HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

School of Engineering Sciences

The Development of a Hybrid Simulation Modelling
Approach Based on Agents and Discrete-Event Modelling

by

Tai-Tuck Yu

Thesis for the Degree of Doctor of Philosophy

July 2008

UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ENGINEERING SCIENCES
Doctor of Philosophy
THE DEVELOPMENT OF A HYBRID SIMULATION MODELLING
APPROACH BASED ON AGENTS AND DISCRETE-EVENT MODELLING
by Tai-Tuck Yu

This thesis initially presents the work carried out on the research hypothesis —
agent-based simulation is better than traditional discrete-event modelling. To test
this assertion, a comparison of these two modelling approaches is made by way of a
case study. The scenario, a global repair operation of a fleet of civil jet engines, is a
real lifecycle costing example which involves logistics and is typical of problems
commonly modelled using either of these paradigms.

To carry out the comparison, the method involved building a discrete-event
model which matched the functions of an existing agent-based model as closely as
possible. Rigorous control was applied during its implementation phase by way of
formal code walkthroughs and model dynamic testing. Among the internal metrics,
lines of code provided an estimate for model size while the McCabe Cyclomatic
Number measured structural complexity. The external software quality of
maintainability was derived from these metrics and estimated by modelling experts
through Delphi sessions. The dynamic performance of each model was determined
by the execution times of successfully completed simulation runs over a range of
engine fleet sizes.

This research went on to develop a hybrid approach (which is currently the
subject of a Rolls-Royce patent application) which draws on the strengths of both
agent and discrete-event paradigms. In order to combine agent roles and discrete-
event processes, a new model was implemented using a three-layered architecture. A
full fleet simulation was developed using this hybrid approach. Although the code
size is slightly larger and run times slightly longer than the conventional model, the
thesis argues that, crucially, it is more maintainable as it reduces the conceptual gap

between problem and model.

Contents

(OLO A I = A IS T |
LIST OF FIGURES ...ttt ettt e et e e s st e e s sban e e e rens Vi
LIST OF TABLES ...ttt ettt s e s st a e s s s e e e s s abe e e aanes VI
DECLARATION OF AUTHORSHIP ...ttt IX
ACKNOWLEDGEMENTS ..ottt tee e s are e s s ebae e s s aareeeenes Xl
NOMENCLATURE . ..ottt te e e st e e e e ate e e s saaee e s sbaeeeans X1
1 INTRODUCTIONoii ittt e e s st r e e s s s e sb b b et e e e s s e saaabaees 1
1.1 SIMULATION AND ENGINEERING PROCESSESuuuuiiiiieiiiiiieieeeeeeeeeinneeeeeesseesnnneeees 2
1.2 SOFTWARE METRICS ...vveeiiiiiiiiieeeeeeeeeeieeeeeeeeeeeaiaeeeeeeseeesaaaseeseesssennnssesseesssennsaenes 3
1.3 AIMS OF THIS RESEARCHccviiiiiiiiiiiieeeeeeeeeeaieeeeeeeeeeeaaeeeeeeeessnnaaaseeesesssnnsaaneseeesens 3
1.4 STATEMENT OF RESEARCH........uuviiiiiiiieiieieeeeeeeeeeiaeeeeeeeeeesiareeeeeeeeessaaeeeseseeenansenens 4
1.5 METHODOLOGY FOR COMPARING THE MODELLING PARADIGMSccvvveeenvreeennnee. 4
1.6 STRUCTURE OF THESISceeetiittttteeeeeeeeiitrteeeeeeeeeetareeeeeeeeesiasseeeeeeeeesasssseseeeessnrseeens 5

2 OVERVIEW OF MODELLING AND SOFTWARE METRICS.........ccceeeevveenee. 7
2.1 INTRODUCTION ...coiiiiiieiiitieee e e ettt e e e e et e e e e e e eesaaaaeeeeesseesnsaeeeeesesesnnsaseeeesessnnnes 7
2.2 CATEGORISATION OF SIMULATION......ccotituuutieeeeeieeineeeeeeeseeeisseeeeeeseeesnneeseeessessnnes 8
2.2.1 Time-driven MOdellingccooceiviiiiioiiiiiiieieeeeeee e 12
2.2.1.1 DYNAMIC SYSLEIMS ..uvreurereeererieiterieetesseetesseeseessessessesssessesssessesseessessasssesseessessasssens 12

2.2.1.2 System DYNamICScocerieiuiriirieniieieeiteie ettt ettt st 13

2.2.2 Event-driven mOdEIliNgG..............ccccooviiiiioiiiiiiiee e 14
2.2.2.1 DISCIELE-CVENL ...cuviivieuiieiieieieieiesteestesteestesseessesseestessesseesesseessesseessesseessassesssessenssanee 14

2.2.2.2 AENE-DASEAeuiiiiiiiie et 15

2.3 MISUSE OF MODELLING PARADIGMSccoeiiuurrieeeeeeeeinrreeeeeeeeeinnreeeeeeeeesnnseeeseeens 17
24 1Y 6] 51 21 BBV 1 21 1 23 (01RO 18
2,41 SOftWATE MELFICS ...ttt 18

2.4.2 Model characteriSAtion.................ouuuuueeuuieie 19

2.4.3 Model COMPIEXTLYccceeiiiiiieiiee e 20

2.5 PREVIOUS WORK ON COMPARING MODELLING PARADIGMScccooviviuvrreeeeeeennnns 23
2.6 SUMMARY cettvviiiieeieeiteeeee e eeeeee e e e eeeeaar e e e e e eeeaaaeeeeeeeeesaareseeeeeeensataereeeseeennnes 23

3 TRADITIONAL DISCRETE-EVENT MODELLING.......ccccoiveeeeeiee e 25

3.1 INTRODUCTION ...cooiiiiieeiieieee ettt ee e e e e et e e e e e e eeaaaaeeeeeeessensaaeseeesesssnnasseeessessnnnes 25

32 THE EVENT LIST IN TRADITIONAL DISCRETE-EVENT MODELLINGccccccoveuinnnne 26
33 TYPES OF DISCRETE-EVENT MODELLINGccccouiuiiiiiiiiiiiieiicieic e 29
3.3.1 Sequential discrete-event SIMUIALIONcc.ccoevveiieiiecrieieeiiesieesieeaeenees 29
3.3. 1.1 The SKeW heap ..c..coeoiriiiiiiiiiiiccc et 29
33,12 THE SPLAY T ... ettt ettt ettt ettt st eene 30
3.3.1.3 The calendar QUEUEcceeveiieieiieieie ettt ettt ae e b e s e esesseesaesseennenes 30
3.3.1:4 The lazy QUEUE........cocevuiieieieiiietettccte ettt ettt 31
3.3.1.5 The SPEEDES queue and the event horizon............cccoceoeriiineieincnineeeeen 32
3.3.1.6 Performance of Priority UEUECS........cccuerueeierierieieetietesieetesreseesseeseesseseeesaesseensenns 33

3.3.2 Distributed discrete-event simulation (DDES)c..cc.cccocovvvenvveniveiiannnnn. 34
3.3.2.1 Conservative time SyNChIONISAtIONcoeevuerueerieriirieniiniesieseeiescee e 35
3.3.2.2 Optimistic time SYNChrONISAtIONc.coveiruiriirerieieieeeicee e 36
3.3.2.3 High-Level ArChiteCtUrEccecviriierieriieieeiieiesieeieieeee e ete e seeeee s eaeseeesaesaeennenes 37
3.3.2.4 Speeding up @ MOAEl........ccoeiiiiriiniiniiiiiiiiineeeece e 38

3.3.3 Hybrid continuous/diSCrete SYSteMS..............ccouvueiianiesiaieaeeaiesieeeie e 39
34 ARTIFICIAL INTELLIGENCE IN DISCRETE-EVENT MODELLINGc..cccoevuieeeernennnn. 41
35 SUMMARY ..ottt s s 43
AGENT-BASED MODELLINGccoiiiiiiite et 45
4.1 INTRODUCTIONoviiiiiiiiiiiiiiiiiiii ittt 45
4.2 DEFINITION OF AN AGENT ...c.ciiiiiiiiiiiiiieienie sttt st s 46
43 CATEGORISATION OF AGENTSoouiiiiiiiiiiiiiiiiiiic ettt 48
4.3.1 DeliDerative AQENLSccccueueieeiriiiiiiiit ettt 48
4.3.2 REACHVE AQONLS ...ttt ettt 49
4.3.3 Hybrid deliberative-reactive AQeENLS..................ccecueeeieeieeeiaeieeseeseeeenees 51
4.4 AGENT-BASED MODELSccuiiiiiiiiiiiiiiieiiie it 52
4.4.1 Analysis ANnd deSiGNccccevouiiiiiiiiiiiiie e 56
442 MOAEIIING LOOLS ... 57
4.5 COMPLEX ADAPTIVE SYSTEMSeouiiuiiiiiiiiniieiieiieieteiesie sttt s 57
4.5.1 EMergent BERAVIOUFRcc.ccueeuivuiriiiiiiieieeeeeee et 58
4.6 USE AND MISUSE OF AGENTScoiiiiiiiiiiiiiiiciieiieeeieeieseeeeie e snens 58
4.7 SUMMARY .ottt sttt ettt ettt sttt ettt ae et b et aenae e b e 59
SOFTWARE METRICS ...ttt 61
5.1 INTRODUCTIONvimiiiiiiiiitiieicnte et 61
52 PROGRAM SIZE........coviiiiiiiiiiiiiiiiiiiiicit s 62
521 LINES Of COUE ... 62
5.3 SOFTWARE QUALITYcoviiiiiiiiiiiiiiiieieic ettt 63
5.3.1 Software quality MOAEISccccooiviiiiiiiiiiiioiiiiiiiie e 64
5.3.2 Mainta@inaDility..........cccoooiiiiiiiiieeeeee s 68
5.3.3 The Delphi Methodccoocoeiieiiiiiiieeeeeet e 69

i

5.4 SOFTWARE COMPLEXITYuutiiiieeeeieiiiieeeeeeeeeessesseeeeesssssasseeseessesssnsssseeesessssnnes 70

5.4.1 Halstead SOftWare SCIENCE.cc.cceveiiiiii et 71
5.4.2 McCabe’s cyclomatic RUMBEFcccccoviiiiiciiiiiiieiieeeeeee e 72
5.4.3 Henry-Kafura’s information flow complexityc..ccccceevveveevieenveneannnnn 74
544 Module coupling and CORESIONccccveceeecieeiiiieiieeiieieeieeeie e 76
5.5 PROGRAMMING LANGUAGES AND PARADIGMScocoveviiiniiiiiiniincienienceneiencennes 78
5.6 OBJECT-ORIENTED SOFTWARE METRICSccoiviiiiiiiiniiiiieiieniieiceeieicercienc e 79
5.7 SUMMARY ..ttt ettt sttt ettt be et et sttt nne e 80
6 CASE STUDY .ttt bbbt e e e bt bt e nbeenbeesbenene s 83
6.1 INTRODUCTION ...ttt 83
6.1.1 The case for @ ase SHUAYc..ccoocvecuieieeiiieieeieeeie ettt 84
6.1.2 Validity of methodolOgyccccoooiiiiciioiiiiieiieeeeee e 85
6.2 THE CASE STUDY ...oouiiuiiiiieiiitiieiciteietc ettt ettt 86
0.2.1 THE SCOMAFIO. ..ottt ens 86
6.2.1.1 ENGINe HECYCLE ...cuiiiiiiiiieieiieeee et 86
6.2.1.2 The engine Maintenance PIrOCESS.......cuerverrerrrerreerrerrerraerseeeessesaessesseessessessaessesssense 88

6.2.2 MaAINIENANCE OPLIONSc..eeeeeeeieieee et eeiee et eteeeaee st eae et esnseesebeennaee e 91
6.2.3 Data for modelling the SCENATIOcccocurciioiiviininiiiiiiiiteeeeee 92
6.2.4 The agent-based MOdelccccocciviiiiioiiiiniiiiiiiie e 93
6.2.4.1 Model CateZOrISAtION.c..eueeuieiiitietiieieieieet ettt ettt ettt se e neene 94
6.2.4.2 Model rationale..........cevveuiieiiiieiieece e 95

6.3 THE DISCRETE-EVENT MODEL.......cciiiiuiiiiiiiiiiiiiiiiiiiiesicnes e 96
6.3.1 Implementation of the MOdel................c..cccccceviminiiiiiniiiiiiiiiiiieiesese 96
6.3.1.1 MoOdel HHEECYCIE ..ottt ettt 97
6.3.1.2 Model verification and validationcoceeerereierinincnieeeeeeeeee e 99
6.3.1.3 Coding the MOAEL.....cc.ceuiriiiiiieiiiieieeeee ettt 100
6.3.1.4 Model WalKthrough.........cccooiiiiiiiiii s 101

6.3.2 Description of the model..................ccccovoiiiiiiiiiiiiiieiieet e 102
6.3.2.1 MOAEL OVEIVIEW ...ttt 102
6.3.2.2 Constructing the eNGINES.........cc.eeieriirierienieie ettt ettt et eee e eeesbeeeeneeseeenees 104
6.3.2.3 The overhaul baseccccoiiiiiiiiii e 105
6.3.2.4 SHIPPING TEEIMS ..vveveerietieierieetertiete e etesteetesteetesseessessesssesseessessesssessesssensesseenses 107

6.4 RESULTS AND EVALUATIONcoiuiiiiiiiiniiiiiiiiiiciiieic e 107
6.4.1 Metrics to be cOlleCted................ccooooiiiiiiiiiiiiiiieieeeee e 107
0.4.2 COlleCting the MEIFICSc.ccueveiiiriiiit ettt 115
6.42.1 Adjustments to DEM cOde MELtriCSccoeeruiriirienieieiiiieitrieieeeeeee e 116
6.4.2.2 COMPLEKILY .vveereiieieriieierieetetietesteseeeteeteetesteesesseessesseensesseesaessesssensesssesesseenss 116
6.4.2.3 Coupling and CONESION..........ceruiruieiiriieieiiete sttt 120

0.4.3 MOdEl FURLIMESccueeeieieeeeeieee et 121
6.5 SUMMARY ..ttt t ettt et e v 124
7 AN AGENT-LIKE DISCRETE-EVENT MODELccoooiiiiiiiiieiieieiee 126

il

7.1 INTRODUCTIONoeiiiiiiieeieee ettt e e et e e e e e e enaaaeeeeeesesensaaseeeeessssnnaneeeeeeeaas 126

72 RATIONALE FOR MAKING A DEM AGENT-LIKE.........ccoociniiiiiiiiiiiiiiiicecieeen 126
7.2.1 Starting from the discrete-event modelling paradigm......................cc.c.c...... 126
7.2.2 Code size and COMPIEXILY............cccoveviiiiiieiiieiiece e 127
7.2.3 Model performance and multi-threaded operation...................c..ccccocveu... 127
7.2.4 Partitioning into SUb-models..................ccccoccvviiciiiioinininiiiiiteeecee 129
7.2.5 Flexibility in OPErationccccoueiiiriiiiiiiaiiieeee st 130
7.2.6 A natural desigin MetapRoT..............c.cccoeviiiiiiiiieie et 131

7.3 MANAGEMENT OF COMPLEXITY ...cooouiiiiiiiiiiiiiiiiiieiiieeec e 132

7.4 CRITERIA FOR AGENTHOODoouiiiiiiiiiiiniiiiiiiiiic e 133

7.5 RE-VISITING THE DISCRETE-EVENT MODEL......c.coctiiiiiiiniiniiinieeeieieiesie e 135
7.5.1 Architecture for ADEM..................ccccccooviiiiiiiieieiieiie et 135

TS5 L01 LAYET ettt bbbttt st aaes 135
TS5 12 LAYET 2ttt ettt sttt eaees 136
T O T)) S PSR RSOSTSNY 137
7.5.1.4 The common communication ENVIrONMENL............cververreerenreeruerieeeenseeieenseseennes 137
7.5.1.5 Maintainability........occoiiriirieieiieeeee s 137

7.6 IMPLEMENTING THE ARCHITECTUREccviuiiiiiiiiiiiiiiieeic s 138
7.6.1 Apply a structured methodologycc.cccoovueviiviiciiiiiiienieiieieeieeieens 138
7.6.2 Emulate an agent environmentcccoeveveeueeeeeeieeseeneenseeeseesesnsenneens 139
7.6.3 Improved flexXiBDilityccccoooiioiiiniiiiiiiiiiiiieeee e 140
T.0.4 RESUILS....oooeieeieeeee e ettt 142

7.7 SUMMARY ...ttt t et sae ettt ae b e v 147

8 CONCLUSIONS AND FUTURE WORKcoiiiiiiie e 149

8.1 CONCLUSIONS ...ttt s 149
8.1.1 Code metrics for MOELSccceoeveiciiiiiiiiiieeeeee e 149
8.1.2 Loose coupling and high CORESION...............ccocoveeieiieiiiiiiiieiieieeieeeeeieen, 150
8.1.3 Wider aspects of MOAEIIING...................ccccevvviiieiiieiiiieeieeeeeie e, 150
814 SCOPE Of AN AGENL ...t 151
8.1.5 Modelling best PracCtiCe................cccociiieiiiiiiiiiiiiiieesteeeeee e 151
8.1.6 Matching problem with modelccccccoooiiiiiiiiiiiiiiiiiiii e, 151
8.1.7 Flexibility in OPEFAtiONc.cccooviiieiiiiiieiieeee e 152
8.1.8 Model PErformanCe..............ccccueeeeiiiiiiie et 152
8.1.9 Repeatability and predictability..............cccoooeviieoiiiiiiniiniiiiiiie e, 153
8.1.10 Multithreaded eXeCUTIONccccuevueiiiiiiiiiieeeeeee e 153

8.2 CONTRIBUTIONS OF RESEARCHcviuiiiiiiiiiiiiiiiiiiiic i 154

83 FUTURE WORKooviiiiiiiiiiiiiiiiicieccce ettt 155
8.3.1 Extension of model COMPAFISONccocieciioiecieriiniiiniiiiieeeeeeenn 155
8.3.2 Distributed MOdellingccccooviiiiiiiiiiiiiiee e 155
8.3.3 OPLIMIZALION.occeeeeieeie ettt tae et eetae et e esaeeans 156

v

8.4 CONCLUDING REMARKS.ceeiiiiitmtiieeeeeieeiiieeeeeeeeeesesseeeeeesssesssasseeesesssnsnnsseeeeessns 156

APPENDIX A o 157
APPENDIX B ...t e 162
APPENDIX C..oi 164
APPENDIEX D ..o e 169
APPENDIX E ..o 173
REFERENCESo 179
BIBLIOGRAPHY ..ottt 193

List of Figures

FIGURE 2-1: SIMULATION TECHNIQUES AND LANGUAGES (SHANNON, 1977)....ccovieviieiieiicieciesieevenn, 10
FIGURE 2-2: CURRENT CLASSIFICATION OF MODELLING PARADIGMS.....cc.uetritenieenieenieenieenieeesreesneeas 11

FIGURE 2-3: MODELLING PARADIGMS AND REGIONS OF APPLICABILITY (BASED ON BORSHCHEV AND

FILIPPOV, 2004)......uiietieeiieeiee ettt ettt e ettt e s te e b e e s saeestbeessae e sbeessaeessseesaeensseerseeenseeanseannses 11
FIGURE 2-4: A SIMPLE EXAMPLE OF A DYNAMIC SYSTEM MODEL (EXTEND, 2005)ccccevvveecvierieennnen. 12
FIGURE 2-5: ELEMENTS OF SYSTEM DYNAMICS MODELLING (BORSHCHEV AND FILIPPOV, 2004) 13
FIGURE 2-6: COMPONENTS OF A SIMPLE TRADITIONAL DISCRETE-EVENT SUB-MODEL........cccceerveennee. 15

FIGURE 2-7: RELATIONSHIP BETWEEN MODEL COMPLEXITY AND ACCURACY (FULTON ET 4L., 2003)... 21
FIGURE 3-1: COMPONENTS OF THE LAZY QUEUE (RONNGREN ET AL., 1991)...ccoociiiiiiiiieiieeeie e 32

FIGURE 3-2: THE OPERATIONAL PRINCIPLE OF THE EVENT-HORIZON USING THE SPEEDES QUEUE

(STEINMAN, 1994) ... ettt ettt e st e et e e s beeeabeesabeeenbeeesbaeesseesssaasnseeensaeanseennses 34
FIGURE 3-3: CONCEPTUAL DIAGRAM OF THE HIGH-LEVEL ARCHITECTURE.......cccceveeireerreenereenreenenens 38
FIGURE 4-1: HYBRID DELIBERATIVE-REACTIVE ARCHITECTURE (GAT, 1992) ..ccccovviiiieiieiiieeiieeieeeen. 51
FIGURE 4-2: ASSESSMENT OF AGENT TECHNOLOGY READINESS (LUCK ET AL., 2005)cccoveevrveeerennen. 53
FIGURE 4-3: CANONICAL VIEW OF AN AGENT SYSTEM (JENNINGS, 2000)........ccccerierrierieienieneenieene 55
FIGURE 5-1: SOFTWARE QUALITY CHARACTERISTICS TREE (BASED ON BOEHM ET 4L., 1980)............... 65
FIGURE 5-2 : SOFTWARE QUALITY MODEL (BASED ON MCCALL ET AL, 1977) cvvvieiieieiee e, 66
FIGURE 6-1: THE ROLLS-ROYCE TRENT 800.......ccoctiiiiiiiiiiiiiiiinieniteitete et 87
FIGURE 6-2 : THE DERWENT CYCLE (ROLLS-ROYCE, 2005B)ccccviiiiieeiiiiiieeiee et 88
FIGURE 6-3: NETWORK OF REPAIR AND MAINTENANCE LOCATIONS (ROLLS-ROYCE, 2005A)................ 88
FIGURE 6-4: TYPICAL WORKFLOW IN AN OVERHAUL BASE (ROLLS-ROYCE, 2005A)......cccccvevvierreennnen. 90
FIGURE 6-5: AN ANNOTATED TOPOLOGY AND ANIMATION OF THE AGENT-BASED MODEL 96

FIGURE 6-6: DEM DEVELOPMENT LIFECYCLE (LAW AND KELTON, 1999) AND THE TRADITIONAL

SYSTEMS DEVELOPMENT LIFECYCLE (DOJ, 2003).....ccuiiiiiiieiieieeeeteeee e 98
FIGURE 6-7: CODE TO DETERMINE IF AN ENGINE IS TO BE INDUCTED INTO THE OVERHAUL BASE........ 104
FIGURE 6-8: CODE TO DETERMINE IF AN ENGINE ITEM IS TO BE SCRAPPED.......ccccveeiveeeiieereeeieeereenns 106
FIGURE 6-9: ToP LEVEL (LEVEL 0) OF TRADITIONAL DISCRETE-EVENT MODEL.......cccceeveeveeereeenreanns 108
FIGURE 6-10: LEVEL 1 HIERARCHICAL BLOCK — BUILD ENGINES.......ccccviiiiieiieiiieeiiesieeeieeeieeevee e 109
FIGURE 6-11: LEVEL 1 HIERARCHICAL BLOCK — OVERHAUL BASEccc0ooiiiiiiiiiiiieeiee et 110
FIGURE 6-12: LEVEL 2 HIERARCHICAL BLOCK — MODULE STRIP.......cccceriuteniieniieenieenreenreenreesveennns 111
FIGURE 6-13: LEVEL 3 HIERARCHICAL BLOCK — UNBATCH INTO COMPONENTSccovveerereeireenreenne 112
FIGURE 6-14: LEVEL 4 BLOCK CONTAINING MODL CODE — UPDATE COMPONENT QUANTITIES 113
FIGURE 6-15: LEVEL 2 HIERARCHICAL BLOCK — BATCH UP ITEMS FOR SHIPPINGocvvveerveerieenneenne 114

vi

FIGURE 6-16: DISTRIBUTION OF MCN IN THE ABM AND THEDEMovviiiiiiiiiiieieee e 117

FIGURE 6-17: RUNTIMES FOR DEM AND ABM FOR DIFFERENT ENGINE FLEET SIZES........cccccereeuennee. 123
FIGURE 6-18: ABM CPU LOAD FOR A 10-ENGINE FLEETcccuteittitiiienitenteenteeieeteeieeseeesieenneenaeeeesnees 123
FIGURE 6-19: ABM CPU LOAD FOR A 100-ENGINE FLEETcccueevttrtenirenirenieeieeientenieenieenieenseenesnnens 123
FIGURE 7-1: THE RELATIONSHIP BETWEEN PROCESSES, ACTIVITIES, AND ROLESccccvverueenirienneennne 132
FIGURE 7-2: THE THREE-LAYER ARCHITECTURE FOR AN ADEMcooiiiiiiiiiiiiiiiiiicieceec e, 136
FIGURE 7-3: OHB CONTROLLERcocttittiiteniteiteteett et eitesieesieebeeseesneseeesatesaeeteenneeesesasesunenueenneennes 141
FIGURE 7-4: REPAIR CONTROLLER.......ceiuttitiiittetteteeteenteeteesteesteeteeaesmeesseesseaneeenseeneesseesseenseeseenseenees 142

FIGURE 7-5: AN OVERVIEW OF THE AGENT-LIKE DEM (ADEM). THE ‘OHB CONTROLLER’ AND THE
‘REPAIR CONTROLLER’ ARE ROLE-BASED HIERARCHICAL BLOCKS FUNCTIONING AS AGENTS TO

CONTROL THE FLOW OF ITEMS. ALL OTHER BLOCKS ARE TRADITIONAL DEM SUB-MODELS..... 143

FIGURE 7-6: RUNTIMES FOR ADEM, DEM, AND ABM FOR DIFFERENT ENGINE FLEET SIZES 144
FIGURE C-1: PROCESS MAP 1 — INITIAL OHB PROCESSES AND THE ASC (ROLLS-ROYCE PLC)............ 164
FIGURE C-2: PROCESS MAP 2 — OHB PROCESSES (ROLLS-ROYCE PLC).....voiivieeiiieeiieeiee e 165
FIGURE C-3: PROCESS MAP 3 — CRV PROCESSES (ROLLS-ROYCE PLC) ...ccuvveeiiiiiieeieecieeeree e 165
FIGURE C-4: PROCESS MAP 4 — ‘NO KITTING’ OHB PROCESSES (ROLLS-ROYCE PLC)......cccvveevrennennns 166
FIGURE C-5: PROCESS MAP 5 — CRV PROCESSES (ROLLS-ROYCE PLC)vveeiiiiiieeiieeieeeiee e 167
FIGURE C-6: PROCESS MAP 6 — CRV PROCESSES (ROLLS-ROYCE PLC)veeeiieiiieeiieeieeeieeeiee e 168

vii

List of Tables

TABLE 3-1: RELATIVE AMORTIZED RUN TIMES, T ys:rr, FOR DIFFERENT PROBABILITY DISTRIBUTIONS
(MARIN, 1997) .ottt ettt ettt s et e bt e e e nsesnsesneesateseenseesseeneenseenseensennsas 28
TABLE 3-2: PERFORMANCE OF PRIORITY QUEUES (RONNGREN AND AYANI, 1997)....cccoevvivveiieeieennnen. 34

TABLE 4-1: LEVELS OF COMPETENCE FOR A MOBILE ROBOT USING THE REACTIVE SUBSUMPTION

ARCHITECTURE (BROOKS, 1986)eiiiiiieiieiiieeiiecieeeite ettt siteeste e e seveesiteesaneessaeensneenens 50
TABLE 5-1: TYPES OF COUPLING (FENTON AND PFLEEGER, 1997) ...cccuvieiiiiiiieeiieciieeieeeveeee e 77
TABLE 5-2: TYPES OF COHESION (YOURDON AND CONSTANTINE, 1979) ...ccccviviiiniiiniiinieeieeeeeeen 77
TABLE 6-1: ROLLS-ROYCE TRENT 800 FLEET OPERATIONAL SUMMARY (ROLLS-ROYCE, 2008)........... 87
TABLE 6-2: CONFIGURATION OPTIONS FOR MAINTENANCE RULES ...c.uettitiiiniteeniieeniieeniieesieenireesneenneeas 91
TABLE 6-3: ROLLS-ROYCE TRENT 800 MODULE DESIGNATIONScc.etecuieiinireniienieenneereenenieenieenseenseenne 93

TABLE 6-4: AGENTS AND THEIR FUNCTIONS

TABLE 6-5: EQUIVALENCE OF CONSTRUCTS IN OBJECT-ORIENTED AND PROCEDURAL LANGUAGES..... 115

TABLE 6-6: PROGRAM COMPLEXITY AND MAINTAINABILITY (SEI, 2000)c.ccoovieeiiiiriienieeiieeeeeeenne 117
TABLE 6-7: CODE METRICS FOR THE ABM AND THE DEMc..oooiiiiiiiiiiiiiicic e 118
TABLE 6-8: MULTIPLES OF DEM TO ABM METRICScootimitiiieiiniieniienieenieenieeie et sieesieenieenneeenen 118
TABLE 6-9: SUMMARY OF RESULTS OF DELPHI ESTIMATION OF ABM AND DEM........ccccoocviiviiiniinnns 119
TABLE 7-1: MULTIPLES OF ADEM TO DEM METRICScocuiiiiiiiinieniieieeieeieeee st 145
TABLE 7-2: SUMMARY SHOWING HOW ADEM SATISFIES THE DEFINITION OF AN AGENTccoueenn... 146
TABLE A-1: THE SEI TECHNOLOGY READINESS LEVELS.......ecitteiiiiintieieeiteeie e 157
TABLE D-1: COMPONENTS AND MODULES FOR THE TRENT 800 ENGINE (ROLLS-ROYCE PLC)............ 169
TABLE D-2: COMPONENT ATTRIBUTES (ROLLS-ROYCE PLC)vviiiiieiieeiieciie et 171
TABLE E-1: RESULT CLASSIFICATIONeeittimitenieitentenitenieenieenteenteeerestsesteenteeseensesmtesaeesueenueenseennesnnens 174

viii

Declaration of authorship

I, Tai-Tuck Yu, declare that the thesis entitled The Development of a Hybrid

Simulation Modelling Approach Based on Agents and Discrete-Event Modelling and

the work presented in it are my own and have been generated by me as the result of

my own original research. I confirm that:

This work was done wholly or mainly while in candidature for a
research degree at this University;

Where any part of this report has previously been submitted for a
degree or any other qualification at this University or any other
institution, this has been clearly stated;

Where I have consulted the published work of others, this is always
clearly attributed;

Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this report is entirely my
own work;

I have acknowledged all main sources of help;

Where this report is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have
contributed myself;

Parts of this work have been published and some articles are under

review as:

Patent
Tai-Tuck Yu, J.P. Scanlan and G.B. Wills, ‘Agent-like Discrete Event

Modelling Software Architecture’, In association with Rolls-Royce plc,
2008.

X

2. Journals
e Tai-Tuck Yu, J.P. Scanlan and G.B. Wills. ‘Flexible Model Building
Using a Hybrid Approach’, Computers in Industry (Prepared, awaiting
filing of patent)

e Tai-Tuck Yu, J.P. Scanlan and G.B. Wills. ‘Agent-Based and
Traditional Discrete-Event Modeling in Value-Driven Design of Gas
Turbines’, Journal of Computing & Information Science in Engineering

(Prepared, awaiting filing of patent)

3. Conference
e Tai-Tuck Yu, J.P. Scanlan and G.B. Wills, ‘Traditional Discrete-Event
Modelling and Agent-Based Modelling: A Quantitative Comparison’ In
Proceedings of 7th AIAA Aviation Technology, Integration and
Operations Conference (ATIO), Belfast, September 2007.

4. Internal reports

e Tai-Tuck Yu, J.P. Scanlan and G.B. Wills, ‘A Comparison of Agent-
based Modelling and Traditional Discrete-event Modelling’, Technical
Report No. ECSTR-LSL07-006, 16™ November 2007, University of
Southampton. (This report is cited in A. Stranjak et al. ‘A Multi-Agent
Simulation System for Prediction and Scheduling of Aero Engine
Overhaul’, In Proceedings of 7th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008)- Industry
and Applications Track, May, 12-16., 2008, Estoril, Portugal)

e Tai-Tuck Yu, J.P. Scanlan and G.B. Wills. ‘Traditional Discrete-event
Modelling With Agent Characteristics’, Technical Report No. ECSTR-
LSL08-001, 15™ March 2008, University of Southampton.

5. Presentation and masterclass

e Tai-Tuck Yu, ‘Modelling & Simulation’, 4 masterclass held for the
Life Cycle Costing Department, Rolls-Royce, Bristol, 16™ October
2007.

e Tai-Tuck Yu, ‘Agent-based and Discrete-event Simulation, A4
presentation and discussion held for the Life Cycle Costing Capability
Improvement Council, Rolls-Royce, Derby, 16™ January 2008.

xi

Acknowledgements

Although this is the only place in the thesis where the heart can be allowed to
precede the head, my acknowledgement of the help I received from various people in
different ways is no less valid. My expressions of gratitude are heartfelt and sincere.

First of all, I am greatly indebted to Prof. J.P. Scanlan and Dr. G.B. Wills for
their honest, timely, and enthusiastic encouragement, as well as their firm, fair, and
friendly guidance during the preparation of this thesis. Their wide knowledge of
simulation, software metrics, and the research process has been of immense help in
directing me towards worthwhile areas of research. Their personal friendship has
provided a window for viewing interesting facets of academic life.

Also, I am grateful to Rolls-Royce Group plc, Derby for allowing me to use
an agent-based engine fleet simulation model developed within their Strategic
Research Centre as the basis for this case-study. In particular, I wish to record my
thanks to Mr. Peter Swann and Dr. Armin Stranjak for their help with the agent-
based model. A special note of thanks is also due to Mr. David S. Knott for easing
forward the supply of this essential piece of enterprise software and data as well as
for initiating and driving the process to patent the agent-like discrete-event modelling
architecture.

Last, but not least, without the constant, unstinting, and loving support of my
wife, this thesis would not have been possible. She has been a true better-half, often
enduring quiet quarters while I was away from the haven of home in pursuit of this
postgraduate degree.

The subject of this research largely overlapped one of the areas of
investigation in the IPAS (Integrated Products And Services) Project. As they also
had closely similar aims, it was therefore absorbed into the project. The research is
supported by the Rolls-Royce University Technology Centre for Computational

Engineering at the University of Southampton.

Xii

AAII
ABM
ACM
ADEM
Al

API
ASC
ASCII

C

C++
CAS
CBT
C-K
COBOL

COCOMO
COTS

CPU

CRV
DDES
DEM
FIPA

FORTRAN

Nomenclature

Australian Al Institute

Agent-based model

Association for Computing Machinery
Agent-like discrete-event model
Artificial intelligence

Application programming interface
Aftermarket service centre

American Standard Code for Information Interchange, a standard for
encoding characters.

A general-purpose procedural programming language
A general-purpose OO programming language
Complex Adaptive System

Complete binary tree

Chidamber-Kemerer metrics for OO programs

Common Business-Oriented Language, a general-purpose
programming language.

Constructive Cost Model

Commercial off-the-shelf, usually applied to software rather than
hardware.

Central Processing Unit — the processor or logic unit for executing
computer programmes.

Component repair vendor
Distributed DES
Discrete-event model

Foundation for Intelligent Physical Agents, an IEEE Computer
Society standards organization.

Formula Translating system, a general-purpose, procedural,
imperative programming language.

xiii

Gaia

GPSS

H-K
HLA

IEEE
IPAS

ISO
JADE

Java

JVM
LOC
MCN
MoD
NASA
OHB
(0]0)
PC
PES
PQ
PSC

RTI

SD
SIMSCRIPT
SIMULA

SPEEDES

SRC

An agent-oriented software engineering methodology

General Purpose Simulation System, a specialised simulation
language for discrete-event modelling.

Henry-Kafura information flow complexity for software systems

High Level Architecture, a general-purpose architecture for
distributed modelling defined under IEEE Standard 1516.

Institute of Electrical and Electronics Engineers, Inc.

Integrated Products And Services, a research programme funded by
the UK Technology Strategy Board’s Collaborative Research and
Development Programme and Rolls-Royce plc.

International Standards Organization
The Java Agent Development Framework

A general-purpose OO programming language, sometimes taken to
mean a computing platform.

Java Virtual Machine

Lines of code

McCabe Cyclomatic Number

Ministry of Defence

National Aeronautics and Space Administration
Overhaul base

Object-oriented

Personal computer

Pending event set

Priority queue

Parts service centre

Rolls-Royce plc

Runtime Infrastructure, a component of HLA.
System Dynamics, a modelling paradigm.

An English-like general-purpose simulation language

A general-purpose simulation language, also regarded as the first OO
programming language.

Synchronous Parallel Environment for Emulation and Discrete-Event
Simulation, a simulation framework.

The Strategic Research Centre, Rolls-Royce plc, Derby

X1V

TRL
UML

UNIX
WMC
WSC
XML

Technology Readiness Level

Unified Modelling Language, a language notation for documenting
OO0 models of systems

A computer operating system developed in 1969 at Bell Labs.
Weighted methods per class
Winter Simulation Conference

Extensible Markup Language, a general purpose specification for
creating custom markup languages.

XV

Chapter 1: Introduction

Chapter 1

Introduction

In an engineering business operating in a free and open market, it is a truism
that to stay still is to lag behind one’s competitors. It follows that, if a business were
to survive, thrive and remain competitive, it will always need to innovate and move
forwards by reducing costs, improving its products, and simplifying its processes. Of
course, such tasks underpin the customer-facing, non-technical activities like
marketing, sales, and after-sales service as much as the purely technical ones. In
manufacturing, the inescapable and highly desirable goal of making things cheaper,
better, and faster can often be costly. This is especially true where a product is
complex and its initial acquisition cost may be but a minor component of its whole
lifecycle cost. Therefore, it is imperative that, after a product’s initial entry into
service, all subsequent changes must be correctly identified and implemented at the
first attempt if at all possible.

A common traditional method of minimising errors and containing start-up
cost is to make a physical prototype using a pilot process which contains all elements
of the change required. This approach may be iterative and it enables decisions to be
either confirmed or modified before commitment to a programme of full-scale
production. Although it can prevent expensive and catastrophic errors from being
made, but because physical entities are involved, the product time to market can
seldom be reduced significantly.

However, the advent of cheap, high-powered computers and user-friendly
application software have made the mathematical modelling of engineering products
and processes readily available to enterprises of all sizes. In contrast to physical
prototyping, structural changes to the mathematical models, like the addition of

previously validated objects and subsystems, can be made even ‘on the fly’ as the

Chapter 1: Introduction

models are virtual entities. These software modelling tools enable different solutions
to be explored relatively cheaply and quickly, thus allowing a good enough, but not
necessarily the globally optimal, solution to be selected while at the same time
shortening the product time to market. It is nevertheless necessary to remember that
a tool which can bring about such benefits quickly also has the real potential to

deliver catastrophes just as quickly if it is handled carelessly (Neumann, 1993).

1.1 Simulation and engineering processes

Although simulation is perceived as similar to, but is in essence different
from, the real-world, it is nevertheless an appropriate technique for imitating and
understanding complex systems (Simon, 1998). Simon further proposes that
simulation is not only an aid for studying poorly understood systems but can itself be
a source of new knowledge. This is because, in practice, knowledge is constructed
from the roof down, not from the foundation up, and that makes it possible to
discover incrementally finer details at lower and more fundamental levels. Robinson
(2003) puts it succinctly when he describes simulation as the ‘experimentation with a
simplified imitation (on a computer) of an operations system as it progresses through
time, for the purpose of better understanding and/or improving that system’.
Expressed in this way, simulation as a tool for abstraction is no older than the
electronic computer but, in all its forms, imitation of the real world is very much
older.

Although it is possible for some processes commonly encountered in an
engineering manufacturing environment to be modelled mathematically to yield
analytical and deterministic solutions, it is often the case that non-trivial, practical
systems can easily become too complex for such a solution to be attempted (Banks et
al., 1999; Law and Kelton, 1999). In practice, these engineering processes are
stochastic and dynamic, for example, because of uncertainties introduced by human
participation and the discontinuities brought about by machine unreliability. To gain
some understanding of these systems, the usual approach is to construct computer
simulation models at the appropriate level of detail so that various ‘what if” scenarios

can be studied by varying the models’ operating parameters and analysing their

Chapter 1: Introduction

outputs. Once an understanding has been achieved, the models can be used to

predict system behaviour.

1.2 Software metrics

The demand for greater realism in modelling inevitably leads to large
program sizes as the scope is widened and model granularity becomes finer. A
detailed, high-fidelity simulation model can become unmanageably large and
complex if its development is not strictly controlled. Software metrics like size,
structural complexity, maintainability, reliability as well as many others have been
subjected to extensive study over the past 35 years. Although a goal of such metrics
is to characterise a software program or project, its chief use in a commercial
environment is to provide an objective and predictive measure so that managers can
control costs and resources in a software development project. The often used
assertion by DeMarco (1982) puts it baldly as — You cannot control what you cannot
measure. While DeMarco refers specifically to absolute, quantitative measures, it
can apply just as well to ordinal, qualitative measures.

In some respects, depending on an inappropriate metric is worse than having
no metric at all. For example, as programming languages have evolved from
assembly language to object-oriented language, a frequently used metric like lines-
of-code (LOC) becomes invalid when used to compare programmer productivity
across different languages (Jones, 1994). When used on its own, the misleading and
false message it gives is that productivity is higher when a programme is
implemented in assembly code rather than object-oriented code where, from
experience, the opposite is true. Therefore, care must be exercised when selecting
metrics for comparing programmes implemented in different languages to ensure that

the metrics are suited to the task.

1.3 Aims of this research

The research to be undertaken is a case study which compares an agent-based
simulation model with a functionally identical traditional discrete-event model. The
benefits and drawbacks of both modelling paradigms, as exemplified by these two

models, are to be measured thus giving an objective and quantifiable comparison.

Chapter 1: Introduction

Although the comparison will be largely quantitative, the qualitative aspects of these
modelling paradigms will not be excluded. When the models have been evaluated,
an alternative modelling architecture will be considered by combining their

beneficial characteristics.

1.4 Statement of research

The statement of hypothesis, including the null hypothesis, is —

e H;: Agent-based modelling is better than traditional discrete-event
modelling.

e Hj: Agent-based modelling is not better than traditional discrete-event
modelling.

