Stable and unstable flow in materials processed by equal-channel angular pressing with an emphasis on magnesium alloys
Stable and unstable flow in materials processed by equal-channel angular pressing with an emphasis on magnesium alloys
Magnesium alloys such as ZK60 exhibit strain softening when processed by equal-channel angular pressing (ECAP). Finite element modeling (FEM) was used to examine the flow process during ECAP with an emphasis on the importance of the strain-rate sensitivity m. The simulations show there is unstable flow and shear localization for values of m of 0 and 0.01, but the flow is stable for values of 0.05 and 0.1. The flow softening reduces the cross-sectional area of the billet and leads to an enhanced accumulation of damage at the upper surface. The simulations show that the presence of a back pressure increases the ability of the billet to fill the exit channel but does not remove the development of plastic instabilities such as shear concentrations. It is shown that an imposed back pressure reduces the level of the maximum principal stresses in the area in which deformation takes place, and this reduces the tendency for cracking of the billet during the pressing operation.
This article is based on a presentation given in the symposium entitled “Mechanical Behavior of Nanostructured Materials,” which occurred during the TMS Spring Meeting in San Francisco, CA, February 15–19, 2009, under the auspices of TMS, the TMS Electronic, Magnetic, and Photonic Materials Division, the TMS Materials Processing and Manufacturing Division, the TMS Structural Materials Division, the TMS Nanomechanical Materials Behavior Committee, the TMS Chemistry and Physics of Materials Committee, and the TMS/ASM Mechanical Behavior of Materials Committee.
Figueiredo, Roberto B.
2e0060b8-6368-4d87-825a-c3cb90e92145
Cetlin, Paulo R.
6fe5efb8-7976-4d56-8aae-08cbf76b9628
Langdon, Terence G.
86e69b4f-e16d-4830-bf8a-5a9c11f0de86
17 November 2009
Figueiredo, Roberto B.
2e0060b8-6368-4d87-825a-c3cb90e92145
Cetlin, Paulo R.
6fe5efb8-7976-4d56-8aae-08cbf76b9628
Langdon, Terence G.
86e69b4f-e16d-4830-bf8a-5a9c11f0de86
Figueiredo, Roberto B., Cetlin, Paulo R. and Langdon, Terence G.
(2009)
Stable and unstable flow in materials processed by equal-channel angular pressing with an emphasis on magnesium alloys.
Metallurgical and Materials Transactions A.
(doi:10.1007/s11661-009-0100-2).
Abstract
Magnesium alloys such as ZK60 exhibit strain softening when processed by equal-channel angular pressing (ECAP). Finite element modeling (FEM) was used to examine the flow process during ECAP with an emphasis on the importance of the strain-rate sensitivity m. The simulations show there is unstable flow and shear localization for values of m of 0 and 0.01, but the flow is stable for values of 0.05 and 0.1. The flow softening reduces the cross-sectional area of the billet and leads to an enhanced accumulation of damage at the upper surface. The simulations show that the presence of a back pressure increases the ability of the billet to fill the exit channel but does not remove the development of plastic instabilities such as shear concentrations. It is shown that an imposed back pressure reduces the level of the maximum principal stresses in the area in which deformation takes place, and this reduces the tendency for cracking of the billet during the pressing operation.
This article is based on a presentation given in the symposium entitled “Mechanical Behavior of Nanostructured Materials,” which occurred during the TMS Spring Meeting in San Francisco, CA, February 15–19, 2009, under the auspices of TMS, the TMS Electronic, Magnetic, and Photonic Materials Division, the TMS Materials Processing and Manufacturing Division, the TMS Structural Materials Division, the TMS Nanomechanical Materials Behavior Committee, the TMS Chemistry and Physics of Materials Committee, and the TMS/ASM Mechanical Behavior of Materials Committee.
This record has no associated files available for download.
More information
Published date: 17 November 2009
Additional Information:
Online First article
Organisations:
Engineering Mats & Surface Engineerg Gp
Identifiers
Local EPrints ID: 72217
URI: http://eprints.soton.ac.uk/id/eprint/72217
ISSN: 1073-5623
PURE UUID: a2e09934-0174-4743-9782-00c98e3adbee
Catalogue record
Date deposited: 01 Feb 2010
Last modified: 14 Mar 2024 02:47
Export record
Altmetrics
Contributors
Author:
Roberto B. Figueiredo
Author:
Paulo R. Cetlin
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics