filippov (2004) reproduces the hierarchy shown in Figure 2-2.  Their scheme is 

illustrated in Figure 2-3 which also indicates the approximate range of scale and 

levels of detail and abstraction at which any of the four paradigms may be employed.  

It gives a clear signal that none of the paradigms on its own can be used to model all 

conceivable scales and levels of a system.  Therefore, in a model which has a large 

range of detail or abstraction levels, there is a good likelihood that one or more 

modelling paradigms will have to be used appropriately (see Section 2.3 Misuse of 

modelling paradigms). 

 

 
Figure 2-3: Modelling paradigms and regions of applicability (based on Borshchev 

and Filippov, 2004) 
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2.2.1 Time-driven modelling 

Time-driven modelling, where the model time component is advanced at 

fixed and regular intervals, is represented in the main by two approaches – dynamic 

systems and System Dynamics (SD).  

 

2.2.1.1 Dynamic systems 

As indicated earlier in Figure 2-3, the dynamic systems paradigm is used to 

model physical systems where low abstraction and high detail levels are required.  In 

particular, this deterministic, mathematical approach involves the integration of 

algebraic differential equations over time.  The trajectories of the state variables, 

once given an initial value, can be predicted with certainty.  For example, the 

dynamic response of an electronic control system or a mechanical mass-spring-

damper system to various types of inputs can be studied using a commercially 

available modelling tool like MATLAB Simulink (Mathworks, 2007), SDX (SDX, 

2005), and Extend™6 (Extend, 2005).   

Figure 2-4 shows how a dynamic system can be constructed by connecting 

block functions together to obtain the output of a second order differential equation 

by evaluating it as two first order differential equations. 

 

 
Figure 2-4: A simple example of a dynamic system model (Extend, 2005) 
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2.2.1.2 System Dynamics 

This modelling paradigm has been elucidated by its pioneer, Jay W. 

Forrester, as – 

The study of information-feedback characteristics of industrial 

activity to show how organizational structure, amplification (in 

policies), and time delays (in decisions and actions) interact to 

influence the success of the enterprise. (Forrester, 1961) 

System Dynamics (SD) is characterised by its modelling of a system as 

stocks (or stores), flows, time delays and feedback loops.  Using these constructs, a 

complex and homogeneous system can be modelled as a causal structure with flows 

and feedback loops linking the stocks.  The distinguishing feature of SD is its use of 

feedback loops.  It recognises that the outputs of a node can act on and change the 

environment in which the system operates and thus modify subsequent inputs to that 

node or some other node.  Such feedback can be either positive (indicated by the ‘R’ 

reinforcing feedback loop in Figure 2-5) or negative (indicated by the ‘B’ or 

balancing feedback loop).  It can also sometimes result in non-linear behaviour 

which is often found in complex systems. 

 

 
Figure 2-5: Elements of System Dynamics modelling (Borshchev and Filippov, 2004) 

 

SD is a top-down modelling approach and as such it uses aggregated values 

to represent stocks.  It is difficult, but not impossible, for it to model heterogeneous 

populations where the effect of clustering and individual behaviour may be 
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important.  It can achieve this by segregating a large population into smaller and 

related groups, but still with homogeneous properties which are more tightly defined.  

Although it has been used with reasonable success in the understanding of supply 

chains and logistics networks, it is nevertheless limited by its requirement that the 

input variables have inherently uniform properties.  Therefore, this paradigm is 

commonly used to model problems where abstraction is high and details are low.  SD 

is typically used to model problems such as global population dynamics, the macro-

economics of a country, ecological systems, and national health systems. 

 

2.2.2 Event-driven modelling 

Event-driven modelling is distinct from time-driven modelling in that its 

fundamental unit for measuring model progression during a simulation run is the 

event rather than time.  A model advances from event to event in variable time steps 

rather in constant time steps.  Event-driven modelling is represented in the main by 

two approaches – discrete-event modelling (DEM) and agent-based modelling 

(ABM).  

 

2.2.2.1 Discrete-event 

Traditional DEM is centred on processes, which may be described in other 

words as logical sequences of activities.  It also requires a modeller to consider the 

resources and constraints which should be applied to the processes.   

What occurs within an activity can frequently be abstracted as a time delay 

and it is a basic assumption of this modelling paradigm that nothing of consequence 

occurs between successive activities.  They do not differ much from engineering 

processes where nothing which can affect the final result exists in the time intervals 

between consecutive activities.  Using an event-driven paradigm for such processes 

enables computationally efficient models to be implemented especially those where 

the inter-activity time is large when compared with the time taken by the activity 

itself. 

Two concepts are fundamental to discrete-event simulation and they are –  

• The simulation object which contains a set of variables describing its 

state and attribute.  Examples of simulation objects include various 
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types of queues, timers, random number generators, and the items 

which flow through the processes.  

• The event, assumed to occur instantaneously in simulated time (and not 

real time), acts on the simulation object to change its state and possibly 

to schedule future events for any object within the model.  An event can 

mark the start or end of an activity. 

A model is constructed by linking simulation objects together to form 

activities and processes.  The process shown in Figure 2-6 consists of time delays, 

queues, and a gate through which items (aircraft in this example) are passed at 

simulation times scheduled by a data structure called the event list or event calendar.  

The event list is essential to the operation of the model and much research effort has 

been expended in making it as efficient as possible.  In a large model where a large 

number of items have to be processed individually, the computation time required for 

managing the event list can be significant.  Therefore this data structure will be 

considered in greater detail in Chapter 3. 

 

 
Figure 2-6: Components of a simple traditional discrete-event sub-model 

 

2.2.2.2 Agent-based 

ABM draws from a number of different disciplines like systems science, 

complexity science, management science, and computer science for its theoretical 

foundations, conceptual world view, and philosophy (Macal and North, 2006).    
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In stark contrast to the other three modelling paradigms outlined earlier, 

agent-based modelling (ABM) is a bottom-up approach while the others are top-

down.  Where the top-down approach requires a complete overview of a system as 

well as central control of the model, it may be inferred that in a bottom-up approach 

neither of those requirements is absolutely necessary.  It is therefore possible to build 

a multi-agent system without complete system knowledge since control is distributed 

among the agents which have limited spheres of influence. 

A notable characteristic of an agent is its capacity for autonomous action.  

The notion of ‘autonomous action’ is usually contrasted with the absolute obedience 

of an object when it is invoked.  To implement this ability to decide for itself, an 

agent in a multi-agent system is endowed with rules governing its behaviour and the 

ability to accept inputs from its environment, to learn from previous experience and 

adapt future actions, and to communicate with other agents.  The behaviour of a 

multi-agent system can be more than just the sum of the behaviour of its component 

agents because the interaction among them can sometimes result in system behaviour 

which is not explicitly programmed in any of them.  This emergent behaviour is 

largely unpredictable and is of great value to the study of social science problems 

and systems where human decision making is the dominant feature.  However, it may 

not always be of benefit to engineering problems where predictability and 

repeatability are important. 

  The flexibility of an agent technology in operation can be demonstrated by 

integrating a real production agent system with an agent-based model, using the latter 

as a testbed.  This can be achieved relatively easily when compared with the other 

paradigms because agents are designed to be loosely coupled and highly cohesive 

entities which communicate asynchronously by message passing.  For the same 

reasons, an agent-based model can be developed relatively easily from a multi-

threaded single process into a distributed multi-process model. 

Figure 2-3 shows that ABM is the most versatile of the four major modelling 

paradigms since it can be used on systems spanning the widest range of abstraction 

and details.  While it appears that ABM alone can be used to model problems of all 

scales and details, nonetheless, it needs to be borne in mind that the use of the other 

modelling paradigms may result in simpler and more maintainable models.  It is 

important to match paradigm, problem, modeller, and model user as closely as 
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possible since the benefits of a model are realised post-implementation and that 

phase of the model lifecycle can be much longer than the implementation phase.  

Selecting an inappropriate modelling paradigm can be costly. 

 

2.3 Misuse of modelling paradigms 

The main difference between a time-driven and an event-driven model is that 

the state variables in the former change continuously over time (for example, the 

depth of water in a container) while those in the latter change only at events or at 

discrete points in time (for example, the length of a queue as determined at the 

random time people join or leave it). 

It should be noted here that numerical quantities in a model can actually vary 

continuously only in an analogue simulator whereas in a digital computer they are 

merely perceived as continuous.  When a time-driven model is advanced in a digital 

computer at time steps small enough to enable it to resolve adequately changes to the 

state variables of interest, the changes may be considered to be continuous to all 

intents and purposes. 

Based on this principle, it is reasonable to view time-driven modelling in a 

digital computer as a special case of event-driven modelling in that an event can be 

triggered at each of the fixed time intervals thus causing the model’s mathematical 

equations to be re-evaluated.  Although such event-driven continuous modelling is 

possible, the overheads required to maintain the built-in mechanisms of discrete-

event modelling makes this combination computationally inefficient. 

Conversely, an event-driven model can be stepped through time at fixed 

intervals.  However, time-driven discrete-event modelling suffers from three 

significant drawbacks –  

• An event cannot be guaranteed to occur always at a time interval 

boundary thus resulting in a loss of precision. 

• If two or more events occur separately within the same time interval, it 

will not be possible to determine their chronological order.  Such a lack 

of resolution can give rise to unexpected results in instances where the 

order of events is important. 
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• The model continues to consume computing time even when nothing is 

happening between events and in doing so increases the elapsed time of 

a simulation run. 

In view of these inefficiencies and potential sources of errors, practical 

continuous models tend to be time-driven and discrete-event models tend to be 

event-driven. 

 

2.4 Model metrics 

Since the models studied in this thesis are software entities entirely, it is 

logical to describe their properties by employing metrics which are used in the field 

of software engineering.  This section will provide an overview of software metrics 

and then consider some aspects of model characterisation and complexity. 

 

2.4.1 Software metrics 

There is a large number of software metrics, both broad and narrow, which 

may be applied singly or in combination.  The better known ones, like Halstead’s 

software science metrics (Halstead, 1977) and McCabe’s cyclomatic metric 

(McCabe, 1976), have been in existence for more than 30 years and have been used 

with mixed success in large, well controlled software development projects.  They 

provide a quantitative measure to the entities and attributes encountered in the course 

of the life of a piece of software, from analysis to maintenance.  Fenton and Pfleeger 

(1997) categorize them broadly into three classes and they are associated with –  

• Processes.  These are software-related activities like analysis, design, 

specification writing, coding, and testing. 

• Products.  They are outputs from processes and include entities such as 

written specifications, program code, and test data.  

• Resources.  These are the inputs required by the processes.  Examples 

of such entities are personnel, computing hardware and software. 

Among the attributes from these three classes, the ‘products’ attributes are 

immediately relevant and useful to the subject of this thesis while metrics from the 

other two classes are less so.  These software product attributes may be further 

distinguished as –  
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• Internal attributes.  They may be determined purely by examining the 

product itself.  For program code, attributes such as program size and 

code complexity can be measured without resorting to the execution of 

the program. 

• External attributes.  They indicate how the product relates to its 

environment.  In the case of program code, metrics for such software 

qualities as understandability, modifiability, and testability are 

pertinent. 

It would be immensely useful in practice to be able to predict the external 

attribute of software quality by measuring the internal attributes like size and 

complexity.  Some studies (Li and Henry, 1993; Rombach, 1987; Rombach, 1990; 

Wake and Henry, 1988) have confirmed statistically valid links between the quality 

of maintainability and metrics like program size and complexity.  Banker et al. 

(1993) provided robust reinforcement to those comparatively lightweight studies by 

confirming their results with code complexity and maintenance cost measurements 

carried out on a real, large, commercial banking software system. 

The reason that much effort has been expended on measuring software 

maintainability is that maintenance costs typically varies between 50% to 65% of 

overall lifetime costs (Somerville, 2001) and its enhancement and adaptation sub-

activities can make up more than 80% of the maintenance effort (Krogstie et al., 

2006).  Focusing on software maintenance is therefore justified as it is a highly 

significant activity within the software lifecycle.  Moreover, its three sub-activities – 

understanding, modifying, and testing – are equally applicable in the analysis and 

design front-end stages of the software lifecycle. 

The attributes of size, complexity, and maintainability will be considered in 

greater detail in Chapter 5. 

 

2.4.2 Model characterisation 

Although the performance of models, in terms of elapsed execution time, has 

been routinely measured it has been applied only to specific implemented models 

and not to the conceptual models.  This metric does not address the issue of model 

characterisation as it is not directly related to a model property or attribute. 
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A suggested reason why model characterisation has not made any apparent 

progress has been put forward by Brooks and Tobias (1996) where the difficulty with 

defining a model’s level of implementational detail and software complexity was 

highlighted.  It is possible to arrive at similar results using a finely detailed model as 

well as a coarser one.  Therefore, in order to compare two models objectively, there 

is a need to establish first their levels of detail and complexity.  Despite the 

acknowledgement that there is widespread use of modelling in a large number of 

technological disciplines, there has been almost no work carried out to date in 

characterising simulation models. 

Intuition suggests that the more detailed a model is, the greater will its 

fidelity be and therefore the more accurate the results it will yield.  In general, this 

linear relationship will hold true as long as factors which influence a model’s 

outputs, e.g. the accumulation of approximated stochastic inputs over a model’s 

simulated lifetime, are not overwhelming.  This effect is illustrated in Figure 2-7 

and is from a study by Costanza and Sklar (1985), cited in Fulton et al (2003), where 

‘articulation’ (or model complexity and scope) bears a non-linear relationship to 

‘effectiveness’ (or articulation and accuracy combined).  Figure 2-7 shows that 

effectiveness quickly reaches an optimum with increasing model articulation.  It 

should be noted from that even though data is sparse at the high end of the 

‘articulation’ axis, thus calling into question the validity of the ‘effectiveness 

frontier’, the shape of the curve is to be expected because the effect of cumulative 

computation errors will tend to make a large, complex model less accurate.  Other 

similar sensitivity studies by Stockle (1992) found only a negligible decrease in 

accuracy with model simplification while Halfon (1983a) and Halfon (1983b) 

reported a diminishing return in accuracy when model detail was increased.  The 

large variation in results from these studies may indicate the existence of one or more 

unknown but significant factors which have not been taken into account. 

 

2.4.3 Model complexity 

Gell-Mann (1995) states that, both in software and in general, all measures of 

complexity are context-dependent or even subjective to some extent.  This is because 

the representation of an entity depends on, for example, the level of detail, and the 
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assumption of previous knowledge and understanding.  In the same vein, but in the 

context of software development, Brooks (1987) argues that complexity is an 

essential (or inherent) and not an accidental (or incidental) property.  The 

consequence is that, in software projects – and modelling is almost wholly software – 

technical problems and those associated with communication and management, will 

inevitably arise because it will be difficult to obtain a clear overview.  Hence, ‘loose 

ends’ such as errors and uncertainties in system requirements can propagate quickly 

and widely throughout the body of software and their root causes will be difficult to 

find and control. 

 

 
Figure 2-7: Relationship between model complexity and accuracy (Fulton et al., 2003) 

  

Brooks also observed that, in addition to this essential complexity, most of 

the complexity encountered in a piece of software is arbitrary in nature since the 

software does not exist alone but must conform to human and system  constraints and 

these constraints can, and do, evolve over the useful life of the software.  This effect 

was also noted by Belady and Lehman (1985) when they postulated the three laws of 

program evolution, which are continuing change, increasing unstructuredness, and 
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statistically smooth growth.  As a model undergoes change during normal post-

implementation maintenance, it becomes increasingly disordered, and hence more 

complex, unless specific effort is expended to prevent it.  It follows that to be able to 

measure a model’s complexity objectively is a desirable goal. 

Brooks and Tobias (1996) noted that, although a software structural 

complexity metric like McCabe Cyclomatic Number (MCN) has been in existence 

for a number of years, in practice, the level of detail or level of complexity in a 

simulation model is assessed qualitatively.  In an attempt to estimate the complexity 

of a model objectively, they suggested that in a discrete-event model, the events and 

the relationships between events are the equivalents of McCabe’s nodes and edges 

respectively.  However, as it is likely that two or more of these event flowgraphs are 

possible for the same conceptual model, it is necessary to take the lowest MCN to 

give an objective and quantitative indication of model complexity. 

A novel method of measuring software complexity, the α-metric, was 

proposed by Kokol et al (1999).  It employed a technique called long-range 

correlation and is founded on the information entropy inherent in the content of 

human writing as established earlier by Shannon (1951).  The assumption that there 

is a correlation between a programme’s complexity and the entropy of its 

information content was confirmed by experiment.  However, the study did not 

reach, nor has it since then been continued to, the stage where the nature of the 

relationship could be established.  Compared with the automated means for obtaining 

MCN for a large program module, this method appears to be more efficient and 

considerably less dependent on the programming language used.  Also, it can be 

applied equally well to a textual source like a specification in any of the formal 

specification languages or a compiled program source in any machine language. 

More recently, it has been recognised that simulation models have become 

very complex.  This trend has, in part, been driven by the ready availability of high-

performance computer hardware as well as a lack of understanding of the real 

systems (Chwif et al., 2000).  However, Chwif et al (2000) do not offer any objective 

criteria to determine when a model becomes too complex to run, enhance, or 

maintain feasibly.  With the demand for greater realism in simulation has come the 

corresponding need for a quantitative metric to determine when this threshold has 

been crossed. 



 
Chapter 2: Overview of Modelling and Software Metrics 
 

 
23 

Because the evidence of earlier work points to complexity as the 

underpinning measure for software or model characterisation, it will be considered 

further in Chapter 5 where software metrics will be set out in greater detail.  It may 

be noted here that an outcome of having a complexity metric is that it provides a 

degree of objectivity when different models are to be compared. 

 

2.5 Previous work on comparing modelling paradigms 

There does not appear to be any journal publication, conference proceeding, 

or workshop paper presenting either a qualitative or quantitative comparison of 

agent-based modelling against discrete-event modelling.  A search for agent-based 

modelling revealed a workshop paper (Parunak et al., 1998) comparing it with 

equation-based modelling, i.e. dynamic systems and Systems Dynamics.  Another 

search for publications for discrete-event modelling uncovered two studies 

(Brailsford and Hilton, 2000; Morecroft and Robinson, 2006) which were qualitative 

comparisons against the System Dynamics modelling paradigm.  Morecroft and 

Robinson (2006) stated that although there is a high level of interest in knowing what 

modelling method best fits a particular type of problem, there is almost a total 

absence of such comparative studies. 

 

2.6 Summary 

A taxonomy of the major modelling paradigms in current use was presented.  

It is based on the representation of time and state in the simulation model, classifying 

the paradigms as either time-driven or event-driven. 

The four modelling paradigms – dynamic systems, System Dynamics, 

discrete-event modelling, and agent-based modelling – were outlined showing their 

main distinguishing features and the level of abstraction and details where they may 

be employed. 

 Among numerous requirements when modelling a problem, it is important to 

use the modelling paradigm which provides the closest conceptual match.  Using an 

inappropriate modelling paradigm can result in inaccurate results as well as 

computational inefficiencies. 
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The internal attributes of program size and structural complexity provide 

convenient quantitative indicators of the external attribute of maintainability.  These 

metrics enable models to be compared objectively. 

Comparisons have been carried in the past between models implemented 

using different paradigms but none has been made between traditional discrete-event 

and agent-based modelling. 
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Chapter 3 

Traditional Discrete-event Modelling 

3 TRADITIONAL DISCRETE-EVENT MODELLING 

3.1 Introduction 

In this research, which is in the form of a case study (stated previously in 

Sections 1.3 to 1.5), each item involved needs to be tracked along the supply chain 

and logistics network.  The attributes of these individual objects, such as unique 

identifier, life, size, and weight, are therefore important.  In these problem domains, 

the model state variables change only when events occur and nothing of consequence 

occur between adjoining events.  In time-driven modelling paradigms like System 

Dynamics (SD) and dynamic systems, group and bulk properties are paramount and 

the state variables change continuously.  Therefore, in this research, it is more 

appropriate to use an event-driven modelling paradigm than a time-driven one. 

Procedural languages like FORTRAN and C, object-oriented languages like 

Java and C++, and specialised simulation languages like SIMSCRIPT, SIMULA, 

and GPSS have been used for many years in discrete-event simulation.  A survey of 

simulation languages is given in Shannon (1977) and more recently in Low et al 

(1999) where descriptions of a number of runtime libraries are also presented. 

Manual crafting of program code for a simulation model is very time 

consuming and prone to errors.  A development, both to speed up and improve the 

quality of model building on the PC desktop, has been the commercial introduction 

of visual programming environments, e.g. AnyLogic™ (XJTechnologies, 2006), 

Arena™ (Arena, 2007), and Extend™ (ImagineThat, 2006; Krahl, 2001).  The last, 

in particular, provides a comparatively low-cost yet powerful and versatile 

environment with an open architecture which can be enhanced by the knowledgeable 

user. 
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The body of published literature distinguishes between two types of discrete-

event simulation – sequential and distributed (or parallel).  Generally, experiments in 

the former are carried out in a single process executing in one processor while those 

for the latter are partitioned into multiple processes and executed in parallel over two 

or more physically separated processors.  Distributed modelling continues to be a 

specialized process which requires a high level of programming skills.  Although 

there is no commercial tool which can deal with all required aspects of distributed 

modelling, the production of such a model has been aided in recent years by the 

provision of the High Level Architecture standard framework (described later in 

Section 3.3.2.3). 

Since the event list is essential to the operation of a discrete-event model, this 

chapter gives a description of it together with details of the techniques which have 

been employed to make it run efficiently under different conditions.  That is followed 

by a consideration of distributed modelling as well as the inherent problem of time 

synchronization which has been eased by the development of a standard framework.  

The melding of time-driven systems with event-driven systems and the use of 

artificial intelligence techniques in discrete-event modelling conclude the chapter. 

 

3.2 The event list in traditional discrete-event modelling 

In this section, the event list is considered in some detail for the reason that it 

is the data structure which underpins discrete-event modelling.   

It is fundamental in both sequential and distributed discrete-event simulation 

that a set of future or pending events is processed in a valid and consistent order.  

This is handled by a data structure called an event list which stores an organised set 

of events and enables new events to be inserted at the correct locations.  In a simple 

model executed in a single processor, the event list may just be a linear linked list 

holding a small time-stamped set of pending events in increasing chronological 

order.  A considerable amount of research has been carried out in the last four 

decades in pursuit of a general solution for the efficient operation of the pending 

event set (Marín, 1997), or priority queue (PQ) (Knuth, 1973) where the priority is 

the event time-stamp in this instance.  
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As it is possible for two or more events to be scheduled to occur 

simultaneously in the same computer process using a common event list, the 

execution of these events needs to be serialised.  One method is to select any of these 

events at random with equal probability to reduce the effect of serialisation over a 

simulation run.  Where event order is not important, they may be executed in any 

order.  The latter method is faster as it incurs a lower overhead than the former when 

deciding where to insert the entry in the event list. 

In a large and complex model which has to process many individual items, 

the cascading of generated events during a simulation run can quickly result in a very 

large set of pending events.  As the order of arrival of events at the event list may not 

be in chronological order of simulation time, the events have to be inserted into the 

data structure after the correct time locations of the event list have been found.  For a 

large list, the computation time needed to manage this data structure alone can take 

up a significant proportion of total computation time.  As the time taken to insert an 

event in a simple linear linked list is proportional to the length of the list, i.e. O(n) 

where n is the number of pending events, if a linear search is used to determine the 

point of insertion, alternative techniques have been devised to make it speedier and 

more efficient.  

These PQ techniques are categorised as either tree-based or list-based.  In 

Marín’s (1997) empirical comparison of some of these algorithms, which is an 

extension of an earlier study (Jones, 1986), he lists 13 tree-based and 9 list-based 

PQs.  Notably, Jones’ empirical comparison did not include calendar queues since it 

predates their appearance in discrete-event modelling.  Also, Marín demonstrated 

that for a large pending event set, i.e. for n ≥ 104, calendar queues outperformed tree-

based PQs when measured as average, or amortized, time taken to insert an event for 

a hold operation.  This outperformance is to be expected since calendar queues are 

specialised data structures which are tailored for managing the pending event sets of 

discrete-event models. 

A PQ may be conceptually simple but the algorithm needed to implement it 

may be large and may involve storage and computation overheads.  For instance, the 

Calendar queue (Brown, 1988) has relatively short and efficient multiple lists but 

they require extra space to be reserved for list expansion and these lists have to be 

resized should their upper size limits be exceeded.  Although resizing occurs 
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infrequently, it is computationally very expensive and the algorithm carries code 

which is not used frequently. 

The numerical values in Table 3-1 represent the relative average insertion 

time,  

 
CBTinsert

PQinsert
insert T

T
T =  (3-1)

where TPQinsert is the average insertion time for any of the PQs and TCBTinsert is the 

average insertion time for the PQ implemented as a complete binary tree (CBT). 

Marín (1997) used the idealised case of a CBT as the basis for comparing 

performance.  A complete binary tree is a binary tree (one in which each node has 

two children) where all levels are completely filled except for the final level where 

the nodes are all to the left, filling up consecutive positions.  Each technique was 

executed using the classic hold model with different event access patterns simulated 

by different probability distributions.  It may be noted in Table 3-1 that the different 

tree and list techniques are sensitive to the type of event distribution to different 

degrees.  In particular, among the four types of queue, the Calendar queue performed 

relatively badly for the triangular distribution when the pending event set is large, i.e. 

n ≥ 104. 

 
Table 3-1: Relative amortized run times,Tinsert, for different probability distributions 

(Marín, 1997) 

Event 
distribution Exponential Uniform Triangular Bimodal Biased 

Queue type n=10 n=104 n=10 n=104 n=10 n=104 n=10 n=104 n=10 n=104 

Complete 
binary tree 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Skew heap 1.56 2.69 1.66 2.78 1.72 2.84 1.40 2.50 1.71 2.88 

Splay tree 1.71 2.70 1.73 2.60 1.69 2.53 1.46 2.28 1.55 16.89 

Calendar 
queue 2.24 0.78 2.19 0.75 2.20 1.86 2.53 0.79 3.37 1.12 

 

Describing all the PQ techniques in Marín (1997) would involve too lengthy 

a digression but three of the more prominent ones among them, i.e. the skew heap, 
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the splay tree, and the calendar queue, are considered further in Section 3.3.1 

together with two other PQs, the lazy queue and the event horizon. 

 

3.3 Types of discrete-event modelling 

Discrete-event modelling may be categorised as sequential, where a model is 

implemented as a single process and executed entirely within a single processor, or 

distributed, where a model is divided into sub-models and executed as individual 

processes in physically separated processors. 

 

3.3.1 Sequential discrete-event simulation 

Other than the development of the sequential discrete-event model-building 

environment to speed up and make model creation easier, the progress of sequential 

discrete-event modelling has largely concentrated on the development of the PQ to 

make it computationally as efficient as possible.  In sequential discrete-event 

simulation, all activities in a model are serialised by way of a single PQ thus making 

it the most critical part of the model. 

Although five PQs are presented in the following sections under the heading 

of sequential discrete-event simulation, the skew heap (Section 3.3.1.1) and the lazy 

queue (Section 3.3.1.4) can be adapted for use in the parallel simulation environment 

(Rönngren and Ayani, 1997).  It is done by granting only one of the parallel 

processes exclusive access to the PQ at any time by locking and unlocking the 

appropriate parts of the data structure. 

 

3.3.1.1 The skew heap 

The skew heap is described by its originators, Sleator and Tarjan (1986), as a 

self-adjusting form of the heap data structure which Knuth (1973) calls a priority 

queue.  A heap is an ordered binary search tree where the node with the minimum 

value is at the root.  A heuristically self-adjusting tree is not subject to structural 

constraints such as tree height balance conditions for a balanced tree.  This has the 

advantage of avoiding the time and space overheads required to maintain the 

structural constraints.  A balanced tree is one where all the leaf nodes are at the same 
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level.  Moreover, the depth of a balanced tree is shallower when compared with an 

unbalanced tree, thus resulting in shorter search times to locate nodes for deletion or 

places where new nodes are to be inserted. 

Inserting an entry into the heap involves the central operation of combining 

or melding the single-value heap into the original multi-value heap such that the new 

entry ends up at the appropriate heap location.  In the worst case, performance of the 

skew heap is bounded by O(log2 n) time (Sleator and Tarjan, 1986).  Because of its 

economy and speed, this technique is commonly used not only in sequential discrete-

event modelling but also in combination with the Time Warp mechanism (Fujimoto, 

1990) used in parallel and distributed modelling because it tends to minimise the 

amount of rollbacks (described later in Section 3.3.2). 

 

3.3.1.2 The splay tree 

The splay tree is a self-adjusting form of the binary search tree.  As 

frequently used nodes are migrated towards the root of the tree by a sequence of 

simple tree rotations – an action described as splaying – it is also self-optimizing.  

When used for the management of the event list in discrete-event modelling, this 

splaying operation, which consists only of the simple tree rotation heuristic, tends to 

restructure the tree after a node insertion or deletion so as to minimise tree depth.  It 

can reduce the worst-case amortized search time to O(log2 n) where n is the number 

of events (Sleator and Tarjan, 1985).  The efficiency of this PQ is the same as that of 

a balanced tree (Knuth, 1973) while avoiding the space overheads and algorithmic 

complexity needed to maintain the constraints of a balanced tree. 

Marin (1997) noted that most of the tree-based methods have worst case 

search times of O(log2 n). 

 

3.3.1.3 The calendar queue 

The calendar queue (Brown, 1988) is a multi-list data structure modelled on a 

calendar and used much in the way a human would use a calendar, i.e. writing to or 

erasing from the appropriate day with each day containing a short, sorted linked list.  

When a new event is generated, the day or sub-list to which it belongs is calculated 

and the event is inserted into that linked list.  The insertion point average search time 



 
Chapter 3: Traditional Discrete-event Modelling 
 

 
31 

of this multi-list method is of the order of O(1).  The benefit of a constant level of 

performance is considerable and is especially noticeable when the pending event set 

is large (see Table 3-1).  However, its advantage does not extend to all sizes of the 

pending event set since PQs implemented as single trees or linked lists perform better 

for small event sets where n ≤ 10. 

The year is a rolling circular data structure which is initially sized such that 

about 75% of the events fall within it.  The length of a day is set to ensure that the 

size of its linked list does not degrade the average performance for the year.  To 

ensure good performance, Rönngren and Ayani (1997) mentioned that the average 

length of the linked lists should be about two elements long.  As the PQ grows and 

shrinks during a simulation run, the day and year lengths have to be adjusted in size 

to maintain its efficiency.  When the lower and upper size thresholds are reached the 

day lengths are halved or doubled respectively.  Similarly, the year length is adjusted 

to ensure that the day lengths are evenly distributed to prevent empty days from 

occurring.  This resizing operation is costly since it is of the order of O(n) where n is 

the number of elements in the PQ.   

Multi-list PQs tend to have dedicated storage to handle the overflow of event 

data but the calendar queue manages this problem elegantly by allowing events 

which extend more than a year into the future to wrap around thus spreading the 

overflow amongst the day sub-lists.  

 

3.3.1.4 The lazy queue 

The lazy queue (Rönngren et al., 1991) is a multi-list PQ with events which 

are divided into three categories (see Figure 3-1) –  

• Near future (NF).  This is a buffer of events which will be executed 

almost immediately and consists of a link list for enqueue operations 

and a sorted array to handle dequeue operations. 

• Far future (FF).  This contains a number of chronologically ordered 

but unsorted sub-lists.  When the NF sorted array has been completely 

dequeued, the earliest FF sub-list is sorted using the Quicksort 

algorithm and transferred to the NF data structure.  It is the delaying of 
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work until the last possible moment which gives this technique its 

name. 

• Very far future (VFF).  This is implemented as a link list and with the 

passage of time, a part of it is transferred into the FF data structure  

Rönngren and Ayani (1997) substituted the link lists in the NF and VFF data 

structures with skew heaps thus enabling them to operate more efficiently in the 

worst-case. 

The assumption which underpins this PQ is that the largest proportion of new 

events in a time interval is inserted into the FF data structure.  Since this enqueue 

operation involves just an appending of the event to the appropriate sub-list, the 

amortized performance is O(1).  A dequeue operation occurs only in the NF data 

structure and involves taking out the earliest element from a sorted list.  This also 

results in an amortized performance of O(1).  The operation of this PQ will be 

degraded should the distribution of events be such that the largest proportion falls in 

the NF and VFF data structures. 

 

 
Figure 3-1: Components of the Lazy Queue (Rönngren et al., 1991) 

 

3.3.1.5 The SPEEDES queue and the event horizon 

The SPEEDES queue is a two-list technique (Steinman, 1994) which 

introduces the concept of the ‘event-horizon’.  Although it was originally developed 

for parallel discrete-event simulation it may also be used for sequential simulation.  

As illustrated in Figure 3-2, the pending events are stored in the primary 

event list which is maintained in increasing time-stamped order while the generated 

events are stored in an unsorted secondary list.  The earliest generated event is noted 



 
Chapter 3: Traditional Discrete-event Modelling 
 

 
33 

and just before the simulation reaches this event, the secondary list is sorted and 

merged with the primary list.  If the primary list is implemented as a linked list, the 

amortized cost of inserting the generated events is O(n) where n is the size of the 

pending event set.  However, the SPEEDES queue approach to PQ management can 

be made more efficient for large pending event sets by substituting the linked list 

with a variant of the balanced binary tree (the SPEEDES tree), or the heap (the 

SPEEDES Qheap) (Steinman, 1996). 

The event horizon, a term borrowed from physics and astronomy describing 

the boundary of a black-hole beyond which it is not possible for anything to escape, 

is marked by the last pending event before the earliest generated event.  The 

boundary of the event horizon is shown as vertical dotted lines in Figure 3-2.  Its 

extent fluctuates from cycle to cycle and as the event sequence within its boundary 

will not undergo further change, it allows distributed, parallel processes to be 

synchronised up to that point in time.  Hence, the event horizon is the simulation 

model’s lookahead (Fujimoto, 1990) as the events before it are guaranteed to be in 

chronological order and that no pending event will generate an event earlier than it.  

For these two reasons, the event horizon is a technique for preventing deadlocks – 

the situations in which all participating parallel processes cannot safely advance in 

simulation time because doing so might violate the Principle of Causality thus 

halting a simulation run.  This principle is a tenet of distributed simulation which 

states that events are caused by earlier ones and so a generated event must always 

occur after the generating event. 

 

3.3.1.6 Performance of priority queues 

The performance of the PQs described in the earlier sections are summarised 

in Table 3-2.  In reflecting real and practical modelling, it is evident from the 

expected amortized costs for the enqueue and dequeue operations that the multi-list 

calendar queue and lazy queue are superior to the tree-based skew heap and splay 

tree.  This view is reinforced by the fact that the commercially available modelling 

tool, Extend™6 (ImagineThat, 2006), employs a variant of the calendar queue in the 

implementation of discrete-event models. 
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Figure 3-2: The operational principle of the event-horizon using the SPEEDES queue 

(Steinman, 1994) 

 
Table 3-2: Performance of priority queues (Rönngren and Ayani, 1997) 

Operation Enqueue (amortized) Dequeue (amortized) 

Queue type Expected Worst case

Enqueue 
(single 

operation) 

Maximum 
Expected Worst case 

Dequeue 
(single 

operation) 

Maximum 

Skew heap O(log2 n) O(log2 n) O(n) O(log2 n) O(log2 n) O(n) 

Splay tree O(log2 n) O(log2 n) O(n) O(1) O(1) O(1) 

Calendar queue O(1) O(n) O(n) O(1) O(n) O(n) 

Lazy queue O(1) O(n) O(nlog2 n) O(1) O(n) O(nlog2 n) 

 

3.3.2 Distributed discrete-event simulation (DDES) 

The nature of the event list in sequential discrete-event simulation demands 

that events are processed in chronological sequence, one at a time.  In practice, 

despite the use of techniques (mentioned in Section 3.3.1) to speed up processing, 

sequential discrete-event simulation on one processor has proved to be inadequate for 

large, detailed models to complete their simulation runs within a reasonable time.  
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Moreover, in the approach to increasing the performance of such models by 

partitioning, distributing, and executing them in parallel over a number of separate 

processors networked together, the event list structure cannot be simply adapted 

likewise for the distributed processes to work together as a coherent entity.  While 

distributed parallel processing will reduce elapsed run time by some degree for 

models which are not wholly sequential, it introduces a fundamental problem to this 

paradigm – the management of simulation time over all the participating processes.  

It is a problem because in the absence of time management and in the presence of 

diverse hardware and software all performing at different speeds, there is every 

possibility that at some point during a simulation a future event will appear to 

influence a past event.  To have the cause occur after the effect makes the simulation 

meaningless and therefore techniques have to be devised to preserve the Principle of 

Causality. 

K.M. Chandy and R.E. Bryant were attributed with the initial idea of 

distributed simulation in 1977 (Misra, 1986).  It is to be understood here that 

distributed processes refer to those processes which are executed concurrently, or in 

parallel, but are spatially separated. 

One way of managing DDES is to have the processes all proceed in lockstep 

to the beat of a global simulation clock.  However, this synchronous technique does 

not exploit fully the benefits of concurrent execution in parallel processing in terms 

of speed of execution but it provides the means for the interoperation of models or 

sub-models implemented using diverse modelling packages.  Generally, it results in 

relatively poor performance and sometimes in the loss of fidelity (Fujimoto, 1990).  

In instances where low model response times are important, this technique is rarely, 

if ever, used and time synchronisation techniques are most commonly based on 

asynchronous processes.  The methods are traditionally divided into two broad 

classes which are known as conservative and optimistic time synchronisation 

(Fujimoto, 1990; Reynolds, 1988). 

 

3.3.2.1 Conservative time synchronisation 

The defining characteristic of conservative time synchronisation is that it 

strictly avoids the execution of any causality error and therefore advances the 
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simulation run only when every event which can affect the event in question has 

been completely processed.  This approach was pioneered by Chandy and Misra 

(1979).  The basic mechanism of this synchronization scheme is the event message, 

containing the sender’s logical time, which is broadcast from one of the parallel 

processes to the other participating processes.  There is a distinct possibility that the 

messages will not arrive in the same order in all the processes because of the variable 

delays caused by network topology and the unpredictability of network traffic.  

Allowing the simulation processes to progress according to the order of the raw 

message queues will inevitably result in deadlocks. 

Reynolds (1988) is of the opinion that there is a wide spectrum of 

conservative techniques. He lists seven example variants on the Chandy and Misra 

scheme.  These variants have resulted from attempts at avoiding the deadlock 

problem.  A method of achieving this is by the sending of non-event time-stamped 

messages to determine the smallest timestep to advance the simulation.  However, it 

is possible for these non-event messages to proliferate and overwhelm the model 

event message population at any time thus resulting in performance degradation.   

Another drawback of these conservative protocols is that a programmer must 

be involved with the details of the protocols in order to achieve good performance 

(Fujimoto, 1990).  This requirement to tune the model code to the synchronization 

scheme is also likely to result in fragile code and loss of maintainability. 

 

3.3.2.2 Optimistic time synchronisation 

What distinguishes optimistic time synchronisation from the conservative 

approach is its ability to detect and recover from causality errors.  In contrast to 

conservative time synchronisation, it does not determine when it is safe to proceed, 

but proceeds until a causality error is detected.  Instead of advancing by the smallest 

safe timestep, it advances as far as possible. 

Most of the optimistic time synchronisation schemes are variants of the Time 

Warp mechanism.  This is based on the seminal work of Jefferson (1985) on the 

Virtual Time paradigm which has been developed further by Fujimoto (1989). 

In the Time Warp approach, the model states for each distributed process as 

well as the messages sent and received are saved at intervals.  Recovery from a 
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causality error is achieved by rolling back the current model state to a time before the 

cause of the error.  An error is detected if a timestamp earlier than the current 

simulation time of the process is received.  Although computation effort is wasted 

both in moving the model forward and backward in simulation time, Fujimoto (1990) 

reports that the detrimental effects due to rollback and thrashing (where incorrect 

computation is made and rolled back repeatedly in quick succession) seldom occur in 

practice.  Also, Fujimoto observed that where rollback has to be made, the rollback 

distance tends to be limited because processing always starts with computation of the 

smaller timestamps and computation far into the future occurs later in the cycle.   

While it cannot be denied that this approach exploits parallelism, the 

necessity of saving the model states in each of the participating distributed processes 

has the potential to degrade performance severely.  Unlike conservative protocols 

and because of its ability to roll back, there is less of the necessity to tune the model 

code to the requirements of time synchronization thus resulting in greater 

maintainability. 

The event horizon presented earlier in Section 3.3.1.5 may be considered to 

be an optimistic synchronisation technique.  Unlike the Time Warp approach, it does 

not have the storage and computation overheads required by the rollback mechanism 

since it always ensures strict adherence to the Principle of Causality for all events 

within the event horizon.   

 

3.3.2.3 High-Level Architecture 

It has been the norm that DDES time synchronization, by whatever technique, 

has been implemented in an ad hoc fashion.  The absence of a standard can, and 

invariably does, lead to difficulties when attempting to run together multiple models 

built by different programmers.  This is true even if the models employ the same 

time synchronization technique.   

The consequential lack of interoperability and reusability were recognised as 

a major waste of effort for simulation and modelling activities within the US 

Department of Defense (Kuhl et al., 1999).  The inability to derive more benefit from 

existing models provided considerable impetus to standardise an architecture for 

distributed modelling.  Work initiated in the early 1990s resulted in the definition of 
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the High-Level Architecture (HLA), a standard for distributed modelling which has 

been adopted by the IEEE as Standard 1516 (IEEE, 2000).  Figure 3-3 gives a 

concept-level view of HLA showing the central importance of the Runtime 

Infrastructure (RTI) as it provides all the services needed for the participants or 

federates to operate together as a coherent unit. 

 

 
Figure 3-3: Conceptual diagram of the High-Level Architecture 

 

3.3.2.4 Speeding up a model 

It has been implied thus far that a model executes as an individual process 

within a computer processor.  A model can be divided into sub-models with each 

running as a separate process in a single processor under the management of a multi-

tasking operating system.  A drawback of such an arrangement is that the elapsed 

time of a simulation run is not reduced although parallel processing appears to be 

taking place.  This is because, in reality, only one process can be executed at any 

time.  Each process is allocated a small time-slice and the processes are switched in 

quick succession for execution.  Switching between processes incurs additional 

computing effort, or overheads, to store and restore the states for the model and the 



 
Chapter 3: Traditional Discrete-event Modelling 
 

 
39 

computer system thus diverting resources from the task of model computation.  

Therefore, true parallel processing can occur only when the sub-models are executed 

as processes in physically separate processors or cores. 

An alternative is to let the sub-models run as separate threads in a process 

(Butler and Sandén, 2001).  In general, threads of execution contain smaller 

sequences of computer instructions, share resources like memory and files, and have 

lower overheads than processes.  As such, they may be considered as lightweight 

processes, and since they are able to switch execution quickly between threads, they 

can make more efficient use of a processor’s clock cycles.  Butler and Sandén’s 

experimental measurements for a distributed discrete-event model showed that by 

increasing the number of processors, performance improved proportionally up to the 

point when the event list starts to hold back system performance.  They demonstrated 

that, in parallel simulation, threads are an excellent substitute for computer 

processes. 

There is a theoretical limit to speeding up a model containing some code 

which can be executed in parallel.  Amdahl (1967) expressed it as –  

 
N
PP

SpeedupOverall
+−

=
)1(

1
 (3-2)

The relationship expressed in Equation (3-2) is generally known as Amdahl’s Law 

where P is the fraction of the code which can be executed in parallel, (1 – P) is the 

fraction to be executed sequentially, and N is number of processors or distributed 

processes.  It may be inferred from the equation that the greater benefit is derived 

when P is made as near unity as possible rather than when N is made very large.  P is 

unity for the special case where the whole body of code for a model is executed in 

parallel in different processors.  In practice, this can be done for sensitivity or 

optimization studies where the same code is replicated in different processors and 

run independently using different parcels of data. 

 

3.3.3 Hybrid continuous/discrete systems 

As the detail of a system gets progressively finer and approaches the realm of 

the natural process, time-driven or continuous modelling becomes more appropriate 

than event-driven modelling.  In a system where the processes are at widely different 
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levels of abstraction, with continuous-variable dynamics at the lowest and logical 

decision-making at the highest, a hybrid model will be more appropriate than either a 

wholly continuous or wholly discrete model.  The continuous behaviour is specified 

by a set of differential and algebraic equations while the discontinuous changes are 

represented by discrete event switching logic.   

It should be noted that discrete modelling here is not to be confused with the 

discrete-event modelling considered in Section 3.3 where an event-driven simulation 

advances at variable time intervals which are demarcated by events.  In contrast, a 

time-driven hybrid continuous/discrete simulation model advances at appropriately 

small, fixed timesteps until an event is detected, i.e. when the threshold value of a 

model state variable is exceeded.  The event time is located and the timestep is 

adjusted so that the simulation can be advanced up to that point precisely.  After this 

point of discontinuity or mode change, a different set of equations may be used and 

the simulation continues at a fixed timestep as before. 

According to Barton and Lee (2002), combined or hybrid discrete/continuous 

systems are those systems where discrete state and continuous state dynamics 

interact to such an extent that they have to be analysed simultaneously.  Typical 

examples of discontinuous or stepwise behaviour may be found in electronic controls 

where the continuous dynamics of a system can change abruptly because of the 

switching of a diode, or in the operation of a burst-disc to relief dangerously high 

pressure in a chemical plant. 

Also, Barton and Lee (2002) commented that it was widely accepted that 

almost all engineering models of dynamic systems contain discontinuities such as 

hard limits, hysteresis, and deadbands, and therefore cannot be handled correctly or 

accurately with a completely continuous model alone.  Some of the reasons for 

incorrect results and loss of precision were presented earlier in Section 2.3.  

Therefore, to model real world problems accurately, simulation tools must be able to 

perform continuous/discrete simulation.  In particular, such a tool must feature the 

ability to handle event times with precision, process runtime differential and 

algebraic equations, and deal with discontinuous state changes, event iteration, and 

chattering (Mosterman, 1999). 

Interest in simulation using hybrid systems has become more intensive in 

recent years as the need to model discrete controllers operating on continuous 
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processes has increased.  This activity has also been driven by the integration of 

artificial intelligence in simulation. 

 

3.4 Artificial intelligence in discrete-event modelling 

Artificial intelligence (AI) became a distinct stream of research in Computer 

Science at the Dartmouth Artificial Intelligence Conference in 1956 when John 

McCarthy coined the term ‘artificial intelligence’.  AI now encompasses a host of 

loosely related disciplines like neural networks, pattern recognition, image 

processing, natural language and speech processing, robotics, symbolic computation, 

automated reasoning, expert systems, and autonomous agents. 

When embedded in discrete-event models, AI can simulate the functions 

performed by a cognitive human and so enlarge the scope of simulation, increase its 

accuracy, and make it appear more realistic.  However, Miller et al (1992) 

cautions that the use of AI in simulation should be selective as AI is not a panacea 

and can grow to dominate a simulation inordinately.  Despite this, it should 

nevertheless be recognized that AI techniques like data dependencies, backward 

chaining, and abduction can greatly simplify the creation of some simulation models. 

Ören (1977) proposed that AI could be used to assist simulation rather than to 

form an integral part of a simulation model.  This proposal was subsequently 

developed to show how AI could help in model construction by specifying the model 

components, the interfaces between them, and also the model parameter values 

(Ören, 1979; Ören, 1986).  Since then, a number of general reviews concerning AI in 

simulation have been published the more detailed and useful amongst which are  

Shannon (1987) and Tsatsoulis (1990). 

Similarities between AI and simulation in terms of knowledge representation, 

learning, and natural language understanding have been pointed out by Vaucher 

(1985).  Indeed, Rothenberg (1991) noted the symbiotic relationship between AI and 

simulation when he observed that while models made use of AI techniques, AI has in 

turn made use of models as sources of internal expertise.  Miller et al (1992) is of the 

view that in the same problem domain, AI is more suited to addressing the problem 

at a coarser structural level (i.e. where the individual processes making up a system 

are not well understood) while simulation is better suited at the finer end of the 
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spectrum.  It appears that the scope of a problem can be extended and addressed by 

harnessing together the strengths of both disciplines. 

It may be recognised at this point that AI techniques are used in simulation in 

two quite different ways (Tsatsoulis, 1990) –  

• AI-based modelling where AI techniques are embedded and used to 

model the problem. 

• AI-assisted modelling where AI systems are used to aid model 

construction, output analysis and presentation, and optimization. 

While AI contains numerous disciplines, it is knowledge-based, rule-based, 

or expert, systems which is the most common technique found in AI-assisted and AI-

based modelling until recent years when agent-based modelling has become 

dominant.  The research direction taken over the past decade is evident in the 

conference papers presented at the Winter Simulation Conference between 1997 and 

2007 (WSC, 2007). 

An example of an expert system for assisting the human modeller was 

discussed in de Swaan Arons (1999) where a number of parameterised models were 

initially stored in a database so that under the guidance of the expert system, the 

modeller could select the most appropriate model.  A fundamental drawback of that 

system was that due to the limited number of models in the database, it had a very 

slim chance of matching the modeller’s requirements exactly despite interpolation 

between, and extrapolation from, existing models.  Subsequently, a different 

approach was adopted by de Swaan Arons and van Asperen (2000) and that was to 

apply an expert system in the Arena™ simulation tool so that it could support the 

modeller during model definition.  Their goal was to generate the model 

automatically.  In this they had qualified success as they could only implement 

models using those Arena™ modules which had a high degree of built-in 

functionality. 

A less ambitious but successful application of an expert system in AI-

supported simulation was presented in Law and McComas (2003).  Here, the fitting 

and selection of the most suitable model input probability distribution was made by 

the ExpertFit package, a rule-based system which draws on a large base of 

knowledge and data accumulated over 25 years.  Its maturity and usefulness is 
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evidenced by its inclusion in commercial-off-the-shelf simulation packages like 

Flexsim™ and SIMPROCESS™. 

A recent example of an expert system in AI-based simulation is described in 

Vakas et al (2001).  Here the decision-making behaviour of a battlefield commander 

is simulated by three sets of rules based on fuzzy logic.  Combined with the Myers-

Briggs personality profiling method, it has been used successfully as a testbed for 

evaluating US warfare doctrine since human personality can significantly influence 

the outcome of a battle. 

 

3.5 Summary 

The event list or priority queue (PQ) is the data structure which is central to 

the correct and efficient operation of both sequential and parallel (and distributed) 

discrete-event modelling.  Considerable effort has been expended on list-based and 

tree-based techniques. 

None of the existing PQ techniques offer the most efficient solution to 

pending event sets of all practical sizes.  The algorithmically simple linked list is 

preferred where the pending event set (PES) is smaller than about 10 items.  

However, the constant level of performance offered by multi-list PQs like the 

calendar queue and the lazy queue provide a good general solution for PESs larger 

than about 10.  For this reason, a widely available commercial general purpose 

modelling package like Extend™6 which is used for building the sequential discrete-

event models in this research uses a variant of the calendar queue.  Where the sub-

lists are likely to be large, tree-based PQs have been incorporated into the multi-list 

methods to improve performance. 

The growing demand for greater realism in modelling has been met by larger 

models and different modelling approaches.  The development of parallel and 

distributed modelling has resulted in the formalisation of a standard for 

interoperability – the High Level Architecture.  The introduction of hybrid 

continuous/discrete modelling has extended the useful range of either continuous or 

discrete modelling on its own. 

The overall speedup of a model is mainly dependent on the proportion of 

model code which can be made to execute in parallel. 
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Artificial intelligence (AI) techniques have been used as an integral part of 

the model itself (AI-based modelling) as well as to aid the modelling process (AI-

assisted modelling).  AI-based modelling has enabled realistic human decision-

making to be incorporated into systems of external processes. 
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Chapter 4 

Agent-based Modelling 

4 AGENT-BASED MODELLING 

4.1 Introduction 

Although more than 50 years have passed since term Artificial Intelligence 

(AI) was coined by John McCarthy at the 1956 Dartmouth Summer Research 

Conference on Artificial Intelligence (Russell and Norvig, 2003), the promise, 

originally held out by the AI community, of simulating human intelligence 

(alternatively referred to as general intelligence or strong AI) in a machine remains 

largely unfulfilled.  It is still a long-term goal.  Early AI research concentrated on 

matching human intellectual capacity for general task planning using symbolic 

reasoning but that was recognized as being too ambitious for that time.  There were 

severe limitations in computing hardware so that it was not possible to produce 

useful results in a timely manner.  Subsequent effort has focussed on sub-fields such 

as knowledge representation, natural language processing, and machine perception 

and learning and useful computing techniques have emerged from them.  Expert 

systems, a classic example of which is MYCIN (Buchanan and Shortliffe, 1984), 

enjoyed some visible commercial success in the 1980s.  A standard textbook like 

Russell and Norvig (2003) gives a detailed and comprehensive treatment of these 

sub-disciplines. 

While AI research narrows down on isolated fragments of the artificial 

intelligence problem, agent technology concentrates on intelligent systems.  Research 

in agent technology is an approach which is not in the traditional AI mould since it 

aims to be lightweight on AI techniques but makes technique integration an essential 

element in the production of intelligent behaviour.  According to Jennings et al 

(1998), the concept of the agent emerged from three closely related areas – 
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• Artificial intelligence. 

• Object-oriented programming and concurrent object-based systems. 

• Human-computer interface design. 

These elements may be discerned to be present to different degrees in agent 

systems.  Since there is such a spectrum of agents, the opportunity will inevitably 

arise when it will be difficult to make a distinction between a very rudimentary agent 

system and a conventional software system.   

This chapter first considers what constitutes an agent because it is important 

to form, at least, an opinion of one of the fundamentals of this subject.  Two classes 

of agents from opposing ends of the agent spectrum are then presented and they are 

followed by a consideration of the use of agent technology in simulation modelling.  

As agents are capable of communicating with each other to achieve their goals 

without human intervention, complex adaptive systems and the emergent behaviour 

of multi-agent systems are also considered.  Seeing the versatility of this technology, 

it is natural to make use of it whenever possible and so this chapter is concluded with 

a section on the use and misuse of agents. 

 

4.2 Definition of an agent 

As this is a relatively new and fast-developing field, it is important to have a 

view of its base constituent – the agent.  In the past decade and a half, agreement in 

the research community with regard to the notion of the agent has become less vague 

and the boundary less elastic. 

To emphasise the early lack of a consensual definition, Franklin and Graesser 

(1996) suggested a taxonomy of 11 alternatives from various sources in an attempt to 

arrive at a definition which is not so lax or so restrictive as to render it unworkable.  

They accepted the impossibility of achieving a sharp-edged definition since 

mathematical concepts provide sharp definitions but real world categorization is 

almost invariably fuzzy.  However, to endow their definition with some rigour, they 

proposed a ‘mathematical style definition’ of an agent as –  

An autonomous agent is a system situated within and a part of an 

environment that senses that environment and acts on it, over time, in 
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pursuit of its own agenda and so as to effect what it senses in the 

future.(Franklin and Graesser, 1996) 

This definition contains two elements which are widely acknowledged within 

the agent research community as essential for agenthood, i.e. its situatedness in an 

environment, and its capacity for autonomous, goal-directed action.  While the 

authors felt that they succeeded in distinguishing between an agent and a program, 

they concluded that this basic definition encompassed too much and so they 

proposed dividing agents into smaller sub-categories using properties such as the 

ability to be mobile and to communicate and learn.  This reflects the reality of a wide 

variety of practical agent systems where agents are not all monochrome but are 

spread over a broad spectrum. 

Comparing an agent with a conventional computer program implies that 

agent code itself possesses properties which make it inherently different from 

conventional code.  It may be argued that at the implementational level, a body of 

program code will appear similar to another and the requirement to distinguish agent 

from non-agent code is probably untenable.  To resolve this may require either a 

widening of the scope beyond computer code to include software analysis and design 

philosophy or it may have to be elevated to a viewpoint at the conceptual level. 

At the conceptual level, a definition which has been increasingly adopted by 

researchers is Jennings’ (2000) précis of Wooldridge’s (1997) description of agent-

based systems –  

An agent is an encapsulated computer system that is situated in some 

environment and that is capable of flexible, autonomous action in that 

environment in order to meet its design objectives. 

It contains three concepts, all of which need to be considered together to 

satisfy the notion of agenthood, i.e. situatedness, flexibility, and autonomy.  An 

agent’s ability to interact with its environment sets it apart from an AI system which 

has no need of an environment.  Its capacity for autonomous action enables it to have 

control over its own actions and to function without direct human intervention.  It 

achieves flexibility by being responsive to changes in its environment, pro-active in 

its goal-directed actions, and social in interacting with other agents to reach the 

objective it has been set. 
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4.3 Categorisation of agents 

As in the categorisation of simulation models (see Section 2.2), agents may 

be classified in different ways.  One method commonly encountered in research 

literature is to describe an agent according to its function, for instance a shipping 

agent or a sales agent.  This categorisation is deficient since there can be a very large 

number of such agents and so a usable taxonomy is likely to be cumbersome and 

may be ambiguous in places.  In the context of this thesis, it is more practical to 

divide agents broadly according to their architecture with deliberative agents and 

reactive agents (Wooldridge and Jennings, 1995), respectively at the stronger and 

weaker ends of the spectrum of the notion of agency. 

 

4.3.1 Deliberative agents 

A deliberative agent presents to the outside world the impression of rational 

thinking in its ability to plan how a problem may be solved.  It does this by searching 

through a store of behaviours, proving the validity of its plan, managing its internal 

representation of its world, and predicting the effects of its actions.  Hence, it is able 

to generate and select an alternative course of action without human intervention.  In 

this strong notion of agency which is closely analogous to human decision-making, 

logical reasoning is carried out by pattern matching and symbolic manipulation and 

in the presence of a symbolic model of the agent’s world (Wooldridge and Jennings, 

1995).  It overlaps very largely with symbolic AI and therefore suffers from the 

same, notable, and persisting problems in –  

• The process of translating of the real world into an accurate, adequate 

symbolic description – the transduction problem. 

• The representing of real world entities and processes in symbolic form 

and getting the agents to reason with the information – the 

representation/reasoning problem. 

Both these difficulties are exacerbated by the seeming inability of existing 

symbolic AI techniques to produce the required outputs within a useful timeframe.  

Moreover, the practical viability of the symbolic AI approach itself was put into 

doubt when Chapman (1987) presented theoretical results which indicated its 

unusability in any time-constrained system.  For this reason, research here has 
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diminished as the effort increased in the search for more workable and efficient 

alternatives. 

However, deliberative agents are beneficial where the rate of change in the 

environment of a problem is relatively low and complete knowledge of the problem 

may not be available.  In practice, human systems are dynamic and normally not 

deterministic, and where the penalty of incorrect action is high, getting the correct 

response which may not necessarily be optimal can override other considerations. 

 

4.3.2 Reactive agents 

Where deliberative agents give the illusion of rational thinking, reactive 

agents seem to behave reflexively by retrieving an explicitly pre-programmed 

behaviour very quickly.  The basic architecture of a reactive agent consists of four 

parts, which are the agent environment, the input (or percept), the agent itself, and 

the output (or action).  The agent senses an input from its task environment, maps the 

input to the output, and effects a change to its environment.  Typically, the 

transforming of percept to action is achieved by a lookup which may be in the form 

of a table, a coherent set of condition-action (or ‘if-then’) rules, or sometimes a 

neural network.  An example of a simple hardware implementation of a reactive 

agent is a thermostat but the more sophisticated ones are control systems for mobile 

robots where real-time response is a prerequisite.  Historically, the development of 

techniques for real-time AI was motivated by the relative failure of deliberative 

methods to deliver results which were timely and has been most visible in the field of 

robotics. 

A significant advance in this class of agents is the introduction of the 

subsumption architecture pioneered by Rodney Brooks (1986).  Instead of 

decomposing a robot control problem in the traditional manner – as in the sequence 

of perception, modelling, planning, task execution, and motor control – it is sliced 

into levels of competence which operate asynchronously.  The lowest level of 

competence, consisting of a class of valid behaviours, provides the fastest response 

to the most immediate task.  The next higher level of competence includes, or 

subsumes, the competence of the previous level as a subset of its own behaviour.  It 

is possible for complex behaviour to result by using such an incremental control 

structure.  This may best be illustrated by the example shown in Table 4-1 where the 
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highest level of competence is shown as possessing the ability to be flexible in 

pursuit of its goal.  While this may be true in theory, it is difficult to achieve in 

practice since the reactive architecture has the drawback of having to specify a 

problem completely at design time.  Its minimal learning capability can sometimes 

leave it with the inability to find a way out of a problem for which it has not been 

explicitly programmed. 

 
Table 4-1: Levels of competence for a mobile robot using the reactive subsumption 

architecture (Brooks, 1986) 

Level  Competence 

0 Avoid contact with objects (whether the objects move or are stationary). 

1 Wander aimlessly around without hitting things. 

2 ‘Explore’ the world by seeing places in the distance that look reachable and 
heading for them. 

3 Build a map of the environment and plan routes from one place to another. 

4 Notice changes in the ‘static’ environment. 

5 Reason about the world in terms of identifiable objects and perform tasks 
related to certain objects. 

6 Formulate and execute plans that involve changing the state of the world in 
some desirable way. 

7 Reason about the behaviour of objects in the world and modify plans 
accordingly. 

 

Brooks’ purely reactive subsumption architecture was extended by Matarić 

(1992) into a behaviour-based one.  Where the former has simple lookups for 

mapping between its input and output, an agent implemented using a behaviour-

based architecture has a limited internal representation of the world in which it 

resides and it also contains more sophisticated algorithms which enable activities 

such as learning, navigation, and path finding to be performed.  In comparison with 

purely reactive agents, behaviour-based agents exhibit greater flexibility because of 

its ability to learn by storing state information dynamically (Matarić, 1997).  In view 

of this, emergent, or unprogrammed, group behaviour in groups of homogeneous and 

heterogeneous behaviour-based agents can be of a higher level.  The behaviour-based 

agent is based on reactive architecture but in terms of agency, it lies in between a 

purely reactive and a purely deliberative agent. 
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4.3.3 Hybrid deliberative-reactive agents 

On the one hand, a deliberative agent is relatively sophisticated in the AI 

sense but suffers from the inability to respond within a useful timeframe to changes 

in its environment.  It has a decision cycle time lasting between minutes and hours.  

On the other hand, a reactive agent can respond in real-time (it has a decision cycle 

time of less than a millisecond) to changes in its environment but lacks the 

sophisticated intelligence of the deliberative agent.  A hybrid deliberative-reactive 

agent exploits the benefits offered separately by a deliberative agent and a reactive 

agent and offers none of their drawbacks. 

 
 

Figure 4-1: Hybrid deliberative-reactive architecture (Gat, 1992) 

 

As in the subsumption architecture, the hybrid architecture is partitioned into 

layers but differently.  A layout which has proved to be successful is shown in Figure 

4-1 (Gat, 1998).  In the field of robotics, this multi-layer approach has been 
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implemented as the SSS architecture (Connell, 1992) and the ATLANTIS 

architecture (Gat, 1992). 

Data inputs from the environment are acted upon very quickly by software in 

the ‘Reactive feedback control’ layer which contains primitives for interacting with 

the environment.  As the processed data is passed up to the ‘Reactive plan execution 

mechanism’ layer, it is processed further and a part of its output forms the higher-

level input into the layer below it.  The processed data may be in the form of input 

parameters to the primitive in the ‘Reactive feedback control’ layer selected by the 

plan execution mechanism.  Finally, the ‘Deliberative planner’ accepts inputs from 

the layer below and, in return, provides a strategic execution plan for the plan 

execution mechanism. 

Simulation models can also utilize the principles of hybrid architecture in 

which the reactive layer provides short-range tactics for immediate use while the 

deliberative layer provides the long-range strategies.  An implemented example 

which exploits this architecture is a large-scale, complex urban traffic control system 

where the decisions made by the low-level agents are mediated by the high-level 

agents (Choy et al., 2003).  The simulation results showed that such a system can 

reduce vehicle stoppage times considerably. 

 

4.4 Agent-based models 

Figure 4-2 shows the result of a recent evaluation of agent-related technology 

by its practitioners (Luck et al., 2005) and is displayed in the now-familiar form of 

the Gartner Hype Cycle.  This is a convenient graphical representation which sets out 

the five phases, marked out along the horizontal axis, through which new technology 

is considered to pass through to reach maturity.  It provides a snapshot of the relative 

maturity, and risk to investment, of a range of technologies as each of them 

progresses through the phases at different speeds.  It is clear from the figure that of 

the agent-related technologies, agent-based simulation has overcome the barrier of 

initial over-expectation (or hype) and has achieved the stability where its benefits 

and practical applications are beginning to be better understood.  Agent technology 

used for simulation modelling has a comparatively wide degree of acceptance and 

may reasonably be viewed as poised for greater commercial exploitation. 
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Figure 4-2: Assessment of agent technology readiness (Luck et al., 2005) 

 

Agent technology has begun to emerge from the research laboratories and has 

been successfully implemented in real-world systems, for instance, in the control 

systems for manufacturing engine cylinder heads at DaimlerChrysler (Bussmann et 

al., 2004), and in simulation models for military training and decision support 

(Cioppa et al., 2004; Martin, 1999).  Even so, implementing a multi-agent system is a 

complex task and it is still a new technology which, in the main, lacks the software 

tools and trained human resources needed to engage the marketplace (Luck et al., 

2005).  This assertion is evident in the seven brief case studies of agent systems for 

production use in manufacturing, logistics, training, and energy production and 

distribution presented in Belecheanu et al. (2006).  Taylor et al. (2005) also 

highlighted the wide gulf which exists between “the promising world of agents and 

the uncompromising world of the enterprise”.  From these publications of agent 

proponents, it appears that the technology remains confined to a niche within 

software engineering in the commercial world. 

The recommended method of evaluating a technology’s maturity is to assess 

it against the Technology Readiness Level (TRL) scale originally developed by 
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NASA in the 1980s.  Graettinger et al. (2002) and MoD (2007) both contain an 

equivalent TRL scale adapted for software (see Table A-1 in Appendix A).  When 

assessed against this scale, the example systems cited earlier would be rated nine out 

of the nine-point scale, indicating that the technology has been proven through 

successful real world deployment.  The software systems described in Belecheanu et 

al. (2006) and Bussmann et al. (2004) satisfy TRL9, i.e. “Actual system proven 

through successful mission operations.” (Graettinger et al., 2002).  Nevertheless, 

commercially-ready agent-based systems are by no means in widespread use. 

Today there is a developing consensus for the definition of an agent 

(Jennings, 2000) and all are agreed that an agent should work autonomously within 

its environment to achieve the goal it has been set (Franklin and Graesser, 1996).  

These attributes makes the agent paradigm potentially very well suited to discrete-

event simulation of complex problems especially where high-level logical reasoning 

is predominant and where the information to specify the problem completely may not 

all be available. 

It is reasonable in a model where agent technology is employed, that two or 

more agents with different knowledge and emphasis be made to collaborate as a 

coherent functional group.  Figure 4-3 shows how such a multi-agent system may be 

organized at its simplest level.  The agents are highly coherent modules and a 

number of them with related functions may be networked together in a loose cluster 

with each agent limited in its view and influence within its problem domain.  There 

is no identifiable central control of the group as this function is distributed amongst 

the agents, embedded within each is its individual limited set of control rules.  Their 

network topology is usually pre-determined and they communicate their requests and 

intentions with each other by message passing.  It may be noted at this point that 

because agents communicate in this manner, they are more naturally suited to 

distributed simulation than traditional distributed processes which tend to be 

constrained by strong, inflexible coupling considered necessary for fast and 

predictable execution. 

Parunak et al (1998) concur that in an agent-based simulation, agents 

‘correspond one-to-one with the individuals being modelled, and their behaviors are 

analogs of the real behaviors’.  This aspect of agent technology has been developed 

further by Kendall (Kendall, 2000; Kendall, 2001) where human roles form the basis 
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of multi-agent system analysis, design, and implementation.  It is also a concept 

integral to the Gaia methodology (Wooldridge et al., 1999) which starts from the 

premise of an organisation.  Such an entity is made up of roles, their relationships to 

one another, and patterns of their interactions.  In particular, agent roles are 

considered to be similar to offices or positions with permissions, responsibilities, and 

rights attached.  Similarly, the Australian AI Institute’s methodology (Kinny et al., 

1996) based on the belief-desire-intention technology has the role as its basic unit of 

abstraction.  Many examples of such role-centred agent systems can be found in the 

papers presented at the Winter Simulation Conference (WSC, 2007) in recent years. 

 

 
 

Figure 4-3: Canonical view of an agent system (Jennings, 2000) 

 

An advantage agent-based simulation holds over traditional discrete-event 

simulation is its ability to emulate human individual and group behaviour.  Although 

discrete-event simulations have included expert systems to model human behaviour 

(Vakas et al., 2001) they tend to be monolithic and can be inflexible in operation, 

difficult to maintain, and are only as good as the rules contained in their knowledge-

bases.  The social sciences have adopted agent-based simulation for investigating 
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social phenomena chiefly because of its ease of use (Davidsson, 2002) and there are 

numerous implementations of agent-based simulations which include the model of  

human behaviour in the decision-making loop.  For the same reasons, this simulation 

paradigm has made it easier to study the group behaviour of a large number of 

entities which interact with each other as well as their dynamically changing 

environment, e.g. micro-robots (Dudenhoeffer and Jones, 2000). 

 

4.4.1 Analysis and design 

As mentioned earlier in Jennings et al. (1998), a field which contributed 

substantially to the development of the agent concept was OO programming and 

concurrent object-based systems.  Its influence is evident in the methods which have 

been employed in the analysis and design of agent systems to date.  They either 

extend or adapt existing OO development methodology to take agents into 

consideration.  Among these agent-oriented methodologies, the more conspicuous 

ones are Gaia (Wooldridge et al., 1999), the AAII methodology (Kinny et al., 1996), 

and Agent UML (Odell et al., 2000).  The evolution of agent-oriented software 

engineering is still at an early stage and it is uncertain how these methodologies will 

develop. 

The Gaia methodology enables a designer to start with an abstract concept 

and work progressively towards a concrete realisation.  For example, starting with 

the abstract concept of the organization, it is broken down into roles which are 

further defined by the four attributes of responsibilities, permissions, activities, and 

protocols.  A role then has to be instantiated with an identifiable individual who may 

have more than one role and may not remain in the same role throughout the life of 

the organization. 

UML is the de facto standard for OO modelling and Agent UML extends 

UML to enable the modelling of agent systems.  The extensions are provided to help 

with the expression of both the interaction of concurrent threads in multi-agent 

systems, and the notion of the role where an agent may play more than one role.  It is 

notable that Agent UML has the active support of the Object Management Group as 

well as the Foundation for Intelligent Physical Agents (FIPA, 2002).  The 

standardization work of these two bodies may further spur the widespread adoption 

of Agent UML for analysis and design of agent systems.   
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4.4.2 Modelling tools 

Because agent-based simulation is relatively new, commercial off-the-shelf 

model development packages are still very rare except for the multi-paradigm toolkit 

AnyLogic (XJTechnologies, 2006).  This is a significant drawback which is likely to 

be overcome in time with the proliferation of agent-based modelling tools which 

have expanded capability.  Generally and currently, building a model still involves a 

great deal of manual coding.  Aerogility (LostWax, 2005), marketed as a specialised 

agent-based tool for decision support in the aerospace aftermarket, does not fall in 

the category of an agent-based modelling package since a model still requires 

considerable bespoke coding in Java by their highly-skilled developers.  In the 

meantime, however, a software framework like Java Agent Development Framework 

(JADE, 2006) and JACK (JACK, 2007), an agent-based integrated simulation 

environment like SeSAm (Klügl et al., 2003), and standardised libraries like 

REPAST and SWARM (Tobias and Hofmann, 2004), can help to ease the modelling 

process. 

 

4.5 Complex adaptive systems 

A Complex Adaptive System (CAS), which has its roots in the biological 

sciences, is essentially a learning system with agents as its basic element.  By 

implication, agents communicate and therefore an agent-based system makes sense 

only if it is a multi-agent system.  As agents interact with each other and with their 

environment, they learn and become more complex over time, and by adapting to the 

pressures imposed upon them, their robustness and reliability are enhanced (Dooley 

et al., 1995).   

CAS is a relatively new field and, inevitably, its definition suffers from the 

uncertainty common to such new research areas.  Dooley (1996) attempted to offer a 

concise definition but it turned out to be a lengthy synthesis of the seminal 

contributions by the principal researchers in this field.  Nevertheless, it is a useful 

working description as it states clearly all the important features of a CAS in the way 

they are currently understood (see Appendix B). 

Because a CAS adapts itself to environmental influences, it is an appropriate 

model for simulating dynamic systems like economies and supply chains which 
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evolve according to fluctuations in business and commerce relationships.  The 

proposal that a supply network emerges rather than result from purposeful design by 

a single entity has been advanced by Choi et al (2001) who also postulated that the 

performance of a supply network can be optimized by combining human managerial 

control and the network’s emergent behaviour.  To investigate the apparently 

spontaneous birth and death of a part or the whole of a supply network and possibly 

to learn how to optimize its performance, Pathak et al (2003) have built a multi-

paradigm simulator using agent technology for that purpose. 

 

4.5.1 Emergent behaviour 

Emergence may be described as the spontaneous appearance of novel and 

coherent properties during the process of self-organization in complex systems 

(Goldstein, 1999).  The emergent property cannot be easily deduced or predicted 

analytically from the properties of the individual components of the system.  For 

example, the shape of a flock of birds cannot be deduced from the behaviour of one 

bird.  It arises out of interactions between the components and it is because such 

interactions increase combinatorially with the number of components in the system 

which makes emergent behaviour in large systems unpredictable.   

The element of unpredictability in large multi-agent systems may be of 

immense benefit in the study of group dynamics, e.g. crowd behaviour in a confined 

space, or investor behaviour in a stock market, but becomes a severe drawback in 

engineering where results must be predictable and repeatable. 

 

4.6 Use and misuse of agents 

Wooldridge and Jennings (1999) warn that, despite its appealing versatility 

and the intense enthusiasm of the research community to establish its use, agent-

based software should not be used indiscriminately.   Recognizing this, Macal and 

North (2006) provide some hints regarding the type of problems where agents may 

be used to good effect. 

In coming to a decision whether to use or not to use agent technology, both 

technical and non-technical issues must be considered (Jennings and Wooldridge, 

1995; Taylor et al., 2005) if its usefulness is to be realised in practice.  When wider 
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system issues are taken into account, it is possible that other modelling paradigms 

like traditional discrete-event modelling or SD may turn out to give a better solution 

in a shorter time.  It would be too optimistic to view agent technology as the silver 

bullet or philosopher’s stone for all the difficulties likely to be encountered in 

simulation modelling today.  It needs to be borne in mind that “intelligent agents are 

ninety-nine percent computer science and one percent AI” (Etzioni, 1996) which is 

taken to mean that conventional software technologies and techniques should not be 

neglected but should instead be exploited as much as possible even within an agent-

based implementation. 

There are situations when full-blown agents should not be used and it is 

important to note them.  Jennings (2000) points to the existence of systems where 

predictability is a desirable property and which must be guaranteed.  Because of its 

inherent capability of autonomous action, there is considerable scope for unexpected 

behaviour to emerge in a multiagent system.  A consequence of this is that response 

times cannot be guaranteed.  It may therefore be necessary to curtail an agent’s 

power of self-determination thus making it more like a conventional passive object. 

Another instance where it is inappropriate to employ agent technology is in 

systems where only a single thread of control exists (Wooldridge and Jennings, 

1999) as agent systems are multithreaded so that they can be executed in parallel. 

This is in opposition to the philosophy of agent technology even though serializing 

the execution of a program can ensure repeatable results and sometime improve 

performance.  

 

4.7 Summary 

The concept of the agent has sprung from the closely related areas of AI, 

object-oriented programming and concurrent object based systems, and human-

computer interface design.  While AI has focused on the depth of research in the sub-

fields of intelligence, agent research tends to involve the wider issues of intelligent 

systems. 

Although none exists yet, there is a developing consensus for the definition of 

an agent as originally proposed by Wooldridge (1997) and restated by Jennings 

(2000). 
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There is a broad spectrum of agents which may be categorised by their 

architecture.  Reactive agents must be completely specified at design time and they 

respond in real-time to changes in their environment.  In contrast, deliberative agents, 

which are closely related to traditional AI systems, can give correct results in the 

absence of complete information but they take too long for their responses to be 

useful. 

The reactive subsumption architecture can result in the type of complex 

behaviour normally expected of deliberative agents.  It achieves this even though the 

computation it does to transform an input into an action is a just simple mapping 

which may be in the form of a lookup table or a set of condition-action rules. 

The hybrid reactive-deliberative architecture makes use of the strengths of the 

constituent architectures while avoiding their weaknesses.  The principle of layering 

according to agent function can be applied to simulation models as well. 

Agent-based simulation has reached the point in its development where it is 

ready for commercial use.  However, its progress is hindered by the severe lack of 

commercial-grade modelling tools.  

Agents are centred on roles and tend to operate at a high level of logical 

reasoning.  It is evident from the methodologies for analysis and design that the role 

is the basic unit of abstraction in agent systems. 

A Complex Adaptive System is a multi-agent system which evolves over 

time in response to the changes in its problem environment.  This concept seems to 

match the requirements of the supply chain well. 

Emergent behaviour in multi-agent systems is usually unpredictable and is 

unlikely to be of benefit to engineering problems. 

Although agent technology is versatile, it is not the panacea for all present 

difficulties in simulation modelling.  One must be wary of the common pitfalls when 

employing this technology. 
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Chapter 5 

Software Metrics 

5 SOFTWARE METRICS 

5.1 Introduction 

Measurement underpins the engineering process and ever since there has 

been the need to control software projects, metrics have been developed to help meet 

that need.  Having existed as a subject in its own right for more than 50 years, 

software metrics has grown to such an extent that it is necessary to sub-categorise it.  

A useful scheme is to sub-divide metrics into those measuring properties which are 

either internal or external to the software (Fenton and Pfleeger, 1997).  Objective 

and quantitative metrics like the ‘McCabe cyclomatic number’, for determining the 

structural complexity of program code, and ‘lines of code’ (LOC), for gauging 

program size, are internal properties while the more subjective software quality 

metrics like ‘maintainability’ and ‘usability’ are external.  While internal properties 

provide indicators which are more useful to the software developer, external 

properties tend to be of greater importance to the software user. 

Programming language plays an important role when measuring software 

internal properties and this is especially significant when moving across language 

generations – from assembly to procedural to object-oriented and to agent-oriented 

languages.  It also needs to be considered when comparing two or more programs 

that the metrics selected to characterise them are themselves not strongly related to 

the programming paradigms.  To ensure a like-for-like comparison this principle 

must be followed as closely as practicable. 

For a metric to be useful, it must be employed in the limited context in which 

it was originally validated.  Just how useful a metric is can be determined by the 

degree to which it helps a user make a decision (DeMarco, 1982). 
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This chapter considers chiefly those aspects of software metrics which are 

likely to be useful to this study.  As it is software code rather than its development 

process which will be considered, it is product metrics and not so much process 

metrics which will be the area of focus.  The remainder of this chapter is set out as 

follows – metrics for program size, models for software quality, the maintainability 

quality factor, the measurement of software complexity, module coupling and 

cohesion, the effect of programming languages on metrics, and finally some code 

metrics for object-oriented languages are presented. 

 

5.2 Program size 

Although program size is a simple concept, this benchmark is fraught with 

difficulties.  Traditionally, it has been quantified by the number of lines of code and 

it has been the metric widely adopted throughout the software industry.  This section 

will consider how this metric has been used and how it may be adjusted to account 

for the different programming languages. 

 

5.2.1 Lines of code 

Among the very early software metrics to be put to commercial use for 

estimating development effort, and even program complexity, is ‘lines of code’ 

(LOC).  It is primarily a measure for program size and its long and widespread use 

has validated it to the extent that Basili and Hutchens (1983) proposed that it should 

be used as the ‘null hypothesis’, or benchmark, against which other metrics were to 

be compared.  It is chiefly for this reason that LOC is considered here. 

Despite its pedigree, LOC is not as well-defined as it should be.  This may be 

attributed mainly to the existence of a variety of textual programming languages as 

well as visual programming languages which generate code automatically behind the 

user programming interfaces.  Also, in the absence of any formal or informal 

standards, the definition of what constitutes a LOC is unclear.  As a typical program 

can contain multi-statement lines, as well as data declarations, multi-line comments 

and blank lines which do not execute program function, simply counting the number 

of lines laid out on a page can diminish this metric’s usefulness. 
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There is a need to remove such ambiguities and to that end, Park (1992) has 

developed a framework for program size measurement which includes some 

comprehensive checklists to help decide what should be included in a LOC count 

under different conditions.  Broadly, these conditions recognise that code may be 

manually written, automatically generated or translated, or reused from a library 

since the LOC metric can be used as a measurement of programmer productivity.  

The benefits of providing a flexible measurement framework for LOC count are 

clear – it enables the consistent communication of requirements across a software 

project and it ensures the repeatability of LOC measurements. 

LOC has been used traditionally for gauging programmer productivity, as 

LOC per unit time, with procedural languages like FORTRAN and C.  It becomes 

invalid when used on its own to compare the productivity of different programmers 

using different languages (Jones, 1994).  According to this measure, when 

implementing the same functions both in a low-level language like Assembler and in 

a high-level language like Java, a programmer can be shown to be less productive in 

the high-level language when all other factors remain the same.  This is misleading, 

counter-intuitive, and exemplifies the effect of carelessly using a metric out of its 

validated context.  Similarly, the productivity of a programmer using a visual 

programming environment can be grossly overstated if LOC of the automatically 

generated code is used as the only measure. 

In a modular language, it may be more pertinent to count procedures and 

sub-routines instead of LOC.  For object-oriented programs, a more accurate size 

metric has been shown to be the count of objects and methods (Lorenz, 1993), or 

classes and functions (Williams, 1994). 

 

5.3 Software quality 

In general terms, quality is taken to mean nothing more or less than 

conformance to requirements or, defined more specifically by the International 

Standards Organization (ISO), it is an attribute which a product or service must have 

to meet the needs and expectations of a customer (ISO, 1991).  Quality viewed as 

fitness for a user’s needs is also favoured by Kitchenham (1989).  Practically, 

quality is a composite of numerous overlapping attributes (Fenton and Pfleeger, 
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1997) and its notion is best illustrated by a model.  Some general software quality 

models are presented in the following section. 
Depending on his role, whether as manager, implementer, or end-user, a 

customer places different degrees of importance to the different quality attributes.  

While these attributes may be quantified, their value or weight will vary according to 

how they are perceived.  For example, an end-user will place high importance on 

usability, reliability, and execution efficiency while a software developer will view 

maintainability, reusability, and interoperability to be more desirable.  More than 

that, in a set of desirable attributes, some of them can be potentially contradictory 

(Conte et al., 1986).  For example, generalising a program so that it can run on 
different devices will tend to make it run slower on any of the devices.  Conversely, 

increased efficiency often comes at the price of decreased portability, 

understandability, and maintainability.  Therefore, while it is easy to contrive a 

single metric for overall software quality, it must be recognised that for the reasons 

just described such a rating cannot be universally useful (Boehm et al., 1980; Boehm 

et al., 1976). 

 

5.3.1 Software quality models 

Among the early software quality models, the two which have most 

influenced the development of software quality metrics are those of Boehm et al 

(1980) and McCall et al (1977).  They are similar in some respects.  Their 

hierarchical nature, clearly displaying the decompositional approach both have 

taken, are shown in Figure 5-1 and Figure 5-2 respectively.  In both models, the 

same pattern of decomposing into three levels of abstraction can be seen.  The 

hierarchical levels common to both models are –  

• The manner of software usage and it may be categorized by the 

following questions –  

o How well can it be used as it is? 

o How easy is it to maintain? 

o How well can it be used if its environment is changed? 

• Quality factors. 

• Software primitives or attributes 
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. 

 
Figure 5-1: Software quality characteristics tree (based on Boehm et al., 1980) 
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Figure 5-2 : Software quality model (based on McCall et al., 1977)  
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As the quality factors, e.g. usability, testability, and portability, are still too 

abstract to be quantified meaningfully, they are decomposed further into attributes or 

primitives which are highly differentiated with respect to each other.  The necessity 

of doing that is shown in the figures that the quality factors are not mutually 

exclusive but can consist of two or more key primitives which are sometimes shared 

with other quality factors. 

A software quality milestone was reached in 1991 with the publication of 

ISO 9126 which used McCall’s model as its basis.  Some of the primitives are 

assigned to different quality factors in the two models.  ISO 9126 is the first 

international standard providing a global common framework for evaluating 

software quality and has remained unamended even though it has subsequently been 

assessed as ambiguous and incomplete (Al-Kilidar et al., 2005; Jung et al., 2004). 

Although these three models differ in detail and do not always map directly 

onto each other, their quality factors may be broadly viewed as functionality, 

reliability, efficiency, usability, maintainability, and portability.  They are claimed to 

be comprehensive (ISO, 1991) and it may be inferred that an aspect of software 

quality can be described adequately by one or more of them.  Particular attention 

must be exercised when comparing these models as the terms used are not always 

equivalent in definition.  For example, ‘understandability’ is defined from the 

software developer’s aspect in Boehm et al’s model while the same term is 

considered from the software user’s viewpoint in ISO 9126. 

A software quality programme based on any of the three fixed models just 

presented need not include all their quality factors.  The nature of the software to be 

developed, maintained, or procured will determine which of the factors are relevant, 

and the perceived degree of importance will determine how much each factor should 

be weighted (Fenton and Pfleeger, 1997).  Although assigning numerical quantities 

to quality factors appears objective, it is subjective in practice.  However, its value is 

realised in providing a common and consistent quality framework to all members of 

a software project team. 

An alternative to the fixed model or ‘big-bang’ approach, where all the 

required attributes are defined and fixed at the start, is to define the attributes and 

build the quality model incrementally as a software project progresses.  As the 

requirements for a project are changed, so new attributes are defined with suitable 
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and objectively measurable quantities to expand the scope of the model.  In contrast 

to the inflexibility of the fixed model approach, the time horizon of this incremental 

method is short and there are opportunities for change during the course of a project.  

Therefore, it is more efficient and more likely to result in a closer fit to the project 

quality requirements.  This adaptive approach pioneered by Gilb (1988) and 

extended by Kitchenham and Walker (1989) provides a good fit to the evolutionary 

nature of software development. 

 

5.3.2 Maintainability 

It is well established that software maintenance costs typically varies 

between 50% and 65% of overall lifetime costs (Guimaraes, 1983; Nosek and 

Palvia, 1990; Somerville, 2001).  Of the activities included in the maintenance phase 

(i.e. post-implementation and delivery), enhancement and adaptation activities can 

make up more than 80% of the maintenance effort (Krogstie et al., 2006).  To be 

able to complete these activities, it is necessary to understand the software first, and 

then to modify and test it (Boehm et al., 1980).  Focusing on the maintainability 

aspect of software quality is justified since maintenance activities comprise a large 

proportion of software lifecycle time and expenditure. 

It is logical to assume that the lower the complexity of the software, the less 

mental effort is required to understand it, and hence the more maintainable it is.  

Over a number of years, a large amount of software metrics has been collected on 

various software applications with the intention of describing maintainability using a 

single quantity.  One such representation which is commonly used in software 

project quality assurance programmes is the Maintainability Index given by Oman 

and Hagemeister (1992) as –  

 

 
Maintainability Index  =  171 – 3.42ln(aveE) – 0.42avev(F) 

     – 16.2ln(aveLOC) + 0.99aveCM 
(5-1)

where aveE is the average Halstead Effort per module 

 avev(F) is the average extended cyclomatic complexity per module 

 aveLOC is the average lines of code per module 

 aveCM is the average number of lines of comments per module 
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The metrics for Halstead Effort and the extended cyclomatic complexity are 

described in Sections 5.4.1 and 5.4.2 respectively. 

It has been contended that despite the large body of data on which the 

Maintainability Index is based on, it should nevertheless not be used on its own but 

must be used in conjunction with an estimation based on the ‘man-in-the-loop’ 

(Welker, 2001).  In this regard, the Delphi Method (described in Section 5.3.3), a 

method which can bring about the near-consensus agreement of a group of experts 

when applied well, has been used successfully to estimate quantities for problems 

where full knowledge is lacking.  The well-established COCOMO (Constructive 

Cost Model) methodology (Boehm, 1981) for estimating software project cost and 

schedule is built on the usage of historical project data together with expert input 

obtained from Delphi estimation sessions.  A variant of Boehm’s Delphi method is 

frequently employed in software project estimation (Stellman and Greene, 2005) 

where the views of experts are used as surrogates for high quality project data. 

 

5.3.3 The Delphi Method 

The Delphi Method has its roots in The RAND Corporation in the early 

1950s when it started to be developed as an interactive method for forecasting future 

trends in the ‘inexact sciences’ like social science and political science (Helmer-

Hirschberg and Rescher, 1958).  Since then, it has been adapted for estimating task 

requirements in a variety of industries, usually in their sales and marketing activities.  

It has also proven to be especially effective when employed for scheduling activities 

in a software project plan (Stellman and Greene, 2005), for example, by estimating 

the time and human resources needed for developing a new software system or 

enhancing an existing one.  The philosophy of the Delphi Method, as well as an 

evaluation of the technique and description of example applications is more than 

adequately covered in numerous textbooks.  One of the popular and heavily 

referenced text, by Linstone and Turoff (2002), is also freely available online. 

A tenet of the Delphi Method is that the consensual opinion reached by a 

relatively small panel of relevant experts participating anonymously in a controlled 

debate is more likely to give an accurate answer than one elicited from an individual.  

Further, because of the small number of participants involved in the execution of this 

method, it is accepted that it cannot produce statistically significant results, nor is 
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that its intention (Brown, 1968; Gordon, 1994).  Together with the participants’ 

input of experience and intuition, a significant portion of its value lies in the inherent 

capturing, generation and synthesis of ideas in the iterative process of reaching 

consensus.  Thus, anonymity to minimise the influence of psychological factors such 

as specious persuasion and the bandwagon effect, and feedback of information to 

encourage close, collective reasoning of an argument, are the two irreducible 

elements of the Delphi Method (Gordon, 1994).  

While details of specific applications of the method may vary from one 

instance to another, the underlying principle of the Delphi process remains 

unchanged and may be described as follows (Brown, 1968; Gordon, 1994) –  

• After a problem has been identified, between three and seven experts 

(Stellman and Greene, 2005) from disciplines related to the problem are 

invited to participate.  They are assured that the statements they make will 

not be attributed by name. 

• The problem is described to the participants at the first, or ‘kick-off’, 

meeting.  They are also given the initial questionnaire with the expressed 

expectation that they will work independently and provide their responses, 

as well as the degree of confidence in their scores, within a set timeframe. 

• The scores to the questions are collated and analysed.  If the results for a 

question differ greatly, the participants at the extreme ends of the range, 

i.e. outside the interquartile range (Brown, 1968), are invited to give a 

reasoned reassessment of their scores in view of the opinions returned by 

the other participants.  This phase of the process is usually repeated and 

the questions may be refined according to the feedback obtained from the 

questionnaire. 

• When the range of scores for a question is judged to have converged 

sufficiently, the median value is taken as the consensus score. 

The application of this method for estimating software maintainability is 

described in greater detail in Appendix E. 

5.4 Software complexity 

As opposed to indirect metrics such as the software quality factors 

considered earlier, software complexity deals with the direct measurement of 
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software attributes.  It is important to be able obtain a measure of complexity as it is 

this characteristic of a body of software which can subsequently give rise to 

problems when it has to be understood, modified, tested, executed, and used. 

There are numerous complexity metrics in existence and they may fall in any 

of the four categories (Fenton and Pfleeger, 1997) listed below –  

• Problem or computational complexity – the complexity of the underlying 

problem. 

• Algorithmic complexity – the complexity of the implemented program 

code to solve the problem. 

• Structural complexity – the complexity of structure of the program code 

used to implement the algorithm. 

• Cognitive complexity – the effort required to understand the program 

code. 

Frequently, when complexity is mentioned in the software context, it is 

structural complexity which is meant.  The same meaning is adopted in this thesis.  

Structural complexity  may be decomposed further into three parts (Fenton and 

Pfleeger, 1997) –  

• Control-flow structure – the sequence in which program code is executed. 

• Data-flow structure – the trail of a data item as it is handled by a 

program. 

• Data structure – the organisation of the data itself. 

 

5.4.1 Halstead software science 

The earliest metrics based on a coherent model of complexity was Halstead’s 

software science (Halstead, 1977) which merged theories from computer science 

with those from cognitive psychology.  Halstead proposed a set of metrics consisting 

of measures such as program length, vocabulary, volume, level, difficulty, and 

programming time.  Of special interest is the metric for programming effort, E, 

which is still often used as the surrogate for program complexity in computation 

intensive applications.  It is shown in Equation (5-2) and is described as the mental 

effort needed to understand and code a program and this quantity is estimated as –  
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where μ1 is the number of unique operators 

 μ2 is the number of unique operands 

 μ =  μ1  +  μ2 

 N1 is the total occurrences of operators 

 N2 is the total occurrences of operands 

 N =  N1 + N2 

 

Although the set of Halstead metrics was implemented and used in numerous 

automated metric gathering tools, it has largely faded from view because its 

underlying theories have been shown to be questionable (Coulter, 1983).  In 

addition, Bowen’s study (Bowen, 1978) of detected errors in program code 

concluded that Halstead’s program length, N, had a weaker correlation between 

actual and predicted results than McCabe’s cyclomatic number.  An inherent 

weakness of this metric model was its strong dependence on the procedural 

programming languages which therefore diminished whatever remained of its 

validity when applied to other programming paradigms.  The widespread adoption of 

object-oriented programming languages from the early 1990s has made Halstead 

software science metrics largely irrelevant. 

 

5.4.2 McCabe’s cyclomatic number 

A metric for structural complexity is less dependent on programming 

language than the Halstead software science metrics.  One such metric is McCabe’s 

cyclomatic number (McCabe, 1976) which is still widely used as it has been shown 

to give good correlation with software quality factors like maintainability and 

testability (Grady, 1994). 

The control flow of a program module can be represented as a flowgraph 

containing nodes and edges where the nodes are logic decision points and the edges 

are blocks of code between the decision points.  The cyclomatic number, ν, for a 

module is calculated as –  
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where the flowgraph F has e edges, n nodes, and p connected components.   

 

For a module with no procedure or sub-routine calls, p has a value of 1.  In 

general, for a collection of flowgraphs, C, with k connected components, the 

cyclomatic number for them is calculated as –  
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k

iCC
1
νν  (5-4)

Equation (5-4) states that the cyclomatic number for a collection of 

connected flowgraphs is just a simple summation of the cyclomatic number of each 

of the connected components. 

The cyclomatic number, ν, is also a measure of the number of linearly 

independent paths through the flowgraph.  For this reason, ν may be used as a metric 

for the basis or minimum number of test cases to be executed for a module to ensure 

complete coverage.  McCabe (1976) suggested from empirical evidence that a value 

of ν greater than 10 indicated likely problems with module testability, and hence 

maintainability.  Similarly, Grady (1994) concluded from a large-scale study of 

FORTRAN code that an upper limit of 15 should be enforced. 

Calculating ν for a large module using Equation (5-3) or Equation (5-4) can 

be very onerous for the reason that a flowgraph has to be constructed first.  To 

enable the automated calculation of ν from program code syntactic constructs, 

McCabe (1976) demonstrated that for a module with one connected component, ν 

could be simplified to – 

 

 ν(F) = d + 1 (5-5)

where d is the total number of predicates, or decision statements, at the 

decision points.  As only a total count is needed of logic predicates at points where 

program branching occurs, Equation (5-5) enables the automated determination of ν 

from program code to be made by another program, thus speeding up the calculation 

dramatically. 
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A drawback of ν is that it can only be evaluated late in the traditional 

software lifecycle, that is, at or after the coding stage and not before that.  However, 

McCabe and Butler (1989) proposed a design complexity metric based on the same 

principle as the cyclomatic number but applied at the earlier design stage to a 

software structure chart in which the logical connections of the software modules are 

laid out.  Although mathematically rigorous, it has not been adopted by software 

practitioners possibly because of the cumbersome task of having to reduce the 

structure chart iteratively before the cyclomatic number can be calculated. 

It may be noted that McCabe’s cyclomatic number is meaningful only when 

calculated for programs where the program control structure is fixed at compile time 

and thereafter.  Data-driven or agent-based programs are capable of reconfiguring 

the control structure during program execution.  Thus their structural complexity, 

and their cyclomatic number by implication, may not remain constant in the course 

of a single run.  For this class of program, McCabe’s cyclomatic number will not be 

valid as a measure of software quality with particular reference to program 

reliability. 

 

5.4.3 Henry-Kafura’s information flow complexity 

Where McCabe’s cyclomatic number is concerned with complexity within a 

single module or several connected modules, the Henry-Kafura (H-K) information 

flow complexity metric (Henry and Kafura, 1981) deals with inter-module 

information flow.  As this metric works at the module call-graph or system structure 

chart level, it enables information flow complexity to be estimated early in the 

traditional software lifecycle, that is, at the design stage. 

The metric for each system module is calculated using Equation (5-6) and 

those modules which have excessively high H-K values are marked out as 

possessing high risk of encountering maintenance problems during their lifetimes.  

To support this assertion, Henry and Kafura (1981) noted in their study on the UNIX 

operating system that modules with a high H-K value correlated with those having a 

record of high maintenance changes. 

For a module, M, the H-K information flow complexity is calculated as – 
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information flow complexity (M) 

                = ( ) ( )( )2)()()( MoutfanMinfanMlength −×−×  
(5-6)

where length is the module length measured in LOC. 

 fan-in is the number of local flows terminating in M plus the 

number of global data structures from which information is 

retrieved by M. 

 fan-out is the number of local flows emanating from M plus the 

number of global data structures updated by M. 

 

The HK quantity also indicates a module’s degree of connectedness with 

other modules.  It follows that a high H-K value signals a high likelihood that a 

change made in the module will ripple out to the adjacent modules and beyond.  

However, Equation (5-6) shows that a H-K value of zero can result when either the 

fan-in or fan-out value is zero.  This can be misleading, for instance, in the case 

where fan-in is zero and fan-out is large and positive thus clearly indicating that the 

module affects other modules even when the H-K value of zero points to the 

module’s isolation. 

The model for this metric, initially presented in Henry and Kafura’s seminal 

paper of 1981 has been studied in depth and has been refined and simplified 

(Shepperd and Ince, 1989) resulting in the following expression –  

 

 
Shepperd complexity (M)  

                              = ( )( ) ( )( )( )2MoutfanMinfan −×−  
(5-7)

 

They proposed a number of refinements about the inclusion and exclusion of 

modules, and local and global data structures.  In particular, module length was left 

out because its inclusion in Equation (5-6) made the right-hand side into a hybrid 

expression – fan-in and fan-out could be determined at design time while length 

could only be determined at coding time at the earliest.  It was only valid to use 

Equation (5-6) after code has been produced, thus obviating the original intention of 

estimating system complexity earlier in the software lifecycle. 
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In validating the results obtained using Equation (5-7) against real data, it 

was found to correlate well with the H-K metric.  More than that, it exceeded the 

accuracy of the H-K metric for estimating software development time significantly 

(Shepperd and Ince, 1989). 

 

5.4.4 Module coupling and cohesion 

The aim of the structured design approach, which consists of techniques and 

considerations for program design, is to make the software implementation process 

less complex, more maintainable, and hence less costly (Stevens et al., 1974).  The 

need to divide a software system into modules also brings with it the natural need to 

determine how best to partition it while minimising inter-module communication.  

Stevens et al’s seminal paper introduced the two important concepts of external 

coupling and internal cohesion.  In addition to the stated aims of structured design 

mentioned by Stevens et al. (1974), a common objective of minimising coupling and 

maximising cohesion is to encourage and ease software reuse.  The great impact 

which these two software properties can have on software quality were noted by 

Bowen et al. (1983) when they observed that 5 of the 11 quality factors in McCall’s 

software quality model (see Figure 5-2) were directly dependent on coupling and 

cohesion.  These five quality factors, i.e. maintainability, flexibility, portability, 

reusability, and interoperability, are important when software is being revised or 

moved from one computer system to another. 

External coupling is the degree of the interdependence between software 

modules.  The fewer and simpler are the connections between the modules, the 

easier it is to understand one module without reference to the others.  To date, there 

is no recognized standard measure for coupling.  Fenton and Pfleeger (1997) list six 

categories of coupling on an ordinal scale from most to least desirable.  Relation R1 

and R2 are classified as loosely coupled while R4 and R5 are tightly coupled.  The list 

of coupling categories is shown in Table 5-1. 

Internal cohesion is the extent to which the different components of a module 

are needed to perform the same task.  Both Stevens et al. (1974) and Yourdon and 

Constantine (1979) present almost identical lists of degrees of module cohesion on 

an ordinal scale from most to least desirable.  They are shown in Table 5-2.  
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A module may exhibit one or more types of coupling and cohesion.  Where 

that is true, the module is categorized by the least desirable type of coupling or 

cohesion. 

 
Table 5-1: Types of coupling (Fenton and Pfleeger, 1997) 

Relation Coupling type Description 

R0 No coupling There is no communication between the modules, i.e. they 
are totally independent of each other. 

R1 Data The modules communicate by parameters using either a 
single data element, or a homogeneous set of data items 
which have no control elements. 

R2 Stamp The modules accept the same record type as a parameter. 

R3 Control One module passes a parameter (or flag) to another with the 
intention of controlling its behaviour. 

R4 Common The modules refer to the same global data.  Although 
convenient, this type of couple is undesirable as a change to 
the format of the global data will require all common-coupled 
modules to be changed as well. 

R5 Content One module branches into the inside of another module and 
alters the content. 

 

 
Table 5-2: Types of cohesion (Yourdon and Constantine, 1979) 

Cohesion type Description 

Functional The module performs a single well-defined function. 

Sequential The module performs more than one function and they occur in the order 
prescribed by the specification 

Communicational The module performs more than one function but all on the same body 
of data which is not organized as a single type or structure. 

Procedural The module performs more than one function and they are related only 
to a general procedure affected by the software. 

Temporal The module performs more than one function and they are related only 
by the fact that they must occur within the same timespan. 

Logical The module performs more than one function and they are related only 
logically. 

Coincidental The module performs more than one function and they are unrelated. 
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5.5 Programming languages and paradigms 

The history of computer programming languages does not appear to have a 

clear taxonomy which may be used to outline their development.  A reason why may 

be that a new programming language is often the confluence of two or more earlier 

languages as well as of the ideas being circulated at the time.  Very broadly, a 

programming language may fall wholly or largely into one of the programming 

paradigms, i.e. procedural (or imperative) programming, object-oriented (OO) 

programming, logical programming, or functional programming.  It may further be 

classified according to its intended area of use which, for instance, may be as a 

system programming language, concurrent/distributed programming language, 

scripting language, or as a general purpose language.  As examples, under this 

method of classification, Java may be described as an object-oriented concurrent 

programming language and C a procedural system programming language. 

The choice of language used for a program can affect its quality.  An 

empirical study comparing seven programming languages (Prechelt, 2000), showed 

significant differences in program size and structure, execution efficiency, and 

reliability  between procedural, object-oriented, and scripting languages.  Although 

the reported results were not counter-intuitive, the contribution to the results due to 

programmer capability was not thought to be significant even though productivity, 

as measured in LOC per hour, varied greatly within languages.  Prechelt’s study 

involved relatively small samples for each language and should therefore be taken as 

indicative rather than definitive.  To reduce the variation in programmer capability, 

the outliers can be filtered out using the large body of language productivity data, in 

LOC per function point, collated by Jones (1996). 

The Ada language was an outcome of the cost of software maintenance crisis 

experienced by the US Department of Defense in the 1970s.  It was recognized that a 

well-designed language can increase productivity, maintainability, and reliability.  

Ada is a strongly typed language and provides support for a wide range of compile-

time checks so that errors can be detected early during coding (Barnes, 1996). 

Together with the language features, the processes of standardizing Ada and 

rigorously validating its compiler and tools have combined to enable software of 

high quality to be implemented. 
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Until the early 1990s, research on software metrics was founded on the 

commonly used procedural languages like FORTRAN, COBOL, and C.  The advent 

of OO programming and its wide acceptance by industry in general, compelled 

researchers to question the continuing validity of those measures.  It was recognised 

that there were fundamental differences between procedural and OO languages.   

There are concepts in OO languages for which procedural languages have no 

equivalence – for example object, class, attribute, inheritance, and message passing.  

Despite this, traditional metrics like LOC and McCabe’s cyclomatic number can still 

be applied meaningfully at the lowest level of an OO program. 

 

5.6 Object-oriented software metrics 

The relevance of considering metrics for OO software is that almost all 

agent-based simulation models are implemented in an OO programming language 

like Java or C++ rather than a procedural language like FORTRAN and C.  To 

address the features which distinguishes OO programming from the other 

programming paradigms, a set of six candidate measures were proposed by 

Chidamber and Kemerer (1991) and these measures have formed the basis of much 

research in this area.  The suggested Chidamber-Kemerer (C-K) metrics were –  

• Weighted methods per class (WMC) – sum of the complexity of each 

method within a class.  WMC is usually calculated by an adding up the 

McCabe cyclomatic number for each method in the class. 

• Depth of inheritance tree (DIT) – one may infer that design complexity 

increases with tree depth and that the software is less maintainable the 

deeper the tree. 

• Number of children (NOC) – a high value implies a low level of reuse 

because of the high degree of dependency.  It therefore leads to decreased 

testability and maintainability. 

• Coupling between objects (CBO) – the extent of non-inheritance 

coupling between objects of different classes.  A high value indicates low 

modularity and hence low maintainability. 
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• Response for a class (RFC) – the number of methods invoked in response 

to a message.  A high value implies difficulty in testing and therefore 

decreased maintainability. 

• Lack of cohesion of methods (LCOM) – the number of disjoint sets of 

methods in a class.  Ideally, there should be only one set of methods in a 

class.  A high value indicates bad class subdivision and a low degree of 

encapsulation. 

Li and Henry (1993) reported that the correlation between maintenance effort 

and the C-K metrics was better than that for the null hypothesis, i.e. the LOC metric.  

More significantly, they also reported that the quality of the C-K metrics was good 

enough to enable a prediction of maintenance effort to be made. 

Although the whole set of C-K metrics are normally used to characterise a 

body of OO software, some of these metrics may nevertheless be applicable to 

procedural language software which has highly structured and modular design.  For 

example, a module written in C containing a number of procedures and functions 

may be structured and used in a similar manner to an OO class with numerous 

methods.  Similarly, a message to a C module can initiate the execution of a number 

of procedures and functions, much like the response of an OO class after receiving a 

message.  Therefore, it is not unreasonable to use the two C-K metrics, WMC and 

RFC, for procedural language software. 

 

5.7 Summary 

Software metrics may be categorised as those measuring the internal or 

external properties of a program.  For such metrics to be useful and meaningful, they 

must be employed in the context in which they were originally validated. 

Program size is usually measured as lines of code and is considered as the 

benchmark metric for program size.  Care must be exercised to determine what 

should be counted as a line of code.  Although LOC has been popular as a software 

metric for many years, it can be unhelpful and misleading when used to compare 

programs implemented in different programming paradigms.  It is sometimes better 

to use modules, e.g. procedures and classes, as the basic unit of program size since it 

is less language dependent. 
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Software quality is a composite of several overlapping attributes which are 

perceived and prioritised differently by people in different roles.  Therefore it is not 

likely that a universally recognised, meaningful and useful quality metric can be 

represented using a single number.  The Boehm, McCall, and ISO 9126 software 

quality models are hierarchical and they use broad factors to characterise quality.  

These factors are decomposed into primitives to which numerical values can be 

assigned.  An alternative to managing software quality during the course of 

development is to use a model which is amended incrementally.  It enables closer 

control than the fixed model. 

Programming language can affect software quality such as maintainability, 

execution efficiency, and reliability.  In addition to that, the use of a well-designed 

language like Ada together with its validated tools can increase productivity. 

Maintainability is important because software maintenance is costly and 

time-consuming.  The estimation of this software quality needs to be built on 

historical data as well as the input of human experts.  The Delphi Method, an 

established process for eliciting opinions from human experts, provides the means 

for reaching consensus. 

The measurement of complexity is essential to the understanding of a body 

of software.  Structural complexity, the most prominent of the four aspects of 

software complexity, can be decomposed into control-flow and data-flow. 

The metrics of Halstead software science are based on program elements 

such as the number of operators and operands.  They have fallen into disuse after 

object-oriented programming became established. 

McCabe’s cyclomatic number concerns control-flow structure and is very 

simple to extract from program code.  It is still widely applied to procedural 

language programs and the lowest levels of object-oriented programs. 

The Henry-Kafura metric deals with information flow between a group of 

related modules.  It can be used to identify areas of high complexity, and hence 

potential future trouble spots early in the software lifecycle, i.e. at the time of design 

rather than after coding.  However, its lack of a rigorous definition can sometimes 

result in anomalies.  A better metric for information flow is the Shepperd 

complexity.   
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An alternative, high-level, and ready measure of system complexity is the 

degree or quality of coupling between modules and cohesion within a module.  

These two software properties are important as they are an influencing factor in 

about half of the McCall’s software quality factors.  

Some metrics cannot be used outside their programming paradigm.  There 

are some concepts in object-oriented language which have no equivalents in 

procedural languages. 

Not all the metrics described in this chapter can be used within the context of 

the research as stated earlier in Section 1.4.  Those which are to be used to compare 

the agent-based model with the discrete-event model are set out later in Section 

6.4.1. 
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Chapter 6 

Case Study 

6 CASE STUDY 

6.1 Introduction 

The subject of this research coincided with one of the areas of investigation in 

the IPAS Project (IPAS, 2007).  As the aims of IPAS and this research were also 

closely similar, it was therefore considered reasonable for the work to become an 

integral part the project. 

The central object of this research is to compare an agent-based model with a 

traditional discrete-event model, both of which have been implemented to the same 

functional specification.  To start towards that goal, a non-trivial, representative, and 

realistic case study scenario needed to be selected and it was found in an existing 

study of an engine fleet global repair operation for the Trent 800 which had been 

carried out by Rolls-Royce plc (RR).  A study such as this can help, early in the 

engine lifecycle, i.e. at the design stage, in understanding how to increase flying 

time, decrease maintenance cost, reduce stocking of spare parts, and thereby make 

Rolls-Royce’s TotalCare® and CorporateCare® commercial arrangement of ‘power 

by the hour’ more profitable. 

In addition to a description of the case study scenario and a description of the 

Java agent-based model and the data required to run it, this chapter contains a further 

two sections which present the implementation of the traditional discrete-event 

model, and the empirical results from the agent-based model and the discrete-event 

model. 
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6.1.1 The case for a case study 

Research into a software topic may typically be classified as one of the three 

techniques – a formal experiment, a case study, or a survey.  As a survey is a 

retrospective study, the only action it can take is to record situations fixed in time so 

as to obtain a body of statistically significant data.  Since it considers events which 

have passed, the factors of interest in a survey cannot be manipulated.  By contrast, 

an experiment is a controlled investigation where factors of interest are manipulated 

with the intention of capturing information about all possible cases (Fenton and 

Pfleeger, 1997).  It may also be noted here that a research method is reflected in its 

scale (Kitchenham et al., 1995).  As an experiment requires close and detailed 

control, it tends to involve small quantities.  Again, by contrast, a survey tries to 

gather data over large groups of projects.  

A case study is not as rigorous and controlled as an experiment nor is the 

amount of data gathered as large as that of a survey.  Unlike an experiment or a 

survey, the subject of its investigation is a software project typically encountered in a 

specific area of application.  In terms of scale, a case study lies in between an 

experiment and a survey.  To describe it definitively, “a case study is an empirical 

inquiry that investigates contemporary phenomenon within its real-life context, 

especially when the boundaries between phenomenon and context are not clearly 

evident.” (Yin, 2003)  By focusing on the particular within its contextual conditions, 

it attempts to understand the general. 

In order to compare two different modelling approaches, it is necessary to 

select and use two models which are as alike as possible.  In this research, a 

meaningful survey on existing software cannot be carried out as it was noted in 

Section 2.5 that near-identical pairs of models for comparative study are very rare 

and, more specifically, none appear to exist for an ABM and DEM comparison.   

An experiment is an appropriate method for comparing alternative modelling 

approaches but because it involves a high level of control, it is almost always used 

for investigating relatively small, self-standing tasks which can be isolated from its 

context, or the rest of a development process (Kitchenham et al., 1995; Yin, 2003).  

Investigating alternative modelling approaches will require a series of experiments 

and it is likely to be too costly in time and effort.  In the face of these constraints, the 
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case study is judged to be the most appropriate research method, and therefore 

preferred before the experiment and the survey. 

The case study described later in Section 6.2.1 contains a typical scenario for 

the lifecycle costing of an engineering product.  Some of the factors which can 

contribute significantly to through-life cost, for example, the rules determining the 

inspection, repair, scrapping, transport, storage, and supply of a jet engine 

component are all present in the scenario.  Also, the levels of details, ranging from 

flexible, high-level decision making to fixed, fine-grained processes, provide a good 

representation of a real-world engineering application.  

  

6.1.2 Validity of methodology 

The steps to be followed for the case study have been set out earlier in 

Section 1.5.  It may be noted that the design of the case study presented there follows 

the long-established pattern for this research method (Fenton and Pfleeger, 1997; 

Yin, 2003), and it may be detailed as the following phases – preparing for data 

collection, collecting the evidence, analysing the evidence, and reporting the case 

study. 

In the design of the case study to test the hypothesis that agent-based 

modelling is better than discrete-event modelling, it is a desirable aim to control as 

much of the modelling processes as possible (Fenton and Pfleeger, 1997).  This may 

be achieved by making make them closely similar, and in doing so, greater 

confidence may be attributed to differences in the data collected to real differences in 

the modelling processes.  Therefore, in preparation for data collection, both models 

are built using model builders of similar experience, to the same specification, 

validated as functionally identical, and run in the same computing environment. 

To arrive at a system-wide view of a relatively broad subject such as a 

modelling paradigm, both qualitative and quantitative methods need to be employed.  

It has been emphasised by Boehm (1981) (see Section 5.3.2) that sometimes, to 

increase confidence in quantitative metrics, they may need to be supplemented with 

the opinions of human experts.  Quantities such as code size and structural 

complexity provide a perspective of a model’s internal properties while qualities 

such as understandability, modifiability, and testability deal with its external 

properties.  Further, these metrics need to be collected for smaller, identifiable 
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subsystems of the model as the aggregated values for the whole model can conceal 

variations which may be significant. 

The relative ease of post-implementation maintenance of the model is 

indicated by smaller code size, lower structural complexity, and code which is easier 

to understand, modify, and test.  It is reasonable to expect that by drawing together 

these beneficial aspects from both modelling paradigms, a novel and better 

modelling approach can emerge. 

 

6.2 The case study  

This section starts with a description of the engine fleet maintenance case 

study scenario.  The maintenance policy options and the data required are then 

presented.  The section is concluded with a brief description of the agent-based 

model supplied by the Strategic Research Centre, Rolls-Royce, Derby. 

 

6.2.1 The scenario 

The scenario may be described broadly as a problem involving scheduling 

and logistics for the ongoing maintenance of a fleet of Trent 800 (Figure 6-1) high-

bypass, three-spool, turbofan engines.  The engine’s initiation into commercial 

service occurred in April 1996 and has since become the dominant powerplant for a 

number of Boeing 777 aircraft variants in service worldwide.  To illustrate this, 

Table 6-1 gives an overview of the engine fleet’s operational status up to the end of 

September 2007.  Its reliability while in operation by the various airline operators is 

evident as the average daily utilisation is almost 12 hours.  Its operational record is 

also notable in that one of the engines has not been subjected to an off-wing overhaul 

even though it has done more than 5,000 flights. 

 

6.2.1.1 Engine lifecycle 

The engine lifecycle phase of particular interest to the case study extends 

from just after entry into fleet operation until just before retirement and disposal.  As 

shown in Figure 6-2, this maintenance phase of the engine lifecycle corresponds to 

the following stages of the Rolls-Royce Derwent Cycle –  
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• Stage 4, where the product is manufactured and in-service support is 

provided.  It may also be modified to meet ongoing regulatory, 

customer, and business needs. 

• Stage 5, where customer operation of the product continues to be 

supported. 

 

 
Figure 6-1: The Rolls-Royce Trent 800 

 
Table 6-1: Rolls-Royce Trent 800 fleet operational summary (Rolls-Royce, 2008) 

Item description Quantity 

Number of engines 502 

Number of aircraft in service 221 

Total fleet engine hours 11.72 million hours 

Lead engine  42,931 hours 

Lead engine without shop visit 30,169 hours 

Total fleet engine cycles 2.28 million cycles 

Lead engine  11,040 cycles 

Lead engine without shop visit 5,004 cycles 

Average daily utilisation 11.6 hours 

Average stage length 4.8 hours (ranging between 2.4 to 10.3 hours) 

 

  Further, the scenario is concerned only with off-wing, full overhaul with 

repairs carried out either in an overhaul base (OHB) or a component repair vendor 

(CRV) and not with routine on-wing servicing, off-wing maintenance at an airport, 

or repairs carried out in a ‘hospital shop’ (Rolls-Royce, 2005a).  It is while in Stage 5 
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that an engine undergoes full overhauls, or shop visits, at OHBs spread strategically 

around the world (see Figure 6-3).  The OHB at which work is to be carried out will 

vary according to the maintenance policy Rolls-Royce has agreed with the airline 

operator. 

 

 
Figure 6-2 : The Derwent Cycle (Rolls-Royce, 2005b) 

  

 
Figure 6-3: Network of repair and maintenance locations (Rolls-Royce, 2005a) 

 

6.2.1.2 The engine maintenance process 

It is assumed that after a new engine has been introduced into fleet service it 

will keep flying a fixed stage length to a simple schedule until it is withdrawn from 

normal operation.  For each flight, the flight profile is not taken into account and it is 

also assumed that the engine performs within the parameters for normal operation.   
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An engine is withdrawn permanently for disposal once it has reached the 

number of flights defining its retirement limit.  However, before that point is 

reached, an engine is subjected to either on-wing or off-wing maintenance according 

to the nature of the work required.  In the event of off-wing maintenance, an engine 

is temporarily withdrawn from operation and inducted into a workshop for one or 

both of the following reasons –  

• It is for a scheduled full shop visit at an OHB because it has reached, or 

is about to reach, the specified number of flights since the previous 

shop visit. 

• It has sustained damage too severe or extensive that attention either in 

an airport workshop or in a hospital shop is not adequate.  If such 

damage is close to a scheduled shop visit, the repair is done in 

conjunction with the planned overhaul. 

A high level view of the typical workflow in a Rolls-Royce OHB is depicted 

in Figure 6-4.  Details of the maintenance work needed to be carried out in a 

scheduled overhaul are described in the workflow plans or process maps laid out 

over the six diagrams shown in Appendix C as well as a textual functional 

specification.  These six flowcharts or process maps may be concatenated at the 

places as indicated to form an overall process map. 

When the Trent 800 engine arrives at the OHB for a scheduled shop visit, 

decisions are made to determine which of its eight modules need to be removed and 

stripped.  The modules which require maintenance are stripped down to their 

individual parts all of which are inspected and assessed whether they should be 

refitted with no further work needed, sent for repair at a CRV, or replaced with a 

spare part. 

Where a part has been assessed as suitable for refitting, it is set aside and no 

other work is done on it.  It awaits module rebuild to commence once all the module 

parts are available. 

If a part is deemed no longer fit for service, then a new or a previously 

repaired part is withdrawn from the stock of spares at the CRV.  If a replacement is 

not available, a new part is ordered from the Parts Service Centre (PSC).  The 

replacement parts are batched by part number and shipped to the OHB to await 

module rebuild. 
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Figure 6-4: Typical workflow in an overhaul base (Rolls-Royce, 2005a) 

 

Where a part needs to be repaired, the work is always attempted at a CRV.  If 

the attempt at repair is not successful, the part is scrapped and a replacement is 

sought first from the CRV stores, or if none is available there, a new part is ordered 

from the PSC.  If the repair is successful, the life of the part is always restored to its 

‘as-new’ value.  The repaired and replaced parts are batched by part number and 

shipped back to the OHB. 

Each module is rebuilt at the OHB once its full complement of parts is 

available.  Finally, the modules are reassembled into engines, thus completing the 

overhaul process. 

It is very likely that there will be occasions when two or more engines from 

different airline operators are overhauled at the same time in the same OHB.  It is the 

normal practice that the stripped parts from different engines are not mixed up but 

are returned to their engines of origin.  However, it is also possible that the 

maintenance policy of an airline operator may not demand this constraint to be 

exercised for its own engines.  To ensure that the parts are returned to their 

originating locations, each part must be identified uniquely and tracked throughout 

the repair process. 
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6.2.2 Maintenance options 

  To enable different engine maintenance rules to be explored using the same 

simulation model, the model’s functional specification as represented in the process 

maps (see Appendix C) may be configured according to options shown in Table 6-2. 

From Table 6-2, a ‘fixed’ workscope involves specifying a fixed list of 

module parts to be inspected whereas a ‘customised’ workscope involves inspecting 

all the parts making up an engine module.  A workscope can be implemented in 

conjunction with the type of inspection to be carried out.  If the ‘ship dirty’ rule is in 

force, the module will be stripped down to its individual parts at the OHB, batched 

by part number, shipped to the appropriate CRV and inspected there.  Should the 

‘inspect at OHB’ rule be in force, a module part is inspected at the OHB and then 

determined if it may be refitted without further work, or if a repair may be attempted 

at a CRV, or if it should be scrapped.  Where repair is required, the parts are shipped 

to a CRV in part-numbered batches. 

 
Table 6-2: Configuration options for maintenance rules 

Maintenance rule Configuration option 

1. Workscope Fixed Customised 

2. Inspection Ship dirty Inspect at OHB 

3. Kitting Yes No 

4. Module swap Yes No 

5. Smoothing at component repair vendor (CRV) Yes No 

 

In the maintenance approach which involves ‘kitting’, a number of parts from 

a fixed parts list are marshalled in the Aftermarket Service Centre (ASC), or less 

probably in a CRV because of its limited range of parts.  They are then sent as a kit 

in a single shipment to the OHB for rebuilding into a module.  Kitting therefore 

implies a fixed workscope.  Also, by extension, a ‘module swap’ implies kitting is in 

operation for the reason that all the kits which make up a module can be sent in the 

same shipment.  In normal kitting, the kits are sent in separate shipments once they 

have been marshalled. 

The smoothing of workload at a CRV requires an appropriately large buffer 

of spare parts to be maintained in the CRV stores so that any temporary upsurge in 
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workload will not result in a shortage of parts and hence a delay while waiting for the 

reordered parts to arrive.  Although it is desirable to exploit resources effectively by 

maintaining a constant workload, an outcome of the requirement to smooth the 

workload is additional financial penalties because of the larger amount of stock 

which has to be carried, as well as having to run an automated stock control system 

to maintain the level of stock. 

The maintenance options described in the preceding paragraphs are necessary 

since the ongoing cost of engine maintenance is influenced by policies related to 

inspection, shipping, repair, and scrapping of engine parts in operational service as 

well as the usage and stocking of spare parts.  An engine part may be subject to a 

hard limit based on total number of flight cycles, flight hours, or number of repairs.  

Also, airlines do have their preferences about the past history of parts which can be 

fitted to their engines.  For example, only repaired parts from their own engines, or 

from specific airlines but not from others, can be refitted. 

 

6.2.3 Data for modelling the scenario 

The granularity of a simulation model data inputs needs to be sufficiently fine 

if its results are to be of a quality good enough to be validated against historical data.  

Through a process of repeated refinement, the detail level of a model as well as the 

data needed to run it can be determined so as to satisfy such a level of detail and 

validity. 

As this case study involves both engineering processes as well as aspects of 

logistics and high-level decision-making, data required include not only engine data 

down to component level but also operational data for time and costs for 

transportation, engine stripping and rebuilding, stocking and reordering of parts, and 

penalties for late delivery.  Operational information gathered from other Rolls-Royce 

civil jet engines of similar design, has identified a set of 67 engine components 

(listed in Table D-1 in Appendix D) which contribute significantly to maintenance 

cost and effort over an engine’s in-service life.  It is chiefly for this reason that only 

these components are considered for modelling global maintenance operation of the 

Trent 800.  The components are drawn from the following engine modules (see 

Table 6-3) –  
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Table 6-3: Rolls-Royce Trent 800 module designations 

Module number Module description 

1 Fan 

2 Intermediate pressure compressor 

4 High pressure compressor and turbine 

5 Intermediate pressure turbine 

8 Low pressure turbine 

 

As the data is commercially-sensitive information, the numerical values 

supplied by Rolls-Royce have been amended and they bear little resemblance to the 

original.  However, this adjustment is acceptable for the purpose of this research as 

the same set of data will be used by the agent-based model as well as the traditional 

discrete-event model.  The results from the two models can therefore be directly 

compared. 

 

6.2.4 The agent-based model 

Before the commencement of this research, the scenario described earlier in 

this chapter (see Section 6.2.1) has been implemented as an agent-based model by 

the Strategic Research Centre (SRC) in Rolls-Royce.   

The model is a multi-agent system which has been programmed in Java using 

the open source Eclipse software development kit (Eclipse, 2006).  JADE, the Java 

Agent Development Framework (JADE, 2006), enables the agent system to be 

developed in compliance with the FIPA specifications (FIPA, 2002) and provides 

both the interface for managing the agents as well as the environment through which 

the agents communicate.  Although the JADE platform can be distributed over 

several hosts, it runs on only one host in this instance.  In a host, the Java Virtual 

Machine (JVM) provides a complete runtime environment which allows a multi-

agent system to be executed as a multi-threaded process.  In this instance, the JVM 

enables several agents to run concurrently and asynchronously, with each agent 

allocated to a separate thread of execution. 

In this model, the top-level functions fulfilling all the requirements set out in 

the six process maps in Appendix C have been coded as individual agents while the 
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functions within them have been implemented as agent behaviours.  The program 

code of the model, whose agents are summarized in Table 6-4, has undergone 

thorough dynamic testing.  A part of this programme of testing involved an end-to-

end validation in which a selection of its outputs were validated against some 

relatively simple, manually worked out examples.  This was aided by an animation of 

the model (see Figure 6-5) where the number of items in each location and the flow 

of items between locations can be clearly seen.  Such testing is required to ensure 

that all functions have been implemented as set out in the process maps and the 

textual specifications. 

Having validated this model against the functional specification, it then 

became the basis for dynamic validation of the functionally identical traditional 

discrete-event model built using the Extend™6 modelling tool (described later in 

Section 6.3). 

 
Table 6-4: Agents and their functions 

Agent Instances Functions 

Fleet Manager 1 Manages engines between shop visits; sets states of 
engine components before they arrive at OHB. 

Overhaul Base 
(OHB) 

≥ 1 Manages engine overhaul; inspects engine components; 
coordinates shipping, ordering, repairing, and scrapping 
of engine parts. 

Component Repair 
Vendor (CRV) 

≥ 1 Inspects engine components; repairs engine parts, and 
supplies repaired engine parts. 

Aftermarket Service 
Centre (ASC) 

≥ 1 Marshals engine parts into kits or modules; ships kits to 
OHB 

Parts Service 
Centre (PSC) 

1 Supplies new engine parts to OHB and ASC. 

 

6.2.4.1 Model categorisation 

As described earlier in Section 2.2, a simulation model may be categorised 

either by the objective of the study or by its representation of state and time.  In 

terms of the latter classification, this ABM is a time-driven model since it is executed 

at regular time-steps and events are assumed to occur not within the time-intervals 

but only at the time-interval boundaries.   
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Basically, the model addresses a problem in lifecycle costing and therefore 

elements of logistics, scheduling, and operational policies need to be present.  The 

primary objective of the model is to use it as a design tool to determine the lifetime 

cost of maintaining an engine fleet when, for example, the design life of an engine 

part is changed or the rules governing its maintenance process are varied.  Such 

design and maintenance policy changes will influence the stocking, supply, and 

scheduling of spare parts and hence, lifetime system cost. 

 

6.2.4.2 Model rationale 

The model enables the overall as well as the constituent costs for an engine 

fleet accumulated over a typical lifetime of 40 years to be determined.  It may also be 

configured to run with any of the maintenance policies outlined in Section 6.2.2 and 

hence allow a credible, cost-effective solution to be selected.  A simulation run of the 

model will also yield time histories of the demand for resources such as spare parts 

and transport, and thus enable availability planning to be managed. 

Primarily, the use of this ABM is as a decision support tool because it can 

give a design engineer the ability to predict lifecycle costs early in the design process 

(for example, Stage 1 in the Rolls-Royce Derwent Cycle (see Figure 6-2)) and thus 

judge the desirability or otherwise of a design decision.  The model can provide a 

holistic and more realistic view of a design by encompassing other influencing 

factors such as the cost of money, materials, and human resources each of which can 

fluctuate over the lifetime of the simulation run.  Armed with such a tool, the design 

engineer can perform trade-off studies between cost and performance which are more 

accurately informed than currently available and thus arrive at better design 

decisions. 

While model structural changes may be inevitable when implementing major 

features like maintenance and airline operation policies, minor but useful changes 

can be effected simply by modifying model input data.  For instance, a change in the 

material specification of an engine component can result in improved performance 

by the extension of its life but can be accompanied by an increase in its initial 

acquisition cost.  These new values of component life and initial cost then become 

the model inputs for determining its accumulated cost over its lifetime. 
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6.3 The discrete-event model 

This section contains two sub-sections the first of which describes the 

implementation of the model, and the second presents a description of the model. 

  

6.3.1 Implementation of the model 

As discrete-event modelling has been used in industry for many years, several 

mature modelling products are available as commercial off-the-shelf (COTS) 

packages.  Among them are well-established tools like Arena™, Enterprise 

Dynamics™, Extend™, Promodel™, Simul8™, and Witness™ all of which vary in 

quality and price.  A reason for this variability is that, in addition to the tools’ core 

competences for discrete-event modelling, they all possess other useful and user-

friendly features which are intended to set each apart from the other. 

 

 
Figure 6-5: An annotated topology and animation of the agent-based model 

 

The general requirements for a modelling tool to be used in this research were 

that it must –  
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• Have an intuitive user interface as the end-user is assumed to have no 

previous experience of such modelling tools. 

• Be adequately flexible to enable the tool to be modified for 

experimentation in an academic research environment. 

• Be fast and efficient in operation as the model can be large and 

complex. 

• Be affordable and well-supported by the tool’s developer. 

Extend™6 which is developed by Imagine That, Inc. (ImagineThat, 2006) 

more than satisfies these general requirements by being open source and by giving 

free customer support.    An evaluation of modelling tools carried out by 

Tewoldeberhan (2002) underscored not only the suitability of Extend™6 for 

developing models but also its cost effectiveness. 

 

6.3.1.1 Model lifecycle 

The processes used in the development of the DEM follow the typical model 

lifecycle sequence  found in Law and Kelton (1999).  This model lifecycle is shown 

on the left side of Figure 6-6.  As shown in the same figure, it maps well onto the 

traditional systems development lifecycle (DoJ, 2003) commonly known as the 

‘Waterfall Model’ (Royce, 1987; Somerville, 2001).  The reasons this methodology 

was adopted for the development of the DEM were that it was adequately rigid to 

ensure a disciplined approach was enforced and that testing was a requirement at 

every stage.  The methodology is not overly rigid as it allows test results from one 

stage to be fed back to the previous stage if errors are discovered and have to be 

corrected.  Also, the duration of implementation for the model was anticipated to be 

short so that the inflexibility of this method did not hinder the progress of model 

development significantly.  A recent survey of software project managers, system 

designers, and developers (Neill and Laplante, 2003) showed that despite the 

availability of more flexible and up-to-date methodologies, the ‘Waterfall Model’ 

was prevalent (about 40%) for projects lasting up to two years. 
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Figure 6-6: DEM development lifecycle (Law and Kelton, 1999) and the traditional 

systems development lifecycle (DoJ, 2003) 
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There are other development models, for instance, the Spiral (Boehm, 1988), 

and Rapid Application Development (Martin, 1991) models, but they were 

considered inappropriate for this task of producing a DEM which matched the ABM 

as closely as possible.  These methodologies are better employed for implementing 

new and large software systems on their own. 

 

6.3.1.2 Model verification and validation 

Just how close a model is to reality may be revealed through the activities of 

verification and validation.  It is necessary to note the distinction between these two 

activities as they address different aspects of model correctness.  Briefly put, 

verification answers how close the model code is in relation to the written description 

of a problem while validation answers how close the model is in representing the 

reality of the problem being considered (Refsgaard and Henriksen, 2004).  While 

code verification can be tackled methodically by direct comparison, model validation 

is a problem more difficult to surmount since it requires interpretation and 

judgement. 

Code verification is a continuous activity carried out privately by the model 

builder during the coding phase (Balci, 1998) as it helps with the management of 

model complexity and it also enables good code quality to be produced.  To 

introduce an independent view of the code, a formal code walkthrough is usually 

conducted on completion of the model code.  The outcome of verification is that the 

code of the model satisfies the written specification. 

The generally accepted definition of model validation is the “substantiation 

that a computerized model within its domain of applicability possesses a satisfactory 

range of accuracy consistent with the intended application of the model” 

(Schlesinger et al., 1979).  From this, the notion is that model validity is not 

absolutely exact as it is acceptable for its results to fall within a specified band.  This 

is largely due to the trade-off between accuracy, or model confidence, and cost 

during validation testing (Sargent, 2007).  A way of obtaining high model confidence 

is to compare model results with historical data and this can be very costly and time 

consuming since the model has to be executed many times to ensure that the results 
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are statistically significant.  Any revision to the model will likewise require a 

repetition of these rigorous and time consuming validation tests. 

Booch (1994) suggests that a way of handling complexity is through 

abstraction.  A complex and finely detailed model which may be highly accurate, can 

sometimes be simplified and yet provide acceptably accurate results.  For instance, 

the stripping of an engine involving numerous stochastic sub-processes can be often 

abstracted into a single, simple, stochastic time delay with little loss of precision. 

It should be borne in mind that in this research where two models are to be 

compared, the greater part of the effort should be expended on code verification so as 

to ensure a like-for-like comparison.  This is not to say that, in such a case, model 

validation can be neglected as it will impact adversely on model realism and hence, 

credibility.  However, if a comparison between the model and its problem domain is 

required, then model validation should be given the highest priority. 

 

6.3.1.3 Coding the model 

Initial inspection of the functional specification and the process maps (see 

Appendix C) indicated that an incremental, top-down implementation would be 

suitable for the reasons that the major functions were clearly demarcated and they 

appeared to be almost self-contained.  The major functions – engine construction, 

engine operation, the OHB, the CRV, and the PSC – were first coded as minimal 

hierarchy blocks.  They were then decomposed further to implement the finer details.  

Wherever common combinations of Extend™6 library blocks formed a logical 

function, they were grouped into a hierarchical block and saved for reuse elsewhere 

in the model.  In order to promote portability, none of the standard library blocks, as 

supplied with the Extend™6 Industry package, were modified. 

During model development, code verification was performed as frequently as 

possible so as to increase confidence that the model was functioning as described by 

the process maps.  This was aided in a large part by switching on animation to run 

the model at its lowest speed.  The visual feedback enabled model debugging at a 

high level to be carried out quickly.  In a simulation run for a completed model, 

animation would normally be switched off to minimise execution time.  Other aids 

for model development included the outputting of numerical quantities to 
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‘information’ blocks, and the partitioning of the area being developed from the rest 

of the model by the judicious placement of ‘exit’ blocks.   

As each major function of the model was completed, it was validated and 

then integrated with the other completed functions by removing the appropriate ‘exit’ 

blocks.  The model was then tested and debugged.  By the use of this incremental 

development methodology, confidence in the model’s correctness increased as 

implementation progressed.  When the model was completed, the ‘information’ 

blocks which were used specifically for model development were also removed. 

 

6.3.1.4 Model walkthrough 

After the model was completed and had successfully completed several 

simulation runs, a model walkthrough was conducted at the SRC at Rolls-Royce, 

Derby.  This activity was to establish that –  

• The model was complete when compared with the specification set out 

by the process maps (see Appendix C). 

• Details of the engine overhaul process and the supplied data had been 

correctly interpreted and implemented. 

• The model was functionally identical to the agent-based model. 

 

A visual and structured inspection of the whole model was made and 

differences with the process maps, the engine and overhaul data, and the agent-based 

model were recorded and agreed.  On completion of the walkthrough, even though 

the model was assessed as fully functional when compared against the process maps, 

corrective action was needed nevertheless on three areas which were assessed as 

significantly different from the agent-based model.  To state it simply, it was very 

important that the two models were as nearly identical as possible because they were 

to be compared against each other.  The discrepancies arose because of a 

misinterpretation of the supplied data and a lack of clarity in the details of the 

specification.  The shortfalls were –  

• A stock keeping and ordering function was to be implemented for the 

OHB and CRV so that a buffer of parts was always maintained.  From 

earlier studies made by the SRC using the agent-based model, this 
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function contributed significantly to the overhaul turnaround time.  This 

important requirement was not explicitly stated but was implied in the 

functional specification. 

• Whenever engine parts were to be shipped, they were to be batched by 

part number and then dispatched in a single shipment to either the OHB 

or CRV.  As transportation cost was calculated from total weight and 

discrete price bands, shipping the parts in batches could be a lot cheaper 

than shipping each part individually.  This requirement was absent from 

the functional specification and the process maps. 

• The items which made up each of the 67 engine component were to be 

modelled individually.  This requirement was not stated in the 

functional specification nor could it be readily deduced from the 

supplied data as the adjusted numerical values bore little resemblance to 

real data.  The consequence of meeting this requirement was that the 

number of unique items in the model increased by more than 48 times. 

After the model was modified and dynamically tested again, another formal 

walkthrough was conducted to ensure that the functions implemented in both models 

were the same.  This activity was concluded with no further corrective action needed.  

A common set of input data was then agreed and prepared for both models in 

anticipation of the model performance measurements to be carried out later. 

 

6.3.2 Description of the model 

The portions of the model shown in this section exhibit some aspects of good 

modelling practice which were gained while developing the model.  As the model is 

large, it is not the intention here to display the details for the whole model at its most 

detailed, or ‘atomic’, level but to give an overview first and then select a branch of 

activity in the OHB to demonstrate its hierarchical design. 

 

6.3.2.1 Model overview 

The topmost level of the model, i.e. Level 0, is shown in Figure 6-9.  The 

layout convention adopted by the Extend™6 modelling tool is that the model starts 
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in the top-left corner of the page and the items flow along the connectors, generally 

from left to right and top to bottom.   

The engines are assembled in the ‘Build Engines’ hierarchical block using the 

quantities and attributes for each of the 67 engine components supplied by SRC.  

Engines may be batched together to form an aircraft which enters service after a 

programmable delay.  This forms the initialisation part of the model and is used only 

once for each simulation run. 

The aircraft follows a fixed flying schedule which reflects the average values 

shown in Table 6-1 in terms of stage length and daily utilization.  Flying continues 

until an engine either reaches the planned number of flights when it should be 

overhauled at the OHB or it has sustained damage serious enough to require off-wing 

repairs.  An engine is checked after every flight cycle to determine if either of these 

two conditions has been satisfied.  These rules, for inducting an engine into the OHB, 

are implemented in an Extend™6 ‘DE Equation’ standard library block using ModL, 

the Extend™6 proprietary scripting language.  The code is shown in Figure 6-7.  

This part of the model implements the operational phase of the engine and is used 

until the last engine retires from service. 

A check is made to ensure that there is spare capacity in the OHB to handle 

the new work before engine stripping can commence.  The engine modules which are 

assessed as requiring attention are stripped down to their individual component 

items.  Whether inspection and sentencing takes place at the OHB or CRV depends 

on the maintenance policy then in force for the component.  The items making up the 

component may be scrapped, replaced, or repaired based on a matrix of probabilities 

which has been compiled from operational statistics.  During the rebuilding process 

in the OHB, the repaired items and items for refitting are returned to their engine of 

origin.  The 3,236 unique parts for each engine are re-assembled first into 

components and then into modules.  Subsequently, these modules are re-assembled 

into an engine, attached to an aircraft so that it can resume its flying service.  This 

part of the model implements the overhaul process and constitutes the main loop of 

the model. 
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6.3.2.2 Constructing the engines 

The internal structure of the ‘Build Engines’ Level 1 hierarchical block is 

presented in Figure 6-10.  Adhering to the Extend™6 layout convention of 

modelling item flow from left to right, it shows the logical sequence of processes 

which are to be executed to construct an engine. 

 
 

Figure 6-7: Code to determine if an engine is to be inducted into the overhaul base 

A principle followed in the course of building of the model is not to hard-

code numerical values but to enable such variables to be read in, wherever possible, 

from an external source like a plain ASCII text file, a spreadsheet, or a relational 

database.  Flexibility in the engine construction phase of the model has been 
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designed in so that the number of components, modules per engine, and the number 

of engines per aircraft can be adjusted readily.  This data-based approach allows a 

limited combination of engines and aircraft to be constructed without having to 

modify the structure of the model.  In this instance, all necessary items of data for 

engine construction are imported from an external Microsoft Excel spreadsheet into a 

number of internal global arrays once only at the start of a simulation run with the 

goal of increasing the speed of execution. 

All ‘atomic’ items as well as batched-up items are tagged with automatically 

generated unique identifiers so that they can be identified and tracked throughout 

their simulation lifetimes at any point in the model.  Therefore, it is essential that all 

items retain their unique identifiers during all batching and unbatching operations. 

6.3.2.3 The overhaul base 

The functions of the OHB are implemented in the ‘Overhaul Base Frontend’, 

‘Rebuild Components’, ‘Rebuild Modules’, and ‘Rebuild Engines’ hierarchical 

blocks (see Figure 6-9).  The last three blocks implement the activities to rebuild an 

engine with its original parts as well as with new parts from the PSC and repaired 

parts from the CSV. 

In Figure 6-11 an engine enters the ‘Overhaul Base FrontEnd’ hierarchical 

block at the top left of the window through the ‘Con1In’ input label.  The engine 

undergoes decomposition progressively as it is first stripped down to its constituent 

modules and then into their components.  Finally, the components are by 

disassembled into individual items. 

Figure 6-12 and Figure 6-13 are lower level hierarchical blocks and they 

illustrate the procedure of unbatching the items while retaining their unique 

identification.  This is a method which is also used in other parts of the model where 

unbatching occurs.  Once an item is exposed, it may then be determined which of the 

following category it falls into –   

• it may be refitted into the engine with no further work needed 

• it has to be sent to a CRV for repair to be attempted 

• it has to be scrapped and a replacement ordered  

The last ‘if’ statement in the block of code in Figure 6-8 shows how the item-

scrapping rules are implemented. 
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Figure 6-8: Code to determine if an engine item is to be scrapped 

In this model, this categorization is based on the probabilities applicable to 

their current full shop visit numbers (see list of attributes in Table D-2 of Appendix 

D).  Where the parts need to be dispatched to a CRV for repair, their destination is 

determined first; they are then batched by component number; their batch weight 

calculated; their shipping costs calculated from a scale of charges; and finally, the 
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shipment is made.  The attributes for each item are updated at the lowest level of the 

model using program code (see Figure 6-14) written in the ModL language.  The 

attributes are stored in global arrays as it is easier and faster to manipulate them in 

code than through a combination of Extend™6 standard library blocks. 