The context of the hypothesis is described as follows —

e The hypothesis is restricted to the class of problem being modelled,
which is in the logistics and supply chain area, with particular reference
to the global repair operation of a fleet of large, modern jet engines for
civil aircraft.

e The hypothesis is also restricted to the phase between the requirements
analysis and the system maintenance activities of the traditional
‘Waterfall’ systems development lifecycle. As set out in Figure 6-6,
the lifecycle activities included in this phase are the following —
‘Requirements analysis’, ‘Design’, ‘Developent’, ‘Integration and test’,

‘System implementation’, ‘System operation’, and ‘Maintenance’.

1.5 Methodology for comparing the modelling paradigms

The steps to be taken so that a comparison can be made between the two
modelling paradigms are listed below —

e Construct and validate a discrete-event model which is functionally

identical to the existing agent-based model implemented by Rolls-

Royce (RR) Strategic Research Centre (SRC).

Chapter 1: Introduction

Select an appropriate set of software metrics so that the internal and
external software properties of the model can be objectively measured
or assessed.

Analyse the code for both models and extract the selected metrics for
each software class or module. Values for sub-models or smaller
partitions of the model can be calculated using these primitive
measurements.

Measure the time taken by each model to complete a simulation run
under a range of model inputs.

When some understanding of the paradigms’ benefits and drawbacks
has been reached, an alternative modelling approach may be formed by
drawing from their better characteristics.

Construct a model using the new approach and compare it against the

previous two models.

1.6 Structure of thesis

The remainder of the thesis consists of seven further chapters the contents of

which are as follows —

Chapter 2 contains overviews of computer modelling and software
metrics.

Chapter 3 considers the development of traditional discrete-event
simulation including distributed modelling and the introduction of
artificial intelligence into this modelling paradigm.

Chapter 4 sets out the progress of agent-based simulation up to the
present time.

Chapter 5 examines some software metrics which are likely to be useful
for this research.

Chapter 6 describes the experiment to be carried out on the two
simulation models, including the case study scenario, the gathering of

model metrics, and a discussion of the results.

Chapter 1: Introduction

e Based on the results of the preceding chapter, Chapter 7 presents a
modelling architecture which combines the best features of the two
modelling paradigms.

e Finally, Chapter 8 sets out the conclusions, the contributions of the

thesis, and the proposals for future work.

Chapter 2: Overview of Modelling and Software Metrics

Chapter 2

Overview of Modelling

and Software Metrics

2.1 Introduction

In this chapter, an overview of modelling paradigms and software metrics is
presented. First, significant developments in modelling which are relevant to the
engineering context are considered. After that, software metrics which may be used
to characterise simulation models are presented.

The extensive use of computer simulation is seen not only in engineering
applications but also in medicine, healthcare, economics, business, management
science, public administration, the traditional sciences, and computer games. In the
social sciences, models have been constructed to study group dynamics (Hoffmann et
al., 2007) as well as the psychosocial behaviour of human individuals and groups, for
instance Thoyer et al. (2001) and Izquierdo et al. (2008). Modelling is a relatively
cheap and convenient investigative tool for imitating the real world. Its expanding
use in such diverse fields marks it out as an important tool for research and decision
support. Furthermore, it is often the only tool available for exploring and
understanding how complex engineering systems work.

A historical overview of simulation over the past 50 years is given in Nance
and Sargent (2002). The overview focused on the evolution of discrete-event
modelling as the dominant technique for system analysis especially in operations
research and the management sciences. In observing the development of simulation

generally, they noted the symbiotic relationship between simulation and computer

Chapter 2: Overview of Modelling and Software Metrics

science. In both disciplines, contemporaneous needs drove developments which
brought about mutual benefits.

They pointed out in particular that ‘the external influences on simulation are
dominated by those associated with digital computer technology’. Primarily, these
are the advances in computer hardware, programming languages, graphics, networks,
and the World Wide Web all of which can be employed to make models more
realistic, responsive, and accessible.

In contrast to the external influences, the internal factors includes the
significant development of —

e Modelling methodology. This encompasses event-list management,
automated and semi-automated modelling techniques, time-flow
mechanisms, and validation and verification.

¢ Analysis methodology. Conway (1963) identified simulation as more
than just model building. His paper initiated a large area of research
which has since expanded to include simulation experiment design and
comparison of alternatives, variance-reduction techniques, output
analysis, metamodels, and optimization, and the application of artificial
intelligence in simulation.

Both modelling and analysis methodology are relevant to this review. Those
aspects which are immediately applicable to the context of this thesis will be
considered in greater detail in Chapter 3, on Traditional Discrete-Event Modelling,

and in Chapter 4, on Agent-Based Modelling.

2.2 Categorisation of simulation

Nance and Sargent (2002) categorise simulation in two ways and they are
based on —

e The objective of the simulation study which may be system analysis,
education and training, acquisition and system acceptance, research,
and entertainment. It may be noted here that where the objective is the
analysis of complex engineering systems, the intent is invariably to
mimic behaviour so as to understand and then improve the performance

of those engineering systems.

Chapter 2: Overview of Modelling and Software Metrics

e The representation of time and state in the simulation model which is
to say whether continuous modelling, discrete-event modelling, or a
hybrid of continuous and discrete-event modelling is involved. It
should be stressed that in these modelling paradigms, both time and
state are explicitly represented. Strictly, modelling using the Monte
Carlo method may not be included in this categorization scheme for the
reason that while state sequencing is present, time is not explicitly
represented.

It is the second category which is better known and is the one used in most
journal papers, conference proceedings (for example, Maria (1997) and Carson
(2004)), and standard textbooks on simulation (for example, Banks et a/ (1999), Law
and Kelton (1999), and Robinson (2003)). Although the first category is useful, this
thesis will consider the second not only because it is overwhelmingly used in the
engineering sciences but also to be in keeping with by far the larger body of
published literature. A further reason for doing so is that this method of
classification has a relatively long history (Shannon, 1977) and is clearly set out in
Figure 2-1 as a part of Shannon’s taxonomy of simulation languages.

Today, Shannon’s classification of ‘continuous change’ and ‘discrete change’
are commonly referred to as ‘time-driven’ and ‘event-driven’ modelling respectively.
This naming convention of the two branches of modelling is in current use and can
be found quite frequently in the more recent conference and journal papers, for
instance, those from the Winter Simulation Conference and the ACM Transactions
on Modeling and Computer Simulation.

Four major modelling paradigms emanate from these two branches and they
are traditional discrete-event, agent-based, system dynamics, and dynamical systems
(see Figure 2-2). Of these four approaches, the dynamic systems approach is not
encountered as frequently as the other three in the modelling of complex engineering
systems such as those for logistics and supply chains. This may be because the
dynamic systems approach involves well-understood physical systems with
behaviour which evolves over time according to a system of differential equations. It
does not lend itself well to the discontinuous, event-driven nature of logistics and
supply chain problems where large numbers of items with diverse, individual

properties may have to be modelled.

Chapter 2: Overview of Modelling and Software Metrics

SIMULATION
TECHNIQUES
ANALOG DIGITAL HYBRID
CONTINUOUS DISCRETE GENERAL
GHANGERSE- - - - ----------- e P i e CHANGE LANGUAGES
LANGUAGES : LANGUAGES
| }
| GASP IV
C-SIMSCRIPT
DIRECT BLOCK
EQUATION ORIENTED
(DIFFERENTIAL) DIFFERENCE EVENT PROCESS TRANSLATION
EQUATIONS R lArioN EQUATIONS gL ORIENTED ORIENTED FLOW
DSL/20 DY NAMO SIMSCRIPT SIMULA GPSS
MIMIC ggﬂ% E& GASP Il aPs GOSS
BHSL PACTOLUS FORSIM-IV SIMCOM sOL
DIHYSYS 1130 CSMP GSP SIMPAC
S360 CSMP COBLOGC MILITRAN
MADBLOC

Figure 2-1: Simulation techniques and languages (Shannon, 1977)

Chapter 2: Overview of Modelling and Software Metrics

Modelling Paradigm

[|
A] ¥

Time-driven

—

System Dynamics Dynamic System

Event-driven

—

Agent-Based Discrete-Event

Figure 2-2: Current classification of modelling paradigms

The categorization of modelling approaches set out by Borshchev and
Filippov (2004) reproduces the hierarchy shown in Figure 2-2. Their scheme is
illustrated in Figure 2-3 which also indicates the approximate range of scale and
levels of detail and abstraction at which any of the four paradigms may be employed.
It gives a clear signal that none of the paradigms on its own can be used to model all
conceivable scales and levels of a system. Therefore, in a model which has a large
range of detail or abstraction levels, there is a good likelihood that one or more
modelling paradigms will have to be used appropriately (see Section 2.3 Misuse of

modelling paradigms).

A Aggregates, global causal dependencies, feedback dynamics...

High abstraction
Low details
Strategic level

Medium abstraction
Medium details
Tactical level

Low abstraction
High details
Operational level

Discrete-event
+Passive objects
*Flowcharts

*Resources

Agent-based

+Active objects

*Individual behaviour

System Dynamics
+Aggregates

+Stock-and-flow diagrams

+Feedback loops

*Direct or indirect interaction

*Environmental models

Dynamical Systems

*Physical state variables

+Algebraic-differential
equations

Event-driven ‘— ' —’ Time-driven

Individual objects, exact sizes, distances, velocities, times...

Figure 2-3: Modelling paradigms and regions of applicability (based on Borshchev
and Filippov, 2004)

11

Chapter 2: Overview of Modelling and Software Metrics

2.2.1 Time-driven modelling

Time-driven modelling, where the model time component is advanced at
fixed and regular intervals, is represented in the main by two approaches — dynamic

systems and System Dynamics (SD).

2.2.1.1 Dynamic systems

As indicated earlier in Figure 2-3, the dynamic systems paradigm is used to
model physical systems where low abstraction and high detail levels are required. In
particular, this deterministic, mathematical approach involves the integration of
algebraic differential equations over time. The trajectories of the state variables,
once given an initial value, can be predicted with certainty. For example, the
dynamic response of an electronic control system or a mechanical mass-spring-
damper system to various types of inputs can be studied using a commercially
available modelling tool like MATLAB Simulink (Mathworks, 2007), SDX (SDX,
2005), and Extend ™6 (Extend, 2005).

Figure 2-4 shows how a dynamic system can be constructed by connecting
block functions together to obtain the output of a second order differential equation

by evaluating it as two first order differential equations.

_ Solves the Second order Differential Equation
input X"+ax-+bx = input

input

First Integrator

Second Integrator

}wfﬁg r

fit)

'"II'H'|I'|FI'I

Driving Func

brror signal et nteq rror signal Second Intg

SEF]

A" coeff

. Lt
0.8118033] !
0.6232088]

0.4348099) \‘
0.2484133] \
0.05801857| — =
“grapamf W e

0 3ter7esf | | |

050717
o

K] — Input —x —_—

Figure 2-4: A simple example of a dynamic system model (Extend, 2005)

12

Chapter 2: Overview of Modelling and Software Metrics

2.2.1.2 System Dynamics

This modelling paradigm has been elucidated by its pioneer, Jay W.
Forrester, as —
The study of information-feedback characteristics of industrial
activity to show how organizational structure, amplification (in
policies), and time delays (in decisions and actions) interact to
influence the success of the enterprise. (Forrester, 1961)
System Dynamics (SD) is characterised by its modelling of a system as
stocks (or stores), flows, time delays and feedback loops. Using these constructs, a
complex and homogeneous system can be modelled as a causal structure with flows
and feedback loops linking the stocks. The distinguishing feature of SD is its use of
feedback loops. It recognises that the outputs of a node can act on and change the
environment in which the system operates and thus modify subsequent inputs to that
node or some other node. Such feedback can be either positive (indicated by the ‘R’
reinforcing feedback loop in Figure 2-5) or negative (indicated by the ‘B’ or
balancing feedback loop). It can also sometimes result in non-linear behaviour

which is often found in complex systems.

Adoption
[stock] R:te o] Mathematical Model
S — [flow] d(Potenrial Adopters)/dt =
Kgﬂi | \/ Adopters - Adoption Rate

df Adopters)/dt =

+lht = . Adoption Rate
B P
&, W, / Total
n +

b . i Adoption Rate =
Adoption Adoptio Population fdopﬁon from Advertising +
+ from from

;’/ Adoption From Word of Mouth
Advertising (B4 Word of Mouth

3 Adoptlon Adoption from Advertising =
+ \ N + ™w___~ Fraction Advertising Effectiveness *
Advertising
Effectiveness

Potential Adopters
Contact 2

Rate Adoption from Word of Mouth =
Contact Rate * Adoption Fraction *
Potential Adopters * Adopters
/ Total Population

Figure 2-5: Elements of System Dynamics modelling (Borshchev and Filippov, 2004)

SD is a top-down modelling approach and as such it uses aggregated values
to represent stocks. It is difficult, but not impossible, for it to model heterogeneous

populations where the effect of clustering and individual behaviour may be

13

Chapter 2: Overview of Modelling and Software Metrics

important. It can achieve this by segregating a large population into smaller and
related groups, but still with homogeneous properties which are more tightly defined.
Although it has been used with reasonable success in the understanding of supply
chains and logistics networks, it is nevertheless limited by its requirement that the
input variables have inherently uniform properties. Therefore, this paradigm is
commonly used to model problems where abstraction is high and details are low. SD
is typically used to model problems such as global population dynamics, the macro-

economics of a country, ecological systems, and national health systems.

2.2.2 Event-driven modelling

Event-driven modelling is distinct from time-driven modelling in that its
fundamental unit for measuring model progression during a simulation run is the
event rather than time. A model advances from event to event in variable time steps
rather in constant time steps. Event-driven modelling is represented in the main by
two approaches — discrete-event modelling (DEM) and agent-based modelling

(ABM).

2.2.2.1 Discrete-event

Traditional DEM is centred on processes, which may be described in other
words as logical sequences of activities. It also requires a modeller to consider the
resources and constraints which should be applied to the processes.

What occurs within an activity can frequently be abstracted as a time delay
and it is a basic assumption of this modelling paradigm that nothing of consequence
occurs between successive activities. They do not differ much from engineering
processes where nothing which can affect the final result exists in the time intervals
between consecutive activities. Using an event-driven paradigm for such processes
enables computationally efficient models to be implemented especially those where
the inter-activity time is large when compared with the time taken by the activity
itself.

Two concepts are fundamental to discrete-event simulation and they are —

e The simulation object which contains a set of variables describing its

state and attribute. Examples of simulation objects include various

14

Chapter 2: Overview of Modelling and Software Metrics

types of queues, timers, random number generators, and the items
which flow through the processes.

e The event, assumed to occur instantaneously in simulated time (and not
real time), acts on the simulation object to change its state and possibly
to schedule future events for any object within the model. An event can
mark the start or end of an activity.

A model is constructed by linking simulation objects together to form
activities and processes. The process shown in Figure 2-6 consists of time delays,
queues, and a gate through which items (aircraft in this example) are passed at
simulation times scheduled by a data structure called the event list or event calendar.
The event list is essential to the operation of the model and much research effort has
been expended in making it as efficient as possible. In a large model where a large
number of items have to be processed individually, the computation time required for
managing the event list can be significant. Therefore this data structure will be

considered in greater detail in Chapter 3.

ACID

i

Read Attribute

=

Lowa
FIFO Queue

O
Oy Eqn o
[
O

Update Data

Weekly Schedule
vl O

Figure 2-6: Components of a simple traditional discrete-event sub-model

2.2.2.2 Agent-based

ABM draws from a number of different disciplines like systems science,
complexity science, management science, and computer science for its theoretical

foundations, conceptual world view, and philosophy (Macal and North, 2006).

15

Chapter 2: Overview of Modelling and Software Metrics

In stark contrast to the other three modelling paradigms outlined earlier,
agent-based modelling (ABM) is a bottom-up approach while the others are top-
down. Where the top-down approach requires a complete overview of a system as
well as central control of the model, it may be inferred that in a bottom-up approach
neither of those requirements is absolutely necessary. It is therefore possible to build
a multi-agent system without complete system knowledge since control is distributed
among the agents which have limited spheres of influence.

A notable characteristic of an agent is its capacity for autonomous action.
The notion of ‘autonomous action’ is usually contrasted with the absolute obedience
of an object when it is invoked. To implement this ability to decide for itself, an
agent in a multi-agent system is endowed with rules governing its behaviour and the
ability to accept inputs from its environment, to learn from previous experience and
adapt future actions, and to communicate with other agents. The behaviour of a
multi-agent system can be more than just the sum of the behaviour of its component
agents because the interaction among them can sometimes result in system behaviour
which is not explicitly programmed in any of them. This emergent behaviour is
largely unpredictable and is of great value to the study of social science problems
and systems where human decision making is the dominant feature. However, it may
not always be of benefit to engineering problems where predictability and
repeatability are important.

The flexibility of an agent technology in operation can be demonstrated by
integrating a real production agent system with an agent-based model, using the latter
as a testbed. This can be achieved relatively easily when compared with the other
paradigms because agents are designed to be loosely coupled and highly cohesive
entities which communicate asynchronously by message passing. For the same
reasons, an agent-based model can be developed relatively easily from a multi-
threaded single process into a distributed multi-process model.

Figure 2-3 shows that ABM is the most versatile of the four major modelling
paradigms since it can be used on systems spanning the widest range of abstraction
and details. While it appears that ABM alone can be used to model problems of all
scales and details, nonetheless, it needs to be borne in mind that the use of the other
modelling paradigms may result in simpler and more maintainable models. It is

important to match paradigm, problem, modeller, and model user as closely as

16

Chapter 2: Overview of Modelling and Software Metrics

possible since the benefits of a model are realised post-implementation and that
phase of the model lifecycle can be much longer than the implementation phase.

Selecting an inappropriate modelling paradigm can be costly.

2.3 Misuse of modelling paradigms

The main difference between a time-driven and an event-driven model is that
the state variables in the former change continuously over time (for example, the
depth of water in a container) while those in the latter change only at events or at
discrete points in time (for example, the length of a queue as determined at the
random time people join or leave it).

It should be noted here that numerical quantities in a model can actually vary
continuously only in an analogue simulator whereas in a digital computer they are
merely perceived as continuous. When a time-driven model is advanced in a digital
computer at time steps small enough to enable it to resolve adequately changes to the
state variables of interest, the changes may be considered to be continuous to all
intents and purposes.

Based on this principle, it is reasonable to view time-driven modelling in a
digital computer as a special case of event-driven modelling in that an event can be
triggered at each of the fixed time intervals thus causing the model’s mathematical
equations to be re-evaluated. Although such event-driven continuous modelling is
possible, the overheads required to maintain the built-in mechanisms of discrete-
event modelling makes this combination computationally inefficient.

Conversely, an event-driven model can be stepped through time at fixed
intervals. However, time-driven discrete-event modelling suffers from three
significant drawbacks —

e An event cannot be guaranteed to occur always at a time interval
boundary thus resulting in a loss of precision.

e [f two or more events occur separately within the same time interval, it
will not be possible to determine their chronological order. Such a lack
of resolution can give rise to unexpected results in instances where the

order of events is important.

17

Chapter 2: Overview of Modelling and Software Metrics

e The model continues to consume computing time even when nothing is
happening between events and in doing so increases the elapsed time of

a simulation run.
In view of these inefficiencies and potential sources of errors, practical
continuous models tend to be time-driven and discrete-event models tend to be

event-driven.

2.4 Model metrics

Since the models studied in this thesis are software entities entirely, it is
logical to describe their properties by employing metrics which are used in the field
of software engineering. This section will provide an overview of software metrics

and then consider some aspects of model characterisation and complexity.

2.4.1 Software metrics

There is a large number of software metrics, both broad and narrow, which
may be applied singly or in combination. The better known ones, like Halstead’s
software science metrics (Halstead, 1977) and McCabe’s cyclomatic metric
(McCabe, 1976), have been in existence for more than 30 years and have been used
with mixed success in large, well controlled software development projects. They
provide a quantitative measure to the entities and attributes encountered in the course
of the life of a piece of software, from analysis to maintenance. Fenton and Pfleeger
(1997) categorize them broadly into three classes and they are associated with —

e Processes. These are software-related activities like analysis, design,
specification writing, coding, and testing.

e Products. They are outputs from processes and include entities such as
written specifications, program code, and test data.

e Resources. These are the inputs required by the processes. Examples
of such entities are personnel, computing hardware and software.

Among the attributes from these three classes, the ‘products’ attributes are
immediately relevant and useful to the subject of this thesis while metrics from the
other two classes are less so. These software product attributes may be further

distinguished as —

18

Chapter 2: Overview of Modelling and Software Metrics

e Internal attributes. They may be determined purely by examining the
product itself. For program code, attributes such as program size and
code complexity can be measured without resorting to the execution of
the program.

e External attributes. They indicate how the product relates to its
environment. In the case of program code, metrics for such software
qualities as understandability, modifiability, and testability are
pertinent.

It would be immensely useful in practice to be able to predict the external
attribute of software quality by measuring the internal attributes like size and
complexity. Some studies (Li and Henry, 1993; Rombach, 1987; Rombach, 1990;
Wake and Henry, 1988) have confirmed statistically valid links between the quality
of maintainability and metrics like program size and complexity. Banker et al.
(1993) provided robust reinforcement to those comparatively lightweight studies by
confirming their results with code complexity and maintenance cost measurements
carried out on a real, large, commercial banking software system.

The reason that much effort has been expended on measuring software
maintainability is that maintenance costs typically varies between 50% to 65% of
overall lifetime costs (Somerville, 2001) and its enhancement and adaptation sub-
activities can make up more than 80% of the maintenance effort (Krogstie et al.,
2006). Focusing on software maintenance is therefore justified as it is a highly
significant activity within the software lifecycle. Moreover, its three sub-activities —
understanding, modifying, and testing — are equally applicable in the analysis and
design front-end stages of the software lifecycle.

The attributes of size, complexity, and maintainability will be considered in

greater detail in Chapter 5.

2.4.2 Model characterisation

Although the performance of models, in terms of elapsed execution time, has
been routinely measured it has been applied only to specific implemented models
and not to the conceptual models. This metric does not address the issue of model

characterisation as it is not directly related to a model property or attribute.

19

Chapter 2: Overview of Modelling and Software Metrics

A suggested reason why model characterisation has not made any apparent
progress has been put forward by Brooks and Tobias (1996) where the difficulty with
defining a model’s level of implementational detail and software complexity was
highlighted. It is possible to arrive at similar results using a finely detailed model as
well as a coarser one. Therefore, in order to compare two models objectively, there
is a need to establish first their levels of detail and complexity. Despite the
acknowledgement that there is widespread use of modelling in a large number of
technological disciplines, there has been almost no work carried out to date in
characterising simulation models.

Intuition suggests that the more detailed a model is, the greater will its
fidelity be and therefore the more accurate the results it will yield. In general, this
linear relationship will hold true as long as factors which influence a model’s
outputs, e.g. the accumulation of approximated stochastic inputs over a model’s
simulated lifetime, are not overwhelming. This effect is illustrated in Figure 2-7
and is from a study by Costanza and Sklar (1985), cited in Fulton et a/ (2003), where
‘articulation’ (or model complexity and scope) bears a non-linear relationship to
‘effectiveness’ (or articulation and accuracy combined). Figure 2-7 shows that
effectiveness quickly reaches an optimum with increasing model articulation. It
should be noted from that even though data is sparse at the high end of the
‘articulation’ axis, thus calling into question the validity of the ‘effectiveness
frontier’, the shape of the curve is to be expected because the effect of cumulative
computation errors will tend to make a large, complex model less accurate. Other
similar sensitivity studies by Stockle (1992) found only a negligible decrease in
accuracy with model simplification while Halfon (1983a) and Halfon (1983b)
reported a diminishing return in accuracy when model detail was increased. The
large variation in results from these studies may indicate the existence of one or more

unknown but significant factors which have not been taken into account.

2.4.3 Model complexity

Gell-Mann (1995) states that, both in software and in general, all measures of
complexity are context-dependent or even subjective to some extent. This is because

the representation of an entity depends on, for example, the level of detail, and the

20

Chapter 2: Overview of Modelling and Software Metrics

assumption of previous knowledge and understanding. In the same vein, but in the
context of software development, Brooks (1987) argues that complexity is an
essential (or inherent) and not an accidental (or incidental) property. The
consequence is that, in software projects — and modelling is almost wholly software —
technical problems and those associated with communication and management, will
inevitably arise because it will be difficult to obtain a clear overview. Hence, ‘loose
ends’ such as errors and uncertainties in system requirements can propagate quickly
and widely throughout the body of software and their root causes will be difficult to

find and control.

18

16 4

14

Effectiveness frontier
12 1

10

Effectiveness

E -
4 -
2 -
0 Jomamy ey & ao o
0 5 ¢'n 1'5 2lu 2|5 3lu 3'5 40
Articulation

Figure 2-7: Relationship between model complexity and accuracy (Fulton et al., 2003)

Brooks also observed that, in addition to this essential complexity, most of
the complexity encountered in a piece of software is arbitrary in nature since the
software does not exist alone but must conform to human and system constraints and
these constraints can, and do, evolve over the useful life of the software. This effect
was also noted by Belady and Lehman (1985) when they postulated the three laws of

program evolution, which are continuing change, increasing unstructuredness, and

21

Chapter 2: Overview of Modelling and Software Metrics

statistically smooth growth. As a model undergoes change during normal post-
implementation maintenance, it becomes increasingly disordered, and hence more
complex, unless specific effort is expended to prevent it. It follows that to be able to
measure a model’s complexity objectively is a desirable goal.

Brooks and Tobias (1996) noted that, although a software structural
complexity metric like McCabe Cyclomatic Number (MCN) has been in existence
for a number of years, in practice, the level of detail or level of complexity in a
simulation model is assessed qualitatively. In an attempt to estimate the complexity
of a model objectively, they suggested that in a discrete-event model, the events and
the relationships between events are the equivalents of McCabe’s nodes and edges
respectively. However, as it is likely that two or more of these event flowgraphs are
possible for the same conceptual model, it is necessary to take the lowest MCN to
give an objective and quantitative indication of model complexity.

A novel method of measuring software complexity, the o-metric, was
proposed by Kokol et al (1999). It employed a technique called long-range
correlation and is founded on the information entropy inherent in the content of
human writing as established earlier by Shannon (1951). The assumption that there
is a correlation between a programme’s complexity and the entropy of its
information content was confirmed by experiment. However, the study did not
reach, nor has it since then been continued to, the stage where the nature of the
relationship could be established. Compared with the automated means for obtaining
MCN for a large program module, this method appears to be more efficient and
considerably less dependent on the programming language used. Also, it can be
applied equally well to a textual source like a specification in any of the formal
specification languages or a compiled program source in any machine language.

More recently, it has been recognised that simulation models have become
very complex. This trend has, in part, been driven by the ready availability of high-
performance computer hardware as well as a lack of understanding of the real
systems (Chwif ef al., 2000). However, Chwif ef al (2000) do not offer any objective
criteria to determine when a model becomes too complex to run, enhance, or
maintain feasibly. With the demand for greater realism in simulation has come the
corresponding need for a quantitative metric to determine when this threshold has

been crossed.

22

Chapter 2: Overview of Modelling and Software Metrics

Because the evidence of earlier work points to complexity as the
underpinning measure for software or model characterisation, it will be considered
further in Chapter 5 where software metrics will be set out in greater detail. It may
be noted here that an outcome of having a complexity metric is that it provides a

degree of objectivity when different models are to be compared.

2.5 Previous work on comparing modelling paradigms

There does not appear to be any journal publication, conference proceeding,
or workshop paper presenting either a qualitative or quantitative comparison of
agent-based modelling against discrete-event modelling. A search for agent-based
modelling revealed a workshop paper (Parunak ef al, 1998) comparing it with
equation-based modelling, i.e. dynamic systems and Systems Dynamics. Another
search for publications for discrete-event modelling uncovered two studies
(Brailsford and Hilton, 2000; Morecroft and Robinson, 2006) which were qualitative
comparisons against the System Dynamics modelling paradigm. Morecroft and
Robinson (2006) stated that although there is a high level of interest in knowing what
modelling method best fits a particular type of problem, there is almost a total

absence of such comparative studies.

2.6 Summary

A taxonomy of the major modelling paradigms in current use was presented.
It is based on the representation of time and state in the simulation model, classifying
the paradigms as either time-driven or event-driven.

The four modelling paradigms — dynamic systems, System Dynamics,
discrete-event modelling, and agent-based modelling — were outlined showing their
main distinguishing features and the level of abstraction and details where they may
be employed.

Among numerous requirements when modelling a problem, it is important to
use the modelling paradigm which provides the closest conceptual match. Using an
inappropriate modelling paradigm can result in inaccurate results as well as

computational inefficiencies.

23

Chapter 2: Overview of Modelling and Software Metrics

The internal attributes of program size and structural complexity provide
convenient quantitative indicators of the external attribute of maintainability. These
metrics enable models to be compared objectively.

Comparisons have been carried in the past between models implemented
using different paradigms but none has been made between traditional discrete-event

and agent-based modelling.

24

Chapter 3: Traditional Discrete-event Modelling

Chapter 3

Traditional Discrete-event Modelling

3.1 Introduction

In this research, which is in the form of a case study (stated previously in
Sections 1.3 to 1.5), each item involved needs to be tracked along the supply chain
and logistics network. The attributes of these individual objects, such as unique
identifier, life, size, and weight, are therefore important. In these problem domains,
the model state variables change only when events occur and nothing of consequence
occur between adjoining events. In time-driven modelling paradigms like System
Dynamics (SD) and dynamic systems, group and bulk properties are paramount and
the state variables change continuously. Therefore, in this research, it is more
appropriate to use an event-driven modelling paradigm than a time-driven one.

Procedural languages like FORTRAN and C, object-oriented languages like
Java and C++, and specialised simulation languages like SIMSCRIPT, SIMULA,
and GPSS have been used for many years in discrete-event simulation. A survey of
simulation languages is given in Shannon (1977) and more recently in Low et al
(1999) where descriptions of a number of runtime libraries are also presented.

Manual crafting of program code for a simulation model is very time
consuming and prone to errors. A development, both to speed up and improve the
quality of model building on the PC desktop, has been the commercial introduction
of visual programming environments, e.g. AnyLogic™ (XJTechnologies, 2006),
Arena™ (Arena, 2007), and Extend™ (ImagineThat, 2006; Krahl, 2001). The last,
in particular, provides a comparatively low-cost yet powerful and versatile
environment with an open architecture which can be enhanced by the knowledgeable

user.

25

Chapter 3: Traditional Discrete-event Modelling

The body of published literature distinguishes between two types of discrete-
event simulation — sequential and distributed (or parallel). Generally, experiments in
the former are carried out in a single process executing in one processor while those
for the latter are partitioned into multiple processes and executed in parallel over two
or more physically separated processors. Distributed modelling continues to be a
specialized process which requires a high level of programming skills. Although
there is no commercial tool which can deal with all required aspects of distributed
modelling, the production of such a model has been aided in recent years by the
provision of the High Level Architecture standard framework (described later in
Section 3.3.2.3).

Since the event list is essential to the operation of a discrete-event model, this
chapter gives a description of it together with details of the techniques which have
been employed to make it run efficiently under different conditions. That is followed
by a consideration of distributed modelling as well as the inherent problem of time
synchronization which has been eased by the development of a standard framework.
The melding of time-driven systems with event-driven systems and the use of

artificial intelligence techniques in discrete-event modelling conclude the chapter.

3.2 The event list in traditional discrete-event modelling

In this section, the event list is considered in some detail for the reason that it
is the data structure which underpins discrete-event modelling.

It is fundamental in both sequential and distributed discrete-event simulation
that a set of future or pending events is processed in a valid and consistent order.
This is handled by a data structure called an event list which stores an organised set
of events and enables new events to be inserted at the correct locations. In a simple
model executed in a single processor, the event list may just be a linear linked list
holding a small time-stamped set of pending events in increasing chronological
order. A considerable amount of research has been carried out in the last four
decades in pursuit of a general solution for the efficient operation of the pending
event set (Marin, 1997), or priority queue (PQ) (Knuth, 1973) where the priority is

the event time-stamp in this instance.

26

Chapter 3: Traditional Discrete-event Modelling

As it is possible for two or more events to be scheduled to occur
simultaneously in the same computer process using a common event list, the
execution of these events needs to be serialised. One method is to select any of these
events at random with equal probability to reduce the effect of serialisation over a
simulation run. Where event order is not important, they may be executed in any
order. The latter method is faster as it incurs a lower overhead than the former when
deciding where to insert the entry in the event list.

In a large and complex model which has to process many individual items,
the cascading of generated events during a simulation run can quickly result in a very
large set of pending events. As the order of arrival of events at the event list may not
be in chronological order of simulation time, the events have to be inserted into the
data structure after the correct time locations of the event list have been found. For a
large list, the computation time needed to manage this data structure alone can take
up a significant proportion of total computation time. As the time taken to insert an
event in a simple linear linked list is proportional to the length of the list, i.e. O(n)
where 7 is the number of pending events, if a linear search is used to determine the
point of insertion, alternative techniques have been devised to make it speedier and
more efficient.

These PQ techniques are categorised as either tree-based or list-based. In
Marin’s (1997) empirical comparison of some of these algorithms, which is an
extension of an earlier study (Jones, 1986), he lists 13 tree-based and 9 list-based
PQs. Notably, Jones’ empirical comparison did not include calendar queues since it
predates their appearance in discrete-event modelling. Also, Marin demonstrated
that for a large pending event set, i.e. for n = 10%, calendar queues outperformed tree-
based PQs when measured as average, or amortized, time taken to insert an event for
a hold operation. This outperformance is to be expected since calendar queues are
specialised data structures which are tailored for managing the pending event sets of
discrete-event models.

A PQ may be conceptually simple but the algorithm needed to implement it
may be large and may involve storage and computation overheads. For instance, the
Calendar queue (Brown, 1988) has relatively short and efficient multiple lists but
they require extra space to be reserved for list expansion and these lists have to be

resized should their upper size limits be exceeded. Although resizing occurs

27

Chapter 3: Traditional Discrete-event Modelling

infrequently, it is computationally very expensive and the algorithm carries code
which is not used frequently.
The numerical values in Table 3-1 represent the relative average insertion

time,

— PQinsert (3.1)

e T s tinsert
where Tpoinsers 18 the average insertion time for any of the PQs and Tcgrinsers 15 the
average insertion time for the PQ implemented as a complete binary tree (CBT).
Marin (1997) used the idealised case of a CBT as the basis for comparing
performance. A complete binary tree is a binary tree (one in which each node has
two children) where all levels are completely filled except for the final level where
the nodes are all to the left, filling up consecutive positions. Each technique was
executed using the classic hold model with different event access patterns simulated
by different probability distributions. It may be noted in Table 3-1 that the different
tree and list techniques are sensitive to the type of event distribution to different
degrees. In particular, among the four types of queue, the Calendar queue performed
relatively badly for the triangular distribution when the pending event set is large, i.e.

n=10%

Table 3-1: Relative amortized run times,Tisert, fOr different probability distributions
(Marin, 1997)

Event

Slisinion (it Exponential Uniform Triangular Bimodal Biased
Queue type n=10 | n=10* | n=10 | n=10* | n=10 | n=10* | n=10 | n=10* | n=10 | n=10*
g;.°mp'ete 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

inary tree
Skew heap 1.56 2.69 1.66 2.78 1.72 2.84 1.40 2.50 1.71 2.88
Splay tree 1.71 2.70 1.73 2.60 1.69 2.53 1.46 2.28 1.55 16.89
ety 224 | 078 | 219 | 075 | 220 | 1.86 | 253 | 079 | 3.37 | 1.12
queue

Describing all the PQ techniques in Marin (1997) would involve too lengthy

a digression but three of the more prominent ones among them, i.e. the skew heap,

28

Chapter 3: Traditional Discrete-event Modelling

the splay tree, and the calendar queue, are considered further in Section 3.3.1

together with two other PQs, the lazy queue and the event horizon.

3.3 Types of discrete-event modelling

Discrete-event modelling may be categorised as sequential, where a model is
implemented as a single process and executed entirely within a single processor, or
distributed, where a model is divided into sub-models and executed as individual

processes in physically separated processors.

3.3.1 Sequential discrete-event simulation

Other than the development of the sequential discrete-event model-building
environment to speed up and make model creation easier, the progress of sequential
discrete-event modelling has largely concentrated on the development of the PQ to
make it computationally as efficient as possible. In sequential discrete-event
simulation, all activities in a model are serialised by way of a single PQ thus making
it the most critical part of the model.

Although five PQs are presented in the following sections under the heading
of sequential discrete-event simulation, the skew heap (Section 3.3.1.1) and the lazy
queue (Section 3.3.1.4) can be adapted for use in the parallel simulation environment
(Ronngren and Ayani, 1997). It is done by granting only one of the parallel
processes exclusive access to the PQ at any time by locking and unlocking the

appropriate parts of the data structure.

3.3.1.1 The skew heap

The skew heap is described by its originators, Sleator and Tarjan (1986), as a
self-adjusting form of the heap data structure which Knuth (1973) calls a priority
queue. A heap is an ordered binary search tree where the node with the minimum
value is at the root. A heuristically self-adjusting tree is not subject to structural
constraints such as tree height balance conditions for a balanced tree. This has the
advantage of avoiding the time and space overheads required to maintain the

structural constraints. A balanced tree is one where all the leaf nodes are at the same

29

Chapter 3: Traditional Discrete-event Modelling

level. Moreover, the depth of a balanced tree is shallower when compared with an
unbalanced tree, thus resulting in shorter search times to locate nodes for deletion or
places where new nodes are to be inserted.

Inserting an entry into the heap involves the central operation of combining
or melding the single-value heap into the original multi-value heap such that the new
entry ends up at the appropriate heap location. In the worst case, performance of the
skew heap is bounded by O(log, n) time (Sleator and Tarjan, 1986). Because of its
economy and speed, this technique is commonly used not only in sequential discrete-
event modelling but also in combination with the Time Warp mechanism (Fujimoto,
1990) used in parallel and distributed modelling because it tends to minimise the

amount of rollbacks (described later in Section 3.3.2).

3.3.1.2 The splay tree

The splay tree is a self-adjusting form of the binary search tree. As
frequently used nodes are migrated towards the root of the tree by a sequence of
simple tree rotations — an action described as splaying — it is also self-optimizing.
When used for the management of the event list in discrete-event modelling, this
splaying operation, which consists only of the simple tree rotation heuristic, tends to
restructure the tree after a node insertion or deletion so as to minimise tree depth. It
can reduce the worst-case amortized search time to O(log, n) where n is the number
of events (Sleator and Tarjan, 1985). The efficiency of this PQ is the same as that of
a balanced tree (Knuth, 1973) while avoiding the space overheads and algorithmic
complexity needed to maintain the constraints of a balanced tree.

Marin (1997) noted that most of the tree-based methods have worst case

search times of O(log, n).

3.3.1.3 The calendar queue

The calendar queue (Brown, 1988) is a multi-list data structure modelled on a
calendar and used much in the way a human would use a calendar, i.e. writing to or
erasing from the appropriate day with each day containing a short, sorted linked list.
When a new event is generated, the day or sub-list to which it belongs is calculated

and the event is inserted into that linked list. The insertion point average search time

30

Chapter 3: Traditional Discrete-event Modelling

of this multi-list method is of the order of O(/). The benefit of a constant level of
performance is considerable and is especially noticeable when the pending event set
is large (see Table 3-1). However, its advantage does not extend to all sizes of the
pending event set since PQs implemented as single trees or linked lists perform better
for small event sets where n < 10.

The year is a rolling circular data structure which is initially sized such that
about 75% of the events fall within it. The length of a day is set to ensure that the
size of its linked list does not degrade the average performance for the year. To
ensure good performance, Ronngren and Ayani (1997) mentioned that the average
length of the linked lists should be about two elements long. As the PQ grows and
shrinks during a simulation run, the day and year lengths have to be adjusted in size
to maintain its efficiency. When the lower and upper size thresholds are reached the
day lengths are halved or doubled respectively. Similarly, the year length is adjusted
to ensure that the day lengths are evenly distributed to prevent empty days from
occurring. This resizing operation is costly since it is of the order of O(n) where n is
the number of elements in the PQ.

Multi-list PQs tend to have dedicated storage to handle the overflow of event
data but the calendar queue manages this problem elegantly by allowing events
which extend more than a year into the future to wrap around thus spreading the

overflow amongst the day sub-lists.

3.3.1.4 The lazy queue

The lazy queue (Ronngren ef al., 1991) is a multi-list PQ with events which
are divided into three categories (see Figure 3-1) —

e Near future (NF). This is a buffer of events which will be executed
almost immediately and consists of a link list for enqueue operations
and a sorted array to handle dequeue operations.

e Far future (FF). This contains a number of chronologically ordered
but unsorted sub-lists. When the NF sorted array has been completely
dequeued, the earliest FF sub-list is sorted using the Quicksort
algorithm and transferred to the NF data structure. It is the delaying of

31

Chapter 3: Traditional Discrete-event Modelling

work until the last possible moment which gives this technique its
name.

e Very far future (VFF). This is implemented as a link list and with the
passage of time, a part of it is transferred into the FF data structure

Ronngren and Ayani (1997) substituted the link lists in the NF and VFF data
structures with skew heaps thus enabling them to operate more efficiently in the
worst-case.

The assumption which underpins this PQ is that the largest proportion of new
events in a time interval is inserted into the FF data structure. Since this enqueue
operation involves just an appending of the event to the appropriate sub-list, the
amortized performance is O(/). A dequeue operation occurs only in the NF data
structure and involves taking out the earliest element from a sorted list. This also
results in an amortized performance of O(/). The operation of this PQ will be
degraded should the distribution of events be such that the largest proportion falls in
the NF and VFF data structures.

/~ Near Future (NF) / Far Future (FF) \ (Very Far Future (VFF)
<'::‘
\\

i |
I { :>
) :>

AN /

|'
I

Figure 3-1: Components of the Lazy Queue (Rdnngren et al., 1991)

3.3.1.5 The SPEEDES queue and the event horizon

The SPEEDES queue is a two-list technique (Steinman, 1994) which
introduces the concept of the ‘event-horizon’. Although it was originally developed
for parallel discrete-event simulation it may also be used for sequential simulation.