6.3.2.4 Shipping items 

In the course of a simulation run, it is required that various quantities of 

different engine items are batched together by component number and shipped to 

their respective destinations.  Shipment occurs once each day.  Figure 6-15 shows 

how this has been implemented using Extend™6 standard library blocks to schedule, 

queue, and group engine items into component-number batches.  This hierarchical 

block, labelled ‘Batch up items for shipping’, implements a common process which 

is also used elsewhere in the model. 

 

6.4 Results and evaluation 

After successfully verifying that both the DEM and the ABM possess the 

same functions, the next step is to make a quantitative comparison between them.  

The following sub-sections describe the collection of code metrics and the 

measurement of model runtimes.  The results are then presented and evaluated. 

6.4.1 Metrics to be collected 

The metrics which may be used to characterise the models are size, 

complexity, and connectedness.  As described previously in Chapter 5, program size 

may be measured as LOC, number of methods, or number of classes.  They are 

almost invariably compiled to monitor the progress of software projects and because 

they have been used so widely they may be considered as valid measures for 

program size.  The models have been implemented in different programming 

languages (Java and ModL), but Table 6-5 lists three language constructs which may 

be treated as equivalent because of the way they are used.  In the ABM, methods are 

local modules which are invoked within a class and in the DEM, procedures and 

handlers are local modules which are invoked within a library block. 
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Figure 6-9: Top level (Level 0) of traditional discrete-event model 
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Figure 6-10: Level 1 hierarchical block – Build Engines 
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Figure 6-11: Level 1 hierarchical block – Overhaul Base
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Figure 6-12: Level 2 hierarchical block – Module Strip 
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Figure 6-13: Level 3 hierarchical block – Unbatch Into Components 
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Figure 6-14: Level 4 block containing ModL code – Update Component Quantities 
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Figure 6-15: Level 2 hierarchical block – Batch up items for shipping 
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The LOC metric may be too close to the human programmer in the sense that 

the effect due to programmer idiosyncrasy may result in significant variation in LOC.  

A count of the number of methods or procedures is a readily accessible metric and 

probably provides some insulation from the effect of programmer variation.  A count 

of the number of classes or blocks can be achieved by inspection but its granularity 

may be too coarse for meaningful comparison. 

 
Table 6-5: Equivalence of constructs in object-oriented and procedural languages 

ABM / Object-oriented language DEM / procedural language 

Statement Statement 

Method Procedure or handler 

Class Model library block 

 

Complexity for a method or procedure is calculated using the McCabe 

Cyclomatic Number.  Similarly, the measure of complexity for a class or library 

block is the Weighted Methods per Class which is just the arithmetic sum of the 

complexity of all methods in the class or procedures and handlers in the library 

block.  This metric is used to estimate the degree of structural complexity for both 

models. 

Connectedness for a model is assessed as the worst method of coupling 

between classes or library blocks as set out in the scale given in Section 5.4.4. 

Collectively, these metrics enable the software quality of maintainability to 

be determined for each of the models.  The metrics also indicates a model’s degree of 

understandability, modifiability, and testability since they are the factors which 

contribute towards the quality of maintainability (see Section 5.3.1). 

 

6.4.2 Collecting the metrics 

The DEM was partitioned into five subsystems which corresponded to five of 

the agents in the ABM.  This was achieved without difficulty as the top-down 

hierarchical implementation of the DEM followed the modules set out in the ABM.  

These agents or subsystems are labelled as Subsystems A to E in Table 6-7 and Table 

6-8. 
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Metrics for size and complexity had to be compiled manually for the DEM as 

no automated code measurement tool could be found for the Extend™6 ModL 

programming language.  For the ABM, a plugin for Eclipse was used to extract the 

required metrics. 

 

6.4.2.1 Adjustments to DEM code metrics 

The LOC metric was refined to include only executable statements thus 

excluding data declarations and comments.  Also, in an attempt to compare like with 

like, code used specifically in Extend™6 for model construction were excluded.  For 

example, code for handling parameter setting, block creation, and block report 

generation were left out in the statement counts.  Lastly, the number of statements 

were factored using data from Jones (1996) to allow for the difference in expressive 

power of the two programming languages.  Jones’ database of programming 

languages showed that the average number of statements per function point for Java 

was 53 while that for C was 128. 

Also, only unique blocks were counted in each of the DEM subsystems.  This 

adjustment was made because, in a visual programming system like Extend™6, each 

additional use of a library block meant an explicit, repeat occurrence of all the code 

for the block at compile time.  In contrast, in a Java program, each additional use of a 

class is accomplished in a single statement which instantiates the class code only at 

run time.  Counting only unique Extend™6 blocks, and hence procedures and LOC, 

results in a more equitable comparison. 

 

6.4.2.2 Complexity 

The MCN is the number of linearly independent paths through a program and 

it therefore indicates the upper bound of test cases required to ensure full test 

coverage.  From empirical evidence, McCabe (1976) suggested an MCN greater than 

10 pointed to reduced program modifiability and testability and hence increased risk 

of error when making changes to a program.  Also, Grady (1994) concluded from a 

large-scale study that an upper limit of 15 should be enforced.  Table 6-6 shows 

typical ranges of MCN for programs of different levels of complexity. 
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Table 6-6: Program complexity and maintainability (SEI, 2000) 

Cyclomatic complexity, MCN Program complexity and risk evaluation 

1 to 10 Simple program, low risk 

11 to 20 More complex program, medium risk 

21 to 50 Complex program, high risk 

Greater than 50 Untestable program, very high risk 

 

Although MCN is usually used for procedural languages, it is nevertheless a 

valid measure for object-oriented languages at the lowest method level.  Figure 6-16 

shows that the cyclomatic complexity, or structural complexity, for both models is 

well managed.  This is markedly so in the ABM as only 0.24% of the modules had a 

MCN greater than 20 while it was 4.13% for the DEM.  Further, the maximum MCN 

for an ABM module was 27 while it was 49 for the DEM.  Lastly, neither model had 

any module with a MCN greater than 50, i.e. a module considered too complex for 

rigorous testing.  

The WMC metric, suggested by Chidamber and Kemerer (1991), is the sum 

of the weights of all the methods within a class.  The weight of each method is 

represented by its MCN. 

 

 
Figure 6-16: Distribution of MCN in the ABM and the DEM 

The code metrics collected for both models are summarized in Table 6-7.  

The quantities for the DEM have been adjusted in the manner described in Section 

6.4.2.1 as the model was implemented using a different programming language from 
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that of the ABM.  To present a comparative overview of these metrics, the multiples 

of DEM to ABM quantities are shown in Table 6-8.  It may be noted that the 

quantities in this table illustrate the stark differences between the two models as all 

the values are much larger than unity.  They indicate that the DEM is significantly 

larger and more complex than the ABM in terms of program code. 

 
Table 6-7: Code metrics for the ABM and the DEM 

Number of 
executable 

statements, LOC 

Number of methods 
or procedures 

Number of classes 
or modelling 

blocks 

Weighted methods 
per class, WMC 

Sub- 
system 

ABM DEM ABM DEM ABM DEM ABM DEM 

A 740 2685 70 304 5 16 35 135 

B 187 1838 15 211 2 11 19 129 

C 130 1516 12 177 2 10 12 118 

D 487 2928 28 344 2 19 55 122 

E 88 1843 8 197 3 11 5 128 

 

Table 6-8: Multiples of DEM to ABM metrics 

Sub-
system 

Number of 
executable 

statements, LOC 

Number of methods 
or procedures 

Number of classes 
or modelling blocks 

Weighted methods 
per class, WMC 

A 3.63 4.34 3.20 3.86 

B 9.83 14.07 5.50 6.79 

C 11.66 14.75 5.00 9.83 

D 6.01 12.29 9.50 2.22 

E 20.94 24.63 3.67 25.60 

 

The process for conducting a Delphi estimation session to obtain high quality 

group opinion as described by Stellman and Greene (2005) was employed with a 

minor modification, i.e. the use of email as the medium of communication, to 

compare the maintainability aspect of both models.  Details of this exercise are 

shown in Appendix E.  As the ABM code contained information which was 

commercially sensitive, only three software and modelling experts were allowed to 

view it.  The results of this exercise are displayed in Table 6-9.  When considering 

model maintainability, i.e. consisting of understandability, modifiability, and 
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testability, from the view of a software engineer or model implementer, the ABM is 

more maintainable on balance.  The result reinforces the tendency shown by code 

metrics in Table 6-8.  It was noticeable that the DEM was judged to be more readily 

understood than ABM by a design engineer for the reason that a traditionally trained 

engineer will tend to have a better mental grasp of a problem if it was framed as 

processes rather than activities.  This is a result which is not apparent by considering 

code metrics alone. 

The ABM was also considered to be more suitable for modelling at a high 

level of abstraction and this view is supported by the score that the ABM is easier to 

understand by someone in business and commerce but not so readily by a design 

engineer or software engineer where attention to technical detail is important.  

However, to implement an ABM, which was viewed by the Delphi session 

participants as marginally simpler than a DEM in concept, required someone with a 

higher level of formal education.  The reasons were that the current availability of 

modelling tools for implementing an ABM required a higher level of expertise and 

that formal training in agent technology occurred only at postgraduate level. 

 
Table 6-9: Summary of results of Delphi estimation of ABM and DEM 

 ABM DEM 

Understandability of model as considered by a software engineer or model 
implementer + ++ 

Understandability of model as considered by a design engineer (e.g. a jet engine 
designer) - +++ 

Understandability of model as considered by a person in business and commerce ++ + 

Modifiability of one or more sub-systems in the model + - 

Testability of one or more sub-systems in the model -- -- 

Suitability of modelling at high level of abstraction ++ + 

Suitability of modelling of very fine details - ++ 

Ease of expansion by adding one or more existing sub-system + ++ 

Level of formal education needed to implement the model + - 

KEY:  +/- nominally;  ++/-- moderately;  +++/--- very 
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6.4.2.3 Coupling and cohesion 

Agents in the ABM interact not by invoking each other directly but by 

message passing via the JADE agent environment.  The messages are processed by 

the receiving agents in their own time.  Further, the messages may sometimes contain 

a small number of integer, floating point, or character string parameters.  For the 

additional reason that the message passing is asynchronous, coupling between agents 

may be judged to fall in between stamp coupling (relation R2 in Table 5-1) and data 

coupling (relation R1).  As a software system, the ABM may be classified as loosely 

coupled. 

Inspection of the ABM code showed that the methods within a class 

implemented a single well-defined function with small number of parameters passed 

between methods.  As set out previously in Table 5-2 the ABM code may be 

described as highly cohesive since it displays functional cohesion. 

A visual inspection of the DEM library block code revealed that while most 

procedures within a block displayed data coupling (relation R1), the undesirable 

feature of coupling through a small, fixed number of system global data (common 

coupling relation R4 in Table 5-1) was nevertheless commonly used for control as 

well as for communication between blocks.  Because of this lower classification, the 

DEM subsystems may be classified initially as tightly coupled.  However, this 

drawback is mitigated by the fact that it is a characteristic of a stable and well tested 

modelling package and not of the DEM.  It has a direct and adversely effect on the 

package developer but not the model implementer.  It is reasonable to classify the 

DEM less severely than R4 and considerably closer to R1. 

All procedures and handlers in the DEM standard library blocks performed 

single well-defined functions.  Therefore, the DEM exhibit functional cohesion (see 

Table 5-2). 

The qualities of inherently low coupling and high cohesion may make the 

agent approach marginally more suitable for distributed modelling than traditional 

discrete-event modelling but it may be accepted that both modelling approaches are 

suitable for distributed modelling. 
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6.4.3 Model runtimes 

The performance of both models was measured in the same computing 

environment under identical model initial conditions.  In the case of the ABM, the 

complete initial engine fleet data was prepared by a separate Java program, stored in 

an XML file, and subsequently used for initialising the ABM.  In contrast, 

initialisation of an engine fleet for the DEM was carried out by the DEM itself one 

engine at a time using a Microsoft Excel spreadsheet which contained the data for a 

single engine.  This method was adopted because of its simplicity in the main and 

also the assumption that all new engines in a fleet may be reasonably expected to be 

identical.  However, initialisation carried out in this manner took up a significant 

portion of the DEM runtime while the time required for ABM initialisation was 

negligible. 

Two timing marks were needed to measure the elapsed time for a simulation 

run – the initial timing mark was set when the first engine entered service (the 

service entry point was described in Section 6.3.2.1 in the overview of the DEM 

model) and the final timing mark occurred when the fifth shop visit of the last engine 

was due.  This was done to exclude the effect the initialisation methods had on the 

models.  The runtimes between the timing marks for both models using different 

engine fleet sizes are presented in Figure 6-17.  The effect of DEM initialisation is 

evident as it forms about 17% of total elapsed model runtime. 

The maximum ABM engine fleet size was 220 as that was the largest number 

of engines which could be accommodated by the Java runtime environment without 

an abnormal termination through an ‘out of memory’ error.  The largest DEM engine 

fleet was selected as 310 because it involved just more than 106 individual engine 

items.  Such a quantity was thought to be representative of real engine fleets and it 

was not necessary to expand the fleet beyond that.  Although it was possible to 

complete a DEM run with a larger fleet, it took too long for practical purposes 

because of intensive memory swapping between the main memory and the virtual 

memory in the hard-disk drive. 

For both models, it is possible to continue enlarging the engine fleet size by 

the addition of computer memory until the limit imposed by the operating system is 

reached.  In the case of the Microsoft Windows 32-bit operating system used for this 

research, the Windows XP operating system limit is 3.3GB of main memory.  It may 



 
Chapter 6: Case Study 
 

 
122 

be estimated by linear extrapolation that a fleet of about 360 engines can be 

accommodated by the ABM before it fails with an ‘out of memory’ error. 

The ABM is a time-driven model and, as shown in Figure 6-17, its runtimes 

with respect to fleet size was almost constant up to about 100 engines but beyond this 

the gradient of this plot increased noticeably.  For fleets larger than 100 engines, the 

OHB capacity limit of five engines meant that it could not finish overhauling all the 

engines before the first ones became due for another overhaul.  This is illustrated in 

Figure 6-18 and Figure 6-19 where the peaks of computer processor utilisation 

coincide with the peaks of overhaul activity.  In the former figure, the OHB is able to 

satisfy the demand to complete the required work within the agreed timeframe and 

there are lengthy intervals of relative inactivity between shop visits.  For a time-

driven model under such conditions, the time taken to complete a simulation run is 

expected to be constant.  In the latter figure, OHB activity is kept at a high level 

throughout the simulation run when work occurring at the end of the previous shop 

visit runs into the start of the next.  As the engine fleet size increased, the longer the 

OHB pre-overhaul queue became.  Consequently, the time when an engine was out 

of normal airline operation was extended, thus prolonging the elapsed time of a 

simulation run.  It should be remembered that the criterion for terminating a 

simulation run is satisfied when the last engine is due for its fifth shop visit and not 

after a fixed simulated period. 

The DEM is an event-driven model with events managed by a variant of the 

calendar queue (described previously in Section 3.3.1.3).  Theoretically, the best 

performance which may be obtained from such a priority queue algorithm is O(1).  

Based on this idealised relationship, the run times will be in direct proportion to 

engine fleet size.  In practice the performance of the calendar queue is likely to fall 

between O(1) and O(n) (see Table 3-2), where n is the length of the queue.  Hence, it 

is reasonable to expect the model run times with respect to fleet size to be longer 

than those predicted by a straight-line relationship. 
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Figure 6-17: Runtimes for DEM and ABM for different engine fleet sizes 

 
Figure 6-18: ABM CPU load for a 10-engine fleet 

 
Figure 6-19: ABM CPU load for a 100-engine fleet 
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6.5 Summary 

The method of investigation selected for comparing agent-based modelling 

and traditional discrete-event modelling is the case study.  Neither the formal 

experiment nor the survey is appropriate for investigating the differences.  A suitable 

non-trivial scenario was provided by the RR Trent 800 global repair operation and a 

validated ABM, which was used as a design tool, existed for that scenario. 

The case study scenario was described and particular attention was given to 

the engine maintenance process, the ABM, and the data required for modelling the 

scenario.  The ABM and the data were provided by SRC. 

To enable a comparison to be made between the two modelling paradigms, a 

functionally identical traditional discrete-event model had to be built.  It was built 

using the Extend™6 modelling tool and validated against the process maps, textual 

specification, the ABM, as well as by formal code walkthroughs.  Lastly, the ABM 

and DEM were run using a common set of input data and their outputs compared. 

The Extend™6 modelling tool enabled the DEM to be implemented using the 

top-down approach and this hierarchical structure emulated the topology of the 

ABM.  Consequently, sub-systems within the DEM could be clearly identified for 

comparison with agents in the ABM. 

The comparison was carried out using code metrics as well as human expert 

input in the form of Delphi sessions – a method advocated by Boehm (1981) in his 

COCOMO software project costing methodology.  This approach, which required the 

additional judgement of human experts, was reinforced more recently by Welker 

(2001). 

Code metrics for model size and complexity all pointed to the superiority of 

the ABM relative to the DEM in that it was more understandable, modifiable, and 

testable.  The good maintainability of the ABM is indicated both by its smaller code 

size and lower structural complexity.  These results were supported by the 

independent assessment of the Delphi sessions. 

The Delphi results also indicated that the process-centric DEM may be more 

suited to the way traditionally trained design engineers work.  Fine details of 

engineering processes may be better modelled as DEMs rather than ABMs.  

Moreover, the participants were of the view that implementing an ABM required 

greater software skills. 



 
Chapter 6: Case Study 
 

 
125 

For large engine fleets, the runtime performance of the ABM exceeded that of 

the DEM.  However, the ABM required more computing resources and in the same 

computing environment managed to complete a simulation run with a fleet size 29% 

smaller than that managed by the DEM. 
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Chapter 7 

An Agent-like Discrete-event Model 

7 AN AGENT-LIKE DISCRETE-EVENT MODEL 

7.1 Introduction 

In this chapter, the motivating reasons for emulating an ABM are discussed 

first and the definition of an agent is revisited.  Following that, consideration is given 

to the management of complexity in software and finally, drawing from the 

knowledge gathered and results obtained in this research, a novel method of 

structuring a DEM is presented.  A model is built using this new architecture and 

results obtained to compare it against an ABM and a traditional DEM. 

 

7.2 Rationale for making a DEM agent-like 

In the following sub-sections the reasons for making a traditional DEM more 

like an ABM are presented and discussed.  They are derived from the results of the 

case study. 

 

7.2.1 Starting from the discrete-event modelling paradigm 

It was considered more appropriate to make a DEM more like an ABM than 

vice versa.  In the former instance, the effort would be logical, reasonable, and 

worthwhile since the boundary of usefulness for the discrete-event modelling 

paradigm would be extended.  Making an ABM more like a DEM defies reason as 

that, in effect, shrinks the boundary of usefulness for the agent-based modelling 

paradigm.  Another reason for basing the model on the discrete-event paradigm is 

that it is a mature, established, and well-understood approach which has a large body 
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of active practitioners.  Finally, there are a number of excellent COTS tools to 

support and speed up model implementation while agent-based modelling in its 

current state of development still depends almost entirely on text-based, manual 

coding. 

 

7.2.2 Code size and complexity 

In the case study described in Chapter 6, the quantitative results described in 

Section 6.4 pointed to the benefits that ABM had over the DEM.  The significantly 

smaller code size, in terms of lines of non-comment code, as well as the lower 

complexity, in terms of weighted method per class (see Table 6-8), are metrics which 

indicate less mental effort required, and hence lower cost to be incurred, in the 

software maintenance phase.  Although the Delphi results showed the DEM to have a 

higher understandability than the ABM by model implementers (see Table 6-9), 

nevertheless both models were considered to be easy to understand.  ABM code is 

easy to understand and easier to modify than DEM.  Therefore modifications to an 

ABM stand a higher probability of being implemented correctly in a shorter time.   

As software maintenance costs typically varies between 50% to 65% of 

overall lifetime costs (Somerville, 2001) and enhancement and adaptation activities 

can make up more than 80% of the maintenance effort (Krogstie et al., 2006), having 

higher maintainability is a desirable goal.  The difficulty of understanding any 

program code may be alleviated to some extent by adhering to good programming 

practice such as the consistent use of descriptive names for variables, the indenting 

of code sections, and the reuse of modules.  Although such practices can result in 

code which is read more easily, they are not likely to result in code which is 

structurally less complex.  It is mainly the lower structural complexity which makes 

the ABM more maintainable and therefore the more attractive modelling paradigm. 

 

7.2.3 Model performance and multi-threaded operation 

In contrast to the DEM which is event-driven, the ABM is time-driven.  The 

agent model runs as a multi-threaded computer process with each agent executed as a 

separate concurrent thread.  This is in keeping with one of the three founding 

concepts of agent technology, i.e. OO programming and concurrent object-based 
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systems (Jennings et al., 1998).  The necessity of multi-threaded execution of multi-

agent systems was also forcefully reiterated in Wooldridge and Jennings (1999) 

where failure to do so was identified as a serious pitfall to avoid. 

Figure 6-5 shows that the ABM is relatively insensitive to computing load 

and it holds a significant runtime advantage over the DEM as the demands of 

computation increased with increasing engine fleet size.  In other words, the ABM is 

more scalable, where scalability may be described as the ability of the model to 

continue performing acceptably even when the workload has been increased greatly.  

Despite this advantage, it should be noted that under identical runtime conditions, the 

ABM managed to complete a normal simulation run with an engine fleet which was 

considerably smaller than that managed by the DEM.  While the ABM experienced a 

sharp engine fleet cut-off size beyond which a simulation run could not be completed 

normally, the DEM continued with much larger fleet sizes even though they took 

much longer to complete their runs.  

While the scalability of the ABM may be largely attributed to its time-driven 

design and fleet operation scenario, its concurrent multi-threaded execution also 

contributes towards its efficiency in operation.  Multi-threading seeks to exploit 

parallelism at instruction level and the simplest variant is block multi-threading.  In 

such a scheme, a thread runs until it is blocked by an event which might take 

hundreds of processor cycles to be resolved.  While waiting for that event to be 

serviced, another thread can be initiated within a few processor cycles to take up the 

slack.  This makes better use of computing resources but it introduces two 

undesirable side-effects – mutual exclusion of shared resources and an element of 

unpredictability because of the loss of thread synchronization.  The management of 

shared resources is usually tackled by locking the resource so that only the active 

thread has exclusive access to it.  Thread synchronization may be handled by manual 

coding to define points where execution may be safely passed on to another thread, 

and by ensuring that a thread cannot be interrupted between these points. 

It should be noted that switching execution from one thread to another incurs 

processing overheads.  Excessive switching is therefore to be avoided as it consumes 

computing time for an unproductive end.  In an ABM containing a large number of 

agents, running each agent as a separate thread is likely to be impractical because of 

the switching overheads involved.  It is not unusual to execute the model as a single 
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thread in order to minimise this overhead.  However, this runs against the agent 

paradigm (Wooldridge and Jennings, 1999) and begs the question – “Is ABM the 

most appropriate modelling approach for such a problem?” 

It may be mentioned here that DEM does not suffer from either of these 

drawbacks since it is executed essentially as a single sequential process.  This is the 

result of using a single event list (see Section 3.2) to control the execution of all 

events in a DEM.  Its outputs are predictable and repeatable but, as shown in Figure 

6-5, a DEM is not as scalable as an ABM. 

 

7.2.4 Partitioning into sub-models 

In the context of the case study, agent-based modelling tends strongly 

towards a top-down design approach by constraining a model implementer to 

consider high-level roles within a system at the outset.  The resulting high-level 

modules, or sub-models, closely reflect the processes where high-level human 

decision making are dominant.  In this part of the problem domain, the role-based 

agent approach (Kendall, 2000; Kendall, 2001; Parunak et al., 1998) has the benefit 

of reducing the conceptual gap between the model and the problem being modelled. 

Errors can inadvertently be introduced during system requirements capture as 

the transfer of an idea between two people is itself a complex process involving 

different personal assumptions, abilities to articulate abstractions, and levels of 

experience and knowledge.  Therefore, the capability to map easily from the real-

world system to the model is valuable, especially during the requirements analysis 

and design phases of the software lifecycle. 

Although this attribute of agent technology is desirable in general, it may not 

continue to be so when carried out to its logical end, i.e. to apply the agent paradigm 

to all levels of detail in a model.  This is indicated by the Delphi results (Table 6-9) 

in which the expert view was that the agent concept was likely to be understood more 

readily by business people (those whose work activities are centred on organizational 

relationships and roles) than by design engineers (those whose work activities are 

centred on processes).  An inference to be drawn from this result is that, in order to 

minimise the conceptual gap between problem and model, it may be necessary to 

combine the agent-based approach with the traditional discrete-event approach in the 

same model.  Where processes predominate, discrete-event modelling should be 
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employed, and where there is high-level decision-making, possibly where 

information to define the problem is incomplete, the agent-based approach should be 

utilised.  Another inference is that the agent-based approach better enables non-

technical people to participate directly in the building of an ABM and so potentially 

shorten the implementation time.  This applies similarly to the discrete-event 

modelling approach which can enable engineering designers who are not modelling 

specialists to implement a DEM using a commercially available visual programming 

tool. 

A principle which may be drawn out from this discussion is that, in the 

context of this case study scenario, it is better to segregate parts of a problem in such 

a way as to minimise the mismatch between problem and model.  This division of a 

problem occurs at the concept level of abstraction which is a higher level than the 

functional level of abstraction in existing design methods.  It has the potential to 

speed up initial model development as well as to lower subsequent maintenance 

effort. 

A good conceptual match is good not only for a model executing on a single 

processor but when applied together with a modular design offers other benefits, 

more pertinently, distributed modelling should that be required when a model 

becomes too large to be handled by a single processor. 

 

7.2.5 Flexibility in operation 

In theory, an agent in a multi-agent system can discover any other agent in its 

community and communicate with each other by passing messages through a 

common agent environment like JACK (JACK, 2007), JADE (JADE, 2006) and Lost 

Wax (LostWax, 2005).  However, if this is allowed to take place without restraint, 

there is a high probability that chaos will result. 

In practical systems, inter-agent communication can be quite restrictive and 

not all possible links are permissible.  In a typical logistics system like the one used 

in the case study, the topology of permissible links in the agent network needs to be 

defined explicitly before the start of a simulation run.  Depending on the 

environment and the internal state of an agent, the strength of its links can be 

adjusted during runtime.  A simulation may use only a subset of the defined set of 

links but the rules embedded in the agents can decide which links to activate and 
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which links are preferred over the others.  This attribute of an ABM gives it an 

additional degree of flexibility over a traditional DEM. 

Despite the restriction imposed by a limited topology, an ABM remains more 

flexible than a DEM because the configurable links between the agents are 

established at run time.  There is still the possibility of loosening the restriction by 

allowing the ABM to implement its own links at runtime.  In a traditional DEM all 

possible valid links have to be present at compile time and this characteristic makes 

it less flexible than an ABM.  The structure of an ABM can change in the course of a 

simulation run while the structure of a DEM is fixed at the time it is constructed. 

 

7.2.6 A natural design metaphor 

In the context of the supply chain/logistics case study, there is distinct 

correspondence between an agent and an identifiable human role at a high level of 

decision making.  In a model which spans a wide range of detail levels, it is more 

natural to employ this paradigm than process sequences to emulate human decision 

making.  The large overlap between agent and human behaviour makes agents 

suitable for modelling problems which are centred on the human role (Kendall, 2000; 

Kendall, 2001; Parunak et al., 1998; Wooldridge et al., 1999).  This is supported by 

the results of the Delphi sessions (see Table 6-9) where the experts were of the view 

that an ABM is easily understood by a person whose normal daily work is in 

business and commerce.  Inter-personal relationships are dominant in these areas of 

employment.  Further, Newell (1982) described conceptual agent interactions as 

occurring at knowledge level, i.e. above the computer program or symbol level and 

nearer the degree of abstraction at which humans communicate.  Knowledge level 

consists of data structures and the processes for extracting knowledge from them 

while the symbol level contains data which may be outputs from sensors.   

The DE paradigm, which is founded on processes and tends to work at data 

level, provides a better match to the parts of a model where processes predominate.  

This view is supported by the Delphi result (see Table 6-9) which is emphatic that 

the DEM, rather than the ABM, is more readily understood by a traditionally trained 

design engineer and also that the DE paradigm is better suited to the modelling of 

very fine details. 
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The relationship between processes and roles is illustrated in Figure 7-1.  In 

the DEM, the unit of abstraction is the process which consists of a logical sequence 

of activities.  In the ABM, the unit of abstraction is the role which contains a 

segment of a process.  To emulate the real world, the roles form a network of 

relationships and are executed in parallel as concurrent threads.  A conclusion which 

may be drawn from the evidence is that no single approach is suitable under all 

conditions.  Therefore, based on the observations of earlier work and on the results of 

the case study described in Chapter 6, it can be said that the agent is a natural 

metaphor for role-dominant problems while traditional discrete-event is better for 

process-dominant ones. 