As illustrated in Figure 3-2, the pending events are stored in the primary
event list which is maintained in increasing time-stamped order while the generated

events are stored in an unsorted secondary list. The earliest generated event is noted

32

Chapter 3: Traditional Discrete-event Modelling

and just before the simulation reaches this event, the secondary list is sorted and
merged with the primary list. If the primary list is implemented as a linked list, the
amortized cost of inserting the generated events is O(n) where n is the size of the
pending event set. However, the SPEEDES queue approach to PQ management can
be made more efficient for large pending event sets by substituting the linked list
with a variant of the balanced binary tree (the SPEEDES tree), or the heap (the
SPEEDES Qheap) (Steinman, 1996).

The event horizon, a term borrowed from physics and astronomy describing
the boundary of a black-hole beyond which it is not possible for anything to escape,
is marked by the last pending event before the earliest generated event. The
boundary of the event horizon is shown as vertical dotted lines in Figure 3-2. Its
extent fluctuates from cycle to cycle and as the event sequence within its boundary
will not undergo further change, it allows distributed, parallel processes to be
synchronised up to that point in time. Hence, the event horizon is the simulation
model’s lookahead (Fujimoto, 1990) as the events before it are guaranteed to be in
chronological order and that no pending event will generate an event earlier than it.
For these two reasons, the event horizon is a technique for preventing deadlocks —
the situations in which all participating parallel processes cannot safely advance in
simulation time because doing so might violate the Principle of Causality thus
halting a simulation run. This principle is a tenet of distributed simulation which
states that events are caused by earlier ones and so a generated event must always

occur after the generating event.

3.3.1.6 Performance of priority queues

The performance of the PQs described in the earlier sections are summarised
in Table 3-2. In reflecting real and practical modelling, it is evident from the
expected amortized costs for the enqueue and dequeue operations that the multi-list
calendar queue and lazy queue are superior to the tree-based skew heap and splay
tree. This view is reinforced by the fact that the commercially available modelling
tool, Extend ™6 (ImagineThat, 2006), employs a variant of the calendar queue in the

implementation of discrete-event models.

33

Chapter 3: Traditional Discrete-event Modelling

Generated
Events

Pending
Events

Cycle 1

Generated
Events

Pending
Events

Time

Generated

Events Event Horizon
» | s
:]

Pending * F
Events . 5

Cycle 3 Time

Figure 3-2: The operational principle of the event-horizon using the SPEEDES queue
(Steinman, 1994)

Table 3-2: Performance of priority queues (Rénngren and Ayani, 1997)

Operation| Enqueue (amortized) Enqueue Dequeue (amortized) Dequeue
(single (single
operation) operation)
Queue type Expected | Worst case Expected Worst case
Maximum Maximum
Skew heap O(logz n) O(logz n) O(n) O(logz n) O(logz n) O(n)
Splay tree O(logz n) O(logz n) o(n) 0(1) O(1) 0(1)
Calendar queue 0O(1) O(n) O(n) 0o(1) O(n) o(n)
Lazy queue 0O(1) O(n) O(nlogz n) 0(1) O(n) O(nlogz n)

3.3.2 Distributed discrete-event simulation (DDES)

The nature of the event list in sequential discrete-event simulation demands
that events are processed in chronological sequence, one at a time. In practice,
despite the use of techniques (mentioned in Section 3.3.1) to speed up processing,
sequential discrete-event simulation on one processor has proved to be inadequate for

large, detailed models to complete their simulation runs within a reasonable time.

34

Chapter 3: Traditional Discrete-event Modelling

Moreover, in the approach to increasing the performance of such models by
partitioning, distributing, and executing them in parallel over a number of separate
processors networked together, the event list structure cannot be simply adapted
likewise for the distributed processes to work together as a coherent entity. While
distributed parallel processing will reduce elapsed run time by some degree for
models which are not wholly sequential, it introduces a fundamental problem to this
paradigm — the management of simulation time over all the participating processes.
It is a problem because in the absence of time management and in the presence of
diverse hardware and software all performing at different speeds, there is every
possibility that at some point during a simulation a future event will appear to
influence a past event. To have the cause occur after the effect makes the simulation
meaningless and therefore techniques have to be devised to preserve the Principle of
Causality.

K.M. Chandy and R.E. Bryant were attributed with the initial idea of
distributed simulation in 1977 (Misra, 1986). It is to be understood here that
distributed processes refer to those processes which are executed concurrently, or in
parallel, but are spatially separated.

One way of managing DDES is to have the processes all proceed in lockstep
to the beat of a global simulation clock. However, this synchronous technique does
not exploit fully the benefits of concurrent execution in parallel processing in terms
of speed of execution but it provides the means for the interoperation of models or
sub-models implemented using diverse modelling packages. Generally, it results in
relatively poor performance and sometimes in the loss of fidelity (Fujimoto, 1990).
In instances where low model response times are important, this technique is rarely,
if ever, used and time synchronisation techniques are most commonly based on
asynchronous processes. The methods are traditionally divided into two broad
classes which are known as conservative and optimistic time synchronisation

(Fujimoto, 1990; Reynolds, 1988).

3.3.2.1 Conservative time synchronisation

The defining characteristic of conservative time synchronisation is that it

strictly avoids the execution of any causality error and therefore advances the

35

Chapter 3: Traditional Discrete-event Modelling

simulation run only when every event which can affect the event in question has
been completely processed. This approach was pioneered by Chandy and Misra
(1979). The basic mechanism of this synchronization scheme is the event message,
containing the sender’s logical time, which is broadcast from one of the parallel
processes to the other participating processes. There is a distinct possibility that the
messages will not arrive in the same order in all the processes because of the variable
delays caused by network topology and the unpredictability of network traffic.
Allowing the simulation processes to progress according to the order of the raw
message queues will inevitably result in deadlocks.

Reynolds (1988) is of the opinion that there is a wide spectrum of
conservative techniques. He lists seven example variants on the Chandy and Misra
scheme. These variants have resulted from attempts at avoiding the deadlock
problem. A method of achieving this is by the sending of non-event time-stamped
messages to determine the smallest timestep to advance the simulation. However, it
is possible for these non-event messages to proliferate and overwhelm the model
event message population at any time thus resulting in performance degradation.

Another drawback of these conservative protocols is that a programmer must
be involved with the details of the protocols in order to achieve good performance
(Fujimoto, 1990). This requirement to tune the model code to the synchronization

scheme is also likely to result in fragile code and loss of maintainability.

3.3.2.2 Optimistic time synchronisation

What distinguishes optimistic time synchronisation from the conservative
approach is its ability to detect and recover from causality errors. In contrast to
conservative time synchronisation, it does not determine when it is safe to proceed,
but proceeds until a causality error is detected. Instead of advancing by the smallest
safe timestep, it advances as far as possible.

Most of the optimistic time synchronisation schemes are variants of the Time
Warp mechanism. This is based on the seminal work of Jefferson (1985) on the
Virtual Time paradigm which has been developed further by Fujimoto (1989).

In the Time Warp approach, the model states for each distributed process as

well as the messages sent and received are saved at intervals. Recovery from a

36

Chapter 3: Traditional Discrete-event Modelling

causality error is achieved by rolling back the current model state to a time before the
cause of the error. An error is detected if a timestamp earlier than the current
simulation time of the process is received. Although computation effort is wasted
both in moving the model forward and backward in simulation time, Fujimoto (1990)
reports that the detrimental effects due to rollback and thrashing (where incorrect
computation is made and rolled back repeatedly in quick succession) seldom occur in
practice. Also, Fujimoto observed that where rollback has to be made, the rollback
distance tends to be limited because processing always starts with computation of the
smaller timestamps and computation far into the future occurs later in the cycle.

While it cannot be denied that this approach exploits parallelism, the
necessity of saving the model states in each of the participating distributed processes
has the potential to degrade performance severely. Unlike conservative protocols
and because of its ability to roll back, there is less of the necessity to tune the model
code to the requirements of time synchronization thus resulting in greater
maintainability.

The event horizon presented earlier in Section 3.3.1.5 may be considered to
be an optimistic synchronisation technique. Unlike the Time Warp approach, it does
not have the storage and computation overheads required by the rollback mechanism
since it always ensures strict adherence to the Principle of Causality for all events

within the event horizon.

3.3.2.3 High-Level Architecture

It has been the norm that DDES time synchronization, by whatever technique,
has been implemented in an ad hoc fashion. The absence of a standard can, and
invariably does, lead to difficulties when attempting to run together multiple models
built by different programmers. This is true even if the models employ the same
time synchronization technique.

The consequential lack of interoperability and reusability were recognised as
a major waste of effort for simulation and modelling activities within the US
Department of Defense (Kuhl ez al., 1999). The inability to derive more benefit from
existing models provided considerable impetus to standardise an architecture for

distributed modelling. Work initiated in the early 1990s resulted in the definition of

37

Chapter 3: Traditional Discrete-event Modelling

the High-Level Architecture (HLA), a standard for distributed modelling which has
been adopted by the IEEE as Standard 1516 (IEEE, 2000). Figure 3-3 gives a
concept-level view of HLA showing the central importance of the Runtime
Infrastructure (RTI) as it provides all the services needed for the participants or

federates to operate together as a coherent unit.

/ Federation \

(= -
SE, Federates
(Federate A (Windows oh= C «Data collection
Java simulation model) -3 -Passive viewer
‘ using . - «Static models
[Federate Ambassador [« Jov= AP o é
|RTI Ambassador }4 5 E .E c
4 o 882
5§23
(Federate B (Linux C++ 8 % g = Federates
= A (2]
simulation model) S Exa Interfaces to live
usin L articipants
[Federate Ambassador | C++gAp| 01 2R . 3 -
S 285 ON
|RTI Ambassador } e g'g - - j
—
\ —/ il Y
EsS g’
. =T
using Web =
Federate C «sgrices AT R ROES Federate .
Xss5s Bridge to remote | UsingWeb
o s P systems Services
oo o
9§
2E6
2=

Figure 3-3: Conceptual diagram of the High-Level Architecture

3.3.2.4 Speeding up a model

It has been implied thus far that a model executes as an individual process
within a computer processor. A model can be divided into sub-models with each
running as a separate process in a single processor under the management of a multi-
tasking operating system. A drawback of such an arrangement is that the elapsed
time of a simulation run is not reduced although parallel processing appears to be
taking place. This is because, in reality, only one process can be executed at any
time. Each process is allocated a small time-slice and the processes are switched in
quick succession for execution. Switching between processes incurs additional

computing effort, or overheads, to store and restore the states for the model and the

38

Chapter 3: Traditional Discrete-event Modelling

computer system thus diverting resources from the task of model computation.
Therefore, true parallel processing can occur only when the sub-models are executed
as processes in physically separate processors or cores.

An alternative is to let the sub-models run as separate threads in a process
(Butler and Sandén, 2001). In general, threads of execution contain smaller
sequences of computer instructions, share resources like memory and files, and have
lower overheads than processes. As such, they may be considered as lightweight
processes, and since they are able to switch execution quickly between threads, they
can make more efficient use of a processor’s clock cycles. Butler and Sandén’s
experimental measurements for a distributed discrete-event model showed that by
increasing the number of processors, performance improved proportionally up to the
point when the event list starts to hold back system performance. They demonstrated
that, in parallel simulation, threads are an excellent substitute for computer
processes.

There is a theoretical limit to speeding up a model containing some code

which can be executed in parallel. Amdahl (1967) expressed it as —

1

Overall Speedup = - P (3-2)
N

The relationship expressed in Equation (3-2) is generally known as Amdahl’s Law
where P is the fraction of the code which can be executed in parallel, (1 — P) is the
fraction to be executed sequentially, and N is number of processors or distributed
processes. It may be inferred from the equation that the greater benefit is derived
when P is made as near unity as possible rather than when N is made very large. P is
unity for the special case where the whole body of code for a model is executed in
parallel in different processors. In practice, this can be done for sensitivity or

optimization studies where the same code is replicated in different processors and

run independently using different parcels of data.

3.3.3 Hybrid continuous/discrete systems

As the detail of a system gets progressively finer and approaches the realm of
the natural process, time-driven or continuous modelling becomes more appropriate

than event-driven modelling. In a system where the processes are at widely different

39

Chapter 3: Traditional Discrete-event Modelling

levels of abstraction, with continuous-variable dynamics at the lowest and logical
decision-making at the highest, a hybrid model will be more appropriate than either a
wholly continuous or wholly discrete model. The continuous behaviour is specified
by a set of differential and algebraic equations while the discontinuous changes are
represented by discrete event switching logic.

It should be noted that discrete modelling here is not to be confused with the
discrete-event modelling considered in Section 3.3 where an event-driven simulation
advances at variable time intervals which are demarcated by events. In contrast, a
time-driven hybrid continuous/discrete simulation model advances at appropriately
small, fixed timesteps until an event is detected, i.e. when the threshold value of a
model state variable is exceeded. The event time is located and the timestep is
adjusted so that the simulation can be advanced up to that point precisely. After this
point of discontinuity or mode change, a different set of equations may be used and
the simulation continues at a fixed timestep as before.

According to Barton and Lee (2002), combined or hybrid discrete/continuous
systems are those systems where discrete state and continuous state dynamics
interact to such an extent that they have to be analysed simultaneously. Typical
examples of discontinuous or stepwise behaviour may be found in electronic controls
where the continuous dynamics of a system can change abruptly because of the
switching of a diode, or in the operation of a burst-disc to relief dangerously high
pressure in a chemical plant.

Also, Barton and Lee (2002) commented that it was widely accepted that
almost all engineering models of dynamic systems contain discontinuities such as
hard limits, hysteresis, and deadbands, and therefore cannot be handled correctly or
accurately with a completely continuous model alone. Some of the reasons for
incorrect results and loss of precision were presented earlier in Section 2.3.
Therefore, to model real world problems accurately, simulation tools must be able to
perform continuous/discrete simulation. In particular, such a tool must feature the
ability to handle event times with precision, process runtime differential and
algebraic equations, and deal with discontinuous state changes, event iteration, and
chattering (Mosterman, 1999).

Interest in simulation using hybrid systems has become more intensive in

recent years as the need to model discrete controllers operating on continuous

40

Chapter 3: Traditional Discrete-event Modelling

processes has increased. This activity has also been driven by the integration of

artificial intelligence in simulation.

3.4 Artificial intelligence in discrete-event modelling

Artificial intelligence (Al) became a distinct stream of research in Computer
Science at the Dartmouth Artificial Intelligence Conference in 1956 when John
McCarthy coined the term ‘artificial intelligence’. Al now encompasses a host of
loosely related disciplines like neural networks, pattern recognition, image
processing, natural language and speech processing, robotics, symbolic computation,
automated reasoning, expert systems, and autonomous agents.

When embedded in discrete-event models, Al can simulate the functions
performed by a cognitive human and so enlarge the scope of simulation, increase its
accuracy, and make it appear more realistic. However, Miller et al (1992)
cautions that the use of Al in simulation should be selective as Al is not a panacea
and can grow to dominate a simulation inordinately. Despite this, it should
nevertheless be recognized that Al techniques like data dependencies, backward
chaining, and abduction can greatly simplify the creation of some simulation models.

Oren (1977) proposed that Al could be used to assist simulation rather than to
form an integral part of a simulation model. This proposal was subsequently
developed to show how Al could help in model construction by specifying the model
components, the interfaces between them, and also the model parameter values
(Oren, 1979; Oren, 1986). Since then, a number of general reviews concerning Al in
simulation have been published the more detailed and useful amongst which are
Shannon (1987) and Tsatsoulis (1990).

Similarities between Al and simulation in terms of knowledge representation,
learning, and natural language understanding have been pointed out by Vaucher
(1985). Indeed, Rothenberg (1991) noted the symbiotic relationship between Al and
simulation when he observed that while models made use of Al techniques, Al has in
turn made use of models as sources of internal expertise. Miller et al (1992) is of the
view that in the same problem domain, Al is more suited to addressing the problem
at a coarser structural level (i.e. where the individual processes making up a system

are not well understood) while simulation is better suited at the finer end of the

41

Chapter 3: Traditional Discrete-event Modelling

spectrum. It appears that the scope of a problem can be extended and addressed by
harnessing together the strengths of both disciplines.

It may be recognised at this point that Al techniques are used in simulation in
two quite different ways (Tsatsoulis, 1990) —

e Al-based modelling where Al techniques are embedded and used to
model the problem.

e Al-assisted modelling where AI systems are used to aid model
construction, output analysis and presentation, and optimization.

While AI contains numerous disciplines, it is knowledge-based, rule-based,
or expert, systems which is the most common technique found in Al-assisted and Al-
based modelling until recent years when agent-based modelling has become
dominant. The research direction taken over the past decade is evident in the
conference papers presented at the Winter Simulation Conference between 1997 and
2007 (WSC, 2007).

An example of an expert system for assisting the human modeller was
discussed in de Swaan Arons (1999) where a number of parameterised models were
initially stored in a database so that under the guidance of the expert system, the
modeller could select the most appropriate model. A fundamental drawback of that
system was that due to the limited number of models in the database, it had a very
slim chance of matching the modeller’s requirements exactly despite interpolation
between, and extrapolation from, existing models. Subsequently, a different
approach was adopted by de Swaan Arons and van Asperen (2000) and that was to
apply an expert system in the Arena™ simulation tool so that it could support the
modeller during model definition. Their goal was to generate the model
automatically. In this they had qualified success as they could only implement
models using those Arena™ modules which had a high degree of built-in
functionality.

A less ambitious but successful application of an expert system in Al-
supported simulation was presented in Law and McComas (2003). Here, the fitting
and selection of the most suitable model input probability distribution was made by
the ExpertFit package, a rule-based system which draws on a large base of

knowledge and data accumulated over 25 years. Its maturity and usefulness is

42

Chapter 3: Traditional Discrete-event Modelling

evidenced by its inclusion in commercial-off-the-shelf simulation packages like
Flexsim™ and SIMPROCESS ™.

A recent example of an expert system in Al-based simulation is described in
Vakas et al (2001). Here the decision-making behaviour of a battlefield commander
is simulated by three sets of rules based on fuzzy logic. Combined with the Myers-
Briggs personality profiling method, it has been used successfully as a testbed for
evaluating US warfare doctrine since human personality can significantly influence

the outcome of a battle.

3.5 Summary

The event list or priority queue (PQ) is the data structure which is central to
the correct and efficient operation of both sequential and parallel (and distributed)
discrete-event modelling. Considerable effort has been expended on list-based and
tree-based techniques.

None of the existing PQ techniques offer the most efficient solution to
pending event sets of all practical sizes. The algorithmically simple linked list is
preferred where the pending event set (PES) is smaller than about 10 items.
However, the constant level of performance offered by multi-list PQs like the
calendar queue and the lazy queue provide a good general solution for PESs larger
than about 10. For this reason, a widely available commercial general purpose
modelling package like Extend ™6 which is used for building the sequential discrete-
event models in this research uses a variant of the calendar queue. Where the sub-
lists are likely to be large, tree-based PQs have been incorporated into the multi-list
methods to improve performance.

The growing demand for greater realism in modelling has been met by larger
models and different modelling approaches. The development of parallel and
distributed modelling has resulted in the formalisation of a standard for
interoperability — the High Level Architecture. The introduction of hybrid
continuous/discrete modelling has extended the useful range of either continuous or
discrete modelling on its own.

The overall speedup of a model is mainly dependent on the proportion of

model code which can be made to execute in parallel.

43

Chapter 3: Traditional Discrete-event Modelling

Artificial intelligence (AI) techniques have been used as an integral part of
the model itself (Al-based modelling) as well as to aid the modelling process (Al-
assisted modelling). Al-based modelling has enabled realistic human decision-

making to be incorporated into systems of external processes.

44

Chapter 4: Agent-based Modelling

Chapter 4
Agent-based Modelling

4.1 Introduction

Although more than 50 years have passed since term Artificial Intelligence
(Al) was coined by John McCarthy at the 1956 Dartmouth Summer Research
Conference on Artificial Intelligence (Russell and Norvig, 2003), the promise,
originally held out by the AI community, of simulating human intelligence
(alternatively referred to as general intelligence or strong Al) in a machine remains
largely unfulfilled. It is still a long-term goal. Early Al research concentrated on
matching human intellectual capacity for general task planning using symbolic
reasoning but that was recognized as being too ambitious for that time. There were
severe limitations in computing hardware so that it was not possible to produce
useful results in a timely manner. Subsequent effort has focussed on sub-fields such
as knowledge representation, natural language processing, and machine perception
and learning and useful computing techniques have emerged from them. Expert
systems, a classic example of which is MYCIN (Buchanan and Shortliffe, 1984),
enjoyed some visible commercial success in the 1980s. A standard textbook like
Russell and Norvig (2003) gives a detailed and comprehensive treatment of these
sub-disciplines.

While Al research narrows down on isolated fragments of the artificial
intelligence problem, agent technology concentrates on intelligent systems. Research
in agent technology is an approach which is not in the traditional AI mould since it
aims to be lightweight on Al techniques but makes technique integration an essential
element in the production of intelligent behaviour. According to Jennings et al

(1998), the concept of the agent emerged from three closely related areas —

45

Chapter 4: Agent-based Modelling

o Artificial intelligence.
e Object-oriented programming and concurrent object-based systems.
e Human-computer interface design.

These elements may be discerned to be present to different degrees in agent
systems. Since there is such a spectrum of agents, the opportunity will inevitably
arise when it will be difficult to make a distinction between a very rudimentary agent
system and a conventional software system.

This chapter first considers what constitutes an agent because it is important
to form, at least, an opinion of one of the fundamentals of this subject. Two classes
of agents from opposing ends of the agent spectrum are then presented and they are
followed by a consideration of the use of agent technology in simulation modelling.
As agents are capable of communicating with each other to achieve their goals
without human intervention, complex adaptive systems and the emergent behaviour
of multi-agent systems are also considered. Seeing the versatility of this technology,
it is natural to make use of it whenever possible and so this chapter is concluded with

a section on the use and misuse of agents.

4.2 Definition of an agent

As this is a relatively new and fast-developing field, it is important to have a
view of its base constituent — the agent. In the past decade and a half, agreement in
the research community with regard to the notion of the agent has become less vague
and the boundary less elastic.

To emphasise the early lack of a consensual definition, Franklin and Graesser
(1996) suggested a taxonomy of 11 alternatives from various sources in an attempt to
arrive at a definition which is not so lax or so restrictive as to render it unworkable.
They accepted the impossibility of achieving a sharp-edged definition since
mathematical concepts provide sharp definitions but real world categorization is
almost invariably fuzzy. However, to endow their definition with some rigour, they
proposed a ‘mathematical style definition’ of an agent as —

An autonomous agent is a system situated within and a part of an

environment that senses that environment and acts on it, over time, in

46

Chapter 4: Agent-based Modelling

pursuit of its own agenda and so as to effect what it senses in the
future.(Franklin and Graesser, 1996)

This definition contains two elements which are widely acknowledged within
the agent research community as essential for agenthood, i.e. its situatedness in an
environment, and its capacity for autonomous, goal-directed action. While the
authors felt that they succeeded in distinguishing between an agent and a program,
they concluded that this basic definition encompassed too much and so they
proposed dividing agents into smaller sub-categories using properties such as the
ability to be mobile and to communicate and learn. This reflects the reality of a wide
variety of practical agent systems where agents are not all monochrome but are
spread over a broad spectrum.

Comparing an agent with a conventional computer program implies that
agent code itself possesses properties which make it inherently different from
conventional code. It may be argued that at the implementational level, a body of
program code will appear similar to another and the requirement to distinguish agent
from non-agent code is probably untenable. To resolve this may require either a
widening of the scope beyond computer code to include software analysis and design
philosophy or it may have to be elevated to a viewpoint at the conceptual level.

At the conceptual level, a definition which has been increasingly adopted by
researchers i1s Jennings’ (2000) précis of Wooldridge’s (1997) description of agent-
based systems —

An agent is an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives.

It contains three concepts, all of which need to be considered together to
satisfy the notion of agenthood, i.e. situatedness, flexibility, and autonomy. An
agent’s ability to interact with its environment sets it apart from an Al system which
has no need of an environment. Its capacity for autonomous action enables it to have
control over its own actions and to function without direct human intervention. It
achieves flexibility by being responsive to changes in its environment, pro-active in
its goal-directed actions, and social in interacting with other agents to reach the

objective it has been set.

47

Chapter 4: Agent-based Modelling

4.3 Categorisation of agents

As in the categorisation of simulation models (see Section 2.2), agents may
be classified in different ways. One method commonly encountered in research
literature is to describe an agent according to its function, for instance a shipping
agent or a sales agent. This categorisation is deficient since there can be a very large
number of such agents and so a usable taxonomy is likely to be cumbersome and
may be ambiguous in places. In the context of this thesis, it is more practical to
divide agents broadly according to their architecture with deliberative agents and
reactive agents (Wooldridge and Jennings, 1995), respectively at the stronger and

weaker ends of the spectrum of the notion of agency.

4.3.1 Deliberative agents

A deliberative agent presents to the outside world the impression of rational
thinking in its ability to plan how a problem may be solved. It does this by searching
through a store of behaviours, proving the validity of its plan, managing its internal
representation of its world, and predicting the effects of its actions. Hence, it is able
to generate and select an alternative course of action without human intervention. In
this strong notion of agency which is closely analogous to human decision-making,
logical reasoning is carried out by pattern matching and symbolic manipulation and
in the presence of a symbolic model of the agent’s world (Wooldridge and Jennings,
1995). It overlaps very largely with symbolic Al and therefore suffers from the
same, notable, and persisting problems in —

e The process of translating of the real world into an accurate, adequate
symbolic description — the transduction problem.

e The representing of real world entities and processes in symbolic form
and getting the agents to reason with the information — the
representation/reasoning problem.

Both these difficulties are exacerbated by the seeming inability of existing
symbolic Al techniques to produce the required outputs within a useful timeframe.
Moreover, the practical viability of the symbolic Al approach itself was put into
doubt when Chapman (1987) presented theoretical results which indicated its

unusability in any time-constrained system. For this reason, research here has

48

Chapter 4: Agent-based Modelling

diminished as the effort increased in the search for more workable and efficient
alternatives.

However, deliberative agents are beneficial where the rate of change in the
environment of a problem is relatively low and complete knowledge of the problem
may not be available. In practice, human systems are dynamic and normally not
deterministic, and where the penalty of incorrect action is high, getting the correct

response which may not necessarily be optimal can override other considerations.

4.3.2 Reactive agents

Where deliberative agents give the illusion of rational thinking, reactive
agents seem to behave reflexively by retrieving an explicitly pre-programmed
behaviour very quickly. The basic architecture of a reactive agent consists of four
parts, which are the agent environment, the input (or percept), the agent itself, and
the output (or action). The agent senses an input from its task environment, maps the
input to the output, and effects a change to its environment. Typically, the
transforming of percept to action is achieved by a lookup which may be in the form
of a table, a coherent set of condition-action (or ‘if-then’) rules, or sometimes a
neural network. An example of a simple hardware implementation of a reactive
agent is a thermostat but the more sophisticated ones are control systems for mobile
robots where real-time response is a prerequisite. Historically, the development of
techniques for real-time Al was motivated by the relative failure of deliberative
methods to deliver results which were timely and has been most visible in the field of
robotics.

A significant advance in this class of agents is the introduction of the
subsumption architecture pioneered by Rodney Brooks (1986). Instead of
decomposing a robot control problem in the traditional manner — as in the sequence
of perception, modelling, planning, task execution, and motor control — it is sliced
into levels of competence which operate asynchronously. The lowest level of
competence, consisting of a class of valid behaviours, provides the fastest response
to the most immediate task. The next higher level of competence includes, or
subsumes, the competence of the previous level as a subset of its own behaviour. It
is possible for complex behaviour to result by using such an incremental control

structure. This may best be illustrated by the example shown in Table 4-1 where the

49

Chapter 4: Agent-based Modelling

highest level of competence is shown as possessing the ability to be flexible in
pursuit of its goal. While this may be true in theory, it is difficult to achieve in
practice since the reactive architecture has the drawback of having to specify a
problem completely at design time. Its minimal learning capability can sometimes
leave it with the inability to find a way out of a problem for which it has not been

explicitly programmed.

Table 4-1: Levels of competence for a mobile robot using the reactive subsumption
architecture (Brooks, 1986)

Level Competence

0 Avoid contact with objects (whether the objects move or are stationary).

1 Wander aimlessly around without hitting things.

2 ‘Explore’ the world by seeing places in the distance that look reachable and

heading for them.

Build a map of the environment and plan routes from one place to another.

Notice changes in the ‘static’ environment.

Reason about the world in terms of identifiable objects and perform tasks
related to certain objects.

6 Formulate and execute plans that involve changing the state of the world in
some desirable way.

7 Reason about the behaviour of objects in the world and modify plans
accordingly.

Brooks’ purely reactive subsumption architecture was extended by Matari¢
(1992) into a behaviour-based one. Where the former has simple lookups for
mapping between its input and output, an agent implemented using a behaviour-
based architecture has a limited internal representation of the world in which it
resides and it also contains more sophisticated algorithms which enable activities
such as learning, navigation, and path finding to be performed. In comparison with
purely reactive agents, behaviour-based agents exhibit greater flexibility because of
its ability to learn by storing state information dynamically (Matari¢, 1997). In view
of this, emergent, or unprogrammed, group behaviour in groups of homogeneous and
heterogeneous behaviour-based agents can be of a higher level. The behaviour-based
agent is based on reactive architecture but in terms of agency, it lies in between a

purely reactive and a purely deliberative agent.

50

Chapter 4: Agent-based Modelling

4.3.3 Hybrid deliberative-reactive agents

On the one hand, a deliberative agent is relatively sophisticated in the Al
sense but suffers from the inability to respond within a useful timeframe to changes
in its environment. It has a decision cycle time lasting between minutes and hours.
On the other hand, a reactive agent can respond in real-time (it has a decision cycle
time of less than a millisecond) to changes in its environment but lacks the
sophisticated intelligence of the deliberative agent. A hybrid deliberative-reactive
agent exploits the benefits offered separately by a deliberative agent and a reactive

agent and offers none of their drawbacks.

Deliberative planner

- %
I}iactive plan execution mechanism

- A 4
Reactive feedback control
A [] 7
2 4
Percepts Environment Actions

Figure 4-1: Hybrid deliberative-reactive architecture (Gat, 1992)

As in the subsumption architecture, the hybrid architecture is partitioned into
layers but differently. A layout which has proved to be successful is shown in Figure

4-1 (Gat, 1998). In the field of robotics, this multi-layer approach has been

51

Chapter 4: Agent-based Modelling

implemented as the SSS architecture (Connell, 1992) and the ATLANTIS
architecture (Gat, 1992).

Data inputs from the environment are acted upon very quickly by software in
the ‘Reactive feedback control’ layer which contains primitives for interacting with
the environment. As the processed data is passed up to the ‘Reactive plan execution
mechanism’ layer, it is processed further and a part of its output forms the higher-
level input into the layer below it. The processed data may be in the form of input
parameters to the primitive in the ‘Reactive feedback control’ layer selected by the
plan execution mechanism. Finally, the ‘Deliberative planner’ accepts inputs from
the layer below and, in return, provides a strategic execution plan for the plan
execution mechanism.

Simulation models can also utilize the principles of hybrid architecture in
which the reactive layer provides short-range tactics for immediate use while the
deliberative layer provides the long-range strategies. An implemented example
which exploits this architecture is a large-scale, complex urban traffic control system
where the decisions made by the low-level agents are mediated by the high-level
agents (Choy et al., 2003). The simulation results showed that such a system can

reduce vehicle stoppage times considerably.

4.4 Agent-based models

Figure 4-2 shows the result of a recent evaluation of agent-related technology
by its practitioners (Luck et al., 2005) and is displayed in the now-familiar form of
the Gartner Hype Cycle. This is a convenient graphical representation which sets out
the five phases, marked out along the horizontal axis, through which new technology
is considered to pass through to reach maturity. It provides a snapshot of the relative
maturity, and risk to investment, of a range of technologies as each of them
progresses through the phases at different speeds. It is clear from the figure that of
the agent-related technologies, agent-based simulation has overcome the barrier of
initial over-expectation (or hype) and has achieved the stability where its benefits
and practical applications are beginning to be better understood. Agent technology
used for simulation modelling has a comparatively wide degree of acceptance and

may reasonably be viewed as poised for greater commercial exploitation.

52

Chapter 4: Agent-based Modelling

Advanced web services

Visibility

Samantic web services

Virtual organisations Agent-enabled Grid computing

Davelopment tools
Semantic web

Agent methodaologies

Reputation

L mechanisms
Salf organisation

and emergence

Argumentation Formal methods for agents

strategies

Affactive
computing

Agent-based simulation

e ommerce agents
Web services

E-Marketplacas
Chatterbots

Agent-based _
integration Intelligent and
cognitive agents

L Nom-based systems
Selfevalving Electronic institutions
langugages and protocols
Technology Peak of inflatad Trough of Slope of Plateau of Maturity
trigger expectations disillusionment enlightenment productivity

Figure 4-2: Assessment of agent technology readiness (Luck et al., 2005)

Agent technology has begun to emerge from the research laboratories and has
been successfully implemented in real-world systems, for instance, in the control
systems for manufacturing engine cylinder heads at DaimlerChrysler (Bussmann et
al., 2004), and in simulation models for military training and decision support
(Cioppa et al., 2004; Martin, 1999). Even so, implementing a multi-agent system is a
complex task and it is still a new technology which, in the main, lacks the software
tools and trained human resources needed to engage the marketplace (Luck et al.,
2005). This assertion is evident in the seven brief case studies of agent systems for
production use in manufacturing, logistics, training, and energy production and
distribution presented in Belecheanu et al. (2006). Taylor et al. (2005) also
highlighted the wide gulf which exists between “the promising world of agents and
the uncompromising world of the enterprise”. From these publications of agent
proponents, it appears that the technology remains confined to a niche within
software engineering in the commercial world.

The recommended method of evaluating a technology’s maturity is to assess

it against the Technology Readiness Level (TRL) scale originally developed by

53

Chapter 4: Agent-based Modelling

NASA in the 1980s. Graettinger et al. (2002) and MoD (2007) both contain an
equivalent TRL scale adapted for software (see Table A-1 in Appendix A). When
assessed against this scale, the example systems cited earlier would be rated nine out
of the nine-point scale, indicating that the technology has been proven through
successful real world deployment. The software systems described in Belecheanu et
al. (2006) and Bussmann et al. (2004) satisfy TRLY, i.e. “Actual system proven
through successful mission operations.” (Graettinger et al., 2002). Nevertheless,
commercially-ready agent-based systems are by no means in widespread use.

Today there is a developing consensus for the definition of an agent
(Jennings, 2000) and all are agreed that an agent should work autonomously within
its environment to achieve the goal it has been set (Franklin and Graesser, 1996).
These attributes makes the agent paradigm potentially very well suited to discrete-
event simulation of complex problems especially where high-level logical reasoning
is predominant and where the information to specify the problem completely may not
all be available.

It is reasonable in a model where agent technology is employed, that two or
more agents with different knowledge and emphasis be made to collaborate as a
coherent functional group. Figure 4-3 shows how such a multi-agent system may be
organized at its simplest level. The agents are highly coherent modules and a
number of them with related functions may be networked together in a loose cluster
with each agent limited in its view and influence within its problem domain. There
is no identifiable central control of the group as this function is distributed amongst
the agents, embedded within each is its individual limited set of control rules. Their
network topology is usually pre-determined and they communicate their requests and
intentions with each other by message passing. It may be noted at this point that
because agents communicate in this manner, they are more naturally suited to
distributed simulation than traditional distributed processes which tend to be
constrained by strong, inflexible coupling considered necessary for fast and
predictable execution.

Parunak et al (1998) concur that in an agent-based simulation, agents
‘correspond one-to-one with the individuals being modelled, and their behaviors are
analogs of the real behaviors’. This aspect of agent technology has been developed

further by Kendall (Kendall, 2000; Kendall, 2001) where human roles form the basis

54

Chapter 4: Agent-based Modelling

of multi-agent system analysis, design, and implementation. It is also a concept
integral to the Gaia methodology (Wooldridge et al., 1999) which starts from the
premise of an organisation. Such an entity is made up of roles, their relationships to
one another, and patterns of their interactions. In particular, agent roles are
considered to be similar to offices or positions with permissions, responsibilities, and
rights attached. Similarly, the Australian Al Institute’s methodology (Kinny et al.,
1996) based on the belief-desire-intention technology has the role as its basic unit of
abstraction. Many examples of such role-centred agent systems can be found in the

papers presented at the Winter Simulation Conference (WSC, 2007) in recent years.

. Agent
= Interaction

- ~ Organisational
~ ~ 7 relationship

Sphere of visibility and influence Environment

Figure 4-3: Canonical view of an agent system (Jennings, 2000)

An advantage agent-based simulation holds over traditional discrete-event
simulation is its ability to emulate human individual and group behaviour. Although
discrete-event simulations have included expert systems to model human behaviour
(Vakas et al., 2001) they tend to be monolithic and can be inflexible in operation,
difficult to maintain, and are only as good as the rules contained in their knowledge-

bases. The social sciences have adopted agent-based simulation for investigating

55

Chapter 4: Agent-based Modelling

social phenomena chiefly because of its ease of use (Davidsson, 2002) and there are
numerous implementations of agent-based simulations which include the model of
human behaviour in the decision-making loop. For the same reasons, this simulation
paradigm has made it easier to study the group behaviour of a large number of
entities which interact with each other as well as their dynamically changing

environment, e.g. micro-robots (Dudenhoeffer and Jones, 2000).

4.4.1 Analysis and design

As mentioned earlier in Jennings et al. (1998), a field which contributed
substantially to the development of the agent concept was OO programming and
concurrent object-based systems. Its influence is evident in the methods which have
been employed in the analysis and design of agent systems to date. They either
extend or adapt existing OO development methodology to take agents into
consideration. Among these agent-oriented methodologies, the more conspicuous
ones are Gaia (Wooldridge et al., 1999), the AAIIl methodology (Kinny et al., 1996),
and Agent UML (Odell et al, 2000). The evolution of agent-oriented software
engineering is still at an early stage and it is uncertain how these methodologies will
develop.

The Gaia methodology enables a designer to start with an abstract concept
and work progressively towards a concrete realisation. For example, starting with
the abstract concept of the organization, it is broken down into roles which are
further defined by the four attributes of responsibilities, permissions, activities, and
protocols. A role then has to be instantiated with an identifiable individual who may
have more than one role and may not remain in the same role throughout the life of
the organization.

UML is the de facto standard for OO modelling and Agent UML extends
UML to enable the modelling of agent systems. The extensions are provided to help
with the expression of both the interaction of concurrent threads in multi-agent
systems, and the notion of the role where an agent may play more than one role. It is
notable that Agent UML has the active support of the Object Management Group as
well as the Foundation for Intelligent Physical Agents (FIPA, 2002). The
standardization work of these two bodies may further spur the widespread adoption

of Agent UML for analysis and design of agent systems.

56

Chapter 4: Agent-based Modelling

4.4.2 Modelling tools

Because agent-based simulation is relatively new, commercial off-the-shelf
model development packages are still very rare except for the multi-paradigm toolkit
AnyLogic (XJTechnologies, 2006). This is a significant drawback which is likely to
be overcome in time with the proliferation of agent-based modelling tools which
have expanded capability. Generally and currently, building a model still involves a
great deal of manual coding. Aerogility (LostWax, 2005), marketed as a specialised
agent-based tool for decision support in the aerospace aftermarket, does not fall in
the category of an agent-based modelling package since a model still requires
considerable bespoke coding in Java by their highly-skilled developers. In the
meantime, however, a software framework like Java Agent Development Framework
(JADE, 2006) and JACK (JACK, 2007), an agent-based integrated simulation
environment like SeSAm (Kliigl et al.,, 2003), and standardised libraries like
REPAST and SWARM (Tobias and Hofmann, 2004), can help to ease the modelling

process.

4.5 Complex adaptive systems

A Complex Adaptive System (CAS), which has its roots in the biological
sciences, is essentially a learning system with agents as its basic element. By
implication, agents communicate and therefore an agent-based system makes sense
only if it is a multi-agent system. As agents interact with each other and with their
environment, they learn and become more complex over time, and by adapting to the
pressures imposed upon them, their robustness and reliability are enhanced (Dooley
et al., 1995).

CAS is a relatively new field and, inevitably, its definition suffers from the
uncertainty common to such new research areas. Dooley (1996) attempted to offer a
concise definition but it turned out to be a lengthy synthesis of the seminal
contributions by the principal researchers in this field. Nevertheless, it is a useful
working description as it states clearly all the important features of a CAS in the way
they are currently understood (see Appendix B).

Because a CAS adapts itself to environmental influences, it is an appropriate

model for simulating dynamic systems like economies and supply chains which

57

Chapter 4: Agent-based Modelling

evolve according to fluctuations in business and commerce relationships. The
proposal that a supply network emerges rather than result from purposeful design by
a single entity has been advanced by Choi ef al (2001) who also postulated that the
performance of a supply network can be optimized by combining human managerial
control and the network’s emergent behaviour. To investigate the apparently
spontaneous birth and death of a part or the whole of a supply network and possibly
to learn how to optimize its performance, Pathak et a/ (2003) have built a multi-

paradigm simulator using agent technology for that purpose.

4.5.1 Emergent behaviour

Emergence may be described as the spontaneous appearance of novel and
coherent properties during the process of self-organization in complex systems
(Goldstein, 1999). The emergent property cannot be easily deduced or predicted
analytically from the properties of the individual components of the system. For
example, the shape of a flock of birds cannot be deduced from the behaviour of one
bird. It arises out of interactions between the components and it is because such
interactions increase combinatorially with the number of components in the system
which makes emergent behaviour in large systems unpredictable.

The element of unpredictability in large multi-agent systems may be of
immense benefit in the study of group dynamics, e.g. crowd behaviour in a confined
space, or investor behaviour in a stock market, but becomes a severe drawback in

engineering where results must be predictable and repeatable.

4.6 Use and misuse of agents

Wooldridge and Jennings (1999) warn that, despite its appealing versatility
and the intense enthusiasm of the research community to establish its use, agent-
based software should not be used indiscriminately. Recognizing this, Macal and
North (2006) provide some hints regarding the type of problems where agents may
be used to good effect.

In coming to a decision whether to use or not to use agent technology, both
technical and non-technical issues must be considered (Jennings and Wooldridge,

1995; Taylor et al., 2005) if its usefulness is to be realised in practice. When wider

58

Chapter 4: Agent-based Modelling

system issues are taken into account, it is possible that other modelling paradigms
like traditional discrete-event modelling or SD may turn out to give a better solution
in a shorter time. It would be too optimistic to view agent technology as the silver
bullet or philosopher’s stone for all the difficulties likely to be encountered in
simulation modelling today. It needs to be borne in mind that “intelligent agents are
ninety-nine percent computer science and one percent AI’ (Etzioni, 1996) which is
taken to mean that conventional software technologies and techniques should not be
neglected but should instead be exploited as much as possible even within an agent-
based implementation.

There are situations when full-blown agents should not be used and it is
important to note them. Jennings (2000) points to the existence of systems where
predictability is a desirable property and which must be guaranteed. Because of its
inherent capability of autonomous action, there is considerable scope for unexpected
behaviour to emerge in a multiagent system. A consequence of this is that response
times cannot be guaranteed. It may therefore be necessary to curtail an agent’s
power of self-determination thus making it more like a conventional passive object.

Another instance where it is inappropriate to employ agent technology is in
systems where only a single thread of control exists (Wooldridge and Jennings,
1999) as agent systems are multithreaded so that they can be executed in parallel.
This is in opposition to the philosophy of agent technology even though serializing
the execution of a program can ensure repeatable results and sometime improve

performance.

4.7 Summary

The concept of the agent has sprung from the closely related areas of Al,
object-oriented programming and concurrent object based systems, and human-
computer interface design. While Al has focused on the depth of research in the sub-
fields of intelligence, agent research tends to involve the wider issues of intelligent
systems.

Although none exists yet, there is a developing consensus for the definition of
an agent as originally proposed by Wooldridge (1997) and restated by Jennings
(2000).

59

Chapter 4: Agent-based Modelling

There is a broad spectrum of agents which may be categorised by their
architecture. Reactive agents must be completely specified at design time and they
respond in real-time to changes in their environment. In contrast, deliberative agents,
which are closely related to traditional Al systems, can give correct results in the
absence of complete information but they take too long for their responses to be
useful.

The reactive subsumption architecture can result in the type of complex
behaviour normally expected of deliberative agents. It achieves this even though the
computation it does to transform an input into an action is a just simple mapping
which may be in the form of a lookup table or a set of condition-action rules.

The hybrid reactive-deliberative architecture makes use of the strengths of the
constituent architectures while avoiding their weaknesses. The principle of layering
according to agent function can be applied to simulation models as well.

Agent-based simulation has reached the point in its development where it is
ready for commercial use. However, its progress is hindered by the severe lack of
commercial-grade modelling tools.

Agents are centred on roles and tend to operate at a high level of logical
reasoning. It is evident from the methodologies for analysis and design that the role
is the basic unit of abstraction in agent systems.

A Complex Adaptive System is a multi-agent system which evolves over
time in response to the changes in its problem environment. This concept seems to
match the requirements of the supply chain well.

Emergent behaviour in multi-agent systems is usually unpredictable and is
unlikely to be of benefit to engineering problems.

Although agent technology is versatile, it is not the panacea for all present
difficulties in simulation modelling. One must be wary of the common pitfalls when

employing this technology.

60

Chapter 5: Software Metrics

Chapter 5

Software Metrics

5.1 Introduction

Measurement underpins the engineering process and ever since there has
been the need to control software projects, metrics have been developed to help meet
that need. Having existed as a subject in its own right for more than 50 years,
software metrics has grown to such an extent that it is necessary to sub-categorise it.
A useful scheme is to sub-divide metrics into those measuring properties which are
either internal or external to the software (Fenton and Pfleeger, 1997). Objective
and quantitative metrics like the ‘McCabe cyclomatic number’, for determining the
structural complexity of program code, and ‘lines of code’ (LOC), for gauging
program size, are internal properties while the more subjective software quality
metrics like ‘maintainability’ and ‘usability’ are external. While internal properties
provide indicators which are more useful to the software developer, external
properties tend to be of greater importance to the software user.

Programming language plays an important role when measuring software
internal properties and this is especially significant when moving across language
generations — from assembly to procedural to object-oriented and to agent-oriented
languages. It also needs to be considered when comparing two or more programs
that the metrics selected to characterise them are themselves not strongly related to
the programming paradigms. To ensure a like-for-like comparison this principle
must be followed as closely as practicable.

For a metric to be useful, it must be employed in the limited context in which
it was originally validated. Just how useful a metric is can be determined by the

degree to which it helps a user make a decision (DeMarco, 1982).

61

Chapter 5: Software Metrics

This chapter considers chiefly those aspects of software metrics which are
likely to be useful to this study. As it is software code rather than its development
process which will be considered, it is product metrics and not so much process
metrics which will be the area of focus. The remainder of this chapter is set out as
follows — metrics for program size, models for software quality, the maintainability
quality factor, the measurement of software complexity, module coupling and
cohesion, the effect of programming languages on metrics, and finally some code

metrics for object-oriented languages are presented.

5.2 Program size

Although program size is a simple concept, this benchmark is fraught with
difficulties. Traditionally, it has been quantified by the number of lines of code and
it has been the metric widely adopted throughout the software industry. This section
will consider how this metric has been used and how it may be adjusted to account

for the different programming languages.

5.2.1 Lines of code

Among the very early software metrics to be put to commercial use for
estimating development effort, and even program complexity, is ‘/ines of code’
(LOC). 1t is primarily a measure for program size and its long and widespread use
has validated it to the extent that Basili and Hutchens (1983) proposed that it should
be used as the ‘null hypothesis’, or benchmark, against which other metrics were to
be compared. It is chiefly for this reason that LOC is considered here.

Despite its pedigree, LOC is not as well-defined as it should be. This may be
attributed mainly to the existence of a variety of textual programming languages as
well as visual programming languages which generate code automatically behind the
user programming interfaces. Also, in the absence of any formal or informal
standards, the definition of what constitutes a LOC is unclear. As a typical program
can contain multi-statement lines, as well as data declarations, multi-line comments
and blank lines which do not execute program function, simply counting the number

of lines laid out on a page can diminish this metric’s usefulness.

62

Chapter 5: Software Metrics

There is a need to remove such ambiguities and to that end, Park (1992) has
developed a framework for program size measurement which includes some
comprehensive checklists to help decide what should be included in a LOC count
under different conditions. Broadly, these conditions recognise that code may be
manually written, automatically generated or translated, or reused from a library
since the LOC metric can be used as a measurement of programmer productivity.
The benefits of providing a flexible measurement framework for LOC count are
clear — it enables the consistent communication of requirements across a software
project and it ensures the repeatability of LOC measurements.

LOC has been used traditionally for gauging programmer productivity, as
LOC per unit time, with procedural languages like FORTRAN and C. It becomes
invalid when used on its own to compare the productivity of different programmers
using different languages (Jones, 1994). According to this measure, when
implementing the same functions both in a low-level language like Assembler and in
a high-level language like Java, a programmer can be shown to be less productive in
the high-level language when all other factors remain the same. This is misleading,
counter-intuitive, and exemplifies the effect of carelessly using a metric out of its
validated context. Similarly, the productivity of a programmer using a visual
programming environment can be grossly overstated if LOC of the automatically
generated code is used as the only measure.

In a modular language, it may be more pertinent to count procedures and
sub-routines instead of LOC. For object-oriented programs, a more accurate size
metric has been shown to be the count of objects and methods (Lorenz, 1993), or

classes and functions (Williams, 1994).

5.3 Software quality

In general terms, quality is taken to mean nothing more or less than
conformance to requirements or, defined more specifically by the International
Standards Organization (ISO), it is an attribute which a product or service must have
to meet the needs and expectations of a customer (ISO, 1991). Quality viewed as
fitness for a user’s needs is also favoured by Kitchenham (1989). Practically,

quality is a composite of numerous overlapping attributes (Fenton and Pfleeger,

63

Chapter 5: Software Metrics

1997) and its notion is best illustrated by a model. Some general software quality
models are presented in the following section.

Depending on his role, whether as manager, implementer, or end-user, a
customer places different degrees of importance to the different quality attributes.
While these attributes may be quantified, their value or weight will vary according to
how they are perceived. For example, an end-user will place high importance on
usability, reliability, and execution efficiency while a software developer will view
maintainability, reusability, and interoperability to be more desirable. More than
that, in a set of desirable attributes, some of them can be potentially contradictory
(Conte et al., 1986). For example, generalising a program so that it can run on
different devices will tend to make it run slower on any of the devices. Conversely,
increased efficiency often comes at the price of decreased portability,
understandability, and maintainability. Therefore, while it is easy to contrive a
single metric for overall software quality, it must be recognised that for the reasons
just described such a rating cannot be universally useful (Boehm et al., 1980; Boehm

etal., 1976).

5.3.1 Software quality models

Among the early software quality models, the two which have most
influenced the development of software quality metrics are those of Boehm et al
(1980) and McCall et al (1977). They are similar in some respects. Their
hierarchical nature, clearly displaying the decompositional approach both have
taken, are shown in Figure 5-1 and Figure 5-2 respectively. In both models, the
same pattern of decomposing into three levels of abstraction can be seen. The
hierarchical levels common to both models are —

e The manner of software usage and it may be categorized by the
following questions —
0 How well can it be used as it is?
O How easy is it to maintain?
0 How well can it be used if its environment is changed?
e Quality factors.

e Software primitives or attributes

64

Chapter 5: Software Metrics

USAGE ' QUALITY FACTORS | PRIMITIVES

Device-
independence

«—[Portability

Completeness

Accuracy

Consistency

Device efficiency

Accessibility

Communicativeness

Reliability
As-is utility
Efficiency
GENERAL Human
UTILITY engineering
Testability

Maintainability

Structuredness

Self-descriptiveness

Understandability g

Modifiability

Conciseness

Legibility

Augmentability

METRICS

Figure 5-1: Software quality characteristics tree (based on Boehm et al., 1980)

Chapter 5: Software Metrics

PRODUCT
OPERATION

PRODUCT
REVISION

PRODUCT
TRANSITION

Usability

Integrity

Correctness

X
N
—
X

Reliability

Maintainability

Testability

Flexibility

Reusability

Portability

Interoperability K

TN

PRIMITIVES

Operability

Training

Communicativeness

IO volume

1/0 rate

Access control

Access audit

Storage efficiency

Execution efficiency

Traceability

Completeness

Accuracy

Error tolerance

Consistency

Simplicity

Conciseness

Instrumentation

Expandability

Generality

Self-descriptiveness

Modularity

Machine independence

] e e e e

Y S/W system independence ——

Comms commonality

Data commonality

\

METRICS

11

Figure 5-2 : Software quality model (based on McCall et al., 1977)

Chapter 5: Software Metrics

As the quality factors, e.g. usability, testability, and portability, are still too
abstract to be quantified meaningfully, they are decomposed further into attributes or
primitives which are highly differentiated with respect to each other. The necessity
of doing that is shown in the figures that the quality factors are not mutually
exclusive but can consist of two or more key primitives which are sometimes shared
with other quality factors.

A software quality milestone was reached in 1991 with the publication of
ISO 9126 which used McCall’s model as its basis. Some of the primitives are
assigned to different quality factors in the two models. ISO 9126 is the first
international standard providing a global common framework for evaluating
software quality and has remained unamended even though it has subsequently been
assessed as ambiguous and incomplete (Al-Kilidar et al., 2005; Jung et al., 2004).

Although these three models differ in detail and do not always map directly
onto each other, their quality factors may be broadly viewed as functionality,
reliability, efficiency, usability, maintainability, and portability. They are claimed to
be comprehensive (ISO, 1991) and it may be inferred that an aspect of software
quality can be described adequately by one or more of them. Particular attention
must be exercised when comparing these models as the terms used are not always
equivalent in definition. For example, ‘understandability’ is defined from the
software developer’s aspect in Boehm ef al’s model while the same term is
considered from the software user’s viewpoint in ISO 9126.

A software quality programme based on any of the three fixed models just
presented need not include all their quality factors. The nature of the software to be
developed, maintained, or procured will determine which of the factors are relevant,
and the perceived degree of importance will determine how much each factor should
be weighted (Fenton and Pfleeger, 1997). Although assigning numerical quantities
to quality factors appears objective, it is subjective in practice. However, its value is
realised in providing a common and consistent quality framework to all members of
a software project team.

An alternative to the fixed model or ‘big-bang’ approach, where all the
required attributes are defined and fixed at the start, is to define the attributes and
build the quality model incrementally as a software project progresses. As the

requirements for a project are changed, so new attributes are defined with suitable

67

Chapter 5: Software Metrics

and objectively measurable quantities to expand the scope of the model. In contrast
to the inflexibility of the fixed model approach, the time horizon of this incremental
method is short and there are opportunities for change during the course of a project.
Therefore, it is more efficient and more likely to result in a closer fit to the project
quality requirements. This adaptive approach pioneered by Gilb (1988) and
extended by Kitchenham and Walker (1989) provides a good fit to the evolutionary

nature of software development.

5.3.2 Maintainability

It is well established that software maintenance costs typically varies
between 50% and 65% of overall lifetime costs (Guimaraes, 1983; Nosek and
Palvia, 1990; Somerville, 2001). Of the activities included in the maintenance phase
(i.e. post-implementation and delivery), enhancement and adaptation activities can
make up more than 80% of the maintenance effort (Krogstie et al., 2006). To be
able to complete these activities, it is necessary to understand the software first, and
then to modify and test it (Boehm et al., 1980). Focusing on the maintainability
aspect of software quality is justified since maintenance activities comprise a large
proportion of software lifecycle time and expenditure.

It is logical to assume that the lower the complexity of the software, the less
mental effort is required to understand it, and hence the more maintainable it is.
Over a number of years, a large amount of software metrics has been collected on
various software applications with the intention of describing maintainability using a
single quantity. One such representation which is commonly used in software
project quality assurance programmes is the Maintainability Index given by Oman

and Hagemeister (1992) as —

Maintainability Index = 171 — 3.42In(aveE) — 0.42avev(F)
(5-1)

— 16.2In(aveLOC) + 0.99aveCM
where aveE is the average Halstead Effort per module
avev(F) 1is the average extended cyclomatic complexity per module
aveLOC is the average lines of code per module

aveCM is the average number of lines of comments per module

68

Chapter 5: Software Metrics

The metrics for Halstead Effort and the extended cyclomatic complexity are
described in Sections 5.4.1 and 5.4.2 respectively.

It has been contended that despite the large body of data on which the
Maintainability Index is based on, it should nevertheless not be used on its own but
must be used in conjunction with an estimation based on the ‘man-in-the-loop’
(Welker, 2001). In this regard, the Delphi Method (described in Section 5.3.3), a
method which can bring about the near-consensus agreement of a group of experts
when applied well, has been used successfully to estimate quantities for problems
where full knowledge is lacking. The well-established COCOMO (Constructive
Cost Model) methodology (Boehm, 1981) for estimating software project cost and
schedule is built on the usage of historical project data together with expert input
obtained from Delphi estimation sessions. A variant of Boehm’s Delphi method is
frequently employed in software project estimation (Stellman and Greene, 2005)

where the views of experts are used as surrogates for high quality project data.

5.3.3 The Delphi Method
The Delphi Method has its roots in The RAND Corporation in the early

1950s when it started to be developed as an interactive method for forecasting future
trends in the ‘inexact sciences’ like social science and political science (Helmer-
Hirschberg and Rescher, 1958). Since then, it has been adapted for estimating task
requirements in a variety of industries, usually in their sales and marketing activities.
It has also proven to be especially effective when employed for scheduling activities
in a software project plan (Stellman and Greene, 2005), for example, by estimating
the time and human resources needed for developing a new software system or
enhancing an existing one. The philosophy of the Delphi Method, as well as an
evaluation of the technique and description of example applications is more than
adequately covered in numerous textbooks. One of the popular and heavily
referenced text, by Linstone and Turoff (2002), is also freely available online.

A tenet of the Delphi Method is that the consensual opinion reached by a
relatively small panel of relevant experts participating anonymously in a controlled
debate is more likely to give an accurate answer than one elicited from an individual.
Further, because of the small number of participants involved in the execution of this

method, it is accepted that it cannot produce statistically significant results, nor is

69

Chapter 5: Software Metrics

that its intention (Brown, 1968; Gordon, 1994). Together with the participants’
input of experience and intuition, a significant portion of its value lies in the inherent
capturing, generation and synthesis of ideas in the iterative process of reaching
consensus. Thus, anonymity to minimise the influence of psychological factors such
as specious persuasion and the bandwagon effect, and feedback of information to
encourage close, collective reasoning of an argument, are the two irreducible
elements of the Delphi Method (Gordon, 1994).

While details of specific applications of the method may vary from one
instance to another, the underlying principle of the Delphi process remains
unchanged and may be described as follows (Brown, 1968; Gordon, 1994) —

e After a problem has been identified, between three and seven experts
(Stellman and Greene, 2005) from disciplines related to the problem are
invited to participate. They are assured that the statements they make will
not be attributed by name.

e The problem is described to the participants at the first, or ‘kick-off’,
meeting. They are also given the initial questionnaire with the expressed
expectation that they will work independently and provide their responses,
as well as the degree of confidence in their scores, within a set timeframe.

e The scores to the questions are collated and analysed. If the results for a
question differ greatly, the participants at the extreme ends of the range,
1.e. outside the interquartile range (Brown, 1968), are invited to give a
reasoned reassessment of their scores in view of the opinions returned by
the other participants. This phase of the process is usually repeated and
the questions may be refined according to the feedback obtained from the
questionnaire.

e When the range of scores for a question is judged to have converged
sufficiently, the median value is taken as the consensus score.

The application of this method for estimating software maintainability is

described in greater detail in Appendix E.

5.4 Software complexity

As opposed to indirect metrics such as the software quality factors

considered earlier, software complexity deals with the direct measurement of

70

Chapter 5: Software Metrics

software attributes. It is important to be able obtain a measure of complexity as it is
this characteristic of a body of software which can subsequently give rise to
problems when it has to be understood, modified, tested, executed, and used.

There are numerous complexity metrics in existence and they may fall in any
of the four categories (Fenton and Pfleeger, 1997) listed below —

e Problem or computational complexity — the complexity of the underlying

problem.

e Algorithmic complexity — the complexity of the implemented program

code to solve the problem.

e Structural complexity — the complexity of structure of the program code

used to implement the algorithm.

e Cognitive complexity — the effort required to understand the program

code.

Frequently, when complexity is mentioned in the software context, it is
structural complexity which is meant. The same meaning is adopted in this thesis.
Structural complexity may be decomposed further into three parts (Fenton and
Pfleeger, 1997) —

e Control-flow structure — the sequence in which program code is executed.

e Data-flow structure — the trail of a data item as it is handled by a

program.

e Data structure — the organisation of the data itself.

5.4.1 Halstead software science

The earliest metrics based on a coherent model of complexity was Halstead’s
software science (Halstead, 1977) which merged theories from computer science
with those from cognitive psychology. Halstead proposed a set of metrics consisting
of measures such as program length, vocabulary, volume, level, difficulty, and
programming time. Of special interest is the metric for programming effort, E,
which is still often used as the surrogate for program complexity in computation
intensive applications. It is shown in Equation (5-2) and is described as the mental

effort needed to understand and code a program and this quantity is estimated as —

71

Chapter 5: Software Metrics

N, Nlog, (1)
2u,

E= (5-2)

where u; is the number of unique operators

MU is the number of unique operands

Moo=t
N, is the total occurrences of operators
Ny is the total occurrences of operands

N = N;+N,

Although the set of Halstead metrics was implemented and used in numerous
automated metric gathering tools, it has largely faded from view because its
underlying theories have been shown to be questionable (Coulter, 1983). In
addition, Bowen’s study (Bowen, 1978) of detected errors in program code
concluded that Halstead’s program length, N, had a weaker correlation between
actual and predicted results than McCabe’s cyclomatic number. An inherent
weakness of this metric model was its strong dependence on the procedural
programming languages which therefore diminished whatever remained of its
validity when applied to other programming paradigms. The widespread adoption of
object-oriented programming languages from the early 1990s has made Halstead

software science metrics largely irrelevant.

5.4.2 McCabe’'s cyclomatic number

A metric for structural complexity is less dependent on programming
language than the Halstead software science metrics. One such metric is McCabe’s
cyclomatic number (McCabe, 1976) which is still widely used as it has been shown
to give good correlation with software quality factors like maintainability and
testability (Grady, 1994).

The control flow of a program module can be represented as a flowgraph
containing nodes and edges where the nodes are logic decision points and the edges
are blocks of code between the decision points. The cyclomatic number, v, for a

module is calculated as —

72

Chapter 5: Software Metrics

v(F)=e—n+2p (5-3)

where the flowgraph F has e edges, n nodes, and p connected components.

For a module with no procedure or sub-routine calls, p has a value of 1. In
general, for a collection of flowgraphs, C, with k& connected components, the

cyclomatic number for them is calculated as —

v(C)=>v(C,) (5-4)

Equation (5-4) states that the cyclomatic number for a collection of
connected flowgraphs is just a simple summation of the cyclomatic number of each
of the connected components.

The cyclomatic number, v, is also a measure of the number of linearly
independent paths through the flowgraph. For this reason, v may be used as a metric
for the basis or minimum number of test cases to be executed for a module to ensure
complete coverage. McCabe (1976) suggested from empirical evidence that a value
of v greater than 10 indicated likely problems with module testability, and hence
maintainability. Similarly, Grady (1994) concluded from a large-scale study of
FORTRAN code that an upper limit of 15 should be enforced.

Calculating v for a large module using Equation (5-3) or Equation (5-4) can
be very onerous for the reason that a flowgraph has to be constructed first. To
enable the automated calculation of v from program code syntactic constructs,
McCabe (1976) demonstrated that for a module with one connected component, v

could be simplified to —

WE)=d+ 1 (5-5)

where d is the total number of predicates, or decision statements, at the
decision points. As only a total count is needed of logic predicates at points where
program branching occurs, Equation (5-5) enables the automated determination of v
from program code to be made by another program, thus speeding up the calculation

dramatically.

73

Chapter 5: Software Metrics

A drawback of v is that it can only be evaluated late in the traditional
software lifecycle, that is, at or after the coding stage and not before that. However,
McCabe and Butler (1989) proposed a design complexity metric based on the same
principle as the cyclomatic number but applied at the earlier design stage to a
software structure chart in which the logical connections of the software modules are
laid out. Although mathematically rigorous, it has not been adopted by software
practitioners possibly because of the cumbersome task of having to reduce the
structure chart iteratively before the cyclomatic number can be calculated.

It may be noted that McCabe’s cyclomatic number is meaningful only when
calculated for programs where the program control structure is fixed at compile time
and thereafter. Data-driven or agent-based programs are capable of reconfiguring
the control structure during program execution. Thus their structural complexity,
and their cyclomatic number by implication, may not remain constant in the course
of a single run. For this class of program, McCabe’s cyclomatic number will not be
valid as a measure of software quality with particular reference to program

reliability.

5.4.3 Henry-Kafura’s information flow complexity

Where McCabe’s cyclomatic number is concerned with complexity within a
single module or several connected modules, the Henry-Kafura (H-K) information
flow complexity metric (Henry and Kafura, 1981) deals with inter-module
information flow. As this metric works at the module call-graph or system structure
chart level, it enables information flow complexity to be estimated early in the
traditional software lifecycle, that is, at the design stage.

The metric for each system module is calculated using Equation (5-6) and
those modules which have excessively high H-K values are marked out as
possessing high risk of encountering maintenance problems during their lifetimes.
To support this assertion, Henry and Kafura (1981) noted in their study on the UNIX
operating system that modules with a high H-K value correlated with those having a
record of high maintenance changes.

For a module, M, the H-K information flow complexity is calculated as —

74

Chapter 5: Software Metrics

information flow complexity (M)
(5-6)
= length (M) x ((fan - in(M))x (fan — out (M)))2

where length is the module length measured in LOC.
fan-in is the number of local flows terminating in M plus the
number of global data structures from which information is
retrieved by M.
fan-out 1s the number of local flows emanating from M plus the

number of global data structures updated by M.

The HK quantity also indicates a module’s degree of connectedness with
other modules. It follows that a high H-K value signals a high likelihood that a
change made in the module will ripple out to the adjacent modules and beyond.
However, Equation (5-6) shows that a H-K value of zero can result when either the
fan-in or fan-out value is zero. This can be misleading, for instance, in the case
where fan-in is zero and fan-out is large and positive thus clearly indicating that the
module affects other modules even when the H-K value of zero points to the
module’s isolation.

The model for this metric, initially presented in Henry and Kafura’s seminal
paper of 1981 has been studied in depth and has been refined and simplified
(Shepperd and Ince, 1989) resulting in the following expression —

Shepperd complexity (M)

= (fan— in(04) (fam— out(0)} e
They proposed a number of refinements about the inclusion and exclusion of
modules, and local and global data structures. In particular, module length was left
out because its inclusion in Equation (5-6) made the right-hand side into a hybrid
expression — fan-in and fan-out could be determined at design time while length
could only be determined at coding time at the earliest. It was only valid to use
Equation (5-6) after code has been produced, thus obviating the original intention of

estimating system complexity earlier in the software lifecycle.

75

Chapter 5: Software Metrics

In validating the results obtained using Equation (5-7) against real data, it
was found to correlate well with the H-K metric. More than that, it exceeded the
accuracy of the H-K metric for estimating software development time significantly

(Shepperd and Ince, 1989).

5.4.4 Module coupling and cohesion

The aim of the structured design approach, which consists of techniques and
considerations for program design, is to make the software implementation process
less complex, more maintainable, and hence less costly (Stevens et al., 1974). The
need to divide a software system into modules also brings with it the natural need to
determine how best to partition it while minimising inter-module communication.
Stevens et al’s seminal paper introduced the two important concepts of external
coupling and internal cohesion. In addition to the stated aims of structured design
mentioned by Stevens et al. (1974), a common objective of minimising coupling and
maximising cohesion is to encourage and ease software reuse. The great impact
which these two software properties can have on software quality were noted by
Bowen et al. (1983) when they observed that 5 of the 11 quality factors in McCall’s
software quality model (see Figure 5-2) were directly dependent on coupling and
cohesion. These five quality factors, i.e. maintainability, flexibility, portability,
reusability, and interoperability, are important when software is being revised or
moved from one computer system to another.

External coupling is the degree of the interdependence between software
modules. The fewer and simpler are the connections between the modules, the
easier it is to understand one module without reference to the others. To date, there
is no recognized standard measure for coupling. Fenton and Pfleeger (1997) list six
categories of coupling on an ordinal scale from most to least desirable. Relation R;
and R, are classified as loosely coupled while R4 and Rs are tightly coupled. The list
of coupling categories is shown in Table 5-1.

Internal cohesion is the extent to which the different components of a module
are needed to perform the same task. Both Stevens et al. (1974) and Yourdon and
Constantine (1979) present almost identical lists of degrees of module cohesion on

an ordinal scale from most to least desirable. They are shown in Table 5-2.

76

Chapter 5: Software Metrics

A module may exhibit one or more types of coupling and cohesion. Where

that is true, the module is categorized by the least desirable type of coupling or

cohesion.

Table 5-1: Types of coupling (Fenton and Pfleeger, 1997)

Relation | Coupling type | Description

Ro No coupling There is no communication between the modules, i.e. they
are totally independent of each other.

R Data The modules communicate by parameters using either a
single data element, or a homogeneous set of data items
which have no control elements.

R, Stamp The modules accept the same record type as a parameter.

R; Control One module passes a parameter (or flag) to another with the
intention of controlling its behaviour.

R4 Common The modules refer to the same global data. Although
convenient, this type of couple is undesirable as a change to
the format of the global data will require all common-coupled
modules to be changed as well.

Rs Content One module branches into the inside of another module and
alters the content.

Table 5-2: Types of cohesion (Yourdon and Constantine, 1979)

Cohesion type

Description

Functional

The module performs a single well-defined function.

Sequential

The module performs more than one function and they occur in the order
prescribed by the specification

Communicational

The module performs more than one function but all on the same body
of data which is not organized as a single type or structure.

Procedural The module performs more than one function and they are related only
to a general procedure affected by the software.

Temporal The module performs more than one function and they are related only
by the fact that they must occur within the same timespan.

Logical The module performs more than one function and they are related only
logically.

Coincidental The module performs more than one function and they are unrelated.

77

Chapter 5: Software Metrics

5.5 Programming languages and paradigms

The history of computer programming languages does not appear to have a
clear taxonomy which may be used to outline their development. A reason why may
be that a new programming language is often the confluence of two or more earlier
languages as well as of the ideas being circulated at the time. Very broadly, a
programming language may fall wholly or largely into one of the programming
paradigms, i.e. procedural (or imperative) programming, object-oriented (OO)
programming, logical programming, or functional programming. It may further be
classified according to its intended area of use which, for instance, may be as a
system programming language, concurrent/distributed programming language,
scripting language, or as a general purpose language. As examples, under this
method of classification, Java may be described as an object-oriented concurrent
programming language and C a procedural system programming language.

The choice of language used for a program can affect its quality. An
empirical study comparing seven programming languages (Prechelt, 2000), showed
significant differences in program size and structure, execution efficiency, and
reliability between procedural, object-oriented, and scripting languages. Although
the reported results were not counter-intuitive, the contribution to the results due to
programmer capability was not thought to be significant even though productivity,
as measured in LOC per hour, varied greatly within languages. Prechelt’s study
involved relatively small samples for each language and should therefore be taken as
indicative rather than definitive. To reduce the variation in programmer capability,
the outliers can be filtered out using the large body of language productivity data, in
LOC per function point, collated by Jones (1996).

The Ada language was an outcome of the cost of software maintenance crisis
experienced by the US Department of Defense in the 1970s. It was recognized that a
well-designed language can increase productivity, maintainability, and reliability.
Ada is a strongly typed language and provides support for a wide range of compile-
time checks so that errors can be detected early during coding (Barnes, 1996).
Together with the language features, the processes of standardizing Ada and
rigorously validating its compiler and tools have combined to enable software of

high quality to be implemented.

78

Chapter 5: Software Metrics

Until the early 1990s, research on software metrics was founded on the
commonly used procedural languages like FORTRAN, COBOL, and C. The advent
of OO programming and its wide acceptance by industry in general, compelled
researchers to question the continuing validity of those measures. It was recognised
that there were fundamental differences between procedural and OO languages.

There are concepts in OO languages for which procedural languages have no
equivalence — for example object, class, attribute, inheritance, and message passing.
Despite this, traditional metrics like LOC and McCabe’s cyclomatic number can still

be applied meaningfully at the lowest level of an OO program.

5.6 Object-oriented software metrics

The relevance of considering metrics for OO software is that almost all
agent-based simulation models are implemented in an OO programming language
like Java or C++ rather than a procedural language like FORTRAN and C. To
address the features which distinguishes OO programming from the other
programming paradigms, a set of six candidate measures were proposed by
Chidamber and Kemerer (1991) and these measures have formed the basis of much
research in this area. The suggested Chidamber-Kemerer (C-K) metrics were —

e Weighted methods per class (WMC) — sum of the complexity of each

method within a class. WMC is usually calculated by an adding up the
McCabe cyclomatic number for each method in the class.

e Depth of inheritance tree (DIT) — one may infer that design complexity
increases with tree depth and that the software is less maintainable the
deeper the tree.

e Number of children (NOC) — a high value implies a low level of reuse
because of the high degree of dependency. It therefore leads to decreased
testability and maintainability.

e Coupling between objects (CBO) — the extent of non-inheritance
coupling between objects of different classes. A high value indicates low

modularity and hence low maintainability.

79

Chapter 5: Software Metrics

e Response for a class (RFC) — the number of methods invoked in response
to a message. A high value implies difficulty in testing and therefore
decreased maintainability.

e Lack of cohesion of methods (LCOM) — the number of disjoint sets of
methods in a class. Ideally, there should be only one set of methods in a
class. A high value indicates bad class subdivision and a low degree of
encapsulation.

Li and Henry (1993) reported that the correlation between maintenance effort
and the C-K metrics was better than that for the null hypothesis, i.e. the LOC metric.
More significantly, they also reported that the quality of the C-K metrics was good
enough to enable a prediction of maintenance effort to be made.

Although the whole set of C-K metrics are normally used to characterise a
body of OO software, some of these metrics may nevertheless be applicable to
procedural language software which has highly structured and modular design. For
example, a module written in C containing a number of procedures and functions
may be structured and used in a similar manner to an OO class with numerous
methods. Similarly, a message to a C module can initiate the execution of a number
of procedures and functions, much like the response of an OO class after receiving a
message. Therefore, it is not unreasonable to use the two C-K metrics, WMC and

RFC, for procedural language software.

5.7 Summary

Software metrics may be categorised as those measuring the internal or
external properties of a program. For such metrics to be useful and meaningful, they
must be employed in the context in which they were originally validated.

Program size is usually measured as lines of code and is considered as the
benchmark metric for program size. Care must be exercised to determine what
should be counted as a line of code. Although LOC has been popular as a software
metric for many years, it can be unhelpful and misleading when used to compare
programs implemented in different programming paradigms. It is sometimes better
to use modules, e.g. procedures and classes, as the basic unit of program size since it

is less language dependent.

80

Chapter 5: Software Metrics

Software quality is a composite of several overlapping attributes which are
perceived and prioritised differently by people in different roles. Therefore it is not
likely that a universally recognised, meaningful and useful quality metric can be
represented using a single number. The Boehm, McCall, and ISO 9126 software
quality models are hierarchical and they use broad factors to characterise quality.
These factors are decomposed into primitives to which numerical values can be
assigned. An alternative to managing software quality during the course of
development is to use a model which is amended incrementally. It enables closer
control than the fixed model.

Programming language can affect software quality such as maintainability,
execution efficiency, and reliability. In addition to that, the use of a well-designed
language like Ada together with its validated tools can increase productivity.

Maintainability is important because software maintenance is costly and
time-consuming. The estimation of this software quality needs to be built on
historical data as well as the input of human experts. The Delphi Method, an
established process for eliciting opinions from human experts, provides the means
for reaching consensus.

The measurement of complexity is essential to the understanding of a body
of software. Structural complexity, the most prominent of the four aspects of
software complexity, can be decomposed into control-flow and data-flow.

The metrics of Halstead software science are based on program elements
such as the number of operators and operands. They have fallen into disuse after
object-oriented programming became established.

McCabe’s cyclomatic number concerns control-flow structure and is very
simple to extract from program code. It is still widely applied to procedural
language programs and the lowest levels of object-oriented programs.

The Henry-Kafura metric deals with information flow between a group of
related modules. It can be used to identify areas of high complexity, and hence
potential future trouble spots early in the software lifecycle, i.e. at the time of design
rather than after coding. However, its lack of a rigorous definition can sometimes
result in anomalies. A better metric for information flow is the Shepperd

complexity.

81

Chapter 5: Software Metrics

An alternative, high-level, and ready measure of system complexity is the
degree or quality of coupling between modules and cohesion within a module.
These two software properties are important as they are an influencing factor in
about half of the McCall’s software quality factors.

Some metrics cannot be used outside their programming paradigm. There
are some concepts in object-oriented language which have no equivalents in
procedural languages.

Not all the metrics described in this chapter can be used within the context of
the research as stated earlier in Section 1.4. Those which are to be used to compare
the agent-based model with the discrete-event model are set out later in Section

6.4.1.

82

Chapter 6: Case Study

Chapter 6
Case Study

6.1 Introduction

The subject of this research coincided with one of the areas of investigation in
the IPAS Project (IPAS, 2007). As the aims of IPAS and this research were also
closely similar, it was therefore considered reasonable for the work to become an
integral part the project.

The central object of this research is to compare an agent-based model with a
traditional discrete-event model, both of which have been implemented to the same
functional specification. To start towards that goal, a non-trivial, representative, and
realistic case study scenario needed to be selected and it was found in an existing
study of an engine fleet global repair operation for the Trent 800 which had been
carried out by Rolls-Royce plc (RR). A study such as this can help, early in the
engine lifecycle, i.e. at the design stage, in understanding how to increase flying
time, decrease maintenance cost, reduce stocking of spare parts, and thereby make
Rolls-Royce’s TotalCare® and CorporateCare™ commercial arrangement of ‘power
by the hour’ more profitable.

In addition to a description of the case study scenario and a description of the
Java agent-based model and the data required to run it, this chapter contains a further
two sections which present the implementation of the traditional discrete-event
model, and the empirical results from the agent-based model and the discrete-event

model.

83

Chapter 6: Case Study

6.1.1 The case for a case study

Research into a software topic may typically be classified as one of the three
techniques — a formal experiment, a case study, or a survey. As a survey is a
retrospective study, the only action it can take is to record situations fixed in time so
as to obtain a body of statistically significant data. Since it considers events which
have passed, the factors of interest in a survey cannot be manipulated. By contrast,
an experiment is a controlled investigation where factors of interest are manipulated
with the intention of capturing information about all possible cases (Fenton and
Pfleeger, 1997). It may also be noted here that a research method is reflected in its
scale (Kitchenham et al, 1995). As an experiment requires close and detailed
control, it tends to involve small quantities. Again, by contrast, a survey tries to
gather data over large groups of projects.

A case study is not as rigorous and controlled as an experiment nor is the
amount of data gathered as large as that of a survey. Unlike an experiment or a
survey, the subject of its investigation is a software project typically encountered in a
specific area of application. In terms of scale, a case study lies in between an
experiment and a survey. To describe it definitively, “a case study is an empirical
inquiry that investigates contemporary phenomenon within its real-life context,
especially when the boundaries between phenomenon and context are not clearly
evident.” (Yin, 2003) By focusing on the particular within its contextual conditions,
it attempts to understand the general.

In order to compare two different modelling approaches, it is necessary to
select and use two models which are as alike as possible. In this research, a
meaningful survey on existing software cannot be carried out as it was noted in
Section 2.5 that near-identical pairs of models for comparative study are very rare
and, more specifically, none appear to exist for an ABM and DEM comparison.

An experiment is an appropriate method for comparing alternative modelling
approaches but because it involves a high level of control, it is almost always used
for investigating relatively small, self-standing tasks which can be isolated from its
context, or the rest of a development process (Kitchenham et al., 1995; Yin, 2003).
Investigating alternative modelling approaches will require a series of experiments

and it is likely to be too costly in time and effort. In the face of these constraints, the

84

Chapter 6: Case Study

case study is judged to be the most appropriate research method, and therefore
preferred before the experiment and the survey.

The case study described later in Section 6.2.1 contains a typical scenario for
the lifecycle costing of an engineering product. Some of the factors which can
contribute significantly to through-life cost, for example, the rules determining the
inspection, repair, scrapping, transport, storage, and supply of a jet engine
component are all present in the scenario. Also, the levels of details, ranging from
flexible, high-level decision making to fixed, fine-grained processes, provide a good

representation of a real-world engineering application.

6.1.2 Validity of methodology

The steps to be followed for the case study have been set out earlier in
Section 1.5. It may be noted that the design of the case study presented there follows
the long-established pattern for this research method (Fenton and Pfleeger, 1997;
Yin, 2003), and it may be detailed as the following phases — preparing for data
collection, collecting the evidence, analysing the evidence, and reporting the case
study.

In the design of the case study to test the hypothesis that agent-based
modelling is better than discrete-event modelling, it is a desirable aim to control as
much of the modelling processes as possible (Fenton and Pfleeger, 1997). This may
be achieved by making make them closely similar, and in doing so, greater
confidence may be attributed to differences in the data collected to real differences in
the modelling processes. Therefore, in preparation for data collection, both models
are built using model builders of similar experience, to the same specification,
validated as functionally identical, and run in the same computing environment.

To arrive at a system-wide view of a relatively broad subject such as a
modelling paradigm, both qualitative and quantitative methods need to be employed.
It has been emphasised by Boehm (1981) (see Section 5.3.2) that sometimes, to
increase confidence in quantitative metrics, they may need to be supplemented with
the opinions of human experts. Quantities such as code size and structural
complexity provide a perspective of a model’s internal properties while qualities
such as understandability, modifiability, and testability deal with its external

properties. Further, these metrics need to be collected for smaller, identifiable

85

Chapter 6: Case Study

subsystems of the model as the aggregated values for the whole model can conceal
variations which may be significant.

The relative ease of post-implementation maintenance of the model is
indicated by smaller code size, lower structural complexity, and code which is easier
to understand, modify, and test. It is reasonable to expect that by drawing together
these beneficial aspects from both modelling paradigms, a novel and better

modelling approach can emerge.

6.2 The case study

This section starts with a description of the engine fleet maintenance case
study scenario. The maintenance policy options and the data required are then
presented. The section is concluded with a brief description of the agent-based

model supplied by the Strategic Research Centre, Rolls-Royce, Derby.

6.2.1 The scenario

The scenario may be described broadly as a problem involving scheduling
and logistics for the ongoing maintenance of a fleet of Trent 800 (Figure 6-1) high-
bypass, three-spool, turbofan engines. The engine’s initiation into commercial
service occurred in April 1996 and has since become the dominant powerplant for a
number of Boeing 777 aircraft variants in service worldwide. To illustrate this,
Table 6-1 gives an overview of the engine fleet’s operational status up to the end of
September 2007. Its reliability while in operation by the various airline operators is
evident as the average daily utilisation is almost 12 hours. Its operational record is
also notable in that one of the engines has not been subjected to an off-wing overhaul

even though it has done more than 5,000 flights.

6.2.1.1 Engine lifecycle

The engine lifecycle phase of particular interest to the case study extends
from just after entry into fleet operation until just before retirement and disposal. As
shown in Figure 6-2, this maintenance phase of the engine lifecycle corresponds to

the following stages of the Rolls-Royce Derwent Cycle —

86

Chapter 6: Case Study

e Stage 4, where the product is manufactured and in-service support is

provided.

It may also be modified to meet ongoing regulatory,

customer, and business needs.

e Stage 5, where customer operation of the product continues to be

supported.