 

 
 

Figure 7-1: The relationship between processes, activities, and roles 

 

7.3 Management of complexity 

In the continuing enhancement and normal maintenance of a large model, a 

process which rightly belongs to one sub-model can sometimes be implemented 

elsewhere.  This is sometimes done for expediency, or it may be because a modeller 

is not quite able to maintain a clear mental picture of the finer details of a large part 

of the model.  Recently, it has been demonstrated clearly that the short-term, episodic 
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or working memory is limited to maintaining a few high resolution, rather than many 

fuzzier, impressions for a few seconds (Zhang and Luck, 2008).  Earlier, in drawing 

from cognitive science results, Henderson-Sellers (1996) noted that the short-term 

memory of an average programmer has the capacity to read and analyze between five 

and nine chunks (or logical groupings) of code for 20 to 30 seconds.  In order to 

lessen the impact of this innate human limitation, there is therefore a need to manage 

the complexity inherent in a large model. 

Booch (1994) advocates three techniques – decomposition, abstraction, and 

hierarchy or organization – for managing complexity in analysis and design.  These 

are standard practice in object-oriented (OO) software development and as agent-

based models are almost invariably implemented in that programming paradigm, 

they traditionally follow Booch’s three principles. 

A consequence is that the objects they contain possess the desirable qualities 

of high cohesion and thus, a low degree of coupling.  In such a design the amount of 

intra-object communication is considerably higher than inter-object communication 

and a change made in one object is likely to affect only code lying within the 

confines of the object.  Localising the code helps to contain the inherent human 

limitation for handling large amounts of complex details concurrently and thus 

makes the software easier to maintain.   

In a model implemented in a non-OO programming language, i.e. a 

procedural language in this research context, a similar design can also be reached by 

applying a structured design methodology like the one propounded by DeMarco 

(1979) or Yourdon and Constantine (1979), or a particular implementation of such a 

structured methodology, for example, SADT (Structured Analysis and Design 

Technique) and SSADM (Structured Software Analysis and Design Method).  It is an 

established and widely practised methodology which is well supported by mature 

commercial off-the-shelf packages. 

 

7.4 Criteria for agenthood 

It was seen in Section 4.3 that there is a broad spectrum of software which 

may be described as possessing the attributes of agents.  At one end of the spectrum, 

purely deliberative agents can be clearly identified as software with intelligence 
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which can be so sophisticated as to make them indistinguishable from humans.  At 

the other end, purely reactive agents are not much different from a conventional 

piece of software for a control system where inputs are quickly transformed into 

outputs through simple, fixed rules.  Nevertheless, its characteristics satisfy the 

definition for an agent and may be considered to have crossed the boundary into the 

area of agent technology. 

Revisiting the definition given by Wooldridge (1997) and restated by 

Jennings (2000) (see Section 4.2), which has been viewed as a currently and 

generally accepted statement of agenthood, five essential characteristics may be 

identified and they are –  

• It is ‘an encapsulated computer system’.  In this software engineering 

originated definition, while it is possible to admit hardware as well as 

software, a ‘computer system’ is generally taken to mean a software 

system with clearly defined boundaries and interfaces.  Hence, in 

publications about agents in the context of this research, unless directed 

otherwise, a wholly software agent is implied whenever the term 

‘agent’ is used.  However, in the field of robotics, ‘an encapsulated 

computer system’ may contain software as well as the hardware like 

image sensors, electric motors, and specialised computer processors to 

enable response to occur within a useful timeframe, i.e. in real-time. 

• It is ‘situated in some environment’.  The encapsulated computer 

system actively seeks inputs from, and sends outputs to the software 

environment it is embedded in. 

• It is ‘capable of flexible action… within that environment’.  The 

computer system is both reactive and proactive in seeking to achieve its 

design goal. 

• It is ‘capable of autonomous action… within that environment’.  In 

contrast to a conventional software object, which is totally obedient to 

an external demand, the computer system has control over its choice of 

action.  It may choose not to respond if it perceives that doing so may 

be to its own, or its system’s, detriment. 
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• The actions it takes within that environment are performed ‘in order to 

meet its design objectives’.  Hence, the flexible, autonomous actions are 

executed only within the context, and in pursuit, of the agent’s goal. 

These characteristics were used to gauge to what degree the proposed agent-

like DEM (ADEM) design meets these criteria for agenthood. 

 

7.5 Re-visiting the discrete-event model 

Based on the reasons set out in Section 7.2, this section describes the concept 

of a combined layered architecture and communication environment to make a DEM 

agent-like.  It also describes how the existing traditional DEM was modified using 

the attributes which endues an ABM with superior characteristics.  The same set of 

model metrics used for the case study was used to compare the traditional DEM with 

the ADEM. 

 

7.5.1 Architecture for ADEM 

In order to embody the desirable characteristics of an ABM described earlier 

in Section 7.2, it is proposed that a traditional DEM be conceptually structured as 

shown in Figure 7-2. 

There are four components making up this architecture model and they are 

described in the following sub-sections. 

 

7.5.1.1 Layer 1  

This layer enacts the rules which determine the flow of items at a high-level 

in the ADEM.  In a typical logistics problem, these rules may be implemented as a 

consistent body of Boolean ‘if-then’ condition-action statements, fuzzy rules, or 

neural networks.  In such a simulation model where the emphasis is on the speed of 

response, it is necessary to keep this layer operating as efficiently as possible.  Its 

inputs are the data stored in the model’s communication environment, and its outputs 

are configuration commands to the control structure in Layer 2.  This layer emulates 

an agent with reactive architecture (see Section 4.3.2). 
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Figure 7-2: The three-layer architecture for an ADEM 

 

7.5.1.2 Layer 2 

This is the layer which implements the outputs of Layer 1.  To enable this, it 

processes the information from Layer 1 in the following sequence – 

• The intentions of Layer 1 are interpreted as the logical source and 

destination addresses for an item, for example, from OHB1 to CRV3. 

• These logical addresses are translated into a form specific to the model 

and the modelling tool, for example, from Block 123 to Block 456. 

• The information is then packaged as a message and sent to the source 

DEM sub-model, i.e. Block 123 in this example, using the application 

programming interface (API) functions provided by the modelling tool. 

Hence, by modifying the source and destination address of each item, the 

flow of items between the traditional discrete-event sub-models in Layer 3 can be 

redirected.  In effect, this dynamic control structure, which may be described as a 
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configurable software switch, defines the high-level topology of the model.  It 

enables redirection to take place at run time thus increasing model flexibility. 

 

7.5.1.3 Layer 3 

This layer represents the level at which the traditional discrete-event models 

operate.  It can consist of several traditional DE sub-models which are linked 

dynamically by way of Layer 2 as the flow of items between these sub-models is 

controlled by Layer 2.  At intervals, these sub-models update their states in the data 

structures allocated to them in the communication environment.  The sub-model 

states form the inputs for the rules in Layer 1 and may contain information such as 

resource availability, rate of throughput, and queue length. 

 

7.5.1.4 The common communication environment 

This consists of data structures both to store information from the DE sub-

models in Layer 3 as well as to act as an efficient information conduit between Layer 

3 and Layer 1.  Depending on the modelling tools used, the communication 

environment can be implemented in a variety of ways, e.g. as time-stamped message 

queues or global data records.  The updating of information in the communication 

environment occurs asynchronously, which is to say that the updating software 

continues execution immediately after it has deposited the data.  This is contrasted 

against synchronous operation where the updating software deposits the information 

and then waits until the control of execution is relinquished by the communications 

environment.  The latter is wasteful of computing resources and can sometimes result 

in deadlocks thus preventing further execution of the model.  

 

7.5.1.5 Maintainability 

By separating the high-level model configuration rules as well as the control 

structure from the DE sub-models, maintainability is likely to be improved because 

this design process constrains the modeller to implement loosely coupled and highly 

cohesive sub-models.  The nature of supply chain and logistics systems, where data 

is distributed and processes are local, lend themselves well to the implementation of 
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self-contained sub-models.  The rules and model control structure which, in 

combination, provides the agent component of this agent-like DEM, are collocated 

and this is likely to lead to greater understandability and modifiability. 

This three-layer closed-loop architecture which is based on the discrete-event 

paradigm emulates an agent-based model.  In the context of the case study where the 

Extend™6 modelling tool was used, it may be contended that by adopting the global 

data structure as the medium for message passing, the inherent latency due to 

conventional message passing and its associated processing are avoided.  In this 

aspect of model operation, the efficiency of a traditional DEM is retained. 

 

7.6 Implementing the architecture 

The following sub-sections outline the actions taken to implement the case 

study scenario again but applying the architecture for an agent-like DEM described 

above. 

It may be noted here that although the new model is intended primarily as a 

demonstration of implementing an ADEM, it may also be considered as a precursor 

to a distributed model.  A natural consequence of segregating the traditional DEM 

into the four architectural components described in the previous section also prepares 

it for execution in a distributed computing environment, for instance using the HLA 

framework (IEEE, 2000; Kuhl et al., 1999). 

 

7.6.1 Apply a structured methodology 

In Section 7.2.4, it was noted that agent-based modelling naturally 

constrained a model implementer to adopt a top-down design approach.  There is no 

reason why a DEM implementer cannot take the same approach. 

Taking a high level view of model design, a DEM for a supply chain or 

logistics problem can very frequently be partitioned naturally into sub-models 

according to different criteria like human role and capability, but two of the more 

common ones are site function and geographical location.  For example, from the 

data description supplied for the case study, the component repair function is situated 

in four geographically separated locations.  Hence, in sketching out an initial design 

of the DEM, it is reasonable to partition a component repair function into a sub-
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model.  Similarly, the engine overhaul and the spares supply functions fall naturally 

into sub-models. 

Working from the DEM written previously for the case study, the model was 

partitioned according to the well-established principles of structured design 

(Yourdon and Constantine, 1979) so as to minimise coupling between sub-models 

and at the same time maximise cohesion within them.  This is achieved by strictly 

limiting the activities to those of the site function alone.  For example, component 

repair was restricted to activities immediately related to repairs and was not mixed 

with the restocking of spare parts. 

By separating the functions, the resulting main sub-models, i.e. the overhaul 

base, component repair centre, and parts supply centre, can be stored and reused.  

The Extend™6 modelling tool allows them to be stored as library hierarchical blocks 

and reusing them is just a matter of replicating them by dragging them onto the 

model design sheet.  They integrate easily into the model since their interfaces are 

small and well-defined. 

A consequential benefit of applying this software engineering methodology is 

the low volume of data flow between the sub-models when compared with the flow 

of data within each sub-model.  A model structured in this manner can form the basis 

for a distributed model in the future. 

 

7.6.2 Emulate an agent environment 

In an ABM, information between agents is communicated asynchronously 

through messages passed via a software environment such as that provided by the 

open-source JADE (JADE, 2006) platform or the commercially available JACK 

(JACK, 2007) and Aerogility™ (LostWax, 2005) agent frameworks.  Information 

may be actively sought by an agent or provided unsolicited by other agents.  In a 

busy system with many agents, the information may sometimes not be provided 

within a useful timeframe.  Although asynchronous message passing is versatile in 

that it can enable models implemented by disparate modelling tools to communicate 

by acting as middleware, it can nevertheless suffer from high overheads because the 

messages, which can sometimes be long character strings, have to be queued, 

detected, extracted, processed, and executed. 
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Using the Extend™6 modelling tool, an agent environment can be emulated 

in a simple and limited way.  It provides the means of communication but not the 

agent management services (for instance, to create and terminate agents) and 

directory facilitator (‘Yellow Pages’ service for finding other agents) found in fully-

fledged agent environments.  A model-wide global area can be provided so that any 

of the sub-models can write to it and read from it.  For instance, information from the 

component repair centres advertising their current turnaround time, availability of 

skill types, and the cost of services they are prepared to offer is updated at regular 

intervals in this global area.  A sub-model wishing to know the state of a repair 

centre has just to read from the relevant memory location.  Communicating by way 

of a shared area of memory is faster, simpler, and more efficient than message 

passing as it has few of the overheads associated with message handling.  The 

overheads of updating the global information are small in comparison. 

 

7.6.3 Improved flexibility 

It was recognized in Sections 7.2.4 and 7.2.6 that the agent paradigm is better 

suited to modelling high-level decision making while the DE paradigm gives a better 

match to engineering processes.  Agents work with information at the high level end 

of a model where problem details and data flow volume are low while DE modules 

work with data at the low level end where details and data flow volume are high.  

Further, an impediment to flexible modelling is that the structural links of a DEM are 

fixed at the time the model is assembled or compiled.  To improve flexibility an 

innovation to the model was introduced.  A higher layer of control logic was added 

to the model in the form of two DE blocks to coordinate the flow of components – 

the ‘OHB Controller’ for the two OHBs and the ‘Repair Controller’ for the four 

component repair centres (see Figure 7-5).  These are role-based blocks and they act 

as surrogate human controllers, i.e. agents. 

The functions of these controllers are twofold –   

• To define the valid links among the sub-models and thus implement the 

model structure.  This function is also present in the ABM where the 

links are defined as data during model initialisation.  It may be noted 

that in order to move an item from one sub-model to another in the 
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ADEM during a simulation run, the destination of the item was 

determined at run time.  This is different from the traditional DEM 

where the route of an item is hard-coded at compile time. 

• To control the flow of components according to embedded rules and 

current sub-model states.  In Figure 7-3 and Figure 7-4, the ‘OHB 

Controller’ and the ‘Repair Controller’ respectively, the addresses of 

the source sub-model and destination sub-model were implemented as 

attributes of an item.  As the item passed through the ‘Source’ and 

‘Destination’ decision blocks in these controllers, their embedded 

decision rules were executed to determine the item’s destination.  

Depending on the states of the sub-models, the initial destination 

address may be modified by these decision blocks.  For example, these 

sub-model states, implemented as global variables, can help in deciding 

how to route items for OHB or repair centre load balancing, for special 

skills required to inspect and repair items, for shortest turnaround time, 

or for cheapest repairs. 

 

 
 

Figure 7-3: OHB Controller 
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Figure 7-4: Repair Controller 

7.6.4 Results 

Working from an understanding of discrete-event modelling, it was 

anticipated that the execution times of the ADEM would be a little longer than those 

for the traditional DEM under identical conditions.  The underpinning feature of 

discrete-event modelling, i.e. the event list or event calendar for the whole model, 

still applies, and together with the additional processing overheads needed to 

maintain a flexible model structure meant that the execution times would be 

extended. 

To ascertain whether reconfiguring the workflow in the model would make 

any difference in the execution time, alternative routing rules were formulated at the 

controller blocks (the ‘OHB Controller’ and the ‘Repair Controller’ blocks in Figure 

7-5).  The rules in the controller blocks enabled the repair workload to create one of 

the following scenarios – recreate the workload of the traditional DEM, be evenly 

spread amongst the four repair centres, be evenly spread between the two OHBs, be 

even spread between the OHBs and repair centres, or be directed to one repair centre 

for the duration of a simulation run.  The execution times were almost identical in 

each of these cases. 
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Figure 7-5: An overview of the agent-like DEM (ADEM).  The ‘OHB Controller’ and the ‘Repair Controller’ are role-based hierarchical blocks 

functioning as agents to control the flow of items.  All other blocks are traditional DEM sub-models. 
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For comparison, the run times of the ABM, ADEM, and DEM are shown in 

Figure 7-6.  As described in Section 6.4.3 and also shown in Figure 6-17, the run 

times for the ADEM and DEM are shown with and without model initialisation.  It is 

clear from the graphs that model initialisation in both these Extend™6 models 

occupy a significant portion of total run time.  The ABM is initialised differently and 

the time taken for this activity is negligible when compared with total run time. 

 
Figure 7-6: Runtimes for ADEM, DEM, and ABM for different engine fleet sizes 

 

When compared with the performance of the earlier traditional DEM, the 

ADEM execution times were longer by between 0.8% and 3.4%.  This is a slight 

degradation in performance and should be considered together with other software 

qualities.  It may be an acceptable trade-off for making the model more flexible, 

understandable, and modifiable thus better satisfying the demands of a dynamic 
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model development environment typically encountered in the lifecycle of a model.  

As mentioned in Section 7.2.2, cost incurred in the post-implementation or 

maintenance phase of a model forms a significant proportion of total software 

lifecycle cost. 

Table 7-1 shows that when compared with the earlier traditional DEM, the 

size and complexity metrics for the ADEM were larger by between 1% and 28%.  By 

making the sub-systems self-contained, more code than before was required to 

handle their interaction with other sub-systems thus increasing the numerical values 

of these metrics.  Although the ADEM sub-systems were larger, they were easier to 

understand since the modular code resulting from applying a structured design 

method made the model clearer and easier to follow.  Both Boehm (1981) and 

Welker (2001) strongly recommend the use of code reviews by expert programmers 

to assess program maintainability.  They are of the opinion that while code metrics 

provide an automated, objective measure, it is but one view which however needs to 

be confirmed by another means.  Welker (2001) provides an example which showed 

that a larger and more complex piece of code, as measured by LOC and McCabe 

cyclomatic number respectively, was judged to be more maintainable because of the 

helpful comments it contained.  This result points to the importance of adhering 

strictly to best programming practice in order to ensure the production of high 

maintainability software. 

 
Table 7-1: Multiples of ADEM to DEM metrics 

Sub-
system 

Number of 
executable 

statements, LOC 

Number of methods 
or procedures 

Number of classes 
or modelling blocks 

Weighted methods 
per class, WMC 

A 1.3 1.3 1.3 1.1 

B 1.3 1.2 1.1 1.2 

C 1.0 1.0 1.0 1.2 

D 1.0 1.0 1.0 1.1 

E 1.3 1.3 1.2 1.1 

 

Table 7-2 summarizes the extent to which Layers 1 and 2 meet the five-part 

definition of an agent as provided by Wooldridge (1997) and Jennings (2000).  

Considered together, Layers 1 and 2 emulate an agent since all five parts of the 
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definition are satisfied.  However, it should be stressed that this consideration is 

based only a single agent in isolation.  It is more pertinent to compare models and it 

is very likely that an ABM will be implemented as a multi-agent system.   

According to Wooldridge and Ciancarini (2001) such a multi-agent system is 

inherently a concurrent multi-threaded process.  Each agent has its own thread of 

execution and is continually actively engaged in an infinite loop sensing its 

environment, updating its internal state, and performing the appropriate action.  As 

the ADEM is based on the discrete-event paradigm, all actions in the model are 

managed by the event list and can only be carried out sequentially.  It has been 

discussed in Section 7.2.3 that for practical reasons, a very large multi-agent system 

is usually executed as a single-threaded process, i.e. the agents are executed 

sequentially.  Therefore, the ADEM does not comply with the definition of an ideal 

multi-agent system but compares well with some practical, large multi-agent 

systems.  Thus, it is justified in describing the ADEM as an agent-like discrete-event 

model rather than a hybrid of an agent-based and a discrete-event model. 

 
Table 7-2: Summary showing how ADEM satisfies the definition of an agent 

 Constituent elements of an agent 
(Jennings, 2000; Wooldridge, 1997) 

ADEM architecture 

1 ‘An encapsulated computer system’ The modular design of the model, enforced by a 

structured design methodology, ensures that 

the model configuration rules and code in 

Layers 1 and 2 have clearly defined boundaries 

and interfaces. 

2 ‘Situated in some environment’ The rules in Layer 1 seek input from the 

common communication environment.  The 

outputs from Layer 1 act on the Layer 3 DEM 

sub-models which outputs information to the 

common communication environment.  This 

completes the agent input/output loop. 

3 ‘Capable of flexible action… within that 

environment’ 

In reaction to changes in its environment, code 

in Layer 1 work in concert with the dynamically 

configurable switch in Layer 2 to modify the 

model structure and to redirect the flow of 
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 Constituent elements of an agent 
(Jennings, 2000; Wooldridge, 1997) 

ADEM architecture 

model items.  The case study logistics scenario 

did not give the occasion to implement a 

deliberative agent but the condition-action rules 

present in the ‘OHB Controller’ and ‘Repair 

Controller’ blocks satisfy the description of a 

reactive agent. 

4 ‘Capable of autonomous action… 

within that environment’ 

The architecture is not based on message 

passing but on Layer 3 sub-models publishing 

information in the communication environment.  

The body of code and rules in Layer 1 decides 

on what, if any, action needs to be taken. 

5 ‘In order to meet its design objectives’ The rules and code in Layer 1 act on 

information in the communication environment 

and respond in such a way as to meet its 

design objectives which may be, for example, 

achieving lowest cost or shortest overhaul time.

 

 

7.7 Summary 

The benefits of an ABM over a traditional DEM may be summed up by its 

smaller size and lower complexity; its higher scalability and ability to exploit parallel 

execution; its natural tendency to segregate into loosely coupled sub-models; its 

better conceptual match at a high level of decision-making; and its flexibility in 

operation due to its ability to reconfigure structurally at runtime. 

Agent technology enables the management of problem complexity to be 

made easier because it is object-oriented and the established techniques of 

decomposition, abstraction, and organization can be applied to it.  However, the 

same benefit can be obtained for non-OO languages by the disciplined use of a 

structured design methodology. 

The five-part definition for an agent was considered in greater detail so that 

an informed judgement could be made later on how well the agent-like DEM 

(ADEM) fitted the criteria. 



 
Chapter 7: An Agent-like Discrete-event Model 
 

 
148 

A layered architecture comprising four components was proposed for the 

ADEM to enable a model with both role-dominant and process-dominant parts to 

work together. 

The traditional DEM used in the case study was converted into an ADEM and 

code metrics as well as model run times were obtained for comparison.  The ADEM 

was slightly larger and executed slightly slower than the traditional DEM.  However, 

it was considered that these minor drawbacks were acceptable tradeoffs against the 

benefits of greater understandability of the code and increased flexibility in 

operation. 

Lastly, the controller blocks in the ADEM were compared against the agent 

definition and it may be concluded that they satisfy the five parts of the definition.  

Despite that, the ADEM is unlike an ideal multi-agent system since it does not 

execute as a concurrent multi-threaded process. 
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Chapter 8 

Conclusions and Future Work 

8 CONCLUSIONS AND FUTURE WORK 
In conclusion, this chapter presents a précis of the main conclusions reached 

through the research which has been carried out.  It also outlines the particular 

contributions towards furthering the understanding of the agent-based and the 

traditional discrete-event modelling paradigms.  Finally, as a result of the work 

completed, other areas of research are suggested where further investigation may be 

worthwhile. 

 

8.1 Conclusions 

The case study, which involved the modelling of the Rolls-Royce Trent 800 

fleet repair operation using an ABM and a functionally identical traditional DEM, 

demonstrated the differences between the two modelling approaches.  The H1 

hypothesis stated in Section 1.4, that ‘agent-based modelling is better than 

traditional discrete-event modelling’, has to be qualified since the benefits of the 

agent-based modelling are not universal but are evident only under certain 

conditions.  These conditions will be made clear in the conclusions contained in the 

following sub-sections where applicable. 

 

8.1.1 Code metrics for models 

The ABM was shown to be smaller, less complex, and consequently more 

maintainable than the traditional DEM.  This result applies specifically within the 

context of the case study scenario, i.e. for a logistics problem containing level of 

details ranging from flexible, human decision-making to detailed, fixed process 
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sequences, and after the ‘system implementation’ activity in the development 

lifecycle (see Figure 6-6 for Systems Development Lifecycle).  Code metrics which 

are normally compiled during the implementation of a software project – LOC, 

number of methods, classes, and procedures, as well as MCN and WMC – all 

emphasise the superiority of ABM in terms of program size and complexity.   

 

8.1.2 Loose coupling and high cohesion 

Agents in the ABM and DEM blocks are loosely coupled, and since 

communication amongst the agents was achieved through asynchronous message 

passing the ABM holds a slight advantage.  In a well-designed system, loose external 

coupling implies high internal cohesion, thus resulting in related code which is likely 

to be located within the same module.  As such, the effect of a change in one module 

will not ripple far out to other parts of the system thus amplifying its effect.  Based 

on this software quality of maintainability alone, the mental effort required to 

understand, modify, and test a change to the ABM will be less than that required for 

the DEM, thus lowering cost. 

 

8.1.3 Wider aspects of modelling 

The superiority of the ABM is less obvious when the ‘requirements analysis’ 

and ‘design’ activities are taken into consideration (see Figure 6-6 for Systems 

Development Lifecycle).  The considered views of software and modelling experts 

from the Delphi sessions were that the ABM was more easily understood by people 

whose normal work activities centred on organizational relationships while the DEM 

was more easily understood by people whose activities centred on processes.  

Information gathering for requirements analysis will be optimized if the agent and 

the traditional discrete-event paradigms are used appropriately when interviewing 

people who are involved in different levels of the problem domain.  While the 

conclusions in Section 8.1.1 are objective, they form but an element of the 

comparison between the two modelling approaches.  The enlarged scope of the 

systems development lifecycle considered here is closer to reality and is more useful 

in practice.  
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8.1.4 Scope of an agent 

The scope of an agent is not confined just to the activities of code 

implementation and subsequent maintenance.  It encompasses the system 

development lifecycle activities of requirements analysis and design as well.  As a 

body of programme code, an agent is not greatly different from conventional 

programme code.  Its benefits are realised when the agent concept is applied in a 

disciplined manner early in the model lifecycle, i.e. from the requirements analysis 

stage onwards, where high level agent roles are initially identified.  The early 

application of effort to reduce the conceptual gap between the real world and the 

written specification provides a good foundation for all subsequent cost reduction 

since less mental effort will be needed to understand, modify, and test the model 

software. 

 

8.1.5 Modelling best practice 

Both ABM and DEM benefit from the disciplined application of modelling 

best practice.  A top-down structured design methodology helps to make the 

complexity of a system manageable to a model implementer through the design 

techniques of hierarchy, decomposition, and abstraction.  A consequence applying 

such a methodology is the natural segregation of a model into appropriate sub-

systems or agents.  It was recognised during the implementation of the DEM that 

designing it using one of the commercially available, mature, and proven structured 

design methodologies can help to reduce the initially perceived gap between the two 

modelling approaches significantly. 

 

8.1.6 Matching problem with model 

A multi-agent system used as a model is better suited to role-dominant 

problems as the AI aspect of agent technology is a better match than discrete-event 

model for situations where information may not be complete.  Also, in contrast to the 

strict sequential activities of a DEM, a multi-threaded multi-agent process simulates 

parallel activities and is a closer approximation to human communication in the real 

world. 
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8.1.7 Flexibility in operation 

A traditional DEM requires all information and organisational relationships to 

be present at the time the model is compiled for execution thus fixing the model 

structure for the duration of a simulation run.  In comparison, a multi-agent model 

has the ability to create and terminate links in the course of a simulation run so 

endowing the ABM with greater flexibility.  However, the freedom to restructure a 

model in such a manner has to be controlled by rules to ensure that only valid links 

can be made. 

 

8.1.8  Model performance 

The elapsed, or ‘wall-clock’, time of an ABM simulation run is not as 

sensitive to changes in model workload as that of a DEM.  The flatter ABM response 

time graph is due largely to it being a time-driven model with a fixed simulated time 

step while the DEM is event-driven. 

In the ABM, the passage of time is modelled and therefore the elapsed time 

of a simulation run does not vary by much even when there are no items to process 

and the CPU is idle most of the time.  As the number of items for processing 

continues to increase, CPU idle time will continue to decrease.  Up to the point 

where there is still some idle time during a simulation run (a fleet size of about 100 

engines in Figure 7-6), thus indicating the presence of spare capacity in the CPU, the 

simulation run time remains about the same.  As the number of items increases 

beyond this, the simulation run time will increase because the ability of the CPU to 

respond to the demands of the model continues to diminish. 

In the event-driven DEM, where the notion of a fixed time step is absent, the 

model is always executed as quickly as possible progressing from one event to the 

next.  Hence, the CPU is always fully loaded during a DEM simulation run.  This is 

in contrast to the ABM which runs with CPU idle time up to the point mentioned in 

the previous paragraph.  It is clear from Figure 7-6 that, because of the difference in 

CPU utilisation between the two modelling paradigms, the DEM has a shorter 

simulation run time when the fleet has fewer than 60 engines while the ABM is 

quicker for engine fleets larger than that. 
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However, the ABM is a heavy user of computing resources and it failed 

catastrophically when it ran out of memory.  In contrast, the DEM was light on 

computing resources and successfully completed simulation runs with engine fleet 

sizes which exceeded the largest managed by the ABM (see Figure 7-6). 

 

8.1.9 Repeatability and predictability 

Simulation runs with the DEM can be guaranteed to be repeatable and 

predictable.  Although stochastic processes are present, the DEM may nevertheless 

be considered to be deterministic for the reason that the seeds for the random inputs 

(they are pseudo-random in reality) can be left unchanged between model 

executions.  In addition, there is only one event list in a DEM and since this data 

structure determines the event sequence, the results of different runs with the same 

input data will be the same.  However, repeatability and predictability cannot be 

guaranteed with the ABM because other unrelated but essential computer processes, 

e.g. scheduling and network processes, can introduce undesirable perturbations into 

the execution of the concurrent threads making up the process.  In an ABM, where it 

is usual for each agent to be run in its own separate thread, the delayed output in one 

thread caused by the execution of other processes can periodically result in 

unpredictable and undesirable consequences.  This is an inherent problem of 

multithreaded execution the solution to which sometimes is to avoid multithreaded 

operation altogether. 