Figure 6-1: The Rolls-Royce Trent 800

Table 6-1: Rolls-Royce Trent 800 fleet operational summary (Rolls-Royce, 2008)

Item description Quantity
Number of engines 502
Number of aircraft in service 221

Total fleet engine hours

11.72 million hours

Lead engine

42,931 hours

Lead engine without shop visit

30,169 hours

Total fleet engine cycles

2.28 million cycles

Lead engine 11,040 cycles
Lead engine without shop visit 5,004 cycles
Average daily utilisation 11.6 hours

Average stage length

4.8 hours (ranging between 2.4 to 10.3 hours)

Further, the scenario is concerned only with off-wing, full overhaul with

repairs carried out either in an overhaul base (OHB) or a component repair vendor

(CRV) and not with routine on-wing servicing, off-wing maintenance at an airport,

or repairs carried out in a ‘hospital shop’ (Rolls-Royce, 2005a). It is while in Stage 5

87

Chapter 6: Case Study

that an engine undergoes full overhauls, or shop visits, at OHBs spread strategically
around the world (see Figure 6-3). The OHB at which work is to be carried out will

vary according to the maintenance policy Rolls-Royce has agreed with the airline

operator.
DESIGN OPERATIONS SERVICES
Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage §
Innovation & Preliminary Full Production Continuing -
Opportunity Concept Concept Rz.;lc;e(‘.l:t(i::m & In-Service In-Service ESI(; ()};;_;1;9
Selection Definition Definition Support Support !
—

Figure 6-2 : The Derwent Cycle (Rolls-Royce, 2005b)

=

Figure 6-3: Network of repair and maintenance locations (Rolls-Royce, 2005a)

6.2.1.2 The engine maintenance process

It is assumed that after a new engine has been introduced into fleet service it
will keep flying a fixed stage length to a simple schedule until it is withdrawn from
normal operation. For each flight, the flight profile is not taken into account and it is

also assumed that the engine performs within the parameters for normal operation.

88

Chapter 6: Case Study

An engine is withdrawn permanently for disposal once it has reached the
number of flights defining its retirement limit. However, before that point is
reached, an engine is subjected to either on-wing or off-wing maintenance according
to the nature of the work required. In the event of off-wing maintenance, an engine
is temporarily withdrawn from operation and inducted into a workshop for one or
both of the following reasons —

e [t is for a scheduled full shop visit at an OHB because it has reached, or
is about to reach, the specified number of flights since the previous
shop visit.

e [t has sustained damage too severe or extensive that attention either in
an airport workshop or in a hospital shop is not adequate. If such
damage is close to a scheduled shop visit, the repair is done in
conjunction with the planned overhaul.

A high level view of the typical workflow in a Rolls-Royce OHB is depicted
in Figure 6-4. Details of the maintenance work needed to be carried out in a
scheduled overhaul are described in the workflow plans or process maps laid out
over the six diagrams shown in Appendix C as well as a textual functional
specification. These six flowcharts or process maps may be concatenated at the
places as indicated to form an overall process map.

When the Trent 800 engine arrives at the OHB for a scheduled shop visit,
decisions are made to determine which of its eight modules need to be removed and
stripped. The modules which require maintenance are stripped down to their
individual parts all of which are inspected and assessed whether they should be
refitted with no further work needed, sent for repair at a CRV, or replaced with a
spare part.

Where a part has been assessed as suitable for refitting, it is set aside and no
other work is done on it. It awaits module rebuild to commence once all the module
parts are available.

If a part is deemed no longer fit for service, then a new or a previously
repaired part is withdrawn from the stock of spares at the CRV. If a replacement is
not available, a new part is ordered from the Parts Service Centre (PSC). The
replacement parts are batched by part number and shipped to the OHB to await

module rebuild.

&9

Chapter 6: Case Study

odule build

Module strip ‘\'"tEQrator

Engine strip Gantry

Engine build

Figure 6-4: Typical workflow in an overhaul base (Rolls-Royce, 2005a)

Where a part needs to be repaired, the work is always attempted at a CRV. If
the attempt at repair is not successful, the part is scrapped and a replacement is
sought first from the CRV stores, or if none is available there, a new part is ordered
from the PSC. If the repair is successful, the life of the part is always restored to its
‘as-new’ value. The repaired and replaced parts are batched by part number and
shipped back to the OHB.

Each module is rebuilt at the OHB once its full complement of parts is
available. Finally, the modules are reassembled into engines, thus completing the
overhaul process.

It is very likely that there will be occasions when two or more engines from
different airline operators are overhauled at the same time in the same OHB. It is the
normal practice that the stripped parts from different engines are not mixed up but
are returned to their engines of origin. However, it is also possible that the
maintenance policy of an airline operator may not demand this constraint to be
exercised for its own engines. To ensure that the parts are returned to their
originating locations, each part must be identified uniquely and tracked throughout

the repair process.

90

Chapter 6: Case Study

6.2.2 Maintenance options

To enable different engine maintenance rules to be explored using the same
simulation model, the model’s functional specification as represented in the process
maps (see Appendix C) may be configured according to options shown in Table 6-2.

From Table 6-2, a ‘fixed” workscope involves specifying a fixed list of
module parts to be inspected whereas a ‘customised’ workscope involves inspecting
all the parts making up an engine module. A workscope can be implemented in
conjunction with the type of inspection to be carried out. If the ‘ship dirty’ rule is in
force, the module will be stripped down to its individual parts at the OHB, batched
by part number, shipped to the appropriate CRV and inspected there. Should the
‘inspect at OHB’ rule be in force, a module part is inspected at the OHB and then
determined if it may be refitted without further work, or if a repair may be attempted
at a CRV, or if it should be scrapped. Where repair is required, the parts are shipped
to a CRV in part-numbered batches.

Table 6-2: Configuration options for maintenance rules

Maintenance rule Configuration option

1. Workscope Fixed Customised

2. Inspection Ship dirty Inspect at OHB
3. Kitting Yes No

4. Module swap Yes No

5. Smoothing at component repair vendor (CRV) | Yes No

In the maintenance approach which involves ‘kitting’, a number of parts from
a fixed parts list are marshalled in the Aftermarket Service Centre (ASC), or less
probably in a CRV because of its limited range of parts. They are then sent as a kit
in a single shipment to the OHB for rebuilding into a module. Kitting therefore
implies a fixed workscope. Also, by extension, a ‘module swap’ implies kitting is in
operation for the reason that all the kits which make up a module can be sent in the
same shipment. In normal kitting, the kits are sent in separate shipments once they
have been marshalled.

The smoothing of workload at a CRV requires an appropriately large buffer

of spare parts to be maintained in the CRV stores so that any temporary upsurge in

91

Chapter 6: Case Study

workload will not result in a shortage of parts and hence a delay while waiting for the
reordered parts to arrive. Although it is desirable to exploit resources effectively by
maintaining a constant workload, an outcome of the requirement to smooth the
workload is additional financial penalties because of the larger amount of stock
which has to be carried, as well as having to run an automated stock control system
to maintain the level of stock.

The maintenance options described in the preceding paragraphs are necessary
since the ongoing cost of engine maintenance is influenced by policies related to
inspection, shipping, repair, and scrapping of engine parts in operational service as
well as the usage and stocking of spare parts. An engine part may be subject to a
hard limit based on total number of flight cycles, flight hours, or number of repairs.
Also, airlines do have their preferences about the past history of parts which can be
fitted to their engines. For example, only repaired parts from their own engines, or

from specific airlines but not from others, can be refitted.

6.2.3 Data for modelling the scenario

The granularity of a simulation model data inputs needs to be sufficiently fine
if its results are to be of a quality good enough to be validated against historical data.
Through a process of repeated refinement, the detail level of a model as well as the
data needed to run it can be determined so as to satisfy such a level of detail and
validity.

As this case study involves both engineering processes as well as aspects of
logistics and high-level decision-making, data required include not only engine data
down to component level but also operational data for time and costs for
transportation, engine stripping and rebuilding, stocking and reordering of parts, and
penalties for late delivery. Operational information gathered from other Rolls-Royce
civil jet engines of similar design, has identified a set of 67 engine components
(listed in Table D-1 in Appendix D) which contribute significantly to maintenance
cost and effort over an engine’s in-service life. It is chiefly for this reason that only
these components are considered for modelling global maintenance operation of the
Trent 800. The components are drawn from the following engine modules (see

Table 6-3) —

92

Chapter 6: Case Study

Table 6-3: Rolls-Royce Trent 800 module designations

Module number Module description

1 Fan

Intermediate pressure compressor

Intermediate pressure turbine

2
4 High pressure compressor and turbine
5
8

Low pressure turbine

As the data is commercially-sensitive information, the numerical values
supplied by Rolls-Royce have been amended and they bear little resemblance to the
original. However, this adjustment is acceptable for the purpose of this research as
the same set of data will be used by the agent-based model as well as the traditional
discrete-event model. The results from the two models can therefore be directly

compared.

6.2.4 The agent-based model

Before the commencement of this research, the scenario described earlier in
this chapter (see Section 6.2.1) has been implemented as an agent-based model by
the Strategic Research Centre (SRC) in Rolls-Royce.

The model is a multi-agent system which has been programmed in Java using
the open source Eclipse software development kit (Eclipse, 2006). JADE, the Java
Agent Development Framework (JADE, 2006), enables the agent system to be
developed in compliance with the FIPA specifications (FIPA, 2002) and provides
both the interface for managing the agents as well as the environment through which
the agents communicate. Although the JADE platform can be distributed over
several hosts, it runs on only one host in this instance. In a host, the Java Virtual
Machine (JVM) provides a complete runtime environment which allows a multi-
agent system to be executed as a multi-threaded process. In this instance, the JVM
enables several agents to run concurrently and asynchronously, with each agent
allocated to a separate thread of execution.

In this model, the top-level functions fulfilling all the requirements set out in

the six process maps in Appendix C have been coded as individual agents while the

93

Chapter 6: Case Study

functions within them have been implemented as agent behaviours. The program
code of the model, whose agents are summarized in Table 6-4, has undergone
thorough dynamic testing. A part of this programme of testing involved an end-to-
end validation in which a selection of its outputs were validated against some
relatively simple, manually worked out examples. This was aided by an animation of
the model (see Figure 6-5) where the number of items in each location and the flow
of items between locations can be clearly seen. Such testing is required to ensure
that all functions have been implemented as set out in the process maps and the
textual specifications.

Having validated this model against the functional specification, it then
became the basis for dynamic validation of the functionally identical traditional
discrete-event model built using the Extend™6 modelling tool (described later in

Section 6.3).

Table 6-4: Agents and their functions

Agent Instances | Functions

Fleet Manager 1 Manages engines between shop visits; sets states of
engine components before they arrive at OHB.

Overhaul Base =1 Manages engine overhaul; inspects engine components;

(OHB) coordinates shipping, ordering, repairing, and scrapping
of engine parts.

Component Repair 21 Inspects engine components; repairs engine parts, and

Vendor (CRV) supplies repaired engine parts.

Aftermarket Service 21 Marshals engine parts into kits or modules; ships kits to

Centre (ASC) OHB

Parts Service 1 Supplies new engine parts to OHB and ASC.

Centre (PSC)

6.2.4.1 Model categorisation

As described earlier in Section 2.2, a simulation model may be categorised
either by the objective of the study or by its representation of state and time. In
terms of the latter classification, this ABM is a time-driven model since it is executed
at regular time-steps and events are assumed to occur not within the time-intervals

but only at the time-interval boundaries.

94

Chapter 6: Case Study

Basically, the model addresses a problem in lifecycle costing and therefore
elements of logistics, scheduling, and operational policies need to be present. The
primary objective of the model is to use it as a design tool to determine the lifetime
cost of maintaining an engine fleet when, for example, the design life of an engine
part is changed or the rules governing its maintenance process are varied. Such
design and maintenance policy changes will influence the stocking, supply, and

scheduling of spare parts and hence, lifetime system cost.

6.2.4.2 Model rationale

The model enables the overall as well as the constituent costs for an engine
fleet accumulated over a typical lifetime of 40 years to be determined. It may also be
configured to run with any of the maintenance policies outlined in Section 6.2.2 and
hence allow a credible, cost-effective solution to be selected. A simulation run of the
model will also yield time histories of the demand for resources such as spare parts
and transport, and thus enable availability planning to be managed.

Primarily, the use of this ABM is as a decision support tool because it can
give a design engineer the ability to predict lifecycle costs early in the design process
(for example, Stage 1 in the Rolls-Royce Derwent Cycle (see Figure 6-2)) and thus
judge the desirability or otherwise of a design decision. The model can provide a
holistic and more realistic view of a design by encompassing other influencing
factors such as the cost of money, materials, and human resources each of which can
fluctuate over the lifetime of the simulation run. Armed with such a tool, the design
engineer can perform trade-off studies between cost and performance which are more
accurately informed than currently available and thus arrive at better design
decisions.

While model structural changes may be inevitable when implementing major
features like maintenance and airline operation policies, minor but useful changes
can be effected simply by modifying model input data. For instance, a change in the
material specification of an engine component can result in improved performance
by the extension of its life but can be accompanied by an increase in its initial
acquisition cost. These new values of component life and initial cost then become

the model inputs for determining its accumulated cost over its lifetime.

95

Chapter 6: Case Study

6.3 The discrete-event model

This section contains two sub-sections the first of which describes the

implementation of the model, and the second presents a description of the model.

6.3.1 Implementation of the model

As discrete-event modelling has been used in industry for many years, several
mature modelling products are available as commercial off-the-shelf (COTS)
packages. Among them are well-established tools like Arena™, Enterprise
Dynamics ™, Extend™, Promodel™, Simul8 ™ and Witness™ all of which vary in
quality and price. A reason for this variability is that, in addition to the tools’ core
competences for discrete-event modelling, they all possess other useful and user-

friendly features which are intended to set each apart from the other.

Topology View [Wed Aug 17 18:20:00 BST 2011]_ [200000]
Overhaul base

ENGINES

Fhing: 0

In Strip: 0

In Repair: 2
In Build: 0
Retired: 0
Queueing: 0

- =
-
=
. . LEGEND
s - - —uses

M Fan Disc

M Fan Shan

B P Drum

M |PC Shatt

M |PC Blades St
M |PC Blades 512

Repair centres

M |FC Blades S13
M IPC Blades 5t4

Figure 6-5: An annotated topology and animation of the agent-based model

The general requirements for a modelling tool to be used in this research were

that it must —

96

Chapter 6: Case Study

e Have an intuitive user interface as the end-user is assumed to have no
previous experience of such modelling tools.

e Be adequately flexible to enable the tool to be modified for
experimentation in an academic research environment.

e Be fast and efficient in operation as the model can be large and
complex.

e Be affordable and well-supported by the tool’s developer.

Extend™6 which is developed by Imagine That, Inc. (ImagineThat, 2006)
more than satisfies these general requirements by being open source and by giving
free customer support. An evaluation of modelling tools carried out by
Tewoldeberhan (2002) underscored not only the suitability of Extend™6 for

developing models but also its cost effectiveness.

6.3.1.1 Model lifecycle

The processes used in the development of the DEM follow the typical model
lifecycle sequence found in Law and Kelton (1999). This model lifecycle is shown
on the left side of Figure 6-6. As shown in the same figure, it maps well onto the
traditional systems development lifecycle (DoJ, 2003) commonly known as the
‘Waterfall Model’ (Royce, 1987; Somerville, 2001). The reasons this methodology
was adopted for the development of the DEM were that it was adequately rigid to
ensure a disciplined approach was enforced and that testing was a requirement at
every stage. The methodology is not overly rigid as it allows test results from one
stage to be fed back to the previous stage if errors are discovered and have to be
corrected. Also, the duration of implementation for the model was anticipated to be
short so that the inflexibility of this method did not hinder the progress of model
development significantly. A recent survey of software project managers, system
designers, and developers (Neill and Laplante, 2003) showed that despite the
availability of more flexible and up-to-date methodologies, the ‘Waterfall Model’

was prevalent (about 40%) for projects lasting up to two years.

97

Chapter 6: Case Study

ﬂ/fodef Development Lifecycle

Formulate problem
and plan the study

<

Collect data and
define a model

Conceptual
~_model valid?_«*

S

Construct a computer
program and verify

v

Make pilot runs

Programmed
model valid?
— Yes

Design experiments

v

Make production runs

v

Analyse output data

v

Document, present,
and use results

Systems Development Lffecycl&

Initiation,
Concept development,
and Planning

v

Requirements analysis

4

—

v

Design

;

Development

il

v

Integration
and
Test

v

System implementation

v

System
operation

v

Maintenance

v

Disposition

\

/

Figure 6-6: DEM development lifecycle (Law and Kelton, 1999) and the traditional

systems development lifecycle (DoJ, 2003)

98

Chapter 6: Case Study

There are other development models, for instance, the Spiral (Boehm, 1988),
and Rapid Application Development (Martin, 1991) models, but they were
considered inappropriate for this task of producing a DEM which matched the ABM
as closely as possible. These methodologies are better employed for implementing

new and large software systems on their own.

6.3.1.2 Model verification and validation

Just how close a model is to reality may be revealed through the activities of
verification and validation. It is necessary to note the distinction between these two
activities as they address different aspects of model correctness. Briefly put,
verification answers how close the model code is in relation to the written description
of a problem while validation answers how close the model is in representing the
reality of the problem being considered (Refsgaard and Henriksen, 2004). While
code verification can be tackled methodically by direct comparison, model validation
is a problem more difficult to surmount since it requires interpretation and
judgement.

Code verification is a continuous activity carried out privately by the model
builder during the coding phase (Balci, 1998) as it helps with the management of
model complexity and it also enables good code quality to be produced. To
introduce an independent view of the code, a formal code walkthrough is usually
conducted on completion of the model code. The outcome of verification is that the
code of the model satisfies the written specification.

The generally accepted definition of model validation is the “substantiation
that a computerized model within its domain of applicability possesses a satisfactory
range of accuracy consistent with the intended application of the model”
(Schlesinger et al., 1979). From this, the notion is that model validity is not
absolutely exact as it is acceptable for its results to fall within a specified band. This
is largely due to the trade-off between accuracy, or model confidence, and cost
during validation testing (Sargent, 2007). A way of obtaining high model confidence
is to compare model results with historical data and this can be very costly and time

consuming since the model has to be executed many times to ensure that the results

99

Chapter 6: Case Study

are statistically significant. Any revision to the model will likewise require a
repetition of these rigorous and time consuming validation tests.

Booch (1994) suggests that a way of handling complexity is through
abstraction. A complex and finely detailed model which may be highly accurate, can
sometimes be simplified and yet provide acceptably accurate results. For instance,
the stripping of an engine involving numerous stochastic sub-processes can be often
abstracted into a single, simple, stochastic time delay with little loss of precision.

It should be borne in mind that in this research where two models are to be
compared, the greater part of the effort should be expended on code verification so as
to ensure a like-for-like comparison. This is not to say that, in such a case, model
validation can be neglected as it will impact adversely on model realism and hence,
credibility. However, if a comparison between the model and its problem domain is

required, then model validation should be given the highest priority.

6.3.1.3 Coding the model

Initial inspection of the functional specification and the process maps (see
Appendix C) indicated that an incremental, top-down implementation would be
suitable for the reasons that the major functions were clearly demarcated and they
appeared to be almost self-contained. The major functions — engine construction,
engine operation, the OHB, the CRV, and the PSC — were first coded as minimal
hierarchy blocks. They were then decomposed further to implement the finer details.
Wherever common combinations of Extend™6 library blocks formed a logical
function, they were grouped into a hierarchical block and saved for reuse elsewhere
in the model. In order to promote portability, none of the standard library blocks, as
supplied with the Extend ™6 Industry package, were modified.

During model development, code verification was performed as frequently as
possible so as to increase confidence that the model was functioning as described by
the process maps. This was aided in a large part by switching on animation to run
the model at its lowest speed. The visual feedback enabled model debugging at a
high level to be carried out quickly. In a simulation run for a completed model,
animation would normally be switched off to minimise execution time. Other aids

for model development included the outputting of numerical quantities to

100

Chapter 6: Case Study

‘information’ blocks, and the partitioning of the area being developed from the rest
of the model by the judicious placement of ‘exit’ blocks.

As each major function of the model was completed, it was validated and
then integrated with the other completed functions by removing the appropriate ‘exit’
blocks. The model was then tested and debugged. By the use of this incremental
development methodology, confidence in the model’s correctness increased as
implementation progressed. When the model was completed, the ‘information’

blocks which were used specifically for model development were also removed.

6.3.1.4 Model walkthrough

After the model was completed and had successfully completed several
simulation runs, a model walkthrough was conducted at the SRC at Rolls-Royce,
Derby. This activity was to establish that —

e The model was complete when compared with the specification set out
by the process maps (see Appendix C).

e Details of the engine overhaul process and the supplied data had been
correctly interpreted and implemented.

e The model was functionally identical to the agent-based model.

A visual and structured inspection of the whole model was made and
differences with the process maps, the engine and overhaul data, and the agent-based
model were recorded and agreed. On completion of the walkthrough, even though
the model was assessed as fully functional when compared against the process maps,
corrective action was needed nevertheless on three areas which were assessed as
significantly different from the agent-based model. To state it simply, it was very
important that the two models were as nearly identical as possible because they were
to be compared against each other. The discrepancies arose because of a
misinterpretation of the supplied data and a lack of clarity in the details of the
specification. The shortfalls were —

e A stock keeping and ordering function was to be implemented for the
OHB and CRYV so that a buffer of parts was always maintained. From
earlier studies made by the SRC using the agent-based model, this

101

Chapter 6: Case Study

function contributed significantly to the overhaul turnaround time. This
important requirement was not explicitly stated but was implied in the
functional specification.

e Whenever engine parts were to be shipped, they were to be batched by
part number and then dispatched in a single shipment to either the OHB
or CRV. As transportation cost was calculated from total weight and
discrete price bands, shipping the parts in batches could be a lot cheaper
than shipping each part individually. This requirement was absent from
the functional specification and the process maps.

e The items which made up each of the 67 engine component were to be
modelled individually. This requirement was not stated in the
functional specification nor could it be readily deduced from the
supplied data as the adjusted numerical values bore little resemblance to
real data. The consequence of meeting this requirement was that the
number of unique items in the model increased by more than 48 times.

After the model was modified and dynamically tested again, another formal
walkthrough was conducted to ensure that the functions implemented in both models
were the same. This activity was concluded with no further corrective action needed.
A common set of input data was then agreed and prepared for both models in

anticipation of the model performance measurements to be carried out later.

6.3.2 Description of the model

The portions of the model shown in this section exhibit some aspects of good
modelling practice which were gained while developing the model. As the model is
large, it is not the intention here to display the details for the whole model at its most
detailed, or ‘atomic’, level but to give an overview first and then select a branch of

activity in the OHB to demonstrate its hierarchical design.

6.3.2.1 Model overview

The topmost level of the model, i.e. Level 0, is shown in Figure 6-9. The

layout convention adopted by the Extend ™6 modelling tool is that the model starts

102

Chapter 6: Case Study

in the top-left corner of the page and the items flow along the connectors, generally
from left to right and top to bottom.

The engines are assembled in the ‘Build Engines’ hierarchical block using the
quantities and attributes for each of the 67 engine components supplied by SRC.
Engines may be batched together to form an aircraft which enters service after a
programmable delay. This forms the initialisation part of the model and is used only
once for each simulation run.

The aircraft follows a fixed flying schedule which reflects the average values
shown in Table 6-1 in terms of stage length and daily utilization. Flying continues
until an engine either reaches the planned number of flights when it should be
overhauled at the OHB or it has sustained damage serious enough to require off-wing
repairs. An engine is checked after every flight cycle to determine if either of these
two conditions has been satisfied. These rules, for inducting an engine into the OHB,
are implemented in an Extend™6 ‘DE Equation’ standard library block using ModL,
the Extend™6 proprietary scripting language. The code is shown in Figure 6-7.
This part of the model implements the operational phase of the engine and is used
until the last engine retires from service.

A check is made to ensure that there is spare capacity in the OHB to handle
the new work before engine stripping can commence. The engine modules which are
assessed as requiring attention are stripped down to their individual component
items. Whether inspection and sentencing takes place at the OHB or CRV depends
on the maintenance policy then in force for the component. The items making up the
component may be scrapped, replaced, or repaired based on a matrix of probabilities
which has been compiled from operational statistics. During the rebuilding process
in the OHB, the repaired items and items for refitting are returned to their engine of
origin. The 3,236 unique parts for each engine are re-assembled first into
components and then into modules. Subsequently, these modules are re-assembled
into an engine, attached to an aircraft so that it can resume its flying service. This
part of the model implements the overhaul process and constitutes the main loop of

the model.

103

Chapter 6: Case Study

6.3.2.2 Constructing the engines

The internal structure of the ‘Build Engines’ Level 1 hierarchical block is
presented in Figure 6-10. Adhering to the Extend™6 layout convention of
modelling item flow from left to right, it shows the logical sequence of processes

which are to be executed to construct an engine.

Al 1
| Equation [Advanced | Animate | Comments |
Calculates an equation when an itemn passes through | |
Equation result: |Result Equation result value:
-
When no item is in block return:
r o o | | |
Equation inputs:
A wi i Wi o "
ERE i sveycles |
integer ACIdx, Engldx;
real EngFCount, InductEng, EngSvn;
ACldx = GAGetindex(“AircrafiData™);
Engldx = GAGetindex("EngineData” J;
EngFCount = GAGetReal(Engldx, EnglC, 5); #/ Murmber of flight cycles since last shop visit
InductEng = GAGetReal{ ACIdx, ACID, 8); #/ Get random damage flag
if (fEnaFCount == SV Cvcles) ar (ndoctEno==11
i
if (InductEng==1)
i
GASetReal(0, ACIdx, ACID, 8 ¥, #f Set random damage flag to zero after inducting one engine
H
Result=1; /if Send to OHB
H
else
{
Result=0; / Mo work required
H
| Default View - |_

Figure 6-7: Code to determine if an engine is to be inducted into the overhaul base

A principle followed in the course of building of the model is not to hard-
code numerical values but to enable such variables to be read in, wherever possible,
from an external source like a plain ASCII text file, a spreadsheet, or a relational

database. Flexibility in the engine construction phase of the model has been

104

Chapter 6: Case Study

designed in so that the number of components, modules per engine, and the number
of engines per aircraft can be adjusted readily. This data-based approach allows a
limited combination of engines and aircraft to be constructed without having to
modify the structure of the model. In this instance, all necessary items of data for
engine construction are imported from an external Microsoft Excel spreadsheet into a
number of internal global arrays once only at the start of a simulation run with the
goal of increasing the speed of execution.

All ‘atomic’ items as well as batched-up items are tagged with automatically
generated unique identifiers so that they can be identified and tracked throughout
their simulation lifetimes at any point in the model. Therefore, it is essential that all

items retain their unique identifiers during all batching and unbatching operations.

6.3.2.3 The overhaul base

The functions of the OHB are implemented in the ‘Overhaul Base Frontend’,
‘Rebuild Components’, ‘Rebuild Modules’, and ‘Rebuild Engines’ hierarchical
blocks (see Figure 6-9). The last three blocks implement the activities to rebuild an
engine with its original parts as well as with new parts from the PSC and repaired
parts from the CSV.

In Figure 6-11 an engine enters the ‘Overhaul Base FrontEnd’ hierarchical
block at the top left of the window through the ‘ConlIn’ input label. The engine
undergoes decomposition progressively as it is first stripped down to its constituent
modules and then into their components. Finally, the components are by
disassembled into individual items.

Figure 6-12 and Figure 6-13 are lower level hierarchical blocks and they
illustrate the procedure of unbatching the items while retaining their unique
identification. This is a method which is also used in other parts of the model where
unbatching occurs. Once an item is exposed, it may then be determined which of the
following category it falls into —

e it may be refitted into the engine with no further work needed
e it has to be sent to a CRV for repair to be attempted
e it has to be scrapped and a replacement ordered
The last ‘if’ statement in the block of code in Figure 6-8 shows how the item-

scrapping rules are implemented.

105

Chapter 6: Case Study

4 S[E)x
J Equation | Advanced | Animate | Comments |
Calculates an equation when an item passes through (0] 4 I Cancel | i
Equation result: |Resu|t Equation result value: 1
r in =Hribute: [T Show ahove icon

 novalue @ Thelastvalue € Thewalue: ‘ ‘ Show ModlL Functions |

Equation inputs:

T t
LhEEE £ o

Svinterval

.

Py i
R

-.-\

o

Aeens e

integer ltemldx, Partsldy, CompMo;
real MaxCycles, MaxRepairs, InspectFirst, OHBInspCost;
real ltemFCycles, ltemRepairs;

lternldx = GAGetindex("lternData”); & Get pointer to ltermData global array
Partsldx = GAGetindex("ParnsData”); // Get pointer to PartsData global array
CompMo = CompMum - 1; ' Glohal array row number is one less than component number

I Update OHB inspection cost for all items with Inspect First policy

InspectFirst = GAGetReal(Partsldx, CompMo, 1);

if (InspectFirst==0)

i
OHBInspCost = GAGetReall Partsldx. ComoMo. 14 1+ GAGetReall temnldx. ltemID. 9)
GASetReal{ OHBInspCost, temldx, temID, 9); & Update inspection cost

H

MaxCycles = GAGetReal(Parts|dx, CompMo, 5 J;

MaxRepairs = GAGetReal(Parsldy, CompMo, 6)

temFCycles = GAGetReal(temldx, ltemlID, G J; i tem total flight cycles
lternRepairs = GAGetReall temnldx, ItemID, 8); I ltern total repairs

Il Life left must exceed the next planned SV or ...
if...number oftimes it has been repaired must not exceed the maximum allowed

if (({(temFCycles + SVinterval) == MaxCycles) or (temRepairs == MaxRepairs))
Result=1;

else
Result =0,

Help | Default View w| —

Figure 6-8: Code to determine if an engine item is to be scrapped

In this model, this categorization is based on the probabilities applicable to
their current full shop visit numbers (see list of attributes in Table D-2 of Appendix
D). Where the parts need to be dispatched to a CRV for repair, their destination is
determined first; they are then batched by component number; their batch weight

calculated; their shipping costs calculated from a scale of charges; and finally, the

106

Chapter 6: Case Study

shipment is made. The attributes for each item are updated at the lowest level of the
model using program code (see Figure 6-14) written in the ModL language. The
attributes are stored in global arrays as it is easier and faster to manipulate them in

code than through a combination of Extend ™6 standard library blocks.

6.3.2.4 Shipping items

In the course of a simulation run, it is required that various quantities of
different engine items are batched together by component number and shipped to
their respective destinations. Shipment occurs once each day. Figure 6-15 shows
how this has been implemented using Extend ™6 standard library blocks to schedule,
queue, and group engine items into component-number batches. This hierarchical
block, labelled ‘Batch up items for shipping’, implements a common process which

1s also used elsewhere in the model.

6.4 Results and evaluation

After successfully verifying that both the DEM and the ABM possess the
same functions, the next step is to make a quantitative comparison between them.
The following sub-sections describe the collection of code metrics and the

measurement of model runtimes. The results are then presented and evaluated.

6.4.1 Metrics to be collected

The metrics which may be used to characterise the models are size,
complexity, and connectedness. As described previously in Chapter 5, program size
may be measured as LOC, number of methods, or number of classes. They are
almost invariably compiled to monitor the progress of software projects and because
they have been used so widely they may be considered as valid measures for
program size. The models have been implemented in different programming
languages (Java and ModL), but Table 6-5 lists three language constructs which may
be treated as equivalent because of the way they are used. In the ABM, methods are
local modules which are invoked within a class and in the DEM, procedures and

handlers are local modules which are invoked within a library block.

107

Chapter 6: Case Study

Ma

Runtime (hhemm:ss.t): |0 |1 =10 Model

Statistics

Global
Data

Resume

Build
Engines |

Engines B

Resume
flying

Refit1

Overhaul
Base
Frontend

Repaired

Repairt

Refit module

Refit engine

ebuild
Components

Figure 6-9: Top level (Level 0) of traditional discrete-event model

108

Chapter 6: Case Study

' Batch
Eatch J_ Into

Into Engines | Inte
i ; Aircraft

Inte ;
Components

Modules

Figure 6-10: Level 1 hierarchical block — Build Engines

109

Chapter 6: Case Study

Scrappedd

Shipping
Time &
Cost

Check Item | n
Life and FHE
Update
OHE Excesdad Life?
Inspecticn [
Cost

CondCut

Maodule not

:tr E:Et-s !gl!“lrh FLE‘LE l_l;l_: = affected 2
Lﬂﬂﬂ a
oo .

-=00og, |
LifeToM=xtSY'?

[m'
E Inspest and ship——
5V Cycles
OHBE
Inspectn §
Time :
Shipping [epairl
singomil
Cost
= =

Figure 6-11: Level 1 hierarchical block — Overhaul Base

110

Chapter 6: Case Study

ﬂ [1673][27] Module Strip = = E|

hbodutzMNwm

Unbatch 4
coaya Into Unbatch
Striphiodule Components Inta
Items

EREEET
WeodSitripTime

w ||

Figure 6-12: Level 2 hierarchical block — Module Strip

111

Chapter 6: Case Study

L

Complty

B

Helg | ||

Figure 6-13: Level 3 hierarchical block — Unbatch Into Components

112

Chapter 6: Case Study

Al

| Equation | Advanced | Comments |

= =
Computes an equation. | |:|

e

Qutput
Inputi Inputz Input3 Input4 Inputs
|CompiD |lAciD [[var3 |[vara ||vars |

Enter an equation in the form: result = formula;

real ACFCount, CompFCycles, Comp3yi;
integer ACIdx, Compldsx;

ACIdx = GAGetindex("AircraftData”);
Compldx = GAGetindex("ComponentData™ J;

ACFCount = GAGetReal(ACIdx, ACID, 8);, i Get aircraft flight count since last shop visit
CompFCycles = GAGetReal{ Compldx, ComplD, 6) + ACFCount;, /' Increment total flight cycles
Comp3VN = GAGetReal(Compldx, ComplD, 7)+ 1; i Increment component shop visit number

GASetReal(ACFCount, Compldx, ComplD, 5;
GASetReall CompFCycles, Compldx, ComplD, 6);
GASetReall Comp3VN, Compldx, ComplD, 7);

Equation result: 0

|[updCompaty ;%

Hiewy ||

Figure 6-14: Level 4 block containing ModL code — Update Component Quantities

113

Chapter 6: Case Study

Al [1665][19] Batch up items for shipping ==/

Compl D

CigihyPatt=rn

InvertDemand

WeskhyPsttarn

el V>l : S L]

Figure 6-15:; Level 2 hierarchical block — Batch up items for shipping

114

Chapter 6: Case Study

The LOC metric may be too close to the human programmer in the sense that
the effect due to programmer idiosyncrasy may result in significant variation in LOC.
A count of the number of methods or procedures is a readily accessible metric and
probably provides some insulation from the effect of programmer variation. A count
of the number of classes or blocks can be achieved by inspection but its granularity

may be too coarse for meaningful comparison.

Table 6-5: Equivalence of constructs in object-oriented and procedural languages

ABM / Object-oriented language DEM / procedural language

Statement Statement
Method Procedure or handler
Class Model library block

Complexity for a method or procedure is calculated using the McCabe
Cyclomatic Number. Similarly, the measure of complexity for a class or library
block is the Weighted Methods per Class which is just the arithmetic sum of the
complexity of all methods in the class or procedures and handlers in the library
block. This metric is used to estimate the degree of structural complexity for both
models.

Connectedness for a model is assessed as the worst method of coupling
between classes or library blocks as set out in the scale given in Section 5.4.4.

Collectively, these metrics enable the software quality of maintainability to
be determined for each of the models. The metrics also indicates a model’s degree of
understandability, modifiability, and testability since they are the factors which

contribute towards the quality of maintainability (see Section 5.3.1).

6.4.2 Collecting the metrics

The DEM was partitioned into five subsystems which corresponded to five of
the agents in the ABM. This was achieved without difficulty as the top-down
hierarchical implementation of the DEM followed the modules set out in the ABM.
These agents or subsystems are labelled as Subsystems A to E in Table 6-7 and Table
6-8.

115

Chapter 6: Case Study

Metrics for size and complexity had to be compiled manually for the DEM as
no automated code measurement tool could be found for the Extend™6 ModL
programming language. For the ABM, a plugin for Eclipse was used to extract the

required metrics.

6.4.2.1 Adjustments to DEM code metrics

The LOC metric was refined to include only executable statements thus
excluding data declarations and comments. Also, in an attempt to compare like with
like, code used specifically in Extend ™6 for model construction were excluded. For
example, code for handling parameter setting, block creation, and block report
generation were left out in the statement counts. Lastly, the number of statements
were factored using data from Jones (1996) to allow for the difference in expressive
power of the two programming languages. Jones’ database of programming
languages showed that the average number of statements per function point for Java
was 53 while that for C was 128.

Also, only unique blocks were counted in each of the DEM subsystems. This
adjustment was made because, in a visual programming system like Extend ™6, each
additional use of a library block meant an explicit, repeat occurrence of all the code
for the block at compile time. In contrast, in a Java program, each additional use of a
class is accomplished in a single statement which instantiates the class code only at
run time. Counting only unique Extend ™6 blocks, and hence procedures and LOC,

results in a more equitable comparison.

6.4.2.2 Complexity

The MCN is the number of linearly independent paths through a program and
it therefore indicates the upper bound of test cases required to ensure full test
coverage. From empirical evidence, McCabe (1976) suggested an MCN greater than
10 pointed to reduced program modifiability and testability and hence increased risk
of error when making changes to a program. Also, Grady (1994) concluded from a
large-scale study that an upper limit of 15 should be enforced. Table 6-6 shows
typical ranges of MCN for programs of different levels of complexity.

116

Chapter 6: Case Study

Table 6-6: Program complexity and maintainability (SEI, 2000)

Cyclomatic complexity, MCN | Program complexity and risk evaluation
1to 10 Simple program, low risk
11t0 20 More complex program, medium risk
21 to 50 Complex program, high risk
Greater than 50 Untestable program, very high risk

Although MCN is usually used for procedural languages, it is nevertheless a
valid measure for object-oriented languages at the lowest method level. Figure 6-16
shows that the cyclomatic complexity, or structural complexity, for both models is
well managed. This is markedly so in the ABM as only 0.24% of the modules had a
MCN greater than 20 while it was 4.13% for the DEM. Further, the maximum MCN
for an ABM module was 27 while it was 49 for the DEM. Lastly, neither model had
any module with a MCN greater than 50, i.e. a module considered too complex for
rigorous testing.

The WMC metric, suggested by Chidamber and Kemerer (1991), is the sum
of the weights of all the methods within a class. The weight of each method is

represented by its MCN.
©“ABM & DEM
400
-

350 ~

300 +
> i
g 250 o
[1)
= 200 +
2
w150 + N

100

g AT
0 T i \”EI IHEI’EI I'N‘N NI_NI_N\ NI_RVI_I“\ K“\ WI KVI T ml T T T T T IT‘I NI

1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
McCabe Cyclomatic Number

Figure 6-16: Distribution of MCN in the ABM and the DEM

The code metrics collected for both models are summarized in Table 6-7.
The quantities for the DEM have been adjusted in the manner described in Section

6.4.2.1 as the model was implemented using a different programming language from

117

Chapter 6: Case Study

that of the ABM. To present a comparative overview of these metrics, the multiples
of DEM to ABM quantities are shown in Table 6-8. It may be noted that the
quantities in this table illustrate the stark differences between the two models as all
the values are much larger than unity. They indicate that the DEM is significantly

larger and more complex than the ABM in terms of program code.

Table 6-7: Code metrics for the ABM and the DEM

Sub- Number of Number of methods | Number of classes | Weighted methods
system executable or procedures or modelling per class, WMC
statements, LOC blocks
ABM DEM ABM DEM ABM DEM ABM DEM
A 740 2685 70 304 5 16 35 135
B 187 1838 15 211 2 11 19 129
C 130 1516 12 177 2 10 12 118
D 487 2928 28 344 2 19 55 122
E 88 1843 8 197 3 11 5 128
Table 6-8: Multiples of DEM to ABM metrics
Sub- Number of Number of methods | Number of classes | Weighted methods
system executable or procedures or modelling blocks per class, WMC
statements, LOC
A 3.63 4.34 3.20 3.86
B 9.83 14.07 5.50 6.79
C 11.66 14.75 5.00 9.83
D 6.01 12.29 9.50 2.22
E 20.94 24.63 3.67 25.60

The process for conducting a Delphi estimation session to obtain high quality
group opinion as described by Stellman and Greene (2005) was employed with a
minor modification, i.e. the use of email as the medium of communication, to
compare the maintainability aspect of both models. Details of this exercise are
shown in Appendix E. As the ABM code contained information which was
commercially sensitive, only three software and modelling experts were allowed to
view it. The results of this exercise are displayed in Table 6-9. When considering

model maintainability, i.e. consisting of understandability, modifiability, and

118

Chapter 6: Case Study

testability, from the view of a software engineer or model implementer, the ABM is
more maintainable on balance. The result reinforces the tendency shown by code
metrics in Table 6-8. It was noticeable that the DEM was judged to be more readily
understood than ABM by a design engineer for the reason that a traditionally trained
engineer will tend to have a better mental grasp of a problem if it was framed as
processes rather than activities. This is a result which is not apparent by considering
code metrics alone.

The ABM was also considered to be more suitable for modelling at a high
level of abstraction and this view is supported by the score that the ABM is easier to
understand by someone in business and commerce but not so readily by a design
engineer or software engineer where attention to technical detail is important.
However, to implement an ABM, which was viewed by the Delphi session
participants as marginally simpler than a DEM in concept, required someone with a
higher level of formal education. The reasons were that the current availability of
modelling tools for implementing an ABM required a higher level of expertise and

that formal training in agent technology occurred only at postgraduate level.

Table 6-9: Summary of results of Delphi estimation of ABM and DEM

ABM | DEM
Understandability of model as considered by a software engineer or model + ++
implementer
Understandability of model as considered by a design engineer (e.g. a jet engine) .
designer)
Understandability of model as considered by a person in business and commerce ++ +
Modifiability of one or more sub-systems in the model + -
Testability of one or more sub-systems in the model - --
Suitability of modelling at high level of abstraction ++ +
Suitability of modelling of very fine details - ++
Ease of expansion by adding one or more existing sub-system + ++
Level of formal education needed to implement the model + -

KEY: +/- nominally; ++/-- moderately; +++/--- very

119

Chapter 6: Case Study

6.4.2.3 Coupling and cohesion

Agents in the ABM interact not by invoking each other directly but by
message passing via the JADE agent environment. The messages are processed by
the receiving agents in their own time. Further, the messages may sometimes contain
a small number of integer, floating point, or character string parameters. For the
additional reason that the message passing is asynchronous, coupling between agents
may be judged to fall in between stamp coupling (relation R, in Table 5-1) and data
coupling (relation R;). As a software system, the ABM may be classified as loosely
coupled.