 

8.1.10 Multithreaded execution 

Although multi-threaded execution is an inherent component of the agent 

paradigm and is beneficial to it, it is nevertheless a significant drawback of the ABM.  

To ensure repeatable simulation results, the threads have to be synchronized by 

manual coding.  Similarly, to prevent deadlocks, shared resources have to be locked 

for exclusive access by each thread by manual coding.  Complete test coverage can 

be difficult, or impossible, to achieve in multi-agent systems with a large number of 

threads of execution. 
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8.2 Contributions of research 

Although various modelling approaches have been compared before (see 

Section 2.5), the comparison of an ABM with a traditional DEM has not been 

attempted to date.  Where the other published comparisons have been wholly 

qualitative, a large part of this research involved the quantitative and objective 

measurement of model characteristics. 

To minimise the conceptual gap between problem and model, it is better to 

partition a model according to the relative dominance of roles or processes in the 

problem domain.  Roles may be implemented using the agent paradigm while 

processes may be implemented using the discrete-event paradigm.  The logistics 

problem in the case study scenario has processes fully occupying the lower, detailed 

level while roles predominate at the higher, strategic levels.  A problem such as this 

is more suitably addressed as a combination of agents and discrete-event processes 

where each modelling paradigm can be applied where appropriate.  This combined 

approach is proposed in the thesis. 

Building on the results of the case study, a layered architecture is presented as 

the framework for implementing such a combined model in the discrete-event 

paradigm.  The three conceptual layers represent the sub-systems of traditional 

DEMs, intelligent switches which enable the model to be restructured dynamically, 

and agents which enable goals of the model to be achieved.  The resulting model 

exploits the strengths of both modelling paradigms and in doing so, extends the range 

of practical usefulness of traditional DEMs.  This combined-paradigm model is 

described as an agent-like DEM (ADEM).  The reason it is not described as an 

agent/discrete-event hybrid in the full sense of that term is because the agents present 

in the model cannot be implemented as traditional multi-threaded agent processes but 

have to be executed as a part of a single-threaded sequential DEM. 

An important outcome of the research is the observation that most of the 

published benefits of an ABM can be achieved by a DEM through the disciplined 

adherence to a well-established structured design methodology.  By reinforcing the 

desirable qualities of high modularity, loose coupling, and high cohesion in the 

design of a DEM, the gap between the two modelling paradigms is reduced. 
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8.3 Future work 

8.3.1 Extension of model comparison  

Although software maintainability from the perspectives of the purchaser and 

the model implementer has been a significant component of this research, other 

software qualities such as reliability, efficiency, correctness, and usability are equally 

important to the model user.  As agent technology is increasingly being adopted by 

model implementers and becomes more prominent in the mainstream of modelling, 

these other software qualities will assume greater importance.  Maintainability 

addresses the primary issues of software cost and effort, both of which are pre-

eminent questions when seeking justification to migrate to a new technology, the 

other software qualities address matters of user confidence in a new technology 

which will be expected to be better than the technology it will replace and be in 

constant operation.  In the present paucity of quantitative information about agent 

technology, a more holistic view of the technology will be obtained by widening the 

scope of such a comparison. 

 

8.3.2 Distributed modelling 

Another natural extension of the modelling paradigm comparison carried in 

this thesis is to consider the important problems related to distributed modelling.  As 

the demand for larger and more realistic models continues to grow, the computing 

capacity offered by a single processor will be unable to satisfy that.  This is evident 

from the results of the performance measurements carried out in this research (see 

Figure 7-6) where both models were hindered, for different reasons, from 

successfully simulating the operation of a realistically large engine fleet.  The ABM 

experienced a hard failure because it ran out of memory while the time required by 

the DEM to complete a run may be considered too long in a commercial 

environment. 

It is likely that the various existing civil and military engine fleets RR has to 

maintain will continue to expand.  Although the existing memory constraint imposed 

by a 32-bit hardware and software system can be addressed directly by migrating to a 

64-bit system, it is unlikely that a simulation run will complete in an acceptable time.  

A promising way to model a large engine fleet and yet give a reasonably short 



 
Chapter 8: Conclusions and Future Work 
 

 
156 

response time is to exploit parallelism in modelling.  There are techniques for the 

synchronization of model time (Section 3.3.2) and a standardised framework (see 

Section 3.3.2.3 High-Level Architecture) to enable a model to be distributed to 

geographically dispersed processors for parallel execution.  They can be used for the 

seamless integration of models implemented by collaborating enterprises.  

 

8.3.3 Optimization 

It may be argued that the primary motive for building a simulation model is 

to be able to arrive as quickly as possible at the optimal solution for a problem.  At 

present, a common method of exploring the solution space is to conduct numerous 

sensitivity studies by manually varying one or two input variables at a time.  This is 

unlikely to be adequate for large and complex models such as those typically 

required by RR to simulate the logistics for engine fleet maintenance.  Specialized 

external optimizers will be needed to operate in conjunction with these models and 

thus enable multivariate optimization to be carried out.  The clamour to improve on 

an existing solution will be driven largely by the very large financial returns which 

can be accumulated over the lifetime of an engine fleet. 

 

8.4 Concluding remarks 

The work carried out in this research has identified some of the strengths and 

weaknesses of agent-based modelling when compared with discrete-event modelling.  

The outcomes of the comparison have been deployed in a novel model architecture 

which combines the strengths of both modelling paradigms.  Although discrete-event 

modelling has been widely used in industry for many years, the new agent-like 

discrete-event model may be considered to have contributed to its continuing 

development, specifically in the class of problems exemplified by the logistics model 

used in this research. 

As modelling tools become more powerful, sophisticated, and user-friendly, 

the production of models or model parts becomes more likely to be devolved from 

specialist modellers to end-users like engine designers and cost engineers.  It is the 

hope that this research has begun to help this migration on its way. 
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Appendix A 

APPENDIX A 
A.1 Technology Readiness Levels 

The definitions of the levels of technology readiness recommended by the 

Carnegie Mellon Software Engineering Institute (Graettinger et al., 2002) are 

presented in Table A-1.  This nine-point scale is as a metric for assessing the 

maturity of new technologies.  Although applicable to all technologies, this version 

of the Technology Readiness scale has been adapted for assessing new software 

technologies. 

 
Table A-1: The SEI Technology Readiness Levels 

TECHNOLOGY 
READINESS LEVEL 

DESCRIPTION 

1. Basic principles 

observed and reported 

Hardware/Subsystem: Lowest level of technology readiness.  

Scientific research begins to be translated into applied research 

and development.  Examples might include paper studies of a 

technology’s basic properties. 

Software: Lowest level of software readiness.  Basic research 

begins to be translated into applied research and development.  

Examples might include a concept that can be implemented in 

software or analytic studies of an algorithm’s basic properties. 

2. Technology concept 

and/or application 

formulated 

HW/S: Invention begins.  Once basic principles are observed, 

practical applications can be invented.  Applications are 

speculative and there may be no proof or detailed analysis to 

support the assumptions.  Examples are limited to analytic 

studies. 

SW: Same as HW/S 
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TECHNOLOGY 
READINESS LEVEL 

DESCRIPTION 

3. Analytical and 

experimental critical 

function and/or 

characteristic proof of 

concept 

HW/S: Active research and development is initiated.  This 

includes analytical studies and laboratory studies to physically 

validate analytical predictions of separate elements of the 

technology.  Examples include components that are not yet 

integrated or representative. 

SW: Active research and development is initiated.  This includes 

analytical studies to produce code that validates analytical 

predictions of separate software elements of the technology.  

Examples include software components that are not yet 

integrated or representative but satisfy an operational need.  

Algorithms run on a surrogate processor in a laboratory 

environment. 

4. Component and/or 

breadboard validation in 

laboratory environment 

HW/S: Basic technological components are integrated to 

establish that they will work together.  This is relatively “low 

fidelity” compared to the eventual system.  Examples include 

integration of ad hoc hardware in the laboratory. 
SW: Basic software components are integrated to establish that 

they will work together.  They are relatively primitive with 

regard to efficiency and reliability compared to the eventual 

system.  System software architecture development initiated to 

include interoperability, reliability, maintainability, extensibility, 

scalability, and security issues.  Software integrated with 

simulated current/legacy elements as appropriate. 
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TECHNOLOGY 
READINESS LEVEL 

DESCRIPTION 

5. Component and/or 

breadboard validation in 

relevant environment 

HW/S: Fidelity of breadboard technology increases 

significantly.  The basic technological components are integrated 

with reasonably realistic supporting elements so it can be tested 

in a simulated environment.  Examples include “high fidelity” 

laboratory integration of components. 

SW: Reliability of software ensemble increases significantly.  

The basic software components are integrated with reasonably 

realistic supporting elements so that it can be tested in a 

simulated environment.  Examples include “high fidelity” 

laboratory integration of software components. 

System software architecture established.  Algorithms run on a 

processor(s) with characteristics expected in the operational 

environment.  Software releases are “Alpha” versions and 

configuration control is initiated.  Verification, Validation, and 

Accreditation (VV&A) initiated. 

6. System/subsystem 

model or prototype 

demonstration in a 

relevant environment 

 

HW/S: Representative model or prototype system, which is well 

beyond that of TRL 5, is tested in a relevant environment.  

Represents a major step up in a technology’s demonstrated 

readiness.  Examples include testing a prototype in a high-

fidelity laboratory environment or in a simulated operational 

environment. 

SW: Representative model or prototype system, which is well 

beyond that of TRL 5, is tested in a relevant environment.  

Represents a major step up in software demonstrated readiness.  

Examples include testing a prototype in a live/virtual experiment 

or in a simulated operational environment.  Algorithms run on 

processor of the operational environment are integrated with 

actual external entities.  Software releases are “Beta” versions 

and configuration controlled. Software support structure is in 

development.  VV&A is in process. 
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TECHNOLOGY 
READINESS LEVEL 

DESCRIPTION 

7. System prototype 

demonstration in an 

operational environment 

HW/S: Prototype near, or at, planned operational system.  

Represents a major step up from TRL 6, requiring demonstration 

of an actual system prototype in an operational environment such 

as an aircraft, vehicle, or space.  Examples include testing the 

prototype in a test bed aircraft. 

SW: Represents a major step up from TRL 6, requiring the 

demonstration of an actual system prototype in an operational 

environment, such as in a command post or air/ground vehicle.  

Algorithms run on processor of the operational environment are 

integrated with actual external entities.  Software support 

structure is in place.  Software releases are in distinct versions.  

Frequency and severity of software deficiency reports do not 

significantly degrade functionality or performance.  VV&A 

completed. 

8. Actual system 

completed and qualified 

through test and 

demonstration 

HW/S: Technology has been proven to work in its final form 

and under expected conditions.  In almost all cases, this TRL 

represents the end of true system development.  Examples 

include developmental test and evaluation of the system in its 

intended weapon system to determine if it meets design 

specifications. 

SW: Software has been demonstrated to work in its final form 

and under expected conditions.  In most cases, this TRL 

represents the end of system development. Examples include test 

and evaluation of the software in its intended system to 

determine if it meets design specifications.  Software releases are 

production versions and configuration controlled, in a secure 

environment.  Software deficiencies are rapidly resolved through 

support infrastructure. 
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TECHNOLOGY 
READINESS LEVEL 

DESCRIPTION 

9. Actual system proven 

through successful 

mission operations 

HW/S: Actual application of the technology in its final form and 

under mission conditions, such as those encountered in 

operational test and evaluation.  Examples include using the 

system under operational mission conditions. 

SW: Actual application of the software in its final form and 

under mission conditions, such as those encountered in 

operational test and evaluation.  In almost all cases, this is the 

end of the last “bug fixing” aspects of the system development.  

Examples include using the system under operational mission 

conditions.  Software releases are production versions and 

configuration controlled.  Frequency and severity of software 

deficiencies are at a minimum. 
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Appendix B 

APPENDIX B 

B.1 A nominal definition of Complex Adaptive Systems 
The notion of Complex Adaptive Systems has originated from a number of 

contributors.  In the absence of a concise definition, Dooley (1996) has proposed a 

description of a complex adaptive system summarised from works which are 

considered as seminal.  First, his method is presented and that is followed by the 

definition and the literature sources. 

 
B.2 The method 

The nominal definition to be put forth is forged from the works of Gell-Mann 

(1994), Holland (1995), Jantsch (1980), Maturana and Varela (1992), and Prigogine 

and Stengers (1984).  The essential principles of a CAS, as defined in each work, 

were carefully noted.  These conceptual lists were then merged into one master list of 

concepts.  Common themes were noted and an abbreviated list was developed.  This 

aggregate list of concepts was then put into a structural model that synthesized the 

concepts into a single description. 

 

B.3 The definition 

The basic elements of a CAS are agents.  Agents are semi-autonomous units 

that seek to maximize their fitness by evolving over time.  Agents scan their 

environment and develop schema.  Schema are mental templates that define how 

reality is interpreted and what are appropriate response for a given stimuli.  These 

schema are often evolved from smaller, more basic schema.  These schema are 

rational bounded: they are potentially indeterminate because of incomplete and/or 

biased information; and they differ across agents.  Within an agent, schema exist in 

multitudes and compete for survival via a selection-enactment-retention process.   

When an observation does not match what is expected, an agents can take 

action in order to adapt the observation to fit an existing schema.  An agent can also 

purposefully alter schema in order to better fit the observation.  Schema can change 

through random or purposeful mutation, and/or combination with other schema.  
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When schema change it generally has the effect of making the agent more robust (it 

can perform in light of increasing variation or variety), more reliable (it can perform 

more predictably), or more capable in terms of its requisite variety (in can adapt to a 

wider range of conditions). 

The fitness of the agent is a complex aggregate of many factors, both local 

and global.  Unfit agents are more likely to instigate schema change.  Optimization 

of local fitness allows differentiation and novelty/diversity; global optimization of 

fitness enhances the CAS coherence as a system and induces long term memory. 

Schema define how a given agent interacts with other agents surrounding it.  

Actions between agents involve the exchange of information and/or resources.  

These flows may be nonlinear.  Information and resources can undergo multiplier 

effects based on the nature of interconnectedness in the system.  Agent tags help 

identify what other agents are capable of transaction with a given agent; tags also 

facilitate the formation of aggregates, or meta-agents.  Meta-agents help distribute 

and decentralize functionality, allowing diversity to thrive and specialization to 

occur.  Agents or meta-agents also exist outside the boundaries of the CAS, and 

schema also determine the rules of interaction concerning how information and 

resources flow externally. 

 

B.4 The sources 

Gell-Mann, M. (1994). The Quark and the Jaguar. New York: Freeman & Co. 

Holland, J.H. (1995). Hidden Order, Reading, MA: Addison-Wesley. 

Jantsch, E. (1980). The Self-Organizing Universe. Oxford: Pergaman Press. 

Maturana, H. and F. Varela (1992). The Tree of Knowledge. Boston: Shambhala. 

Prigogine, I., & I. Stengers (1984). Order Out of Chaos. New York: Bantam Books. 
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Appendix C 

APPENDIX C 

C.1 Process maps for engine maintenance 
The following six process maps form part of the ABM’s functional 

specification from which the traditional DEM was implemented. 

 
Figure C-1: Process map 1 – Initial OHB processes and the ASC (Rolls-Royce plc) 
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Figure C-2: Process map 2 – OHB processes (Rolls-Royce plc) 

 

 

 

 

 
 

Figure C-3: Process map 3 – CRV processes (Rolls-Royce plc) 
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Figure C-4: Process map 4 – ‘No kitting’ OHB processes (Rolls-Royce plc) 



 
Appendix C 
 

 
167 

 

 

Figure C-5: Process map 5 – CRV processes (Rolls-Royce plc) 
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Figure C-6: Process map 6 – CRV processes (Rolls-Royce plc) 
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Appendix D 

APPENDIX D 

D.1 Data for the agent-based and traditional discrete-event 
models 

The data for the agent-based model included a table of numerical values for 

the attributes of a 67-component engine model.  Table D-1 lists the engine 

components and the modules they belong to while Table D-2 lists the attributes for 

each component. 
 

Table D-1: Components and modules for the Trent 800 engine (Rolls-Royce plc) 

Number Component name Module number 

1 Annulus-Fillers 01 

2 Fan-Blades 01 

3 Fan-Disc 01 

4 Fan-Shaft 02 

5 Front-Combustion-Liner 04 

6 HPC-Blades-St1 04 

7 HPC-Blades-St2 04 

8 HPC-Blades-St3 04 

9 HPC-Blades-St4 04 

10 HPC-Blades-St5 04 

11 HPC-Blades-St6 04 

12 HPC-Drum-St1-4 04 

13 HPC-Drum-St5-6 04 

14 HPC-Vanes-St1 04 

15 HPC-Vanes-St2 04 

16 HPC-Vanes-St3 04 

17 HPC-Vanes-St4 04 

18 HPC-Vanes-St5 04 

19 HPT-Blade 04 

20 HPT-Disc 04 
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Number Component name Module number 

21 HPT-NGV 04 

22 HPT-Seal-Segment 04 

23 IPC-Blades-St1 02 

24 IPC-Blades-St2 02 

25 IPC-Blades-St3 02 

26 IPC-Blades-St4 02 

27 IPC-Blades-St5 02 

28 IPC-Blades-St6 02 

29 IPC-Blades-St7 02 

30 IPC-Blades-St8 02 

31 IPC-Drum 02 

32 IPC-OGV 02 

33 IPC-Shaft 02 

34 IPC-Vanes-St3 02 

35 IPC-Vanes-St4 02 

36 IPC-Vanes-St5 02 

37 IPC-Vanes-St6 02 

38 IPC-Vanes-St7 02 

39 IPT-Blade 05 

40 IPT-Disc 05 

41 IPT-NGV 05 

42 IPT-Seal-Segment 05 

43 IPT-Shaft 05 

44 LPT-Shaft 08 

45 LPT-Stg-1-Blade 08 

46 LPT-Stg-1-Disc 08 

47 LPT-Stg-1-NGV 08 

48 LPT-Stg-1-Seal-Segment 08 

49 LPT-Stg-2-Blade 08 

50 LPT-Stg-2-Disc 08 

51 LPT-Stg-2-NGV 08 

52 LPT-Stg-2-Seal-Segment 08 

53 LPT-Stg-3-Blade 08 
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Number Component name Module number 

54 LPT-Stg-3-Disc 08 

55 LPT-Stg-3-NGV 08 

56 LPT-Stg-3-Seal-Segment 08 

57 LPT-Stg-4-Blade 08 

58 LPT-Stg-4-Disc 08 

59 LPT-Stg-4-NGV 08 

60 LPT-Stg-4-Seal-Segment 08 

61 LPT-Stg-5-Blade 08 

62 LPT-Stg-5-Disc 08 

63 LPT-Stg-5-NGV 08 

64 LPT-Stg-5-Seal-Segment 08 

65 VIGVs 02 

66 VSV-St1 02 

67 VSV-St2 02 

 

 
Table D-2: Component attributes (Rolls-Royce plc) 

Number Attribute 

1 Component name 

2 Module number 

3 Kit name 

4 Quantity per engine 

5 Maximum number of repairs 

6 Weight in pounds 

7 Inspection policy 

8 CRV 

9 PSC capacity per day (new parts) 

10 CRV capacity per day (repaired parts) 

11 PSC price (US$) for a new part  

12 CRV price (US$) for a repaired part 

13 PSC turnaround in days (new parts) 

14 CRV turnaround in days (repaired parts) 
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Number Attribute 

15 OHB inspection price (US$) 

16 OHB inspection time (days) 

17 CRV inspection time (days) 

18 CRV total repair time (days) 

19 Airline A (max used %) 

20 Airline B (max used %) 

21 Refit rate (shop visit number 1) 

22 Refit rate (shop visit number 2) 

23 Refit rate (shop visit number 3) 

24 Refit rate (shop visit number 4) 

25 Refit rate (shop visit number 5) 

26 Refit rate (shop visit number 6) 

27 Scrap rate (shop visit number 1) 

28 Scrap rate (shop visit number 2) 

29 Scrap rate (shop visit number 3) 

30 Scrap rate (shop visit number 4) 

31 Scrap rate (shop visit number 5) 

32 Scrap rate (shop visit number 6) 

33 Repair rate (shop visit number 1) 

34 Repair rate (shop visit number 2) 

35 Repair rate (shop visit number 3) 

36 Repair rate (shop visit number 4) 

37 Repair rate (shop visit number 5) 

38 Repair rate (shop visit number 6) 
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Appendix E 

APPENDIX E 

E.1 Applying the Delphi Method 
In the case study carried out for this research, the Delphi process outlined 

earlier by Brown (1968) and Gordon (1994), and reiterated more recently by 

Stellman and Greene (2005), was implemented with the minor adaptation that all 

communication was carried out remotely by email.  This was necessary because the 

heavy work load of the three participating experts meant that it was almost 

impossible to hold meetings in a common location for the Delphi sessions within a 

reasonable timeframe.  As it transpired, asynchronous communication by email not 

only enabled the time taken by the whole process to be shortened because 

participation could take place at any time, it also ensured that the questionnaire 

responses remained anonymous since there was no direct communication. 

The three experts who were invited to be participants were all highly 

experienced software engineers who had coded programmes and managed software 

projects of various sizes and complexities.  However, each of them possessed 

different levels of knowledge of ABM and DEM.  In addition to the three experts, a 

fourth person acted as the facilitator to initiate the Delphi process, to collect and 

analyse the responses, and to keep the process in motion until consensus was 

achieved. 

The Delphi ‘kick-off’ session was in the form of an email with two 

attachments – a questionnaire (the details are presented in Section E.2), and a 

document which contained a statement of the purpose of the session as well as 

descriptions of the Delphi process to be followed, the goal of the session, the two 

modelling paradigms, and the problem to be considered.  This email was sent to to 

the three participants at the same time and it also contained the instruction that 

responses to the questionnaire were expected within one week.  Further, the 

functional specification, the flowcharts, and packages of code for the agent-based 

model and the discrete-event model were not distributed but were made available for 

easy access by the participants for reference if the need arose. 

Using the interquartile measure as the criterion, it was judged that some 

responses to the initial questionnaire ranged too widely for them to be described as 
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consensual opinion.  With the exception of one question to which all participants 

gave the same score, responses to the other questions were separated by up to two 

clear points on the six-point ordinal response scale.  Those which differed by two 

clear points were therefore wider than the interquartile range and so did not represent 

consensus. 

The results for all 14 questions, i.e. both the scores as well as the reasons 

given to justify the scores, were collated and sent out again.  Those questions which 

did not achieve consensus were highlighted so that the participants could consider 

them further.  All responses to the second iteration of the questionnaire were within 

the interquartile range and therefore did not require further consideration by the 

participants.  The quantitative results for the questions presented in Section E.2 show 

the number of participants who estimated that a particular point in the ordinal scale 

corresponded most closely to his or her opinion. 

To classify the responses as ‘nominal’, ‘moderate’, or ‘very’, the results were 

processed as follows –  

• Assign a score of 6 to the leftmost point on the response scale of each 

question.  Decrease the score by 1 as the scale is traversed from left to right.  

The rightmost point should have a score of 1. 

• The weighted mean for the response to a question is calculated and a class is 

assigned.  For example, in Section E.2.2, the two weighted means for 

Question 1 are evaluated as (((5*1)+(4*2))/3)-3.50 = 0.83 and 

(((6*1)+(5*2))/3)-3.50 = 1.83.   

• The weighted means for a response is classified using the scheme shown in 

Table E-1. 
Table E-1: Result classification 

Value Class Symbol 

Between 2.99 and 2.00 Very +++ 

Between 1.99 and 1.00 Moderate ++ 

Between 0.99 and 0.00 Nominal + 

Between -0.01 and -1.00 Nominal - 

Between -1.01 and -2.00 Moderate -- 

Between -2.01 and -3.00 Very --- 
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E.2 The questionnaire 
The following sub-sections present the questionnaire which was distributed to 

the participants.  The questions did not require alteration as they appeared to be well 

understood and consensus was reached quickly after two iterations.  

 

E.2.1 Introduction to the questionnaire 
The goal of this questionnaire is to obtain some measure of the 

maintainability of the two models.  In order to perform this part of the model 

lifecycle, i.e. to correct or enhance an existing model, a person coming fresh to it, 

must understand it first before modifying the code and subsequently testing the 

model to ensure new outputs are valid and the existing ones continue to be so.  The 

questionnaire is divided into four parts, i.e. understandability, modifiability, 

testability, and problem/paradigm matching. 

It will be useful to bear in mind the context of this case study and to 

remember the descriptions of the two modelling paradigms given earlier. 

It is important that in the first 2 or 3 of iterations of this questionnaire, 

supplying the reasons for the responses will help greatly towards ensuring a rapid 

convergence of view.   

 

E.2.2 Understandability 
A single process may be made up of a sequence of several activities involving 

a number of people in different roles.  Processes are usually represented as 

flowcharts.  While traditional DEM is centred on processes, ABM tends to be centred 

on people and their activities.  The role of an agent may include one or more 

activities.  The functional specification, flowcharts, and code are available for 

reference. 

1. How do you rate this statement? – As a model implementer, it is easier to 

understand how a model works if it is set out as processes rather than 

activities.  

 Strongly agree Moderately 
agree 

Agree Disagree Moderately 
disagree 

Strongly 
disagree 

Activities  1 2    
Your reason  
Processes 1 2     
Your reason  
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2. How do you rate this statement? – As a professional engineer (e.g. engine 

designer), it is easier to relate to an engineering problem if it was described 

as processes rather than activities. 

 Strongly agree Moderately 
agree 

Agree Disagree Moderately 
disagree 

Strongly 
disagree 

Activities    3   
Your reason  
Processes 2 1     
Your reason  

 

3. How do you rate this statement? – As a non-engineer (e.g. an employee in a 

commercial department) it is easier to understand how a model works if it is 

set out as processes rather than activities. 

 Strongly agree Moderately 
agree 

Agree Disagree Moderately 
disagree 

Strongly 
disagree 

Activities  2 1    
Your reason  
Processes  1  2   
Your reason  

 

4. Based on the UK education model, what level of formal education do you 

think is required to understand a DEM and an ABM?  

 GCSE A-Levels Batchelor Master Doctorate Post-doctorate 
ABM    2 1  
Your reason  
DEM  1 2    
Your reason  

 

E.2.3 Modifiability 
When software is in production use within an established quality assurance 

framework, it is the normal practice for all modifications to be formally specified 

initially as textual descriptions.  The software implementer then transforms the 

specification into program code.  The functional specification, flowcharts, and code 

are available for reference. 

5. If additional activities were to be made to one or more subsystems of the 

model, e.g. a Component Repair Vendor (CRV), how easy or difficult do you 

think it would be to code the required changes working from the textual 

specification? 
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 Very easy Moderately 
easy 

Easy Difficult Moderately 
difficult 

Very difficult 

ABM   1 2   
Your reason  
DEM   3    
Your reason  
 

6. If two or more CRVs were to be added to the model, how easy or difficult do 

you think it would be to modify the existing models?  

 Very easy Moderately 
easy 

Easy Difficult Moderately 
difficult 

Very difficult 

ABM  1 2    
Your reason  
DEM 1  2    
Your reason  
 

E.2.4 Testability 
Once the changes have been coded, they have to be tested to ensure that the 

model outputs are valid.  The question here relate to the question in the previous 

section and it will be useful also to remember that the DEM is normally implemented 

as a single CPU process while the ABM is normally implemented as concurrent 

threads of execution.  The functional specification, flowcharts, and code are available 

for reference. 

7. If additional activities were to be made to one or more subsystems of the 

model, e.g. a Component Repair Vendor (CRV), how easy or difficult do you 

think it would be to test the changes? 

 Very easy Moderately 
easy 

Easy Difficult Moderately 
difficult 

Very difficult 

ABM     3  
Your reason  
DEM     3  
Your reason  

 

E.2.5 Matching of problem to modelling paradigm 
The case study scenario (Rolls-Royce Trent 800 engine maintenance 

program) involves logistics when estimating lifecycle costs.   The models are at a 

fairly high level, e.g. the aggregated time for stripping an engine module for repair is 

specified or modelled but not the detailed activities. 

8. How do you rate the suitability of ABM and DEM to modelling at a high 

level of abstraction? 
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 Very unsuitable Moderately 
unsuitable 

Unsuitable Suitable Moderately 
suitable 

Very suitable 

ABM    1 2  
Your reason  
DEM    3   
Your reason  

 

9. How do you rate the suitability of ABM and DEM when modelling to very 

fine details is required? 

 Very unsuitable Moderately 
unsuitable 

Unsuitable Suitable Moderately 
suitable 

Very suitable 

ABM  1 2    
Your reason  
DEM     2 1 
Your reason  
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