Inspection of the ABM code showed that the methods within a class
implemented a single well-defined function with small number of parameters passed
between methods. As set out previously in Table 5-2 the ABM code may be
described as highly cohesive since it displays functional cohesion.

A visual inspection of the DEM library block code revealed that while most
procedures within a block displayed data coupling (relation R;), the undesirable
feature of coupling through a small, fixed number of system global data (common
coupling relation R4 in Table 5-1) was nevertheless commonly used for control as
well as for communication between blocks. Because of this lower classification, the
DEM subsystems may be classified initially as tightly coupled. However, this
drawback is mitigated by the fact that it is a characteristic of a stable and well tested
modelling package and not of the DEM. It has a direct and adversely effect on the
package developer but not the model implementer. It is reasonable to classify the
DEM less severely than R4 and considerably closer to R;.

All procedures and handlers in the DEM standard library blocks performed
single well-defined functions. Therefore, the DEM exhibit functional cohesion (see
Table 5-2).

The qualities of inherently low coupling and high cohesion may make the
agent approach marginally more suitable for distributed modelling than traditional
discrete-event modelling but it may be accepted that both modelling approaches are

suitable for distributed modelling.

120

Chapter 6: Case Study

6.4.3 Model runtimes

The performance of both models was measured in the same computing
environment under identical model initial conditions. In the case of the ABM, the
complete initial engine fleet data was prepared by a separate Java program, stored in
an XML file, and subsequently used for initialising the ABM. In contrast,
initialisation of an engine fleet for the DEM was carried out by the DEM itself one
engine at a time using a Microsoft Excel spreadsheet which contained the data for a
single engine. This method was adopted because of its simplicity in the main and
also the assumption that all new engines in a fleet may be reasonably expected to be
identical. However, initialisation carried out in this manner took up a significant
portion of the DEM runtime while the time required for ABM initialisation was
negligible.

Two timing marks were needed to measure the elapsed time for a simulation
run — the initial timing mark was set when the first engine entered service (the
service entry point was described in Section 6.3.2.1 in the overview of the DEM
model) and the final timing mark occurred when the fifth shop visit of the last engine
was due. This was done to exclude the effect the initialisation methods had on the
models. The runtimes between the timing marks for both models using different
engine fleet sizes are presented in Figure 6-17. The effect of DEM initialisation is
evident as it forms about 17% of total elapsed model runtime.

The maximum ABM engine fleet size was 220 as that was the largest number
of engines which could be accommodated by the Java runtime environment without
an abnormal termination through an ‘out of memory’ error. The largest DEM engine
fleet was selected as 310 because it involved just more than 10° individual engine
items. Such a quantity was thought to be representative of real engine fleets and it
was not necessary to expand the fleet beyond that. Although it was possible to
complete a DEM run with a larger fleet, it took too long for practical purposes
because of intensive memory swapping between the main memory and the virtual
memory in the hard-disk drive.

For both models, it is possible to continue enlarging the engine fleet size by
the addition of computer memory until the limit imposed by the operating system is
reached. In the case of the Microsoft Windows 32-bit operating system used for this

research, the Windows XP operating system limit is 3.3GB of main memory. It may

121

Chapter 6: Case Study

be estimated by linear extrapolation that a fleet of about 360 engines can be
accommodated by the ABM before it fails with an ‘out of memory’ error.

The ABM is a time-driven model and, as shown in Figure 6-17, its runtimes
with respect to fleet size was almost constant up to about 100 engines but beyond this
the gradient of this plot increased noticeably. For fleets larger than 100 engines, the
OHB capacity limit of five engines meant that it could not finish overhauling all the
engines before the first ones became due for another overhaul. This is illustrated in
Figure 6-18 and Figure 6-19 where the peaks of computer processor utilisation
coincide with the peaks of overhaul activity. In the former figure, the OHB is able to
satisfy the demand to complete the required work within the agreed timeframe and
there are lengthy intervals of relative inactivity between shop visits. For a time-
driven model under such conditions, the time taken to complete a simulation run is
expected to be constant. In the latter figure, OHB activity is kept at a high level
throughout the simulation run when work occurring at the end of the previous shop
visit runs into the start of the next. As the engine fleet size increased, the longer the
OHB pre-overhaul queue became. Consequently, the time when an engine was out
of normal airline operation was extended, thus prolonging the elapsed time of a
simulation run. It should be remembered that the criterion for terminating a
simulation run is satisfied when the last engine is due for its fifth shop visit and not
after a fixed simulated period.

The DEM is an event-driven model with events managed by a variant of the
calendar queue (described previously in Section 3.3.1.3). Theoretically, the best
performance which may be obtained from such a priority queue algorithm is O(/).
Based on this idealised relationship, the run times will be in direct proportion to
engine fleet size. In practice the performance of the calendar queue is likely to fall
between O(/) and O(n) (see Table 3-2), where # is the length of the queue. Hence, it
is reasonable to expect the model run times with respect to fleet size to be longer

than those predicted by a straight-line relationship.

122

Chapter 6: Case Study

—#— ABM excluding initialisation

—& - DEMincluding initialisation —m— DEM excluding initialisation

700
] }]
l/l
6.00 A ‘/’
500 —
3
3
H]
o 400 -
£
=
5]
= 300 A
- 4
=]
E 4
200 A
1.00 ,
000 T T T T T
0 50 100 150 200 250 300
Fleetsize (number of engines)
f . | . | . | . | | | | . : . : : |
0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900000 1,000,000
Number of items
Figure 6-17: Runtimes for DEM and ABM for different engine fleet sizes
(un n il i
Il [Hi il
I [1] I [:
/ [Al |1 i il
A 14 L ! Il i
Shop visit1 Shopvisit2 Shopvisit3 Shop visit 4
Initialisation End of simulation run
Figure 6-18: ABM CPU load for a 10-engine fleet
(L nehm;ﬁhh T 0 AP R SARAD AR A T TR A (i
i1 Wﬁ;l II1|,|l.f|IIII" "II'J'III“'I'_
Iy
J B RLYT Y
Shop visits 1 to 4
Initialisation End of simulation run

Figure 6-19: ABM CPU load for a 100-engine fleet

123

Chapter 6: Case Study

6.5 Summary

The method of investigation selected for comparing agent-based modelling
and traditional discrete-event modelling is the case study. Neither the formal
experiment nor the survey is appropriate for investigating the differences. A suitable
non-trivial scenario was provided by the RR Trent 800 global repair operation and a
validated ABM, which was used as a design tool, existed for that scenario.

The case study scenario was described and particular attention was given to
the engine maintenance process, the ABM, and the data required for modelling the
scenario. The ABM and the data were provided by SRC.

To enable a comparison to be made between the two modelling paradigms, a
functionally identical traditional discrete-event model had to be built. It was built
using the Extend ™6 modelling tool and validated against the process maps, textual
specification, the ABM, as well as by formal code walkthroughs. Lastly, the ABM
and DEM were run using a common set of input data and their outputs compared.

The Extend ™6 modelling tool enabled the DEM to be implemented using the
top-down approach and this hierarchical structure emulated the topology of the
ABM. Consequently, sub-systems within the DEM could be clearly identified for
comparison with agents in the ABM.

The comparison was carried out using code metrics as well as human expert
input in the form of Delphi sessions — a method advocated by Boehm (1981) in his
COCOMO software project costing methodology. This approach, which required the
additional judgement of human experts, was reinforced more recently by Welker
(2001).

Code metrics for model size and complexity all pointed to the superiority of
the ABM relative to the DEM in that it was more understandable, modifiable, and
testable. The good maintainability of the ABM is indicated both by its smaller code
size and lower structural complexity. These results were supported by the
independent assessment of the Delphi sessions.

The Delphi results also indicated that the process-centric DEM may be more
suited to the way traditionally trained design engineers work. Fine details of
engineering processes may be better modelled as DEMs rather than ABMs.
Moreover, the participants were of the view that implementing an ABM required

greater software skills.

124

Chapter 6: Case Study

For large engine fleets, the runtime performance of the ABM exceeded that of
the DEM. However, the ABM required more computing resources and in the same
computing environment managed to complete a simulation run with a fleet size 29%

smaller than that managed by the DEM.

125

Chapter 7: An Agent-like Discrete-event Model

Chapter 7
An Agent-like Discrete-event Model

7.1 Introduction

In this chapter, the motivating reasons for emulating an ABM are discussed
first and the definition of an agent is revisited. Following that, consideration is given
to the management of complexity in software and finally, drawing from the
knowledge gathered and results obtained in this research, a novel method of
structuring a DEM is presented. A model is built using this new architecture and

results obtained to compare it against an ABM and a traditional DEM.

7.2 Rationale for making a DEM agent-like

In the following sub-sections the reasons for making a traditional DEM more
like an ABM are presented and discussed. They are derived from the results of the

case study.

7.2.1 Starting from the discrete-event modelling paradigm

It was considered more appropriate to make a DEM more like an ABM than
vice versa. In the former instance, the effort would be logical, reasonable, and
worthwhile since the boundary of usefulness for the discrete-event modelling
paradigm would be extended. Making an ABM more like a DEM defies reason as
that, in effect, shrinks the boundary of usefulness for the agent-based modelling
paradigm. Another reason for basing the model on the discrete-event paradigm is

that it is a mature, established, and well-understood approach which has a large body

126

Chapter 7: An Agent-like Discrete-event Model

of active practitioners. Finally, there are a number of excellent COTS tools to
support and speed up model implementation while agent-based modelling in its
current state of development still depends almost entirely on text-based, manual

coding.

7.2.2 Code size and complexity

In the case study described in Chapter 6, the quantitative results described in
Section 6.4 pointed to the benefits that ABM had over the DEM. The significantly
smaller code size, in terms of lines of non-comment code, as well as the lower
complexity, in terms of weighted method per class (see Table 6-8), are metrics which
indicate less mental effort required, and hence lower cost to be incurred, in the
software maintenance phase. Although the Delphi results showed the DEM to have a
higher understandability than the ABM by model implementers (see Table 6-9),
nevertheless both models were considered to be easy to understand. ABM code is
easy to understand and easier to modify than DEM. Therefore modifications to an
ABM stand a higher probability of being implemented correctly in a shorter time.

As software maintenance costs typically varies between 50% to 65% of
overall lifetime costs (Somerville, 2001) and enhancement and adaptation activities
can make up more than 80% of the maintenance effort (Krogstie et al., 2006), having
higher maintainability is a desirable goal. The difficulty of understanding any
program code may be alleviated to some extent by adhering to good programming
practice such as the consistent use of descriptive names for variables, the indenting
of code sections, and the reuse of modules. Although such practices can result in
code which is read more easily, they are not likely to result in code which is
structurally less complex. It is mainly the lower structural complexity which makes

the ABM more maintainable and therefore the more attractive modelling paradigm.

7.2.3 Model performance and multi-threaded operation

In contrast to the DEM which is event-driven, the ABM is time-driven. The
agent model runs as a multi-threaded computer process with each agent executed as a
separate concurrent thread. This is in keeping with one of the three founding

concepts of agent technology, i.e. OO programming and concurrent object-based

127

Chapter 7: An Agent-like Discrete-event Model

systems (Jennings et al., 1998). The necessity of multi-threaded execution of multi-
agent systems was also forcefully reiterated in Wooldridge and Jennings (1999)
where failure to do so was identified as a serious pitfall to avoid.

Figure 6-5 shows that the ABM is relatively insensitive to computing load
and it holds a significant runtime advantage over the DEM as the demands of
computation increased with increasing engine fleet size. In other words, the ABM is
more scalable, where scalability may be described as the ability of the model to
continue performing acceptably even when the workload has been increased greatly.
Despite this advantage, it should be noted that under identical runtime conditions, the
ABM managed to complete a normal simulation run with an engine fleet which was
considerably smaller than that managed by the DEM. While the ABM experienced a
sharp engine fleet cut-off size beyond which a simulation run could not be completed
normally, the DEM continued with much larger fleet sizes even though they took
much longer to complete their runs.

While the scalability of the ABM may be largely attributed to its time-driven
design and fleet operation scenario, its concurrent multi-threaded execution also
contributes towards its efficiency in operation. Multi-threading seeks to exploit
parallelism at instruction level and the simplest variant is block multi-threading. In
such a scheme, a thread runs until it is blocked by an event which might take
hundreds of processor cycles to be resolved. While waiting for that event to be
serviced, another thread can be initiated within a few processor cycles to take up the
slack. This makes better use of computing resources but it introduces two
undesirable side-effects — mutual exclusion of shared resources and an element of
unpredictability because of the loss of thread synchronization. The management of
shared resources is usually tackled by locking the resource so that only the active
thread has exclusive access to it. Thread synchronization may be handled by manual
coding to define points where execution may be safely passed on to another thread,
and by ensuring that a thread cannot be interrupted between these points.

It should be noted that switching execution from one thread to another incurs
processing overheads. Excessive switching is therefore to be avoided as it consumes
computing time for an unproductive end. In an ABM containing a large number of
agents, running each agent as a separate thread is likely to be impractical because of

the switching overheads involved. It is not unusual to execute the model as a single

128

Chapter 7: An Agent-like Discrete-event Model

thread in order to minimise this overhead. However, this runs against the agent
paradigm (Wooldridge and Jennings, 1999) and begs the question — “Is ABM the
most appropriate modelling approach for such a problem?”

It may be mentioned here that DEM does not suffer from either of these
drawbacks since it is executed essentially as a single sequential process. This is the
result of using a single event list (see Section 3.2) to control the execution of all
events in a DEM. Its outputs are predictable and repeatable but, as shown in Figure

6-5, a DEM is not as scalable as an ABM.

7.2.4 Partitioning into sub-models

In the context of the case study, agent-based modelling tends strongly
towards a top-down design approach by constraining a model implementer to
consider high-level roles within a system at the outset. The resulting high-level
modules, or sub-models, closely reflect the processes where high-level human
decision making are dominant. In this part of the problem domain, the role-based
agent approach (Kendall, 2000; Kendall, 2001; Parunak et al., 1998) has the benefit
of reducing the conceptual gap between the model and the problem being modelled.

Errors can inadvertently be introduced during system requirements capture as
the transfer of an idea between two people is itself a complex process involving
different personal assumptions, abilities to articulate abstractions, and levels of
experience and knowledge. Therefore, the capability to map easily from the real-
world system to the model is valuable, especially during the requirements analysis
and design phases of the software lifecycle.

Although this attribute of agent technology is desirable in general, it may not
continue to be so when carried out to its logical end, i.e. to apply the agent paradigm
to all levels of detail in a model. This is indicated by the Delphi results (Table 6-9)
in which the expert view was that the agent concept was likely to be understood more
readily by business people (those whose work activities are centred on organizational
relationships and roles) than by design engineers (those whose work activities are
centred on processes). An inference to be drawn from this result is that, in order to
minimise the conceptual gap between problem and model, it may be necessary to
combine the agent-based approach with the traditional discrete-event approach in the

same model. Where processes predominate, discrete-event modelling should be

129

Chapter 7: An Agent-like Discrete-event Model

employed, and where there is high-level decision-making, possibly where
information to define the problem is incomplete, the agent-based approach should be
utilised. Another inference is that the agent-based approach better enables non-
technical people to participate directly in the building of an ABM and so potentially
shorten the implementation time. This applies similarly to the discrete-event
modelling approach which can enable engineering designers who are not modelling
specialists to implement a DEM using a commercially available visual programming
tool.

A principle which may be drawn out from this discussion is that, in the
context of this case study scenario, it is better to segregate parts of a problem in such
a way as to minimise the mismatch between problem and model. This division of a
problem occurs at the concept level of abstraction which is a higher level than the
functional level of abstraction in existing design methods. It has the potential to
speed up initial model development as well as to lower subsequent maintenance
effort.

A good conceptual match is good not only for a model executing on a single
processor but when applied together with a modular design offers other benefits,
more pertinently, distributed modelling should that be required when a model

becomes too large to be handled by a single processor.

7.2.5 Flexibility in operation

In theory, an agent in a multi-agent system can discover any other agent in its
community and communicate with each other by passing messages through a
common agent environment like JACK (JACK, 2007), JADE (JADE, 2006) and Lost
Wax (LostWax, 2005). However, if this is allowed to take place without restraint,
there is a high probability that chaos will result.

In practical systems, inter-agent communication can be quite restrictive and
not all possible links are permissible. In a typical logistics system like the one used
in the case study, the topology of permissible links in the agent network needs to be
defined explicitly before the start of a simulation run. Depending on the
environment and the internal state of an agent, the strength of its links can be
adjusted during runtime. A simulation may use only a subset of the defined set of

links but the rules embedded in the agents can decide which links to activate and

130

Chapter 7: An Agent-like Discrete-event Model

which links are preferred over the others. This attribute of an ABM gives it an
additional degree of flexibility over a traditional DEM.

Despite the restriction imposed by a limited topology, an ABM remains more
flexible than a DEM because the configurable links between the agents are
established at run time. There is still the possibility of loosening the restriction by
allowing the ABM to implement its own links at runtime. In a traditional DEM all
possible valid links have to be present at compile time and this characteristic makes
it less flexible than an ABM. The structure of an ABM can change in the course of a

simulation run while the structure of a DEM is fixed at the time it is constructed.

7.2.6 A natural design metaphor

In the context of the supply chain/logistics case study, there is distinct
correspondence between an agent and an identifiable human role at a high level of
decision making. In a model which spans a wide range of detail levels, it is more
natural to employ this paradigm than process sequences to emulate human decision
making. The large overlap between agent and human behaviour makes agents
suitable for modelling problems which are centred on the human role (Kendall, 2000;
Kendall, 2001; Parunak ef al., 1998; Wooldridge et al., 1999). This is supported by
the results of the Delphi sessions (see Table 6-9) where the experts were of the view
that an ABM is easily understood by a person whose normal daily work is in
business and commerce. Inter-personal relationships are dominant in these areas of
employment. Further, Newell (1982) described conceptual agent interactions as
occurring at knowledge level, i.e. above the computer program or symbol level and
nearer the degree of abstraction at which humans communicate. Knowledge level
consists of data structures and the processes for extracting knowledge from them
while the symbol level contains data which may be outputs from sensors.

The DE paradigm, which is founded on processes and tends to work at data
level, provides a better match to the parts of a model where processes predominate.
This view is supported by the Delphi result (see Table 6-9) which is emphatic that
the DEM, rather than the ABM, is more readily understood by a traditionally trained
design engineer and also that the DE paradigm is better suited to the modelling of

very fine details.

131

Chapter 7: An Agent-like Discrete-event Model

The relationship between processes and roles is illustrated in Figure 7-1. In
the DEM, the unit of abstraction is the process which consists of a logical sequence
of activities. In the ABM, the unit of abstraction is the role which contains a
segment of a process. To emulate the real world, the roles form a network of
relationships and are executed in parallel as concurrent threads. A conclusion which
may be drawn from the evidence is that no single approach is suitable under all
conditions. Therefore, based on the observations of earlier work and on the results of
the case study described in Chapter 6, it can be said that the agent is a natural
metaphor for role-dominant problems while traditional discrete-event is better for

process-dominant ones.

Activity not relevant to process

. Activity relevant to process

e e S e I S e
—0—0—0— —0—0—0—0—0— —

Role —/

Figure 7-1: The relationship between processes, activities, and roles

7.3 Management of complexity

In the continuing enhancement and normal maintenance of a large model, a
process which rightly belongs to one sub-model can sometimes be implemented
elsewhere. This is sometimes done for expediency, or it may be because a modeller
is not quite able to maintain a clear mental picture of the finer details of a large part

of the model. Recently, it has been demonstrated clearly that the short-term, episodic

132

Chapter 7: An Agent-like Discrete-event Model

or working memory is limited to maintaining a few high resolution, rather than many
fuzzier, impressions for a few seconds (Zhang and Luck, 2008). Earlier, in drawing
from cognitive science results, Henderson-Sellers (1996) noted that the short-term
memory of an average programmer has the capacity to read and analyze between five
and nine chunks (or logical groupings) of code for 20 to 30 seconds. In order to
lessen the impact of this innate human limitation, there is therefore a need to manage
the complexity inherent in a large model.

Booch (1994) advocates three techniques — decomposition, abstraction, and
hierarchy or organization — for managing complexity in analysis and design. These
are standard practice in object-oriented (OO) software development and as agent-
based models are almost invariably implemented in that programming paradigm,
they traditionally follow Booch’s three principles.

A consequence is that the objects they contain possess the desirable qualities
of high cohesion and thus, a low degree of coupling. In such a design the amount of
intra-object communication is considerably higher than inter-object communication
and a change made in one object is likely to affect only code lying within the
confines of the object. Localising the code helps to contain the inherent human
limitation for handling large amounts of complex details concurrently and thus
makes the software easier to maintain.

In a model implemented in a non-OO programming language, i.e. a
procedural language in this research context, a similar design can also be reached by
applying a structured design methodology like the one propounded by DeMarco
(1979) or Yourdon and Constantine (1979), or a particular implementation of such a
structured methodology, for example, SADT (Structured Analysis and Design
Technique) and SSADM (Structured Software Analysis and Design Method). It is an
established and widely practised methodology which is well supported by mature

commercial off-the-shelf packages.

7.4 Criteria for agenthood

It was seen in Section 4.3 that there is a broad spectrum of software which
may be described as possessing the attributes of agents. At one end of the spectrum,

purely deliberative agents can be clearly identified as software with intelligence

133

Chapter 7: An Agent-like Discrete-event Model

which can be so sophisticated as to make them indistinguishable from humans. At
the other end, purely reactive agents are not much different from a conventional
piece of software for a control system where inputs are quickly transformed into
outputs through simple, fixed rules. Nevertheless, its characteristics satisfy the
definition for an agent and may be considered to have crossed the boundary into the
area of agent technology.

Revisiting the definition given by Wooldridge (1997) and restated by
Jennings (2000) (see Section 4.2), which has been viewed as a currently and
generally accepted statement of agenthood, five essential characteristics may be
identified and they are —

o It is ‘an encapsulated computer system’. In this software engineering
originated definition, while it is possible to admit hardware as well as
software, a ‘computer system’ is generally taken to mean a software
system with clearly defined boundaries and interfaces. Hence, in
publications about agents in the context of this research, unless directed
otherwise, a wholly software agent is implied whenever the term
‘agent’ is used. However, in the field of robotics, ‘an encapsulated
computer system’ may contain software as well as the hardware like
image sensors, electric motors, and specialised computer processors to
enable response to occur within a useful timeframe, i.e. in real-time.

o It is ‘situated in some environment’. The encapsulated computer
system actively seeks inputs from, and sends outputs to the software
environment it is embedded in.

o It is ‘capable of flexible action... within that environment’. The
computer system is both reactive and proactive in seeking to achieve its
design goal.

o It is ‘capable of autonomous action... within that environment’. In
contrast to a conventional software object, which is totally obedient to
an external demand, the computer system has control over its choice of
action. It may choose not to respond if it perceives that doing so may

be to its own, or its system’s, detriment.

134

Chapter 7: An Agent-like Discrete-event Model

e The actions it takes within that environment are performed ‘in order to
meet its design objectives’. Hence, the flexible, autonomous actions are
executed only within the context, and in pursuit, of the agent’s goal.

These characteristics were used to gauge to what degree the proposed agent-

like DEM (ADEM) design meets these criteria for agenthood.

7.5 Re-visiting the discrete-event model

Based on the reasons set out in Section 7.2, this section describes the concept
of a combined layered architecture and communication environment to make a DEM
agent-like. It also describes how the existing traditional DEM was modified using
the attributes which endues an ABM with superior characteristics. The same set of
model metrics used for the case study was used to compare the traditional DEM with

the ADEM.

7.5.1 Architecture for ADEM

In order to embody the desirable characteristics of an ABM described earlier
in Section 7.2, it is proposed that a traditional DEM be conceptually structured as
shown in Figure 7-2.

There are four components making up this architecture model and they are

described in the following sub-sections.

7.5.1.1 Layer 1

This layer enacts the rules which determine the flow of items at a high-level
in the ADEM. In a typical logistics problem, these rules may be implemented as a
consistent body of Boolean °‘if-then’ condition-action statements, fuzzy rules, or
neural networks. In such a simulation model where the emphasis is on the speed of
response, it is necessary to keep this layer operating as efficiently as possible. Its
inputs are the data stored in the model’s communication environment, and its outputs
are configuration commands to the control structure in Layer 2. This layer emulates

an agent with reactive architecture (see Section 4.3.2).

135

Chapter 7: An Agent-like Discrete-event Model

| \;’ Sub-model state data
v
Layer1 High-level control rules
[]
Information for
configuring sub-maodels
h 4
Layer 2 APIs and dynamic runtime controllers
]
Tool-specific commands for directing
item flow, e.g. Extend™ messages
A 4
Layer 3 Traditional discrete-event sub-models
]
Data describing state
of sub-models
Common communication environmentj

Figure 7-2: The three-layer architecture for an ADEM

7.5.1.2 Layer 2

This is the layer which implements the outputs of Layer 1. To enable this, it
processes the information from Layer 1 in the following sequence —
e The intentions of Layer 1 are interpreted as the logical source and
destination addresses for an item, for example, from OHB1 to CRV3.
e These logical addresses are translated into a form specific to the model
and the modelling tool, for example, from Block 123 to Block 456.
e The information is then packaged as a message and sent to the source
DEM sub-model, i.e. Block 123 in this example, using the application
programming interface (API) functions provided by the modelling tool.
Hence, by modifying the source and destination address of each item, the
flow of items between the traditional discrete-event sub-models in Layer 3 can be

redirected. In effect, this dynamic control structure, which may be described as a

136

Chapter 7: An Agent-like Discrete-event Model

configurable software switch, defines the high-level topology of the model. It

enables redirection to take place at run time thus increasing model flexibility.

7.5.1.3 Layer 3

This layer represents the level at which the traditional discrete-event models
operate. It can consist of several traditional DE sub-models which are linked
dynamically by way of Layer 2 as the flow of items between these sub-models is
controlled by Layer 2. At intervals, these sub-models update their states in the data
structures allocated to them in the communication environment. The sub-model
states form the inputs for the rules in Layer 1 and may contain information such as

resource availability, rate of throughput, and queue length.

7.5.1.4 The common communication environment

This consists of data structures both to store information from the DE sub-
models in Layer 3 as well as to act as an efficient information conduit between Layer
3 and Layer 1. Depending on the modelling tools used, the communication
environment can be implemented in a variety of ways, e.g. as time-stamped message
queues or global data records. The updating of information in the communication
environment occurs asynchronously, which is to say that the updating software
continues execution immediately after it has deposited the data. This is contrasted
against synchronous operation where the updating software deposits the information
and then waits until the control of execution is relinquished by the communications
environment. The latter is wasteful of computing resources and can sometimes result

in deadlocks thus preventing further execution of the model.

7.5.1.5 Maintainability

By separating the high-level model configuration rules as well as the control
structure from the DE sub-models, maintainability is likely to be improved because
this design process constrains the modeller to implement loosely coupled and highly
cohesive sub-models. The nature of supply chain and logistics systems, where data

is distributed and processes are local, lend themselves well to the implementation of

137

Chapter 7: An Agent-like Discrete-event Model

self-contained sub-models. The rules and model control structure which, in
combination, provides the agent component of this agent-like DEM, are collocated
and this is likely to lead to greater understandability and modifiability.

This three-layer closed-loop architecture which is based on the discrete-event
paradigm emulates an agent-based model. In the context of the case study where the
Extend ™6 modelling tool was used, it may be contended that by adopting the global
data structure as the medium for message passing, the inherent latency due to
conventional message passing and its associated processing are avoided. In this

aspect of model operation, the efficiency of a traditional DEM is retained.

7.6 Implementing the architecture

The following sub-sections outline the actions taken to implement the case
study scenario again but applying the architecture for an agent-like DEM described
above.

It may be noted here that although the new model is intended primarily as a
demonstration of implementing an ADEM, it may also be considered as a precursor
to a distributed model. A natural consequence of segregating the traditional DEM
into the four architectural components described in the previous section also prepares
it for execution in a distributed computing environment, for instance using the HLA

framework (IEEE, 2000; Kuhl et al., 1999).

7.6.1 Apply a structured methodology

In Section 7.2.4, it was noted that agent-based modelling naturally
constrained a model implementer to adopt a top-down design approach. There is no
reason why a DEM implementer cannot take the same approach.

Taking a high level view of model design, a DEM for a supply chain or
logistics problem can very frequently be partitioned naturally into sub-models
according to different criteria like human role and capability, but two of the more
common ones are site function and geographical location. For example, from the
data description supplied for the case study, the component repair function is situated
in four geographically separated locations. Hence, in sketching out an initial design

of the DEM, it is reasonable to partition a component repair function into a sub-

138

Chapter 7: An Agent-like Discrete-event Model

model. Similarly, the engine overhaul and the spares supply functions fall naturally
into sub-models.

Working from the DEM written previously for the case study, the model was
partitioned according to the well-established principles of structured design
(Yourdon and Constantine, 1979) so as to minimise coupling between sub-models
and at the same time maximise cohesion within them. This is achieved by strictly
limiting the activities to those of the site function alone. For example, component
repair was restricted to activities immediately related to repairs and was not mixed
with the restocking of spare parts.

By separating the functions, the resulting main sub-models, i.e. the overhaul
base, component repair centre, and parts supply centre, can be stored and reused.
The Extend ™6 modelling tool allows them to be stored as library hierarchical blocks
and reusing them is just a matter of replicating them by dragging them onto the
model design sheet. They integrate easily into the model since their interfaces are
small and well-defined.

A consequential benefit of applying this software engineering methodology is
the low volume of data flow between the sub-models when compared with the flow
of data within each sub-model. A model structured in this manner can form the basis

for a distributed model in the future.

7.6.2 Emulate an agent environment

In an ABM, information between agents is communicated asynchronously
through messages passed via a software environment such as that provided by the
open-source JADE (JADE, 2006) platform or the commercially available JACK
(JACK, 2007) and Aerogility™ (LostWax, 2005) agent frameworks. Information
may be actively sought by an agent or provided unsolicited by other agents. In a
busy system with many agents, the information may sometimes not be provided
within a useful timeframe. Although asynchronous message passing is versatile in
that it can enable models implemented by disparate modelling tools to communicate
by acting as middleware, it can nevertheless suffer from high overheads because the
messages, which can sometimes be long character strings, have to be queued,

detected, extracted, processed, and executed.

139

Chapter 7: An Agent-like Discrete-event Model

Using the Extend ™6 modelling tool, an agent environment can be emulated
in a simple and limited way. It provides the means of communication but not the
agent management services (for instance, to create and terminate agents) and
directory facilitator (‘Yellow Pages’ service for finding other agents) found in fully-
fledged agent environments. A model-wide global area can be provided so that any
of the sub-models can write to it and read from it. For instance, information from the
component repair centres advertising their current turnaround time, availability of
skill types, and the cost of services they are prepared to offer is updated at regular
intervals in this global area. A sub-model wishing to know the state of a repair
centre has just to read from the relevant memory location. Communicating by way
of a shared area of memory is faster, simpler, and more efficient than message
passing as it has few of the overheads associated with message handling. The

overheads of updating the global information are small in comparison.

7.6.3 Improved flexibility

It was recognized in Sections 7.2.4 and 7.2.6 that the agent paradigm is better
suited to modelling high-level decision making while the DE paradigm gives a better
match to engineering processes. Agents work with information at the high level end
of a model where problem details and data flow volume are low while DE modules
work with data at the low level end where details and data flow volume are high.
Further, an impediment to flexible modelling is that the structural links of a DEM are
fixed at the time the model is assembled or compiled. To improve flexibility an
innovation to the model was introduced. A higher layer of control logic was added
to the model in the form of two DE blocks to coordinate the flow of components —
the ‘OHB Controller’ for the two OHBs and the ‘Repair Controller’ for the four
component repair centres (see Figure 7-5). These are role-based blocks and they act
as surrogate human controllers, i.e. agents.

The functions of these controllers are twofold —

e To define the valid links among the sub-models and thus implement the
model structure. This function is also present in the ABM where the
links are defined as data during model initialisation. It may be noted

that in order to move an item from one sub-model to another in the

140

Chapter 7: An Agent-like Discrete-event Model

"4l [714] OHB Controller 8o

ADEM during a simulation run, the destination of the item was
determined at run time. This is different from the traditional DEM
where the route of an item is hard-coded at compile time.

To control the flow of components according to embedded rules and
current sub-model states. In Figure 7-3 and Figure 7-4, the ‘OHB
Controller’ and the ‘Repair Controller’ respectively, the addresses of
the source sub-model and destination sub-model were implemented as
attributes of an item. As the item passed through the ‘Source’ and
‘Destination’ decision blocks in these controllers, their embedded
decision rules were executed to determine the item’s destination.
Depending on the states of the sub-models, the initial destination
address may be modified by these decision blocks. For example, these
sub-model states, implemented as global variables, can help in deciding
how to route items for OHB or repair centre load balancing, for special
skills required to inspect and repair items, for shortest turnaround time,

or for cheapest repairs.

Lawno
n OHB2In
Catch Throw
LCowd OHBControlOut
OHBControlin 0
F
Lowo
CRV
to
OHB
|_Help | LaRIN

RetireEngine o
L Throw

OHBControlOut

OHB1In

Figure 7-3: OHB Controller

141

Chapter 7: An Agent-like Discrete-event Model

4 [3970] Repair Controller - oj&d
[Destination]
Throw
OHB1-ShipDirty
[Destination]
Throw
CRVContralln)
COHB1-Repair
OHBControlin
Destination
CRVControlQut
Help | - |4 | v
Figure 7-4: Repair Controller
7.6.4 Results

Working from an understanding of discrete-event modelling, it was
anticipated that the execution times of the ADEM would be a little longer than those
for the traditional DEM under identical conditions. The underpinning feature of
discrete-event modelling, i.e. the event list or event calendar for the whole model,
still applies, and together with the additional processing overheads needed to
maintain a flexible model structure meant that the execution times would be
extended.

To ascertain whether reconfiguring the workflow in the model would make
any difference in the execution time, alternative routing rules were formulated at the
controller blocks (the ‘OHB Controller’ and the ‘Repair Controller’ blocks in Figure
7-5). The rules in the controller blocks enabled the repair workload to create one of
the following scenarios — recreate the workload of the traditional DEM, be evenly
spread amongst the four repair centres, be evenly spread between the two OHBs, be
even spread between the OHBs and repair centres, or be directed to one repair centre
for the duration of a simulation run. The execution times were almost identical in

each of these cases.

142

Chapter 7: An Agent-like Discrete-event Model

Al \PAS-Hybrid.mox =) x|
event
Runtime (hh:mm:ss.t) Model Global
Statistics Data
count
Model oy
Initialisation
Manager
Spares
Manager
OHB / Engine
Controller Disposal
Manager
Repair Repair Repair Repair
Centre 1 Centre 2 Centre 3 Centre 4
E Fun I_

Figure 7-5: An overview of the agent-like DEM (ADEM). The ‘OHB Controller’ and the ‘Repair Controller’ are role-based hierarchical blocks
functioning as agents to control the flow of items. All other blocks are traditional DEM sub-models.

143

Chapter 7: An Agent-like Discrete-event Model

For comparison, the run times of the ABM, ADEM, and DEM are shown in
Figure 7-6. As described in Section 6.4.3 and also shown in Figure 6-17, the run
times for the ADEM and DEM are shown with and without model initialisation. It is
clear from the graphs that model initialisation in both these Extend™6 models
occupy a significant portion of total run time. The ABM is initialised differently and

the time taken for this activity is negligible when compared with total run time.

—0O - DEMincluding initialisation —m— DEM excluding initialisation
—4 - A-DEM including initialisation —i— A-DEM excluding initialisation

—&— ABM excluding initialisation

7.00 1

(o

0
[

Model run time {hours)

0.00 T T T T T T T T T T T T
0 50 100 150 200 250 300

Fleet size (number of engines)
| | | | | | | | | | |

0 100,000 200,000 300,000 400,000 500000 00000 700000 800000 900000 1,000.000

Number of items

Figure 7-6: Runtimes for ADEM, DEM, and ABM for different engine fleet sizes

When compared with the performance of the earlier traditional DEM, the
ADEM execution times were longer by between 0.8% and 3.4%. This is a slight
degradation in performance and should be considered together with other software
qualities. It may be an acceptable trade-off for making the model more flexible,

understandable, and modifiable thus better satisfying the demands of a dynamic

144

Chapter 7: An Agent-like Discrete-event Model

model development environment typically encountered in the lifecycle of a model.
As mentioned in Section 7.2.2, cost incurred in the post-implementation or
maintenance phase of a model forms a significant proportion of total software
lifecycle cost.

Table 7-1 shows that when compared with the earlier traditional DEM, the
size and complexity metrics for the ADEM were larger by between 1% and 28%. By
making the sub-systems self-contained, more code than before was required to
handle their interaction with other sub-systems thus increasing the numerical values
of these metrics. Although the ADEM sub-systems were larger, they were easier to
understand since the modular code resulting from applying a structured design
method made the model clearer and easier to follow. Both Boehm (1981) and
Welker (2001) strongly recommend the use of code reviews by expert programmers
to assess program maintainability. They are of the opinion that while code metrics
provide an automated, objective measure, it is but one view which however needs to
be confirmed by another means. Welker (2001) provides an example which showed
that a larger and more complex piece of code, as measured by LOC and McCabe
cyclomatic number respectively, was judged to be more maintainable because of the
helpful comments it contained. This result points to the importance of adhering
strictly to best programming practice in order to ensure the production of high

maintainability software.

Table 7-1: Multiples of ADEM to DEM metrics

Sub- Number of Number of methods | Number of classes | Weighted methods
system executable or procedures or modelling blocks per class, WMC
statements, LOC

A 1.3 1.3 1.3 1.1

B 1.3 1.2 1.1 1.2

C 1.0 1.0 1.0 1.2

D 1.0 1.0 1.0 11

E 1.3 1.3 1.2 1.1

Table 7-2 summarizes the extent to which Layers 1 and 2 meet the five-part
definition of an agent as provided by Wooldridge (1997) and Jennings (2000).

Considered together, Layers 1 and 2 emulate an agent since all five parts of the

145

Chapter 7: An Agent-like Discrete-event Model

definition are satisfied. However, it should be stressed that this consideration is
based only a single agent in isolation. It is more pertinent to compare models and it
is very likely that an ABM will be implemented as a multi-agent system.

According to Wooldridge and Ciancarini (2001) such a multi-agent system is
inherently a concurrent multi-threaded process. Each agent has its own thread of
execution and is continually actively engaged in an infinite loop sensing its
environment, updating its internal state, and performing the appropriate action. As
the ADEM is based on the discrete-event paradigm, all actions in the model are
managed by the event list and can only be carried out sequentially. It has been
discussed in Section 7.2.3 that for practical reasons, a very large multi-agent system
is usually executed as a single-threaded process, i.e. the agents are executed
sequentially. Therefore, the ADEM does not comply with the definition of an ideal
multi-agent system but compares well with some practical, large multi-agent
systems. Thus, it is justified in describing the ADEM as an agent-like discrete-event

model rather than a hybrid of an agent-based and a discrete-event model.

Table 7-2: Summary showing how ADEM satisfies the definition of an agent

Constituent elements of an agent ADEM architecture
(Jennings, 2000; Wooldridge, 1997)

1 |‘An encapsulated computer system’ The modular design of the model, enforced by a
structured design methodology, ensures that
the model configuration rules and code in
Layers 1 and 2 have clearly defined boundaries

and interfaces.

2 |‘Situated in some environment’ The rules in Layer 1 seek input from the
common communication environment. The
outputs from Layer 1 act on the Layer 3 DEM
sub-models which outputs information to the
common communication environment. This

completes the agent input/output loop.

3 |‘Capable of flexible action... within that |In reaction to changes in its environment, code
environment’ in Layer 1 work in concert with the dynamically
configurable switch in Layer 2 to modify the

model structure and to redirect the flow of

146

Chapter 7: An Agent-like Discrete-event Model

Constituent elements of an agent ADEM architecture
(Jennings, 2000; Wooldridge, 1997)

model items. The case study logistics scenario
did not give the occasion to implement a
deliberative agent but the condition-action rules
present in the ‘OHB Controller’ and ‘Repair
Controller’ blocks satisfy the description of a

reactive agent.

4 |‘Capable of autonomous action... The architecture is not based on message

within that environment’ passing but on Layer 3 sub-models publishing
information in the communication environment.
The body of code and rules in Layer 1 decides

on what, if any, action needs to be taken.

5 |‘In order to meet its design objectives’ |The rules and code in Layer 1 act on
information in the communication environment
and respond in such a way as to meet its
design objectives which may be, for example,

achieving lowest cost or shortest overhaul time.

7.7 Summary

The benefits of an ABM over a traditional DEM may be summed up by its
smaller size and lower complexity; its higher scalability and ability to exploit parallel
execution; its natural tendency to segregate into loosely coupled sub-models; its
better conceptual match at a high level of decision-making; and its flexibility in
operation due to its ability to reconfigure structurally at runtime.

Agent technology enables the management of problem complexity to be
made easier because it is object-oriented and the established techniques of
decomposition, abstraction, and organization can be applied to it. However, the
same benefit can be obtained for non-OO languages by the disciplined use of a
structured design methodology.

The five-part definition for an agent was considered in greater detail so that
an informed judgement could be made later on how well the agent-like DEM

(ADEM) fitted the criteria.

147

Chapter 7: An Agent-like Discrete-event Model

A layered architecture comprising four components was proposed for the
ADEM to enable a model with both role-dominant and process-dominant parts to
work together.

The traditional DEM used in the case study was converted into an ADEM and
code metrics as well as model run times were obtained for comparison. The ADEM
was slightly larger and executed slightly slower than the traditional DEM. However,
it was considered that these minor drawbacks were acceptable tradeoffs against the
benefits of greater understandability of the code and increased flexibility in
operation.

Lastly, the controller blocks in the ADEM were compared against the agent
definition and it may be concluded that they satisfy the five parts of the definition.
Despite that, the ADEM is unlike an ideal multi-agent system since it does not

execute as a concurrent multi-threaded process.

148

Chapter 8: Conclusions and Future Work

Chapter 8

Conclusions and Future Work

In conclusion, this chapter presents a précis of the main conclusions reached
through the research which has been carried out. It also outlines the particular
contributions towards furthering the understanding of the agent-based and the
traditional discrete-event modelling paradigms. Finally, as a result of the work
completed, other areas of research are suggested where further investigation may be

worthwhile.

8.1 Conclusions

The case study, which involved the modelling of the Rolls-Royce Trent 800
fleet repair operation using an ABM and a functionally identical traditional DEM,
demonstrated the differences between the two modelling approaches. The H;
hypothesis stated in Section 1.4, that ‘agent-based modelling is better than
traditional discrete-event modelling’, has to be qualified since the benefits of the
agent-based modelling are not universal but are evident only under certain
conditions. These conditions will be made clear in the conclusions contained in the

following sub-sections where applicable.

8.1.1 Code metrics for models

The ABM was shown to be smaller, less complex, and consequently more
maintainable than the traditional DEM. This result applies specifically within the
context of the case study scenario, i.e. for a logistics problem containing level of

details ranging from flexible, human decision-making to detailed, fixed process

149

Chapter 8: Conclusions and Future Work

sequences, and after the ‘system implementation’ activity in the development
lifecycle (see Figure 6-6 for Systems Development Lifecycle). Code metrics which
are normally compiled during the implementation of a software project — LOC,
number of methods, classes, and procedures, as well as MCN and WMC - all

emphasise the superiority of ABM in terms of program size and complexity.

8.1.2 Loose coupling and high cohesion

Agents in the ABM and DEM blocks are loosely coupled, and since
communication amongst the agents was achieved through asynchronous message
passing the ABM holds a slight advantage. In a well-designed system, loose external
coupling implies high internal cohesion, thus resulting in related code which is likely
to be located within the same module. As such, the effect of a change in one module
will not ripple far out to other parts of the system thus amplifying its effect. Based
on this software quality of maintainability alone, the mental effort required to
understand, modify, and test a change to the ABM will be less than that required for
the DEM, thus lowering cost.

8.1.3 Wider aspects of modelling

The superiority of the ABM is less obvious when the ‘requirements analysis’
and ‘design’ activities are taken into consideration (see Figure 6-6 for Systems
Development Lifecycle). The considered views of software and modelling experts
from the Delphi sessions were that the ABM was more easily understood by people
whose normal work activities centred on organizational relationships while the DEM
was more easily understood by people whose activities centred on processes.
Information gathering for requirements analysis will be optimized if the agent and
the traditional discrete-event paradigms are used appropriately when interviewing
people who are involved in different levels of the problem domain. While the
conclusions in Section 8.1.1 are objective, they form but an element of the
comparison between the two modelling approaches. The enlarged scope of the
systems development lifecycle considered here is closer to reality and is more useful

in practice.

150

Chapter 8: Conclusions and Future Work

8.1.4 Scope of an agent

The scope of an agent is not confined just to the activities of code
implementation and subsequent maintenance. It encompasses the system
development lifecycle activities of requirements analysis and design as well. As a
body of programme code, an agent is not greatly different from conventional
programme code. Its benefits are realised when the agent concept is applied in a
disciplined manner early in the model lifecycle, i.e. from the requirements analysis
stage onwards, where high level agent roles are initially identified. The early
application of effort to reduce the conceptual gap between the real world and the
written specification provides a good foundation for all subsequent cost reduction
since less mental effort will be needed to understand, modify, and test the model

software.

8.1.5 Modelling best practice

Both ABM and DEM benefit from the disciplined application of modelling
best practice. A top-down structured design methodology helps to make the
complexity of a system manageable to a model implementer through the design
techniques of hierarchy, decomposition, and abstraction. A consequence applying
such a methodology is the natural segregation of a model into appropriate sub-
systems or agents. It was recognised during the implementation of the DEM that
designing it using one of the commercially available, mature, and proven structured
design methodologies can help to reduce the initially perceived gap between the two

modelling approaches significantly.

8.1.6 Matching problem with model

A multi-agent system used as a model is better suited to role-dominant
problems as the Al aspect of agent technology is a better match than discrete-event
model for situations where information may not be complete. Also, in contrast to the
strict sequential activities of a DEM, a multi-threaded multi-agent process simulates
parallel activities and is a closer approximation to human communication in the real

world.

151

Chapter 8: Conclusions and Future Work

8.1.7 Flexibility in operation

A traditional DEM requires all information and organisational relationships to
be present at the time the model is compiled for execution thus fixing the model
structure for the duration of a simulation run. In comparison, a multi-agent model
has the ability to create and terminate links in the course of a simulation run so
endowing the ABM with greater flexibility. However, the freedom to restructure a
model in such a manner has to be controlled by rules to ensure that only valid links

can be made.

8.1.8 Model performance

The elapsed, or ‘wall-clock’, time of an ABM simulation run is not as
sensitive to changes in model workload as that of a DEM. The flatter ABM response
time graph is due largely to it being a time-driven model with a fixed simulated time
step while the DEM is event-driven.

In the ABM, the passage of time is modelled and therefore the elapsed time
of a simulation run does not vary by much even when there are no items to process
and the CPU is idle most of the time. As the number of items for processing
continues to increase, CPU idle time will continue to decrease. Up to the point
where there is still some idle time during a simulation run (a fleet size of about 100
engines in Figure 7-6), thus indicating the presence of spare capacity in the CPU, the
simulation run time remains about the same. As the number of items increases
beyond this, the simulation run time will increase because the ability of the CPU to
respond to the demands of the model continues to diminish.

In the event-driven DEM, where the notion of a fixed time step is absent, the
model is always executed as quickly as possible progressing from one event to the
next. Hence, the CPU is always fully loaded during a DEM simulation run. This is
in contrast to the ABM which runs with CPU idle time up to the point mentioned in
the previous paragraph. It is clear from Figure 7-6 that, because of the difference in
CPU utilisation between the two modelling paradigms, the DEM has a shorter
simulation run time when the fleet has fewer than 60 engines while the ABM is

quicker for engine fleets larger than that.

152

Chapter 8: Conclusions and Future Work

However, the ABM is a heavy user of computing resources and it failed
catastrophically when it ran out of memory. In contrast, the DEM was light on
computing resources and successfully completed simulation runs with engine fleet

sizes which exceeded the largest managed by the ABM (see Figure 7-6).

8.1.9 Repeatability and predictability

Simulation runs with the DEM can be guaranteed to be repeatable and
predictable. Although stochastic processes are present, the DEM may nevertheless
be considered to be deterministic for the reason that the seeds for the random inputs
(they are pseudo-random in reality) can be left unchanged between model
executions. In addition, there is only one event list in a DEM and since this data
structure determines the event sequence, the results of different runs with the same
input data will be the same. However, repeatability and predictability cannot be
guaranteed with the ABM because other unrelated but essential computer processes,
e.g. scheduling and network processes, can introduce undesirable perturbations into
the execution of the concurrent threads making up the process. In an ABM, where it
is usual for each agent to be run in its own separate thread, the delayed output in one
thread caused by the execution of other processes can periodically result in
unpredictable and undesirable consequences. This is an inherent problem of
multithreaded execution the solution to which sometimes is to avoid multithreaded

operation altogether.

8.1.10 Multithreaded execution

Although multi-threaded execution is an inherent component of the agent
paradigm and is beneficial to it, it is nevertheless a significant drawback of the ABM.
To ensure repeatable simulation results, the threads have to be synchronized by
manual coding. Similarly, to prevent deadlocks, shared resources have to be locked
for exclusive access by each thread by manual coding. Complete test coverage can
be difficult, or impossible, to achieve in multi-agent systems with a large number of

threads of execution.

153

Chapter 8: Conclusions and Future Work

8.2 Contributions of research

Although various modelling approaches have been compared before (see
Section 2.5), the comparison of an ABM with a traditional DEM has not been
attempted to date. Where the other published comparisons have been wholly
qualitative, a large part of this research involved the quantitative and objective
measurement of model characteristics.

To minimise the conceptual gap between problem and model, it is better to
partition a model according to the relative dominance of roles or processes in the
problem domain. Roles may be implemented using the agent paradigm while
processes may be implemented using the discrete-event paradigm. The logistics
problem in the case study scenario has processes fully occupying the lower, detailed
level while roles predominate at the higher, strategic levels. A problem such as this
is more suitably addressed as a combination of agents and discrete-event processes
where each modelling paradigm can be applied where appropriate. This combined
approach is proposed in the thesis.

Building on the results of the case study, a layered architecture is presented as
the framework for implementing such a combined model in the discrete-event
paradigm. The three conceptual layers represent the sub-systems of traditional
DEMs, intelligent switches which enable the model to be restructured dynamically,
and agents which enable goals of the model to be achieved. The resulting model
exploits the strengths of both modelling paradigms and in doing so, extends the range
of practical usefulness of traditional DEMs. This combined-paradigm model is
described as an agent-like DEM (ADEM). The reason it is not described as an
agent/discrete-event hybrid in the full sense of that term is because the agents present
in the model cannot be implemented as traditional multi-threaded agent processes but
have to be executed as a part of a single-threaded sequential DEM.

An important outcome of the research is the observation that most of the
published benefits of an ABM can be achieved by a DEM through the disciplined
adherence to a well-established structured design methodology. By reinforcing the
desirable qualities of high modularity, loose coupling, and high cohesion in the

design of a DEM, the gap between the two modelling paradigms is reduced.

154

Chapter 8: Conclusions and Future Work

8.3 Future work

8.3.1 Extension of model comparison

Although software maintainability from the perspectives of the purchaser and
the model implementer has been a significant component of this research, other
software qualities such as reliability, efficiency, correctness, and usability are equally
important to the model user. As agent technology is increasingly being adopted by
model implementers and becomes more prominent in the mainstream of modelling,
these other software qualities will assume greater importance. Maintainability
addresses the primary issues of software cost and effort, both of which are pre-
eminent questions when seeking justification to migrate to a new technology, the
other software qualities address matters of user confidence in a new technology
which will be expected to be better than the technology it will replace and be in
constant operation. In the present paucity of quantitative information about agent
technology, a more holistic view of the technology will be obtained by widening the

scope of such a comparison.

8.3.2 Distributed modelling

Another natural extension of the modelling paradigm comparison carried in
this thesis is to consider the important problems related to distributed modelling. As
the demand for larger and more realistic models continues to grow, the computing
capacity offered by a single processor will be unable to satisfy that. This is evident
from the results of the performance measurements carried out in this research (see
Figure 7-6) where both models were hindered, for different reasons, from
successfully simulating the operation of a realistically large engine fleet. The ABM
experienced a hard failure because it ran out of memory while the time required by
the DEM to complete a run may be considered too long in a commercial
environment.

It is likely that the various existing civil and military engine fleets RR has to
maintain will continue to expand. Although the existing memory constraint imposed
by a 32-bit hardware and software system can be addressed directly by migrating to a
64-bit system, it is unlikely that a simulation run will complete in an acceptable time.

A promising way to model a large engine fleet and yet give a reasonably short

155

Chapter 8: Conclusions and Future Work

response time is to exploit parallelism in modelling. There are techniques for the
synchronization of model time (Section 3.3.2) and a standardised framework (see
Section 3.3.2.3 High-Level Architecture) to enable a model to be distributed to
geographically dispersed processors for parallel execution. They can be used for the

seamless integration of models implemented by collaborating enterprises.

8.3.3 Optimization

It may be argued that the primary motive for building a simulation model is
to be able to arrive as quickly as possible at the optimal solution for a problem. At
present, a common method of exploring the solution space is to conduct numerous
sensitivity studies by manually varying one or two input variables at a time. This is
unlikely to be adequate for large and complex models such as those typically
required by RR to simulate the logistics for engine fleet maintenance. Specialized
external optimizers will be needed to operate in conjunction with these models and
thus enable multivariate optimization to be carried out. The clamour to improve on
an existing solution will be driven largely by the very large financial returns which

can be accumulated over the lifetime of an engine fleet.

8.4 Concluding remarks

The work carried out in this research has identified some of the strengths and
weaknesses of agent-based modelling when compared with discrete-event modelling.
The outcomes of the comparison have been deployed in a novel model architecture
which combines the strengths of both modelling paradigms. Although discrete-event
modelling has been widely used in industry for many years, the new agent-like
discrete-event model may be considered to have contributed to its continuing
development, specifically in the class of problems exemplified by the logistics model
used in this research.

As modelling tools become more powerful, sophisticated, and user-friendly,
the production of models or model parts becomes more likely to be devolved from
specialist modellers to end-users like engine designers and cost engineers. It is the

hope that this research has begun to help this migration on its way.

156

Appendix A

Appendix A

A.1 Technology Readiness Levels

The definitions of the levels of technology readiness recommended by the
Carnegie Mellon Software Engineering Institute (Graettinger et al., 2002) are
presented in Table A-1. This nine-point scale is as a metric for assessing the
maturity of new technologies. Although applicable to all technologies, this version

of the Technology Readiness scale has been adapted for assessing new software

technologies.

Table A-1: The SEI Technology Readiness Levels
TECHNOLOGY DESCRIPTION
READINESS LEVEL
1. Basic principles Hardware/Subsystem: Lowest level of technology readiness.
observed and reported Scientific research begins to be translated into applied research

and development. Examples might include paper studies of a
technology’s basic properties.

Software: Lowest level of software readiness. Basic research
begins to be translated into applied research and development.
Examples might include a concept that can be implemented in

software or analytic studies of an algorithm’s basic properties.

2. Technology concept HW/S: Invention begins. Once basic principles are observed,
and/or application practical applications can be invented. Applications are
formulated speculative and there may be no proof or detailed analysis to

support the assumptions. Examples are limited to analytic
studies.

SW: Same as HW/S

157

Appendix A

TECHNOLOGY
READINESS LEVEL

DESCRIPTION

3. Analytical and
experimental critical
function and/or
characteristic proof of

concept

HW/S: Active research and development is initiated. This
includes analytical studies and laboratory studies to physically
validate analytical predictions of separate elements of the
technology. Examples include components that are not yet
integrated or representative.

SW: Active research and development is initiated. This includes
analytical studies to produce code that validates analytical
predictions of separate software elements of the technology.
Examples include software components that are not yet
integrated or representative but satisfy an operational need.
Algorithms run on a surrogate processor in a laboratory

environment.

4. Component and/or
breadboard validation in

laboratory environment

HW/S: Basic technological components are integrated to
establish that they will work together. This is relatively “low
fidelity” compared to the eventual system. Examples include
integration of ad hoc hardware in the laboratory.

SW: Basic software components are integrated to establish that
they will work together. They are relatively primitive with
regard to efficiency and reliability compared to the eventual
system. System software architecture development initiated to
include interoperability, reliability, maintainability, extensibility,
scalability, and security issues. Software integrated with

simulated current/legacy elements as appropriate.

158

Appendix A

TECHNOLOGY
READINESS LEVEL

DESCRIPTION

5. Component and/or
breadboard validation in

relevant environment

HW/S: Fidelity of breadboard technology increases
significantly. The basic technological components are integrated
with reasonably realistic supporting elements so it can be tested
in a simulated environment. Examples include “high fidelity”
laboratory integration of components.

SW: Reliability of software ensemble increases significantly.
The basic software components are integrated with reasonably
realistic supporting elements so that it can be tested in a
simulated environment. Examples include “high fidelity”
laboratory integration of software components.

System software architecture established. Algorithms run on a
processor(s) with characteristics expected in the operational
environment. Software releases are “Alpha” versions and
configuration control is initiated. Verification, Validation, and

Accreditation (VV&A) initiated.

6. System/subsystem
model or prototype
demonstration in a

relevant environment

HW/S: Representative model or prototype system, which is well
beyond that of TRL 5, is tested in a relevant environment.
Represents a major step up in a technology’s demonstrated
readiness. Examples include testing a prototype in a high-
fidelity laboratory environment or in a simulated operational
environment.

SW: Representative model or prototype system, which is well
beyond that of TRL 5, is tested in a relevant environment.
Represents a major step up in software demonstrated readiness.
Examples include testing a prototype in a live/virtual experiment
or in a simulated operational environment. Algorithms run on
processor of the operational environment are integrated with
actual external entities. Software releases are “Beta” versions
and configuration controlled. Software support structure is in

development. VV&A is in process.

159

Appendix A

TECHNOLOGY
READINESS LEVEL

DESCRIPTION

7. System prototype
demonstration in an

operational environment

HW/S: Prototype near, or at, planned operational system.
Represents a major step up from TRL 6, requiring demonstration
of an actual system prototype in an operational environment such
as an aircraft, vehicle, or space. Examples include testing the
prototype in a test bed aircraft.

SW: Represents a major step up from TRL 6, requiring the
demonstration of an actual system prototype in an operational
environment, such as in a command post or air/ground vehicle.
Algorithms run on processor of the operational environment are
integrated with actual external entities. Software support
structure is in place. Software releases are in distinct versions.
Frequency and severity of software deficiency reports do not
significantly degrade functionality or performance. VV&A

completed.

8. Actual system
completed and qualified
through test and

demonstration

HW/S: Technology has been proven to work in its final form
and under expected conditions. In almost all cases, this TRL
represents the end of true system development. Examples
include developmental test and evaluation of the system in its
intended weapon system to determine if it meets design
specifications.

SW: Software has been demonstrated to work in its final form
and under expected conditions. In most cases, this TRL
represents the end of system development. Examples include test
and evaluation of the software in its intended system to
determine if it meets design specifications. Software releases are
production versions and configuration controlled, in a secure
environment. Software deficiencies are rapidly resolved through

support infrastructure.

160

Appendix A

TECHNOLOGY DESCRIPTION
READINESS LEVEL

9. Actual system proven |HW/S: Actual application of the technology in its final form and
through successful under mission conditions, such as those encountered in
mission operations operational test and evaluation. Examples include using the
system under operational mission conditions.

SW: Actual application of the software in its final form and
under mission conditions, such as those encountered in
operational test and evaluation. In almost all cases, this is the
end of the last “bug fixing” aspects of the system development.
Examples include using the system under operational mission
conditions. Software releases are production versions and
configuration controlled. Frequency and severity of software

deficiencies are at a minimum.

161

Appendix B

Appendix B

B.1 A nominal definition of Complex Adaptive Systems

The notion of Complex Adaptive Systems has originated from a number of
contributors. In the absence of a concise definition, Dooley (1996) has proposed a
description of a complex adaptive system summarised from works which are
considered as seminal. First, his method is presented and that is followed by the

definition and the literature sources.

B.2 The method

The nominal definition to be put forth is forged from the works of Gell-Mann
(1994), Holland (1995), Jantsch (1980), Maturana and Varela (1992), and Prigogine
and Stengers (1984). The essential principles of a CAS, as defined in each work,
were carefully noted. These conceptual lists were then merged into one master list of
concepts. Common themes were noted and an abbreviated list was developed. This
aggregate list of concepts was then put into a structural model that synthesized the

concepts into a single description.

B.3 The definition

The basic elements of a CAS are agents. Agents are semi-autonomous units
that seek to maximize their fitness by evolving over time. Agents scan their
environment and develop schema. Schema are mental templates that define how
reality is interpreted and what are appropriate response for a given stimuli. These
schema are often evolved from smaller, more basic schema. These schema are
rational bounded: they are potentially indeterminate because of incomplete and/or
biased information; and they differ across agents. Within an agent, schema exist in
multitudes and compete for survival via a selection-enactment-retention process.

When an observation does not match what is expected, an agents can take
action in order to adapt the observation to fit an existing schema. An agent can also
purposefully alter schema in order to better fit the observation. Schema can change

through random or purposeful mutation, and/or combination with other schema.

162

Appendix B

When schema change it generally has the effect of making the agent more robust (it
can perform in light of increasing variation or variety), more reliable (it can perform
more predictably), or more capable in terms of its requisite variety (in can adapt to a
wider range of conditions).

The fitness of the agent is a complex aggregate of many factors, both local
and global. Unfit agents are more likely to instigate schema change. Optimization
of local fitness allows differentiation and novelty/diversity; global optimization of
fitness enhances the CAS coherence as a system and induces long term memory.

Schema define how a given agent interacts with other agents surrounding it.
Actions between agents involve the exchange of information and/or resources.
These flows may be nonlinear. Information and resources can undergo multiplier
effects based on the nature of interconnectedness in the system. Agent tags help
identify what other agents are capable of transaction with a given agent; tags also
facilitate the formation of aggregates, or meta-agents. Meta-agents help distribute
and decentralize functionality, allowing diversity to thrive and specialization to
occur. Agents or meta-agents also exist outside the boundaries of the CAS, and
schema also determine the rules of interaction concerning how information and

resources flow externally.

B.4 The sources

Gell-Mann, M. (1994). The Quark and the Jaguar. New York: Freeman & Co.
Holland, J.H. (1995). Hidden Order, Reading, MA: Addison-Wesley.

Jantsch, E. (1980). The Self-Organizing Universe. Oxford: Pergaman Press.
Maturana, H. and F. Varela (1992). The Tree of Knowledge. Boston: Shambhala.
Prigogine, 1., & 1. Stengers (1984). Order Out of Chaos. New York: Bantam Books.

163

Appendix C

Appendix C

C.1 Process maps for engine maintenance

The following six process maps form part of the ABM’s functional

specification from which the traditional DEM was implemented.

Time Incurred
Related Template
Parameters

Costs
Incurred

Engines Flying C ’

Engine Inducted

ASC Check Orders / Stock ifin
Stock then take from here

Part available

in CRV stock?
Order New Part Order Part from CRV Stock
from PSC (lead time) (supply time)
ASC Receives Part
(shipping time) (shipping time)

Module Swap?

engine.

Time of Engine Induction
Determined by hard-life of
parts or shop visit plan for

Part Unaffected and
retained on Engine

(stripping time)

Module Stripped
(stripping time)

Inspect Ship

Determined by general
ot part overidden inspn
policy

Part Inspected at OHB

Part Shipped to CRV

]
]
|
;
]
]
]
]
I
1
1
]
]
]
]
]
|
;
]
]
]
]
|
;
;
]
]
]
]
1
1
]
]
]
]
]
|
;
i
i ASC Receives Part
|
;
]
]
]
]
1
1
1
]
]
]
]
|
;
]
]
]
]
]
|
;
]
]
]
]
1
1
1
]
]
]
]
|
;
]
]
]
]
]
|
:
]

Kit Built at ASC —
e s
2 time) (mod rebuilt time)
A !
OHB receives kit H
(shipping time) i
Module Shipped to OHB when
kit ready (shipping time)
When all Kits Complete
Module Rebuilt
(mod rebuilt time * kitting factor)
A

Engine released

Location Determined
by Part Specific
CRV Policy

Figure C-1: Process map 1 — Initial OHB processes and the ASC (Rolls-Royce plc)

164

Appendix C

Dependant on
Eefit/Scrap Rate

Befit/Repair/
Scrap?

Note: [frefit then a repawr

is not register on the part. Scrap
— p— S
(repair time) (proportion of repair time)
Put into CRV Stock

Figure C-2: Process map 2 — OHB processes (Rolls-Royce plc)

Location Determined
by Part Specific
CRV Policy .
Part Shipped to CRV Part Scrapped at OHB
(shipping time)

Figure C-3: Process map 3 — CRV processes (Rolls-Royce plc)

165

Appendix C

Engine Inducted
Engine Stri
(stripping time)
Determined by Module
Part Unaffected Boreies
(med strip time) Determined by Part Specific
Inspection Policy
Inspect Ship Ship Disty
Location Determined
Y by Part Specific
Part Inspected at OHB Part shipped to CRV CRV Policy
(inspection time) (shipping time) _
Determined by Part
Specific Refit Rate
and Scrap Rate Ounly
Scrap i
h J Repair) -
Part held at OHB as Location Determined Past Serapped
refittable by Part Specific
Part shipped to CRV CRV Policy
(shipping time)
' -
Module built when all
parts for modnle are
available (mod build time)
Engine built when all
module are available
(engine build time)
‘ Engine Released |

Figure C-4: Process map 4 — ‘No kitting’ OHB processes (Rolls-Royce plc)

166

Appendix C

e
(repair time)

Part shipped to OHB
(shipping time)

Repair Unable

Part Fallout at CRV occurs
(proportion of repair time)

Fallout Notification
given to OHB

v

v

Module built when all
parts for module are
available (mod build time)

OHB stock and orders checked.
if present take from here

|

:

Engine built when all
modules are available

!

‘ Engine Released ‘

Figure C-5: Process map 5 — CRV processes (Rolls-Royce plc)

Order for new part sent
to PSC (lead time)

.

New Part Shipped from PSC
(shipping time)

.

Module built when all
parts for module are
available (mod build time)

‘ Engine Released ‘

167

Appendix C

Part Inspected at CR'V
(inspection time)

Determined by Part
Specific Refit Rate
and Scrap Rate Only

Refit/Repair/Scrap
Scrap

Fepair

Part Deemed Refittable . sy Part Fallout Message
PRI A Attempt Repair at CEV sent to OHB

Figure C-6: Process map 6 — CRV processes (Rolls-Royce plc)

168

Appendix D

Appendix D

D.1 Data for the agent-based and traditional discrete-event

models

The data for the agent-based model included a table of numerical values for
the attributes of a 67-component engine model. Table D-1 lists the engine
components and the modules they belong to while Table D-2 lists the attributes for

each component.

Table D-1: Components and modules for the Trent 800 engine (Rolls-Royce plc)

Number | Component name Module number
1 Annulus-Fillers 01
2 Fan-Blades 01
3 Fan-Disc 01
4 Fan-Shaft 02
5 Front-Combustion-Liner 04
6 HPC-Blades-St1 04
7 HPC-Blades-St2 04
8 HPC-Blades-St3 04
9 HPC-Blades-St4 04
10 HPC-Blades-St5 04
11 HPC-Blades-St6 04
12 HPC-Drum-St1-4 04
13 HPC-Drum-St5-6 04
14 HPC-Vanes-St1 04
15 HPC-Vanes-St2 04
16 HPC-Vanes-St3 04
17 HPC-Vanes-St4 04
18 HPC-Vanes-St5 04
19 HPT-Blade 04
20 HPT-Disc 04

169

Appendix D

Number | Component name Module number
21 HPT-NGV 04
22 HPT-Seal-Segment 04
23 IPC-Blades-St1 02
24 IPC-Blades-St2 02
25 IPC-Blades-St3 02
26 IPC-Blades-St4 02
27 IPC-Blades-St5 02
28 IPC-Blades-St6 02
29 IPC-Blades-St7 02
30 IPC-Blades-St8 02
31 IPC-Drum 02
32 IPC-OGV 02
33 IPC-Shaft 02
34 IPC-Vanes-St3 02
35 IPC-Vanes-St4 02
36 IPC-Vanes-St5 02
37 IPC-Vanes-St6 02
38 IPC-Vanes-St7 02
39 IPT-Blade 05
40 IPT-Disc 05
41 IPT-NGV 05
42 IPT-Seal-Segment 05
43 IPT-Shaft 05
44 LPT-Shaft 08
45 LPT-Stg-1-Blade 08
46 LPT-Stg-1-Disc 08
47 LPT-Stg-1-NGV 08
48 LPT-Stg-1-Seal-Segment 08
49 LPT-Stg-2-Blade 08
50 LPT-Stg-2-Disc 08
51 LPT-Stg-2-NGV 08
52 LPT-Stg-2-Seal-Segment 08
53 LPT-Stg-3-Blade 08

170

Appendix D

Number | Component name Module number
54 LPT-Stg-3-Disc 08
55 LPT-Stg-3-NGV 08
56 LPT-Stg-3-Seal-Segment 08
57 LPT-Stg-4-Blade 08
58 LPT-Stg-4-Disc 08
59 LPT-Stg-4-NGV 08
60 LPT-Stg-4-Seal-Segment 08
61 LPT-Stg-5-Blade 08
62 LPT-Stg-5-Disc 08
63 LPT-Stg-5-NGV 08
64 LPT-Stg-5-Seal-Segment 08
65 VIGVs 02
66 VSV-St1 02
67 VSV-St2 02

Table D-2: Component attributes (Rolls-Royce plc)

Number | Attribute

—_

Component name

Module number

Kit name

Quantity per engine

Maximum number of repairs

Weight in pounds

Inspection policy

CRV

©| 0| N| O ;O | WO N

PSC capacity per day (new parts)

—_
o

CRYV capacity per day (repaired parts)

—_
—_

PSC price (US$) for a new part

—_
N

CRYV price (US$) for a repaired part

RN
w

PSC turnaround in days (new parts)

—
N

CRYV turnaround in days (repaired parts)

171

Appendix D

Number | Attribute
15 OHB inspection price (US$)
16 OHB inspection time (days)
17 CRYV inspection time (days)
18 CRYV total repair time (days)
19 Airline A (max used %)
20 Airline B (max used %)
21 Refit rate (shop visit number 1)
22 Refit rate (shop visit number 2)
23 Refit rate (shop visit number 3)
24 Refit rate (shop visit number 4)
25 Refit rate (shop visit number 5)
26 Refit rate (shop visit number 6)
27 Scrap rate (shop visit number 1)
28 Scrap rate (shop visit number 2)
29 Scrap rate (shop visit number 3)
30 Scrap rate (shop visit number 4)
31 Scrap rate (shop visit number 5)
32 Scrap rate (shop visit number 6)
33 Repair rate (shop visit number 1)
34 Repair rate (shop visit number 2)
35 Repair rate (shop visit number 3)
36 Repair rate (shop visit number 4)
37 Repair rate (shop visit number 5)
38 Repair rate (shop visit number 6)

172

Appendix E

Appendix E

E.1 Applying the Delphi Method

In the case study carried out for this research, the Delphi process outlined
earlier by Brown (1968) and Gordon (1994), and reiterated more recently by
Stellman and Greene (2005), was implemented with the minor adaptation that all
communication was carried out remotely by email. This was necessary because the
heavy work load of the three participating experts meant that it was almost
impossible to hold meetings in a common location for the Delphi sessions within a
reasonable timeframe. As it transpired, asynchronous communication by email not
only enabled the time taken by the whole process to be shortened because
participation could take place at any time, it also ensured that the questionnaire
responses remained anonymous since there was no direct communication.

The three experts who were invited to be participants were all highly
experienced software engineers who had coded programmes and managed software
projects of various sizes and complexities. However, each of them possessed
different levels of knowledge of ABM and DEM. In addition to the three experts, a
fourth person acted as the facilitator to initiate the Delphi process, to collect and
analyse the responses, and to keep the process in motion until consensus was
achieved.

The Delphi ‘kick-off’ session was in the form of an email with two
attachments — a questionnaire (the details are presented in Section E.2), and a
document which contained a statement of the purpose of the session as well as
descriptions of the Delphi process to be followed, the goal of the session, the two
modelling paradigms, and the problem to be considered. This email was sent to to
the three participants at the same time and it also contained the instruction that
responses to the questionnaire were expected within one week. Further, the
functional specification, the flowcharts, and packages of code for the agent-based
model and the discrete-event model were not distributed but were made available for
easy access by the participants for reference if the need arose.

Using the interquartile measure as the criterion, it was judged that some

responses to the initial questionnaire ranged too widely for them to be described as

173

Appendix E

consensual opinion. With the exception of one question to which all participants
gave the same score, responses to the other questions were separated by up to two
clear points on the six-point ordinal response scale. Those which differed by two
clear points were therefore wider than the interquartile range and so did not represent
consensus.

The results for all 14 questions, i.e. both the scores as well as the reasons
given to justify the scores, were collated and sent out again. Those questions which
did not achieve consensus were highlighted so that the participants could consider
them further. All responses to the second iteration of the questionnaire were within
the interquartile range and therefore did not require further consideration by the
participants. The quantitative results for the questions presented in Section E.2 show
the number of participants who estimated that a particular point in the ordinal scale
corresponded most closely to his or her opinion.

To classify the responses as ‘nominal’, ‘moderate’, or ‘very’, the results were
processed as follows —

e Assign a score of 6 to the leftmost point on the response scale of each
question. Decrease the score by 1 as the scale is traversed from left to right.
The rightmost point should have a score of 1.

e The weighted mean for the response to a question is calculated and a class is
assigned. For example, in Section E.2.2, the two weighted means for
Question 1 are evaluated as (((5*1)+(4*2))/3)-3.50 = 0.83 and
(((6*1)+(5*2))/3)-3.50 = 1.83.

e The weighted means for a response is classified using the scheme shown in

Table E-1.
Table E-1: Result classification

Value Class Symbol
Between 2.99 and 2.00 Very +++
Between 1.99 and 1.00 Moderate ++
Between 0.99 and 0.00 Nominal +
Between -0.01 and -1.00 Nominal -
Between -1.01 and -2.00 Moderate -
Between -2.01 and -3.00 Very -

174

Appendix E

E.2 The questionnaire

The following sub-sections present the questionnaire which was distributed to
the participants. The questions did not require alteration as they appeared to be well

understood and consensus was reached quickly after two iterations.

E.2.1 Introduction to the questionnaire

The goal of this questionnaire is to obtain some measure of the
maintainability of the two models. In order to perform this part of the model
lifecycle, i.e. to correct or enhance an existing model, a person coming fresh to it,
must understand it first before modifying the code and subsequently testing the
model to ensure new outputs are valid and the existing ones continue to be so. The
questionnaire is divided into four parts, i.e. understandability, modifiability,
testability, and problem/paradigm matching.

It will be useful to bear in mind the context of this case study and to
remember the descriptions of the two modelling paradigms given earlier.

It is important that in the first 2 or 3 of iterations of this questionnaire,
supplying the reasons for the responses will help greatly towards ensuring a rapid

convergence of view.

E.2.2 Understandability

A single process may be made up of a sequence of several activities involving

a number of people in different roles. Processes are usually represented as

flowcharts. While traditional DEM is centred on processes, ABM tends to be centred

on people and their activities. The role of an agent may include one or more

activities. The functional specification, flowcharts, and code are available for
reference.

1. How do you rate this statement? — 4s a model implementer, it is easier to

understand how a model works if it is set out as processes rather than

activities.
Strongly agree| Moderately Agree Disagree Moderately Strongly
agree disagree disagree
Activities 1 2
Your reason
Processes 1 | 2 | | | |
Your reason

175

Appendix E

2. How do you rate this statement? — As a professional engineer (e.g. engine

designer), it is easier to relate to an engineering problem if it was described

as processes rather than activities.

Strongly agree| Moderately Agree Disagree Moderately Strongly
agree disagree disagree
Activities 3
Your reason
Processes 2 | 1

'Your reason

3. How do you rate this statement? — 4s a non-engineer (e.g. an employee in a

commercial department) it is easier to understand how a model works if it is

set out as processes rather than activities.

Strongly agree| Moderately Agree Disagree Moderately Strongly
agree disagree disagree
Activities 2 1
Your reason
Processes | 1 2

Your reason

4. Based on the UK education model, what level of formal education do you

think is required to understand a DEM and an ABM?

GCSE A-Levels Batchelor Master Doctorate | Post-doctorate
IABM 2 1
Your reason
DEM | 1 2

Your reason

E.2.3 Modifiability

When software is in production use within an established quality assurance

framework, it is the normal practice for all modifications to be formally specified

initially as textual descriptions.

The software implementer then transforms the

specification into program code. The functional specification, flowcharts, and code

are available for reference.

5. If additional activities were to be made to one or more subsystems of the

model, e.g. a Component Repair Vendor (CRV), how easy or difficult do you

think it would be to code the required changes working from the textual

specification?

176

Appendix E

Very easy Moderately Easy Difficult Moderately | Very difficult
easy difficult
ABM 1 2
'Your reason
DEM | [3 | | |
'Your reason

6. If two or more CRVs were to be added to the model, how easy or difficult do

you think it would be to modify the existing models?

Very easy Moderately Easy Difficult Moderately | Very difficult
easy difficult
ABM 1 2
Your reason
DEM 1 | | 2 | | |
Your reason

E.2.4 Testability

Once the changes have been coded, they have to be tested to ensure that the
model outputs are valid. The question here relate to the question in the previous
section and it will be useful also to remember that the DEM is normally implemented
as a single CPU process while the ABM is normally implemented as concurrent
threads of execution. The functional specification, flowcharts, and code are available
for reference.

7. If additional activities were to be made to one or more subsystems of the
model, e.g. a Component Repair Vendor (CRV), how easy or difficult do you
think it would be to test the changes?

Very easy Moderately Easy Difficult Moderately | Very difficult
easy difficult
ABM 3
Your reason
DEM | | | 3 |
Your reason

E.2.5 Matching of problem to modelling paradigm
The case study scenario (Rolls-Royce Trent 800 engine maintenance
program) involves logistics when estimating lifecycle costs. The models are at a
fairly high level, e.g. the aggregated time for stripping an engine module for repair is
specified or modelled but not the detailed activities.
8. How do you rate the suitability of ABM and DEM to modelling at a high

level of abstraction?

177

Appendix E

Very unsuitable| Moderately Unsuitable Suitable Moderately | Very suitable
unsuitable suitable
ABM 1 2
'Your reason
DEM | [3 | |
'Your reason

9. How do you rate the suitability of ABM and DEM when modelling to very

fine details is required?

Very unsuitable| Moderately Unsuitable Suitable Moderately | Very suitable
unsuitable suitable
ABM 1 2
Your reason
DEM | | | | 2 | 1
Your reason

178

References

References

AL-KILIDAR, H., Cox, K. & KITCHENHAM, B. (2005) The Use and Usefulness of the
ISO/IEC 9126 Quality Standard. IN 2005 International Symposium on
Empirical Software Engineering, IEEE, 126-132.

AMDAHL, G. (1967) Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities. IN AFIPS Conference Proceedings, Atlantic
City, N.J., AFIPS Press, Reston, Va., 483-485.

ARENA (2007) Arena Product Overview [Online][Accessed on 01 September 2007]
Available from: <http://www.arenasimulation.com/products/default.asp>

BALCL, O. (1998) Verification, validation, and testing. IN Banks, J. (Ed.) The
Handbook of Simulation, New York, NY, John Wiley & Sons.

BANKER, R.D., DATAR, S.M., KEMERER, C.F. & ZWEIG, D. (1993) Software
Complexity and Maintenance Costs. Communications of the ACM, 36, 11,
81-94.

BANKS, J., CARSON, J.S. & NELSON, B.L. (1999) Discrete-event System Simulation,
ond edition, Upper Saddle River, NJ, Prentice Hall, Inc.

BARNES, J.G.P. (1996) Programming in Ada 95, Wokingham, Addison Wesley.

BARTON, P.I. & LEE, C.K. (2002) Modeling, Simulation, Sensitivity Analysis, and
Optimization of Hybrid Systems. ACM Transactions on Modeling and
Computer Simulation, 12, 4, 256-289.

BASILI, V.R. & HUTCHENS, D.H. (1983) An Empirical Study of a Syntactic
Complexity Family. /EEE Transactions on Software Engineering, 9, 6, 664-
672.

BELADY, L.A. & LEHMAN, M.M. (1985) Model of Large Program Development. IN
Belady, L.A. & Lehman, M.M. (Eds.) Program Evolution: Processes of
Software Change, London, Academic Press, 165-200.

BELECHEANU, R.A., MUNROE, S., LUCK, M., PAYNE, T., MILLER, T., MCBURNEY, P.
& PECHOUCEK, M. (2006) Commercial Applications of Agents: Lessons,
Experiences and Challenges. IN Stone, P. & Weiss, G. (Eds.) Proceedings of
the Fifth International Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan.

BOEHM, B.W. (1981) Software Engineering Economics Englewood Cliffs, NJ,
Prentice-Hall.

BOEHM, B.W. (1988) A Spiral Model of Software Development and Enhancement.
IEEE Computer, 21,5, 61-72.

179

http://www.arenasimulation.com/products/default.asp

References

BoEeEHM, B.W., BROWN, J.R., KASPAR, H., LIPOW, M., MACLEOD, G.J. & MERRITT,
M.J. (1980) Characteristics of Software Quality, TRW Series of Software
Technology, Amsterdam, North-Holland Publishing Company.

BoEHM, B.W., BROWN, J.R. & Lirow, M. (1976) Quantitative Evaluation of
Software Quality. IN Proceedings of the 2™ International Conference on

Software Engineering, San Francisco, California, IEEE Computer Society
Press, 592-605.

BooOCH, G. (1994) Object-oriented Analysis and Design with Applications, nd
edition, Reading, MA, Addison-Wesley.

BORSHCHEV, A. & FILIPPOV, A. (2004) From System Dynamics and Discrete Event
to Practical Agent Based Modeling: Reasons, Techniques, Tools. IN
Kennedy, M., Winch, G.W., Langer, R.S., Rowe, J.I. & Yanni, J.M. (Eds.)
22" International Conference of the System Dynamics Society, Oxford,
England, UK, Wiley.

BOWEN, J.B. (1978) Are Current Approaches Sufficient for Measuring Software
Quality? IN Proceedings Software Quality Assurance Workshop on
Functional and Performance Issues, 148-155.

BOWEN, T.P., POsT, J.V., TsAL J., PRESSON, P.E. & SCHMIDT, R.L. (1983) Software
Quality Measurement for Distributed Systems, Guidebook for Software
Quality Measurement. RADC-TR-83-1735, Volume II, Rome Air Development
Center, Air Force Systems Command, Griffiths Air Force Base, NY

BRAILSFORD, S.C. & HILTON, N.A. (2000) A Comparison of Discrete Event
Simulation and System Dynamics for Modelling Healthcare Systems. IN
Riley, J. (Ed.) Proceedings of ORAHS 2000, Glasglow Caledonian
University, 18-39.

BROOKS, F.P. (1987) No Silver Bullet: Essence and Accidents of Software
Engineering. I[EEE Computer, 20, 4, 10-19.

BRrOOKS, R.A. (1986) A Robust Layered Control System For a Mobile Robot. IEEE
Journal of Robotics and Automation, RA-2, 1, 14-23.

BRrOOKS, R.J. & ToBIAS, A.M. (1996) Choosing the Best Model: Level of Detail,
Complexity, and Model Performance. Mathematical and Computer
Modelling, 24, 4, 1-14.

BROWN, B.B. (1968) Delphi Process: A Methodology Used for the Elicitation of
Opinions of Experts. The RAND Corporation. [Online][Accessed on 21 May
2006] Available from: <http://www.rand.org/pubs/papers/2006/P3925.pdf>

BROWN, R. (1988) Calendar Queues: A Fast O(1) Priority Queue Implementation of
the Simulation Event Set Problem. Communications of the ACM, 31, 10,
1220-1227.

180

http://www.rand.org/pubs/papers/2006/P3925.pdf

References

BUCHANAN, B.G. & SHORTLIFFE, E.H. (1984) Rule-Based Expert Systems: The

MYCIN Experiments of the Stanford Heuristic Programming Project,
Reading, MA, Addison-Wesley.

BUSSMANN, S., JENNINGS, N.R. & WOOLDRIDGE, M. (2004) Multiagent Systems for
Manufacturing Control: A Design Methodology, Springer Series on Agent
Technology, Springer Series on Agent Technology, Springer-Verlag.

BUTLER, M.H. & SANDEN, B.I. (2001) Replacing Processes with Threads in Parallel
Discrete Event Simulation. Technology Review Journal, Fall/Winter 2001,
19-27.

CARSON, J.S., II (2004) Introduction to Modeling and Simulation. IN Ingalls, R.G.,

Rossetti, M.D., Smith, J.S. & Peters, B.A. (Eds.) Proceedings of the 2004
Winter Simulation Conference, 9-16.

CHANDY, K.M. & MISRA, J. (1979) Distributed Simulation: A Case Study in Design

and Verification of Distributed Programs. IEEE Transactions on Software
Engineering, 5, 440-452.

CHAPMAN, D. (1987) Planning for Conjunctive Goals. Artificial Intelligence, 32, 3,
333-377.

CHIDAMBER, S.R. & KEMERER, C.F. (1991) Towards a Metrics Suite for Object
Oriented Design. IN Paepcke, A. (Ed.) Object-oriented Programming

Systems, Languages, and Applications OOPSLA'91, Phoenix, Arizona, USA,
ACM Press New York, NY, USA, 197 - 211

CHoL, T.Y., DOOLEY, K.J. & RUNGTUSANATHAN, M. (2001) Supply Networks and

Complex Adaptive Systems: Control Versus Emergence. Journal of
Operations Management, 19, 3, 351-366.

CHOY, M.C., SRINIVASAN, D. & CHEU, R.L. (2003) Cooperative, hybrid agent

architecture for real-time traffic signal control. IEEE Transactions on
Systems, Man, and Cybernetics, 33, 5, 597-607.

CHWIF, L., BARRETTO, M.R.P. & PAUL, R.J. (2000) On Simulation Model

Complexity. IN Joines, J.A., Barton, R.R., Kang, K. & Fishwick, P.A. (Eds.)
Proceedings of the 2000 Winter Simulation Conference, 449-455.

CioprA, T.M., Lucas, T.W. & SANCHEZ, S.M. (2004) Military Applications of
Agent-based Simulations. IN Ingalls, R.G., Rossetti, M.D., Smith, J.S. &
Peters, B.A. (Eds.) Proceedings of the 2004 Winter Simulation Conference,
171-180.

CONNELL, J.H. (1992) SSS: A Hybrid Architecture Applied to Robot Navigation. IN

Proceedings of the 1992 IEEE Conference on Robotics and Automation
(ICRA-92), 2719-2724.

181

References

CONTE, S.D., DUNSMORE, H.E. & SHEN, V.Y. (1986) Software Engineering Metrics
and Models, Menlo Park, California 94025, The Benjamin/Cummings
Publishing Company, Inc.

CoNwAY, R.W. (1963) Some Tactical Problems in Digital Simulation. Management
Science, 10, 1, 47-61.

COSTANZA, R. & SKLAR, F.H. (1985) Articulation, Accuracy and Effectiveness of
Mathematical Models: A Review of Freshwater Wetland Applications.
Ecological Modelling, 27, 1/2, 45-68.

COULTER, N.S. (1983) Software Science and Cognitive Psychology. IEEE
Transactions on Software Engineering, SE-9, 2, 166-171.

DAVIDSSON, P. (2002) Agent Based Social Simulation: A Computer Science View.
Journal of Artificial Societies and Social Simulation, 5, 1.

DE SWAAN ARONS, H. (1999) Knowledge-based Modeling of Ddiscrete-event
Simulation Systems. IN Farrington, P.A., Nembhard, H.B., Sturrock, D.T. &
Evans, G.W. (Eds.) Proceedings of the 1999 Winter Simulation Conference,
591-597.

DE SWAAN ARONS, H. & VAN ASPEREN, E. (2000) Computer Assistance for Model
Definition. IN Joines, J.A., Barton, R.R., Kang, K. & Fishwick, P.A. (Eds.)
Proceedings of the 2000 Winter Simulation Conference, 399-408.

DEMARCoO, T. (1979) Structured Analysis and System Specification, Upper Saddle
River, NJ, USA, Yourdon Press.

DEMARCcCoO, T. (1982) Controlling Software Projects, New York, Yourdon Press.

DoJ (2003) The Department of Justice Systems Development Life Cycle Guidance
Document [Online][Accessed on 12 May 2006] Available from:
<http://www.usdoj.gov/jmd/irm/lifecycle/table.htm>

DOOLEY, K.J. (1996) A Nominal Definition of Complex Adaptive Systems. The
Chaos Network, 8,1, 2-3.

DOOLEY, K.J., JOHNSON, T.L. & BusH, D.H. (1995) TQM, Chaos, and Complexity.
Human Systems Management, 14, 4, 1-16.

DUDENHOEFFER, D.D. & JONES, M.P. (2000) A Formation Behavior for Large-scale
Micro-robot Force Deployment. IN Joines, J.A., Barton, R.R., Kang, K. &
Fishwick, P.A. (Eds.) The 2000 Winter Simulation Conference, 972-982.

EcCLIPSE (2006) An Open Development Platform. 3.1.4 ed., Eclipse Foundation Inc.,
Portland, OR 97204 USA.

ETZIONI, O. (1996) Moving Up the Information Food Chain: Deploying Softbots on

the Worldwide Web. IN The Thirteenth National Conference on Artificial
Intelligence (AAAI-96), Portland, Oregon.

182

http://www.usdoj.gov/jmd/irm/lifecycle/table.htm

References

EXTEND (2005) Extend Industry, Simulation Package. 6.0.7 ed., Imagine That Inc.,
San Jose, CA 95119 USA.

FENTON, N.E. & PFLEEGER, S.L. (1997) Software Metrics: A Rigorous and Practical
Approach, 2" edition, London, International Thomson Computer Press.

FIPA (2002) FIPA Abstract Architecture Specification [Online][Accessed on 05 May
2007] Available from: <http://www.fipa.org/specs/fipa00001/SC00001L.pdf>

FORRESTER, J.W. (1961) Industrial Dynamics, Cambridge, Massachusetts, The MIT
Press.

FRANKLIN, S. & GRAESSER, A. (1996) Is it an Agent, or Just a Program? A
Taxonomy for Autonomous Agents. IN Third International Workshop on
Agent Theories, Architectures, and Languages, Springer-Verlag, 21-35.

FuiiMoTo, R.M. (1989) The Virtual Time Machine. IN Leighton, F.T. (Ed.)
Proceedings of the First Annual ACM Symposium on Parallel Algorithms and
Architectures, Santa Fe, New Mexico, USA, 199-208.

FuiimoTo, R.M. (1990) Parallel Discrete Event Simulation. Communications of the
ACM, 33, 10, 30-53.

FuLTON, E.A., SMITH, A.D.M. & JOHNSON, C.R. (2003) Effect of Complexity on
Marine Ecosystem Models. Marine Ecology Progress Series, 253, 1-6.

GAT, E. (1992) Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. IN Proceedings of the
National Conference on Artificial Intelligence (AAAI-92), San Jose, CA, 809-
815.

GAT, E. (1998) Three-layer architectures. IN Kortenkamp, D., Bonasso, R.P. &
Murphy, R. (Eds.) Artificial Intelligence and Mobile Robots: Case Studies of
Successful Robot Systems, Cambridge, MA, MIT Press, 195-210.

GELL-MANN, M. (1995) What is Complexity? Complexity, 1,1, 16-19.

GILB, T. (1988) The Principles of Software Engineering Management, Wokingham,
Addison-Wesley.

GOLDSTEIN, J. (1999) Emergence as a Construct: History and Issues. Emergence:
Complexity and Organization, 1,1, 49-72.

GORDON, T.J. (1994) The Delphi Method. IN Futures Research Methodology,
AC/UNU Project. [Online][Accessed on 22 May 2007] Available from:
<http://www.gerenciamento.ufba.br/Downloads/delphi%?20(1).pdf>

GRADY, R.B. (1994) Successfully Applying Software Metrics. IEEE Computer, 27,
9, 18-25.

GRAETTINGER, C.P., GARCIA, S., S1VIY, J., SCHENK, R.J. & SYCKLE, P.J.V. (2002)
Using the Technology Readiness Levels Scale to Support Technology

183

http://www.fipa.org/specs/fipa00001/SC00001L.pdf
http://www.gerenciamento.ufba.br/Downloads/delphi (1).pdf

References

Management in the DoD's ATD/STO Environments (A Findings and
Recommendations Report Conducted for Army CECOM). CMU/SEI-2002-
SR-027, Carnegie-Mellon University, Software Engineering Institute,

GUIMARAES, T. (1983) Managing Application Program Maintenance Expenditures.
Communications of the ACM, 26, 10, 739-746.

HALFON, E. (1983a) Is There a Best Model Structure? 1. Modelling the Fate of a
Toxic Substance in a Lake. Ecological Modelling, 20, 135-152.

HALFON, E. (1983b) Is There a Best Model Structure? 2. Comparing the Model
Structures of Different Fate Models. Ecological Modelling, 20, 153-163.

HALSTEAD, M.H. (1977) Elements of Software Science, Operating and Programming
Systems Series, vol. 7, New York, NY, Elsevier.

HELMER-HIRSCHBERG, O. & RESCHER, N.H. (1958) On the Epistemology of the
Inexact Sciences. The RAND Corporation. [Online][Accessed on 21 May
2007] Available from: <http://www.rand.org/pubs/papers/2005/P1513.pdf>

HENDERSON-SELLERS, B. (1996) Object-oriented metrics: Measures of coplexity, The
Object-Oriented Series, Upper Saddle River, NJ, Prentice Hall.

HENRY, S. & KAFURA, D. (1981) Software Structure Metrics Based on Information
Flow. IEEE Transactions on Software Engineering, SE-7,5, 510-518.

HOFFMANN, A.O.1., JAGER, W. & VON EIJE, J.H. (2007) Social Simulation of Stock
Markets: Taking It to the Next Level. Journal of Artificial Societies and
Social Simulation, [Online][Accessed on 05 April 2007] Available from:
<http://jasss.soc.surrey.ac.uk/10/2/7.html>

IEEE (2000) IEEE 1516-2000 Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Framework and Rules, New York, NY, Institute
of Electrical and Electronics Engineers, Inc.

IMAGINETHAT (2006) Extend Overview [Online][Accessed on 11 September 2006]
Available from: <http://www.imaginethatinc.com/prods_overview.htm|>

IPAS (2007) IPAS Three Worlds [Online][Accessed on 21 December 2007]
Available from: <http://www.3worlds.org/>

ISO (1991) Information Technology - Software Product Evaluation - Quality
Characteristics and Guide Lines for Their Use, ISO/TEC IS 9126, Geneva,
Switzerland, International Standards Organization.

[ZQUIERDO, S.S., [ZQUIERDO, L.R. & GOTTS, N.M. (2008) Reinforcement Learning
Dynamics in Social Dilemmas. Journal of Artificial Societies and Social
Simulation, [Online][Accessed on 02 April 2008] Available from:
<http://jasss.soc.surrey.ac.uk/11/2/1.html>

JACK (2007) What is JACK? [Online][Accessed on 02 May 2007] Available from:
<http://www.agent-software.com/shared/products/index.html>

184

http://www.rand.org/pubs/papers/2005/P1513.pdf
http://jasss.soc.surrey.ac.uk/10/2/7.html
http://www.imaginethatinc.com/prods_overview.html
http://www.3worlds.org/
http://jasss.soc.surrey.ac.uk/11/2/1.html
http://www.agent-software.com/shared/products/index.html

References

JADE (2006) Java Agent DEvelopment Framework: an Open Source Platform for
Peer-to-Peer Agent Based Applications. 3.4.1 ed., TILab, S.p.A., Turin, Italy.

JEFFERSON, D.R. (1985) Virtual Time. ACM Transactions on Programming
Languages and Systems, 7, 3, 404-425.

JENNINGS, N.R. (2000) On Agent-based Software Engineering. Artificial Intelligence,
117, 277-296.

JENNINGS, N.R., SYCARA, K. & WOOLDRIDGE, M. (1998) A Roadmap of Agent

Research and Development. Autonomous Agents and Multi-Agent Systems, 1,
1, 7-38.

JENNINGS, N.R. & WOOLDRIDGE, M.J. (1995) Applying Agent Technology. Applied
Artificial Intelligence, 9, 4, 351-361.

JONES, C. (1994) Software Metrics: Good, Bad, and Missing. IEEE Computer, 27,9,
98-100.

JONES, C. (1996) Programming Languages Table, Version 8.2 [Online][Accessed on
21 December 2007] Available from:
<http://www.cs.bsu.edu/homepages/dmz/cs697/langtbl. htm>

JONES, D.W. (1986) An Empirical Comparison of Priority-Queue and Event-Set
Implementations. Communications of the ACM, 29, 4, 300-311.

JUNG, H.-W., KM, S.-G. & CHUNG, C.-S. (2004) Measuring Software Product
Quality: A Survey of ISO/IEC 9126. IEEE Software, 21, 5, 88-92.

KENDALL, E.A. (2000) Role Modelling for Agent System Analysis, Design, and
Implementation. /EEE Concurrency, 8, 2, 34-41.

KENDALL, E.A. (2001) Agent Software Engineering with Role Modelling. IN
Ciancarini, P. & Wooldridge, M.J. (Eds.) Agent-Oriented Software
Engineering: First International Workshop, AOSE 2000, Springer-Verlag
Berlin Heidelberg, 163-169.

KINNY, D., GEORGEFF, M. & RAO, A. (1996) A methodology and modelling
technique for systems of BDI agents. IN Van De Velde, W. & Perram, J.W.
(Eds.) Proceedings of the 7" European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, Springer-Verlag: Berlin, Germany, 56-71.

KITCHENHAM, B., PICKARD, L. & PFLEEGER, S.L. (1995) Case Studies for Method
and Tool Evaluation. /IEEE Software, 12, 4, 52-62.

KITCHENHAM, B.A. (1989) Software Quality Assurance. Microprocessors and
Microsystems, 13, 373-381.

KITCHENHAM, B.A. & WALKER, J.G. (1989) A Quantitative Approach to Monitoring
Software Development. Software Engineering Journal, 4, 1, 2-13.

185

http://www.cs.bsu.edu/homepages/dmz/cs697/langtbl.htm

References

KLUGL, F., HERRLER, R. & OECHSLEIN, C. (2003) From Simulated to Real
Environments: How to Use SeSAm for Software Development. IN Schillo,
M., Klusch, M., Miiller, J. & Tianfield, H. (Eds.) Proceedings of the First
German Conference on Multiagent System Technologies, MATES 2003,
Erfurt, Germany, Springer-Verlag GmbH, 13-24.

KNUTH, D.E. (1973) The Art of Computer Programming, Volume 3: Sorting and
Searching, 2" edition, Reading, MA, Addison-Wesley

KokoL, P., PODGORELEC, V., ZORMAN, M. & PIGHIN, M. (1999) Alpha - a Generic
Software Complexity Metric. IN Kusters, R.J., Cowderoy, A., Heemstra, F.J.
& Van Veenendal, E.P.W.M. (Eds.) Proceedings of ESCOM-SCOPE 99,
Herstmonceux, England, 397-405.

KRAHL, D. (2001) The Extend Simulation Environment. IN Peters, B.A., Smith, J.S.,
Medeiros, D.J. & Rohrer, M.W. (Eds.) Proceedings of the 2001 Winter
Simulation Conference, 217-225.

KROGSTIE, J., JAHR, A. & SIOBERG, D.I.K. (2006) A Longitudinal Study of
Development and Maintenance in Norway: Report from the 2003
Investigation. Information and Software Technology, 48, 11, 993-1005.

KUHL, F., WEATHERLY, R. & DAHMANN, J. (1999) Creating Computer Simulation

Systems: An Introduction to the High Level Architecture, Upper Saddle River,
NJ 07458, Prentice Hall PTR.

LAaw, AM. & KELTON, W.D. (1999) Simulation Modeling & Analysis, 31 edition,
McGraw-Hill Series in Industrial Engineering and Management Science,
New York, McGraw-Hill, Inc.

LAw, AM. & McCoMAS, M.G. (2003) How the ExpertFit Distribution-fitting
Software Can Make Your Simulation Models More Valid. IN Chick, S.,
Sanchez, P.J., Ferrin, D. & Morris, D.J. (Eds.) Proceedings of the 2003
Winter Simulation Conference, 169-174.

L1, W. & HENRY, S. (1993) Object Oriented Metrics Which Predict Maintainability.
Journal of Systems Software, 23, 111-122.

LINSTONE, H.A. & TUROFF, M. (2002) The Delphi Method: Techniques and
Applications [Online][Accessed on 08 September 2006] Available from:
<http://www.is.njit.edu/pubs/delphibook/delphibook.pdf>

LORENZ, M. (1993) Object-oriented software development: a practical guide,
Englewood Cliffs, NJ, Prentice Hall.

LoSTWAX (2005) Lost Wax Agent Framework [Online][Accessed on 24 October
2005] Available from: <http://www.lostwax.com/agents/framework/>

Low, Y.H., Lim, C.C., CAl, W., HUANG, S.Y., Hsu, W.J., JAIN, S. & TURNER, S.J.
(1999) Survey of languages and runtime libraries for parallel discrete-event
simulation. Simulation, 72, 3, 170-186.

186

http://www.is.njit.edu/pubs/delphibook/delphibook.pdf
http://www.lostwax.com/agents/framework/

References

Luck, M., MCBURNEY, P., SHEHORY, O. & WILLMOTT, S. (2005) Agent Technology
Roadmap.: A Roadmap for Agent Based Computing [Online][Accessed on 22
December 2007] Available from:
<http://www.agentlink.org/roadmap/al3rm.pdf>

MACAL, C.M. & NORTH, M.J. (2006) Tutorial on agent-based modelling and
simulation Part 2: how to model with agents. IN Perrone, L.F., Wieland, F.P.,
Liu, J., Lawson, B.G., Nicol, D.M. & Fujimoto, R.M. (Eds.) Proceedings of
the 2006 Winter Simulation Conference, 73-83.

MARIA, A. (1997) Introduction to modeling and simulation. IN Andradéttir, S.,
Healy, K.J., Withers, D.H. & Nelson, B.L. (Eds.) Proceedings of the 1997
Winter Simulation Conference, 7-13.

MARIN, M. (1997) An empirical comparison of priority queue algorithms. Technical
Report PRG-TR-10-97. Oxford University.

MARTIN, J. (1991) Rapid Application Development, Indianapolis, IN, USA,
Macmillan Publishing Co., Inc.

MARTIN, P. (1999) The modelling of tactics and procedures using a component based
system. IN Farrington, P.A., Nembhard, H.B., Sturrock, D.T. & Evans, G.W.
(Eds.) The 1999 Winter Simulator Conference, 1131-1136.

MATARIC, M.J. (1992) Behaviour-based control: Main properties and implications.
IN Proceedings of the IEEE International Conference on Robotics and
Automation, Workshop on Architectures for Intelligent Control Systems,
Nice, France, 46-54.

MATARIC, M.J. (1997) Behaviour-based control: examples from navigation, learning,
and group behaviour. Journal of Experimental & Theoretical Artificial
Intelligence, 9, 2, 323-336.

MATHWORKS (2007) Simulink - Simulation and Model-Based Design
[Online][Accessed on 01 September 2007] Available from:
<http://www.mathworks.com/products/simulink/>

MCcCABE, T.J. (1976) A complexity measure. [EEE Transactions on Software
Engineering, SE-2, 4, 308-320.

MCcCCABE, T.J. & BUTLER, C.W. (1989) Design complexity measurement and testing.
Communications of the ACM, 32, 12, 1415-1425.

MCCALL, J.A., RICHARDS, P.K. & WALTERS, G.F. (1977) Factors in software quality.
Vols I, 11, I1I, US Rome Air Development Center Reports NTIS AD/A-049
014, 015, 055,

MILLER, D.P., FIRBY, R.J., FISHWICK, P.A. & ROTHENBERG, J. (1992) AI: what
simulationists really need to know. ACM Transactions on Modeling and
Computer Simulation, 2, 4, 269-284.

187

http://www.agentlink.org/roadmap/al3rm.pdf
http://www.mathworks.com/products/simulink/

References

MISRA, J. (1986) Distributed discrete-event simulation. ACM Computing Surveys, 18,
1, 39-65.

MoD (2007) Acquisition Management System: Technology Management Guidance
for the UK MOD Defence Acquisition Community (Annexe A)

[Online][Accessed on 21 December 2007] Available from:
<http://www.ams.mod.uk/content/docs/techman/content/trlann/trlanna.pdf>

MORECROFT, J. & ROBINSON, S. (2006) Comparing discrete-event simulation and
system dynamics: modelling a fishery. IN Robinson, S., Taylor, S.,
Brailsford, S. & Garnett, J. (Eds.) Proceedings of the 2006 OR Society
Simulation Workshop, The OR Society.

MOSTERMAN, P.J. (1999) An Overview of Hybrid Simulation Phenomena and Their
Support by Simulation Packages. IN Vaandrager, F.W. & Schuppen, J.H.V.
(Eds.) Hybrid Systems: Computation and Control, Lecture Notes in Computer
Science, vol. 1569, Berlin, Springer-Verlag, 165-177.

NANCE, R.E. & SARGENT, R.G. (2002) Perspectives on the evolution of simulation.
Operations Research, 50,1, 161-172.

NEILL, C.J. & LAPLANTE, P.A. (2003) Requirements Engineering: the State of the
Practice. IEEE Software, 20, 6, 40-45.

NEUMANN, P.G. (1993) Modeling and Simulation. Communications of the ACM, 36,
4,124,

NEWELL, A. (1982) The Knowledge Level. Artificial Intelligence, 18, 87-127.

NOSEK, J.T. & PALVIA, P. (1990) Software Maintenance Management: Changes in

the Last Decade. Journal of Software Maintenance: Research and Practice,
2,3, 157-174.

ODELL, J., PARUNAK, H.V.D. & BAUER, B. (2000) Representing agent interaction
protocols in UML. IN Ciancarini, P. & Wooldridge, M. (Eds.) Proceedings of
the First International Workshop (AOSE-2000), Springer-Verlag: Berlin,
Germany.

OMAN, P.W. & HAGEMEISTER, J. (1992) Metrics for Assessing a Software System's
Maintainability. IN Proceedings of the Conference on Software Maintenance,
IEEE Computer Society Press, 337-344.

OREN, T.I. (1977) Simulation - as it has been, and should be. Simulation, 29, 5, 182-
183.

OREN, T.I. (1979) Concepts for advanced computer assisted modelling. IN Zeigler,
B.P., Elzas, M.S., Kir, G.J. & Oren, T.I. (Eds.) Methodology in Systems
Modelling and Simulation, 29-55.

OREN, T.1I. (1986) Knowledge bases for an advanced simulation environment. IN

Luker, P.A. & Adelsberger, H.H. (Eds.) Intelligent Simulation Environments,
16-22.

188

http://www.ams.mod.uk/content/docs/techman/content/trlann/trlanna.pdf

References

PARK, R. (1992) Software size measurement: a framework for counting source
statements. Technical Report CMU/SEI-92-TR-20, Software Engineering
Institute, Carnegie Mellon, Pittsburgh

PARUNAK, H.V.D., SAVIT, R. & RioLO, R.L. (1998) Agent-based modeling vs.
equation-based modeling: a case study and users' guide. IN Sichman, J.S.,
Conte, R. & Gilbert, N. (Eds.) Multi-Agent Systems and Agent-Based
Simulation: First International Workshop, MABS '98, Paris, France, Springer-
Verlag GmbH, 10-25.

PATHAK, S.D., DILTS, D.M. & BiswAs, G. (2003) A multi-paradigm simulator for
simulating complex adaptive supply chain networks. IN Chick, S., Sanchez,
P.J., Ferrin, D. & Morrice, D.J. (Eds.) Proceedings of the 2003 Winter
Simulation Conference, 808-816.

PRECHELT, L. (2000) An Empirical Comparison of Seven Programming Languages.
Computer, 33, 10, 23-29.

REFSGAARD, J.C. & HENRIKSEN, H.J. (2004) Modelling guidelines - terminology and
guiding principles. Advances in Water Resources, 27,1, 71-82.

REYNOLDS, P.F., JR. (1988) A spectrum of options for parallel simulation. IN
Abrams, M., Haigh, P. & Comfort, J. (Eds.) Proceedings of the 1988 Winter
Simulation Conference, 325-332.

ROBINSON, S. (2003) Simulation: The practice of model development and use, Wiley,
Chichester, UK.

ROLLS-ROYCE (2005a) Aero repair and overhaul [Online][Accessed on 04 July
2006] Available from: <http://ir.rolls-
royce.com/rr/investors/analyst/investorday/paterson.pdf>

ROLLS-ROYCE (2005b) Focused investment in technology [Online][Accessed on 04
July 2006] Available from:
<http://www.investis.com/rr/downloads/smith.pdf>

ROLLS-ROYCE (2008) Trent 800 Operational Summary [Online][Accessed on 01
May 2008] Available from: <http://www.rolls-
royce.com/civil_aerospace/products/airlines/trent800/operational.jsp>

RoMBACH, H.D. (1987) A Controlled Experiment on the Impact of Software
Structure on Maintainability. [EEE Transactions on Software Engineering,
SE-13, 3, 89-94.

ROMBACH, H.D. (1990) Design Measurement: Some Lessons Learnt. [EEE Software,
17-25.

RONNGREN, R. & AYANI, R. (1997) A Comparative Study of Parallel and Sequential

Priority Queue Algorithms. ACM Transactions on Modeling and Computer
Simulation, 7, 2, 157-209.

189

http://ir.rolls-royce.com/rr/investors/analyst/investorday/paterson.pdf
http://ir.rolls-royce.com/rr/investors/analyst/investorday/paterson.pdf
http://www.investis.com/rr/downloads/smith.pdf
http://www.rolls-royce.com/civil_aerospace/products/airlines/trent800/operational.jsp
http://www.rolls-royce.com/civil_aerospace/products/airlines/trent800/operational.jsp

References

RONNGREN, R., RIBOE, J. & AYANIL R. (1991) Lazy Queue: An Efficient
Implementation of the Pending-event Set. IN Proceedings of the 24" Annual
Simulation Symposium, New Orleans, USA, IEEE, 194-204.

ROTHENBERG, J. (1991) Tutorial: artificial intelligence and simulation. IN Nelson,
B.L., Kelton, W.D. & Clark, G.M. (Eds.) Proceedings of the 1991 Winter
Simulation Conference, 218-222.

ROYCE, W.W. (1987) Managing the development of large software systems: concepts
and techniques. IN Proceedings of the 9" International Conference on
Software Engineering, Monterey, CA, USA, IEEE Computer Society Press,
328-338.

RUSSELL, S. & NORVIG, P. (2003) Artificial Intelligence: A Modern Approach, 2™
edition, Upper Saddle River, NJ, Prentice Hall.

SARGENT, R.G. (2007) Verification and Validation of Simulation Models. IN
Henderson, S.G., Biller, B., Hsieh, M.-H., Shortle, J., Tew, J.D. & Barton,
R.R. (Eds.) Proceedings of the 2007 Winter Simulation Conference, 124-137.

SCHLESINGER, S., CROSBIE, R.E., GAGNE, R.E., INNIS, G.S., LALWANI, C.S., LOCH, J.,
SYLVESTER, J., WRIGHT, R.D., KHEIR, N. & BARTOS, D. (1979) Terminology
for Model Credibility. SCS Technical Committee on Model Credibility.
Simulation, 32, 3, 103-104.

SDX (2005) SDX High Performance Computing [Online][Accessed on 01 September
2007] Available from: <http://www.sdynamix.com/index.html>

SEI (2000) Cyclomatic Complexity [Online][Accessed on 15 December 2007]
Available from:
<http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.htmI>

SHANNON, C.E. (1951) Prediction and entropy of printed English. Bell Systems
Technical Journal, 30, 50-64.

SHANNON, R.E. (1977) Introduction to simulation languages. IN Highland, H.J.,
Sargent, R.G. & Schmidt, J.W. (Eds.) Proceedings of the 1977 Winter
Simulation Conference, 14-20.

SHANNON, R.E. (1987) Models and artificial intelligence. IN Thesen, A., Grant, W.
& Kelton, W.D. (Eds.) Proceedings of the 1987 Winter Simulation
Conference, 16-24.

SHEPPERD, M.J. & INCE, D.C. (1989) An Empirical and Theoretical Analysis of an
Information Flow-based System Design Metric. IN Proceedings of the

European Software Engineering Conference '89, Springer Berlin /
Heidelberg, 86-99.

SIMON, H.A. (1998) The sciences of the artificial, Third edition, Cambridge,
Massachusetts, The MIT Press.

190

http://www.sdynamix.com/index.html
http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html

References

SLEATOR, D.D. & TARJAN, R.E. (1985) Self-adjusting binary search trees. Journal of
the Association for Computing Machinery, 32, 3, 652-686.

SLEATOR, D.D. & TARJAN, R.E. (1986) Self-adjusting Heaps. SIAM Journal on
Computing, 15, 1, 52-59.

SOMERVILLE, . (2001) Software Engineering, 6™ edition, London, Addison-Wesley.

STEINMAN, J.S. (1994) Discrete-event simulation and the event horizon. IN
Workshop on Parallel and Distributed Simulation, ACM Press, New York,
NY, USA, 39-49.

STEINMAN, J.S. (1996) Discrete-Event Simulation and the Event Horizon: Part 2:
Event List Management. IN Proceedings of the Tenth Workshop on Parallel
and Distributed Simulation, Philadelphia, Pennsylvania, USA, IEEE
Computer Society, 170-178.

STELLMAN, A. & GREENE, J. (2005) Applied Software Project Management, Theory
in Practice, O'Reilly Media, Inc.

STEVENS, W.P., MYERS, G.J. & CONSTANTINE, L.L. (1974) Structured design. /IBM
Systems Journal, 13, 2, 115-139.

STOCKLE, C.O. (1992) Canopy photosynthesis and transpiration estimates using
radiation interception models with different levels of detail. Ecological
Modelling, 60, 1, 31-44.

TAYLOR, P., EVANS-GREENWOOD, P. & ODELL, J. (2005) Agents in the Enterprise.
Australian Software Engineering Conference, ASWEC 2005. Brisbane,
Australia.

TEWOLDEBERHAN, T.W., VERBRAECK, A., VALENTIN, E. & BARDONNET, G. (2002)
An evaluation and selection methodology for discrete-event simulation
software. IN Yiicesan, E., Chen, C.-H., Snowdon, J.L. & Charnes, J.M. (Eds.)
2002 Winter Simulation Conference, 67-75.

THOYER, S., MORARDET, S., RIO, P., SIMON, L., GOODHUE, R. & RAUSSER, G. (2001)
A Bargaining Model to Simulate Negotiations between Water Users. Journal
of Artificial Societies and Social Simulation, [Online][Accessed on 12
September 2006] Available from: <http://jasss.soc.surrey.ac.uk/4/2/6.html>

ToBIAS, R. & HOFMANN, C. (2004) Evaluation of free Java-libraries for social-
scientific agent based simulation. Journal of Artificial Societies and Social
Simulation, 7, 1.

TSATSOULIS, C. (1990) A review of artificial intelligence in simulation. ACM
SIGART Bulletin, 2,1, 115-121.

VAKAS, D., PRINCE, J., BLACKSTEN, H.R. & BURDICK, C. (2001) Commander
behavior and course of action selection in JWARS. IN Peters, B.A., Smith,
J.S., Medeiros, D.J. & Rohrer, M.W. (Eds.) Proceedings of the 2001 Winter
Simulation Conference, 697-705.

191

http://jasss.soc.surrey.ac.uk/4/2/6.html

References

VAUCHER, J.G. (1985) Views of modelling: comparing the simulation and Al
approaches. IN Proceedings of the SCS Multiconference in Artificial
Intelligence, Graphics, and Simulation, 3-7.

WAKE, S. & HENRY, S. (1988) A model based on software quality factors which
predicts maintainability. IN Conference on Sofiware Maintenance,
Scottsdale, Arizona, USA, IEEE, 382-387.

WELKER, K.D. (2001) The Software Maintainability Index Revisited. Crosstalk: The
Journal of Defense Software Engineering, 14, 8, 18-21.

WILLIAMS, J.D. (1994) Metrics for object-oriented projects. IN Proceedings of
OOP'94 and C++ World, Lisbon, Portugal, 253-258.

WOOLDRIDGE, M. (1997) Agent-based software engineering. IEE Proceedings
Software Engineering, 144, 1, 26-37.

WOOLDRIDGE, M. & CIANCARINI P. (2001) Agent-Oriented Software Engineering:
The State of the Art. INAgent-Oriented Software Engineering,
Berlin/Heidelberg, Springer, 52-82.

WOOLDRIDGE, M. & JENNINGS, N.R. (1995) Intelligent Agents: Theory and Practice.
The Knowledge Engineering Review, 10, 2, 115-152.

WOOLDRIDGE, M., JENNINGS, N.R. & KINNY, D. (1999) A Methodology for Agent-
Oriented Analysis and Design. IN Etzioni, O., Muller, J. & Bradshaw, J.M.
(Eds.) Proceedings of the Third International Conference on Autonomous
Agents (Agents 99), Seattle, Washington, ACM, 69-76.

WOOLDRIDGE, M.J. & JENNINGS, N.R. (1999) Software engineering with agents:
pitfalls and pratfalls. [EEE Internet Computing, 3, 3, 20-27.

WSC (2007) Winter Simulation Conference Programs with Full Papers
[Online][Accessed on 01 December 2007] Available from:
<http://www.informs-cs.org/wscpapers.html>

XJTECHNOLOGIES (2006) AnyLogic Overview [Online][Accessed on 21 August
2006] Available from: <http://www.xjtek.com/anylogic/>

YN, R.K. (2003) Case Study Research: Design and Methods, Third edition, London,
Sage Publications, Inc.

YOURDON, E. & CONSTANTINE, L.L. (1979) Structured Design: Fundamentals of a
Discipline of Computer Program and System Design, Englewood Cliffs, NJ,
Prentice-Hall.

ZHANG, W. & LUCK, S.J. (2008) Discrete fixed-resolution representations in visual
working memory. Nature, [Online][Accessed on 04 April 2008] Available
from:
<http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature06860.pdf>

192

http://www.informs-cs.org/wscpapers.html
http://www.xjtek.com/anylogic/
http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature06860.pdf

Bibliography

Bibliography

AGENTLINK (2007) Agentlink: European Co-ordination Action for Agent-based
Computing [Online][Accessed on 21 May 2007] Available from:
<http://www.agentlink.org/index.php>

AGENTWEB (2007) Bookmarks for agent information [Online][Accessed on 04
September 2007] Available from:
<http://agents.umbc.edu/awbookmarks.html>

AITorics (2007) Al Topics: A dynamic library of introductory information about
Artificial Intelligence [Online][Accessed on 10 December 2007] Available
from:
<http://www.aaai.org/AlTopics/pmwiki/pmwiki.php/AlTopics/HomePage>

AMOUZEGAR, M.A. & GALWAY, L.A. (2003) Supporting Expeditionary Aerospace
Forces: Engine Maintenance Systems Evaluation (EnMasse): A User's Guide.
MR-1614, The RAND Corporation,

APRIL, J., BETTER, M., GLOVER, F. & KELLY, J. (2004) New Advances and
Applications for Marrying Simulation and Optimization. IN Ingalls, R.G.,
Rossetti, M.D., Smith, J.S. & Peters, B.A. (Eds.) Proceedings of the 2004
Winter Simulation Conference, 80-86.

BANDECCHI, M. (2007) Concurrent Engineering at ESA: from the Concurrent Design
Facility (CDF) to a Distributed Virtual Facility. IN The 14" ISPE
International Conference on Concurrent Engineering, Sao Jose' dos Campos,
SP, Brazil.

BANSLER, J.P. & BODKER, K. (1993) A reappraisal of structured analysis: design in

an organizational context. ACM Transactions on Information Systems, 11, 2,
165-193.

BASILL, V.R., BRIAND, L.C. & MELO, W.L. (1996) A Validation of Object-Oriented
Design Metrics as Quality Indicators. IEEE Transactions on Software
Engineering, 22, 10, 751-761.

BAsILI, V.R. & ROMBACH, H.D. (1988) The TAME Project: Towards Improvement-
oriented Software Environments. /EEE Transactions on Software
Engineering, 14, 6, 758-773.

DAVIDSSON, P. (2000) Multi Agent Based Simulation: Beyond Social Simulation. IN
Moss, S. & Davidsson, P. (Eds.) Multi-Agent-Based Simulation: Second
International Workshop, MABS 2000, Boston, MA, USA, Springer Berlin /
Heidelberg, 97-107.

JASSS (2008) The Journal of Artificial Societies and Social Simulation: An inter-
disciplinary journal for the exploration and understanding of social

193

http://www.agentlink.org/index.php
http://agents.umbc.edu/awbookmarks.html
http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/HomePage

Bibliography

processes by means of computer simulation [Online][Accessed on 21 May
2008] Available from: <http://jasss.soc.surrey.ac.uk/JASSS.htmI>

JENNINGS, N.R. (2001) An Agent-based Approach for Building Complex Software
Systems. Communications of the ACM, 44, 4, 35-41.

JENNINGS, N.R. (2008) Professor Nicholas Jennings: Publications
[Online][Accessed on 29 October 2007] Available from:
<http://www.ecs.soton.ac.uk/people/nrj/publications>

LEE, L.H., HUANG, H.C., LEE, C., CHEW, E.P., JARUPHONGSA, W., YONG, Y.Y .,
LIANG, Z., LEONG, C.H., TAN, Y.P., NAMBURI K., JOHNSON, E. & BANKS, J.
(2003) Proceedings of the Discrete Event Simulation Model for Airline
Operations: SIMAIR. IN Chick, S., Sanchez, P.J., Ferrin, D. & Morrice, D.J.
(Eds.) 2003 Winter Simulation Conference, 1656-1662.

LEGATO, P. & MAzzA, R.M. (2001) Berth Planning and Resources Optimisation at a
Container Terminal via Discrete Event Simulation. European Journal of
Operational Research, 133, 3, 537-547.

LINSTONE, H.A. & TURROFF, M. (2002) The Delphi Method: Techniques and
Applications [Online][Accessed on 08 September 2006] Available from:
<http://www.is.njit.edu/pubs/delphibook/delphibook.pdf>

Luck, M. (2007) Michael Luck Publications [Online][Accessed on 21 June 2007]
Available from:
<http://www.dcs.kcl.ac.uk/staff/mml/publications/publications.html>

MAES, P. (1994) Agents that reduce work and information overload.
Communications of the ACM, 37, 7, 30-40.

MOLLER, B. & LOF, S. (2006) A Management Overview of HLA Evolved Web
Service APL. IN Proceedings of 2006 Fall Simulation Interoperability
Workshop, Orlando, Florida, USA, Simulation Interoperability Standards
Organization.

NicoL, D.M. (1988) High performance parallelized discrete event simulation of
stochastic queueing networks. IN Abrams, M., Haigh, P. & Comfort, J. (Eds.)
Proceedings of the 1988 Winter Simulation Conference, 306-314.

NicoL, D.M. (1996) Principles of conservative parallel simulation. IN Charnes, J.M.,
Morrice, D.J., Brunner, D.T. & Swain, J.J. (Eds.) Proceedings of the 1996
Winter Simulation Conference, 128-135.

PAPAMICHAEL, K. & PROTZEN, J.-P. (1993) The Limits of Intelligence in Design. 4"
International Symposium on System Research, Informatics and Cybernatics.
Baden-Baden, Germany.

RizzoLl, A.E. (2007) A4 collection of modelling and simulation resources on the
Internet [Online][Accessed on 08 November 2007] Available from:
<http://www.idsia.ch/~andrea/simtools.html#vissim>

194

http://jasss.soc.surrey.ac.uk/JASSS.html
http://www.ecs.soton.ac.uk/people/nrj/publications
http://www.is.njit.edu/pubs/delphibook/delphibook.pdf
http://www.dcs.kcl.ac.uk/staff/mml/publications/publications.html
http://www.idsia.ch/~andrea/simtools.html#vissim

Bibliography

ROCHA, L.M. (2004) From Artificial Life to Semiotic Agent Models: Review and
Research Directions [Online][Accessed on 21 May 2006] Available from:
<http://informatics.indiana.edu/rocha/sim/review.html>

SHANTHIKUMAR, J.G. & SARGENT, R.G. (1983) A unifying view of hybrid

simulation/analytic models and modeling. Operations Research, 31, 6, 1030-
1052.

SHEN, W. & NORRIE, D.H. (1998) A hybrid agent-oriented infrastructure for
modeling manufacturing enterprises. IN Proceedings of the Knowledge
Acquisition Workshop (KAW-98), Banff, Canada.

SIMON, H.A. Herbert A. Simon 1916-2001 [Online][Accessed on 01 Feb 2008]
Available from: <http://www.psy.cmu.edu/psy/faculty/hsimon/hsimon.html>

TESFATSION, L. (2008) General Software and Toolkits: Agent-Based Computational
Economics and Complex Adaptive Systes [Online][Accessed on 21 May
2008] Available from: <http://www.econ.iastate.edu/tesfatsi/acecode.htm>

WOOLDRIDGE, M. (2002) An Introduction to MultiAgent Systems [Online][Accessed
on 24 August 2005] Available from:

<http://www.csc.liv.ac.uk/~mjw/pubs/imas/>

WOOLDRIDGE, M. (2008) Mike Wooldridge - Publications [Online][Accessed on 21
May 2008] Available from: <http://www.csc.liv.ac.uk/~mjw/pubs/>

195

http://informatics.indiana.edu/rocha/sim/review.html
http://www.psy.cmu.edu/psy/faculty/hsimon/hsimon.html
http://www.econ.iastate.edu/tesfatsi/acecode.htm
http://www.csc.liv.ac.uk/~mjw/pubs/imas/
http://www.csc.liv.ac.uk/~mjw/pubs/

